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The influenza viral membrane protein hemagglutinin (HA) forms dense nanoscale clusters on host 

cell plasma membranes (PM), but the mechanisms that direct clustering are not well understood. Previous 

studies have observed HA associated with actin rich regions of the PM, but there are no known 

interactions between HA and actin. Phosphatidylinositol (4,5) biphosphate (PIP2), a signaling lipid in the 

PM, is capable of regulating the actin cytoskeleton, and HA is known to exploit actin comets, initiated by 

PIP2, to reach the PM of infected cells. PIP2 is also used by other viruses, such as HIV and Ebola, to form 

clusters of viral proteins on the PM. Using diffraction-limited and super-resolution FPALM methods, we 

observed that HA and PH domain, a protein marker for PIP2, are closely spatially related at the PM. 

Clusters of PIP2 are also significantly altered in both density and area in the presence of high levels of HA, 

while HA clusters are significantly altered in the presence of high levels of PIP2, suggestive of an 

interaction between the two. 

Although HA mutates rapidly, there are 3 cysteines and 1-2 basic residues in the cytoplasmic tail 

domain (CTD) which remain highly conserved among HA subtypes. These cysteines are known to undergo 

palmitoylation in the Golgi, a post-translational modification where hydrophobic palmitic acids are 

attached. Using HA mutants and super-resolution FPALM, we examined the role of both palmitoylation 

and charge on the clustering properties of HA and spatial association with PIP2. Mutation of the cysteines 

or basic residues causes significant reductions to cluster densities (relative to average), while mutation of 



 
 

the charges appears to modulate association with PIP2. The greatest changes were observed when both 

the cysteines and net charge of the HA CTD were changed, causing a maximal 22.1%±5.8% reduction in 

cluster radial distribution function (RDF) and a maximal 30.4%±14.6% increase in associated PH domain 

RDF. Cluster properties, density, perimeter, and circularity were also significantly affected. Even though 

clusters were not eliminated through CTD mutations, these findings suggest that the CTD of HA does play 

a role in the clustering of HA and spatial association with PIP2. 
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CHAPTER 1 

INTRODUCTION 

1.1. Preface 

Parts of this chapter were adapted from the book chapter “Dances with Membranes: 

Breakthroughs from Super-resolution Imaging” by authors Nikki M. Curthoys, Matthew Parent, Michael 

Mlodzianoski, Andrew J. Nelson, Jennifer Lilieholm, Michael B. Butler, Matthew Valles, and Samuel T. 

Hess, published in Lipid Domains, Volume 75, 59–123 in May 22, 2015.  

1.2. Introduction 

Influenza and other enveloped RNA viruses are a continuing threat to public health. The influenza 

A virus (IAV), and accompanying complications from infection, are responsible for an estimated 250,000 

to 500,000 deaths per year worldwide.1,2 At risk individuals, such as young children, the elderly, or those 

with a weakened immune system, are at the greatest danger of mortality from the disease. Even amongst 

the general population, influenza causes extensive suffering and can lead to more serious secondary 

bacterial infections such as pneumonia. IAV in particular mutates often, leading to new strains of the virus 

each year, some of which are especially infectious and capable of causing nationwide epidemics, or in rare 

cases pandemics. One notable example was the Spanish flu pandemic of 1918, which infected an 

estimated 500 million people and was responsible for an estimated 40 million deaths worldwide.3 

Although influenza epidemics are infrequent, the high rate of mutation in combination with limited 

options for treatment makes it a question of when, not if, a new epidemic or pandemic will arise. 

Current antiviral therapies are largely ineffective against many influenza strains. Since IAV 

mutates frequently, drug-resistant strains of the virus are increasingly common, while antiviral 

development takes years. Resistance to common antiviral drugs, such as amantadine and oseltamivir, has 

increased >90% in recent years in some IAV sub-types, illustrating the need for new drugs or alternative 

drug targets.4 Some studies have shown that treatment with antiviral influenza drugs has little to no effect 
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on mortality or hospitalization rates for high risk individuals, and, due to potentially severe side effects, 

they are not generally recommended, even for otherwise healthy individuals.5 

 Vaccines remain one of the most useful tools in preventing influenza infection, but their efficacy 

varies greatly. Each year, several strains of the influenza virus that are predicted to be the most prevalent 

in the upcoming year are formulated into a vaccine. However, mutations in IAV are often difficult to 

predict, and the vaccines do not confer protection against all strains of the virus. In recent history, for 

example, the 2014-2015 influenza vaccine underperformed considerably, imparting protection from only 

an estimated 19% of the most common influenza strains during this year’s flu season.6 IAV has the fastest 

mutation rate of the 3 classifications of influenza viruses and poses the greatest threat to humans and 

animals since long term immunity to the virus is not currently possible. Despite this, influenza vaccines 

generally do impart some limited resistance to the virus by boosting the immune system and stimulating 

antibody production, but treatment options after infection are very limited. 

1.3. Influenza A Virus 

1.3.1. Influenza Viral Life Cycle 

Influenza hemagglutinin (HA) performs essential roles in the life cycle of the IAV. An IAV particle 

(virion) in its spherical configuration is roughly 80-100nm in diameter and enclosed in a viral envelope 

formed from the membrane (lipid bilayer) of a host cell.7 IAV is also capable of forming filaments with 

roughly the same diameter, but which are up to several microns in length. The envelope is composed of 

lipid membrane taken from the host cell, and viral membrane proteins: hemagglutinin (HA), 

neuraminidase (NA), and the ion transport protein M2. Just inside the membrane, matrix protein (M1) 

forms the backbone to the virion, which encapsulates ribonucleoproteins (RNP) that house RNA 

polymerase complexes (which copy viral RNA) and the viral RNA (vRNA) genome, which encodes all the 

viral proteins.7 Two nonstructural proteins are also present, NS1 and NS2, which interfere with the natural 

immune response of the host cell and assist nuclear export of the vRNA genome respectively.8 
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As a virus, IAV necessarily requires the use of cellular machinery in order to replicate itself and to 

infect new hosts.7 To initiate the infection process, HA on the surface of the influenza virion binds to sialic 

acid receptors on the plasma membrane of a cell. With high local concentration of HA bound to the cell 

membrane, the entire virion enters the cytoplasm of the cell inside of an endosome (membrane enclosed 

compartment). Once there, the cell acidifies the interior of the endosome while M2 enables the 

acidification of the virion through transfer of protons from the endosome into the interior of the virion. 

When the pH is sufficiently low, HA undergoes a conformational change and initiates fusion with the 

endosomal membrane, breaking the virion apart and releasing the RNPs and other components into the 

cytoplasm.7 The RNPs are transferred to the cell nucleus, where the virus uses its own viral RNA 

polymerases to transcribe the viral RNA into messenger RNA (mRNA). The mRNA is transferred back to 

the cytoplasm where it is used by ribosomes to manufacture proteins on the endoplasmic reticulum or 

near the nucleus. Once transcribed, membrane proteins are inserted into the membrane with the help of 

short signaling sequences at the N-terminus of the proteins.7 Viral membrane proteins are thought to be 

packaged by the Golgi apparatus for vesicular transport to the plasma membrane, where they cluster 

together. M1 binds to RNPs and travels with them from the nucleus to potential sites of budding on the 

membrane. Once viral components assemble, membrane curvature is altered (largely by M1)9–11 and a 

viral bud (a portion of intact plasma membrane which is curved outward toward the exterior of the cell) 

forms on the cell surface. NA cleaves the sialic acid containing receptors on the cell surface,12 while M2 

mediates final scission from the host cell membrane.13 If all the viral components have assembled properly 

at the membrane, new virions are infectious and can spread the virus to nearby cells or can be expelled 

from the host organism through mucus or respiratory droplets to infect others. 

HA clustering is necessary for efficient viral fusion and assembly.14 HA is responsible for binding 

the IAV virion to sialic-acid containing receptors at the plasma membrane of cells; once binding has 

occurred, viruses are endocytosed into the endosome, where HA facilitates membrane fusion between 
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the viral and endosomal membranes. Increased rates of viral-host membrane fusion are directly 

correlated with increased HA expression levels and lead to increased infectivity.15 During assembly, HA 

clusters may mark sites for virion components to assemble and bud. The organization of HA on the cell 

membrane is also very important, and HA forms high density clusters as it assembles at the plasma 

membrane of infected cells, even in the absence of other viral components.16 As with HA expression levels, 

clustering is also correlated with increased levels of infectivity and viral budding, while diffuse HA 

expression results in decreases in both infectivity and budding.14 Additionally, HA clustering may also serve 

another important role in the viral life cycle by signaling the release of viral RNA (vRNA) and 

nucleoproteins (NP) from the nucleus of the infected cell, through a pathway involving mitogen-activated 

protein kinase (MAPK), which is necessary for assembling new infectious virions.17 

After translation by ribosomes, HA is trimerized and then transported to the membrane through 

the secretory pathway, likely via vesicular transport.18 It has been frequently suggested that once HA 

reaches the membrane, clusters of homotrimers form due to inherent association with lipid rafts.14,19–22 

Lipid rafts are a proposed model of the plasma membrane hypothesizing that some areas of the 

membrane, titled “rafts”, are enriched in cholesterol and sphingolipids (lipids involved membrane stability 

and signaling) and form liquid ordered phase regions within an otherwise liquid disordered membrane.23 

Rafts are proposed to be highly variable in size (originally 10-200nm) and are proposed to serve as sites 

of clustering and protein organization in the plasma membrane. However, the lipid raft model does not 

adequately describe experimental observations for clustering of HA trimers. Studies using electron 

microscopy showed surprisingly minor changes in clustering when markers for lipid rafts, cholesterol and 

sphingolipids, were removed or reduced.24 Single molecule examinations of HA trajectories in live cells 

indicate that HA trimers are mobile inside clusters, inconsistent with predictions for Lo domains.16 

Contrary to the raft model, recent experiments also indicate that HA clusters are not enriched with 

cholesterol or sphingolipids,25 thus alternative mechanisms of clustering are needed. 
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1.3.2. Hemagglutinin Structure 

The HA protein is coded for by a region of the viral RNA genome that includes 2 non coding 

regions, 2 packaging signals that help encapsulate the RNA into virions, and a coding region with a start 

and stop codon that encodes the HA protein itself.26 Genomic viral RNA is translated into mRNA by the 

viruses own RNA polymerase and is then translated into protein by host cell ribosomes. Partially translated 

HA molecules are inserted into the ER membrane with the assistance of a translocon through recognition 

of a signal peptide, most likely during translation of the mRNA,27 which is afterwards normally cleaved by 

a host cell peptidase, resulting in a premature HA protein, HA0. HA0 molecules then form trimers (see 

figure 1.1), most commonly in the ER or ER-Golgi intermediate compartment,18,28,29 prior to their transport 

to the membrane. Translated HA0 molecules can be broken down into a few distinct domains: a 

transmembrane domain (TMD), an ectodomain, and a short cytoplasmic tail domain (CTD). 

HA0 further undergoes several post translational modifications in both the ectodomain and CTD 

that are important to its function and infectivity. To prevent early fusion with cellular membranes, a host 

cell enzyme is required to activate HA by cleaving HA0 into 2 subunits: HA1, containing the sialic acid 

receptor binding site, and HA2, containing the fusion peptide.30 Although no longer comprised of a single 

amino acid chain, HA1/HA2 subunits remain together with a disulfide bond to form the mature 

hemagglutinin protein. Enzymes capable of cleaving HA0 into HA1/HA2 are largely found only in bronchial 

cells, restricting the extent of infection to these cell types.31–35 However, some variants of IAV are capable 

of replicating in a larger variety of cell types, either through mutations in the cleavage site which allow 

other enzymes to activate HA or by mutations in NA, possibly by enhancing recruitment of plasminogen 

to virion assembly sites at the plasma membrane,30 although there is disagreement that NA is the cause 

of enhanced recruitment.36 Mutations to the HA0 cleavage site can also affect the virulence of the virus 

in different animals, due to the relative availability of enzymes able to cleave HA0.37  
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Figure 1.1: Ribbon diagram of an HA (A/duck/Alberta/35/76 [H1N1]) trimer of HA0 with tilted 
transmembrane region.38 HA0 consists of an ectodomain which extends into the extracellular space, a 
transmembrane domain (TMD) which sits in the plasma membrane, and a cytoplasmic tail domain (CTD) 
(not pictured) which extends into the cytoplasm. The CTD extends into the cytoplasm of host cells and 
contains 3 cysteines and 1-2 basic residues which are highly conserved among HA subtypes. Protein ribbon 
diagram was rendered using UCSF Chimera.39 
  



7 
 

The CTD of HA contains 3 cysteines that remain highly conserved across influenza subtypes, which 

also undergo post translational modification in the Golgi40 in the form of acylation, a process by which an 

acyl group is covalently bonded to the CTD of the HA molecule. In native proteins, acylation of can serve 

many different purposes, including regulation of membrane association and trafficking of proteins 

between membrane compartments.41 In the case of influenza HA, acylation occurs primarily on cysteines, 

either in the cytoplasmic tail as palmitoylation (addition of a palmitate) or in the transmembrane region 

as palmitoylation or stearoylation (addition of a stearate).42–44 Both palmitates and stearates contain 

hydrophobic regions which presumably increase the membrane affinity of the HA CTD. Acylation sites on 

the tail of the HA protein are known to contribute, in part, to membrane curvature,45 while mutations to 

these sites can interrupt associations with M145,46 and alterations to the most distal acylation site can 

inhibit viral growth46,47 or were found reverted after mutation in live virus.45,48 However, it is not currently 

known if these are the only reasons for the highly conserved acylation of these sites. 

1.4. Microscopy 

1.4.1. Diffraction Limit 

Due to the diffraction properties of light, even in a perfect microscope system with perfect lenses, 

individual fluorescent molecules will appear (in the image plane) spread out in an Airy pattern instead of 

as a single infinitesimal point. The spread of light from its originating point by diffraction and other 

distortions from imperfections in the optics can be described by the point spread function (PSF) of the 

system. Mathematically, the best focused image from a microscope is the convolution of the imaged 

object with the PSF of the optics. For a point source (delta function), the PSF of the system and the image 

obtained from the microscope are the same. 

Any optical imaging system is fundamentally limited in resolution due to the diffraction of light. 

The resolving power of a microscope is often given by the Rayleigh criterion (equation 1.1),49  

𝑟 =
.            (1.1) 
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where r0 is the minimum distance needed between two point-like light sources to be resolved from one 

another, λ is the wavelength of light detected from the sample, and NA is the numerical aperture of the 

objective lens of the microscope. For practical purposes, the numerical aperture of a lens is limited to 

~1.45–1.65 and using the mean of the visible wavelengths of light (λ = 550 nm), the value of r0 falls around 

~200–230 nm. Although small compared to the size of a cell, this limit in resolution is substantial when 

compared to the sizes of proteins, viruses, and various other intracellular components. 

1.4.2. Fluorescence Microscopy 

The discovery and isolation of the green fluorescent protein (GFP) from the Aequorea Victoria 

jellyfish in 196250 opened a new avenue for investigating biological systems, although its importance as a 

microscopy tool was not immediately apparent. In recent years, fluorescence microscopy has been a very 

popular method for noninvasive and highly specific probing of biological structures and processes. With 

fluorescence microscopy, proteins or other molecules of interest are tagged with a fluorescent marker, 

either by genetically encoding a fluorescent fusion protein, employing a ligand with an attached 

fluorescent molecule, or by use of an antibody with an attached fluorescent marker. Genetically encoded 

markers tend to be the most specific of these methods, as the protein is produced inside the cell itself, 

and, provided the attached fluorescent protein does not interfere with the function of the native protein 

or its transport properties, can behave similarly to native protein.51,52 Although somewhat less specific, 

antibodies and ligands are more flexible with the type of fluorescent marker that is used, since they do 

not require the cell to produce it from a limited set of amino acids.53 

Confocal laser scanning microscopy (CLSM) is one of the most commonly used forms of 

fluorescence microscopy in the life sciences.54 In CLSM, a fluorescently tagged sample is viewed with a 

microscope as a laser scans across a small (typically planar) region, causing the fluorescent markers to 

glow. Light emitted from the sample travels back through the microscope optics, is separated from the 

laser using a dichroic mirror, and then is focused through an aperture and collected by a photomultiplier 
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tube or other light-sensitive detector. The aperture serves to block light that is out of focus, reducing 

background, improving spatial resolution, and allowing for z sectioning of the sample. 

Localization microscopy provides an alternative that is based on identification of individually 

resolvable molecules. Although individual molecules will be spread out according to the PSF, it is possible 

to determine, with great precision, where the originating molecule was located by fitting the PSF or its 

approximation (Gaussian) to recorded images of the light emitted from each molecule.55 The precision 

with which such a fit can be made depends mainly on the number of photons detected from each molecule 

(N), the pixel size of the camera (a), the standard deviation of the PSF (s), and the background noise (b) 

according to equation 1.2.55,56 

〈𝑥 〉 =
/

+          (1.2) 

Electron microscopy (EM) provides an alternative to the light microscope and is capable of better 

than 1nm resolution while remaining “diffraction limited,” because electrons with the energies used in 

EM have a wavelength which is much shorter than the wavelength of visible light photons. EM has been 

extensively applied to the study of viruses and cellular biology and is an invaluable tool for studying static 

structures. However, due to the harsh sample sectioning and preparation required, EM is ill-suited to 

imaging living specimens or exploring protein dynamics despite its impressive resolving capabilities. 

1.4.3. Fluorescence Photoactivation Localization Microscopy (FPALM) 

Fluorescence Photoactivation Localization Microscopy (FPALM)57 is a form of localization 

microscopy which relies on the properties of certain fluorescent probes to temporally spread out the PSFs 

of individual molecules so that they can be resolved independently. FPALM uses a traditional inverted 

microscope setup, where two lasers, a readout and an activation laser, enter the microscope from the 

back aperture and are deflected up towards the sample by a dichroic mirror. The microscope objective 

collects fluorescence from the sample, which passes through a dichroic mirror and is refocused to an 

electron multiplying charge coupled device (EMCCD) camera. 
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FPALM requires the use of any manner of fluorescent label that is capable of photoactivating 

(transitions from a dark to a bright state), photoswitching (transitions from one color to another), or is 

otherwise capable of single-step fluorescence intermittency, not unlike photoactivated localization 

microscopy (PALM)58 and stochastic optical reconstruction microscopy (STORM),59 developed around the 

same time. The activation and readout lasers are used in concert to control the average photoactivation 

rate and to excite the molecules in the sample. The activation laser, at low intensity, will stochastically 

photoactivate (or photo-switch) a small subset of molecules (per frame) in the sample which then can 

absorb photons from the readout laser and get pushed into an excited state, and upon relaxation, 

fluoresce and emit a photon. Excitation and relaxation cycles continue until the fluorophores are 

irreversibly photo-bleached and are no longer capable of fluorescing. Since only a small subset of the total 

molecules are fluorescing at any given time, there is a high probability that, on any given camera frame, 

molecules will appear far enough apart to be individually resolved. 

The process of activation, readout, and bleaching is repeated until a significant number of 

molecules from the total population have been sampled. Resolvable molecules are then background 

subtracted, thresholded, and fitted to a Gaussian function (equation 1.3), or another mathematical 

description of the PSF,56 using a nonlinear least squares method in MATLAB to determine the center 

coordinates of the PSF, x and y, as well as other fitting parameters, the offset, C, and peak Gaussian 

amplitude, I0. 

𝐼 = 𝐼  exp −
( ) ( )

+ 𝐶        (1.3) 

By fitting the PSFs to a Gaussian, molecular coordinates can be determined with a precision that 

is an order of magnitude better (smaller) than the diffraction limited resolution, depending mainly on the 

number of photons detected from the probe, the background noise, and the effective pixel size of the 

camera.55 Using the coordinates of all the localized molecules, a map is then reconstructed of all the 

localized proteins (see figure 1.2). Since each molecule will be localized with a precision better than the 
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diffraction limit, and provided there is sufficient sampling of the structures present, the reconstructed 

protein map will have better than diffraction limited resolution. Since the resolution depends on both the 

localization precision (σxy) and the sampling density, or nearest neighbor distance (rNN), we can 

approximate the resolution of the resulting images (R) according to equation 1.4.60 or with other measures 

of resolution.61,62 Median values are used for σxy and rNN as an estimate for the resolution of the image as 

a whole. 

𝑅 = σ + 𝑟           (1.4) 

1.4.4. Multi-color FPALM 

FPALM with multiple fluorescent species can be achieved by addition of several additional optics 

to the detection path of the standard FPALM setup, including a dichroic mirror, standard mirrors, and 

emission filters.63–65 The dichroic splits the light to produce two channels on the camera that are separated 

by emission wavelength: a transmitted channel, or “red” channel, and a reflected, or “green” channel 

(based on the use of a long-pass dichroic mirror which then reflects shorter wavelengths). If the emission 

spectra of the fluorescent species are far enough apart, they can be separated each into their own 

channel. However, frequently fluorescent proteins have close or overlapping emission spectra. In these 

cases, emission spectra can be identified by forming an alpha ratio for each PSF, as seen in equation 1.5.63 

𝛼 =           (1.5) 

The alpha ratio is formed by comparing the relative amounts of transmitted, IT, and reflected light, 

IR, for each PSF after background subtraction, and provides a measure of the color for each localization. 

Excited fluorophores from single species tend not to emit at only a single wavelength, so a histogram of 

alpha ratios are typically observed for even a single molecular species;63 careful choice of ranges of alpha 

values must therefore be used to separate the species. For the combination of Dendra2 (Evrogen) and  
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Figure 1.2: Concept of FPALM.57 A small subset of molecules are randomly activated and readout on each 
frame, allowing for them to be resolved and localized independently. Once each molecule is localized, it 
is rendered to produce a higher resolution image than would be possible with all the fluorophores on at 
once. The leftmost column shows a simulation of raw PSFs with green boxes around individuals which can 
be resolved and localized. Sometimes PSFs will be too close together to resolve, in this case the molecules 
are ignored, indicated with a red box. The higher resolution FPALM render of the simulation is shown in 
the rightmost column, where finer details of the image are distinguishable.  
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PAmKate63 fluorophores, alpha histograms appear bimodal or as wide Gaussians. Alphas are selected by 

examining histograms obtained from single color data and choosing bins which give an expected 

misidentification rate of 10% or less to minimize bleed-through from one channel into another.63,66 

A sample of fluorescent beads fixed on a coverslip are used to calibrate and map the two channels 

to each other and correct for distortions stemming from imperfections in the optics. Channels are selected 

by hand and automated image registration is performed in MATLAB to find an optimal transformation 

matrix. The transformation matrix is confirmed by calculating the Pearson Correlation Coefficient (PCC)67 

between the resulting channels. 

1.4.5. 3D Astigmatism FPALM 

 Axial and lateral positions of molecules can be obtained by the addition of a cylindrical lens to a 

standard FPALM setup just beyond the focal plane of the tube lens.68 The cylindrical lens introduces an 

astigmatic aberration, which results in slightly different focal planes for the x and y directions. PSFs stretch 

or compress laterally in width (x) and height (y) dependent only on the z position of the molecule, allowing 

for the z coordinate to be determined explicitly. In order to precisely determine the z position, the degree 

of stretch in x and y needs to be related to the axial position by creating a set of calibration curves. A 

piezoelectric collar is attached to the microscope objective which is capable of very finely controlled (sub-

nanometer precision) axial motion and a set of bright fluorescently labeled beads is taken at z positions 

from 0-1000nm in steps of 100nm. Beads are fitted to a two-dimensional Gaussian (equation 1.6) using a 

nonlinear least squares algorithm and widths and heights are determined for each z step. 

𝐼 = 𝐼  exp −
( )

−
( )

+ 𝐶        (1.6) 

From this, a two plots of the Gaussian radii (one for both x and y) vs the z position are created and 

each are fitted with a second order polynomial to create a conversion function from rx and ry to z. Z 

positions are extrapolated by fitting measured radii to the calibration curves in a least squares way. 

1.5. Actin 
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Actin, a cytoskeletal component of the cell, appears to be involved in the membrane organization 

of viral components69–71 and specifically of influenza viral components.72–78 Actin is a protein found in most 

eukaryotic cells (i.e., cells containing a nucleus) and plays a very important role in cellular motility, 

contraction, protein transport, signaling, and structure and forms a network of filaments that run 

throughout the entire cell, including near the plasma membrane.79 Actin is found in two basic forms, 

globular (G-actin) and filamentous (F-actin). G-actin is diffuse throughout the cytoplasm in varying 

concentration and acts as the basic building block for F-actin filaments, which can be formed when G-

actin monomers polymerize into long chains, either through nucleation involving formins,80–83 actin 

related protein 2/3 (Arp2/3),84,85 or tandem-monomer-binding nucleators.86–88 Actin is regulated by a set 

of actin binding proteins (ABPs) that control filamentous growth and expiration. Filament polymerization 

can be assisted by the ABP profilin, which can sequester G-actin from the cytoplasm and assist G-actin 

insertion into filaments.89 Filaments can also be depolymerized by the ABP cofilin, which either helps 

destabilize and eliminate filaments90 or assists in their growth,91 depending on the relative concentrations 

of actin and other ABPs nearby.92 Higher order structures, such as filopodia and actin bundles, can be 

formed by linking actin filaments together with fimbrin or ɑ-actinin.93,94 Myosin, an actin binding motor 

protein, is used to transport vesicles along actin filaments,95,96 and can organize filaments into contractile 

structures97 (for a thorough review of actin and ABPs, see Pollard, 201698).  

Using super-resolution imaging techniques, HA clusters have been found to co-localize with actin 

at the membrane on a variety of length scales (50nm to >1µm).72,73 Actin appears to restrict the motion 

of individual HA proteins within clusters, and actin rich regions of the membrane may provide a stable site 

for clustering and assembly of viral components. The actin cytoskeleton is observed to be changed by the 

expression of HA99 and disruption of actin polymerization results in quantifiable changes to the structure 

of HA clusters (decreasing cluster densities and increasing sizes)73 which together suggests a functional 

relationship between HA and actin. However, the precise link between HA and actin remains unclear. 
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Actin may be used by HA for transport to specific sites on the membrane suitable for clustering, HA may 

hijack actin after clustering to help maintain cluster stability, or HA may arrive at the membrane diffusely 

or in clusters, only then to become confined by actin. 

Actin has also been implicated in the delivery of HA molecules to the plasma membrane through 

a mechanism involving rapid actin polymerization, forming actin comets.100,101 Actin comets describe an 

observation whereby actin is rapidly proliferated beneath intracellular vesicles which transport proteins 

and lipids to the membrane. Actin comet formation could be triggered by overexpression of 

phosphatidylinositol phosphate 5-kinase (PI5K) or the drug pervanadate, each of which increased the 

synthesis of phosphatidylinositol (4,5) biphosphate (PIP2) and activation of the Wiskott–Aldrich syndrome 

protein (WASP) and Arp2/3.100,101 HA-rich vesicles were observed preferentially delivered to the plasma 

membrane through actin comet formation, suggestive of a link between HA and PIP2,101 while inhibition 

of Arp2/3 along with actin depolymerization nearly blocked HA delivery altogether.100 

Despite the importance of HA clustering to influenza infection, the manner in which clusters form 

and the precise mechanism behind it is not currently known. A better understanding of HA clustering may 

lead to innovative drug targets and methods for treating influenza. By interrupting interactions between 

the host cell and the virus, it could be possible to prevent or slow IAV infection without losing efficacy 

when viral components mutate. 

1.6. Membrane Models 

Since HA trimers form dense clusters on the plasma membrane, but there are no known HA-HA 

trimer interactions, it seems plausible that host cell physiology may actively or passively assist in holding 

clusters together. As such, it is important to also understand how the membrane is organized to 

understand the clustering of HA. Previous observations of HA and actin colocalization and dynamics72,73 

and the modulation of phosphatidyl inositol (4,5) biphosphate (PIP2) diffusion by HA99 are not adequately 

explained by current membrane models. Although published membrane models are incomplete, they 
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remain useful tools for understanding different aspects of membrane organization and could be further 

modified to more accurately match observations. 

1.6.1. Singer–Nicolson Fluid Mosaic Model 

The fluid mosaic model, first proposed by S.J. Singer in 1971, suggests that the cell membrane 

consists of a mosaic assembly of globular proteins in a phospholipid bilayer.102,103 Such a model proposes 

the free lateral diffusion of proteins in the membrane with a long scale random distribution of proteins in 

a homogeneous lipid fluid phase bilayer. However, one important departure from this has been central to 

defining membrane research since the late 1970s: rather than a homogeneous distribution of proteins 

throughout the membrane, it was proposed that both proteins and lipids were localized to discrete 

patches. However, to this day it remains to be determined precisely what drives membrane 

heterogeneity. 

 In the years following the proposal of the fluid mosaic model, it was theorized that membranes 

were organized into discrete domains driven by lipid-protein interactions104 and postulated that the 

cellular cytoskeleton could modulate the lateral diffusion of membrane molecules.105 Glycosphingolipids 

(a lipid component of cell membranes) and their self-association in the Golgi could theoretically form 

patches with membrane proteins and then be transported to the cell membrane, mediating the sorting 

of lipids and proteins in polarized cells.106,107 This heterogeneity was supported by chemical analysis of 

detergent resistant insoluble extractions from cell membranes containing lipid-protein complexes,108 and 

led the way to new membrane models. 

1.6.2. Lipid Raft Model 

 The lipid raft model proposes that certain subsets of lipids are able to self-arrange in the 

membrane form discrete structured patches, or “rafts”, on the membrane that were believed to be 

enriched in sphingolipids, cholesterol, and glycosylphosphatidylinositol (GPI) anchored proteins.23 The 

affinity of a particular membrane protein for these lipids would determine whether or not a particular 
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protein was included into a raft and would determine their spatial patterning. Lipids themselves would be 

partitioned through weak lipid-lipid interactions between headgroups. Furthermore, cholesterol would 

help fill gaps between lipids to reduce water permeability.109 Together this would result in phase 

separated heterogeneity in the membrane where a lipid ordered (Lo) domain (rafts) enriched in 

sphingolipids, cholesterol, and clusters of GPI anchored proteins and other components would “float” 

(move laterally as an entity) within a surrounding lipid disordered (Ld) fluid phase enriched in unsaturated 

lipids and non-raft proteins.23,110 The raft model was later revised to posit that rafts are likely nanoscale 

in size and fluctuating, but could be stabilized in larger platforms important to signaling, viral infection, 

and membrane trafficking.111 Despite this, the model depends largely on membranes to be capable of self-

organizing into distinct domains driven by a specific set of lipids, cholesterol, and proteins. 

 Much evidence for the ability of membranes to phase separate into Lo and Ld phases was 

observed using artificial membranes112–119 or giant unilamellar vesicles (GUVs)113,115,118,120–129 with varying 

lipid composition, buffer conditions, and temperature. However, the ability of actual cell membranes to 

phase separate and form rafts under physiological conditions has not been demonstrated. In fact, 

influenza hemagglutinin (HA), a characteristic “raft” protein has been shown to form clusters in the 

absence of cholesterol and without sphingolipid enhancement, both proposed requirements for lipid 

rafts.25 Additionally, GPI anchored proteins in live cell membranes have been found to not reside in, or 

drive the formation of, lipid ordered regions of the membrane.130 Although membrane rafts may exist on 

very short timescales or short length scales, it is not clear what the physiological implications of such 

structures would be. 

1.6.3. Lipid Shell Model 

 The lipid shell model theorizes that there are certain targeting motifs present within proteins that 

determine their inclusion into particular lipid domains, potentially through direct protein-lipid 

interactions.131 The model includes the self-assembly of cholesterol-lipid complexes into which proteins 
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may associate through electrostatic interactions between the transmembrane domains of proteins and 

phospholipid headgroups. Unlike the lipid raft model, protein-lipid complexes are not thought to form a 

distinct lipid phase, but rather act as mobile units within a cholesterol-lipid “shell” that can diffuse 

throughout the membrane. However, some groups, for example caveolae and “lipid rafts”, may have a Lo 

phase with which lipid shells may preferentially associate with depending on their lipid composition. 

Interactions between “shelled” proteins and those already in domains may influence their residence time 

within the domain. 

1.6.4. Picket Fence Model 

 The picket fence model predicts that cytoskeletal actin filaments, in close spatial arrangement 

with the plasma membrane, provide barriers which compartmentalize regions of the membrane.132,133 The 

actin cytoskeleton therefore acts as a “fence”, which creates compartments 40-300nm in size,134 and 

transmembrane proteins bound to the actin act as “pickets”. Proteins are largely free to diffuse within 

individual compartments on short time scales, while they are required to “hop” the fence to move 

between adjacent compartments.134,135 The model was later adapted to include the possibility of lipid 

rafts, or similar domains, which may themselves diffuse within the actin compartments as a unit.134 Recent 

studies using FCS and PALM appear to support the idea that actin compartments are capable of 

segmenting proteins on the plasma membrane into small domains or otherwise restrict their motion.136,137 

1.6.5. Active Composite Model 

 The active composite model was first proposed to explain the distribution of GPI anchored 

proteins in live cell membranes which were indirectly observed to exist either as monomers or in small, 

dense, immobile clusters.138 Such clusters were described to be temporary and undergoing constant 

remodeling, but never combining to form larger domains. The ratio of monomers to clusters (4:1) was 

also proposed to be independent of total protein expression levels.139 The model proposes that the plasma 

membrane is adjoined by a system of actin filaments arranged in “asters”. Such asters would form from a 
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combination of actin treadmilling and myosin contraction, resulting in the barbed ends of actin filaments 

pointing towards the center of asters. Outlying actin filaments could then be pulled towards the denser 

region of asters and proteins could be pulled along with them into the centers of asters, forming 

nanoclusters at the cores.140 

1.7. Moving Forward 

 None of the current membrane models currently proposed adequately explain observations of 

HA trimer clustering,16,24,25,73,99 but actin appears to be involved.72,73 However, there are no known 

interactions between actin and HA, but an intermediate may be involved which modulates this 

relationship. Due to the reliance of HA on PIP2 initiated actin comets for transport to the membrane, PIP2 

might also be involved at the PM.100,101 Since clusters of HA on the PM span several length scales,16,20,24,73 

some of which are diffraction limited, we aim to use FPALM57 to examine the clustering of HA and possible 

functional links between the HA CTD and PIP2, as well as to explore membrane models that may better 

explain observations of HA clustering. 
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CHAPTER 2 

METHODS 

2.1. Biological Methods 

2.1.1. Cell Culture 

NIH3T3 mouse fibroblast cells (ATCC, CRL-1658) were cultured in T25 Nunc™ flasks (Thermo 

Scientific, 136196) in a solution of Dulbecco’s Modified Eagle Medium (DMEM) (Lonza, 12-604F) 

supplemented to 10% calf bovine serum (ATCC, 30-2030), 100µg/mL penicillin-streptomycin (Pen-Strep) 

antibiotics, and phenol red and kept in an incubator at 37°C and 5% CO2. Cells were not allowed to reach 

more than 80% confluency before being passaged to a new flask. Passages were performed by removing 

old media, prewashing with 0.05% Trypsin-EDTA solution for 30s, followed by a 10-minute incubation with 

0.05% Trypsin-EDTA (Gibco, 25300054), counting using a hemocytometer, resuspension into fresh media, 

then seeding into a new flask at 10-15x104 cells. Passage numbers were kept relatively low (less than 25) 

to reduce adverse effects from prolonged culturing. Cell viability was upheld at >95% and tested on a 

semi-regular basis by exclusion staining with equal volumes of suspended cells and 0.4% trypan blue 

(Gibco, 15250061). Viability was determined by counting the fraction of cells that did not retain the stain. 

2.1.2. Plasmids 

To test the effects of palmitoylation and charge on HA cluster formation, we collaborated with Dr. 

Joshua Zimmerberg and Dr. Hang Waters of the Eunice Kennedy Shriver National Institute of Child Health 

and Human Development (NICHD/NIH) to mutate the tail of HA (X-31B, Puerto Rico/8/1934-Aichi/2/1968) 

with either reversals to the charge of the CTD, mutation of the palmitoylation sites to amino acids with 

hydrophobic sidechains, and combinations of the two. To eliminate palmitoylation of the HA CTD, 

cysteines at amino acid positions 555, 562, and 565 were mutated to methionine (M), alanine (A), and 

tyrosine (Y) respectively to produce the mutant HAMAY. Charge alterations were facilitated by mutating 

a positively charged arginine (R) in position 561 to glutamic acid (E) to produce HARE, or multiple arginines 



21 
 

in positions 561 and 557 to glutamic acid (E) and glutamine (Q) to produce HARREQ. We also tested the 

combination of both a charge alteration and removal of the palmitoylation sites with the mutant 

HAREMAY. All HA mutants were produced as fusion proteins with Dendra2 (Evrogen, green form: 490nm 

excitation / 553 emission peaks, red form: 507nm excitation / 573nm emission peaks), a photoswitchable 

fluorescent protein which is an improved version of Dendra.141 

To image PIP2, we collaborated with Dr. Melissa Maginnis and Kashif Mehmood of the University 

of Maine, who produced a fusion protein of PH domain from PLC δ with PAmKate,63 a photoactivatable 

red fluorescent protein (586nm excitation/628nm emission peaks),to produce PH-PAmKate. PH domain is 

a commonly used protein marker for PIP2.142–146 

DH5α E. Coli (NEB, C2987H) containing plasmid DNA were streaked onto Agar (1g/100mL) plates 

and then incubated overnight at 37°C. Colonies were picked and grown in LB media overnight in a shaking 

incubator at 250rpm and 37°C, then isolated using a plasmid miniprep kit (Omega, D6945-01) according 

to the manufacturer’s spin protocol. A nanodrop spectrophotometer (Thermo Scientific, ND-ONE-W) 

analyzed each prepared DNA sample to ensure the quality and purity of DNA. Typical 260/280 ratios 

between 1.7-1.9 and 260/230 ratios between 2.0-2.2 demonstrated sufficient DNA purity; concentrations 

<500ng/µL indicated poor yield. 

2.1.3. Transient Transfection, Antibody Staining, and Fixation 

 For imaging experiments, cells were plated onto 35mm petri dishes with a No. 1.5 coverglass 

bottom (MatTek, P35G-1.5-20-C) in complete growth medium (without antibiotics and without phenol 

red) and seeded at a concentration of 7-8x104 cells/plate. After 24 hours of growth, cells were transfected 

using Lipofectamine 3000 (Invitrogen, L3000008) with a total of 2µg of plasmid DNA, 4µL of P3000, and 

7.5µL of Lipofectamine per plate per dish. DNA was typically isolated with an Omega plasmid minikit 

(Omega, D6945-01). Sham control transfections were performed using only lipofectamine reagents and 

no DNA to assess the effects of the lipofectamine; no negative effects were observed on cell health, while 
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minimal background fluorescence was sometimes produced. Cells were covered with aluminum foil to 

prevent pre-activation of the fluorescent proteins within the incubator or by room lights and left to grow 

for another 24-36 hours in the incubator. After this time, cells were removed, washed with phosphate 

buffered saline (PBS) (Sigma-Aldrich, D8537) three times, fixed at room temperature in 4% 

paraformaldehyde (PFA) (Alfa Aesar, J61899AK) for 10 minutes, and then washed again with PBS three 

times. Additional washes with PBS were performed if residual background fluorescence from PFA was 

observed on the coverslip after illumination with laser light. 

 For antibody staining, cells were transfected, allowed to grow for 24-36 hours, and fixed as above, 

then washed twice with PBS and incubated with a 1:100 to 1:500 dilution of rabbit anti-HA X-31B (α-HA) 

antibody for 2 hours. Afterwards, the sample was washed twice with PBS and incubated with an Alexa647 

anti-rabbit antibody (5µg/mL) for 2 hours and then washed again three times with PBS. As a control for 

the antibody stain, the same procedure was applied to cells that were not transfected with the HA 

plasmid, and negligible amounts of staining were observed compared to the HA transfected plates. The 

α-HA antibody was formed from the peptide sequence CPKYVKQNTLKLATGMRNVPEKQTR and binds 

amino acids 321 to 345 of the HA X-31B protein, which is at the very end of the HA1 subunit. No membrane 

permeabilization agents were used prior to antibody incubation in order to limit the antibody to the buffer 

and the outside surface of the cell. 

 Since NIH3T3 cells lie very flat on the surface of the coverslip, and antibodies are relatively large 

proteins (~10nm in size), very little antibody staining was observed at the side of the membrane in contact 

with the coverslip (basal surface). As such, the basal surfaces could not be imaged with the antibody in 

most instances. 

2.2. Super-Resolution Imaging 

2.2.1. 2-Color FPALM Imaging 
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2-color FPALM imaging was performed using the setup depicted in figure 2.1. The illumination 

consists of two lasers, a 558nm readout (CrystaLaser, 100mW), and a 405nm activation (CrystaLaser, 

5mW), are combined using a dichroic mirror (Chroma, Z405RDC) and are focused through a lens 

(ThorLabs, f=350mm) at one focal length from the back aperture of the objective lens (Olympus 60x, 

1.45NA oil) mounted on an inverted microscope (Olympus, IX71). The 558nm laser was operated with 

peak intensity 1.0kW/cm2±0.1kW/cm2 at the center of the field, and the 405nm laser was operated at 

low (but variable intensity), typically less than 0.02W/cm2, as measured at the sample. The activation 

laser passes through a half wave plate (Newport, 10RP42-1) and a linear polarizer (Newport, 5511) is used 

to match the polarization of the activation laser to the readout laser. Then, both lasers are passed through 

a quarter wave plate (Newport, 10RP54-1B) to obtain elliptical (approximately circular) polarization of the 

light at the sample. A quad band dichroic mirror (Semrock, Di01-R405/488/561/635) in the turret of the 

microscope reflects the laser light into the objective, which changes the wavefront curvature to produce 

nearly parallel illumination of the sample. Fluorescence from the sample is collected by the objective (i.e. 

an epifluorescence geometry) and passes the fluorescence back through the same dichroic, and through 

the microscope tube lens, which produces an intermediate image of the focal plane. The intermediate 

image resides at the focal point of a 2x telescope (f=400mm, f=200mm). After the telescope, the 

fluorescence reaches an ultra-flat dichroic (Semrock, FF580-FDi02-t3) which is aligned (at near 45) to 

reflect wavelengths <595nm and pass >595 nm, splitting the light into a reflected and transmitted 

channel. Each channel then passes through a separate emission filter (Transmitted channel: Chroma, 

ET605/70m; Reflected channel: Semrock, FF01-585/40-25) before reaching an EMCCD camera (Andor, 

iXon 3) set to acquire at least 10,000 frames, typically at 31Hz with an EM gain of 200 for fixed samples. 

An iris aperture, placed in the intermediate image plane just outside the microscope (see above), 

restricts the imaged region of the sample visible in each channel and ensures their spatial separation on 

the CCD and within acquired images. For imaging of Alexa 647 samples, a 638nm (CrystaLaser, 100mW) 
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was added and aligned to the 558nm and 405nm lasers and operated at 0.8kW/cm2±0.1kW/cm2 peak 

intensity at the sample. 

Point spread functions were recorded in lossless stacked tiff format and then processed for 

localization and other data analysis using MATLAB code. The MATLAB code performs background 

subtraction using a rolling ball147 or temporal median algorithm,148 then thresholds individual frames. 

Pixels above the threshold are sorted by highest pixel value, and then a 7x7 area, the “grab”, is selected, 

centered upon each high pixel. The grab is then fitted to a Gaussian (Equation 1.3) using the nlinfit 

function, and the fitting parameters (x position, y position, offset, radius, amplitude) and errors are all 

extracted. In order to reduce the number of false positives, tolerances are applied (after localization 

processing) to the fitting parameters for each localization. Gaussian radius, localization precision, number 

of photons detected, and fractional errors in the radius and Gaussian amplitude are all required to be 

within certain ranges; localizations that fall outside of the range for any parameter (suggesting a poor fit) 

are excluded from further analysis. 

To screen for expression of desired fluorescently labeled molecules of interest, cells within the 

sample chamber were visualized first using a mercury arc lamp (Olympus, U-RFL-T) which was filtered with 

an emission filter (476/10). For cells transiently expressing Dendra2-HA (Zimmerberg lab, NIH), we 

searched for cells that were expressing moderate amounts of protein, as estimated by the brightness of 

the Dendra2 green form. Cells expressing very large amounts of Dendra2-HA were avoided, as these cells 

often displayed signs of extensive blebbing or detachment from the coverslip surface. 

2.2.2. 3D FPALM Imaging 

3D FPALM was conducted by using a typical FPALM setup accompanied by the addition of a 

cylindrical lens (f=1000mm)68 in the detection path and a piezoelectric axial focus collar on the objective 

(Physik Instrumente (PI), Karlsruhe, Germany, PD72Z1x), as seen in figure 2.2. The cylindrical lens was 

adjusted in the detection path until the PSF was visibly stretched to approximately 10 pixels in width (in  
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Figure 2.1: Experimental setup for multicolor FPALM. (Following methods described in Gunewardene et 
al63) On the laser path, 405nm and 558nm lasers are combined at DM1 and focused by L1 to the back focal 
plane of a 60X, 1.45NA objective to produce a column of light at the sample. A translation stage containing 
M3 and L1 can then be translated to enter a TIRF alignment. The lasers pass through a shared quarter 
wave plate to produce circularly polarized light at the sample. An additional half wave plate is used for 
the 405nm laser so that both lasers enter the quarter wave plate with similar polarizations. A flip mounted 
mirror is used to switch between mercury lamp and laser illumination. When the sample is excited, light 
is collected by the objective and passes through DM2, through an emission filter F1, and is focused by TL 
to the focal plane of L2. To allow more space for the 2-color optics and for additional magnification, a 2X 
telescope formed by L2 and L3 is placed between the microscope and the camera. From there the emitted 
light from the sample is split by DM3 (a 585nm long pass dichroic) to produce a “green” and a “red” 
channel on the camera. Additional emission filters F2 (605/70nm) and F3 (585/40nm), restrict the light 
from each channel to reduce background from cell autofluorescence. An aperture, placed at the focal 
plane of TL, restricts the size of the camera image and prevents the two channels from overlapping each 
other. For certain photoswitchable samples, such as Dendra2, a mercury lamp with filter F4 (488/10nm) 
can be temporarily added to the path using a flip mounted mirror to discriminate between cells which are 
well transfected for imaging. Note that the microscope box is vertically aligned (90 degrees rotated) 
relative to all other components.  
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Figure 2.2: Experimental setup for 3D FPALM.68 The addition of a cylindrical lens (CL) with a long focal 
length (f=1000mm) near the focal plane of the tube lens introduces an astigmatism to the PSFs collected 
by the objective. Due to the astigmatism, PSFs defocus asymmetrically depending on whether they are 
above or below the focal plane of the objective, allowing 3D information to be obtained. A piezo collar, 
attached to the microscope objective, is used for calibration of the 3D system. Note that the microscope 
box is vertically aligned (90 degrees rotated) relative to all other components. 
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the x and y directions) when the molecule was ±0.5µm from the in-focus plane. A sample of Tetraspeck™ 

fluorescent beads (Invitrogen, T7279, 0.1µm beads with 4 fluorescent dyes attached that emit between 

~430nm and 680nm) were used in conjunction with the piezoelectric collar to acquire calibration image 

sets (typically 100 frames at 31Hz, acquired at >5 different axial positions of the objective separated by 

200nm). 

2.2.3. Background Estimation 

Before fitting FPALM data, background subtraction is performed either through a rolling ball 

algorithm147 with a radius of 6 pixels or using a temporal median filter (TMF) with a frame window of 100 

frames.148 Rolling ball background estimation can be conceptually imagined as if each pixel in a frame had 

a height specified by its intensity. The background is determined by “rolling” a ball underneath this, line 

by line, where the height the ball reaches at any given point is subtracted from the image. So long as the 

radius of the ball is large enough that it cannot “roll” into the PSFs, useful data will be preserved while 

eliminating background. Rolling ball background estimation functions best when the background changes 

smoothly but it fails to eliminate sharp edges or point-like background objects. Algorithmically, this is 

approximated by a morphological opening, which is the erosion and then dilation of the image with a 

circle. 

TMF148 relies on a “frame window,” a set of sequential frames each separated by a fixed time step, 

centered temporally on a given analysis frame. Using the entire frame window, the median intensity is 

determined for each pixel and subtracted from the given analysis frame (i.e. as background). Unchanging 

features that appear bright in more than half of the frame window frames will be removed, while 

transiently bright PSFs remain. TMF can accurately predict the background shape but may become too 

aggressive when molecules appear in simultaneous frames for longer than half the frame window. 

2.2.4. Laser and Camera Alignment 
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 Samples were illuminated using a Total Internal Reflection Fluorescence (TIRF) geometry.149 TIRF 

alignment begins first with a typical widefield alignment, where the laser beam is sent through the sample 

as a column. Microscope alignment is performed on an inverted microscope in two parts: the laser beam 

path and detection path. For laser path alignment, first a calibration scale is mounted to the microscope 

objective and the microscope condenser is used in conjunction with a mercury lamp to produce Köhler 

illumination, defocusing the illumination light at the sample plane. Köhler illumination is accomplished by 

adjusting the condenser lens until the lamp aperture is in focus and centered in the eyepiece field of view 

while the calibration scale is focused. Using the lamp, the scale is projected out through the back aperture 

of the microscope. First, the lens L1 (see figure 2.1) is removed from the laser beam path, such that the 

scale is projected successively along mirrors in the laser beam path and centered by adjusting the previous 

mirror. A piece of paper is inserted into the path, and pressed against the mirror surface, so that the scale 

is visible at each mirror (one mirror at a time). Once the scale is centered on all the mirrors, the readout 

laser is aligned with the center of the scale by adjusting the last 2 adjustable mirrors in the readout laser 

path, making sure that it remains centered all the way back to the back aperture of the microscope. The 

activation laser is then aligned to the readout laser by adjusting the last 2 mirrors in the activation laser 

path and minor adjustments are made to ensure that it is colinear with the readout laser. 

 Before completing the laser beam alignment, the detection path is aligned. The telescope is 

aligned by placing L2 (f=200mm) at approximately one focal distance from the focal plane of the TL to 

produce parallel light. L3 (f=400mm) is then placed one focal distance from the camera to refocus the 

image to the camera and the aperture is adjusted until in focus with the scale image in the center. For 

multicolor imaging, mirrors M6 and M7 may need to be moved to create equal path lengths for both 

detection channels (so that both channels correspond to the focal plane within the sample). 

 Once the detection path is aligned, the scale and objective are both removed, allowing the lasers 

to illuminate a spot on the ceiling. Noting carefully where the spot is located on the ceiling, the beam 
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expanding lens, L1, is replaced and adjusted until the laser spot is in the same location it was before the 

lens was inserted. The microscope objective is then placed back into the path and L1 is adjusted once 

more until the laser illuminates the same spot on the ceiling. To ensure that the laser is simultaneously 

centered in the back aperture and in the field of view, a fluorescent slide or sample of rhodamine in PBS 

is mounted to the objective. The laser excites a spot in the slide or rhodamine which allows the beam 

profile to be viewed on the camera. In order to obtain a beam that is centered in the back aperture and 

entering the microscope perpendicular to the objective lens, the beam profile is adjusted by “walking” 

the laser beam. “Walking” the laser is done by alternately adjusting L1 and M2 (vertical direction only, 

alternating from one mirror to the other, or horizontal direction only, alternating from one mirror to the 

other) until the laser spot is centered simultaneously on the ceiling above the microscope and in the 

fluorescent slide/rhodamine sample. 

 After the laser is aligned as best as possible, TIRF is accomplished by translating L1 and M3 

together on a translation stage (see figure 2.1), keeping the direction of the beam parallel to the optical 

axis, but translating the position of the beam toward the outer edge of the objective, which causes the 

beam to increasingly tilt as it emerges from the objective. Once a steep enough output angle is reached, 

the beam undergoes total internal reflection at the boundary between the sample and the coverslip on 

which it is resting. Since the beam reflects entirely at the boundary, this produces an evanescent field 

which can excite molecules in the sample, but which does not penetrate more than a few hundred 

nanometers past the sample-coverslip boundary (see Axelrod, Traffic 2001150). As a check for TIRF, a fixed 

cell sample with a membrane marker may be used. The beam is tilted until the sample becomes dark, 

then is tilted until molecular PSFs are just visible. 

2.2.5. Bleed-through Correction 

Since there is non-negligible overlap of emission spectra for simultaneous imaging of certain 

probe combinations used (e.g. Dendra2 and PAmKate), bleed-through correction is essential for proper 
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separation of colors.66 At room and physiological temperatures, far red tails on the emission spectra of 

most fluorescent proteins makes absolute separation of colors very difficult, even if emission maxima are 

well separated. Even small bleed-throughs that are unaccounted for can cause significant changes to 

measures of spatial correlation and density, such as Pearson Correlation Coefficients, the radial 

distribution function (RDF), and pair cross correlation.66 

To correct for bleed-through, first molecules are separated into 2 species (species A and B) as best 

as possible using their alpha ratios (equation 1.5).66 Localized molecules then binned onto a fine grid (here 

grid boxes are 20nm per side) and convolved with a 50nm Gaussian to produce spatial density plots for 

species A and B. Since some fraction of species A will be misidentified as species B and concurrently, some 

of species B will be misidentified as species A, the uncorrected value of each grid box depends on the grid 

boxes for each species. The uncorrected grid values for each species can be written using the following 

equations: 

𝑛 = 𝑛 − 𝑘 𝑛 + 𝑘 𝑛        (2.1) 

𝑛 = 𝑛 − 𝑘 𝑛 + 𝑘 𝑛        (2.2) 

Where 𝑛  and 𝑛  are the uncorrected values, 𝑛 and 𝑛 are the bleed-through 

corrected values, and 𝑘 and 𝑘  are the rates of bleed-through from species A to species B and species 

B to species A respectively. Solving these as a system of equations for the corrected values, we obtain the 

bleed-through corrected values for each species: 

 𝑛 =         (2.3) 

 𝑛 =         (2.4) 

Estimations of bleed-through rates were found by imaging single color cell samples using the same 

multi-color setup and on the same day as multi-color experiments. These molecules are localized in the 

same manner as multi-color data, and colors are selected for using the alpha ratio of each localization. 
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The percentage of molecules that are misidentified out of the whole of the selected molecules is used as 

the bleed-through rate. Bleed-through rates depend on the choice of alpha values to include and are 

chosen such that the bleed-through rate is <10% for both Dendra2 and PAmKate. 

2.2.6. Drift Correction 

 Following the method of Mlodzianoski et al,151 drift correction was applied to fixed samples by 

binning molecules onto a grid (spacing 100nm) into chunks of 10,000 molecules. Chunks are then cross 

correlated with each other for all points i and j according to equation 2.5, where C is the cross correlation 

at the point (i,j), M is the image width, N is the image height, X and Y are the matrices of two binned 

successive chunks, and i and j are offsets in x and y respectively. 

 𝐶(𝑖, 𝑗) = ∑ ∑ 𝑋(𝑚, 𝑛) 𝑌(𝑚 − 𝑖, 𝑛 − 𝑗)       (2.5) 

Each successive chunk is cross correlated, then peak-peak offsets of the cross correlation were 

determined and plotted. Drift was computed using the lowest order polynomial (2 or less) that best fit the 

offsets and were applied directly to localized coordinates on a per frame basis.151 

2.2.7. Bead Calibration Sample Preparation 

 Bead calibration samples were prepared using Nunc™ 8-well chambers with #1.5 coverglass 

bottom. First, the wells were rinsed 3x with PBS to remove possible fluorescent contaminants from the 

coverglass surfaces. 200µL of poly-L-lysine was then applied to each chambered well and incubated at 

room temperature for 2 hours so that the poly-L-lysine has time to evenly coat the surface of the glass. 

After this incubation, the poly-L-lysine was removed, and the chambered wells were rinsed 3x with PBS. 

Tetraspeck™ fluorescent microspheres (Invitrogen, T7279, 0.1µm beads with 4 fluorescent dyes attached 

that emit between ~430nm and 680nm) were vortexed for 30s to remove clumps and then diluted with 

distilled water (total volume 100µL) to make dilutions from 1:25 to 1:100, which then were added to 

subsequent chambers on the Nunc™ chambered coverslips. The microspheres were then left to incubate 

in the dark at room temperature for 2 hours, allowing enough time for some of the microspheres to 
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adhere to the layer of poly-L-lysine previously applied to the glass surfaces. After incubation, the 

chambered coverslips were then washed again 3x with PBS and covered with a few drops of FluorSave™ 

reagent (MilliporeSigma, 345789), which helps prevent the dyes from photobleaching. The sample is then 

left to dry for 1-3 hours and stored in aluminum foil to prevent photobleaching. 

2.2.8. Glucose Oxidase Imaging Buffer 

 For imaging Alexa 647 organic dye, a glucose oxidase buffer (GLOX) was needed to allow the 

organic dye to blink for super-resolution imaging. GLOX was prepared the day of imaging based on the 

protocol for dSTORM152 and according to the following reagent concentrations: 10µg/mL Catalase from 

bovine liver (Sigma-Aldrich, C9322), 50µg/mL glucose oxidase from Aspergillus niger (Sigma-Aldrich, 

G2133), 10mM Tris-HCL, 10mM MEA, and 10% glucose diluted into PBS. 

 All reagents were prepared individually and combined only just prior to imaging. New GLOX buffer 

was made every hour of imaging, as the effects of the GLOX buffer were noticeably reduced after this 

time. 

2.3. Confocal Imaging 

 Confocal imaging was performed with two different commercial microscopes, an Olympus FV-

1000 (using an UPLSAPO 100X, 1.40NA oil objective, 195µm pinhole) and a Zeiss LSM 510 (using a Plan-

Neofluar 40x/1.30NA oil objective, 156µm pinhole). Laser power was kept relatively low (<1.5mW) to 

avoid excessive bleaching of the fluorescent samples and high voltage was adjusted to maximize signal 

while avoiding saturation of pixels. In either setup, 488nm and 635nm lasers are used with a quad-band 

dichroic for sample excitation. For the Dendra2 channel, a band-pass filter from 505-525nm was used and 

for the Alexa647 a 655-755nm band-pass filter was used. Bleed-through was tested by exciting a 

multicolor sample with either the 488nm or 635nm lasers with both channels on and was found to be 

negligible compared to signal. 

2.4. Analysis Methods 
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2.4.1. Pearson Correlation Coefficients 

 To quantify the level of whole cell correlation between PH domain and Dendra2-HA, we used 

Pearson Correlation Coefficients (PCC).67 Localizations for PCC analysis were tolerance-applied, duplicate 

removed, color separated, and rendered by binning molecules into a grid and convolving them with a 

50nm radius circle to help account for localization precision. Since Pearson coefficients are measured 

relative to the mean value for the cell, data acquired from each cell was masked manually to exclude 

localizations from the empty space outside the cell, as the empty space can contribute to false correlation. 

Pearson coefficients were calculated according to equation 2.6, where Gi and Ri represent the intensity 

for the i-th box in the green and red binned images respectively. 

 𝑃𝐶𝐶 =
∑ ( ̅)( )

∑ ( ̅) ∑ ( )
         (2.6) 

 PCCs result in a single value between -1 and 1 for each cell that indicates the degree of spatial 

correlation between two species. A PCC of 1 indicates complete correlation between the two species, 

PCC=0 indicates no correlation, and PCC=-1 would indicate complete anti-correlation. 

2.4.2. Manders’ Colocalization Coefficients 

 Manders’ co-localization coefficients (MCC) for FPALM data were calculated after tolerancing, 

drift correction, bleed-through correction, and rendering by convolving localizations with a circle of radius 

50nm, as before. The Manders’ co-localization coefficients are defined for each color channel, green and 

red, as described by equations 2.7 and 2.8.153 

 𝑀𝐶𝐶 =
∑

∑
          (2.7) 

 𝑀𝐶𝐶 =
∑

∑
          (2.8) 

 MCC is the sum of the intensity of all the pixels that are colocalized with a second color, divided 

by the sum of all the intensities of the first color. The MCC is defined for both color channels 

independently, with each measured relative to the sum of pixels containing their own color. 
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Consequently, the MCC values need not be the same for each color; for example, all the measured green 

pixels may colocalize well with red pixels, but red pixels may exist in locations other than with the green 

pixels. Unlike Pearson’s Correlation Coefficients, MCCs measure only whether the two channels overlap 

and do not take into account the relative variation of the two.154 

2.4.3. Cluster Identification 

To identify clusters, molecules are first separated by color into two groups, “green” and “red,” 

(which typically identify the colors of the two species of molecules being studied, even if their emission 

spectra are of different colors) using alpha histograms, then are corrected for species bleed-through, for 

x-y stage drift, for duplicate removal, and for tolerances to reduce false positives. Molecules are then 

rendered by creating a grid with a 20nm spacing and then binning molecules onto it to create a density 

map.155 To account for localization precision of the molecules, the density map is then convolved with a 

uniform normalized circle of 50nm radius (kernel size 5 pixels). The cell area was estimated using the 

summed area of all the binned molecules and the cell average density was calculated by counting the 

number of molecules localized and dividing by the occupied area in the grid. Clusters for each species are 

determined by thresholding 3 times above the average cell density (see Kriegel et al156 for a review of 

density-based clustering). Cells observed to be expressing fewer than 10% of the total molecule count of 

either species (post bleed-through correction) were not considered in the analysis. 

2.4.4. RDF Calculations 

Radial distribution functions (RDFs) were calculated from FPALM data after tolerancing, drift 

correction, bleed-through correction, and rendering by convolving FPALM localizations with a circle of 

50nm radius. RDFs were calculated according to equation 2.9, as well as for the underlying PH domain, 

where 𝑁(𝑟) is the sum of pixel values within a ring of radius r±10nm from the center of mass of each 

identified cluster, 𝐴(𝑟) is the area occupied by the ring at radius r±10nm (the number of boxes in the ring 
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times the bin size squared), and 𝜌  is the average cell density (sum of all pixel values in the cell divided by 

the total cell area), such that 𝜌(𝑟) = 𝑔(𝑟)𝜌 .157 

 𝑔(𝑟) =
( )

( )
          (2.9) 

RDFs were calculated starting the from centroid of each cluster and radiating outward with 20nm 

width rings in a radially symmetric manner from 0.01µm to 1.0µm from the cluster center and then 

averaged together for all clusters in each cell. 

To avoid edge effects, RDFs were not allowed to be calculated from boxes that fell outside the 

area of the cell, but in order to include data from clusters on the cell edges, partial RDF rings were allowed 

and calculated from those boxes falling only within the cell area. To correct for inaccurate measurements 

of the average cell density, a small correction factor (typically <1.15) was applied to 𝜌  on a per cell basis 

using values near the 1µm edge of the RDF, to cause the RDF to reach 1 at distances far from the cluster 

center. 

2.4.5. Cluster Properties 

 Cluster properties were extracted from rendered localizations after cluster identification. The 

cluster properties area, circularity, and perimeter were extracted directly from masks of clusters (i.e. all 

contiguous pixels above the applied density threshold) using the regionprops command in MATLAB. 

Circularity is defined by equation 2.10, where the circularity of a perfect circle is 1, but the circularity 

increases as the shape becomes more ellipsoidal. 

 𝐶 =            (2.10) 

Densities were calculated afterwards by applying cluster masks to the original renders to extract 

intensities and then dividing by each clusters area. 

2.4.6. Software and Significance Testing 

All analysis code for localization, cluster identification, trajectory analysis, duplicate removal, and 

RDF calculation was generated in MATLAB and executed in version 2016b or later. Significance testing for 
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RDFs and cluster properties were performed using GraphPad Prism 8.3.1 using data imported from 

MATLAB analysis files.  
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CHAPTER 3 

EVIDENCE FOR INTERACTIONS BETWEEN HA AND PIP2 

3.1. Preface 

Parts of this chapter were adapted from the paper “Influenza Hemagglutinin Modulates 

Phosphatidylinositol 4,5-Bisphosphate Membrane Clustering” by authors Nikki M. Curthoys, Michael J. 

Mlodzianoski, Matthew Parent, Michael B. Butler, Prakash Raut, Jaqulin Wallace, Jennifer Lilieholm, Kashif 

Mehmood, Melissa S. Maginnis, Hang Waters, Brad Busse, Joshua Zimmerberg, and Samuel T. Hess, 

published in Biophysical Journal, Vol. 116, 893-909, March 5, 2019.99 This chapter is meant to serve as a 

synopsis of the published work, highlighting findings that are relevant to results to be presented later. 

3.2. Introduction 

 The nanoscale clustering of lipids and proteins in the plasma membrane (PM) is crucial to 

numerous fundamental cellular processes, however, there is considerable disagreement in the field about 

the precise mechanisms involved.158 Several proposed models include confinement by the actin 

cytoskeleton,132,134 protein targeting to ordered lipid raft domains,23 and arrangement into lipid shells.131 

Such models are difficult to confirm, since they are purported to be highly dynamic and occurring on very 

short length scales.131,138 Furthermore, clustering of proteins appears to also be important to viral 

processes, such as the clustering of influenza viral proteins on the PM.14,159 HA forms clusters 

spontaneously on the membranes of host cells, even in the absence of other viral proteins.16,24,73 Since a 

high density of HA is required for efficient viral entry, budding and infectivity, clustering is vitally important 

to the IAV life cycle,14,72 yet there is not agreement on the mechanism of clustering or which lipids co-

cluster with HA.25,160–162 

 Since HA is known to rely on actin comets mediated by phosphatidylinositol (4,5) biphosphate 

(PIP2) for transit from the Golgi to the PM100,101 and HA has shown remarkable co-localization with actin 

rich membrane regions,72,73 we hypothesized that PIP2 might serve as a functional link between HA and 
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the actin cytoskeleton. HA contains several highly conserved palmitoylation sites and positive residues in 

its cytoplasmic tail domain (CTD) which are known play a role in PIP2 interactions163–165 and membrane 

association163,164 in other proteins. PIP2 binds and regulates many actin binding proteins (ABPs) which 

modulate the actin cytoskeleton,166 regulates a variety of cellular processes,166,167 and is capable of 

modulating adhesions between the PM and cortical actin to control function.168 PIP2 has also been 

observed to form clusters on the PM,169,170 although not all studies show agreement in this respect.145,171 

Nanoscale membrane clustering has previously been hypothesized to be due to interactions between 

actin, myosin, membrane proteins, and lipids and has been implicated in IAV infection.72,73,140,172,173 

3.3. Results 

To determine if the relationship between HA and PIP2 carries over to the plasma membrane, we 

began by expressing a marker for PIP2, pleckstrin homology domain from phospholipase C δ (PLC δ) as a 

fusion protein with cyan fluorescent protein (CFP),174 in NIH3T3 cells and observed that PIP2 formed 

clusters on the PM in the absence of viral proteins (data not shown), which is consistent with previous 

studies that show that PIP2 forms clusters on the membrane.169,170 We next tested whether there was 

spatial correlation between HA expressed at the PM and PIP2. CFP-PLC δ PH domain was transfected into 

NIH3T3 cells stably expressing HA (A/Japan/305/57) (HAb2 cells),15 and was further labeled with a 

monoclonal antibody to HA, along with a secondary antibody with attached Alexa 647, and imaged using 

confocal microscopy. PH domain and HA show extraordinary colocalization at the membrane of cells 

(figure 3.1) on a diffraction limited scale. Since HA and PH domain colocalized strongly at the PM using a 

diffraction limited technique, we also wondered if this colocalization would extend to the nanoscale. 

FPALM imaging was conducted with two biological configurations, using NIH3T3 cells expressing Dendra2-

HA (X-31B, Puerto Rico/8/1934-Aichi/2/1968) and PH-PAmKate, and using HAb2 cells expressing PH-

Dendra2 and tagged with an anti-HA antibody (Fc125) with an attached Alexa 647 organic dye. In both 

super-resolved cases, colocalization can be frequently observed. To quantify the level of spatial  
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Figure 3.1: Confocal and super-resolution microscopy of HA and PLC δ PH domain show colocalization at 
varying length scales. (A)-(H) HAb2 cells were transfected with CFP-C1-PLCδ-PH domain (green) and 
labeled with Fc125, an antibody to HA, along with an Alexa 647 secondary antibody (red). Regions of 
overlap appear in the diagram as yellow. (A) and (E) show the confocal projections of all axial slices taken 
while (B)-(D) and (F)-(H) show magnified regions of each channel and the channel merge. (I) and (J) are 
selected renders from super-resolved FPALM data of HA and PH using two different labeling methods. (K) 
Pearson coefficient for super-resolved FPALM data that has been binned into a density map from both 
plasmid and antibody labeling (N=20) for 3 selected bin sizes. The Pearson coefficient remains slightly 
positive, indicating a positive correlation between HA and PH domain. 
  



40 
 

correlation between PH-PAmKate and Dendra2-HA, we also calculated the Pearson coefficient by directly 

binning the molecules onto grids with spacings of 20nm, 50nm, and 100nm. In each case, the Pearson 

coefficient remained positive, indicating a positive correlation between Dendra2-HA and PH-PAmKate. 

 Due to the dependence of influenza infectivity on HA densities and clustering,14,15 we also 

examined the densities and areas of PH domain and HA clusters to see if they would vary when high or 

low amounts of HA or PIP2 are present, respectively. Clusters of either species were identified by 

thresholding 4 times above the average density of the cell. Cluster densities and areas were determined 

using the regionprops command in MATLAB then plotted against each other, and in each case, clusters 

formed with a range of sizes and densities, with most clusters remaining in a region <0.04µm2 and <10 

times the average cell density. HA clusters tended to occupy a larger range of densities than PH domain, 

as indicated by the wider band (figure 3.2). The plots in figure 3.2 are broken into four categories: Clusters 

of PIP2 with high and low amounts of HA and clusters of HA with high and low amounts of PIP2, where 

“high” is considered to be 5 times above the cell average and “low” is less than 0.05 times the cell average. 

The mean densities and areas were then calculated for each of the 4 conditions, the results of which are 

seen in table 3.1. HA cluster density is observed to increase significantly in area in regions with High PIP2, 

while PIP2 clusters significantly increase in density and area in regions with high HA. 

To examine whether spatial gradients of HA and PH domain are related, we calculated the average 

density profile of clusters of HA and PH domain in two ways: 1) an erosion based method (figure 3.3 D), 

starting from the edges of clusters and eroding one row of grid pixels per step to the centers of clusters, 

and 2) using a radial distribution function (figure 3.3 E) which is radially symmetric from the center of mass 

coordinate of each cluster. With either method, a decreasing trend in the PH domain underlying HA 

clusters is readily apparent and parallels that of the HA.  
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PIP2 HA 

Low HA High HA Significance Low PIP2 High PIP2 Significance 

Mean 
Density 

(relative to 
avg) 

6.1 
±0.6 

7.6 
±0.8 **** 11 

±5.0 
7.0 

±0.5 ns 

Mean Area 
(µm2) 

0.0145 
±0.0020 

0.0257 
±0.0060 **** 0.0105 

±0.0005 
0.0231 

±0.0014 ** 

Number of 
clusters 1065 666 - 1140 1233 - 

 
Table 3.1: Table of PIP2 and HA in regions of high or low HA and PIP2. Dense clusters of HA or PIP2 (>4 
times cell average) were compared to in regions of high (>5 times cell average) and low (<.05 times cell 
average) PIP2 or HA respectively. Significance testing for differences between groups was done using the 
Mann-Whitney U-test, where significance star ratings are as follow: p<.05 (*), p<.01 (**), p<.001 (***) and 
p<.0001 (****). 
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Figure 3.2: Density vs area for clusters of PIP2/HA in the presence of low or high densities of HA/PIP2. (A)-
(B) Plotted density vs area for clusters of PIP2 (magenta) in regions with high (>5 times cell average 
density) and low (<.05 times cell average density) HA. The mean densities, 6.1±0.6 and 7.6±0.8, and mean 
areas, 0.0145±0.0020 and 0.0257±0.0060, with low and high HA are plotted in blue lines. (C)-(D) Plotted 
density vs area for clusters of HA (green) in regions with high (>5 times cell average density) and low (<.05 
times cell average density) PIP2. The mean densities, 11±5.0 and 7.0±0.5, and mean areas, 0.0105±0.0005 
and 0.0231±0.0014, with low and high PIP2 respectively are plotted in blue lines. PIP2 clusters are 
significantly denser and larger in regions of high HA, while HA clusters significantly larger in areas of high 
PIP2. 
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Figure 3.3: HA and PH domain display similar spatial distributions within clusters. (A)-(C) Average density 
profiles of Dendra2-HA (A) and PH-PAmKate (B) clusters (containing at least 20 molecules), as well as the 
merge of the two (C) with each clusters center of mass aligned at the origin. Density profiles share similar 
spatial dependence in clusters, as noted by the overlap in the merge. (D) Average density (relative to 
average) of HA clusters (n=4010 clusters among 15 cells and 2 biological replicates) and underlying PH 
domain as measured in annular shells of 10nm. (E) Radial distribution function for clusters of HA and 
underlying PH domain (n=1969 clusters among 15 cells and 2 biological replicates) as measured from the 
center of mass of clusters radiating outward with rings of 20nm. Both density profiles and RDFs for HA 
and PH domain parallel each other and decay together as a function of distance from the centers of 
clusters. Error bars indicate standard error of the mean. 
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3.4. Discussion 

 Using both super-resolution and diffraction-limited methods, HA and PH domain are closely 

spatially associated at the PM. Regions of colocalization are frequently observed, although not all HA 

clusters colocalize well with PH domain. Evidently PIP2 colocalization is not a requirement for HA 

clustering but is spatially associated often enough to warrant further investigation. At shorter length 

scales, using super-resolution microscopy, the Pearson Correlation Coefficient (PCC) remains slightly 

positive, indicating a minor correlation between HA and PH domain. However, a small PCC is somewhat 

expected since PIP2 clusters in the cell for other reasons, even without HA present,169,170 which is expected 

to reduce the PCC. Nonetheless, PH domain is frequently observed within dense clusters of HA using a 

variety of labeling methods and among two subtypes of HA (A/Japan/305/57 and X-31B). Although they 

are frequently found together in clusters, this alone does not suggest a direct interaction between HA and 

PIP2, as they may cluster together with a common interaction partner; however, these findings are 

suggestive of an interaction. 

 Examination of clusters of HA and PH domain together also display results indicative of an 

interaction or common interaction partner. Clustering and high densities of HA are known to be important 

for efficient viral fusion,14,15,175,176 so if PIP2 enhanced HA clustering, it might contribute to producing more 

infectious virions. In the presence of high amounts of PIP2, HA cluster areas are increased nearly two-fold, 

while sustaining similar densities with low PIP2. Additionally, in regions of high HA densities, the clustering 

properties of PIP2 are altered, where a high amount of HA is correlated with larger and denser PIP2 

clusters. Thus, the presence of high densities of HA affect the clustering properties of PIP2 and high 

densities of PIP2 affect the clustering properties of HA, indicative of an interdependence of clusters of HA 

and PIP2 on each other. Plots of density vs area for both HA and PIP2 (figure 3.2) also show a slight upward 

trend as a function of area, suggesting that there is a minimum (and increasing) density needed for larger 

clusters. Spatial profiles of HA and PH domain were also examined and found to parallel each other within 
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clusters. As measured from the center of clusters, HA and PIP2 peak at the center of HA clusters and decay 

outward together. Although PIP2 decays at a different rate and typically reaches a lower peak value, on 

average PIP2 does not extend past the edges of HA clusters, suggesting that when they are together, PIP2 

and HA may be laterally confined within the same regions. 

 With such a diversity of clusters with and without PIP2, questions remain about how PIP2 is 

recruited into clusters and whether HA has any direct interactions with PIP2. Some current models for 

PIP2 recruitment, synthesis, and modulation may help explain some of this diversity. For example, PIP2 

may exist in preexisting platforms or un-clustered at the PM,177 which could be recruited into HA clusters 

in a time-dependent manner, leading to modulation and reorganization of the actin cytoskeleton.167 HA 

clustering on the membrane is also known to induce changes in actin organization,73 but there are no 

known interactions between HA and actin or actin binding proteins. PIP2 could modulate these changes. 

Remarkably, the cytoplasmic tail domain of HA contains 2-3 cysteines and 2 basic residues which are highly 

conserved among influenza A subtypes.178 Other viruses, such as HIV and Ebola, are known to recruit PIP2 

through a variety of basic residues present on their cytoplasmic tails,179–186 and polybasic regions of 

proteins are also known to recruit PIP2 at the PM.164 This evidence inspired us to further investigate the 

role of the HA CTD in a putative interaction between HA and PIP2.  
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CHAPTER 4 

MECHANISM OF HA AND PIP2 CO-CLUSTERING 

4.1. Introduction 

In 1991, DNA sequences obtained from reverse transcription of 13 influenza A HA subtypes were 

observed to have several conserved homologous regions.187 Since the virus is highly prone to mutation, 

regions that remain unchanged among the 18 subtypes must consequently play an essential role in the 

viral lifecycle and therefore are key areas for study. Of particular interest is the cytoplasmic domain (CTD) 

of HA, which contains at least 2 cysteine residues that remain consistent among the A subtypes.42,178,188,189 

These cysteine sites are known to undergo palmitoylation, a form of reversible post-translational protein 

modification wherein a palmitic acid is covalently attached to the protein via an acyl group link. Palmitic 

acids can be transferred spontaneously in some in vitro systems190,191 but this process is usually assisted 

by a membrane associated enzyme known as a palmitoyl acyltransferase (PAT). Since palmitic acid is a 

fairly hydrophobic molecule, when these palmitic acids are attached, and their net charge is neutralized, 

they effectively act to “pin” the cysteine residues of the CTD to the plasma membrane. In general, 

palmitoylation serves a variety of functions for native proteins, such as enhancing membrane association 

and regulation of protein function.192 

Previous studies on HA tail palmitoylation have shown that the palmitoylation is essential for 

influenza infectivity45,46,190 and, in particular, the site most distant from the transmembrane domain 

appears to be the most important for this.46,47 The tail has long been thought to be a binding site for other 

viral components, such as the matrix protein (M1), which forms a layer on the inside of assembled virions 

and induces membrane curvature to assist in viral budding, or neuraminidase (NA), which assists in 

cleaving newly formed viruses during budding.48,193,194 The palmitoylation of the HA CTD also has been 

shown to alter membrane curvature,45 which may reduce the energy barrier during the formation of viral 
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buds. Because of the invariant nature of the cysteines on the CTD and their seeming importance to 

infectivity, these make promising targets for a “universal therapy” against flu.195 

Although there are no known structural motifs absolutely required for cysteine palmitoylation, 

certain patterns are common for cysteine residues that are palmitoylated. Palmitoylation is much more 

likely to occur on cysteine residues that are adjacent to the transmembrane domain (TMD) of a membrane 

protein and are almost always accompanied by nearby positive charges,196,197 a pattern which is 

consistently followed by HA subtypes, with nearly all containing positive charges in the CTD.42 Since the 

CTD of HA consistently contains at least 1 positive residue amongst the numerous subtypes (3 positive 

residues per trimer), this may act as an interaction site for the negatively charged signaling lipid 

phosphatidyl inositol (4,5) biphosphate (PIP2), which has been previously observed to be co-localized with 

HA.99 Natively, PIP2 comprises only about 1% of the total lipid composition of the plasma membrane165 

but serves a diverse range of important functions for the cell, especially in signaling at the cell surface, 

regulation of membrane trafficking, and the cytoskeleton.198 PIP2 is capable of binding many actin binding 

proteins (ABPs) and affecting their function; for example, PIP2 inhibits profilin (promotes actin 

assembly),199 inhibits cofilin200 and villin201 (both of which can sever actin filaments), promotes dissociation 

of capping proteins gelsolin and CapZ,166 and can activate Ezrin, Radixin, and Moesin (ERM) proteins,199 

which can link the actin cytoskeleton to the plasma membrane. Considering HA clusters are frequently 

observed together with actin rich membrane regions of the membrane,72,73 ABPs and actin proteins are 

found in virions,173 and GloPIP diffusion is modulated by the presence of HA,99 PIP2 may serve as a link 

between influenza and the actin cytoskeleton. 

To date, no known PIP2 binding domains have been identified on the influenza HA protein. 

However, other viruses are known to exploit PIP2 to form clusters on the plasma membrane of infected 

cells. The most prominent examples are the HIV gag179,184,185 and Ebola VP40179–181 structural proteins, 

which both interact with PIP2 at the plasma membrane. Platforms of the HIV gag protein on the plasma 
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membrane are completely lost upon depletion of PIP2, and PIP2 is required for successful HIV assembly.202 

HIV gag proteins have been shown to directly interact with PIP2 through a variety of basic residues present 

in the matrix domain, nearest the inner leaflet of the PM.182,183 In the case of the Ebola virus, VP40 is 

thought to interact with PIP2 through cationic side chains of the VP40 protein in order to stabilize 

clusters.180 Influenza may follow a similar pattern to allow effective clustering of its proteins on the plasma 

membrane for assembly prior to viral budding. 

HA MUTANT TMD|CTD AMINO ACIDS CTD NET CHARGE (@pH 7) ACYLATION? 

HAwt MWACQ|RGNIRCNICI +2 Y 

HAMAY MWAMQ|RGNIRANIYI +2 N 

HARE MWACQ|RGNIECNICI +0 Y 

HAREMAY MWAMQ|RGNIEANIYI +0 N 

HARREQ MWACQ|QGNIECNICI -1 Y 

HATailless MWACQ|__________ +0   Y* 

 
Table 4.1: Summary of HA CTD mutant alterations. 5 amino acids from the transmembrane region and 
the 10 amino acids of the cytoplasmic tail domain are shown separated by a vertical line. Amino acid 
changes from HAwt are shown with a light blue background, while unchanged amino acids of interest are 
indicated in red. *Although the HATailless mutant has no remaining cytoplasmic tail, an acylation site still 
exists just inside the transmembrane region, which typically undergoes stearoylation. 

 

To test the effects of palmitoylation and charge on HA clustering at the plasma membrane and 

co-clustering with PH domain, we acquired mutants of Dendra2-HA with altered CTD sequences, with 

either changes to palmitoylation sites, net charge (at physiological pH), or a combination of the two, as 

can be seen summarized in table 4.1. HA wild type (HAwt) from influenza A virus, X-31B (Puerto 

Rico/8/1934-Aichi/2/1968) was mutated to form HAMAY, where the two cysteines in the CTD, at amino 

acid positions 562 and 565, and one in the TMD at amino acid position 555 were replaced with amino 

acids containing hydrophobic sidechains: methionine (M), alanine (A), and tyrosine (Y), which are 
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incapable of being palmitoylated. To test the effects of CTD charge, we collaborated with Josh Zimmerberg 

(NIH) and Hang Waters (NIH), who generated  the mutants HARE and HARREQ, where the positively 

charged arginine (R) in the CTD was mutated to the negatively charged glutamic acid (E), or where both 

CTD arginines were mutated to the neutral glutamine (Q) and glutamic acid respectively. A combination 

of charge and palmitoylation alterations were tested using HAREMAY, which contains the arginine 

replacement with glutamic acid as well as replacement of the cysteines. And finally, we acquired a mutant 

which contains no CTD, the HATailless mutant. 

4.2. Results 

4.2.1. HA CTD Mutant Clustering 

To examine the effects of the cytoplasmic tail domain (CTD) of HA on its physical clustering 

properties and potential interactions with PIP2, plasmids for the fusion proteins Dendra2-HA (A/X-31B 

[Puerto Rico/8/1934-Aichi/2/1968]), Dendra2-HA CTD mutants HAMAY, HARE, HAREMAY, HARREQ, 

HATailless (Hang Waters, Zimmerberg Lab, NIH), and PH-PAmKate (Kashif Mehmood, Maginnis Lab, 

University of Maine) (pleckstrin homology [PH] domain from phospholipase C ẟ [PLC ẟ]),99 were grown in 

E. Coli and purified. Dendra2-HA and CTD mutant constructs, along with PH-PAmKate, were then 

transiently expressed in NIH3T3 mouse fibroblast cells, fixed with 4% PFA for 10 minutes, and then imaged 

with super-resolution multicolor FPALM.57 A TIRF illumination geometry149 was employed to allow for 

selective illumination of the basal surface of each cell and to reduce out of focus background and cell 

autofluorescence. 

Dense clusters of Dendra2-HA spanning a diverse range of sizes (~30nm-1000nm diameters) and 

shapes were observed on the cell membranes, in agreement with previous cases of HA overexpression 

(figure 4.1).16,72,73 Qualitatively similar clustering was also observed for all five of the Dendra2-HA CTD 

mutants. PH-PAmKate formed clusters on its own and with the HA, while regions along the cell edges were 

often found enriched with PH-PAmKate. Compared to HA wild type (HAwt), FPALM renders of Dendra2- 
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Figure 4.1: FPALM renders of Dendra2-HA and PH-PAmKate in fixed NIH3T3 cells. FPALM data of Dendra2-
HA (A) and Dendra2-HAREMAY (C) were convolved with a normalized Gaussian with a localization 
precision dependent radius. Close up views are visible for the boxed region in panels (C) and (D). HAwt 
clusters appear tightly clustered on the membrane of the cell with some colocalization (white) between 
HA and PH domain. HAREMAY CTD mutant also shows similar clusters but qualitatively contains more 
areas of colocalization. Scale bars are 1 µm in length in each panel.  
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HAREMAY were visually most different, sometimes displaying less well-defined clusters and more 

frequent colocalization with PH-PAmKate (figure 4.1). 

At first, to examine if any differences between HAwt and the CTD mutants were noticeable 

throughout the entire cell, we calculated the Pearson correlation coefficients and the Manders’ 

colocalization coefficients (equations 2.7 and 2.8) between HA and PH domain for cells expressing each 

mutant, as seen in figures 4.2 and 4.3. Although Pearson Coefficients were not significantly different 

amongst each other, all mutants displayed a slightly positive Pearson coefficient. Among the mutants, 

Manders’ colocalization coefficients were significantly different from wild type only for the double charge 

mutant HARREQ, showing a 10.6%±3.4% decrease in Dendra2-HARREQ MCC with PH-PAmKate and a 

17.1%±4.6% increase in PH-PAmKate colocalization with Dendra2-HARREQ. All HA CTD mutants and HAwt 

exhibited between 0.69-0.81 MCC with PH domain, despite the low Pearson coefficient. 

To characterize the spatial distributions of HA and HA mutants within clusters, we then calculated 

radial distribution functions (RDFs) for identified clusters of Dendra2-HAwt and Dendra2-HA CTD mutants. 

For the RDF calculation, drift-corrected, tolerance-applied FPALM localization coordinates for Dendra2-

HA and PAmKate-PH were binned onto separate, spatially coincident grids, each with 20nm spacing. Each 

grid (taken as a grayscale image in Matlab) was then convolved with a uniform circular kernal (i.e. tophat 

profiled with 50nm radius and integrated intensity of 1), to account for localization precision. Clusters 

were then identified from the kernal-convolved renders by selecting all regions above a threshold of 3 

times the cell-averaged Dendra2-HA density (ρ). Based on the high variability of small protein clusters, 

those occupying an area smaller than 0.01µm2 were not considered for the RDF calculation. Cells with low 

relative expression of either color (less than 10% of the total) or low expression (ρ<200 molecules/µm2) 

were also omitted from the analysis. After binning molecules and removing cells with poor expression 

levels, 185 total cells remained with 15,545 total clusters pooled from at least 3 biological replicates (table 

4.2). A minimum number of 3 replicates was used to help temper effects from experiment to experiment  
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Figure 4.2: Pearson coefficients for Dendra2-HA and PH-PAmKate. Pearson coefficients were calculated 
after rendering molecules by convolving localizations with a normalized 50nm circle and cell areas were 
masked automatically using a dilation of the localized molecules. The Pearson coefficients remain slightly 
positive, indicating a small correlation between HA and PH throughout the entire cell in all the HA mutants. 
However, there are no significant differences between mutants according to the one-way ANOVA test. 
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Figure 4.3: Manders’ colocalization coefficients (MCC) for Dendra2-HA and PH-PAmKate. MCCs were 
calculated after rendering molecules by convolving localizations with a normalized 50nm circle and cell 
areas were masked using an automatic algorithm. Only HARREQ is significantly different (p<.05) from 
HAwt in both MCCs according to the one-way ANOVA test. HARREQ shows a 10.6%±3.4% decrease in 
colocalization of Dendra2-HA with PH-PAmKate and a 17.1%±4.6% increase in PH-PAmKate colocalization 
with HARREQ. 
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HA MUTANT HAMAY HARE HAREMAY HARREQ HATailless HAwt 

TOTAL # OF CELLS 22 24 25 30 29 55 

TOTAL # OF 
CLUSTERS 4267 4783 3670 6133 5791 9754 

MEAN # 
CLUSTERS/CELL 

194.0 
±12.2 

199.3 
±15.2 

146.8 
±13.0 

204.4 
±12.6 

199.7 
±12.4 

177.4 
±8.6 

MEAN # 
CLUSTERS/µm2 

0.635 
±0.020 

0.618 
±0.018 

0.599 
±0.022 

0.679 
±0.024 

0.633 
±0.023 

0.615 
±0.019 

BIOLOGICAL 
REPLICATES 3 3 3 3 3 6 

 
Table 4.2: Table of cells and clusters analyzed per HA mutant. All HA mutants were imaged in at least 3 
separate biological replicates and thousands of clusters were identified for each mutant species. Cells 
expressing less than 10% of either Dendra2-HA or PH-PAmKate (after bleed-through correction) were 
removed from the data. No significant differences were observed in the mean number of clusters per cell 
or the clusters per cell compared to HA wild type, according to the one-way ANOVA test. 
 

variability of the cells. For Dendra2-HARREQ, there is a significant 10.4%±4.7% increase (p<.05) in the 

number of clusters identified per square µm of cell area, but the other mutants remain insignificantly 

changed from HAwt in this respect. 

Figure 4.4 shows the result of the RDF calculation with HA wild type and all mutants plotted on 

the same graph. HA RDFs were observed to be highest in the centers of the clusters, rising to about 4.5-6 

times the cell average density, then dropping to about half of the peak density after ~90nm. RDFs are all 

monotonically decreasing, with the most rapid decrease occurring between 70nm-110nm, before 

flattening out and slowly approaching 1 (average cell density) at long distances from the cluster center. 

When compared to HAwt, the central RDF value consistently decreases as mutations are introduced to 

the CTD. To test if these observed differences were significant, we used the Kruksal-Wallis one-way 

ANOVA test for each mutant compared to HAwt (see figure 4.5). RDFs for all of the HA mutants show 

significantly reduced values in their RDFs within 100nm of the cluster center, while maintaining similar 

RDF shapes overall, although HAREMAY displays the largest and most significant central reduction of 
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22.1%±5.8% (p<.001). HARE, HAMAY, and HARREQ are grouped together, and remain 13.7%±6.1% to 

18.6%±6.7% lower in density than the wild type for all regions near the RDF center. 

 From previous work,99 we suspected that interactions with the signaling lipid PIP2 may play a role 

in the clustering behavior of HA, either directly or indirectly.99 Since the CTD of HA is the only part of the 

HA molecule that extends outward into the cytoplasm and typically remains close to the inner leaflet, we 

hypothesize that the tail is a likely candidate for such an interaction. To see if PH domain distributions 

were altered when changes were introduced to the CTD, we also calculated RDFs for the PH domain 

underlying the previously identified HA clusters. Figure 4.6 shows the results of the RDF calculations for 

PH-PAmKate, plotted all on the same graph. The PH domain RDFs peak at their central values, similar to 

the HA RDFs, but drop to about half of their peak value within 170nm instead of 90nm, suggesting that 

PH domain remains enriched past the edges of the HA clusters. HAwt, HATailless, HARREQ, and HARE all 

follow similar patterns, consistently dropping monotonically to 1. In contrast to that, both the MAY 

mutants, HAMAY and HAREMAY, are not monotonic, although the difference from HAwt is not significant 

according to the ANOVA test. Figure 4.7 shows the RDF results for PH individually compared to PH domain 

underlying HAwt. RDFs for PH-domain are not significantly altered from the HAwt RDFs for HAMAY. 

However, HAREMAY, HARREQ, HARE, and HATailless mutants all show significant differences. In the case 

of HAREMAY and HARE, there is a significant enrichment with PH-domain in the center of the RDF from 

10-110nm, and a maximum of 30.5%±14.6% and 15.4%±15.3% increase from HAwt, respectively. A 

significant, maximal decrease in the RDFs was observed in the central region for HARREQ of 16.6%±11.6% 

and HATailless of 13.8%±10.5%. 

To ensure that the result remained despite any uncontrolled day to day variability in the 

experiments, we also averaged the RDFs among individual biological replicates instead of by cell. Although 

the standard error noticeably increases when averaging by biological replicate, the overall shape and 

pattern of the RDFs remain unchanged, as can be seen in figure 4.8. 
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Changes to the algorithm which determines cell area and density (and therefore clusters chosen 

for analysis) does cause some minor fluctuations to the RDFs of tail mutants HARE, HARREQ, and HAMAY, 

but the curves always remain between those for HAwt and HAREMAY. The HAwt and HAREMAY mutants 

are largely insensitive to this parameter, suggesting the result for HAREMAY is much less likely to be due 

to analysis method. Including very small clusters (<0.01µm2) increases the variability of the RDF, 

eventually to the point that differences cannot be seen above the noise. We exclude these very small 

clusters on the basis that some “clustering” will appear to happen even with completely randomized 

localizations, but larger clusters are much less likely to appear solely by chance. Additionally, unique 

molecules localized in multiple consecutive frames are duplicate corrected, since overcounting is a known 

potential issue with single-molecule localization methods which can produce artifacts in the data.203 

Although the radial distribution function provides information on how the density of an average 

HA cluster changes with distance from the center of mass, we wanted to examine other properties of the 

clusters to better characterize any changes not immediately apparent from the RDFs. Using the same 

criteria for identifying clusters as for the RDFs, we selected individual clusters using a binary image mask 

in MATLAB and then analyzed them with the regionprops command. 

Cluster densities and areas identified from each cluster and for each mutant are individually 

plotted on a log-log plot to demonstrate cluster to cluster variance within any HA and HA mutant type 

(figure 4.9). HAwt and mutants all show remarkable variance in cluster density and area, while also 

consistently forming a band with clusters spread out more in area than in density. Noticeably, all charts 

show similarly increasing cluster area as density increases (i.e., positive slope to the density vs area). 

Clusters of HAREMAY, in particular, appear in a smaller region of the chart with a sharper band, while 

HAwt shows the widest variation. 

 From the regionprops data of the HA/HA mutant clusters, we also calculated several physical 

properties, including mean cluster density, area, perimeter, and circularity. HAMAY, HARREQ, and 
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HAREMAY mutants all displayed some significant differences from HAwt in one or more cluster property 

(figure 4.10). A significant 20.1%±5.5% decrease in cluster density, 16.9%±5.0% increase in cluster 

perimeter, and a 12.8%±2.6% increase in circularity was noted for the HAREMAY mutant, the only mutant 

to exhibit changes in 3 of the 4 properties examined. HAMAY and HARREQ also exhibited significantly 

reduced densities from HAwt, although always less than the change seen for HAREMAY. In each of the 4 

properties examined, as well as the RDFs for both HA and PH domain, the HAREMAY mutant exhibits the 

largest and most significant differences from HAwt. 

 A summary of all the clustering properties and RDF changes can be seen in figure 4.11 and table 

4.3. 
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Figure 4.4: RDFs of HA and HA mutant variant clusters averaged by cell. Palmitoylation mutants and charge 
altered mutants all show reductions in their central RDF values compared to HAwt. HA CTD mutants show 
general similarities in their RDF curve shapes, all displaying dense central regions that monotonically 
decrease radially outward from the cluster. HA mutants become more depleted in the central region (less 
than 0.1µm) as changes are introduced to the CTD. Error bars indicate the standard error of the mean. 
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Figure 4.5: RDFs for HA mutants compared to HAwt. RDFs were calculated after FPALM localizations were 
rendered by convolving individual molecules with a normalized circle of radius 50nm. HAMAY, HAREMAY, 
and HARREQ mutants all show a significant decrease in the central bump of the RDFs out to 90nm 
according to the two-way ANOVA test, indicating that these clusters have reduced peak cluster density 
compared to wild type HA clusters. Values after 90nm are not significantly different between any of the 
mutants and HAwt. An asterisk indicates p<.001, a plus sign indicates p<.01, and a triangle indicates p<.05. 
Error bars indicate standard error of the mean. 
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Figure 4.6: RDFs of PH domain underlying HA clusters averaged by cell. RDFs for PH domain under HA 
clusters remain higher than the cell average and steadily decrease out to 0.3µm. HAREMAY displays the 
largest difference in shape, rising to nearly 2.5 times the cell average at the centermost point. Error bars 
indicate standard error of the mean. 
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Figure 4.7: PH domain RDFs underlying clusters of HA and HA mutants. For HARREQ and tailless, a small 
depletion in the curve is observed while HARE shows a small enhancement in PH domain underlying HA. 
HAREMAY shows the largest change, with a significant 30.5%±14.6% to 16.9%±11.6% increase in the RDF 
in the region from 0 to 110nm. An asterisk indicates p<.001, a plus sign indicates p<.01, and a triangle 
indicates p<.05. Error bars indicate standard error of the mean. 
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Figure 4.8: RDFs for HA clusters (A) and underlying PH domain (B) averaged by biological replicate. When 
averaged by biological replicate, the standard error increases but the shape and relative order of the RDFs 
remains intact, indicating that the results are unlikely to be caused by day to day experimental variations. 
Error bars indicate standard error of the mean. 
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Figure 4.9: Log-log plot of cluster densities versus cluster areas for HA and HA mutants. Clusters have a 
wide variety of densities for each mutant, with most of the clusters occupying the space below 8 times 
the cell average. Cluster areas, similarly, display marked variation but the majority of clusters are below 
0.2µm2. HAREMAY appears the most dissimilar from the others, with a tendency for clusters to exhibit 
lower densities over a similar range of areas and occupying a narrower band of densities. Red lines indicate 
the average values for density and area. 
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Figure 4.10: Selected cluster properties for Dendra2-HA and Dendra2-HA mutants. Clusters were 
identified by binning molecules onto a grid and convolving with a circle (radius 50nm) and thresholding 3 
times above the cell average. (A) Mean cluster areas for HA and HA mutants. No significant differences 
were found between the mutants and wild type HA. Mean cluster area overall averages to 
0.0375µm2±0.0158µm2. (B) Mean cluster densities. Significant decreases in density were observed 
between HAwt and HAMAY (16.0%±6.3% decrease), HAREMAY (20.1%±5.5% decrease), and HARREQ 
(16.1%±6.3% decrease). The largest decrease occurs in the mutant with a mix of changes to the CTD, both 
charge and palmitoylation. (C) Mean cluster circularities. Both palmitoylation variants, HAMAY 
(7.5%±2.3% increase) and HAREMAY (12.8%±2.6% increase), displayed significant increases in cluster 
circularity, indicating that the removal of palmitoylation increased the elliptical nature of these clusters. 
(D) Mean cluster perimeters. Cluster perimeters remained largely unchanged, except for the HAREMAY 
variant which displayed an increased cluster perimeter (16.9%±5.0%). ANOVA was used for all significance 
testing where p<0.05 (*), p<0.01 (**), and p<.001 (***). Error bars indicate standard error of the mean. 
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Figure 4.11: Summary of RDF differences from HAwt. Green represents a percentage increase from HAwt, 
magenta represents a percentage decrease, while black represents no change. HAREMAY contains the 
most obvious differences in both PH and HA RDFs from HAwt. Each RDF step is 20nm. 
 

SUMMARY OF HA & HA MUTANT MEAN CLUSTER PROPERTIES 

HA MUTANT 
MEAN 

DENSITY 
(rel. to average) 

MEAN 
AREA (µm2) 

MEAN 
PERIMETER (µm) 

MEAN 
CIRCULARITY 

HAMAY 3.935 0.03810 0.9161 1.803 

HARE 4.065 0.03702 0.9005 1.789 

HAREMAY 3.745 0.03907 0.9553 1.891 

HARREQ 3.934 0.03709 0.8939 1.742 

HATailless 4.197 0.04147 0.9173 1.685 

HAwt 4.687 0.03251 0.8173 1.677 

 
Table 4.3: Summary of cluster properties of HAwt and HA mutants. Significant differences are noted using 
a colored coded backdrop where black indicates a significant decrease and blue indicates a significant 
increase as compared to HAwt in dark gray, according to the Kruskal-Wallis one-way ANOVA test. Of the 
cluster properties tested, HAREMAY shows the most significant, and largest, changes from HAwt. 
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4.2.2. Labeling Methods 

Since we wanted to examine the effects of the CTD on HA clustering and PIP2 interactions, the 

fluorescent protein gene was placed 5’ of the HA gene in the plasmid instead of at the CTD at the 3’ end 

of the gene. However, the location of the HA signal peptide at the beginning of the HA protein has been 

shown to mediate the trafficking of HA to the plasma membrane, and to affect overall membrane 

expression levels, as the signal peptide is normally cleaved during membrane insertion. To examine 

whether the position of the signal peptide relative to the fluorescent protein label played any role in our 

observations of HA clustering, we compared membrane expression of Dendra2-HA and HA-Dendra2 with 

HA labeled using a known antibody against HA-X31B. We also compared the level of colocalization 

between antibody-labeled HA and HA labeled as either (Dendra2-HA) or (HA-Dendra2) using both confocal 

and FPALM microscopy. 

Uninterrupted signal peptide, as is presumably found in HA expressed using the HA-Dendra2 

plasmid, shows better overlap of the protein with the α-HA Alexa647 antibody using confocal (figure 4.12 

A), while Dendra2-HA shows fewer regions containing both signals. However, since confocal microscopy 

is not as sensitive as FPALM, we also tested whether Dendra2-HA and α-HA Alexa647 colocalized using 

FPALM (figure 4.12 B). After localization and tolerancing, the data were binned onto a grid with 50nm box 

spacing and masked around the cell area. We then used Manders’ Colocalization Coefficients (MCC) to 

characterize the colocalization between Dendra2-HA and α-HA Alexa 647 as seen in figure 4.13. MCCs 

show similar results for the Dendra2-HA and HA-Dendra2 colocalization with α-HA Alexa 647 but a 

significantly larger value for the colocalization between α-HA Alexa 647 and HA-Dendra2. 

Since we transiently expressed Dendra2-HA and PH-PAmKate, we also examined effects of 

expression level with the colocalization of Dendra2-HA and PH-PAmKate. Tolerance-applied localized 

coordinates were converted into a grid plot with 10nm bin spacing and convolved with a normalized 25nm 

radius Gaussian to produce a render. Pixels containing greater than 4 times the average cell density of 
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both HA and PH domain were counted as a fraction of all the pixels rendered and plotted versus the 

average PH localizations per µm2 and were fitted using a least-squares algorithm (figure 4.14). As HA 

expression increased, a noticeable drop occurs in the fraction of high HA pixels that were colocalized with 

PH domain, indicating potential competition between the two for PIP2. The least-squares was fit according 

an equilibrium model that includes two binding reactions: HA binding to free PIP2, and PH-PAmKate 

binding to free PIP2, which allows the determination of the ratio of the binding constant (rate of 

association) of HA with PIP2 and PH with PIP2. Since the binding constant for PH with PIP2 is a known 

quantity,144 the effective binding constant between HA and PIP2 can be extracted using the fit parameters 

and was found to be 2.86µm2±0.41µm2.  



69 
 

 
  



70 
 

Figure 4.12: Renders of HA-Dendra2 and Dendra2-HA with α-HA Alexa 647. (A) Confocal renders of HA-
Dendra2 and Dendra2-HA with α-HA Alexa 647. HA-Dendra2 displays better membrane expression than 
Dendra2-HA, indicating that it is more efficient at reaching the membrane with the signal peptide intact. 
However, both contain some degree of colocalization with α-HA Alexa 647 at the membrane. (B) FPALM 
super-resolved renders of HA-Dendra2 and Dendra2-HA with α-HA Alexa 647. Since the antibody does not 
efficiently label the basal membrane, images were acquired in thin sections of the cell or towards the 
apical membrane. Both HA-Dendra2 and Dendra2-HA display similar levels of colocalization with α-HA 
Alexa 647. Scale bars are 2µm. 
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Figure 4.13: Manders colocalization coefficients (MCC) for Dendra2-HA and HA-Dendra2 vs α-HA Alexa647 
FPALM renders. Mean values are indicated by the red lines on the chart. MCCs for Dendra2-HA and α-HA 
Alexa 647 are 0.52±0.07 and 0.55±0.04 respectively (N=10), while the coefficients for HA-Dendra2 and α-
HA Alexa 647 are 0.49±0.04 and 0.78±0.04 respectively (N=10). Manders’ correlation coefficient for 
Dendra2-HA is significantly lower than that for HA-Dendra2, likely due to the placement of the signal 
peptide, wherein some cases the signal peptide is being cleaved and detaching the Dendra2 from the HA. 
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Figure 4.14: Dependence of the level of nanoscale colocalization between Dendra2-HA and PH-PAmKate 
as a function of the average PH-PAmKate expression level within the cell. The colocalization between 
Dendra2-HA and PH-PAmKate was determined from analysis of localization microscopy (FPALM) datasets 
imaged with TIRF and acquired in NIH3T3 fibroblast cells (n=194 cells). Localized molecular coordinates 
were converted into a grid plot with 10 nm x 10 nm pixels, where the pixel intensity was proportional to 
the number of localized molecules of a given type within that pixel; grids were then convolved with a 
Gaussian (width 25 nm approximately equal to the localization uncertainty, and integrated area equal to 
unity). The vertical axis shows f, the fraction of (10x10 nm) grid pixels with high Dendra2-HA (density 
greater than 4 times the cell average) which also contained PH-PAmKate (density greater than 4 times the 
cell average). The red line is a least-squares curve fit using a chemical equilibrium model which includes 
two simultaneous binding reactions: HA with free PIP2, and PH-PAmKate (PLCδ) with free PIP2. The model 
allows the determination of the ratio of the binding constant of HA with PIP2 to the binding constant for 
PH with PIP2, and the estimated fraction of PIP2 which is free (not bound by other proteins) within the 
plasma membrane. Since the binding constant for PH is known,144 this analysis allows the determination 
of an effective binding constant for HA with PIP2. Chemical equilibrium model (not shown) and figure 
were developed by Dr. Samuel Hess (University of Maine) and reproduced with permission. 
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4.3. Discussion 

4.3.1. HA CTD Mutations Alter Clustering Properties 

Influenza A virus remains an ongoing public health threat with few reliable methods of treatment 

after infection.5 Since the virus mutates at a rapid pace, typical preventative measures, such as vaccines, 

provide imperfect protection, and a universal treatment method is lacking. More information is required 

to better understand how the virus interacts with host cell components and to better exploit these 

interactions to disrupt infection. 

IAV is known to require cellular components to cluster on the cell membrane in order to efficiently 

assemble and form viral buds;14 however, the mechanism by which HA clusters form is currently 

controversial and not well understood. Yet, there have been several proposed models, including 

preferential partitioning of HA into lipid ordered domains (Lo), i.e. “raft” targeting, through the 

transmembrane and CTD regions,19,20,204–206 induction of heterogeneities in composition through 

membrane curvature,45,207,208 and reduced protein mobility from actin enrichment near the 

membrane.72,73,99 However, HA is not consistently associated with lipid ordered domains in model 

membranes209 and recently HA has been found to not associate with markers for lipid ordered domains 

at all (cholesterol, sphingolipids).25 As such, it is unlikely that HAs clusters form solely because of 

association with lipid ordered regions of the membrane, and therefore new models or modifications to 

existing membrane models are required to explain HA clustering. Actin is also known to be capable of 

restricting both protein and lipid mobility when anchored to the membrane137 and therefore, actin 

remains a suitable candidate for modulation of protein clustering. 

The CTD comprises only 10 out of 566 total amino acids in HA (HA X-31B) but shows remarkably 

conserved palmitoylation sites (cysteines) throughout HA subtypes and consistently contains nearby 

positive charges, often arginines.210 Since the influenza virus is under continual evolutionary pressure to 

mutate, the conserved portions of viral proteins are inferred to be vital to the viral replication cycle. It is 
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also known that the influenza virus replication is significantly inhibited by removal of certain 

palmitoylation sites.42,45,46 Previous studies of HA tail palmitoylation have also shown that there is a 

reduction in membrane curvature when HA palmitoylation sites are removed, increasing the energy 

barrier for viral budding and making it more difficult for the virus to leave the cell.45 However, it is 

unknown if these are the only reasons that influenza viruses prefer HA CTD palmitoylation. 

Additionally, HA has been observed to colocalize with actin-rich membrane regions of the 

membrane with both conventional72 and super-resolution microscopy,73 and IAV is known to rely on the 

actin cytoskeletal network for efficient viral assembly of its proteins into new virions,72,76 as well as for 

delivery of HA to the plasma membrane.100,101 The positively charged residues on the tail may serve to 

associate the HA with certain membrane components, such as negatively charged phosphoinositide lipids, 

some of which are known to be involved with actin signaling. Several host cell components found in 

influenza virions are also part of the PIP2/PIP3 signaling interactome, such as beta-actin and ABPs cofilin-

1 and profilin which are indicative of a possible interaction between viral components and 

phosphoinositides.173,211 Due to Debye charge screening from free ions212 and the abundance of charged 

biomacromolecules and lipids near the membrane, potential interactions between HA and inner leaflet 

lipids are most likely to be found in the HA CTD or otherwise very close nearby. 

Previous studies using diffraction-limited and super-resolution methods have shown positive 

correlation of PIP2 and HA in fixed cells, while the presence of HA modulates the diffusion of GloPIP 

(BODIPY labeled PIP2 molecules) in living cells, suggestive of an interaction between the two.99 Other 

studies have demonstrated the role of PIP2 in controlling plasma membrane association of proteins with 

polybasic residues and/or acylation sites.164 We hypothesized that removal or charge reversal of positively 

charged regions in the CTD would reduce recruitment of PIP2 to sites of HA clustering and, if a contributing 

factor to clustering, would result in reduced HA cluster densities. Additionally, if the palmitoylation is 

important for clustering, removal of the palmitoylation sites should result in altered clustering of the HA 
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proteins. Since the CTD of HA contains 2-3 palmitoylation sites which are consistently accompanied by 1-

2 positively charged residues,210 coupled with the fact that HA is trimerized before reaching the 

membrane,18,213 HA clusters may associate with negatively charged PIP2 headgroups through nonspecific 

charge-charge interactions, not unlike some other membrane proteins with polybasic amino acid 

residues.164 Palmitoylation of the cysteines and the positive residues in the HA CTD may further act to 

stabilize the tail region close to the membrane and assist in facilitating such a nonspecific charge-charge 

interaction with PIP2. A non-specific interaction between the HA CTD and PIP2 (or other negatively 

charged lipids) could be weak, especially at distances comparable to or longer than the Debye screening 

distance (0.7nm in PBS for example214). A relatively weak, non-specific interaction would be expected to 

have the ability to modulate cluster properties, but not entirely disperse them. 

Removal of the HA CTD palmitoylation sites (HAMAY), reversal of the tail charge (HARREQ), and a 

combination of these (HAREMAY) was not able to stop HA from forming clusters on the plasma 

membrane, although the kinds of clusters formed were significantly different from wild type HA. No 

significant changes were observed in the Pearson correlation coefficient (equation 2.6) between Dendra2-

HA and PH-PAmKate, initially suggesting that the charges and palmitoylation sites did not affect 

colocalization between HA and PH-domain. However, the Pearson coefficient remains slightly positive for 

HA wild type, in agreement with previous observations,99 and also for all HA mutants examined. PIP2 has 

also been observed to cluster in the cell membrane of cells not expressing viral proteins for other 

reasons,170 so we may not expect the Pearson coefficient to be large in this case. Even though the two 

species display low Pearson correlation coefficients, we tested if they are spatially colocalized using the 

Manders’ correlation coefficient (equations 2.7 and 2.8).153 Manders’ colocalization coefficients were also 

not significantly different between mutants, except for the HARREQ mutant, which showed a decrease in 

Dendra2-HA with PH-PAmKate, which suggests that PH-domain is slightly less likely to associate with 

Dendra2-HA for this mutant (on average over the entire cell). 
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The HARREQ mutant has a CTD with a net -1 charge at physiological pH. A significant 16.6%±11.6% 

reduction in the concentration of PH-PAmKate was observed in the vicinity of HARREQ clusters, suggesting 

that PIP2 is somewhat depleted in HA clusters when the positive residues are not present. Additionally, 

the HARREQ clusters are significantly reduced in density by 16.1%6.3% (as measured from regionprops) 

and reduced in density in the central region of the RDF by 16.8%7.1%, indicating that altering the 

charges, while leaving the palmitoylation sites intact, had some disruptive effect on HA clustering. 

HATailless shows a similar reduction in both PH domain and HA RDFs. Since PIP2 has a large variety of 

interaction partners within the cell,211 we might not necessarily expect HA clusters to be entirely devoid 

of PIP2 if an interaction between them were disrupted. In the case of HAREMAY, we notice a 30.5%13.5% 

increase in the relative density of PH-domain present in clusters coinciding with a 22.1%3.5% decrease 

in HA densities compared to HAwt, which appears contradictory of a PIP2-HA interaction through the CTD. 

However, PH-domain is only capable of binding free PIP2,142,143,146 so the noted increase in PH domain 

suggests rather that the PIP2 in HAREMAY clusters is more available to bind PH-domain, and therefore 

has a lower probability of being bound to other proteins within the cluster. If PIP2 interacts with the HA 

CTD positive residues, we might expect an increase in PH domain labeling as more of the PIP2 becomes 

available for binding. 

Since clusters of HA are known to be far more efficient at fusion when clustered,14 we also 

examined the clustering properties of the various mutants. When examining the types of clusters formed 

by HA and the association of clusters with PH-domain, some significant reduction in cluster densities and 

changes in PH domain densities under the clusters were observed. The largest differences between wild 

type and mutant clustering were measured when both the charge and palmitoylation sites were altered 

(HAREMAY), but smaller differences were found with either palmitoylation removal (HAMAY) or tail 

charge reversal (HARREQ). Evidently, any change at all to the charges or palmitoylation sites on the tail 
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causes some reduction in the central RDF region and clustering, therefore, depends somewhat on the 

CTD. 

None of the current membrane models adequately explains HA cluster stability on the membrane 

or why alterations to the tail charges and/or palmitoylation sites resulted in reductions to clustering 

densities. Modifications to the tail clearly caused some reductions in clustering, with varying effects on 

the amount of underlying PH domain. Since changing the tail reduced the relative densities of clusters, it 

must play some role in the clustering of HA at the membrane, indicating it is unlikely that HA is purely 

clustered because it is targeted to certain membrane regions through the transmembrane domain. There 

is evidence to suggest that HA arrives at the membrane, already packed tightly into vesicles,208 and arrives 

primarily through actin comet formation initiated by the WASP/PIP2 pathway.101 HA therefore, may arrive 

at the membrane in clusters, with actin just underlying the membrane that would act to keep the clusters 

together by acting as a diffusion barrier. 

However, actin filaments in the cell are highly dynamic and require constant treadmilling to 

maintain steady state, along with a set of actin binding proteins that help to regulate and maintain the 

filaments.215 If actin helps hold HA clusters together, but there are no known interactions between HA 

and actin, this seeming contradiction could be explained by an intermediate, which might also be able to 

keep actin filaments intact. PIP2 has known binding activity to a host of ABPs, including cofilin, profilin, 

gelsolin, α-actinin, among other actin organizers and stabilizers.199,200 Given the association of HA with PH-

domain, we propose a model (Figure 4.15) where PIP2 is weakly drawn to the charged tails of clustered 

HA proteins, which in turn provide a protective effect on clusters by sequestering ABPs that would 

normally prompt disassembly of the actin filaments.  
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Figure 4.15: Model of HA and PIP2 co-clustering. HA colocalizes with regions of the membrane that rich 
in actin, which may serve as a diffusion barrier helping to keep clusters together. HA is known to arrive at 
the apical membrane, largely through actin comets initiated by PIP2. In this model, PIP2 is drawn to the 
positive residues on the palmitoylated CTD, which sequesters nearby ABPs and provides a protective 
effect on the actin cytoskeleton, preventing its disassembly. 
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4.3.2. Dendra2-HA Labeling 

 Since the C-terminal CTD of HA is only 10-11 amino acids in length, we decided to place the 

fluorescent protein label on the N-terminus of the HA protein to reduce its potential to interfere with the 

functionality of the tail. However, the protein contains a short 20-30 amino acid cleavable signal peptide 

that targets the protein to a translocon and assists with insertion of HA into the plasma membrane.216 HA 

polypeptides not containing signal peptide remain largely cytoplasmic,217 indicating that the signal peptide 

is essential for the membrane targeting of HA. In natural HA expression, the signal peptide resides at the 

N-terminus and is cleaved as part of membrane insertion. In our system, the signal peptide resides at the 

C-terminus of the Dendra2 protein, which itself contains no signal sequence. A study of signal peptide 

location on HA membrane expression found that when an N-terminus transmembrane region is present, 

it interferes with signal recognition and membrane insertion of proteins,218 although our system has no 

preceding transmembrane region. At least one other group found no significant reliance on the position 

of the HA signal peptide, so long as the signal peptide sequence remained present and intact.219 

To test if our construct was expressing properly at the membrane, we compared two fusion 

protein constructs where the Dendra2 gene was either N (HA-Dendra2) or C (Dendra2-HA) terminus of 

the HA gene and co-labeled with an antibody against the same strain of HA (X-31B). Through confocal 

imaging, greater membrane specific expression was observed for the HA-Dendra2 construct than the 

Dendra2-HA construct, although both constructs showed extensive labeling by the α-HA antibody. 

Pearson and Manders’ coefficients for confocal data also showed significantly larger values for the HA-

Dendra2 construct than the Dendra2-HA construct, which is indicative of more efficient co-labeling for 

the construct where the signal peptide is at the N-terminus of the protein. 

However, since the sensitivity of the confocal microscope is lower than for FPALM, we decided to 

further examine the two constructs using FPALM microscopy. In contrast to the confocal results, FPALM 

datasets for the two pairs showed very similar Manders’ coefficients for HA-Dendra2 with anti-HA and 
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Dendra2-HA with anti-HA (0.52 vs 0.49), but significantly larger value for anti-HA with HA-Dendra2 than 

Dendra2-HA (0.78 vs 0.55). The result from Manders’ colocalization coefficients suggests that Dendra2-

HA and HA-Dendra2 both have a similar chance of being found with anti-HA antibodies when co-labeled, 

but the anti-HA antibodies are less likely to be found with Dendra2-HA than with HA-Dendra2. 

To explain why we see anti-HA more frequently colocalized with HA-Dendra2 than with Dendra2-

HA, while maintaining similar Manders’ coefficients for the reverse, it is possible that some fraction of the 

Dendra2 is being cleaved from HA when the signal peptide is located between the Dendra2 and HA 

proteins. This would result in two populations of HA at the membrane, one tagged with Dendra2 and one 

that is not. Presumably, since we see Dendra2-HA about as often with anti-HA as anti-HA with Dendra2-

HA, the two populations mix together, allowing for a reasonable sampling of HA. 

In future experiments involving the CTD, it may be advisable to move the sequence encoding the 

signal peptide to be 5’ (upstream) of the fluorescent protein. In this configuration, the signal peptide may 

still be cleaved and facilitate typical insertion of the fusion protein into the membrane. Alternatively, 

different labeling methods may be facilitated, such as antibody staining or use of HaloTag220 proteins, 

although these labeling methods carry drawbacks of their own. 

4.3.3. PIP2 Labeling 

As a lipid, PIP2 is not easily targeted directly by endogenous expression, so we used Pleckstrin 

Homology (PH) domain from phospholipase C ẟ (PLCẟ) as a marker for PIP2. PH domain reversibly binds 

to the head group of the PIP2 lipid, as well as to the cleaved head group of PIP2, IP3.142,143 Some concerns 

have been noted about using PH domain as a direct probe for PIP2 and the PH domain label has a number 

of imperfections that must be taken into account.146,221 Firstly, PH domain will bind only the available, free 

PIP2 that it can physically reach on the PM. Although PIP2 is known to reside in cellular compartments, 

such as the Golgi and nucleus, PH domain has not been observed associated with these. Secondly, PIP2 

and IP3 both compete for binding PH domain and previous studies have shown that IP3 binds PH domain 
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with higher affinity than PIP2, which can result in mislabeling of PIP2 when IP3 is nearby. In fact, PH 

domain from PLC δ binds IP3 with several times higher affinity than PIP2,142,143 but IP3 is primarily a 

cytosolic component with nothing to anchor it to the membrane. 

 In plots of high HA density versus PH expression (figure 4.13), HA colocalization shows a clear 

downward trend as more PH domain is expressed suggestive of competition between HA and PH domain 

for PIP2 while in clusters. The effective binding constant was also be extracted from the fitting parameters 

and was found to be 2.86µm2±0.41µm2, smaller than the association constant for PH with PIP2. In this 

case, HA would bind to PIP2 about ~2.7 times weaker than PH, allowing PIP2 free to bind other interaction 

partners for which it has higher association constants. 

4.4. New Questions 

 Since changes to the cytoplasmic tail had significant effects on the clustering of HA proteins, 

questions arise about the nature of the connection between HA clustering and the composition of the 

CTD. Removal of the CTD entirely or alterations to the net charge of the tail and removal of palmitoylation 

sites did not entirely disrupt clustering, so it is unlikely that clustering is caused solely by interactions 

stemming from the CTD. However, in the HAREMAY mutant, there remains one positive residue at 

position 565, and in the tailless mutant, an acylation site still exists just inside the TMD, so further 

mutations at these sites may also be worth examining. Additionally, the clustering was not wholly 

unaffected by these CTD changes either, suggesting that HA has multiple mechanisms that assist with 

clustering. 

Other viral components also likely play a synergistic role in the formation of clusters, and the CTD 

may help coordinate interactions between other viral components. For example, NA, when expressed 

with HA, can accelerate the apical targeting of both proteins, but only when their CTD tails are intact.222 

The influenza viral matrix protein M1 might be involved in clustering during actual infection (where all 

viral proteins are overexpressed) and is known to form a helical layer on the inner membrane of IAV 
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particles.223 M1 also potentially binds to the tail regions of HA and NA,48,193,194 which is expected to have a 

stabilizing effect on clusters, thus clusters of viral proteins may only need to persist long enough for M1 

to bind and stabilize existing clusters. 
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CHAPTER 5 

CONCLUSION AND FUTURE DIRECTIONS 

5.1. Conclusion 

 The influenza viral membrane protein HA forms dense nanoscale clusters on host cell PM. These 

clusters are closely associated with actin rich membrane regions of the PM,72,73 but the mechanisms 

governing cluster formation and stability are not well understood. Actin comets have also been implicated 

in delivery of HA to the apical surface of infected cells,100,101 a process initiated by PIP2. PIP2 is involved in 

actin regulation199 and is exploited by proteins of other viruses, such as Ebola VP40179–181 and HIV gag,182–

185 to assist in clustering of their membrane proteins. Diffraction limited and super-resolved multicolor 

FPALM images of HA and PH domain, a marker for PIP2, show a close spatial association between the two, 

while RDFs show that HA and PH domain follow each other spatially in clusters. Densities and areas of PH 

domain clusters are significantly larger and denser in the presence of high density clusters of HA, while 

HA clusters are significantly larger in the presence of high levels of PIP2. 

HA is capable of mutating rapidly, but there are 3 cysteines and 1-2 basic residues in the CTD 

which remain highly conserved among HA subtypes. These cysteines are known to undergo 

palmitoylation, where a palmitic acid is attached to the CTD of HA, effectively pinning the tail into the 

membrane. Palmitoylation has been observed to assist with inducing membrane curvature45 and , but it 

is unknown if serves other functions. Using a series of mutations on the CTD of HA which induce changes 

to either palmitoylation (HAMAY), net charge (HARE, HARREQ), or a combination of the two (HAREMAY, 

HATailless), we examined the effects of CTD charge and palmitoylation on the clustering properties of HA 

and associations with PIP2. Radial distribution functions for clusters of HA and underlying PH domain were 

calculated for each set of mutants and compared to wild type. Any change to the CTD resulted in 

significant reductions to the RDFs, but the largest changes occurred when both charge and palmitoylation 

were altered (HAREMAY). Changes were also observed in the PH RDFs underlying clusters of HA, where 
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HAREMAY and HARE mutants displayed significantly greater PH RDF values and HARREQ and HATailless 

were significantly decreased. 

Examinations of cluster properties indicate that cluster density was significantly reduced for 

HARREQ, HARREQ, and HAMAY. HAREMAY also displayed changes in cluster circularity and perimeters, 

indicating that changes to the CTD impacted the types of clusters formed by HA. Although clusters were 

not eliminated by mutation of the CTD, the densities of clusters were reduced, and the types of clusters 

formed were altered. 

5.2. Future Directions 

Although changes to the HA CTD did not disrupt clustering entirely, there were significant 

reductions in clustering (relative to cell average) and alterations of the spatial association with PH domain. 

However, PH domain is only capable of binding free PIP2,144,146 making it an indirect measure of PIP2 levels 

near HA clusters. More direct measurements of PIP2, through GloPIP or other prelabeled lipid, may be 

preferred in future experiments. Additionally, other phosphoinositides and negatively charged lipids exist 

in the PM, which may also be attracted to the positively charged regions of the HA tails. Other lipids in the 

PM also contain a negatively charged headgroups and may be involved in HA clustering. For example, 

phosphatidylinositol (3,4,5) triphosphate (PIP3), is known to be involved in actin regulation224–226 and 

interacts with cell components isolated from purified IAV.173 

Ca2+ oscillations have also been observed during influenza virus infections that are important for 

signaling RhoA, Rho kinase, phosphatidylinositol 4-phosphate 5-kinase (PIP5K) and phospholipase C.227 

Ca2+ ions are also known to be able to modulate the lateral distribution of PIP2 in the PM.228 Since there 

appears to be a connection between PIP2 and HA, and a connection between Ca2+ and PIP2, this may 

warrant further investigation using calcium ionophores, which increase intracellular calcium levels and 

trigger PIP2 cleavage by PLCδ, or cationic compounds which may interfere with PIP2 binding HA or other 

membrane proteins. 
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CPC is a cationic compound cetylpyridinium chloride (CPC) found in consumer products, and with 

known antimicrobial properties. Preliminary findings treating HA-expressing NIH3T3 cells with CPC show 

that HA cluster densities are reduced by a factor of up to 6 times (Prakash Raut, personal communication), 

while the canonical PIP2-binding protein, Myristoylated Alanine-Rich C-Kinase Substrate (MARCKS) shows 

a CPC-dependent reduction in concentration at the plasma membrane under similar conditions 

(suggesting a reduction in free PIP2 in the plasma membrane) (Gosse Lab, personal communication). Since 

CPC is cationic, it is likely that CPC is binding partners of MARCKS in the membrane, rather than MARCKS 

itself, which is positively charged. MARCKS is known to sequester PIP2 through electrostatic 

interactions,163,229,230 and although CPC likely has other disruptive effects at the membrane, the removal 

of MARCKS is highly suggestive that PIP2 interactions are disrupted by the addition of CPC. Further 

experiments are needed to determine if the HA cluster disruption is due entirely to CPCs interference with 

PIP2 or if other negatively charged players are also involved. 
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APPENDIX A: PLASMID SEQUENCES 

Dendra2-HA plasmid sequence: Color Key: Dendra2 HA X-31B 

CCCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAACT
CCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTGGTTTAGT
GAACCGTCAGATCCGCTAGCGCTACCGGTCGCCACCATGAACACCCCGGGAATTAACCTGATCAAGGAGG
ACATGCGCGTGAAGGTGCACATGGAGGGCAACGTGAACGGCCACGCCTTCGTGATCGAGGGCGAGGGCAA
GGGCAAGCCCTACGAGGGCACCCAGACCGCCAACCTGACCGTGAAGGAGGGCGCCCCCCTGCCCTTCAGC
TACGACATCCTGACCACCGCCGTGCACTACGGCAACCGGGTGTTCACCAAGTACCCCGAGGACATCCCCG
ACTACTTCAAGCAGAGCTTCCCCGAGGGCTACAGCTGGGAGCGCACCATGACCTTCGAGGACAAGGGCAT
CTGCACCATCCGCAGCGACATCAGCCTGGAGGGCGACTGCTTCTTCCAGAACGTGCGCTTCAAGGGCACC
AACTTCCCCCCCAACGGCCCCGTGATGCAGAAGAAGACCCTGAAGTGGGAGCCCAGCACCGAGAAGCTGC
ACGTGCGCGACGGCCTGCTGGTGGGCAACATCAACATGGCCCTGCTGCTGGAGGGCGGCGGCCACTACCT
GTGCGACTTCAAGACCACCTACAAGGCCAAGAAGGTGGTGCAGCTGCCCGACGCCCACTTCGTGGACCAC
CGCATCGAGATCCTGGGCAACGACAGCGACTACAACAAGGTGAAGCTGTACGAGCACGCCGTGGCCCGCT
ACAGCCCCCTGCCCAGCCAGGTGTGGTCCGGCGACAGCGGCGTGTACAAGTCCGGAATGAAGACCATCAT
TGCTTTGAGCTACATTTTCTGTCTGGCTCTCGGCCAAGACCTTCCAGGAAATGACAACAGCACAGCAACG
CTGTGCCTGGGACATCATGCGGTGCCAAACGGAACACTAGTGAAAACAATCACAGATGATCAGATTGAAG
TGACTAATGCTACTGAGCTAGTTCAGAGCTCCTCAACGGGGAAAATATGCAACAATCCTCATCGAATCCT
TGATGGAATAGACTGCACACTGATAGATGCTCTATTGGGGGACCCTCATTGTGATGTTTTTCAAAATGAG
ACATGGGACCTTTTCGTTGAACGCAGCAAAGCTTTCAGCAACTGTTACCCTTATGATGTGCCAGATTATG
CCTCCCTTAGGTCACTAGTTGCCTCGTCAGGCACTCTGGAGTTTATCACTGAGGGTTTCACTTGGACTGG
GGTCACTCAGAATGGGGGAAGCAATGCTTGCAAAAGGGGACCTGGTAGCGGTTTTTTCAGTAGACTGAAC
TGGTTGACCAAATCAGGAAGCACATATCCAGTGCTGAACGTGACTATGCCAAACAATGACAATTTTGACA
AACTATACATTTGGGGGATTCACCACCCGAGCACGAACCAAGAACAAACCAGCCTGTATGTTCAAGCATC
AGGGAGAGTCACAGTCTCTACCAGGAGAAGCCAGCAAACTATAATCCCGAATATCGGGTCCAGACCCTGG
GTAAGGGGTCTGTCTAGTAGAATAAGCATCTATTGGACAATAGTTAAGCCGGGAGACGTACTGGTAATTA
ATAGTAATGGGAACCTAATCGCTCCTCGGGGTTATTTCAAAATGCGCACTGGGAAAAGCTCAATAATGAG
GTCAGATGCACCCATTGATACCTGTATTTCTGAATGCATCACTCCAAATGGAAGCATTCCCAATGACAAG
CCCTTTCAAAACGTAAACAAGATCACATATGGAGCATGCCCCAAGTATGTTAAGCAAAACACCCTGAAGT
TGGCAACAGGGATGCGGAATGTACCAGAGAAACAAACTAGAGGCCTATTCGGCGCAATAGCAGGTTTCAT
AGAAAATGGTTGGGAGGGAATGATAGACGGTTGGTACGGTTTCAGGCATCAAAATTCTGAGGGCACAGGA
CAAGCAGCAGATCTTAAAAGCACTCAAGCAGCCATCGACCAAATCAATGGGAAATTGAACAGGGTAATCG
AGAAGACGAACGAGAAATTCCATCAAATCGAAAAGGAATTCTCAGAAGTAGAAGGGAGAATTCAGGACCT
CGAGAAATACGTTGAAGACACTAAAATAGATCTCTGGTCTTACAATGCGGAGCTTCTTGTCGCTCTGGAG
AATCAACATACAATTGACCTGACTGACTCGGAAATGAACAAGCTGTTTGAAAAAACAAGGAGGCAACTGA
GGGAAAATGCTGAAGACATGGGCAATGGTTGCTTCAAAATATACCACAAATGTGACAACGCTTGCATAGA
GTCAATCAGAAATGGGACTTATGACCATGATGTATACAGAGACGAAGCATTAAACAACCGGTTTCAGATC
AAAGGTGTTGAACTGAAGTCTGGATACAAAGACTGGATCCTGTGGATTTCCTTTGCCATATCATGCTTTT
TGCTTTGTGTTGTTTTGCTGGGGTTCATCATGTGGGCCTGCCAGAGAGGCAACATTAGGTGCAACATTTG
CATTTGAGTGTATTAGTAATTAAAAACACCCTTGTTTCTACTGCTAGGTCGACGGTACCGCGGGCCCGGG
ATCCACCGGATCTAGATAACTGATCATAATCAGCCATACCACATTTGTAGAGGTTTTACTTGCTTTAAAA
AACCTCCCACACCTCCCCCTGAACCTGAAACATAAAATGAATGCAATTGTTGTTGTTAACTTGTTTATTG
CAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCA
TTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTAAGGCGTAAATTGTAAGCGTTAATATTTTGTT
AAAATTCGCGTTAAATTTTTGTTAAATCAGCTCATTTTTTAACCAAT 
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APPENDIX B: MATLAB CODE FOR RDFS AND CLUSTER PROPERTIES 

The following code was written and executed to calculate both radial distribution functions and cluster 
properties for HA and HA mutant clusters using MATLAB 2018a or higher. 
 
ClusterRDFGrid_v4.m 
%% Find Cluster RDFs v4 (2color) GRID VERSION 
% ** Requires 'alpha' appended to each file 
% [MP] 
  
clear; clc; 
  
%% User options 
% defaultpath='D:\Local Mutant Data\2018-2019 RB6 HA Mutants & PH\'; 
savepath='K:\PhD\2019 HAmutants & PH\Rolling Ball ND50\RDF\'; % 
Default save path 
% ------- 
% Cluster identification settings 
binsize=.02; % Grid size in microns 
kernal=5;    % Kernal sized 
rad=0.05;    % Radius in um40nm 
thresh=3;    % How far above the mean density to be considered a 
cluster? 
bleedthrough=[0.07 0.07]; % Bleedthrough correction [] 
useCellmask=0; % Use whole cell or individual channel mask to 
calculate density (1=cell mask, 0=channel mask) 
% ------- 
% RDF Settings 
rmax=1;    % Max distance for RDF calculation 
ncor=10;   % Number of elements at end of RDF used for correction 
% CLUSTER limits: 
minarea=25*(binsize^2);% min area per cluster (um^2) 
maxdensity=16000;  % max cluster density in mol/um^2 (Ausborn et al, 
'Role of Hemagglutinin Surface Density in the Initial Stages of 
Influenza Virus Fusion: Lack of Evidence for Cooperativity', 2000) 
% CELL limits: 
minreddensity=200;   % minimum cell density (Red channel) 
mingreendensity=200; % minimum cell density (Green channel) 
minexp=0.10;         % minimum cell expression ratio 
  
fpath={'K:\PhD\2019 HAmutants & PH\Rolling Ball ND50\HAMAY\',... 
    'K:\PhD\2019 HAmutants & PH\Rolling Ball ND50\HARE\',... 
    'K:\PhD\2019 HAmutants & PH\Rolling Ball ND50\HAREMAY\',... 
    'K:\PhD\2019 HAmutants & PH\Rolling Ball ND50\HARREQ\',... 
    'K:\PhD\2019 HAmutants & PH\Rolling Ball ND50\HATailless\',... 
    'K:\PhD\2019 HAmutants & PH\Rolling Ball ND50\HAwt\'}; 
% fpath={'D:\Local Mutant Data\2018-2019 TMF2 HA Mutants & 
PH\HAMAY\ND50nm\',... 
%     'D:\Local Mutant Data\2018-2019 TMF2 HA Mutants & 
PH\HARE\ND50nm\',... 
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%     'D:\Local Mutant Data\2018-2019 TMF2 HA Mutants & 
PH\HAREMAY\ND50nm\',... 
%     'D:\Local Mutant Data\2018-2019 TMF2 HA Mutants & 
PH\HAwt\ND50nm\',... 
%     'D:\Local Mutant Data\2018-2019 TMF2 HA Mutants & 
PH\RREQ\ND50nm\',... 
%     'D:\Local Mutant Data\2018-2019 TMF2 HA Mutants & 
PH\Tailless\ND50nm\'}; 
  
% [inputfile,fpath]=uigetfile('','',defaultpath,'Multiselect','on'); 
% if iscell(inputfile) 
%     fend=numel(inputfile); 
% else 
%     fend=1; 
%     inputfile=cellstr(inputfile); 
% end 
% fpath=cellstr(fpath); 
  
%% Loop through all folders 
for bb=1:numel(fpath) 
    % Reset file variables on each pass, keeping settings 
    clearvars -except useCellmask minexp ncor savepath bb fpath 
binsize kernal rad thresh maxdensity minarea rmax minreddensity 
mingreendensity bleedthrough steps maskringfull maskring maskringsum 
     
    directory=fpath{bb}; 
    inputfile=dir([directory,'*.mat']); 
    fend=numel(inputfile); 
     
    disp('Batching:') 
    disp('...') 
     
    % Initialize variables 
    gor_green_all=[]; gor_red_all=[]; 
    gor_red_all_adj=[]; gor_green_all_adj=[]; 
    dr=binsize;  % dr must equal bin size 
    ncells=0; % Number of cells that passed the checks 
  
%% Generate appropriate ring masks for RDF calculation on first pass 
    % ----------------------------------------- 
    if bb==1 
        steps=round(rmax./binsize); 
        seed=zeros(1+steps*2,1+steps*2); 
        cmrx=ceil(size(seed,2)/2); 
        cmry=ceil(size(seed,1)/2); 
        seed(cmry,cmrx)=1; 
  
        maskouter=seed; 
        maskinner=zeros(size(seed)); 
        maskring=zeros([size(seed),steps+1]); 
        maskringfull=zeros(size(seed)); 
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        for k=1:steps+1 
            if k~=1 
                maskouter=imdilate(seed,strel('disk',k-1,0)); 
                maskinner=imdilate(seed,strel('disk',k-2,0)); 
            end 
             
            maskring(:,:,k)=maskouter-maskinner; 
            maskringfull=maskring(:,:,k)+maskringfull; 
        end 
        maskring=logical(maskring); 
        maskringsum=sum(maskringfull(:)); 
    end 
    % --------------------------- 
     
%% Loop through all files, calculate cluster g(r), and find cluster 
properties 
    for ii=1:fend 
        disp([num2str(ii),'/',num2str(fend),': ',inputfile(ii).name]) 
%         load([fpath,inputfile{i}]) 
        load([fpath{bb},inputfile(ii).name]) 
         
        % Find size to use for gridding 
        
sxsy=[ceil(max(yf_all*q)/binsize)+2*kernal,ceil(max(xf_all*q)/binsize)
+2*kernal]; 
         
        % Split data into channels 
        xf_all_green=xf_all(nrat>=alpha(1) & nrat<=alpha(2)); 
        yf_all_green=yf_all(nrat>=alpha(1) & nrat<=alpha(2)); 
        xf_all_red=xf_all(nrat>=alpha(3) & nrat<=alpha(4)); 
        yf_all_red=yf_all(nrat>=alpha(3) & nrat<=alpha(4)); 
        xf_um_green=xf_all_green*q; 
        yf_um_green=yf_all_green*q; 
        xf_um_red=xf_all_red*q; 
        yf_um_red=yf_all_red*q; 
  
        % Grid red and green data 
%         % Gaussian convolution 
%         
grid_green=fDeltaGauss(xf_all_green,yf_all_green,kernal,rad,binsize,q,
sxsy); 
%         
grid_red=fDeltaGauss(xf_all_red,yf_all_red,kernal,rad,binsize,q,sxsy); 
  
%         % Circle convolution 
        
[grid_green,grid_green_conv]=fDeltaCircleConv2(xf_all_green,yf_all_gre
en,kernal,rad,binsize,q,sxsy); 
        
[grid_red,grid_red_conv]=fDeltaCircleConv2(xf_all_red,yf_all_red,kerna
l,rad,binsize,q,sxsy); 
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%% Bleedthrough correct data 
        grid_green_copy=grid_green_conv; 
        grid_red_copy=grid_red_conv; 
        grid_green_conv=(grid_green_copy-
bleedthrough(1)*grid_green_copy-bleedthrough(1)*grid_red_copy)./(1-
bleedthrough(1)-bleedthrough(2)); 
        grid_red_conv=(grid_red_copy-bleedthrough(2)*grid_red_copy-
bleedthrough(2)*grid_green_copy)./(1-bleedthrough(1)-bleedthrough(2)); 
        grid_green_conv(grid_green_conv<0)=0; 
        grid_red_conv(grid_red_conv<0)=0; 
         
        nred=sum(grid_red_conv(:)); 
        ngreen=sum(grid_green_conv(:)); 
%% Find cluster properties 
        grid_sum=grid_green_conv+grid_red_conv; % Grid of all the 
molecules 
         
        % Approximate cell area 
        
init_mask=imdilate(grid_sum>0,strel('disk',round(rad/binsize))); 
        init_mask=imfill(init_mask,'holes'); % Fill holes in the mask 
         
        % Find largest connected component to use as cell area 
        connect=bwconncomp(init_mask); 
        numpix = cellfun(@numel,connect.PixelIdxList); 
        [~,idx]=max(numpix); 
        cell_mask=zeros(size(init_mask)); 
        cell_mask(connect.PixelIdxList{idx})=1; 
        cell_mask=logical(cell_mask); 
        cell_area(ii)=sum(cell_mask(:))*binsize^2; 
         
        % Use cell mask or individual channel mask? 
        if useCellmask 
            
cell_density_red(ii)=sum(grid_red_conv(cell_mask))./(sum(cell_mask(:))
.*binsize^2); 
            
cell_density_green(ii)=sum(grid_green_conv(cell_mask))./(sum(cell_mask
(:)).*binsize^2); 
        else 
%             
red_mask=imdilate(grid_red>0,strel('disk',round(rad/binsize))); 
%             red_mask=imfill(grid_red>0,'holes'); % Fill holes in the 
mask 
            red_mask=grid_red_conv>0; 
            red_mask=red_mask&cell_mask; 
%             
green_mask=imdilate(grid_green>0,strel('disk',round(rad/binsize))); 
%             green_mask=imfill(grid_green>0,'holes'); 
            green_mask=grid_green_conv>0; 
            green_mask=green_mask&cell_mask; 
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cell_density_red(ii)=sum(grid_red_conv(red_mask))./(sum(red_mask(:)).*
binsize^2); 
            
cell_density_green(ii)=sum(grid_green_conv(green_mask))./(sum(green_ma
sk(:)).*binsize^2); 
        end 
     
    % Red channel 
        % Threshold above the average and find cluster stats 
%         grid_norm=grid_red./mean(grid_red(cell_mask)); 
        grid_norm=grid_red_conv./(cell_density_red(ii).*binsize^2); 
        grid_bw_red=grid_norm>thresh; 
        
stats_red=regionprops(grid_bw_red,grid_red_conv,'PixelIdxList','Area',
'MinorAxisLength','MajorAxisLength','WeightedCentroid','PixelValues','
Eccentricity','Perimeter'); 
     
    % Green Channel 
        % Threshold above the average and find cluster stats 
%         grid_norm=grid_green./mean(grid_green(cell_mask)); 
        
grid_norm=grid_green_conv./(cell_density_green(ii).*binsize^2); 
        grid_bw_green=grid_norm>thresh; 
        
stats_green=regionprops(grid_bw_green,grid_green_conv,'PixelIdxList','
Area','MinorAxisLength','MajorAxisLength','WeightedCentroid','PixelVal
ues','Eccentricity','Perimeter'); 
  
 %% Apply CELL density limit 
        if cell_density_green(ii)<mingreendensity || 
cell_density_red(ii)<minreddensity || nred/(nred+ngreen)<minexp || 
ngreen/(nred+ngreen)<minexp 
            disp([' *Skipping cell ',num2str(ii),':',' 
G:',num2str(cell_density_green(ii)),' 
R:',num2str(cell_density_red(ii)),' 
Gr:',num2str(ngreen/(nred+ngreen),3),' 
Rr:',num2str(nred/(nred+ngreen),3)]) 
  
%         subplot(1,3,1) 
%         imagesc(cell_mask) 
%         axis image 
%         subplot(1,3,2) 
%         imagesc(green_mask) 
%         axis image 
%         subplot(1,3,3) 
%         imagesc(red_mask) 
%         axis image 
% %         waitforbuttonpress 
%         drawnow 
             
            % Record variables in fail instances 



109 
 

            adj_red(ii)=0; 
            adj_green(ii)=0; 
  
            R_all(ii)=NaN; 
            MandersG(ii)=NaN; 
            MandersR(ii)=NaN; 
             
            % Store cell variables 
            gor_green_cell{ii}=NaN; 
            gor_red_cell{ii}=NaN; 
            stats_green_cell{ii}=stats_green; 
            stats_red_cell{ii}=stats_red; 
  
            % Store cluster properties 
            clusterdensity_green_cell{ii}=NaN; 
            area_green_cell{ii}=NaN; 
            perimeter_green_cell{ii}=NaN; 
            eccentricity_green_cell{ii}=NaN; 
  
            clusterdensity_red_cell{ii}=NaN; 
            area_red_cell{ii}=NaN; 
            perimeter_red_cell{ii}=NaN; 
            eccentricity_red_cell{ii}=NaN; 
  
            success_all{ii}=NaN; 
             
            continue % Skip further calculations for cells that didn't 
pass the checks 
        else 
            ncells=ncells+1; % Count number of cells we've 
successfully included 
        end 
         
 %% Find RDFs for all clusters 
        % ------------------------- 
        f=0; gor_green=[]; gor_red=[]; % Initialize g(r) variables 
        redUnder=[]; redUnder_norm=[]; 
        success=zeros(numel(stats_green),1); % Flag clusters that pass 
the checks 
        success=logical(success); % Make logical 
         
        % Calculate RDF for each cluster found 
        for jj=1:numel(stats_green) 
            % Calculate cluster densities and areas in real space 
            
stats_green(jj).ClusterArea=stats_green(jj).Area*binsize^2; 
            
stats_green(jj).ClusterDensity=sum(stats_green(jj).PixelValues)./stats
_green(jj).ClusterArea; 
             
            % Apply CLUSTER limits 
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            if stats_green(jj).ClusterArea>=minarea && 
stats_green(jj).ClusterDensity<=maxdensity 
                % Find center of mass grid coordinate 
                cmx=round(stats_green(jj).WeightedCentroid(1)); 
                cmy=round(stats_green(jj).WeightedCentroid(2)); 
  
                if cmy-steps>=1 && cmy+steps<=sxsy(1) && cmx-steps>=1 
&& cmx+steps<=sxsy(2) 
                    success(jj)=1; % Flag cluster as succeeding the 
checks 
                     
                    % Grab data around the CoM coordinate 
                    grab_green=grid_green_conv(cmy-
steps:cmy+steps,cmx-steps:cmx+steps); 
                    grab_red=grid_red_conv(cmy-steps:cmy+steps,cmx-
steps:cmx+steps); 
                    cell_mask_grab=cell_mask(cmy-steps:cmy+steps,cmx-
steps:cmx+steps); 
                     
                    f=f+1; 
                     
                    
redUnder_norm(f)=sum(grid_red_conv(stats_green(jj).PixelIdxList)./(cel
l_density_red(ii).*binsize^2*numel(stats_green(jj).PixelIdxList))); 
                    
redUnder(f)=sum(grid_red_conv(stats_green(jj).PixelIdxList)); 
                    % Calculate RDF of cluster 
                    for k=1:steps+1 
                        maskring_grab=maskring(:,:,k)&cell_mask_grab; 
% Find components of the maskring that are within the cell mask 
                        
gor_green(f,k)=sum(grab_green(maskring_grab))./(sum(sum(maskring_grab>
0))*binsize*binsize*cell_density_green(ii)); 
                        
gor_red(f,k)=sum(grab_red(maskring_grab))./(sum(sum(maskring_grab>0))*
binsize*binsize*cell_density_red(ii)); 
                    end 
                end 
            end 
        end 
         
        for jj=1:numel(stats_red) 
            stats_red(jj).ClusterArea=stats_red(jj).Area*binsize^2; 
            
stats_red(jj).ClusterDensity=sum(stats_red(jj).PixelValues)./stats_red
(jj).ClusterArea; 
        end 
         
        % Remove NaN values from RDF 
        gor_green(isnan(gor_green))=0; 
        gor_red(isnan(gor_red))=0; 
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        % Calculate Manders Correlation Coefficients and Pearson 
Coefficients 
        grid_green_masked=grid_green_conv(cell_mask); 
        grid_red_masked=grid_red_conv(cell_mask); 
%         grid_green_masked=grid_green(cell_mask); 
%         grid_red_masked=grid_red(cell_mask); 
        [R,P]=corrcoef(grid_green_masked,grid_red_masked); 
        R_all(ii)=R(1,2); 
        
MandersG(ii)=sum(grid_green_masked(grid_red_masked>0))/sum(grid_green_
masked(:)); 
        
MandersR(ii)=sum(grid_red_masked(grid_green_masked>0))/sum(grid_red_ma
sked(:)); 
         
        % Save stuff: 
        % Record g(r) 
        gor_green_all=vertcat(gor_green_all,gor_green); 
        gor_red_all=vertcat(gor_red_all,gor_red); 
         
        % Record g(r) (correct for cell density estimate) 
        adj_red(ii)=mean(mean(gor_red(1:end,end-ncor:end))); 
        adj_green(ii)=mean(mean(gor_green(1:end,end-ncor:end))); 
        gor_red_all_adj=vertcat(gor_red_all_adj,gor_red./adj_red(ii)); 
        
gor_green_all_adj=vertcat(gor_green_all_adj,gor_green./adj_green(ii)); 
         
        redUnder_all_adj{ii}=redUnder_norm./adj_red(ii); 
        redUnder_all{ii}=redUnder; 
        redUnder_norm_all{ii}=redUnder_norm; 
  
        % Store cell variables 
        gor_green_cell{ii}=gor_green; 
        gor_red_cell{ii}=gor_red; 
        stats_green_cell{ii}=stats_green; 
        stats_red_cell{ii}=stats_red; 
         
        % Store cluster properties 
        
clusterdensity_green_cell{ii}=vertcat(stats_green(success).ClusterDens
ity); 
        area_green_cell{ii}=vertcat(stats_green(success).ClusterArea); 
        
perimeter_green_cell{ii}=vertcat(stats_green(success).Perimeter)*binsi
ze; 
        
eccentricity_green_cell{ii}=vertcat(stats_green(success).Eccentricity)
; 
         
        clusterdensity_red_cell{ii}=vertcat(stats_red.ClusterDensity); 
        area_red_cell{ii}=vertcat(stats_red.ClusterArea); 
        perimeter_red_cell{ii}=vertcat(stats_red.Perimeter)*binsize; 
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        eccentricity_red_cell{ii}=vertcat(stats_red.Eccentricity); 
         
        success_all{ii}=success; 
    end 
     
%% Calculate standard errors 
    err_green=std(gor_green_all)./sqrt(size(gor_green_all,1));  % 
Standard Error 
    err_red=std(gor_red_all)./sqrt(size(gor_red_all,1)); 
    
err_green_adj=std(gor_green_all_adj)./sqrt(size(gor_green_all_adj,1));  
% Standard Error Adjusted 
    err_red_adj=std(gor_red_all_adj)./sqrt(size(gor_red_all_adj,1)); 
     
%% Extract commonly used cluster properties 
    % Save results 
    
savevars={'gor_green_all','gor_red_all','binsize','kernal','rad','thre
sh','minarea','maxdensity',... 
        
'dr','rmax','err_green','err_red','cell_density_red','cell_density_gre
en','cell_area'... 
        
'stats_red_cell','stats_green_cell','maskring','adj_red','adj_green',.
.. 
        
'gor_green_all_adj','gor_red_all_adj','err_green_adj','err_red_adj','g
or_green_cell',... 
        
'gor_red_cell','ncells','ncor','clusterdensity_green_cell','area_green
_cell',... 
        
'perimeter_green_cell','eccentricity_green_cell','clusterdensity_red_c
ell','area_red_cell',... 
        
'perimeter_red_cell','eccentricity_red_cell','success_all','MandersG',
'MandersR','R_all',... 
        
'inputfile','redUnder_all','redUnder_norm_all','redUnder_all_adj'}; 
    save([savepath,inputfile(1).name(1:end-
4),'_RDFgrid.mat'],savevars{:}) 
    disp(['Completed ',num2str(ncells),'/',num2str(fend),' 
succcessfully.']) 
end 
  
% % Debug 
% disp(['Mean green adj: ',num2str(mean(adj_green(adj_green>0)))]) 
% disp(['Mean red adj: ',num2str(mean(adj_red(adj_red>0)))]) 
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fDeltaCircleConv2.m 
% Convolve a delta function with a circle to grid molecules with conv2 
% Inputs: 
%     xf_all  - X Coordinates 
%     yf_all  - Y coordinates 
%     kernal  - Kernal size for circle 
%     rad     - Radius of circle for convolution 
%     binsize - Size of bins for grid 
%     q       - Pixel size 
%     sxsy    - Size of grid (pass empty matrix to automatically 
calculate size) 
% Outputs: 
%     grid    - Projected grid data 
% [MP] 
function 
[grid,gridconv]=fDeltaCircleConv2(xf_all,yf_all,kernal,rad,binsize,q,s
xsy) 
    if isempty(sxsy) 
        
sxsy=[ceil(max(yf_all*q)/binsize)+2*kernal,ceil(max(xf_all*q)/binsize)
+2*kernal]; 
    end 
    % Set up grid to hold data 
    grid=zeros(sxsy); 
     
    % Bin data 
    xbin=ceil((xf_all*q)/binsize)+kernal; 
    ybin=ceil((yf_all*q)/binsize)+kernal; 
     
    for i=1:numel(xbin) 
        grid(ybin(i),xbin(i))=grid(ybin(i),xbin(i))+1; 
    end 
     
    xdata=meshgrid(-kernal:kernal); % Kernal grid 
    ydata=meshgrid(-kernal:kernal)'; 
    z=(xdata).^2+(ydata).^2<=(rad./binsize)^2; 
    z=z./sum(z(:)); 
     
    gridconv=conv2(grid,z,'same'); 
end 
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APPENDIX C: 3D MEMBRANE CURVATURE 

Preface: 

This paper was originally published under the title “Quantification of Mitochondrial Membrane 

Curvature by Three-Dimensional Localization Microscopy” by authors Matthew Parent and Samuel T Hess 

in iScienceNotes, Volume 4, Issue 3, 2019.231 

 

Mitochondrial morphologies are essential to their function, and significant changes to 

mitochondrial membrane curvature have been implicated in a number of neurodegenerative diseases.232 

Mitochondria are often too small to properly resolve with conventional fluorescence microscopy 

techniques. However, the advent of super-resolution methods, such as FPALM57, PALM58, and STORM59, 

have opened new opportunities for noninvasive observation at the nanoscale. Here we present a method 

for estimating the curvature of super-resolved mitochondrial membranes in three dimensions. In addition 

to its specific application to mitochondria presented here, this method can be useful for quantification of 

membrane curvature in a variety of cellular contexts, such as other intracellular organelles, viral protein 

clustering and budding in the plasma membrane, and modulation of membrane curvature by cytoskeletal 

elements. 

In this case, we used astigmatic FPALM68,233 to image mitochondria in C2C12 mouse myotubes 

expressing pTOM20-Dendra2, a marker for the outer mitochondrial membrane fused with a 

photoswitchable fluorescent protein. Individual molecules were localized by fitting point spread functions 

to a 2D Gaussian, whose x and y radii vary according the molecules z position. Then, from coordinates of 

localized molecules, the local membrane curvature could be determined through a 3-step process: 

mitochondrial identification, edge detection, and curve fitting. 

To identify mitochondria (i.e. clusters of localized points), the data is passed through single linkage 

cluster analysis (SLCA) which iteratively links points within Rmax of each other (here Rmax=75nm) and is 
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based on a previously published algorithm.73 Any clusters reaching a minimum of 150 points were 

considered individual mitochondria and saved for further analysis. 

Once each mitochondrion has been identified, the cluster edges need to be determined prior to 

fitting. To do this, we find an appropriate alpha shape which describes the set of points that lie along the 

boundary of each cluster. Alpha shapes are a generalization of the convex hull that contain a tunable 

parameter, the alpha radius, which describes how closely boundary points are followed.234 To best 

describe the details of the surface, the alpha radius should be chosen such that it is as small as possible 

while still producing contiguous shapes. If an alpha shape is found with multiple regions, only the region 

with the largest volume should be used, as this represents the outermost boundary of the shape. Since 

the ideal alpha radius depends, in part, on the sampling density and localization precision, it should be 

chosen empirically. 

Within each alpha shape, we further select a subset of points within a sampling radius, Rs=200nm, 

of each point which are used for curve fitting. To reduce errors from fitting, Rs is chosen so that it is smaller 

than the size of any individual mitochondrion but larger than the localization precision of the individual 

molecules. Principle component analysis (PCA)67 is then used to rotate this subset of points and the Z-axis 

is set as the principal component with the least variance. Rotated sections are fitted by least squares to a 

paraboloid of the form: 

 𝑧 = 𝐶 (𝑥 − 𝑥 ) + 𝐶 (𝑦 − 𝑦 ) + 𝑧  

where the sum of the absolute values of Cx and Cy represent the commonly reported mean curvature235,236 

(µm-1), 𝐶 =  𝐶 + 𝐶 , and where 𝑥 , 𝑦 , and 𝑧  are position offsets. This process is repeated for each 

point in each alpha shape and a colormap is applied to visually represent various degrees of curvature 

along the mitochondrial membrane. 
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Figure A1. Example of mitochondrial membrane curvature fitting. (A) A sampled region of localized points 
on the surface of a mitochondrion with the best fit paraboloid surface overlaid. (B) Plotted points from 
the alpha shapes of super-resolved mitochondria, where each point is mapped to a different color 
according to the local curvature identified through curve fitting. 
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Figure A1 A shows an example of local membrane curvature fitting from pTOM20-Dendra2 labeled 

mitochondria in fixed C2C12 cells. From the local curvature obtained at each location, a map of the 

magnitude of local curvature can be made throughout the sample (Figure A1 B). Note the variation in 

curvature over the surface of the mitochondria, as reflected in the changes in color within the image. 

Based on fitting to simulated data with known curvature and simulated localization precision, we estimate 

the error in the mean curvature, Cmean, to be C ~ 0.25 m-1 (see supplement for further details) which 

will in general depend on the localization uncertainties for molecular coordinates in x, y, and z, as well as 

on the localization sampling density.62 

While other work has established methods for measurement of membrane curvature using 

diffraction-limited microscopy,129,237 this methodology can employ super-resolution localization 

microscopy to determine membrane curvature at far smaller length scales than are accessible by 

conventional fluorescence imaging. Because of the pervasiveness and importance of lipid bilayers in 

cellular organization, we expect this capability to be useful for a variety of biological applications. 
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SUPPLEMENTARY MATERIAL 

Cells were cultured using standard media in 5% CO2, passaged once every 3 days, and grown to 

80% confluency. Cells were then plated on ibidi µ-Dishes, transfected with pTOM20-Dendra2 plasmids 

using Lipofectamine 3000 after 24 hours of growth and were then differentiated using serum reduced 

media (2% horse serum), which was replaced every 24 hours. Once most of the cells differentiated to 
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myotubes (typically 72-120 hours post-transfection), they were fixed in 4% paraformaldehyde. Fixed cells 

were then imaged in an FPALM microscope with 1.4 NA 60X oil objective under 561nm widefield 

illumination (I~3-5 kW/cm2), with low levels of 405 nm light (~10 W/cm2) applied as needed for 

photoactivation. Three-dimensional position was calibrated by imaging fluorescent beads in conjunction 

with a piezo-controlled axial translator for the objective lens. Axial translations of ~100-1000nm were 

applied using the piezo controller, and the resulting images were acquired for each objective axial 

position. The measured bead PSFs were then fitted using a two-dimensional Gaussian with separate 

widths in X and Y: 

𝐼 = 𝐼  exp −
(𝑥 − 𝑥 )

𝑟
−

(𝑦 − 𝑦 )

𝑟
+ 𝐶 

The dependencies of rx and ry on the objective position were then analyzed and used to create a 

conversion function for z-position based on the values of rx and ry.68,233 

To test the precision of our method, we simulated a set of points describing a sphere with known 

curvature and applied our edge detection and curve fitting analysis. Localization precision was accounted 

for by applying a spatial offset to each coordinate. These offsets were generated using a normally 

distributed random number generator, with a Gaussian radius of 40 nm for x and y and 80 nm for z, based 

on our average experimental localization precisions. Using fluctuations from the known curvature values, 

the estimated error was approximately 0.25 m-1 for a sphere of radius 1m, with a sampling radius of 

0.5 m, and minimum sampling density of 50 molecules/m2. However, this error will rapidly increase 

when the size of the object or the sampling radius approaches the localization precision of the molecules 

and sets a lower limit on the usefulness of this method. 
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