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Ultraviolet (UV) radiation application in water and wastewater treatment has 

become a common approach for inactivation of protozoa and other pathogenic 

microorganisms. However, degradation of most organic compounds, such as taste and odor 

products prevalent in surface waters, has not been proven effective with direct UV 

photolysis. Advanced oxidation processes (AOPs) that involve efficient photocatalysts like 

TiO2 show an advantage over direct UV photolysis providing fast reaction rates and non-

selective oxidation of contaminants. However, the real-world application of TiO2 in water 

and wastewater treatment is limited due to difficulties in separating the suspended 

nanosized particles following treatment, the relatively high charge carrier recombination 

effect, and the low absorption of visible light due to the wide bandgap of TiO2. This study 

has developed two different TiO2-based photocatalysts that address these limitations.  

In the first study, an AEROXIDE® P25 TiO2 powder-modified immobilized 

catalyst was developed using a glass substrate to degrade common algal taste and odor 

compounds 2-methylisoborneol (MIB) and geosmin (GSM) under UV-A (350 nm) 

irradiation. Attachment of the photocatalyst particles on the substrate was improved by 



incorporating a TiO2-SiO2 sol-gel mixture as the binder and optimizing the Si concentration 

of the catalyst film to achieve superior robustness while maintaining a high photocatalytic 

activity. Catalyst films with a surface Ti:Si ratio ≈ 7 showed similar degradations rates but 

better robustness compared to immobilized P25 films. In the second study, a bismuth-

titanate heterostructure composite containing a Bi2O3/Bi4Ti3O12/TiO2 mixture that showed 

visible light activity and a better charge carrier separation was developed. Heterostructure 

composition was optimized by incorporating the nonionic surfactant Tween-80 and varying 

the Bi concentration to achieve efficient photodegradation of phenol under visible light 

(420 nm) illumination. The catalyst with a Bi2O3:TiO2:Bi4Ti3O12 ratio = 1:7:15 showed the 

highest photocatalytic activity.  

The UV active P25-modified TiO2-SiO2 film and visible light active bismuth-

titanate heterostructure composite catalysts developed in this study showed promising 

efficacy with respect to photocatalytic degradation of organic pollutants. Future studies 

may consider a combination of the P25 modified TiO2-SiO2 catalyst film and bismuth-

titanate heterostructure composite to extend the catalyst activity to a wide spectrum of 

electromagnetic energy. Further, pilot-scale application of these photocatalysts can assess 

their efficacy in drinking water treatment facilities.



 

iv 
 

 

DEDICATION 

To my beloved parents, sister, and my dearest wife Thilini ! 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

v 
 

 

ACKNOWLEDGEMENTS 

 

Foremost, I wish to thank my research advisor, Prof. Aria Amirbahman, for his 

patience, valuable guidance, endless support, and excellent mentoring throughout this 

study. I am indebted to Prof. Carl Tripp for the continuous support he kindly extended in 

all stages of my graduate degree at the University of Maine. The completion of this project 

would not have been possible without the support of Prof. Amirbahman and Prof. Tripp. 

I am grateful to members of my advisory committee, Prof. Douglas W. Bousfield, 

Prof. Scott Collins, and Prof.Brian Frederick, for their constructive advice and feedback on 

my research. Special thanks to the Tripp and Amirbahman research groups for their support 

in my research projects. I would like to thank Dr. George Bernhadt, David Labrecque, 

Andrew Boucher for their instrumentation support. Also, many thanks to graduate students, 

faculty, technical and administrative staff of the Department of Chemistry and Department 

of Civil and Environmental Engineering at the University of Maine. 

I am immensely grateful to my friends Phaneendra, Sirisha, Radowan, Sabrina, 

Shirly, Sampath, Shyamani, Panduka, Anushka, Pathum, Darshika, Seneviratne, Anusha, 

Srimal, Chandima, Asela, Madhira, Clarice, and Scott for their kind support.  

Last but not least, I am grateful to my beloved parents, Thilak and Damayanthi, 

wife Thilini, and sister Ruvini. This work would not have been possible without the 

support, encouragement, and love of my family. 

 

 



 

vi 
 

 

TABLE OF CONTENTS 

DEDICATION ................................................................................................................... iv 

ACKNOWLEDGEMENTS ................................................................................................ v 

TABLE OF CONTENTS ................................................................................................... vi 

LIST OF TABLES .............................................................................................................. x 

LIST OF FIGURES ........................................................................................................... xi 

: INTRODUCTION ....................................................................................... 1 

 Safe drinking water .................................................................................................... 1 

 Emerging pollutants in drinking water .............................................................. 1 

 Advanced oxidation processes ........................................................................... 5 

 Nanostructured materials for water treatment ................................................... 7 

 Titanium dioxide (TiO2) photocatalysis .................................................................... 8 

 TiO2 as a Photocatalyst ...................................................................................... 9 

 P25 incorporation into TiO2 sol-gel ................................................................. 15 

 Immobilization of photocatalysts ..................................................................... 16 

 Titania-assisted photocatalytic degradation of taste and odor compounds ...... 17 

 Visible light active photocatalysis ........................................................................... 21 

 References ............................................................................................................... 27 

 

 

 

 

 



 

vii 
 

 

 : PHOTODEGRADATION OF TASTE AND ODOR COMPOUNDS IN 

WATER IN THE PRESENCE OF IMMOBILIZED TiO2-SiO2 PHOTOCATALYSTS..

........................................................................................................................................... 50 

 Abstract .................................................................................................................... 50 

 Introduction ............................................................................................................. 51 

 Experimental ............................................................................................................ 54 

 Preparation of powder modified TiO2-SiO2 immobilized catalyst. ................. 54 

 Photocatalytic degradation of MIB and GSM ................................................. 56 

 Analytical determination of MIB and GSM .................................................... 57 

 Reusability and radical hydroxyl production assessment and stability of the 

catalyst .............................................................................................................. 58 

 Catalyst characterization .................................................................................. 58 

 Photoleaching experiments .............................................................................. 59 

 Results and discussion ............................................................................................. 60 

 Photocatalytic degradation of MIB and GSM ................................................. 60 

 Reusability of the catalyst films ....................................................................... 65 

 Hydroxyl radical generation and photodegradation mechanism ..................... 65 

 Robustness of catalyst films ............................................................................ 69 

 Catalyst characterization .................................................................................. 71 

 Conclusions ............................................................................................................. 89 

 References ............................................................................................................... 90 

 

 



 

viii 
 

 : VISIBLE LIGHT-ACTIVATED CONTROLLABLE SYNTHESIS OF 

BISMUTH TITANATE PHOTOCATALYSTS FOR ORGANIC POLLUTANT 

DEGRADATION ........................................................................................................... 100 

 Abstract .................................................................................................................. 100 

 Introduction ........................................................................................................... 101 

 Experimental .......................................................................................................... 105 

 Preparation of Bi-incorporated titanate composites ....................................... 105 

 Catalyst characterization ................................................................................ 106 

 Photocatalytic degradation of phenol ............................................................ 107 

 Results and discussion ........................................................................................... 108 

 Photocatalyst characterization ....................................................................... 108 

3.4.1.1. Ti and Bi concentrations in catalysts ...................................................... 108 

3.4.1.2. XRD analysis .......................................................................................... 109 

3.4.1.3. X-ray photoelectron spectroscopy. ......................................................... 113 

3.4.1.4. UV-Vis diffuse reflectance measurements ............................................. 119 

3.4.1.5. BET surface area. .................................................................................... 122 

3.4.1.6. Scanning electron microscopy ................................................................ 129 

 Effect of the surfactant on the catalyst formation .......................................... 130 

 Photocatalytic degradation of phenol ............................................................ 131 

 Photocatalytic degradation mechanism ......................................................... 135 

 Conclusions ........................................................................................................... 137 

 References ............................................................................................................. 138 

 

 



 

ix 
 

 : FUTURE DIRECTIONS ........................................................................ 149 

 Preparation of visible light active TiO2-SiO2 coatings .......................................... 149 

 Activity of bismuth incorporated photocatalyst composites ................................. 149 

 Implementation of catalyst films for photodegradation of pollutants in pilot scale

 ...................................................................................................................................... 150 

 References ............................................................................................................. 151 

BIOGRAPHY OF THE AUTHOR ................................................................................. 152 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

x 
 

LIST OF TABLES 

Table 1.1. MIB and GSM photodegradation under suspended TiO2/ UV reactor systems

 ........................................................................................................................ 19 

Table 1.2. MIB and GSM photodegradation under immobilized TiO2/ UV reactor systems

 ........................................................................................................................ 20 

Table 2.1. Photocatalyst films developed in this study .................................................... 55 

Table 2.2. Apparent rate constants (kapp) for photocatalytic degradation of MIB and GSM 

at 350 nm ........................................................................................................ 64 

Table 2.3. Photoleaching of Si and Ti from the photocatalyst ......................................... 70 

Table 3.1. Catalyst labeling scheme and corresponding Ti:Bi and Tween-80:Ti molar ratios

 ...................................................................................................................... 105 

Table 3.2. Ti:Bi molar ratio of the catalysts after calcination obtained from ICP-AES….. 

......................................................................................................................................... 108 

Table 3.3. Ti 2p3/2 binding energy values ..................................................................... 118 

Table 3.4. Structural characteristics of the catalysts ...................................................... 122 

Table 3.5. Apparent rate constants for phenol photodegradation .................................. 132 

 

 

 

 

 

 



 

xi 
 

LIST OF FIGURES 

Figure 1.1.Taste and odor compounds (a) Geosmin (b) 2-methyl isoborneol ................... 3 

Figure 1.2. Environmental remediation approaches adapted from Guerra et al. ............... 8 

Figure 1.3. Octahedral unit cells of (A) rutile, (B) anatase, (C) brookite .......................... 9 

Figure 1.4. Bandgap of some common photocatalysts with respect to NHE at pH 7;  

adapted from Prasad et al. (2019) ................................................................ 12 

Figure 1.5. Potentials (vs. SHE) for various redox processes occur on TiO2 surface at pH 

= 7; adapted from Fujishima et al. (2000) ................................................... 13 

Figure 1.6. Processes occur in TiO2 photocatalysis ......................................................... 14 

Figure 1.7. (A) Semiconductor bandgap narrowing due to non-metal doping  (B) Co-

doping non-metals in TiO2 .......................................................................... 22 

Figure 1.8. Photodegradation scheme for TiO2/ Bi2O3 nanocomposite ........................... 24 

Figure 2.1. Photocatalytic degradation experiment setup; Catalyst coated glass slides 

immersed in quartz beaker. .......................................................................... 57 

Figure 2.2. Time concentration plots for the photodegradation of MIB (500 ng L-1 initial 

concentration) for dark control, UV (350 nm) only, and ST 

photocatalyst……………………………………………………………….60 

Figure 2.3. Time concentration plots for the photodegradation of MIB (500 ng L-1 initial 

concentration) for T, P, and PT photocatalysts ........................................... 61 

Figure 2.4. Time concentration plots for the photodegradation of MIB (500 ng L-1 initial 

concentration) for PS15T, PS20T, PS10T, PS5T, PS3T ............................. 62 



 

xii 
 

Figure 2.5. Time concentration plots for the photodegradation of Geosmin (500 ng L-1 

initial concentration for UV (350 nm) only, dark control, and PS3T catalyst 

 ..................................................................................................................... 63 

Figure 2.6. The concentration of hTPA at different repetitions ....................................... 65 

Figure 2.7. The plot of ln{[TPA]0/([TPA]0-[hTPA])} versus time used to determine the 

steady-state hydroxyl radical concentration in the dark, by UV only and in the 

presence of the PS3T catalyst and UV radiation. ........................................ 66 

Figure 2.8. Main products of GSM photodegradation in the presence of TiO2 ............... 68 

Figure 2.9. Main products of MIB photodegradation in the presence of TiO2 ................ 68 

Figure 2.10. The X-ray diffractogram of the photocatalyst films .................................... 71 

Figure 2.11. The FT-IR spectra for the (A) PS20T; (B) PS15T; (C) PS10T; (D) PS5T; (E) 

PS3T; and (F) P-25 photocatalysts ............................................................ 73 

Figure 2.12.The UV-Vis diffuse reflectance spectra of the photocatalysts ..................... 74 

Figure 2.13. The XPS spectrum for the T photocatalyst .................................................. 75 

Figure 2.14. The XPS spectrum for the ST photocatalyst ............................................... 75 

Figure 2.15. The XPS spectrum for the PS3T photocatalyst ........................................... 76 

Figure 2.16. The XPS spectrum for the PS5T photocatalyst ........................................... 76 

Figure 2.17. The XPS spectrum for the PS10T photocatalyst ......................................... 77 

Figure 2.18. The XPS spectrum for the PS20T photocatalyst ......................................... 77 

Figure 2.19. The XPS spectrum for the PT photocatalyst ............................................... 78 

Figure 2.20. The XPS spectrum for the PS15T photocatalyst ......................................... 78 

Figure 2.21. The apparent rate constants (kapp) for the MIB (initial concentration 500 ng L-

1) photodegradation versus the surface atomic Ti:Si ratio ........................... 79 



 

xiii 
 

Figure 2.22. The apparent rate constants (kapp) for the MIB (initial concentration 500 ng L-

1) photodegradation versus the bulk Ti:Si mole ratio of catalyst films as 

determined by the ICP-AES ...................................................................... ..80 

Figure 2.23. Photoluminescence spectra of the T, PT and PS20 photocatalyst films ...... 81 

Figure 2.24. The SEM micrograph of the photocatalyst films PS3T high magnification 

 ................................................................................................................... ..82 

Figure 2.25. The SEM micrograph of the photocatalyst films PS20T high magnification

 ................................................................................................................. ..82 

Figure 2.26. The SEM micrograph of the photocatalyst films PS3T low magnification

 ................................................................................................................... ..83 

Figure 2.27. The SEM micrograph of the photocatalyst films PS20T low magnification

 ................................................................................................................. ..83 

Figure 2.28. SEM micrograph of the photocatalyst films T low magnification .............. 84 

Figure 2.29. SEM micrograph of the photocatalyst films T high magnification ............. 84 

Figure 2.30. SEM micrograph of the photocatalyst films ST low magnification ............ 85 

Figure 2.31. SEM micrograph of the photocatalyst films ST high magnification ........... 85 

Figure 2.32. SEM micrograph of the photocatalyst films PS5T low magnification ........ 86 

Figure 2.33. SEM micrograph of the photocatalyst films PS5T high magnification....... 86 

Figure 2.34. SEM micrograph of the photocatalyst films PS10T low magnification ...... 87 

Figure 2.35. SEM micrograph of the photocatalyst films PS10T high magnification..... 87 

Figure 2.36. SEM micrograph of the photocatalyst films PS15T low magnification ...... 88 

Figure 2.37. SEM micrograph of the photocatalyst films PS15T high magnification..... 88 

Figure 3.1. Molecular structure of the Tween-80 .......................................................... 103 



 

xiv 
 

Figure 3.2. X-Ray Diffractograms of the catalysts ........................................................ 110 

Figure 3.3. Anatase (101) and Bi4Ti3O12 (171) peak area obtained form XRD for (a) 

B0.25T-2 and (b) B0.5T-2 catalysts .............................................................. 111 

Figure 3.4. Ternary phase diagram for the percentages of Bi2O3, TiO2, and Bi4Ti3O12 in 

the photocatalysts determined by XRD ..................................................... 112 

Figure 3.5. XPS spectra of catalyst B0.5T-0 ................................................................... 113 

Figure 3.6. XPS spectra of catalyst B0.5T-0.5 ................................................................ 114 

Figure 3.7. XPS spectra of catalyst B0.5T-1 ................................................................... 114 

Figure 3.8. XPS spectra of catalyst B0.5T-2 ................................................................... 115 

Figure 3.9. XPS spectra of catalyst PBT-1 .................................................................... 115 

Figure 3.10. XPS spectra of catalyst PT-1 ..................................................................... 116 

Figure 3.11. Gaussian peak fitting of XPS spectra of Ti 2p and Bi 4d3/2 region (B0.5T-2 

catalyst) ...................................................................................................... 118 

Figure 3.12. Modified Kubelka-Munk vs. energy plots; catalysts synthesized using Ti:Bi 

(molar) =1:0.5 and varying Tween-80:Ti (molar) (0, 0.5, 1 and 2) ........... 120 

Figure 3.13. Modified Kubelka-Munk vs. energy plots; catalysts synthesized varying Ti:Bi 

(molar) and using same amount of Tween 80 (Tween 80:Ti=2) ............... 121 

Figure 3.14. N2 adsorption-desorption isotherms and corresponding pore size of B0.5T-0

 ................................................................................................................... 123 

Figure 3.15. N2 adsorption-desorption isotherms and corresponding pore size B0.5T-0.5

 ................................................................................................................... 123 

Figure 3.16. N2 adsorption-desorption isotherms and corresponding pore size B0.5T-1 .....   

  ....................................................................................................................................... 124 



 

xv 
 

Figure 3.17. N2 adsorption-desorption isotherms and corresponding pore size distribution 

of the catalysts B0.5T-2 .............................................................................. 125 

Figure 3.18. N2 adsorption-desorption isotherms and corresponding pore size distribution 

of the catalysts B0.25T-2 ............................................................................. 125 

Figure 3.19. N2 adsorption-desorption isotherms and corresponding pore size distribution 

of the catalysts B1T-2 ................................................................................ 126 

Figure 3.20. N2 adsorption-desorption isotherms and corresponding pore size distribution 

of PT-1 ....................................................................................................... 127 

Figure 3.21. N2 adsorption-desorption isotherms and corresponding pore size distribution 

of T-2 ......................................................................................................... 127 

Figure 3.22. N2 adsorption-desorption isotherms and corresponding pore size distribution 

of the catalysts PBT-1 ................................................................................ 128 

Figure 3.23. The SEM micrographs of the photocatalyst of the catalysts. (a: B0.5T-0,b:  

B0.5T-0.5, c: B0.5T-1, d: B0.5T-2, e: PBT-1, f: PT-1)  .......................... 129 

Figure 3.24. Time concentration plots for the photodegradation of phenol 1×10-4 M 

photocatalysts (0.04 g) synthesized using same amount bismuth (Ti:Bi 

=1:0.5) and changing amounts of Tween 80 ............................................. 133 

Figure 3.25. Time concentration plots for the photodegradation of phenol 1×10-4 M 

photocatalysts(0.04 g) synthesized varying bismuth concentration (Ti:Bi 

=1:0, 1:0.25,1:0.5,1:1) and constant Tween-80 ......................................... 134 

Figure 3.26. Schematic diagram for photocatalytic mechanism in TiO2/ Bi4Ti3O12/ Bi2O3 

heterostructure ......................................................................................... 136 

 



 

1 
 

 : INTRODUCTION 

 Safe drinking water 

Access to a safe, adequate, and clean water supply is an essential feature for 

sustainable development and wellbeing. Water safety and cleanliness are disrupted by 

climate change, population growth, excessive water pollution such as salt intrusion, soil 

erosion, poor hygiene, contamination of ground and surface water by algae blooms, 

detergents, industrial fertilizers, insecticides, chemicals, and heavy metals1–4.  Purification 

of drinking water is one of the critical challenges the world is facing today. According to 

the world health organization (WHO) estimations, currently, 785 million people lack even 

a basic drinking water service, including 144 million people who are relying on surface 

water sources5. WHO predicts that half of the world's population will be living in water-

stressed areas that have expanded due to climate change by 2025. When it comes to water 

safety in the United States, it has been estimated that 322-600 billion dollars in investments 

are needed over the next 20 years to overcome water purification issues6. Therefore, the 

development of efficient methods to decontaminate water has become a significant aspect 

of both humanitarian and economic concerns. 

 

 Emerging pollutants in drinking water 

Drinking water treatment plants face significant challenges in remediating newly 

identified pollutants in aquatic media. Sixteen classes of substances (algal toxins, 

antifoaming and complexing agents, antioxidants, detergents, disinfection byproducts, 

plasticizers, flame retardants, fragrances, gasoline additives, nanoparticles, 

perfluoroalkylated substances, personal care products, pharmaceuticals, pesticides, and 
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anticorrosives) have been identified as emerging pollutants that pose adverse health and 

environmental implications7.  

Algal toxins are significant emerging pollutants in drinking water that are caused 

by cyanobacteria. These cyanotoxins result from diverse secondary metabolites produced 

by cyanobacteria, categorized as hepatotoxins, neurotoxins, cytotoxins, dermatotoxins, and 

irritant toxins8. Water treatment plants that use surface waters as their source are especially 

susceptible to the intake of cyanotoxins. Many lakes in temperate regions have experienced 

increased turbidity and algal blooms, including cyanobacteria9. This may be attributed to 

the changing climate, especially the increasing average temperatures, the increased 

eutrophication caused by agricultural, municipal, and industrial wastes' disposal into water 

bodies, and internal phosphorus release10,11. In addition, higher temperatures and extended 

periods of higher temperatures result in more widespread lake hypolimnetic anoxia12, 

leading to internal sediment phosphorus release, causing undesired algal blooms13.  

Among the cyanotoxins, taste and odor compounds that are the secondary 

metabolites of cyanobacteria and actinomycetes have become a significant issue associated 

with drinking water quality and safety14. Although the health effects of taste and odor 

compounds are still not clear, the aesthetic issue of drinking water considered by 

consumers has become a challenge to managing drinking water treatment plants. 

Common taste and odor compounds found naturally in the surface waters are 

geosmin (GSM), 2 methyl isoborneol (MIB), β-cyclocitral (CYC), and β-ionone (ION). 

These compounds have earthy, musty tobacco, and violet odors, respectively15. The main 

problem dealing with these taste and odor compounds is their extremely low odor threshold 

concentrations: GSM (4 ng/L), MIB (15 ng/L), CYC (19.3 ng/L), ION (7 ng/L)15. In this 
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thesis, GSM and MIB were used as taste and odor model compounds (Figure 1.1). MIB is 

a terpenoid produced by the cyanobacterial species, Oscillatoria and Phormidium, and 

actinomycetes16–18. GSM is bicyclic tertiary alcohol produced by certain species of 

Oscillatoria, Anabaena, Lyngbya, Symploca, and actinomycetes17,18.  

Only a few conventional water treatment methods have successfully removed taste 

and odor compounds at such low concentrations. Filtration, using granular activated carbon 

and sand, and alum coagulation are used for the removal of taste and odor compounds in 

some water treatment facilities19,20.  

In the presence of dissolved organic matter (DOM), reduced adsorption of these 

compounds has been observed, and additional steps have to be taken to regenerate the 

saturated activated carbon for reuse21,22. Oxidants such as Cl2, ClO2, and KMnO4 have 

proven ineffective in degrading these compounds due to tertiary alcohols' resistance toward 

mild oxidation23. Chlorination provides residual protection against the regrowth of 

pathogenic microorganisms24,25 but can result in the formation of disinfection 

byproducts26–29 and undesirable taste and odors30 in potable water. Other conventional 

treatments such as biofiltration and thermal oxidation are also considered inefficient due 

to their high operating costs and generation of toxic secondary bi-products, respectively31.  

a b 

Figure 1.1.Taste and odor compounds (a) Geosmin (b) 2-methyl 

isoborneol 



 

4 
 

Ozonation and H2O2 associated processes are efficient in degrading taste and odor 

compounds MIB and GSM32, but it has become less attractive due to its high equipment 

and operational cost and low solubility and stability in water33. Furthermore, ozone (O3) 

reaction rates are slow and do not achieve complete mineralization of certain organic 

compounds such as aromatics, which have an inactivated π system or carboxylic acids34,35. 

Byproducts resulting from the ozonation are still being evaluated for their toxicity. Some 

potential carcinogens such as bromate (BrO3
-) have been identified in ozone treatment of 

raw water for more extended periods (oxidation of bromide by O3/UV)36. Other treatment 

techniques such as UV photolysis are not feasible alternatives for micropollutant 

removal37. UV photolysis alone does not provide sufficient energy to break down certain 

functional groups such as -NH2 in organic compounds without help from an oxidant38. The 

use of Vacuum UV (VUV) irradiation (185 nm) appears to be promising in the degradation 

of MIB and GSM, but in the process, nitrate in water can be converted to nitrite39 that is 

considered a potential carcinogen and can cause serious illnesses, especially in infants. 

Among other persistent organic compounds, phenol is a widely used model 

compound to study the efficiency of degradation methods. Water can be contaminated by 

phenol mainly due to wastewaters from paint, pesticides, the petrochemical industry, 

pharmaceutical industry, and chemical industry40. Phenolic compounds are considered as 

a primary pollutant type due to their toxicity to organisms at low concentrations41. Phenol 

has been identified as a mutagenic and toxic substance that can cause mouth sores, nausea, 

urine darkening, and bloody diarrhea in humans42. Furthermore, due to the disinfection and 

oxidation processes, phenol can be converted to carcinogenic disinfection byproducts 

(DBP) such as cholorophenols43. Treatment methods such as adsorption and coagulation 
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for phenol removal are not considered as feasible because these methods cannot eliminate 

phenolic compounds from the system44. Moreover, sedimentation, filtration, membrane 

assisted phenol removal technologies are not favored due to high operational cost, 

generation of toxic DBP’s, and not demonstrating sufficient efficiency45,46.  

 Advanced oxidation processes 

The processes involving the combination of UV photolysis and an oxidant are 

known as Advanced Oxidation Processes (AOPs); the added oxidizing agent such as H2O2 

or a photocatalyst can be in the aqueous phase. AOPs provide a viable and effective 

approach to oxidation of a wide range of trace organic compounds in water47–51. AOPs are 

based on in situ generation of strong oxidants for degradation of persistent organic 

pollutants52,53. Ozonation and UV irradiation are well-established techniques that are 

implemented at full-scale in drinking water treatment facilities. AOPs enhance the efficacy 

of these techniques to degrade a wider spectrum of organic compounds at a faster rate by 

generating highly reactive and oxidizing species (Reactive oxygen species; ROS) such as 

hydroxyl radicals (●OH), superoxide radicals (●O2
-), hydrogen peroxide (H2O2) and 

hydroperoxyl radicals (HO2•). AOPs be classified into two main categories of non-

photochemical and photochemical.  

Ozonation at elevated pH is one of the common oxidation techniques for drinking 

water, where the primary product is ●OH. The AOPs involving O3 include either 

homogenous or heterogeneous catalysts that catalyze the decomposition of O3, generating 

●O2
-, ●O3

- and subsequently ●OH. Another method is to use a combination of O3 and H2O2 

(peroxone) that results in generation of the conjugate base of H2O2 (HO2•) and its reaction 

with O3 to generate ●OH54. The application of O3-related AOPs is limited due to the short 
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life of O3 in water 
55, its pH dependency, the high energy requirement for O3 generation, 

the necessity of on-site O3 production, and the risk for transportation and storage of H2O2
56.  

Photochemical AOPs use radical promoters like O3, H2O2, peroxydisulfate (S2O8
2), 

Cl2, Fe (II), and semiconductor photocatalysts along with the UV light. Water treatment 

processes are typically based on UV sources, which are generally low (254 nm, 

monochromatic) or medium pressure (200-320 nm, polychromatic at various intensities) 

mercury vapor lamps57,58. Recently, UV light-emitting diode (LED) sources have also been 

investigated for water disinfection purposes59. UV energy plays a vital role in decomposing 

(via photolysis) organic compounds that are not transforming under non-photochemical 

oxidation reactions. When O3 is used with UV (at 254 nm), O3 is photolyzed to produce 

H2O2 and subsequently decomposes into ●OH60. UV energy cleaves the peroxide linkage 

in H2O2 to form ●OH, which forms H2O and O2
55

. The peroxone method under UV increases 

the decomposition rate of O3, which in turn results in an increased ●OH generation rate55. 

UV-C (wavelength 200 - 280 nm) can cleave S2O8
2- homolytically and produce primarily 

sulfate radicals (SO4
●-)61. Due to its lower quantum yield, selective reactivity, and high 

commercial pricing, S2O8
2--based AOPs are not commonly used57,62,63. UV/Cl2 is another 

promising AOP that produces Cl● and Cl●
2

- to oxidize target compounds64. Compared to 

●OH radicals, Cl● is proved to be a more selective oxidant because it reacts favorably with 

electron-rich compounds65. Fenton reaction with UV/visible radiation converts Fe(III) (one 

of the products) back to Fe(II) via photoreduction, where Fe(II) again can react with  

H2O2
66.  

When comparing the AOPs, photo-driven AOPs have the advantage of providing 

simple, relatively inexpensive, clean, and efficient treatment alternatives to detoxify, 
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degrade, and mineralize contaminants in water67. Furthermore, among all of the oxidative 

treatments, photo-driven AOPs that use nanoparticulate photocatalysts, have been 

investigated extensively over the last decade due to their green and non-destructive 

character, sustainability and versatility when treating contaminated waters57,68. 

 Nanostructured materials for water treatment 

Capturing and degrading many organic pollutants have become challenging due to 

their potential high volatility, low reactivity, and complexity of the mixtures of different 

compounds69. Using nanostructured materials as photocatalysts has proven to be effective 

in meeting environmental standards and for adequate removal of a complex and broad 

spectrum of toxic chemicals and pathogenic microorganisms in raw water70. Photocatalytic 

water treatment is also categorized under the broad spectrum of AOPs, which generate 

ROSs, particularly ●OH71. Recently, the incorporation of nanotechnology has emerged as 

an attractive approach to effectively remediate pollutants due to the unique properties of 

nanoparticles that are <100 nm in size. Compared to bulk materials, nanoscale materials 

exhibit exclusive properties, such as a high surface area to volume ratio, catalytic activity, 

high mechanical strength, thermal stability, electric conductivity, and strong magnetic 

properties72. Due to their large specific surface area, nanomaterials adsorb various types of 

pollutants, and in some cases, enable their effective catalytic degradation. In addition, they 

have low or no toxicity and low cost and show chemical stability, reusability, and tunable 

properties73,74. Nanomaterial-assisted environmental remediation approaches can be 
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categorized into five main categories, including absorption, adsorption, chemical reaction, 

photocatalysis, and filtration (Figure 1.2)70.  

 Titanium dioxide (TiO2) photocatalysis 

Photocatalysis involves the activation of a catalytic material by radiation energy, 

which in turn increases the rate of a chemical reaction without itself being consumed.  

The use of inexpensive, nontoxic, and reusable semiconductor photocatalysts has become 

an appealing approach due to features such as the ability to perform degradation under 

ambient conditions, requirement of only O2 as the electron acceptor, energy higher than the 

band gap to initiate the reactions, and the possibility of supporting the catalysts on different 

types of substrates (e.g., glass, polymer, carbon nanotube, graphene oxide)75. The 

Figure 1.2. Environmental remediation approaches adapted from Guerra et al.64 
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effectiveness of semiconductors stems from their ability to generate charge carriers upon 

irradiation, followed by the production of ROSs (primarily ●OH), which leads to further 

degradation reactions76. 

 TiO2 as a Photocatalyst 

In 1972, Honda and Fujishima discovered the photosensitization effect of TiO2 for 

the electrolysis of H2O (water splitting) into H2 and O2. This occurred when they used Pt 

metal as the cathode under UV light irradiation of a TiO2 photoanode77. TiO2 remains as 

one of the most promising materials in environmental remediation applications due to its 

high oxidation efficiency, nontoxicity, high photostability, chemical inertness, self-

cleaning features, and environmental friendly nature78–80. Also, TiO2 cost is low owing to 

its natural abundance of Ti as 0.44% of the earth’s crust81. Crystals of TiO2 exist in one of 

three forms (i.e., polymorphs): rutile (tetragonal), anatase (tetragonal), and brookite 

(rhombohedral); Figure 1.3.  

 

 

Figure 1.3. Octahedral unit cells of (A) rutile, (B) anatase, (C) brookite 

(A) (C) (B) 

O 

Ti 
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Among these polymorphs, rutile is the stable phase, while anatase and brookite are 

metastable phases and readily transformed to rutile phase when heated82. Photocatalytic 

efficiency is mainly influenced by TiO2 physicochemical properties, such as crystalline 

phases, exposed crystal facets, surface/bulk defects, specific surface area, and particle 

size83. Generally, anatase (in the presence of O2 as the electron acceptor) shows a higher 

photocatalytic activity than rutile due to its higher Fermi level, a higher degree of 

hydroxylation, lower charge carrier recombination, and lower capacity to adsorb 

oxygen84,85. Also, anatase has a larger bandgap (3.20 eV) than rutile (3.00 eV), that raises 

the valence band (VB) maximum to higher energy levels relative to redox potentials of 

adsorbed molecules86. Lower photocatalytic activity of rutile is attributed to its larger grain 

size87,88, lower specific surface area, and lower adsorption capacity89,90. The 

photogenerated holes and electrons for anatase have about one order of magnitude longer 

lifetime than for rutile, which enhances the surface photocatalytic reactions in the presence 

of anatase91. Photocatalytic activity studies of brookite (bandgap 3.30 eV) have been 

relatively fewer compared to those of anatase and rutile due to technical difficulties in 

synthesizing a pure brookite powder. However, several studies report that brookite 

nanocrystals show markedly high photocatalytic activity compared to rutile and 

anatase82,92–94. One of the main reasons for this observation may be the presence of trapped 

photogenerated electrons at a moderate depth between the conduction band (CB) and VB 

of the brookite (mid gap state), which increases the lifetime of both electrons and holes95. 

In contrast, the trap depth of anatase is too shallow to extend the lifetime of electrons and 

holes, and that of rutile is too deep for the electrons to contribute to the photocatalytic 

reactions. It has been observed that TiO2 synthesized by mixing anatase with either rutile 
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or brookite or mix all three phases at an optimal level slows the recombination of 

photogenerated electrons and provides a higher photocatalytic activity than the pure phase 

species82,94,96,97. 

Anatase, rutile, and brookite are considered as wide bandgap semiconductors98. The 

VB of TiO2 primarily consists of O 2p states and a few Ti4+ 3d states creating a strong p-d 

hybridization between Ti 3d and O 2p states, which form bonding states in the VB region85. 

Conduction bands are composed of Ti 3d states hybridized with a few O 2p and Ti 3p 

states. Due to the presence of oxygen vacancies, which are compensated by the presence 

of Ti3+ centers, TiO2 is considered an n-type semiconductor. The oxygen vacancies can be 

formed from the surface and bulk by heating to temperatures of 500-700 °C84. Oxygen 

defect sites change the electronic structure of TiO2 by introducing an interband electronic 

donor state, which has Ti 3d character 0.8-1.0 eV below the CB99,100.   

An efficient semiconductor photocatalyst is capable of adsorbing two reactants 

simultaneously that can be reduced and oxidized by photonic activation through absorbing 

radiation energy (hν) higher than the bandgap energy (Eg). Bandgap energies of several 

semiconductors and redox potentials relative to the normal hydrogen electrode (NHE) at 

pH seven are shown in Figure 1.4101.   
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Among semiconductors, TiO2 shows an additional advantage of efficient reduction 

of O2 and oxidation of water simultaneously due to the redox potentials of its CB and VB. 

This is important because the photocatalytic decontamination of water relies mainly on the 

effective production of holes, ●OH, and ●O2
-. More specifically, the redox potential for the 

photogenerated holes is more positive than the redox potential needed for producing ●OH 

from water at pH = 7, and the potential for CB electrons is negative enough to reduce O2 

to ●O2
-
 as shown in Figure 1.5. 

 

                           

            

 

Figure 1.4. Bandgap of some common photocatalysts with respect 

to NHE at pH 7; adapted from Prasad et al. (2019)101 
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The formation of photogenerated holes and electrons (charge carriers), which 

occurs upon irradiation with UV light corresponding to the energy equal or greater than to 

the bandgap in TiO2 is shown in Figure 1.6. When TiO2 absorbs photons, electrons filled 

in the VB are excited to the vacant CB, creating holes in the VB. After this electron-hole 

pair separation, holes and electrons migrate to the surface to react with donor (D) and 

acceptor (A) molecules to drive the oxidation and reduction reactions, respectively (steps 

1 and 3 in Figure 1.6). During the electron-hole migration process, electrons and holes 

recombine on the surface or in bulk, and the energy of the charge carriers is converted to 

the vibrational energy of lattice atoms (phonons) or photons (steps 2 and 4 in Figure 1.6) 

103. Generally, recombination occurs at the defect sites that lead to lower TiO2 

photocatalytic efficiency. Reactions on the photocatalytic surfaces can be classified into 

two types according to absorbed photon energy usage: downhill and uphill reactions103.  

Downhill reactions use photon energy to induce thermodynamically favored reactions, 

such as the decomposition of organic compounds. In uphill reactions, photon energy is 

converted to chemical energy by splitting H2O into H2 and O2. Photocatalytic reactions 

Figure 1.5. Potentials (vs. SHE) for various redox processes occur on 

TiO2 surface at pH = 7; adapted from Fujishima et al. (2000)102 
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solely occur at the catalyst surface, where photogenerated holes and electrons (charge) 

migrate to the surface and induce the reactions. Prior to the photocatalytic reactions, 

charges undergo four major processes: separation, thermalization, trapping, recombination, 

and transport. 

 

Charge separation occurs after the generation of electron-hole pairs, and only less 

than 10% of separated charge carriers can be used in photocatalysis due to rapid 

recombination104. Studies done on TiO2 reveal that electron thermalization in the CB occurs 

before the recombination or transfer processes105–108. The energy can be lost to the lattice 

via strong coupling with the phonon modes109. Hole thermalization in the VB is also 

accompanied by electron thermalization. It has been found that hole transfer from the TiO2 

Figure 1.6. Processes occur in TiO2 photocatalysis 
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VB to hole acceptor competes with hole trapping and charge recombination110,111. Upon 

excitation by UV energy, photogenerated electrons and holes are trapped rapidly within a 

100 to 200 fs time range112. The trapped electrons reduce Ti4+ to Ti3+, where the holes 

oxidize O2- to O-103. Electron traps are believed to be located at the TiO2 lattices as Ti3+ 

sites lie below the CB edge113. Electron trapping is vital for driving the reductive reactions 

of TiO2, but it can be detrimental to processes that need fast electron transport; e.g., 

photovoltaic applications. According to various Electron Spin Resonance studies, it has 

been proposed that hole trapping occurs at a surface Ti4+-O- site with the hole remaining at 

an uncoordinated oxygen atom114.  

Photogenerated charge recombination is another important phenomenon that takes 

place and limits the efficiency of photocatalytic reactions. Recombination occurs following 

thermalization and trapping that can either take nonradiative (phonon emission) or radiative 

(photons) pathways. Studies have shown that in rutile, lifetimes of electrons and holes are 

a few tens of nanoseconds before recombination takes place115. Conversely, anatase holes 

decay within a few seconds while electrons exist in the CB for few microseconds. 

Compared to rutile, anatase higher photoactivity may be attributed to these long-living 

electrons.  

 P25 incorporation into TiO2 sol-gel 

Evonik (formerly Degussa) P25, Aeroxide TiO2 is a widely used titania 

photocatalyst with relatively high activity levels in many photocatalytic degradation 

reactions116,117. It has been found that the incorporation of commercially available P25 TiO2 

powder into self-synthesized TiO2 sols has a positive effect on the photocatalytic 

degradation efficiency of TiO2 photocatalysts118. TiO2 surface serves as sites of nucleation 
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and growth of the self-synthesized TiO2 particles, affecting the size, number, and 

physicochemical properties of the TiO2 crystallites119,120. P25 consists of 70% anatase 

phase and 30% rutile phase and has a surface area of 49 m2 g−1 121,122. Due to its high surface 

area and the coexistence of rutile-anatase phases that allow the increase in charge 

separation efficiency due to interfacial electron transfer, P25 shows a high activity in 

degrading organic pollutants122–125. 

 Immobilization of photocatalysts 

In most of the photocatalytic applications, TiO2 has been used as an aqueous 

suspension. Due to its large surface area compared to the immobilized system, TiO2 

suspension shows a higher activity. The use of aqueous suspensions/slurry has a major 

drawback in commercializing when used in water treatment plants because the separation 

and recycling of nanosized TiO2 requires time-consuming and sophisticated 

ultracentrifugation or microfiltration techniques126. On the other hand, the effect of UV 

light on photocatalytic activity is limited because of strong absorptions and scattering by 

TiO2 particles and dissolved organic species127. Immobilization of TiO2 on solid supports 

is one of the main strategies to circumvent these problems. TiO2 immobilized on soft, thin 

substrates is referred to as TiO2 membranes or filters. Substrates used for TiO2 membranes 

are alumina, polyvinylidene difluoride, glass filter, cellulose fibers, magnetic particles, and 

sponge124,128–134. TiO2 immobilization on rigid substrates has gained more attraction over 

TiO2 membranes due to its greater robustness.  Different glass substrates (borosilicate, 

soda-lime glass, and quartz), zeolites, activated carbon, stainless steel, Teflon, fiberglass, 

cement, brick, and alumina-based ceramics have been used as rigid substrates126,135–138. 

However, TiO2 immobilization on solid substrates reduces the photocatalytic efficiency 
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due to various reasons, such as reduction of the active surface, a more difficult exchange 

of the organic substrate with solution due to mass transfer limitations, and the diffusion of 

cationic impurities from substrates139. Solid supports used for TiO2 immobilization should 

have specific characteristics in order to act as efficient photocatalysts: (a) transparency to 

irradiation, (b) strong surface bonding with the TiO2 catalyst without negatively affecting 

the reactivity, (c) high specific surface area, (d) high adsorption affinity for organic 

compounds, (e) high mass transfer rate facilitating adsorption and separation following 

photodegradation, and (f) chemical inertness140. As such, as an immobilization substrate 

for photocatalysts, glass is considered as a promising candidate. 

 Titania-assisted photocatalytic degradation of taste and odor compounds 

The use of TiO2 photocatalysts in the presence of UV light is a more efficient 

approach than the existing methods for degrading MIB, GSM, and other cyanobacterial 

toxins due to its higher oxidation power in both distilled and natural waters60,141–146; 

furthermore, it is considered as a green method where there is a potential to reuse the 

photocatalyst. Several studies have investigated the MIB and GSM photodegradation in 

the presence of suspended TiO2 under UV light. These studies are summarized in Table 

1.1. In these studies, degradation was investigated in slurry forms for MIB and GSM. 

According to these studies, the degradation of MIB and GSM followed pseudo first-order 

kinetics147,148. ●OH was shown to be the major species that is responsible for the TiO2-

catalyzed photodegradation of MIB and GSM148. Increasing irradiation intensity and 

catalyst loading improved the degradation rates of MIB and GSM up to a certain level149,150. 

There are fewer studies on MIB and GSM photodegradation using immobilized catalyst 

systems, including the present study (Table 1.2). Degradation experiments that were done 
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by Pettit et al. (2014) focused on using immobilized catalysts in recirculation aquaculture 

systems (RAS)151. Even though UV-TiO2 in a slurry reactor can oxidize up to 99% of MIB 

and GSM147, it has been found that residual catalyst nanoparticles in such systems have 

potential adverse effects on fish health152,153. In the present study, the incorporation of SiO2 

and TiO2 into P25 modified coatings increased the catalyst films’ robustness without 

decreasing the photodegradation efficiency of MIB and GSM for multiple cycles154.   
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 Table 1.1. MIB and GSM photodegradation under suspended TiO2/ UV reactor systems 

 

Initial 

MIB/GSM 

Concentration 

Matrix  
Experimental 

features 

Degradation 

kinetics 
Reference 

11.90 nM MIB 

10.98 nM 

GSM 

Milli-Q 

water 

 

Degussa P25 TiO2 

1% 

330-550 nm 

 

~99% removal in 

60 min 

kapp = 1.98×10-1 

min-1 (MIB) 

kapp = 6.33×10-2 

min-1 (GSM) 

 

Lawton et al, 

2003147 

500 µg L-1 

MIB & GSM 

Nano 

pure 

water 

P25& sol-gel TiO2 

coated Fe3O4   

40 mg 

254 nm 

 

82% removal in 30 

min 

kapp = 8.3×10-1 min-

1 (MIB) 

kapp = 9.4×10-1 min-

1 (GSM) 

 

 

Sultana et 

al,2020155 

220-1×104 ng 

L-1 GSM 

Ultra-

pure 

water  

Suspended TiO2 

(anatase) 

40 mg L-1 

365 nm 

95.8-99.6 % 

removal in 60 min 

kapp = 0.021-0.055 

min-1 

 

Bamuza et 

al, 2012156 

0.1-5 mg L-1 

GSM 

Milli-Q 

water 

 

Suspended 

Hombikat K01/C 

TiO2 

750 g L-1 

330-500 nm 

70-90% 

degradation in 25 

min 

Robertson et 

al, 2008157 

0.5-5 mg L-1 

GSM 

Milli-Q 

water 

 

Pellet Hombikat 

K01/C TiO2 

750 g L-1 

330-500 nm 

Complete removal 

in 25 mins 

k = 1.56 µM min-1 

Bellu et al, 

2008149 

135 mg L-1 

GSM 
 Water  

Suspended TiO2  

254 nm and 185 nm 

(4:1 lamps) 

20 g L-1 

15-27% 

degradation in 180 

min 

Pookmanee 

et al, 2010158 

0.19 mM MIB 
Water 

 

Suspended TiO2 

and Y zeolite 

2×103 mg L-1 

 

200 W 

lamps(wavelength 

is not mentioned) 

60% degradation in 

220 min 

Yoon et al 

2007159 
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Table 1.2. MIB and GSM photodegradation under immobilized TiO2/ UV reactor systems 

Initial 

MIB/GSM 

Concentration 

Matrix  
Experimental 

features 

Degradation 

kinetics 
Reference 

500 ng L-1 MIB 

& GSM 

Milli-Q 

water 

 

Immobilized 

P25 on glass 

petri dish 

0.5 mg cm−2  (Ti 

~0.3 mg cm−2 )  

365 nm  

∼80% 

degradation in 60 

min  

kapp = 2.4×10-2 

min-1 (MIB) 

kapp = 2.6×10-2 

min-1 (GSM) 

 

Tran et al 

2009148 

50 ng L-1 MIB 

& GSM 

Distilled 

water & 

recirculating 

aquaculture 

system 

water  

Immobilized 

P25 on a 

borosilicate 

glass plate 

0.25 mg cm−2 

(Ti ~0.15 mg 

cm−2 )   

350-400 nm  

MIB 54% and 

GSM 60% 

degradation in 8h 

kapp = 1.4× 10-3 

min-1 (MIBDI)
 

kapp = 1.5× 10-3 

min-1 (MIBRAS) 

kapp = 3.6× 10-3 

min-1 (GSMDI) 

kapp = 1.7× 10-3 

min-1 (GSMRAS) 

Pettit et al 

2014151 

500 ng L-1 
Nano pure 

water 

Immobilized 

P25 modified 

TiO2-SiO2 sol 

gel on glass 

slide (area=10 

cm2) 

Ti=0.4 mg cm-2 

350 nm 

∼80% 

degradation in 60 

min  

 

kapp = 2.86×10-2 

min-1 (MIB) 

kapp = 2.72×10-2 

min-1 (GSM) 

 

Yaparatne 

at el154 
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 Visible light active photocatalysis 

The use of solar radiation in photodegradation of organic compounds is desirable. 

However, only 4-5% of the total solar spectrum constitutes UV light160. As such, many 

semiconductor photocatalysts do not possess the optical properties to initiate photocatalytic 

degradation reactions under visible/solar light, mainly due to their wide bandgap, which 

requires high energy UV irradiation. When developing semiconductor photocatalysts to 

tackle water contamination in an environmentally benign approach, it is imperative to use 

the 44% of visible light in the solar spectrum to drive the photocatalytic reactions. 

Moreover, single component semiconductor materials do not have the quantum and 

photocatalytic efficiencies due to their high recombination rates of photoinduced charge 

carriers160. In visible light-responsive photocatalysis, the semiconductor should have a 

narrow band gap (Eg < 3.0 eV) to allow the generation of photoexcited electrons and holes 

by absorbing light in the range of 400 nm < λ < 800 nm. Alterations such as doping, 

synthesizing heterostructures or composites, and coupling with π-conjugated architectures 

have been explored to extend conventional photocatalysts' activities in the visible range161–

163. 

Doping a metal or a non-metal into TiO2 extends its activity to visible light by 

modifying the TiO2 band structure. Major substitutional non-metals that have been studied 

as dopants are C, N, F, P, and S for O in TiO2
164.  These doped atoms can be introduced as 

an interstitial dopant, substitutional dopant, or a defect factor in the TiO2 structure165. It 

was found that when doping N, 2p states of N mix with 2p states of O, which leads to the 

formation of a new VB with a shifted VB edge to narrow down the bandgap of TiO2
164. 
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This was confirmed by detecting isolated N 2p localized states above the VB of TiO2 

experimentally and computationaly166,167 (Figure 1.7 A). Other than this mechanism, 

schemes such as the generation of localized states below the TiO2 CB, increasing the 

oxygen defect formation, and generation of diamagnetic clusters acting as an electron 

transfer source under visible light have been proposed to explain the origins of the visible 

light activity164. Additionally, co-doping of two non-metals, which reduces the electron-

hole recombination due to intrinsic defects in TiO2, has been investigated168 (Figure 1.7 

B). 

 

 

 

 

 

 

 

 

 

Doping with noble and transition metals such as Ag, Au, Pt, Pd, Fe, Cu, Co, Ni, Cr, 

V, Mn, Mo, Nb, W, and Ru has shown an extended response of TiO2 into the visible 

region169. Metal incorporation forms new energy levels between VB and CB, producing 

red shifting of TiO2 light absorption and acting as electron traps inhibiting the electron-

hole recombination170–174.  

VB 

CB 

N 2p 

- 

+ 

A 

B 

F 2p6 

N 2p6 

Figure 1.7. (A) Semiconductor bandgap narrowing due to non-metal 

doping (B) Co-doping non-metals in TiO2 
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Dye sensitization is another strategy for achieving visible light-harvesting in wide 

band gap semiconductors. Electrons are excited from the highest occupied molecular 

orbital to the lowest unoccupied molecular orbital of a dye during the dye 

photosensitization. These electrons are subsequently transferred to the CB of TiO2 surface, 

which can be scavenged by molecular oxygen to form ●O2
- and HO2

●169.  

The construction of heterojunctions or nanocomposites is another approach that 

induces charge separation and increases visible light absorption. There are four typical 

categories of heterojunction photocatalyst systems according to its composition:(1) 

semiconductor-semiconductor heterojunction; (2) semiconductor-metal heterojunction; (3) 

semiconductor-carbon heterojunction; (4) multi-component heterojunction161.  

Recently, Bi-based semiconductors gained attention as promising candidates for 

visible light responsive photocatalysts. A variety of Bi-based compounds, such as Bi2O3, 

BiOX (X= Cl, Br, I), BiVO4, Bi2WO6, Bi4Ti3O12, BiPO4, Bi2O2CO3, and BiOCO2H, have 

been used as visible light driven photocatalysts175. It has been reported that the VB of Bi-

based semiconductors consist of hybrid orbitals of O 2p and Bi 6s176. As a result, the well 

dispersed Bi 6s orbital increases the mobility of the photogenerated charge carriers and 

decreases the band gap177,178. Owing to its cost-effective preparation, availability of 

precursors, and nontoxicity, Bi2O3-based photocatalyst have gained interest in visible light 

active photocatalyst applications179,180. Among Bi2O3 crystalline phases, α, β, γ, and δ have 

been used in photocatalytic applications181. Even though Bi2O3 is excited by visible light 

(Bandgap = 2.8 eV), its photocatalytic activity is low due to the photo-corrosion and fast 

recombination of photogenerated electrons and holes182. According to recent studies, using 

Bi-based multicomponent oxides has been proven to be effectively initiating the visible 
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light response; TiO2/Bi2O3 heterojunction nanocomposites have shown superior 

photodegradation ability than TiO2 alone183–185. Upon irradiating with visible light, Bi2O3 

in TiO2/Bi2O3 composite absorbs radiation and generates holes and electrons. Generated 

holes at the VB of Bi2O3 can be transferred to VB of TiO2, because the TiO2 VB is located 

at a higher level than the Bi2O3 VB. The proposed mechanism for TiO2/Bi2O3 composite 

photodegradation is shown in Figure 1.8186.  

 

 

 

 

 

 

 

 

 

 

Several studies have reported that TiO2/Bi2O3 composites can result in the formation of 

different bismuth-titanate crystalline phases; e.g., formation of Bi4Ti3O12 and Bi12TiO20 

depending on the Bi to Ti ratio187,188. In these different types of bismuth-titanate 

composites, Bi3+ species can also be doped into the TiO2. These impurity levels introduced 

by Bi lead to an increase in the amount of visible light absorption and an increase in the 

lifetime of charge carriers189. 

Figure 1.8. Photodegradation scheme for TiO2/ Bi2O3 

nanocomposite186 
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 There are limited studies conducted on visible light active catalytic degradation of 

taste and odor compounds. In particular, Bi-incorporated TiO2 slurry or immobilized 

photocatalysts have not been studied for the degradation of these compounds under solar 

or visible light. Fotiou et al. (2013 & 2016) studied carbon-doped TiO2 (C-TiO2) and 

reduced graphene oxide TiO2 (GO-TiO2) for MIB and GSM degradation under the 

visible/solar light. In their first study, commercially available Kronos vlp-7000 TiO2 

(carbon doped anatase, 87.5%, 15 nm 250 m2g-1)190,191 was used as the C-TiO2 and under 

visible light irradiation (400-700 nm; cutoff filters at 435 nm) degradation was not shown 

for MIB and GSM192. In the second study, simulated solar light irradiation of MIB and 

GSM in the presence of GO-TiO2 achieved higher degradation rates than that achieved by 

the reference anatase TiO2. However, GO-TiO2 was slightly less active than P25. Apparent 

rate constants (kapp) for GSM degradation under simulated sunlight with P25 and GO-TiO2 

were 12.6 and 10.1 min-1, respectively. In the same study, kapp for MIB degradation under 

simulated solar light in the presence of same mass of P25 (BET surface area 65 m2 g-1) and 

GO-TiO2 P25 (BET surface area 110 m2 g-1) were 9.6 and 5.1 min-1, respectively193,194. This 

improved performance in the presence of P25 was attributed to its mixed phase (anatase 

and rutile), which enables charge separation even under simulated sunlight and above 410 

nm123.  

The goal of this work is to develop, characterize, and assess efficient titania-based 

photocatalysts that can be used for the degradation of persistent organic compounds. Even 

though UV treatment is currently being used in drinking water treatment plants for 

disinfection, newly emerging organic compounds are resistant to break down under UV 

treatment alone. Therefore, it is important to develop a photocatalytic system that will 
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augment the UV treatment efficiency by extending it into the visible range towards treating 

contaminated waters. It has been reported that the presence of nanosized photocatalytic 

particles/slurry usage in water treatment is not feasible due to the challenges in separation 

of the catalysts. Our work focuses on using a robust immobilized photocatalyst in 

degradation of two taste and odor compounds that are secreted by species of blue green 

algae (MIB and GSM). In particular, a titania-silica and P25 based immobilized catalyst 

was developed, characterized, and activity was assessed for degradation of MIB and GSM 

under UV irradiation. Further, extending the activity of photocatalyst system into the 

visible light range was studied by developing bismuth-titanate nano composites. 
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 : PHOTODEGRADATION OF TASTE AND ODOR COMPOUNDS 

IN WATER IN THE PRESENCE OF IMMOBILIZED TiO2-SiO2 

PHOTOCATALYSTS 

 Abstract 

Disinfection by ultraviolet (UV) radiation is a growing trend in public water treatment 

systems because of its effectiveness with respect to the inactivation of protozoa and other 

pathogenic microorganisms. However, removal of different classes of organic compounds, 

including taste and odor compounds, in water is not effective with UV irradiation. In this 

chapter,  we report a novel TiO2-based immobilized photocatalyst that was developed to 

enhance the UV photodegradation of two of the major taste and odor compounds, 2-

methylisoborneol (MIB) and Geosmin (GSM) in water. Evonik (formerly Degussa) P-25 

powder-modified TiO2 was immobilized on glass slides using TiO2-SiO2 sol-gel mixture as 

the binder and calcined at 500°C. Several catalyst films with different Si amounts were 

synthesized and characterized by X-ray diffraction (XRD), X-ray photoelectron 

spectroscopy (XPS), infrared spectroscopy (IR), diffuse reflectance spectroscopy (DRS), 

photoluminescence spectroscopy (PL), and scanning electron microscopy (SEM). 

Photocatalytic degradation of MIB and GSM was investigated by irradiating aqueous 

solutions under UV-A light (350 nm). The generation of hydroxyl radicals (•OH) was also 

assessed to evaluate the activity of the photocatalyst films. Catalyst films with surface 

ratios of Ti:Si ≈ 7 showed similar degradation rates but better robustness compared to 

immobilized P25 films. 
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 Introduction 

Access to safe drinking water is a basic necessity for maintaining human health. According 

to the US EPA, there are five major types of contaminants in drinking water: 

microorganisms, disinfection byproducts, inorganic chemicals, organic chemicals, and 

radionuclides1. In 2006, EPA introduced the long-term 2 enhanced surface water treatment 

rule (LT2) to further reduce contamination by pathogens in drinking water, specifically 

viruses and the protozoa, Cryptosporidium and Giardia2. In compliance with LT2, UV 

disinfection, as an effective means for inactivating these pathogenic microorganisms, has 

gained more interest in public water treatment systems. However, direct UV photolysis is 

not very effective with respect to the degradation of many organic compounds, such as 

taste and odor compounds in water3,4. 

The changing climate, especially the increasing average temperatures, has led to surface 

water quality deterioration in many temperate regions. Many lakes in these areas have 

experienced increased turbidity and algal blooms, including harmful algae5. The growth of 

cyanobacteria and actinomycetes is promoted due to eutrophication caused by the disposal 

of agricultural, municipal, and industrial wastes into water bodies, as well as internal 

phosphorus release6,7. Higher temperatures and longer periods of higher temperatures 

result in more widespread lake hypolimnetic anoxia8 that can lead to the release of sediment 

phosphorus, causing undesired algal blooms9. Taste and odor compounds are mainly 

produced by cyanobacterial blooms as secondary metabolites10. The odor threshold of these 

compounds is in the ng L−1 range, making their effective removal from drinking water a 

challenging task. Previous studies have shown that most of the taste and odor compounds 
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are resistant to conventional water treatment techniques, such as coagulation, 

sedimentation, and filtration, especially at very low concentration11. 

Only a few conventional water treatment methods have been successful in removing taste 

and odor compounds at such low concentrations. Oxidants such as Cl2, ClO2, and KMnO4 

have proven to be ineffective in degrading these compounds due to the resistance of tertiary 

alcohols toward mild oxidation11.  Filtration using granular activated carbon and sand and 

alum coagulation are used for the removal of taste and odor compounds in some water 

treatment facilities12,13. In the presence of dissolved organic matter (DOM), reduced 

adsorption of these compounds has been observed, where additional steps are taken to clean 

the saturated activated carbon for reuse14.  Two common taste and odor compounds found 

in surface waters are 2-methylisoborneol (MIB; odor threshold 15 ng L−1) and geosmin 

(GSM; odor threshold 4 ng L−1)15.  MIB is a terpenoid produced by the cyanobacterial 

species, Oscillatoria and Phormidium, and actinomycetes16–18. GSM is a bicyclic tertiary 

alcohol produced by certain species of Oscillatoria, Anabaena, Lyngbya, Symploca, and 

actinomycetes17,18. 

Advanced oxidation processes (AOPs) have the advantage of providing fast reaction rates 

and strong non-selective oxidation over multiple contaminants. As such, they have become 

desirable techniques for degrading taste and odor compounds19,20. UV irradiation in the 

presence of colloidal TiO2-based photocatalysts is one of the AOPs that can efficiently 

degrade MIB and GSM via the production of hydroxyl radicals (•OH)21. However, the use 

of a photocatalyst suspension in a UV water treatment reactor is limited due to difficulties 

in the separation of the suspended photocatalyst particles following treatment. Therefore, 
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it is important to have an immobilized photocatalytic system to enhance the UV 

degradation of organic compounds in water22–26. 

Among different TiO2 photocatalysts, P25 is considered as the “gold standard” due to its 

efficiency compared to other forms of TiO2
27,28. P25 consists of 70% anatase phase and 

30% rutile phase and has a surface area of 49 m2 g−1 29,30. Owing to its high surface area 

and the coexistence of rutile -anatase phases which allows the increase in charge-separation 

efficiency due to interfacial electron transfer, P25 shows a high activity in degrading 

organic pollutants30–33. 

Immobilizing P25 alone onto substrates does not result in a robust and durable film with 

sufficient mechanical stability. To improve the robustness of the coatings and improve the 

adherence of P25, Ti alkoxide and SiO2 gel-supported matrices can be used34–38. The 

presence of SiO2 in the catalyst films improves their thermal stability and mechanical 

strength39,40. Even though SiO2 is added as a binder, in these studies, its effect on 

photocatalytic activity has not been assessed. Further, the effect of these binary oxides on 

the degradation rate of taste and odor compounds has not been studied. To date, most of 

the MIB and GSM photodegradation studies have been performed in TiO2 slurry 

systems25,26. To the best of our knowledge, very few studies were carried out on the 

degradation of MIB and GSM using immobilized TiO2 catalysts25,26. In these studies, TiO2 

nanoparticles dispersed in methanol have been directly coated on glass substrates. The 

robustness of such coatings is poor, where the coating exfoliates even under gentle rubbing, 

according to our observations. 

The objective of this study is to develop an effective TiO2-based photocatalyst, using P25 

modified TiO2-SiO2 sol-gel, immobilized on a glass substrate to augment the existing UV 
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systems for degradation of taste and odor compounds. Photocatalytic degradation rates of 

MIB and GSM were measured in the presence of catalyst films with varying concentrations 

of SiO2 under monochromatic UV-A light (350 nm). Development of TiO2 photocatalysts 

following the sol-gel method with a controlled hydrolysis and condensation reactions 

resulted in photocatalysts with enhanced structural and catalytic properties. 

 Experimental 

 Preparation of powder modified TiO2-SiO2 immobilized catalyst 

Titanium tetraisoprpoxide and (TTIP, 99.99%; Sigma Aldrich) and tetraethylorthosilicate 

(TEOS, 99.99%; Sigma Aldrich) were used as precursors for TiO2 and SiO2, respectively. 

P25 TiO2 powder (Evonik, formerly Degussa) was used to prepare sol-gel derived powder-

immobilized coatings. The TiO2 sol-gel mixture was prepared according to a previously 

reported method23. First, polyoxyethylene (20) sorbitan monooleate (Tween 80, 99.99%; 

Sigma Aldrich) was homogeneously dissolved in 2-propanol (iPrOH, 99.99%; Sigma 

Aldrich). Then acetic acid (AcOH, 99.7%; EM Science) was dissolved into the solution, 

and TTIP was added under stirring. The molar ratios of the reactants were Tween 80: 

iPrOH:AcOH: TTIP = 1:45:6:1. The final transparent TiO2 sol was stirred for 30 min before 

mixing it with the SiO2 sol, which was prepared by adding TEOS to a solution of pure 

ethanol (EtOH)  and concentrated HCl and stirring for 30 min. Molar ratios of the SiO2 sol 

mixture were TEOS:EtOH: HCl = 1:8:0.05. Different volumes (1.3–8.5 mL) of SiO2 sol 

(1.43 M) were added to 66.6 mL of TiO2 sol (0.18 M) to obtain different Si molar 

concentrations and stirred for 60 min. P25 TiO2 powder (50 g L−1) was added to the TiO2-

SiO2 solution and stirred for 6 h. The final Si: Ti molar ratios were 3, 5, 10, 15, and 20%. 
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As controls, catalyst films with TiO2 sol, TiO2-SiO2 sol, powder-modified (with added P25) 

and TiO2-SiO2 sol, and P25 (dispersed in iPrOH) were synthesized. 

Plain microscope glass slides were cleaned with piranha solution (H2SO4:H2O2 = 7:3 v/v) 

for 1 h at 70 ◦C, washed with deionized water, and dried at 125 ◦C in an oven. Cleaned glass 

slides were dip-coated with control films and P25 powder modified TiO2-SiO2 sol-gel 

mixtures (10 cm2 area on each side & four coatings). Dip coating was performed at a 

withdrawal rate of 120 mm min−1. Catalyst coatings were dried and annealed at 125 ◦C for 

24 h followed by calcination at a ramp rate of 3 ◦C min−1 up to 500 ◦C, dwelling at this 

temperature for 1h and cooling down naturally. The labeling scheme for the photocatalysts 

is shown in Table 2.1. 

 

 

 

 

 

 

Catalyst P25 (g L-1) Si: Ti molar ratio in the 

initial sol-gel 

T (Ti sol gel only) 0 0:100 

ST (Si-Ti sol gel)) 0 15:85 

P (P25 only) 50 0:100 

PT (P25 & Ti sol gel) 50 0:100 

PS3T (P25 & Si (3%)-Ti sol gel) 50 3:97 

PS5T 50 5:95 

PS10T 50 10:90 

PS15T 50 15:85 

PS20T 50 20:80 

Table 2.1. Photocatalyst films developed in this study 
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 Photocatalytic degradation of MIB and GSM 

Photodegradation experiments were conducted in 200 mL quartz beakers in the presence 

of MIB (≥98.0%; Sigma Aldrich) or GSM (≥97.0%; Sigma Aldrich) at a concentration of 

500 ng L−1 in deionized water (DI, 18 MΩ cm). Coated glass slides (4 slides) were 

immersed vertically (Figure 2.1) in the beakers covered with aluminum foil, and the system 

was allowed to equilibrate for 20 min in the dark. The solutions were then placed in a 

photochemical chamber (Rayonet Model RPR-100) and illuminated with 16 lamps 

(Rayonet RPR- 3500 Å), each emitting monochromatic light in the UV-A range (~350 nm) 

for 60 min under stirring. During the irradiation, 10 mL aliquots of solution were taken out 

at six different time intervals (0, 5, 10, 15, 30, and 60 min) for analysis of MIB and GSM 

concentrations. The degradation experiments were repeated three times using the same set 

of films of each catalyst. The intensity of the UV lamps was measured by the ferrioxalate 

actinometry method41. Potassium ferrioxalate was used as the chemical actinometer, and 

the dissolved Fe(II) concentration was measured using the ferrozine method42. 
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 Analytical determination of MIB and GSM 

The concentrations of MIB and   GSM   were determined by headspace solid-phase 

microextraction (HS-SPME) gas chromatography-mass spectrometry (GC–MS; Agilent 

6890 Series gas chromatograph interfaced to an Agilent 5973 mass selective detector). 

Samples (10 mL) were placed in screw-capped, straight-sided headspace vials with PTFE-

lined silicone septa. NaCl (3.0 g) and a magnetic stirrer were added to the sealed vials and 

placed in a 70 ◦C water bath for 20 min43. A GC temperature gradient from 50 ◦C (held for 

1 min) to 250 ◦C (held for 6 min), using a temperature ramp of 12◦C min−1 under constant 

flow of He gas at 1 mL min−1, was used. Extraction of analytes by HS-SPME was achieved 

using a Supelco fiber coated with Divinyl-benzene/Carboxen/Polydimethylsiloxane 

(DVB/CAR/PDMS), Stableflex, 50/30 µm. Detection was performed in selected ion 

monitoring (SIM) mode at m/z = 95 for MIB, and m/z = 112 for GSM. Data processing 

and instrument control were performed using the Agilent MSD Chemstation software. 

Figure 2.1. Photocatalytic degradation experiment 

setup; Catalyst coated glass slides immersed in quartz beaker 
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 Reusability and radical hydroxyl production assessment and stability of the 

catalyst 

Reusability of the most efficient and robust catalyst film (PS3T) was evaluated by •OH 

production using terephthalic acid (TPA, 98%; Sigma Aldrich) for 10 repetitions. The 

reaction product of TPA with •OH is 2-hydroxyterephthalic acid (hTPA), whose 

fluorescence intensity is proportional to the •OH concentration44–46.  Coated glass slides 

were immersed in 200 mL of 0.5 mM TPA solution at pH 8 and equilibrated in the dark 

for 15 min. The TPA solution with the catalyst films were placed in the photochemical 

chamber and irradiated for 60 min while stirring (UV-A at 350 nm with 16 lamps). At 

specified time intervals during illumination, 3 mL aliquots were withdrawn and diluted 

with DI water for fluorescence measurements of hTPA at excitation and emission 

wavelengths of 315 and 425 nm, respectively. Generated hTPA concentrations were 

calculated using a hTPA calibration curve (hTPA, 97%; Sigma Aldrich). Indirect 

photodegradation by the PS3T catalyst was assessed by calculating the steady-state •OH 

concentration39,44,47. The fluorescence spectra were recorded on a Jobin Yvon Fluorolog-3 

spectrofluorometer equipped with emission and excitation monochromators, a 400 W 

Xenon lamp source, and a photomultiplier tube. Control experiments were carried out to 

evaluate the generation of •OH under dark conditions and UV only illumination. 

 Catalyst characterization 

X-ray diffraction (XRD) patterns of catalyst films were obtained on a PANanalytical X’pert 

MRD X-ray diffraction system using Cu-Ka radiation at a scan rate of 0.3◦ s−1. X-ray 

photoelectron spectroscopy (XPS) was performed on a dual anode VG Microtech X-ray 

source and a SPECS HSA2000 analyzer (Source: Al, Source energy: 1486.61 eV). FTIR 
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spectra of the catalyst films were recorded on the powder obtained from scraping off the 

catalyst from the glass slide. Transmission FTIR spectra were recorded on an ABB 

FTLA2000 spectrometer. Diffuse reflectance spectra were collected on solid samples at 25 

◦C. The light source was a Mikropack DH-2000 deuterium and halogen light source 

coupled with an Ocean Optics USB4000 detector. The scattered light was collected with a 

fiber optic cable. Spectra were referenced with PTFE. Data were processed using Spectra 

Suite 1.4.2 09. The elemental composition of each type of photocatalyst film was obtained 

by digesting the coated glass slides in a solution containing 20 mL of 3:1 mixture (volume 

ratio) of concentrated H2SO4 (ACS reagent, 95-98%) and H2O2 (Certified ACS, 30% w/v), 

and analyzing using an Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-

AES; TJA Model iCAP 6000). Steady-state photoluminescence (PL) spectra were recorded 

with a Model QuantaMaster-1046 photoluminescence spectrophotometer (Photon 

Technology International). The instrument is equipped with two excitation 

monochromators and a single emission monochromator with a 75 W Xenon arc lamp. The 

excitation wavelength was at 325 nm. Scanning electron microscopy (SEM) was performed 

on a Zeiss N vision 40 system. The adherence ability of the catalyst films was evaluated by 

the cross-cut tape adhesion test (ASTM D3359)48. 

 Photoleaching experiments 

To quantify the concentrations of Ti and Si leaching from the catalyst films during the 

experiments, 10 mL aliquots of the sample were withdrawn at the end of TPA experiments 

(60 min) and were analyzed using an Inductively Coupled Plasma Atomic Emission 

Spectrometer (ICP-AES; TJA Model iCAP 6000). A TPA solution irradiated for 60 min 

was used as a blank sample without the catalyst film. 
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 Results and discussion 

 Photocatalytic degradation of MIB and GSM 

Figures 2.2-2.5 show the photodegradation of MIB and GSM in the presence and absence 

of the catalyst films. Three trials of degradation experiments were performed using the 

same set of glass slides for each catalyst type, and an average degradation was taken. MIB 

adsorption to TiO2 surface is negligible relative to the total amount in solution25. During a 

period of 1h, MIB concentration decreased by ~20% under the dark condition in the 

absence of a catalyst (Figure  2.2) that can be attributed to its volatilization.  
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Figure 2.2. Time concentration plots for the photodegradation of MIB (500 

ng L-1 initial concentration) for (  ) dark control, (  ) UV (350 nm) only, (  ) ST 

photocatalyst 
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For the same duration, a ~30% decrease in MIB concentration was observed in the presence 

of UV light only that can be attributed to a combination of about 10% photolytic 

degradation and 20% volatilization. A previous photolytic degradation study of MIB and 

GSM showed that ~10% of MIB and ~7% of GSM were degraded by UV alone at 365 nm, 

emitting 71.7 mW cm−2 at a distance of 25 cm in 60 min49. In our experiment, the ferrioxlate 

actinometry measurement showed a UV intensity of 18.3 mW cm−2 (corresponding to 

5.1x10-4 Einstein min−1) at a distance of 12.5 cm to the center of the quartz beaker. UV 

intensity drops off as a square of the distance between the source and the sample50. 

Considering these distances, the samples in Fotiou et al.’s study49 and our study are 

exposed to a similar UV intensity of 0.1 mW cm−2. The presence of the catalyst film in our 

study resulted in an increase in the MIB degradation rate (Figure   2.3).  
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Figure 2.3. Time concentration plots for the photodegradation of MIB 

(500 ng L-1 initial concentration) for (  )T, (   ) P, and (  ) PT photocatalysts 
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Catalyst films T (coated with only the TiO2 sol gel) and ST (coated with TiO2-SiO2 sol gel) 

resulted in ∼50% MIB loss after 1h. Catalyst coatings P (immobilized P25) and PT 

(immobilized P25 and TiO2 sol gel) showed ~80% concentration loss of MIB during the 

same period.  MIB photodegradation in the presence of SiO2-containing catalyst films is 

shown in Figure   2.4. 
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Figure 2.4. Time concentration plots for the photodegradation of MIB (500 ng L-1 
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When the SiO2 content was increased from 3% to 20% in the sol-gel, the photodegradation 

rate decreased from ~80% to ~50%. Catalyst films synthesized from sol-gel mixtures 

containing 3% Si (PS3T) showed ~80% loss of MIB within 1h, which is comparable to that 

performance of the P and PT catalysts. The presence of the PS3T catalyst also resulted in 

~80% GSM photodegradation in 1h (Figure   2.5). 

 

The higher effectiveness of the P and PT photocatalysts compared to the T and ST catalysts 

can be attributed to the presence of P2531. The decrease in photocatalytic activity of the 

films when increasing the SiO2 content is due to the smaller concentration of TiO2 (dilution 

of TiO2 phase in SiO2)
51–53 on the substrate surface as observed in XPS,  
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Figure 2.5. Time concentration plots for the photodegradation of Geosmin (500 ng L-1 

initial concentration for(   ) UV (350 nm) only, (  ) dark control, (  ) PS3T catalyst 



 

64 
 

 which is discussed below. The degradation kinetics of both compounds followed pseudo-

first-order kinetics, which agrees with previously reported TiO2 photodegradation studies 

of organic compounds54–57. Apparent rate constants (kapp) under dark conditions, at UV-

only treatment and in the presence of T, P, PT, and PS3T catalysts are shown in the Table 

2.2. kapp values for MIB and GSM degradation in the presence of PS3T (The total Ti content 

0.4 mg cm−2) catalyst were 2.9 x 10−2 and 2.7 x 10−2 min−1, respectively. A previous study 

of photocatalytic removal of MIB and GSM by immobilized P25 (0.25 mg cm−2) onto 

borosilicate glass plates showed 54% and 60% removal, respectively, over an 8h period 

under UV A light26. Another study of immobilized P25 (0.5 mg cm−2; ~0.3 mg- Ti cm−2) 

on petri dish showed   ~80% degradation in 1h of both MIB (kapp = 2.7 x 10−2 min−1) and 

GSM (kapp = 2.4 x 10−2 min−1) at 365 nm with 1.48x10−4 Einstein min−1 intensity25. These 

kapp values are comparable to ours according to the amount of catalyst and UV intensity 

(Table 2.2). 

  

 

 

 

 

 

 

 

Catalyst kapp (min-1) MIB kapp (min-1) GSM 

Dark 5.1×10-3 2.1×10-3 

UV only 6.2×10-3 2.2×10-3 

T 1.0×10-2 N/A 

P 2.5×10-2 N/A 

PT 3.2×10-2 N/A 

PS3T 2.9×10-2 2.72×10-2 

PS5T 2.1×10-2 N/A 

PS10T 1.4×10-2 N/A 

PS15T 8.8×10-3 N/A 

PS20T 1.2×10-2 N/A 

Table 2.2. Apparent rate constants (kapp) for photocatalytic degradation of MIB and GSM 

at 350 nm 
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 Reusability of the catalyst films 

Figure 2.6 shows the production of hTPA in the presence of PS3T catalyst for 10 

repetitions. Produced hTPA concentrations after 60 min were in the range of 6.1x10−6 M–

9.3x10−6 M with no significant trend in hTPA concentrations, suggesting that the 

photocatalyst activity with respect to the production of •OH does not change with repeated 

use. 

 

 Hydroxyl radical generation and photodegradation mechanism 

Hydroxyl radicals have been considered as the major species responsible for the TiO2-

catalyzed photodegradation of organic compounds45. Other reactive oxygen species, such 

as superoxide (•O2
−), hydrogen peroxide (H2O2) and hydroperoxyl radical (HO2

•) do not 

participate in the TiO2-catalyzed photodegradation of TPA44. Photodegradation studies of 
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Figure 2.6. The concentration of hTPA at different repetitions 
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GSM and MIB with the P25 catalyst in the presence of •OH scavengers Br− and tertiary 

butyl alcohol showed a significant reduction in their degradation rates49. 

The TPA experiments show that the steady-state •OH concentrations ([•OH]ss) were 6.13 

× 10−18 µM, 2.86 × 10−16 µM and 3.71 × 10−14 µM for dark condition, UV-A only and UV-

A illumination in the presence of  PS3T catalyst, respectively. ([•OH]ss) is determined from 

the slope of ln{[TPA]0/([TPA]0-[hTPA])} versus time (Figure   2.7), where [TPA]0 is the 

initial TPA concentration58, as described below. The higher activity in the presence of 

PS3T photocatalyst can be related to the efficient generation of •OH under UV illumination. 
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The reaction of •OH with the terephthalic acid (TPA) probe is overall second-order (Eq. 

1), 44 

                                                                         (1) 

In the presence of a photocatalyst, •OH concentration reaches to a steady-state value 

([•OH]ss). The hTPA (2-hydroxyterephthalic acid) production rate can be expressed with 

respect to [•OH]ss 

           (2) 

where Y is the percent yield of the reaction of TPA with •OH = 35%58 and is the 

Second-order rate constant = 3.3×109 M-1 s-158
. 

           (3) 

                                                           (4) 

[• OH]ss can be determined from the slope of the linear regression plot of 

ln{[TPA]0/([TPA]0-[hTPA])} versus time. 

A mechanistic study to identify mechanisms and reaction intermediates for the 

photocatalytic degradation of   MIB   and GSM   in the presence of colloidal TiO2 has been 

conducted by Fotiou et al.49.  They proposed that GSM photodegradation in the presence 

of TiO2 produces two main products 8a-Hydroxy-4a-methyl-octahydro-naphthalen-2-one 

(α-hydrogen abstraction from the tertiary carbon of GSM, β-scission abstraction, followed 

by hydroxylation from •OH attack) and 8,8a-dimethyl-decahydro-naphthalen-1-ol 

(dehydration of GSM and •OH addition followed by π bond rearrangement. The 

dehydration product of MIB  1,2,7,7-tetramethyl-bicyclo[2.2.1]hept-2-ene is converted to 
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1,6,7,7-tetramethyl-bicyclo[2.2.1]hept-5-en-2-ol due to the •OH attack. Due to β scission, 

subsequent H elimination, and •OH addition of MIB, several diketones are produced as 

other intermediate degradation products. The reaction products are shown in Figures 2.8  

and 2.9. 
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Figure 2.8. Main products of GSM photodegradation in the presence of TiO2 

Figure 2.9. Main products of MIB photodegradation in the presence of TiO2 
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 Robustness of catalyst films 

Despite photocatalytic effectiveness with respect to degradation of MIB and GSM, direct 

immobilization of P25 on glass substrates does not produce a robust coating. This was 

observed for the P and PT catalysts that contained P25 and would readily exfoliate with 

gentle rubbing. To increase the robustness of the catalyst films, SiO2 was added to the TiO2 

sol-gel mixture while maintaining a constant Ti concentration. The catalysts with SiO2 

consistently exhibited higher robustness according to the cross-tape adhesion test that is 

designed to test the adherence strength of coatings21,48. 

The PS3T catalyst film that was synthesized with the addition of 3% Si sol-gel mixture to 

the powder-modified TiO2 mixture showed the highest photodegradation rate (Table 2.2) 

with better adhesion to the glass substrate. Catalyst P that was synthesized without TiO2-

SiO2 sol-gel mixture showed poor adhesion. This catalyst was classified under ASTM class 

0 B, indicating that >65% of the coating in the cross-cut area was removed. The PS3T film 

was classified under 5B, where none of the coatings in the cross-cut area was removed. The 

robustness of the catalyst coatings increased with the Si content in the sol-gel mixture. At 

the same time, increased Si content in the catalyst resulted in a decrease in photocatalytic 

activity (Figure 2.4, Table 2.2). The decrease in the activity can be attributed to lower P25 

surface coverage due to a higher amorphous SiO2 content and lower surface TiO2 content, 

as observed from catalyst characterization data below. 

The leached Ti and Si concentrations were measured after 60 min of TPA photodegradation 

in the presence of the PS3T catalyst. The leached concentrations for both elements were at 

or below the detection limit of the instrument (Table 2.3). Presently, the U.S. 

Environmental Protection Agency does not have maximum contaminant limits for Ti and 
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Si in drinking water.  The detection limit of the ICP-AES was 0.04 and 0.01 mg L-1 for Si 

and Ti, respectively. A toxicological study on rats suggested a maximum contaminant level 

of 0.1 mg L−1  for Ti in drinking water59. This concentration is an order of magnitude higher 

than the Ti concentrations leached after 60 min from the PS3T catalyst (Table 2.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample Si (mg L-1) Ti (mg L-1) 

Blank <0.04 0.0112 

Trial 1 <0.04 0.0107 

Trial 2 <0.04 0.0159 

Trial 3 <0.04 0.0107 

Table 2.3. Photoleaching of Si and Ti from the photocatalyst 
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 Catalyst characterization 

The XRD patterns obtained for different substrates are shown in Figure 2.10. All peaks 

were assigned according to the International Centre for Diffraction Data, Powder 

Diffraction File (ICCD, PDF 01-080- 6402). The catalyst film that was coated with the 

TiO2-SiO2 sol-gel mixture (ST) did not show a TiO2 peak, suggesting that film was 

amorphous to be identified by XRD. The catalyst film T showed only anatase (101) crystal 

peak at 2θ = 25.3◦ as the prominent peak. Catalyst films containing P25 showed both 

anatase and rutile peaks. Diffraction peaks at 2θ = 25.3◦, 37.8◦, 48.0◦, and 55.1◦ can be 

indexed to (101), (004), (200), and (211) crystal planes of anatase, respectively. Crystal 

planes of rutile (110), (101), and (211) showed peaks at 20 = 27.4◦, 36.1◦ , and 54.1◦, 

respectively (Figure 2.10). 

Figure 2.10. The X-ray diffractogram of the photocatalyst films 
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The P25 anatase:rutile ratio is reported at 70:30 (wt%)60,61. TiO2-based photocatalysts 

having anatase and rutile crystalline phases show better photocatalytic activity towards 

organic compounds than catalysts with anatase alone62. This higher activity is attributed to 

the prevention of recombination of electrons and holes because the mixed rutile and anatase 

crystalline phases facilitate efficient electron-hole separation33,62–64. Recent combined 

theoretical and experimental studies have shown that anatase has a higher affinity towards 

electrons33. Therefore, photogenerated electrons in the conduction band flow from rutile to 

anatase, stabilizing the holes generated in rutile by preventing recombination. 

Alternatively, other studies have proposed the transfer of photogenerated conduction band 

electrons from anatase to rutile65–67. When Si content increases in the catalyst, reduction of 

diffraction line intensity is observed for both anatase and rutile, and this is accompanied 

by the appearance of a broad feature at low 2θ (<35◦) characteristic of amorphous SiO2 

(Figure 2.10). This reduction in peak intensities is a result of the additional SiO2, which 

reduces the TiO2 concentration in the mixture38,68. It has also been shown that the 

coexistence of SiO2 prevents the rearrangement of TiO2 and limits the growth of TiO2 

crystallites following calcination of the sol-gel mixture69,70, even though in this study, the 

photocatalytic activity occurs largely due to the presence of P25. 

The IR spectra of the catalyst films are shown in Figure 2.11. The absorption band at 1620 

cm−1 is attributed to the bending vibrations of surface adsorbed water. The broad absorption 

band around 600 cm−1 is due to the stretching vibrations of Ti-O-Ti and Ti-O bonds that is 

characteristic of the formation of a Ti-O-Ti network. Compared to the IR spectrum of pure 

P25, IR spectra of catalysts with SiO2 showed additional absorption bands at ~1050 cm-1  

and ~950 cm−1 that are ascribed to the asymmetric stretching vibrations of Si-O-Si and Ti-
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O-Si bonds, respectively68,71. At higher SiO2 concentrations (e.g., PS20T), these bands 

become more prominent, suggesting the formation of a Ti-O-Si network that is the result 

of the fusion of TiO2 and SiO2 sol-gel, as well as an increase in the Si-O-Si bonds. 

Bandgap energies of the powder-enriched catalyst films were assessed by the UV–

vis diffuse reflectance spectra (Figure 2.12). Catalyst coating without any SiO2 (PT 

catalyst) showed bandgap energy of 3.23 eV, which is in good agreement with the reported 

value of 3.2 eV for commercial P25 TiO2
72. However, the reflectance band shifted to a 

lower wavelength with increasing Si concentration in the catalyst films, indicating a 

Figure 2.11. The FT-IR spectra for the (A) PS20T; (B) PS15T; (C) PS10T; 

(D) PS5T; (E) PS3T; and (F) P-25 photocatalysts 
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widening of bandgap, where the highest Si-containing catalyst PS20T showed the widest 

bandgap among the catalyst films. This blue shift of the band edge has been associates with 

an increase in the dispersion of titania crystallites in the catalyst film that can be attributed 

to the quantum size effect46,73. 

 

 

The XPS analysis was employed to identify elemental composition from the top 10 

nm of the surface. XPS analyses of different catalysts show that surface coverage of Ti 

changes with the amount of Si added in the initial sol-gel mixture (Figure 2.13-2.20).  
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Figure 2.12.The UV-Vis diffuse reflectance spectra of the photocatalysts 
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Figure 2.13. The XPS spectrum for the T photocatalyst 

Figure 2.14. The XPS spectrum for the ST photocatalyst 
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Figure 2.15. The XPS spectrum for the PS3T photocatalyst 

Figure 2.16. The XPS spectrum for the PS5T photocatalyst 
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Figure 2.17. The XPS spectrum for the PS10T photocatalyst 

Figure 2.18. The XPS spectrum for the PS20T photocatalyst 
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XPS spectrum for one of the catalyst films (PS15T) shown in Figure 2.20 indicates 

the peaks for Ti, O, C, and Si elements. The peak for C is due to adventitious carbon. The 

C 1s peak at 284 eV is derived from the adventitious carbon used to calibrate the binding 

energy scale of the XPS data.  
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Figure 2.19. The XPS spectrum for the PT photocatalyst 

Figure 2.20. The XPS spectrum for the PS15T photocatalyst 
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Figure 2.21 shows kapp values for MIB photodegradation versus the Ti: Si surface ratio, as 

determined by the XPS. A near-positive linear relationship is observed between the kapp 

and Ti:Si ratio when the latter is >2. Decreasing the SiO2 content in the initial sol-gel 

mixture increases the Ti availability on the surface, as shown in XPS, which in turn 

increases the photocatalytic degradation of taste and odor compounds in water.  
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Figure 2.22 shows the kapp values for MIB photodegradation versus the bulk Ti:Si ratio 

obtained by the ICP-AES. In contrast to the XPS data that shows the Ti:Si ratio in the 

catalyst surface (Figure. 2.21), the bulk Ti:Si ratio does not show a linear relationship with 

kapp values. This further proves the catalyst efficiency is controlled by the availability of 

surface Ti photocatalytic sites. 

In contrast to our observed decrease in the photocatalytic degradation rate with an 

increase in SiO2 concentration, several studies of photodegradation of dyes and viruses by 

suspensions of TiO2-SiO2 photocatalysts have shown the opposite trend; i.e., an increase 

in the photodegradation rate with increasing SiO2 concentration30,38,75. This has been 

attributed to the enhanced adsorption of the pollutants30,38,75, increased surface acid sites30, 

quantum confinement68, and minimization of agglomeration of TiO2 that leads to a higher 

exposed surface area in the presence of SiO2
76.  In our study, the presence of Ti-O-Si bonds 

at higher SiO2 concentrations resulted in lower photocatalytic activity. The existence of 

amorphous SiO2, which covers the surface of the TiO2 films, as shown by XPS, also leads 

Figure 2.22. The apparent rate constants (kapp) for the MIB (initial concentration 

500 ng L-1) photodegradation versus the bulk Ti:Si mole ratio of catalyst films as 

determined by the ICP-AES 
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to lower photocatalytic activity. This proves that photocatalytic degradation of MIB and 

GSM is dependent on Ti content on the surface, and adsorption of our target compounds at 

higher Si contents does not play a role in enhancing the photodegradation.  

Figure 2.23 shows the photoluminescence spectra of the PT and the PS20T 

catalysts. The photoluminescence spectra characterize the separation efficiency of holes 

and electrons in semiconductor materials, where the intensity of the fluorescence peak is 

mainly dependent on the rate of recombination of holes and electrons77,78. The 

photoluminescence intensity is lowered in the PT catalyst compared to that in the T catalyst 

(Figure 2.23), suggesting that electron-hole recombination is effectively suppressed by the 

presence of both crystalline phases in the PT catalyst. The incorporation of SiO2 further 

reduces the photoluminescence for the PS20T catalyst (Figure 2.23), which agrees with the 

previous photoluminescence studies on SiO2-incorporated TiO2
46. In order to further study 

the recombination efficiency of each catalyst film, time-resolved photoluminescence is 

proposed for future research.  
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Figure 2.23. Photoluminescence spectra of the T, PT, and PS20T photocatalyst films  
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Even though suppression of electron-hole recombination by SiO2 normally 

enhances the activity of a catalyst, this was not observed in our study. This may be due to 

the lower availability of surface Ti catalytic sites in the presence of Si, as observed in the 

XPS results (Figure 2.21). 

The SEM micrographs of the catalyst films that contained P25 show that the P25 aggregates 

are covered by TiO2 and SiO2 nanoparticles (Figure 2.24 and Figure 2.25). 

300 nm 

Figure 2.24. The SEM micrograph of the 

photocatalyst films PS3T high magnification 

Figure 2.25. The SEM micrograph of the 

photocatalyst films PS20T high magnification 

200 µm 
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  Figure 2.26 shows the presence of micro-cracks in the PS3T film. These microcracks 

emerge due to the small residual compressive stresses79 occurring during drying, 

crystallization, and densification processes80. Differences in the morphologies of PS3T and 

PS20T catalysts were observed (Figure 2.26 and Figure 2.27).  

 

 

 

2 µm 

2 µm 

Figure 2.26. The SEM micrograph of 

the photocatalyst films PS3T low magnification 

Figure 2.27. The SEM micrograph of the 

photocatalyst films PS20T low magnification 
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Increasing the Si content of the catalyst films reduces the formation of microcracks of the 

powder-modified films and brings about higher robustness. It has been found that the 

addition of SiO2 to TiO2 nanoparticles can minimize the agglomeration of TiO2 particles 

and thereby result in a better dispersion in the sol-gel mixture and less microcracks upon 

drying and calcination36,38. 

The SEM micrographs of the catalyst film T show a smooth surface with some 

cracks/flakes (Figure 2.28 and Figure 2.29), while the ST film shows some surface 

roughness but less cracks (Figure 2.30 and Figure 2.31). 

Figure 2.29. SEM micrograph of the 

photocatalyst films T high magnification 

Figure 2.28. SEM micrograph of the 

photocatalyst films T low magnification 
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The stability of the films are found to increase by adding SiO2 because of the effect 

it has on delaying the crystallization of TiO2 to anatase81. The SEM micrographs of other 

catalyst films that contained P25 and different concentrations of SiO2 show a rough surface 

with diminishing microcracks with increasing the SiO2 (Figure 2.32-2.37). 

Figure 2.30. SEM micrograph of the 

photocatalyst films ST low magnification 

Figure 2.31. SEM micrograph of the 

photocatalyst films ST high magnification 
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Figure 2.32. SEM micrograph of the 

photocatalyst films PS5T low magnification 

Fugure 2.33. SEM micrograph of the 

photocatalyst films PS5T high magnification 
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Figure. 2.34. SEM micrograph of the photocatalyst films 

PS10T low magnification 

Figure. 2.35. SEM micrograph of the photocatalyst films  

PS10T high magnification 
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Figure 2.36. SEM micrograph of the 

photocatalyst films PS15T low magnification 

Figure 2.37. SEM micrograph of the photocatalyst 

films PS15T high magnification 
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 Conclusions 

The results obtained in this study show that P25 powder- modified catalyst films have the 

ability to photodegrade taste and odor compounds more efficiently than the UV-only 

treatment. P25 immobilized onto the glass substrate without the TiO2-SiO2 sol-gel coating, 

despite its high photocatalytic efficiency, did not have a strong and stable adherence; the 

sol-gel mixture assists in binding P25 to the substrate robustly. The powder-modified 

catalyst film at a-Si:Ti ratio = 3% was able to degrade ∼80% of MIB within an hour. Higher 

SiO2 concentrations in the catalyst films caused an improved adhesion of P25 to the glass 

substrate, but a decrease in their photocatalytic activity with respect to the taste and odor 

compounds was observed. The observed photodegradation rates did not show any 

relationship to the total Ti concentration in the catalyst films; instead, the rate correlated 

with the surface (0–10 nm) Ti: Si ratio (as determined by the XPS). The technology 

developed here involving an immobilized photocatalyst enhances the UV activity without 

the need for the removal of particulate catalysts using separation/filtration schemes. These 

catalyst films can be used to augment the existing UV disinfection systems for the removal 

of taste and odor compounds and other organic pollutants in drinking water and wastewater 

treatment facilities. 
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 : VISIBLE LIGHT-ACTIVATED CONTROLLABLE SYNTHESIS 

OF BISMUTH TITANATE PHOTOCATALYSTS FOR ORGANIC POLLUTANT 

DEGRADATION 

 Abstract 

Application of titania (TiO2) in organic pollutant degradation is limited due to its relatively 

high charge carrier recombination and wide bandgap. As such, TiO2 is not an effective 

photocatalyst in the visible range. A novel ternary heterojunction photocatalyst system 

composed of TiO2/Bi4Ti3O12/Bi2O3 was developed to extend the activity of the catalyst into 

the visible range. The non-ionic surfactant Tween-80 was used to obtain crystalline 

Bi4Ti3O12 that enhances photocatalytic activity. Catalysts were characterized by X-ray 

diffraction (XRD), X-ray photoelectron spectroscopy (XPS), diffuse reflectance 

spectroscopy (DRS), Brunauer Emmett Teller (BET) surface area analysis, and scanning 

electron microscopy (SEM). Photocatalytic activity efficiency was assessed by the extent 

of phenol degradation. The most efficient Ti-Bi double-heterostructure developed in this 

study showed a 55% and a 26% increase in photocatalytic activity compared to anatase 

TiO2 and commercial P25-anatase TiO2 mixture respectively, under visible light 

illumination. Varying the Tween-80 and Bi concentrations in the sol-gel synthesis process 

led to variations in the relative concentrations of TiO2, Bi4Ti3O12, and Bi2O3 

heterostructure, allowing activity optimization of the photocatalyst. The enhanced activity 

of the photocatalyst system was attributed to the narrow bandgap, and low recombination 

of the photogenerated holes and electrons brought about by its heterostructure. 
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 Introduction 

Among different wastewater and drinking water treatment techniques, 

semiconductor photocatalyst-based advanced oxidation methods show the ability to 

efficiently degrade organic pollutants into nonhazardous substances1,2. Advanced 

oxidation processes involving TiO2 photocatalysts have been extensively studied after the 

discovery of titania’s photoelectrochemical activity since 19723. Due to its non-toxic 

nature, low cost, stability, and higher activity in the UV range, TiO2 is considered an 

effective material to decompose organic pollutants3–5. However, TiO2 application in water 

and wastewater treatment is limited and becomes uneconomical due to its low absorption 

of visible light due to its wide bandgap and poor charge carrier separation ability6. To 

overcome these drawbacks, the incorporation of TiO2 with other semiconductors has 

become a desirable approach. Making such composite photocatalysts with narrow bandgap 

materials enhances visible light absorption. Composite photocatalysts also increase the 

photo-induced carrier separation, reducing hole-electron recombination and thus making 

electrons and holes available for photocatalytic reactions7. As an alternative to TiO2 alone, 

bismuth (Bi)-based titania semiconductor composite materials have recently gained 

interest for the efficient degradation of organic pollutants. Bi-based oxides have a valence 

band consisting of hybrid orbitals of O 2p and Bi 6s, while the TiO2 valence band is 

composed only of O 2p orbitals. Due to the well dispersed Bi 6s orbitals, increased mobility 

of electric charges and a bandgap decrease have been observed8,9.  

In the area of Bi-based photocatalysis, bismuth-titanates, such as Bi12TiO20
10,11 

Bi2Ti2O7
12,13

, Bi20TiO32
14,15

, and Bi4Ti3O12
16–18 have been promising candidates that can 

perform under visible light with a lower rate of recombination. Bi4Ti3O12 is a ferroelectric 
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material with optical memory and piezoelectric properties and electro-optic applications16. 

It has been found that the presence of Bi4Ti3O12 efficiently suppresses the photogenerated 

electron-hole recombination, thereby increasing the photocatalytic activity19. Bi4Ti3O12 

crystalline structure is constructed by triple layers of TiO6 octahedra (Bi2Ti3O10)
2- 

(perovskite slab) and one layer of (Bi2O2)
2+ alternate stacking along the c axis. Studies on 

bond angles have found that the closer the metal-oxygen-metal bond angle to 180°, the 

more delocalized the excitation energy 20,21. In Bi4Ti3O12, the Ti-O-Ti bond angle was found 

to be close to 180° that might lead to the efficient movement of electron-hole pairs. The 

separation of holes and electrons is also induced due to the intra-electric field between 

(Bi2O2)
2+ and [(Bi2Ti3O10)

2-] 16. However, it has been reported that synthesizing pure 

Bi4Ti3O12 catalysts with higher crystallinity is challenging22. Ferroelectric materials such 

as Bi4Ti3O12 have relatively low photocurrent densities that can be a disadvantage for 

photocatalytic activities23,24. As a solution to this, compositing Bi4Ti3O12 with TiO2 is a 

proven method to increase the photocurrent. Composite materials that have heterojunctions 

between two or more photocatalysts in this way inhibit the recombination of 

photogenerated electrons and holes effectively23.  

Besides bismuth-titanate composites, Bi2O3 is considered as an important 

semiconductor with a bandgap of around 2.80 eV that can easily be excited with visible 

light illumination25. Furthermore, apart from its narrow bandgap, Bi2O3 has several 

desirable qualities such as thermal stability, nontoxicity, and corrosion resistance for its 

use in organic pollutant degradation26. The main disadvantage of Bi2O3, however, is its 

higher recombination rate of photogenerated charge carriers27–29. 
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In recent years, semiconductor composites consisting of three photocatalysts that 

make ternary heterojunctions/double-heterostructure have been considered for 

photocatalytic applications due to their enhanced lifetime of charge carriers. Among these 

ternary systems, TiO2/Bi2O3/V2O5
30, graphitic C3N4/TiO2/Bi2O3

31, TiO2/SiO2/Bi2O3
32, 

TiO2/BT/MoS2
33, NiO/Bi2O3/Bi3ClO4

29,  BT/Bi2O3/Bi12TiO20
26, C3N4/BT/Bi4O5I2

34 , and 

Bi2O3/BT/TiO2
35

 , where BT is Bi4Ti3O12, have been used. 

. Surfactant-assisted nano photocatalyst synthesis has shown an improvement in the 

physicochemical properties of photocatalysts36. During the preparation of photocatalysts, 

surfactants induce an ordered porous structure and large surface area, thereby improving 

the photocatalytic efficiency37–39. Tween 80 is a non-ionic amphiphilic surfactant with a 

hydrophilic polar head composed of a sorbitan ring structure and a hydrophobic oleic acid 

nonpolar tail40 (Figure 3.1).  Self-assembly of Tween 80 in a sol-gel synthesis route plays 

an important role in achieving homogeneous and ordered nanoparticles41. Tween-80 acts 

as a steric stabilizer, wetting, and capping agent and thereby controls the nucleation and 

growth of nanoparticles42,43.  

w+x+y+z =20 

Figure 3.1. Molecular structure of the Tween-80 
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Karunakaran et al. have synthesized Bi2O3-TiO2 photocatalytic nanocomposite 

using the sol-gel approach44. Tween-80, polyvinyl pyrrolidone-polyethylene glycol(PVP-

PEG) were used as templating agents for Bi2O3-TiO2 nanocomposites. This study revealed 

that in the composites TiO2 and Bi2O3 exist in anatase and β form, respectively44. 

Longxiang et al. have used Span-80 (Sorbitan monooleate) and Tween-80 to synthesize 

Bi3.25La0.75Ti3O12
45

. Along with the spherical lanthanum bismuth titanate, Bi2Ti2O7 and 

Bi4Ti3O12 crystalline phases were also observed upon changing the calcination temperature 

from 450°C to550°C45.  To the best of our knowledge, no studies have been done on the 

synthesis of the Bi2O3/Bi4Ti3O12/TiO2 heterostructure controlled by the concentration of 

the non-ionic surfactant Tween-80.  

Based on the above considerations, in this work, we developed a novel technique to 

synthesize a double heterostructured photocatalytic system containing a 

Bi2O3/Bi4Ti3O12/TiO2 mixture for photocatalytic degradation of organic pollutants under 

visible light illumination. In our approach, we synthesize efficient photocatalysts by 

varying the non-ionic surfactant, Tween-80, and Bi concentrations.  By incorporating the 

non-ionic surfactant Tween-80, the photocatalysts’ crystalline phases were controlled 

without changing other parameters, such as calcination temperature and reactant 

concentrations. 

  

 



 

105 
 

 Experimental 

  Preparation of Bi-incorporated titanate composites 

Titanium tetraisopropoxide (TTIP, 97%; Sigma Aldrich), P25 TiO2 powder 

(Evonik, formerly Degussa), polyoxyethylene sorbitan monooleate surfactant (Tween-80, 

99.999%; Sigma Aldrich), and bismuth nitrate pentahydrate (Bi(NO3)3.5H2O, 98%; Sigma 

Aldrich) were used in the synthesis Bi-incorporated Ti composites. According to the 

composition of TTIP, Tween-80, and Bi(NO3)3.5H2O, two types of bismuth-titanate 

photocatalysts were synthesized in this study: (a) Catalysts synthesized at a constant Ti:Bi 

molar ratio of 1:0.5 and varying the Tween-80:Ti molar ratio (0:1, 0.5:1, 1:1, and 2:1); and 

(b) Catalysts synthesized at a Tween-80:Ti molar ratio of 2:1 and varying the Ti:Bi molar 

ratio (1:0, 1:0.25, and 1:1). The chemical composition of the initial sol-gel mixture and the 

labeling scheme of each catalyst are summarized in Table 3.1. 

 

Table 3.1. Catalyst labeling scheme and corresponding Ti:Bi and Tween-80:Ti molar ratios 

 

 

 

 

 

 

 

 

 

Catalyst Ti:Bi molar ratio Tween-80:Ti molar ratio 

B0.5T-0 1:0.5 No Tween 80 

B0.5T-0.5 1:0.5 0.5:1 

B0.5T-1 1:0.5 1:1 

B0.5T-2 1:0.5 2:1 

B0.25T-2 1:0.25 2:1 

B1T-2 1:1 2:1 

T-2 No Bi 2:1 

PT-1 No Bi  1:1 

PBT-1 1:0.5 1:1 
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The catalysts were synthesized by adding an aliquot (e.g., 8.58 g for 1:1 Tween-

80:Ti molar ratio) of Tween-80 to 20 mL of 2-propanol (iPrOH, 99.99%; Sigma Aldrich) 

solution and stirring until a homogenous solution was produced. Then an aliquot of TTIP 

(e.g., 3.15 mL for 1:1 Tween-80: Ti molar ratio) was added to the mixture to obtain the 

desired Tween-80:Ti molar ratio, and the solution was stirred for 1 h. To the resulting 

solution, Bi(NO3)3.5H2O( e.g., 5.19 g  for 1:1 Ti:Bi molar ratio) was added under stirring 

to obtain the desired Bi:Ti molar ratio in the sol mixture. Subsequently, 2 mL of HNO3 

(Fisher Scientific, ACS Reagent Grade, 70%) was added to the mixture dropwise. The final 

mixture was sonicated for 10 min and stirred for 12 h at room temperature. The P25 

powder-enriched Bi-incorporated catalyst (PBT-1) was prepared by adding 0.30 g of P25 

to the sol mixture with a Tween-80:Ti molar ratio = 1:1. The final sol mixture was dried at 

300 °C for 3 h followed by calcination at 450 °C for 6 h at a heating rate of 3 °C min-1. As 

controls, catalysts without Tween-80 (B0.5T-0), without Bi (T-2), and with P25 but without 

Bi (PT-1) were prepared using the same procedure. 

 Catalyst characterization 

X-ray diffraction (XRD) patterns of catalyst films were obtained on a Panalytical 

X'pert MRD X-ray diffraction system using Cu-Kα radiation source (λk =1.5406 Å) at a 

scan rate of 0.3° s−1. X-ray photoelectron spectroscopy (XPS) was performed on a dual 

anode VG Microtech X-ray source and a SPECS HSA2000 analyzer. XPS data were 

analyzed using CasaXPS software. UV-Visible diffuse reflectance spectra (DRS) were 

collected on solid samples at room temperature. The light source was a Mikropack DH-

2000 deuterium and halogen light source coupled with an Ocean Optics USB4000 detector. 

The scattered light was collected with a fiber optic cable. Spectra were referenced to MgO 
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powder. Data were processed using Spectra Suite 1.4.2 09. Nitrogen adsorption/desorption 

isotherms were measured using Micromeritics ASAP 2020. The catalyst powder samples 

(about 0.10 g) were first evacuated at 120 °C for 10 h. An adsorption/desorption isotherm 

curve was collected at 77 K and at relative pressures of N2 from P/P0 < 0.01 to 0.996, 

where P0 is the saturation pressure. The Brunauer Emmett Teller (BET(N2)) surface areas 

were calculated using the adsorption branch of the N2 sorption isotherm. The elemental 

composition of the photocatalysts was obtained by digesting 0.01 g of the sample in a 

solution containing 45 mL of concentrated H2SO4 (ACS reagent, 95-98%) and 15 mL of 

H2O2 (Certified ACS,30% w/v) and analyzing using an Inductively Coupled Plasma-

Atomic Emission Spectrometer (ICP-AES; TJA Model iCAP 6000). Scanning electron 

microscopy (SEM) was performed on a Zeiss N vision 40 system. 

 Photocatalytic degradation of phenol 

Photodegradation experiments were conducted in a 250 mL quartz beaker in the 

presence of a 200 mL solution of 10-4 M phenol (99%+ Sigma Aldrich) in deionized water 

(DI, 18 MΩ cm). The experiments started by adding 0.04 g of catalyst powder to the phenol 

solution and allowing it to equilibrate in the dark for 1 h. The suspension was then placed 

in the UV chamber (Rayonet, Southern New England Ultraviolet Company, Branford, CT, 

USA), and illuminated with 16 lamps (Rayonet RPR-4190A), each emitting 

monochromatic light at 420 nm for 180 min. During the irradiation, 0.5 mL aliquots of 

solution were withdrawn at six different time intervals (0, 30, 60, 120, and 180 min) to 

analyze the phenol concentration. Phenol concentration was determined by measuring the 

absorbance peak area at 269 nm using a UV-Vis spectrometer (Varian Cary-100 Bio). 
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  Results and discussion 

  Photocatalyst characterization 

3.4.1.1. Ti and Bi concentrations in catalysts 

The total Ti and Bi concentrations and molar ratios in each catalyst determined by 

ICP-AES, and the corresponding Ti: Bi molar ratios are shown in Table 3.2. The catalysts 

synthesized starting with a Ti: Bi ratio of 2:1 have measured Ti: Bi ratios ranging from 

2.1:1 to 2.7:1. When Ti: Bi ratio is changed to 1:1 in the B2T-2 catalyst, the Ti: Bi ratio is 

1.2:1. In the catalyst B0.25T-2 that has a lower Bi concentration, the Ti:Bi ratio increases to 

3.9:1. These results indicate that the synthesis process incorporates a similar percentage of 

Bi compared to Ti in the final product. 

 

 Table 3.2. Ti:Bi molar ratio of the catalysts after calcination obtained from ICP-AES 

 

 

Catalyst Ti (mg/L) Bi (mg/L) Ti:Bi ratio (molar 

ratio) 

PBT-1 1.25 2.38 2.3 

B0.5T-0 2.22 4.06 2.4 

B0.5T-0.5 1.69 3.41 2.1 

B0.5T-1 1.95 3.17 2.7 

B0.25T-2 1.39. 1.53 3.9 

B0.5T-2 1.64 3.09 2.3 

B1T-2 0.77 2.78 1.2 



 

109 
 

3.4.1.2.  XRD analysis 

X-Ray Diffraction patterns obtained for different catalysts are shown in Figure 3.2    

P25-enriched TiO2 powder (PT-1) shows XRD peaks characteristic of both anatase and 

rutile crystalline phases (International Centre for Diffraction Data; Powder diffraction files 

ICCD, PDF 01-080-6402)46. Diffraction peaks at 2θ = 25.04°, 37.50°, 47.74°, and 54.93° 

are attributed to anatase crystal planes and those at 2θ = 27.21°, 35.83°, and 53.75° to 

rutile46. The catalyst synthesized without any surfactant (B0.5T-0) exhibited a weak peak at 

2θ = 27.90° that can be assigned to the major peak for Bi2O3, which shows the comparable 

value for alpha and gamma Bi2O3
47–51.  Peaks responsible for bismuth titanate or anatase 

could not be detected due to the low intensity of those peaks. Tween-80 incorporation in 

the synthesis of B0.5T-0.5, B0.5T-1, and B0.5T-2 catalysts leads to XRD peaks representing 

a higher amount of anatase and bismuth-titanate mixed oxide phases (Bi4Ti3O12) relative 

to Bi2O3 than in the B0.5T-0 catalyst. Peaks assigned to Bi4Ti3O12 appear at 21.40°, 23.37°, 

30.06°, 32.87°, 39.76°, 47.20°, and 57.05° are identified and confirmed according to the 

Crystallography Open Database (COD-2020.12.16)52,53 and are present in all BT catalysts 

synthesized with Tween-80.  The presence of P25 in the PBT catalyst (PBT-1) also results 

in peaks for anatase and rutile, in addition to those for Bi4Ti3O12. 

Figure 3.2. also shows the XRD patterns of the catalysts synthesized by varying the Bi 

concentration but keeping the Ti and Tween-80 concentrations constant (B0.25T-2, B0.5T-2, 

B1T-2; Table 3.1).  
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These catalysts show characteristic peaks for anatase, Bi4Ti3O12, and Bi2O3.  However, an 

increase in the Bi concentration results in a decrease in the intensities of Bi2O3 and anatase 

peaks relative to the Bi4Ti3O12 peaks in the order B0.25T-2 > B0.5T-2 > B1T-2. Figure 3.3 

shows the areas of the most intense peaks for anatase (101) and Bi4Ti3O12 (171)  

crystalline phases for the B0.25T-2 and B0.5T-2 catalysts.  
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Figure 3.2. X-Ray Diffractograms of the catalysts 
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The anatase: Bi4Ti3O12 peak area ratios for B0.25T-2 and B0.5T-2 are 1:2 and 1:4.5, 

respectively, indicating that an increase in the Bi concentration and a decrease in the 

anatase concentration, which suggests that more Ti is incorporated into the Bi4Ti3O12 

network. At a higher Bi concentration of the B1T-2 catalyst, only Bi4Ti3O12 peaks are 

observed.  Peaks due to anatase and Bi2O3 are not detected. The crystallite size 

measurement for Bi4Ti3O12 for the BxT-2 (x=0.25, 0.5, 1) catalysts was carried out using 

the Scherrer equation, D = k λ / (β cosθ), where D is the crystallite size, k is a constant (0.94 

for spherical particles), λ is the wavelength of the X-ray radiation (1.54 Å), β is the line 

width at half maximum (FWHM), and 2θ is the angle of diffraction54. The average 

crystallite sizes obtained from XRD were 14.1(±0.48), 11.0(±1.14), and 12.3(±1.03) nm 

for the B0.25T-2, B0.5T-2, and B1T-2 catalysts, respectively. 
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Figure 3.3. Anatase (101) and Bi4Ti3O12 (171) peak area obtained 

from XRD for (a) B0.25T-2 and (b) B0.5T-2 catalysts 
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According to the crystalline phase relative peak areas obtained from the XRD 

patterns (Anatase (101), Bi2O3, and Bi4Ti3O12 (171)), the composition of the catalyst with 

respect to the percentage of three different crystalline phases can be shown in a ternary 

phase diagram as follows (Figure 3.4).  

 

Figure 3.4. Ternary phase diagram for the percentages of Bi2O3, TiO2, and 

Bi4Ti3O12 in the photocatalysts determined by XRD 
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3.4.1.3.  X-ray photoelectron spectroscopy 

  The surface chemical composition and elemental oxidation states of the catalysts 

were investigated by XPS. Figures 3.5-3.10 show the XPS spectra of bismuth titanate 

catalysts, PT, and PBT catalysts.  

 

 

 

Figure 3.5. XPS spectra of catalyst B0.5T-0 
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Figure 3.7. XPS spectra of catalyst B0.5T-1 

Figure 3.6. XPS spectra of catalyst B0.5T-0.5 
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Figure 3.8. XPS spectra of catalyst B0.5T-2 

Figure 3.9. XPS spectra of catalyst PBT-1 
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The C 1s peak at 284 eV is derived from the adventitious carbon used to calibrate 

the binding energy scale of the XPS data. The spectra show peaks corresponding to the 

photoemission of Bi 4f, Bi 4d, Ti 2p, and O 1s core levels. Two sharp peaks at the lower 

binding energy region can be assigned to Bi 4f5/2 and Bi 4f7/2 levels55. In all these catalysts, 

the binding energies of Bi 4f5/2 and Bi 4f7/2 show a positive shift than previously reported 

values for bare Bi2O3 (166.4 eV -161.0 eV)55 and Bi4Ti3O12 (164.5 eV-159.2 eV)18. This 

positive shift is likely due to partial oxidation of Bi3+ centers to Bi(3+δ+)56, which indicates 

a strong interaction between Bi and TiO2 due to the formation of Bi-O-Ti bonds57. For the 

B0.5T-0 catalyst, the Bi 4f5/2 and 4f7/2 doublet occurred at 166.9 and 161.8 eV, respectively. 

These values are comparable to the previously reported range of 167.2-161.8 
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Figure 3.10. XPS spectra of catalyst PT-1 
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eV, suggesting the existence of Bi2O3-TiO2 interaction in the B0.5T-0 catalyst 55. Compared 

to B0.5T-0, catalysts synthesized using Tween-80 (B0.5T-0.5, B0.5T-1, and B0.5T-2, and 

PBT-1) showed less shift (compared to 166.9 and 161.8 eV) of the Bi 4f doublet. For 

instance, the binding energies for Bi 4f5/2 and 4f7/2 doublet for B1T-2 is centered at 160.6 

eV and 165.9 eV, respectively. Less shift in the Bi 4f5/2 and 4f7/2 doublet for B0.5T-2 

compared to B0.5T-0 can be considered as an indication of the existence of (+3-δ) valence 

state of Bi in Bi4Ti3O12 that is produced due to the oxygen deficiency and an increase in 

oxygen vacancies near the Bi cations in [Bi2O2]
2+ or [Bi2Ti3O10]

2- layers58.  

The XPS spectra of Ti 2p for the Bi-containing catalysts can be resolved into two 

peaks that can be assigned to Ti 2p1/2, Ti 2p3/2, and these overlap with the Bi 4d3/2  peak 

leading to one broad band centered at 467.0 - 465.0 eV. Binding energy values of 2p3/2 for 

each catalyst are given in Table 3.3. An example of peak fitting for one catalyst (B0.5T-2) 

is shown in Figure 3.11.   The binding energies of 2p3/2 peaks of Bi-containing catalysts 

showed a higher value and broader peaks than that of catalysts without Bi (PT-1 and T-2), 

as shown in Table 3.3. This shift towards a higher binding energy can be ascribed to the 

decreasing electron density around the Ti4+ due to  Bi3+ ions59. This further confirms the 

Ti-O-Bi interaction of all of the Bi-containing catalysts. Peak broadening can also be 

attributed to the formation of the Ti-O-Bi network, and surface defects60. Figure 3.10 

shows peaks assigned to Ti 2p1/2 and Ti 2p3/2 photoemissions of PT-1 catalyst at 463.2 

and 457.6 eV, respectively, with a typical energy gap of 5.7 eV that is characteristic of Ti4+ 

51.  Moreover, Bi-containing catalysts show a single asymmetric peak for the O 1s region 

at above 530.0 eV, indicating that there is more than one chemical state which confirms 

Bi-O and Ti-O bonds 58,61. 
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                                             Table 3.3. Ti 2p3/2 binding energy values 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Catalyst Ti 2p3/2 (eV) 

PT-1 457.6 

B0.5T-0 461.4 

B0.5T-0.5 460.1 

B0.5T-1 459.8 

B0.5T-2 460.1 

PBT-1 459.8 
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Figure 3.11. Gaussian peak fitting of XPS spectra of Ti 2p and Bi 4d3/2 

region (B0.5T-2 catalyst) 
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3.4.1.4.  UV-Vis diffuse reflectance measurements 

The UV-Vis diffuse reflectance measurements were performed to determine the 

bandgap energy (Eg) of the catalysts. Figure 3.12 and 3.13 show the modified Kubelka-

Munk function, (F(R) hν)2, versus the bandgap energy (eV) for the different catalysts, 

where h is the Planck constant and ν is the frequency. An exponent of 2 in the Kubelka-

Munk function was used considering the direct transition band gap62,63. F(R) was 

determined by transforming the reflectance (R) spectra of the samples. The bandgap values 

were obtained by extrapolating the linear part of the curve to (F(R) hν)2 = 0. The catalyst 

B0.5T-0 (Figure 3.12) shows a direct bandgap = 2.87 eV, which is comparable to previously 

reported Bi2O3 band gap values64.  Previous studies on pure anatase and Bi4Ti3O12 show 

higher bandgap values than Bi2O3
65,66. With the formation of more Bi4Ti3O12, bandgaps of 

B0.5T-0.5, B0.5T-1, and B0.5T-2 catalysts (Figure 3.12) increased to 3.02, 3.11, and 3.18 eV, 

respectively. This increase in the bandgap can be attributed to the formation of more 

Bi4Ti3O12 that was observed in several other studies as well67. Also, B0.5T-0.5, B0.5T-1, and 

B0.5T-2 catalysts show slightly lower bandgap values than pure Bi4Ti3O12 reported in other 

studies (3.20 eV)68–70. This decrease in bandgap is likely due to the interaction between 

narrow bandgap Bi4Ti3O12 with TiO2 heterojuncntion61. 
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UV-Vis DRS for the catalysts synthesized with varying amounts of bismuth and 

the same amount of Tween-80 are shown in Figure 3.13. The T-2 catalyst shows a bandgap 

energy of 3.27 eV (Figure 3.13), which is a closer value to the reported band gap of anatase 

(3.26 eV)71. The bandgap energy of 3.25 eV for B1T-2 (Figure 3.13) is within the range 

(3.20 eV- 3.29 eV) of the reported values for Bi4Ti3O12
68–70.  In our study, the higher value 

of the Bi1Ti-2 bandgap (compared to other Bi-incorporated catalysts) can be attributed to 

decrease in the amount of anatase and Bi2O3, relative to Bi4Ti3O12 (Figure 3.2 and 3.3).  

Also smaller crystallite size 12.3 (±1.03) lead to increase the bandgap value of Bi1Ti-2 

catalyst compared to the other Bi-containing catalysts shown in Figure 3.13. This change 

can be attributed to the quantum confinement effect72. When the particle size decreases at 

the nanoscale, the number of overlapping energy levels decreases, and band energy 
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Figure 3.12. Modified Kubelka-Munk vs. energy plots; catalysts synthesized   
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becomes discrete. This causes a rise in the bandgap between the valence band and 

conduction band73. A lower bandgap energy of 3.15 eV was observed for the Bi0.25Ti-2 

(Figure 3.13) catalyst than those of the Bi0.5Ti-2 and Bi1Ti-2 catalysts. This lower value 

can be attributed to two major factors identified from the XRD analysis. 1. Larger 

crystallite size of the Bi4Ti3O12 species in Bi0.25Ti-2 (14.1(±0.48) nm) than Bi0.5Ti-2 

(11.0(±1.14) nm), and Bi1Ti-2 (12.3(±1.03) nm) 2. The coexistence of three crystalline 

phases (TiO2, Bi2O3, and Bi4Ti3O12) in this catalyst leading to a double heterostructure 

arrangement.  
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Figure 3.13. Modified Kubelka-Munk vs. energy plots; catalysts 

synthesized varying Ti:Bi (molar) and using same amount of Tween 80 
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3.4.1.5. BET surface area 

Specific surface areas, pore sizes, and pore volumes of the photocatalysts calculated 

by the BET and BJH methods are summarized in Table 3.4. Figure 3.14-3.22 shows the N2 

adsorption-desorption isotherms of each catalyst. All samples exhibit type (IV) isotherms 

with a hysteresis loop according to the IUPAC classification, indicating that they have a 

mesoporous structure74. Pore size distribution was evaluated by considering the desorption 

branch of the isotherms.  In the desorption branch of the isotherm for the B0.5T-0 catalyst 

(Figure 3.14), pore size is uniform (~5 nm diameter) compared to those in the B0.5T-0.5, 

B0.5T-1, and B0.5T-2 catalysts. This uniform pore size distribution in B0.5T-0 is likely due 

to the presence of only Bi2O3 in this catalyst.  

 

Table 3.4. Structural characteristics of the catalysts 

 

Catalyst BET surface area 

(m2/g) 

Pore volume 

(Single point 

adsorption total) 

(cm3/g) 

BJHads pore 

diameter 

(nm) 

BJHdesorp pore 

diameter 

(nm) 

PT-1 87.60 0.167 8.10 7.45 

PBT-1 42.04 0.227 23.21 18.86 

B0.5T-0 83.26 0.118 6.11 5.33 

B0.5T-0.5 66.59 0.128 8.38 7.62 

B0.5T-1 61.85 0.162 11.34 9.90 

B0.25T-2 50.94 0.116 9.39 8.04 

B0.5T-2 56.80 0.144 10.86 9.94 

B1T-2 26.48 0.159 24.94 18.77 

T-2 89.91 0.111 5.49 5.07 
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Figure 3.14. N2 adsorption-desorption isotherms  

and corresponding pore size of B0.5T-0 
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Figure 3.15. N2 adsorption-desorption isotherms and  

corresponding pore size B0.5T-0.5 
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The emergence of porous structures with pore size diameter in the ~5-10 nm range is 

observed in the B0.5T-0.5 catalyst (Figure 3.15). This pattern extends and becomes more 

noticeable for the B0.5T-1 and B0.5T-2 catalysts that show an increase in pore size diameter 

> 5 nm due to the presence of the TiO2 and Bi4Ti3O12 species (Figure 3.16 and Figure 3.17).  

 

Pore distribution becomes less monodisperse for the catalysts synthesized with varying 

amounts of Bi but the same amount of Tween-80 (B0.5T-2, B0.25T-2, B1T-2; Figure 3.17, 

3.18 and 3.19). This can be attributed to the presence of different species in the catalysts 

(i.e.,Bi2O3, anatase, and Bi4Ti3O12). According to XRD analysis, ratios of major peaks for 

anatase to Bi4Ti3O12 increased in the order of 1:2,1:4.5 and 1:44 for B0.25T-2, and B0.5T-2 
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Figure 3.16. N2 adsorption-desorption isotherms  

and corresponding pore size B0.5T-1 
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catalysts, respectively. With the increase of Bi4Ti3O12, a decrease in Bi2O3, anatase species 

was also observed. 
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Figure 3.18. N2 adsorption-desorption isotherms and  

corresponding pore size distribution of the catalysts B0.25T-2 
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Figure 3.17. N2 adsorption-desorption isotherms and  

corresponding pore size distribution of the catalysts B0.5T-2 
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The PT-1 catalyst shows two types of pores due to TiO2 (~5 nm) and P25 (~15 nm), while 

the T-2 catalyst only shows pore distribution of ~5 nm (Figure 3.20 and 3.21). The PBT-1 

catalyst shows a wide distribution of pore sizes from 5 to 60 nm, which can be attributed 

to the presence of the Bi4Ti3O12 and P25 (Figure 3.22). 

 

 

 

 

 

 

Figure 3.19. N2 adsorption-desorption isotherms and 

 corresponding pore size distribution of the catalysts B1T-2 
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Figure 3.21. N2 adsorption-desorption isotherms and corresponding 

pore size distribution of T-2 

Figure 3.20. N2 adsorption-desorption isotherms and corresponding 

 pore size distribution of PT-1 
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A decrease in the surface area was observed with an increase in the Tween-80 concentration 

(i.e., B0.5T-0 > B0.5T-0.5 > B0.5T-1 > B0.5T-2). Pore diameters and volumes, however, 

increased with an increase in Tween-80 concentration. Therefore, the formation of more 

Bi4Ti3O12 with increasing Tween-80 concentration in the sol-gel results in a smaller BET 

surface area but a larger pore size. The reported surface area of mesoporous Bi4Ti3O12 

species at 53.6 m2g-1 is within the range of surface areas measured in this study.75  

 

 

 

 

Figure 3.22. N2 adsorption-desorption isotherms and corresponding 

 pore size distribution of the catalysts PBT-1 
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3.4.1.6.  Scanning electron microscopy 

The SEM micrographs (Figure 3.23) show that particle size decreases with an 

increasing surfactant concentration in the catalysts. More uniform distribution and less 

particle aggregation are observed by increasing the Tween-80:Ti molar ratio from 0 to 2 in 

the initial mixture. These observations can be attributed to the role played by the Tween-

80 in making a stable sol that facilitates interparticle repulsion and prevents aggregation76. 

 

 

Figure 3.23. The SEM micrographs of the photocatalyst of the catalysts (a: B0.5T-0, 

b: B0.5T-0.5, c: B0.5T-1, d: B0.5T-2, e: PBT-1, f: PT-1) 

a-B0.5T-0 b-B0.5T-0.5 c-B0.5T-1 

d-B0.5T-2 e-PBT-1 f-PT-1 
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  Effect of the surfactant on the catalyst formation 

Based on the above characterization results, it can be seen that the phase 

transformation, and fraction of each crystalline phase (Bi2O3, Bi4Ti3O12, and TiO2) are 

affected by the surfactant concentration. The catalysts B0.5T-0, B0.5T-0.5, B0.5T-1, and 

B0.5T-2 that contain the same Ti:Bi molar ratio of 1:0.5 had different amounts of Bi2O3, 

Bi4Ti3O12, and TiO2 (Figure 3.2). This can be attributed to the presence of different 

concentrations of the surfactant in these catalysts. The addition of surfactants during the 

nanoparticle growth process has been shown to control the crystallinity of 

nanoparticles77,78. Specifically, the B0.5T-0 catalyst showed only Bi2O3 and no detectable 

amounts of anatase TiO2 or Bi4Ti3O12 that is due to the absence of the surfactant during the 

synthesis process (Figure 3.2). The adsorption of the uniformly ordered structure of the 

surfactant on the metal oxide can greatly decrease the particle growth rate, causing 

decreased aggregation and increased crystallinity65. Therefore, in this work appearance of 

crystalline phases of Bi4Ti3O12 and TiO2 was observed when increasing the surfactant 

concentration. 

The sol-gel method used for the preparation of TiO2 in this study involves highly 

reactive TTIP, which is rapidly hydrolyzed and condensed to form a Ti-O-Ti network. It 

was observed that the presence of surfactants could significantly reduce the hydrolyzation 

and condensation reactions due to the capping effect of surfactants around the titania 

precursor79–81. The small micelle size and rigidity resulted from the addition of surfactant 

can limit the aggregation of the nanoparticles during the sol-gel process82. A previous 

report on BiVO4 formation has found that reaction between Bi3+ (in the Bi(NO3)3 precursor) 

and VO3
-  is partly inhibited by the surfactant polyethylene glycol83. A similar phenomenon 
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can affect the Bi precursor in the process of condensation into Bi2O3 nanoparticles. Bi3+ in 

the Bi precursor solution can adsorb to the surfactant's hydrophilic parts, leading to a 

decrease in the condensation reaction rate, and inhibiting the formation of the Bi-O-Bi 

network. Considering the surfactant effect as mentioned above, it can be hypothesized that 

the addition of Tween-80 inhibits the initial rapid formation of Ti-O-Ti and Bi-O-Bi 

networks. This leads to the formation of Bi4Ti3O12 phase that, following an increase in 

Tween-80 concentration, results in its higher fraction in the catalyst. 

 

 Photocatalytic degradation of phenol 

Figure 3.24 shows the photodegradation of phenol at 420 nm with time in the 

presence of different catalysts synthesized with a Ti:Bi molar ratio of 1:0.5 and different 

Tween-80 concentrations. The apparent pseudo first-order rate constants (kapp) for phenol 

photodegradation are reported in Table 3.5. At 420 nm irradiation, without any catalyst, no 

phenol was degraded, indicating that radiation alone at this wavelength is not effective in 

degrading phenol. Phenol concentration decreased by ~18% and ~24% in the presence of 

PT-1 and B0.5T-0 catalysts (both synthesized without Tween-80), respectively, within 3 hr.  

The catalysts that were synthesized using Tween-80, however, enhanced the 

photocatalytic activity. The catalysts with the lowest (B0.5T-0.5) and the highest (B0.5T-2) 

Tween-80 concentrations increased the photocatalytic activity by ~10% and ~16%, 

respectively, compared to B0.5T-0. This lower activity of the B0.5T-0 can be ascribed to its 

low degree of crystallinity and the presence of Bi2O3 (Figure 3.2) and its lower bandgap 

energy (2.87 eV) that lead to the photogenerated electron-hole recombination. Higher 

phenol degradation rates were observed for the B0.5T-1 and PBT-1 catalysts at 45% and 
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44%, respectively. The higher photocatalytic activity of B0.5T-1 can be attributed to its 

higher crystallinity and the presence of the Bi4Ti3O12 species (Figure 3.2) that has a lower 

bandgap energy compared to anatase and can efficiently suppress the photogenerated 

electron-hole recombination84. The presence of P25 in the PBT-1 catalyst did not show any 

improvement in phenol degradation kinetics compared to the B0.5T-1 catalyst (Figure 3.24).  

        

       Table 3.5. Apparent rate constants for phenol photodegradation 

 

 

 

 

 

 

 

 

 

 

 

 

Catalyst kapp /min-1 

PT-1 1.08×10-3± (3.2×10-4) 

PBT-1 3.22×10-3± (5.2×10-4) 

B0.5T-0 1.58×10-3± (1.8×10-4) 

B0.5T-0.5 2.34×10-3± (1.1×10-4) 

B0.5T-1 3.26 ×10-3 ± (9.7×10-4) 

B0.25T-2 3.60 ×10-3 ± (2.3×10-4) 

B0.5T-2 2.80 ×10-3 ± (1.5×10-4) 

B1T-2 2.10 ×10-3 ± (6.9×10-4) 
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The effect of Bi concentration in the photocatalysts on phenol photodegradation is 

shown in Figure 3.25. In the absence of Bi, the catalyst T-2 did not show any phenol 

degradation. The lower activity is due to the insufficient photon energy at 420 nm (2.952 

eV) compared to the bandgap energy of anatase at 3.26 eV. The photodegradation rate 

increased with the addition of Bi to the catalysts. However, catalysts with the lowest Bi 

concentration (B0.25T-2) showed a higher phenol degradation activity compared to the other 

catalysts with higher Bi concentrations (B0.5T-2 and B1T-2). This may be attributed to the 

decreasing bandgap energy (Figure 3.13) due to the presence of multiphase components, 

0 30 60 90 120 150 180

0.00

0.25

0.50

0.75

1.00

 No Catalyst

 PT-1

 B0.5T-0

 B0.5T-0.5

 B0.5T-2

 PBT-1

 B0.5T-1

C
/C

0

time (min)

Figure 3.24. Time concentration plots for the photodegradation of phenol 1×10-4 M 

photocatalysts (0.04 g) synthesized using same amount bismuth ( Ti:Bi =1:0.5) and 

changing amounts of Tween 80 
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which allows efficient absorption of radiation at 420 nm wavelength to generate electron-

hole pairs. It has been found that photocatalytic activity of Bi4Ti3O12 only is poor due to its 

less adsorption ability of organic compounds85. Even though lowering the bandgap 

enhances the possibility of recombination of electron-hole pairs, the coexistence of 

multiple phases, such as anatase, Bi2O3, and Bi4Ti3O12, minimizes the recombination rate26. 

Several studies have shown that Bi4Ti3O12/TiO2 heterojunction catalysts have a higher 

activity than Bi4Ti3O12 or TiO2 alone due to their lower electron-hole recombination23,86,87. 

Accordingly, the % degradation of phenol by the B0.25T-2 catalyst shows a ~6% higher 

value than the B0.5T-2 catalyst and ~ 14% higher value than B1T-2. 
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Figure 3.25. Time concentration plots for the photodegradation of 

phenol 1×10-4 M photocatalysts (0.04 g) synthesized varying bismuth 

concentration (Ti: Bi =1:0, 1:0.25,1:0.5,1:1) and constant Tween-80 
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 Photocatalytic degradation mechanism 

Catalysts with a double heterojunction are reported to be more efficient in inhibiting 

the electron-hole recombination than those with a single heterojunction35. The improved 

activity of multiphase composite materials can be explained by the band structure of their 

components. A possible catalytic mechanism for ternary heterojunction composite is 

proposed in Figure 3.26, which is similar to the study done by Zhao et al35. CB and VB 

positions can be calculated using the empirical equation88,89,                                    

                                                   ECB = X- Ee - 0.5 Eg  

where ECB is the CB edge potential, X is the geometric mean of Mullikan electronegativity 

of the constituent atoms (Bi2O3 = 6.23 eV, Bi4Ti3O12 = 4.12 eV, TiO2 = 5 .81eV) 25, Ee is the 

energy of free electrons on the hydrogen scale (about 4.5 eV), and Eg is the bandgap energy. 

The Eg values for bare Bi2O3, Bi4Ti3O12, and TiO2 were calculated according to the UV-

Visible diffuse reflectance measurements as 2.87, 3.25, and 3.26 eV, respectively. The ECB 

values at the points of zero charge were estimated as, Bi2O3 = 0.33 eV, Bi4Ti3O12 = -1.98 

eV, and TiO2 = -0.32 eV. According to these values, the calculated VB potentials (EVB) of 

Bi2O3, Bi4Ti3O12, and TiO2 are 3.20, 1.27, and 2.94 eV, respectively. 

Electrons in the VB of Bi2O3 can be excited by visible light up to 442.8  nm due to 

its low bandgap energy (2.80 eV)90. Consequently, the photo-induced holes of Bi2O3 can 

be transferred into the VB of Bi4Ti3O12, disturbing its charge balance, as explained in a 

similar study done by Zhao et al35. The Bi4Ti3O12 CB electrons can then migrate to the CB 

of TiO2 that possesses a lower energy level (Figure 3.26), where photocatalytic reactions 

are initiated. The CB position of TiO2 (-0.32 eV) is more negative than the potential for O2 

reduction to superoxide (EO2/●O2
- = -0.046 eV)26. Therefore, electrons transferred to CB 
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of TiO2 can react with O2 on its surface to produce ●O2
-, and through a series of reactions, 

hydroxyl radicals (●OH)4. The VB positions of TiO2  (3.20 eV) are higher than those of 

E●OH/OH- (2.38 eV) and E●OH/H2O (2.72 eV), resulting in the generation of hydroxyl 

radicals at the VB of Bi2O3. According to the proposed scheme, holes are not generated at 

the VB of TiO2, but the holes generated at the VB of Bi2O3 are transferred to the VB of 

Bi4Ti3O12.  

On the whole, photocatalytic activity is enhanced mainly due to the efficient 

separation of charge carriers within the heterostructures. A lower Bi concentration in the 

B0.25T-2 catalyst shows that more multiphase species coexist in the same catalyst as 

observed in the XRD analysis (Figure 3.2). Therefore, the highest phenol degradation 

activity observed for the B0.25T-2 catalyst can be attributed to the aforementioned lower 

bandgap and less recombination brought about by the presence of multiphase species.  

Figure 3.26. Schematic diagram for photocatalytic mechanism in  

TiO2/ Bi4Ti3O12/ Bi2O3 heterostructure 
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 Conclusions 

In this study, we have shown that the resulting oxide phases of the catalyst mixture and 

their crystallinity can be controlled by incorporating Tween-80, a non-ionic surfactant, 

into the bismuth-titanate sol-gel synthesis scheme. The catalysts synthesized in this 

study showed major crystalline phases as Bi2O3, TiO2 (anatase), and Bi4Ti3O12. The 

bismuth-titanate (Bi4Ti3O12) fraction in the catalysts was increased by increasing the 

Tween-80 concentration (Tween-80:Ti molar ratio = 0 < 0.5:1 < 1:1 < 2:1), while 

keeping the Bi and Ti concentrations constant in the sol-gel mixture (Ti:Bi molar ratio 

=1:0.5). Also, at an optimum level of surfactant (Tween-80:Ti molar ratio = 2:1), 

increasing the Bi concentration (Ti:Bi molar ratio = 1:0.25 < 1:0.5 < 1:1 ) resulted in 

an increase in the Bi4Ti3O12 concentration in the catalyst. The combination of Bi2O3, 

TiO2 (anatase), and Bi4Ti3O12 resulted in a visible light-active photocatalyst that can 

effectively degrade phenol under 420 nm light illumination. It was identified that it is 

vital to have all three crystalline phases (Bi2O3, TiO2 (anatase), and Bi4Ti3O12) in the 

catalyst mixture to degrade phenol successfully. The lack of any of these semiconductor 

species resulted in a less than optimal photocatalytic activity under visible light. It can 

be concluded that photocatalytic activity of the ternary structured catalysts is enhanced 

due to the efficient separation of charge carriers within the heterostructures. The 

catalyst synthesized with a lower Bi content (Ti:Bi ratio = 1:0.25) and higher Tween-

80 concentration (Tween-80:Ti ratio = 2:1) showed the coexistence of Bi2O3, TiO2 

(anatase), and Bi4Ti3O12 that resulted in a lower bandgap energy and an optimal 

photocatalytic activity under visible light. 
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 : FUTURE DIRECTIONS 

  Preparation of visible light active TiO2-SiO2 coatings 

In Chapter 2, a robust P25 powder modified TiO2-SiO2 photocatalytic film was 

developed to degrade taste and odor compounds under UV illumination. However, it would 

be beneficial to avoid energy-consuming UV illumination to degrade organic pollutants 

and design the catalyst to perform under visible light/sunlight. In order to extend the titania 

silica film activity to visible range, non-metals such as nitrogen can be doped into the 

catalysts, or as discussed in Chapter 3, visible light-activated semiconductor bismuth-

titanate heterostructures can be tailored to TiO2-SiO2 films.  

Further characterization of the catalyst films should be conducted for the crystal 

size using X-ray diffraction analysis to explain the blue shifts in the band edge of Si-

incorporated catalysts. Catalyst film characterization by time-resolved photoluminescence 

is proposed to determine the photogenerated electron-hole recombination efficiency. 

 

  Activity of bismuth incorporated photocatalyst composites 

In Chapter 3, a bismuth-titanium photocatalyst was developed, and effective 

photocatalytic activity with respect to phenol degradation under 420 nm light was achieved.  

A study of the activity of the catalyst under sunlight or solar simulator is proposed. 

Photocatalytic activity efficiency can depend on the type of compound that is being 

degraded. Therefore, it is worthwhile to evaluate the degradation of common emerging 

drinking water contaminants such as pharmaceutical compounds, and PFAS (poly-

fluoroalkyl substances), and algal exudates. 
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Lowering the illumination time of the catalyst with the organic contaminant and 

increasing the efficiency of the photocatalytic activity is proposed. This can be achieved 

by increasing the catalyst loading and designing macroporous catalysts with enhanced 

surface area. 

The heterostructured catalyst composite material should be further studied for its 

charge carrier separation using photoluminescence spectroscopy and transient photocurrent 

measurements. In order to verify the photodegradation mechanism towards organic 

pollutants, photocatalytic experiments with scavengers (ammonium oxalate, para-

benzoquinone-, and isopropyl alcohol) are proposed. Ammonium oxalate, para-

benzoquinone-, and isopropyl alcohol are scavengers for h+, ●O2- and ●OH, respectively1,2. 

Furthermore, the reusability of the catalyst should be evaluated and make sure that the 

heterostructure of the catalyst is stable over multiple uses. The addition of protective layers 

such as TiO2 sol-gel coating and nitrogen-doped TiO2 is proposed to improve the stability 

of the catalyst particles. 

 

  Implementation of catalyst films for photodegradation of pollutants in pilot      

scale 

Even though numerous lab-scale photocatalytic materials (films and powders) have 

been synthesized, there is a limited number of studies on using these photocatalysts in 

actual drinking water or wastewater treatment plants. Based on the results obtained in 

Chapter 2, a pilot-scale immobilized photocatalyst substrate is proposed to operate along 

with the UV lamps used in the drinking water treatment facility. The immobilized catalyst 

substrate should be placed along the flow path such that it would enhance mixing and mass 
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transfer of the pollutants to the catalyst surface without creating excessive headloss. 

Coating the outer surface of the UV lamps with catalyst and evaluating the photocatalytic 

activity is also proposed. The implications of dissolved organic matter and other 

contaminants in the feed water on photocatalytic efficiency can be assessed as well. 
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