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Abstract— With the technical advances in ubiquitous comput-
ing and wireless networking, there has been an increasing need
to capture the context information (such as the location) and to
figure it into applications. In this paper, we establish the theoreti-
cal base and develop a localization algorithm for building a zero-
configuration and robust indoor localization and tracking system
to support location-based network services and management. The
localization algorithm takes as input the on-line measurements of
received signal strengths (RSSs) between 802.11 APs and between
a client and its neighboring APs, and estimates the location of
the client. The on-line RSS measurements among 802.11 APs
are used to capture (in real-time) the effects of RF multi-path
fading, temperature and humidity variations, opening and closing
of doors, furniture relocation, and human mobility on the RSS
measurements, and to create, based on the truncated singular
value decomposition (SVD) technique, a mapping between the
RSS measure and the actual geographical distance.

The proposed system requires zero-configuration because the
on-line calibration of the effect of wireless physical characteristics
on RSS measurement is automated and no on-site survey or
initial training is required to bootstrap the system. It is also
quite responsive to environmental dynamics, as the impacts of
physical characteristics changes have been explicitly figured in the
mapping between the RSS measures and the actual geographical
distances. We have implemented the proposed system with
inexpensive off-the-shelf Wi-Fi hardware and sensory functions
of IEEE 802.11, and carried out a detailed empirical study in
our division building. The empirical results show the proposed
system is quite robust and gives accurate localization results (i.e.,
with the localization error within 3 meters).

Index Terms— Location estimation, truncated singular value
decomposition, received signal strength (RSS)-based wireless
localization

I. INTRODUCTION

We have witnessed swift advances in wireless communica-
tion and networking over the last decade. Such advances have
made it possible to realize the notion of ubiquitous computing
and communications. As a result, the capability for capturing
contexts and figuring them into the computing/communication
process has become an immediate need. As the physical
location is one of the most important context parameters,
its availability, as concluded independently in several market
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surveys [1], [2], will define the emerging market of location-
based services with $7B to $8B projected revenue over the
next few years.

Availability of physical locations of wireless-enabled com-
puting devices also facilitates wireless resource management.
The proliferation of wireless-enabled devices (and applications
built on top of them) has aggravated the competition for
limited bandwidth in the underlying wireless infrastructure.
This is particularly true for devices operating in the unli-
censed frequency band such as IEEE 802.11-enabled devices
[3]. Without adequate resource provisioning, wireless-enabled
devices may soon become the victims of their own success.
A thorough understanding of how wireless resources are
spatially and temporally used is thus necessary, based on
which intelligent management and provisioning policies can
be developed. As the limited frequency band for wireless
communication is essentially a spatial resource defined by
the location, the availability of device location information
will enable advanced management and control of wireless
networks. The wireless infrastructure will likely sustain, even
in the presence of constantly increasing offered loads.

Building an indoor localization system to estimate the
location of wireless devices is a challenging research problem.
In an indoor environment, RF signal propagation is affected by
a number of factors such as multi-path fading, temperature and
humidity variations, opening and closing of doors, furniture
relocations, and the presence and mobility of human beings. To
demonstrate the impact of these factors, we placed a stationary
802.11 monitor in one of the student cubicles and logged
the received single strength (RSS) from the nearest 802.11b
access point during the period of January 1-7, 2005. As shown
in Figure 1, the RSS, averaged over a time window of 5
minutes, varied at both small (seconds) and large (hours) time
granularities, and the variation was as high as 7 dBm. Figure 2
gives a zoom-in view of the RSS measurement on January 4.
From these two figures we observe substantially higher RSS
variations during weekdays (January 3 - 7) and during office
hours (9:00am-6:00pm). The high variation of RSSs excludes
localization algorithms that require a full-scale, on-site survey
and training process to initialize the localization system (e.g.,
[4]-[8]). These algorithms do not scale to large environments
such as enterprise buildings and factory floors because they
require extremely cumbersome and intrusive re-calibrations in
order to maintain high accuracy in the presence of environment
changes (as discussed above). A localization system should
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Fig. 1. 5-minute average RSS, January 1-7, 2005

adapt to all environmental dynamics, and be able to auto-
configure itself in response to such environmental dynamics.
It should also be resilient to measurement errors (introduced
in the sensory inputs from, for example, off-the-shelf 802.11
interfaces).

Several R&D efforts have been made in utilizing the
physical location for detecting rogue APs and for gross-
grained localization [4], [6], [7], [9]-[12]. While these efforts
have demonstrated certain level of feasibility and inspired the
work proposed in this paper, there are still several research
issues that should be addressed, before a low-cost, adaptive,
and robust localization and tracking system can eventually
be realized. In particular, existing approaches either rely on
special sensory hardware [9]-[11], [13], do not achieve fine
localization granularity [5]-[7], [12], or require extensive a
priori configuration and training [5]-[8]. (We will provide
a more detailed summary of existing work in Section 11.)
One of the most important issues is the lack of the on-line,
automated calibration mechanism that captures the relationship
between the RSS measurements and the geographical distances
in both the time and spatial domains and the theoretical base
that provides, based on the captured relationship, an accurate
mapping between the RSS measurements and the geographical
distances.

In this paper, we attempt to build a zero-configuration,
robust, indoor localization and tracking system to support
location-based network services and management. Given the
phenomenal popularity of indoor 802.11 (a.k.a Wi-Fi) WLAN
deployments and 802.11-enabled devices, we will leverage
the Wi-Fi infrastructure and augment its functionality and
application domain from wireless connectivity to fine-grained
localization. Our system is grounded on the innovation that
turns the off-the-shelf 802.11-enabled devices into sensors,
the 802.11 access points into anchor nodes, and the managed
802.11 infrastructure into a wireless sensor network.

Specifically, we have developed a localization algorithm that
takes as input the on-line measurements of RSSs (i) between
802.11 APs and (ii) between a client and its neighboring
APs, and estimates the location of the client. The on-line
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RSS measurements between 802.11 APs are used to capture
(in real-time) the effects of environmental dynamics (e.g., RF
multi-path fading, temperature and humidity variations, and
human mobility) on the RSSs, and to create a mapping be-
tween the RSS measure and the actual geographical distance.
The mapping is created with the use of truncated singular
value decomposition (SVD) techniques, with the objectives of
mitigating the effect of measurement errors, while retaining
as much environmental information as possible. The location
of a wireless client can be calculated with the signal-distance
map (SDM) and the user-measured RSSs between itself and
its neighboring APs.!

The proposed system possesses several desirable features.
First, it does not require any additional proprietary hardware.
Second, it requires zero-configuration because the on-line
calibration is automated by the on-line measurements between
APs. Third, it is resilient to measurement noises due to
the truncated SVD technique used for computing the signal-
distance mapping. We have also carried out an empirical
study in our departmental building with the use of Linksys
WRT54G wireless routers equipped with customized Kismet
802.11 layer-2 sniffer software. The empirical results indicate
the proposed system is quite robust and responsive to environ-
mental dynamics, and give accurate localization results (i.e.,
with the localization error within 3m). This is not surprising,
as the impacts of environmental dynamics have been explicitly
figured in in the mapping between the RSS measures and the
actual geographical distances.

It has come to our attention recently that Gwon and Jain [28]
has shared the same view as we do, and proposed a calibration-
free scheme, called Proximity in Signal Space (PSS). In PSS,
each AP collects RSSs from all the other APs and generates
multiple linear functions, each representing a RSS vs. distance
mapping between itself and the corresponding AP. In spite of
its simplicity, the method which PSS used to generate the
mapping is heuristic-based, and is more susceptible to the
location of a wireless client to be localized. As a result, the

1The current 802.11 client interface has already made such measurements
to locate and associate with the AP with the strongest beacon signal.



localization accuracy degrades if a client is not close enough
to one of APs. As reported in the empirical study (Section 1V),
the localization error incurred in PSS is almost twice of that
incurred in SDM in most cases.

The rest of the paper is organized as follows. In Section I,
we present a summary of existing, related work, highlight the
limitation of the current state-of-art approaches, and motivate
the need to construct a better signal-distance mapping. In Sec-
tion 111-B, we first give the system architecture, and then delve
into the theoretical base and the implementation details. This
is then followed by a discussion on several deployment issues,
such as where to place wireless monitors, how to deal with
co-existence of IEEE 802.11a/b/g, and the trade-off between
client privacy and infrastructure security. In Section IV, we
elaborate on how we customize the Kismet 802.11 layer-2
sniffer software and carry out the empirical study. We also
report our empirical findings there. Finally, we conclude in
Section V the paper with several potential avenues for future
work.

Il. RELATED WORK

In this section, we give a succinct summary of existing
work and discuss the limitation of the current state of art. We
categorize existing work roughly into three groups: outdoor
localization, indoor localization, and localization with the use
of wireless sensor networks.

A. Outdoor Localization

The global positioning system (GPS) — the worldwide
satellite-based radio navigation system based on 24 low-earth
orbit satellites — offers perhaps the easiest way to localize
a device. GPS receivers provide a positioning accuracy in
the 7 — 10 meter range. Despite its many advantages, GPS
is not well suited for indoor environments since a building
structure can easily block the satellite signals. On the other
hand, FCC Enhanced 911 [14] enables emergency services
to locate geographic positions of cellular wireless callers. Its
phase Il targets to achieve a localization accuracy of 100 m
and is inadequate for indoor location-based services.

B. Indoor Localization

Systems designed for indoor localization can be classified
based on the signal types (infrared, ultrasound, ultra-wideband,
and radio frequency), signal metrics (AOA: angle of arrival,
TOA: time of arrival, TDOA: time difference of arrival, and
RSS: received signal strength), and the metric processing
methods (triangulation and scene profiling).

Active Badge [15] is one of the early systems based on
infrared ranging. As the infrared signal requires a line-of-sight
propagation path between the transmitter and the receiver,
objects in between can easily block the signal and deteriorate
the performance of the system. Its successor Active Bat [16]
and MIT Cricket [11], [17] are based on the ultrasound
technology. The major problem with the ultrasound technology
is that the propagation velocity of the ultrasound is easily
affected by the temperature and humidity, which introduces

ranging errors over the long term. Ubisense localization system
[10] represents a recent advance in leveraging ultra-wideband
(UWB) for localization. It achieves fine-grained indoor local-
ization with the accuracy of up to ~ 6in (15cm). However,
the cost for a Ubisense UWB reader is currently more than an
order of magnitude higher than that of an 802.11 AP.

Widespread deployments of the 802.11 infrastructure and
the ubiquity of Wi-Fi embedded devices is the most com-
pelling reason for radio-frequency based indoor localization.
Systems based on AOA [13], TOA [9] or TDOA [11], [18]
have been proposed and have reportedly achieved up to 1-
meter localization granularity. However, the measurements of
AOA, TOA, or TDOA necessitate special hardware at either
the infrastructure side or the client side. For example, the
AOA measurement requires the use of directional antenna with
beam forming, while TOA and TDOA measurements require
the availability of fine-grained timers (10ns corresponding to
3-meter RF localization precision).

Since received signal strength (RSS) measurement is based
on a sensor function available in every 802.11 interface,
RSS-based indoor localization therefore receives significant
attention from both academia and industry. Existing solutions
can be further categorized according to their signal processing
methods. Range-based approaches collect RSS measurements,
estimate the distances between a client and reference points
(usually 802.11 APs), and then apply the triangulation method
to derive the client location [12], [19], [20]. Madigan et al.
[21] build a Bayesian hierarchical model to make a tradeoff
between the training dataset sizes and the levels of the range
estimation precision. Approaches in the other category estab-
lish a location-RSS mapping through scene profiling, and infer
the client’s coordinates using different matching algorithms
[51-7], [22]-[24].

While these RSS-based efforts have inspired the proposed
work, there is still room for performance improvement, espe-
cially with respect to the adverse impact of the RSS dynamics.
Recall that in Section I, we observe a wide variation (up
to 20 dBm) of RSS measurements in typical 802.11 infras-
tructure, and the trend persists at different time scales. As
these dynamics are caused by a number of environmental
factors, and non-asymmetric non-Gaussian noise [22], [25]-
[27], the assumption that the indoor space remains consi stent
from the training phase to the localization phase thus does
not hold true in practice. Supervised re-initialization could be
extremely cumbersome and intrusive, and does not scale to
large enterprise buildings and factory floors. On-line training
[6] requires cooperation of autonomous users, and may not be
a desirable solution. What seems to be reasonable is really a
system that acknowledges the existence of RSS dynamics and
incorporates a fully-automated, on-line calibration mechanism
to characterize (but not model in close forms) their relation
with environmental factors in both the time and spatial do-
mains.

Working toward this end, Gwon and Jain [28] proposed a
calibration-free technique, called Proximity in Signal Space
(PSS), that uses inter-AP RSS measurements. Each AP collects
RSSs from all other APs and generates multiple linear func-
tions, each representing a RSS vs. distance mapping between



itself and the corresponding AP. For example, in an environ-
ment with 4 APs, each AP establishes 3 linear functions. A
client node then uses (i) the mapping linear functions kept at
the closest AP (i.e., the AP with the strongest RSS) to compute
its distances to all the APs except the closest AP, and (ii) the
mapping function kept at the second closest AP to compute
its distance to the closet AP. In this fashion, PSS gives an
accurate approximation when a client is close enough to the
closest AP. The authors also proposed a lateration algorithm
called Triangular Interpolation and eXtrapolation (TIX). The
calibration-free TIX algorithm was reported to achieve mean
distance error within 5.4 m, which is comparable to 4.7 m
error of laborious calibration-based algorithms.

C. Wireless sensor network localization

Localization techniques that leverage sensor networks can
be classified into either range-based or range-free approaches.
Range-based approaches measure the proximity (in terms of
hop-count or estimated distance) to a few landmarks (or
beacons) with known locations, and apply different algo-
rithms/strategies to infer sensor node coordinates [29]-[36].
These proposals work well in the isotropic space (where the
proximity measure, such as the hop count, well approximates
the Euclidean distance in all directions), but their performance
severely degrades in anisotropic indoor environments.

Range-free approaches use wireless reachability that simply
indicates whether or not a node is located within a radio
range of other node and estimate the position of a client node
without computing the geographic distances to beacon nodes
[37]-[39]. As these methods do not estimate the geographic
distances between nodes, they are less sensitive to measure-
ment noises, and a lateration task is not necessary. However,
they may also be marginal in indoor environments because
a high node density is required to achieve accurate location
estimation.

I11. INDOOR LOCALIZATION SYSTEM
A. System overview

The proposed system is composed of 802.11 access points
and off-the-shelf 802.11-compliant devices. As shown in Fig-
ure 3, the system architecture follows a typical 802.11 WLAN
deployment in indoor environments. At the infrastructure side,
APs with known locations serve as anchors. These APs
record the received signal strength (RSS) of beacon broadcasts
from each other. In addition, inexpensive wireless monitors
(augmented with the customized Kismet software [40]) can
be deployed in under-provisioned areas to serve as additional
anchor points and provide additional measurements. (This
creates an extra knob to optimize the localization accuracy,
which we will elaborate on in Section 111-D.) The inter-AP (or
inter-anchor node) RSS measurements are made periodically
to realize fully automated and on-line calibration of RSSs in
the spatio-temporal domain. A mapping that characterizes the
relationship of the RSS measurements and the geographical
distances to anchors is then created on-line with a SVD-based
approach. Depending on the mode in which the system will
operate, either a client or the infrastructure measures the RSSs

between the client and its neighboring anchor nodes, applies
the signal-distance mapping, infers the client’s geographical
distances to anchor nodes, and estimates its location via
triangulation/trilateration.

B. Zero-configuration Robust Localization

As RSS measurements are susceptible to several physical
wireless characteristics, such as multi-path fading, and signal
attenuation due to the changes in temperature, humidity, and
object mobility, it does not correlate in a simple and stable
fashion to the geographic distance. In fact, the correlation
structure changes in the spatio-temporal domains, and cannot
always be captured in nice and close-form theoretical models.
Nevertheless, their accurate characterization is crucial to ac-
curate localization. We propose a new, theoretically-grounded
technique to analyze the relationship between the geographic
distance and the RSS measure.

1) Localization problem: Conceptually, localization can
be considered as an embedding problem that maps the set of
objects into an embedding space. In Lipschitz embeddings, a
coordinate space is defined such that each axis corresponds
to a set of reference objects (i.e., the anchor nodes consisting
of APs and wireless monitors in the vicinity of a client to
be localized), and the coordinate values of an object o are
the distances from o to the reference objects [41], [42]. For
example, if an object are apart from two reference objects by
1 and 2 (units of distance), respectively, it has the coordinate
of [1,2]7 in the embedding space. Based on this concept,
each client to be localized has two coordinates in Lipschitz
embedding spaces that correspond, respectively, to the RSS
measure and the Euclidean distance between itself and anchor
nodes.

Consider a Wi-Fi infrastructure in which m anchor nodes
(i.e., APs and/or wireless monitors) exist in the vicinity of
a client node n (whose position is yet to be localized). The
locations of anchor nodes and the client node » are denoted as
x; € R fori={1,--- ,m} and x,, € R? in a d-dimensional
space, respectively. The geographic distance between two
nodes, x; and x; is then defined by the Euclidean distance:

dij = fa(xi,x;5) ==

where z;, and zj;, are the kth coordinates of x; and x;,
respectively. Let s;; be the RSS measured by the ith node
to the jth node. Then the localization problem we consider
can be formally stated as:

Given: x;, s;;, and s,; fori,j € {1,---,m},
Estimate: x,, for a client node n.

That is, under the assumption that the locations x; of the
anchor nodes are known, the problem is to estimate, with
the use of the RSS measurements s;; and s,; for i,j €
{1,---,m}, the geographic location x,, of the client n.
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Fig. 3. System architecture for indoor localization and tracking.

2) Anisotropic indoor environment: Given a mapping
function, f, : R?¢ — R, that describes the mapping from
the geographic locations (x; and x;) to the measured RSS
s;; for each pair of nodes, where the RSS is written as
sij = fp(xi,x;), the environment is said to be isotropic, if
the mapping f,(x;, x;,) is a function of the Euclidean distance
between x; and x;, i.e,, s;; = fp(xi,%X;) = gp(d;;) and
g9 R— R

In practice, the RSS measured by a node is subject to the
physical wireless characteristics in indoor environments and
differs in different directions and locations. This implies that
the RSS between a pair of nodes depends greatly on the posi-
tions at which these nodes are located, and the environment is
anisotropic. For example, two wireless devices that are apart
from an AP by the same distance can have quite different RSS
measurements due to different intermediate obstacles between
the devices and the AP.

In order to obtain accurate localization results, one may
record RSSs at every possible location through off-line training
process and compare the RSS of a client node to be localized
with the recorded RSSs to find the best matching RSS pattern.
As mentioned in Section I, this approach is not desirable.
Instead, we characterize the anisotropic relationship between
the geographic distance and the RSS automatically and in real
time.

3) Characterizing the relation between the RSS and
the geographic distance: In what follows, we discuss how
we analyze the RSSs measured between anchor nodes with
known geographic locations, and derive the signal-distance
map (SDM) that describes the relation between the RSSs
and the geographic distances. Specifically, the RSSs measured
from a node to anchor nodes define the coordinate of the
node. Given that there exist m anchor nodes, the coordinate
of a node ¢ in an m-dimensional Lipschitz embedding space
is represented by the signal vector:

S; = [Sila T 78im]T

where s;; is the strength of the signal emitted by the jth anchor
node and received by node ¢. The overall embedding space for
RSSs measured between anchor nodes can be represented by
an m-by-m RSS matrix S, whose ith column is the coordinate
of the ith beacon node:

S:[sla"' asm]' (2)

Similarly, we define the geographic distance vector and matrix
as d; = [di1, - ,dim)’, and D = [dy,---,d,,]. The
geographic matrix D is an m-by-m symmetric square matrix
with zero diagonal entries.

A good candidate for the SDM is the optimal linear transfor-
mation T', where the geographic distance from a client node to
an anchor node is represented as a weighted sum of the RSSs
to all the anchor nodes. Note that radio propagation models
such as the Friis free-space model and the two-ray ground
reflection model show that there exists linearity between the
distances and RSSs on a logarithmic scale.? The matrix T is
an m-by-m square matrix, of which the element ¢;; represents
the effect of the RSS measurement to the jth anchor node on
the geographic distance to the sth anchor node, and can be
considered as a scaling factor (weight) from the RSS to the
geographic distance. Each row vector t;, which corresponds
to the weight for computing the distance to the sth anchor
node, can be obtained by minimizing the following objective
function:

ei = (log(dix) — tisk)” = || log (df ) — t;S[[>.  (3)
k=1

In the above equation, the logarithmic value of the distance

from oneself (so-called self-distance) is —oo (i.e., d;; = 0) and

will be replaced with a small negative value. (We will further

elaborate on this in Sec. I1I-C.) Note that since RSSs are

2However, we do not claim that these propagation models are accurate in
indoor environments. We simply use a linear model to predict the relationship
between the geographical distances and the RSSs.



measured in dBm, it is not necessary to take the logarithmic
function of RSSs. After some algebraic operations, we can
readily obtain that the least-square solution for the row vector
t; is

t; = log (d] ) ST (SS™) .

That is, we can express the SDM as
T = log (D) ST(SST) "1, 4)

Note that SDM retains the effects of physical wireless char-
acteristics on the RSS to all the anchor nodes, and hence well
characterizes the anisotropic relationship between RSSs and
geographic distances.

Now, a client n with an unknown position measures the
RSSs between itself and its neighboring anchor nodes (i.e.,
s, ), and computes the geographic distance from the client to
neighboring anchor nodes by matrix multiplication, (i.e., d , =
exp(Ts,)). The geographic location of the client n can be
determined by lateration algorithms [29]-[32].

4) Improving robustness of SDM to measurement
noises: The RSSs are susceptible to measurement noises
introduced in the sensory inputs from, for example, off-the-
shelf 802.11 interfaces. These noises may become manifest in
the computation of the matrix inversion in Eq. (4). To reduce
such adverse effects, we use the truncated SVD pseudo-inverse
method described in [43]. Let the SVD of S be expressed as

_ %0 T
SU~[O O]~V,

where X is a diagonal matrix: ¥ = diag(o1, -+ ,ow), U =
[ug, -+ ,uy] and V. = [vy,---,v,,] are column and row
orthogonal matrices, and the subscript w is the rank of matrix
S [44]. The o;s are singular values of S in the decreasing
order (i.e., o1 > --- > ow > 0). The pseudo-inverse of the
matrix S, ST, is written as

w
st =8"(ss") = > ivq;uiT. (5)
i=1 "
In the computation of the pseudo-inverse of S, the adverse
effect of the measurement noises may be aggravated due to
the terms that contain reciprocals of small, near-zero singular
values. The truncated pseudo-inverse method discards small
singular values by truncating all the terms with index v >
w. That is, instead of using X in Eq. (5), we use X, =
diag(o1,--- ,04), and the truncated pseudo-inverse of S can
be written by S =>"7_, U%Vz'uiT- To determine an adequate
index ~, we use use the following criterion: the percentage
accounted for by the first £ singular values is defined by

Zf:l gi
ZZI gi

One may pre-determine a cut-off value, 7* of cumulative
percentage of singular values, and calculate + to be the
smallest integer such that 7, > 7*. We usually set 7* to 0.98.
With the expression of S, SDM can be simply expressed as
T = log (D) S, and can be on-line updated.

Tk =

TABLE |
RSS MEASUREMENTS BETWEEN TWO CO-LOCATED LINKSYS WRT54G
WIRELESS MONITORS WITH RESPECT TO DIFFERENT WIRELESS NETWORK
SETTINGS.

[ Technology | channel | xmit power (mW) [[ RSS (dBm) |

802.11b 2 28 -33.2651
802.11b 7 28 -33.4629
802.11b 2 56 -29.7642
802.11g 2 28 -34.3947

C. Implementation Issues

1) Preprocessing RSS samples: As anchor nodes con-
tinuously measure RSSs from other anchor nodes, we need
to determine the value that represents the RSS at a given
time instant, with which the SDM will be constructed and the
locations of client nodes will be estimated. We use a median
filter that takes the median value of RSS samples measured
for a certain time duration because it can effectively deal with
short-term variations in RSS due to fast fading [45], i.e.,

5(t) = median{s(7) | t = Ts < 7 < t},

where T is the time interval for the median filter and is set to
60 seconds in the experiments. Note that in case of tracking
the location of a client node, the maximum estimation delay
is bounded by T%.

2) Calibrating RSS at the same location: The only
parameter we need to calibrate in the deployment phase is the
RSS measured between two co-located anchor nodes. Even
though two anchor nodes are located at the same position, the
RSS between themselves is not zero in practice (i.e., s;; # 0in
Eg. (2)) and is determined by factors such as the transmission
power of wireless monitors. Note that this calibration is not
performed for each wireless node to be localized, but only
between anchor nodes of the localization system. Moreover, it
is only performed once in the deployment phase. We measure
the RSS between two co-located anchor nodes for 5 minutes
and take the median value of the measurements as the self-
RSS The obtained values are listed in Table I.

3) Determining the self-distance: The SDM represents
the relationship between the RSS and the distance on a loga-
rithmic scale. In Eq. (3), if we drop the term for the distance
from oneself (d;;), it becomes an optimization problem for
under-determined system. We use a small positive value e for
d;; instead of zero. Let d,,,;, denote the smallest inter-anchor
node distance, i.e., dmin = minme{l,..,m}(dij). To select
€, we linearize the logarithm function at d.,;, and obtain a
linear function, whose the y-axis intercept is set to be log(e),
i.e., € = dmin/e. In our implementation, we normalize the
distance matrix D with a constant scale of 1/d,,,;,, and replace
its diagonal terms with 1/e.

4) Determining the final location: Once the distances
from a client node to the anchor nodes are computed by SDM,
a lateration algorithm is used to determine the location of the
client node. We use the simple descent gradient method that
minimizes the following objective function:

1
2

Z(fd(iaxi) —d;)?,

i=1

&



where x and d; are the estimated location of the client node
and the estimated distance to the ith anchor nodes computed
by SDM, respectively. By differentiating the objective func-
tion, we obtain the following iterative equation for updating
the estimate of x:
m d"

~ ~ (3

%[k + 1] = x[k] + « ; (1 )
where « is a constant step size and is set to 0.1. We set the
initial estimate of x[0] to be the locations of the anchor node
with the smallest distance estimate. Note that several other
lateration algorithms are available in the literature [28]-[32],
and can be considered as an alternative to further improve
localization accuracy.

)(i[k?] - Xi),

D. Discussion

There are several deployment issues that are worthy of
discussion:

1) Where to place wireless monitors?: The APs in an
802.11 infrastructure are usually deployed to provide network
connectivity and their placement may not be optimal with
respect to localization. Moreover, certain areas may not be
covered by a sufficient number of APs. Under these cases, it
is desirable to mount additional wireless monitors in advance
and activate them as needed so that sufficient information can
be collected to construct S.

To determine where to place additional wireless monitors,
we represent the initial topology of APs by an undirected
simple graph, and find a set of locations U = {u1, ua, ..., ur}
with the minimum cardinality, such that any position in the
environment is covered at least by m APs or monitors (where
m = 4 — 5 will suffice in practice). We will leverage the work
by Zhang and Hou [46] and use the necessary and sufficient
k-coverage condition derived in [46] to select positions for
placing additional wireless monitors.

2) Who should make the RSS measurement between a
client and neighboring APs?: Although in Section I11-B, we
state that the task of measuring the RSSs between a client
to be localized and its neighboring APs is performed by the
client, it can also be performed by the APs/wireless monitors.
In our empirical study, we found that the measurement results
in the two directions (RSS from a client to its neighboring
AP, and vice versa) are often asymmetric. However, as the
effects of physical wireless characteristics in the RSS measure
have been explicitly figured in SDM, the asymmetry will not
severely affect the localization accuracy, as long as all the
measurements are made uniformly in one direction (from a
client to its neighboring APs, or from the neighboring APs to
a client).

3) How to deal with the co-existence issue of IEEE
802.11a/bl/g interfaces?: Popular 802.11 WLAN infrastruc-
ture supports both 802.11b/g and 802.11a interfaces, with
dual interfaces equipped at each access point (e.g., Cisco
Aironet 1200). This, however, creates a deployment issue in
the proposed localization work. 802.11a systems, defined in
the 5GHz UNII frequency band, suffer more in the case of
line of sight (LOS) obstructions such as office walls, furniture,

and human beings. (In contrast, 802.11b/g, defined in the
2.4GHz ISM frequency band, is comparatively less susceptible
to the environmental effects.) Therefore, RSS measurements
and SDM construction under 802.11b/g may be “inconsistent”
with those under 802.11a, and vice versa. In the current setting,
we maintain two versions of localization mappings and differ-
entiate clients based on their active interfaces. An interesting
issue is how to correlate measurements made between these
two types of interfaces, or at least reason about the discrepancy
between the two types of measurements. This will be part of
our future work.

IV. EMPIRICAL EVALUATION
A. Software customization

To empirically evaluate the proposed localization system
and compare it against PSS [28], we have completed a system
prototype and deployed both approaches on the third floor in
the west wing of our department building. We have proto-
typed wireless monitors using open-source Linksys WRT54G
Wireless-G routers. These Linksys routers are inexpensive
(less than $60 per piece), support IEEE 802.11b/g, and run
Linux kernel 2.4 with its source codes [47] available under
GPL. This allows us to customize the kernel sources and
embed in it the Kismet 802.11 layer-2 wireless sniffer software
[40], as well as other required monitoring functions including
controlled channel scanning, neighborhood discovery, and
selective capturing of management, control and data frames.
The Ethernet interface at the Linksys router allows monitors
to send their RSS measurements to the server and the server
to control monitors. These wireless monitors take the role of
APs for beaconing and RSS measurement.

To customize the Linksys router software, we install and
modify a third party Sveasoft Alchemy-pre7a firmware of
Linksys WRT54G wireless routers to embed the (customized)
Kismet wireless network sniffer software. Kismet software
consists of three components, i.e., server, client, and drone.
Kismet drone runs on the WRT54G router, captures wireless
packets, measures the received signal strength, and transmits
through the Ethernet interfaces the captured packets (along
with the measured signal strength) to a central host running
the Kismet server. (In the current configuration, we have set
up a single server that collects all RSS measurements from
monitors.) The Kismet client connects to the Kismet server,
obtains from the server the RSS measurements, implements
the core functions of creating and maintaining the SDM, and
displays the estimated locations of wireless clients.

B. Experimental setup

We have conducted experiments in three phases. In the first
phase, we have deployed 8 wireless monitors in the west wing
of our building as shown in Fig. 4 and measured the received
signal strengths while varying the wireless network parameters
such as IEEE 802.11b/g, the communication channels (2
(2.417 GHz) and 7 (2.442 GHz)), and the transmission power
(28 and 56 mW) in order to evaluate the performance of the
localization system in various environmental settings. Note
that although 8 wireless monitors are deployed, localization



Fig. 4. Map of the west wing of the departmental building consisting of 40
cubicles, 8 faculty offices, and 2 research labs. The black squares and the “x”
marks denote the locations of the WRT54G wireless routers and the PDAS,
respectively.

is performed by using the RSS measurements at only 4-6
wireless routers (Section I11-D (I)). In each experiment, one
of the wireless monitors plays the role of a wireless client to
be localized. In this manner, we can also easily investigate
the effects of asymmetric wireless channels on localization
accuracy.

In the second phase, we have used a PDA as the wireless
device to be localized. The PDA runs Linux (Sharp Zaurus
SL-5600) and is equipped with a wireless compactflash card
(Linksys WCF-12). As the PDA client has different network
characteristics from wireless monitors (WRT54G), e.g., the
default transmission power of WCF-12 is 15 dBm (32 mW),
we can evaluate the performance of the proposed localization
system in a realistic environment with heterogeneous wireless
devices.

In the third phase, a graduate student carries a PDA and
walks along the path of [A — B — C — D — A] labeled in
Fig. 4, and the location of the PDA is continuously monitored.
Since the movement results in door opening and closing,
we can evaluate the tracking performance of the proposed
localization system with respect to robustness to environmental
changes.

We have carried out experiments in different time intervals
(morning, afternoon, evening, and late night) of the day in all
three phases. Due to the space limit, we report below only re-
sults obtained from the experiments performed in the afternoon
intervals when the environment is subject to the most human
mobility and opening/closing of doors. The experiments are
performed with either the proposed localization system or PSS
[28] activated.

C. Experimental results
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Fig. 6. The means and the standard deviations of localization errors versus

Ts when the rates at which wireless monitors send beacon packets are 6 and
12 packets/min.

1) Impact of the time interval T for the median filter:
In this set of experiments, we measure RSSs between ni,
n3, n4, and n7 in Fig. 4 for one hour, construct the signal-
distance map (SDM), and localize n2 with the use of the RSS
measurements made by n2 itself. (That is, n2 plays the role of a
wireless device to be localized.) Figure 5 (a) gives the strength
of the signals sent by n4 and measured at n2. As shown
in the figure, the RSS measurements fluctuate dramatically
in the range of -75 ~ -35 dBm with a large number of
signal breakdowns. However, the median filter reduces the
fluctuations of RSSs effectively. In the case of T, = 120 s,
the median filter takes more RSS samples and generates more
stabilized estimate of RSSs. Figure 5 (b) gives the localization
results for n2. In both the cases of 7', = 30 and 120 s, the
location estimates are quite accurate (with an localization error
of 2 meters on average). However, the estimate exhibits a large
variance for T = 30 s.

For further investigating the effects of T on localization
accuracy, we compute the mean and the standard deviation
values of localization errors for several sets of 7' and the
probing rate at which beacon packets are send/received. As
shown in Fig. 6, the mean and the standard deviation values
become smaller as the probing rate and 7’5 increase. In fact,
the number of samples taken for a fixed interval T'; depends
on the probing rate. Note that the larger the value of 7', the
longer delay will be incurred in estimating the location of a
client. In all the experiments henceforth reported, we set T's to
60 s. Instead of using a fixed value of T';, we may adaptively
change its value according to the probing rate and the speed
of mobile clients.

2) Localization accuracy: We evaluate the performance of
the proposed localization system in the default wireless setting
of the firmware. The WRT54G wireless routers are configured
with the following setting: 802.11b is used, channel = 2, and
power = 28 mW. Figure 7 shows the cumulative percentage
of localization errors for nO — n7 ((a)) and for {nl, n2, n7
} ((b)) when localization is carried out with the use of RSS
measurements from 5-6 monitors (i.e., m = 5 and 6). For
instance, in order to localize nl, we select /. monitors except
nl, compute the distances from nl to these m monitors, and
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determine the location of nl. Several observation are in order.

First, SDM gives slightly better estimates when it uses RSS
measurements from more wireless monitors. For example, as
shown in Table Il (a), the median localization errors for the
case of m = 6 are 2.32 and 2.47 m, and those for the case of
m =5 are 2.76 and 2.93 m.

Second, one predominant factor that affects the accuracy is
the placement of these wireless monitors. The error incurred
in localizing nO is actually much larger than that incurred
in localizing, for example, nl, n2, and n7, as nO is not
surrounded by wireless monitors (Figure 4). As nl, n2, and
n7 are surrounded by several other monitors, they can be
localized actually with the use of fewer monitors. As shown
in Table 1l (b) and Figure 7 (b), n1, n2, and n7 can be
more accurately localized. For example, the localization error
incurred in localizing nl1, n2, and n7 with the use of 5 monitors
is smaller than that incurred in localizing nO — n7 with the use
of 6 monitors. The issue of deploying and selecting wireless
monitors to ensure k-coverage has been addressed in Zhang
and Hou [46] and their algorithm will be incorporated in our
next stage of deployment.

Third, the localization accuracy is also affected by which
entities (a client or anchor nodes) make the RSS measurement.
As shown in Table Il and Fig. 7, the localization accuracy
achieved in the case of having the wireless client perform the
RSS measurement is slightly better than that in the other case.

Last, as shown in Table Il and Fig. 7, the localization error
incurred in PSS is almost twice of that incurred in SDM
in most cases.®> This is, in part, due to the fact that PSS
computes the distance from a wireless client to an AP with
the use of RSS measurements between its closest AP and the
destined AP, while SDM exploits measurements between all
pairs of APs in the vicinity of the client. Also, the truncated
SVD pseudo-inverse method introduced in Section I11-B helps
mitigate the adverse effect of measurement noises.

3) Performance with respect to robustness: To evaluate
the performance of the proposed localization system with
respect to robustness against different network dynamics, we
vary the wireless parameters of IEEE 802.11b/g, communi-

3Gwon and Jain [28] has also proposed a lateration algorithm, called
TIX, for computing the location of a client. We did not implement the TIX
algorithm, but instead used the simple lateration algorithm given in Sec. I11-C.
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TABLE I
LOCALIZATION ERRORS IN THE DEFAULT WIRELESS NETWORK SETTING
(IN METERS).

(a) localization errors of n0 — n7

[ M [ algorithm [[ 25 % | median | 75 % [ mean |
6 SDM (client) 0.97 2.32 3.56 2.57
6 SDM (monitor) 1.68 2.47 3.34 2.78
6 PSS 2.82 6.15 10.44 6.92
5 SDM (client) 1.57 2.76 5.12 3.60
5 SDM (monitor) 1.99 2.93 457 3.78
5 PSS 245 5.28 8.78 6.82

(b) localization errors of nl1, n2, and n7

[ M [ algorithm | 25 % | median | 75 % [ mean |
6 SDM (client) 0.86 131 1.83 1.76
6 SDM (monitor) 1.27 1.92 242 2.06
6 PSS 3.74 6.80 7.41 7.09
5 SDM (client) 1.08 1.92 3.07 2.50
5 SDM (monitor) 1.52 2.34 3.12 257
5 | PSS 3.68 5.97 8.14 6.40

100

S\, 80,

(]

(@)

s

S5 60

3]

[}

o

L 40|

8

>

E 20F

=}

o
0 I
0 2 4 6 8

position error (m)

Fig. 11. Localization errors for PDAs placed at 25 different positions.

cation channels (2 (2.417 GHz) and 7 (2.442 GHz)), and
transmission power (28 and 56 mW). To deal with these
changes, the only operation we have to perform is to replace
the RSS value for co-located wireless monitors with that
listed in Table I. For example, when the transmission power
is set to be 56 mW, the RSS increases by about 4 dBm
(theoretically 3 dBm). Figs. 8-10 give the localization errors
in the wireless network settings of (i) 802.11b, channel=7,
power=28mW; (ii) 802.11b, channel=2, power=56mW; and
(iii) 802.11g, channel=2, power=28mWw.

As expected, the experiment results do not differ signif-
icantly from those in the default network setting. The is
attributed to the fact that construction of SDM does not rely
on any assumption on physical wireless characteristics. An
interesting finding is that the increase in the transmission
power does not help to improve the localization accuracy, but
rather degrades the performance. This is, in part, due to the fact
that the increase in the transmission power makes the wireless
channel more noisy (as a result of, for example, multi-path
fading) and results in poor estimation of signal strengths.

4) Performance in the case of device heterogeneity:
A realistic wireless network consists of wireless devices
of dramatically different characteristics, e.g., laptops, PDAs,
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VOWLAN phones, and Wi-Fi location tags. To evaluate the
performance of the proposed localization system in a hetero-
geneous environment, we place PDAs in 25 different positions,
measure at wireless monitors the strength of the signal emitted
from these PDAs for 2 minutes, and localize PDAs. In this set
of experiments, a “ping” program runs on the PDAs to transmit
a wireless packet to its associated AP at every 1 second.
Note that the rate at which the wireless traffic is generated
is low enough to emulate typical network usage. Because the
wireless channel is lossy, wireless monitors capture 73 wireless
packets (out of 120) during the execution. Figure 11 gives
the cumulative percentage of the errors incurred in localizing
PDAs. The number of monitors that measures RSSs of the
PDA varies from 4 to 7. As shown in Figure 11, the median
errors are at most 3 m under all cases. With a small number
of RSS samples, the localization process converges and still
achieves reasonable accuracy.

5) Performance of tracking mobile wireless devices:
The ultimate goal of the proposed localization system is
to accurately track moving wireless devices. If a mobile
device is still, wireless monitors in its vicinity can collect a
number of RSS measurements (as the device transmits wireless
packets) and constructs the SDM in due time. However, if a
wireless device is mobile, the number of RSS measurements
at intermediate locations may not be sufficiently large to
render accurate location estimates. In this set of experiments,
a graduate student carries a PDA and walks along the path of
[A—- B — C — D — A] labeled in Fig. 4. The PDA is in
the process of downloading a file via an ftp application when
the experiment is in progress. The location of the PDA is then
continuously monitored with the use of 6 wireless monitors
(n0 and n2 — n6). The locations of A and C are [17.75,4.67] T
and [5.7,18]%, respectively. Figure 12 gives both the actual
and estimated trajectory of the PDA (in the [, y] 7 -coordinate)
versus time. As shown in Fig. 4, the achieved accuracy for the
PDA is within £+ 3 m. This suggests that as long as wireless
devices are communicating with their associated APs in the
process of moving®, this localization system can be used to

4This requirement can be relaxed if the wireless client is responsible for
measuring RSSs of beacon messages from neighboring APs.



track them with reasonable accuracy.

V. CONCLUSION

In this paper, we have established the theoretical base
and developed a localization algorithm for building a zero-
configuration, robust, indoor localization and tracking system
to support location-based network services and management.
Because of the widespread 802.11 deployment, we have lever-
aged the Wi-Fi infrastructure and addressed the major chal-
lenges of incorporating a fully-automated on-line calibration
mechanism to characterize the relation between the received
signal strengths (RSSs) and the geographical distances in the
presence of environmental dynamics and measurement noises.

The localization algorithm takes as input the on-line mea-
surements of RSSs (i) between 802.11 APs and (ii) between
a client and its neighboring APs, and estimates the location
of the client. The on-line RSS measurements among 802.11
APs are used to capture automatically and in real-time the
effects of RF multi-path fading, temperature and humidity
variations, opening and closing of doors, furniture relocation,
and human mobility on the RSS measurements. The truncated
SVD technique is then used to construct a mapping between
the RSS measure and the actual geographical distance, with
the objective of mitigating the adverse effect of measurement
error, and yet retaining as much environmental information
as possible. We have carried out an empirical study in our
departmental building, with the use of Linksys WRT54G
wireless routers equipped with customized Kismet 802.11
layer-2 sniffer software. The empirical results indicate that the
proposed system is quite robust and responsive to environmen-
tal dynamics and gives accurate localization results (i.e., with
the localization error within 3 meters).

An immediate, future research agenda is to investigate
whether or not the localization error of 3 meters can be
further improved. There are several avenues along which we
can pursue. First, as recognized in the empirical study, the
placement of wireless monitors has a significant impact on
the accuracy. Although most of the APs in an operational
building are fixed, the localization accuracy can be improved
by deploying additional, inexpensive wireless monitors. We
will investigate this issue by leveraging the k-coverage results
presented in [46]. Also, as mentioned in Section IV-C, the
interval, T, (for which the median filter takes the median
value of RSS measurements) represents a tradeoff between
the localization responsiveness and the localization accuracy.
Determining an adequate value for T's, with consideration
of the rate at which beacon packets® are generated, would
be an interesting problem. By a similar token, the rate at
which beacon messages have to be generated in order to
realize accurate real-time tracking is also a matter of future
investigation.
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