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Effective weed control has long been recognized as critical for agricultural production, yet weeds 

remain a major constraint to production and economic return in many agroecosystems. Moreover, 

improvements in physical weed control are necessary to address increasing problems of herbicide 

resistance in weeds of grain and fiber crops and the high cost of hand weeding in vegetables. From 

tractor-mounted cultivation tools to autonomous weeders, weeding implements are affected by weeds, 

crops, soil conditions, and actuator effectiveness. In order to address these complex and often interacting 

factors concerning weed control, new and innovative tools must be designed and evaluated.  

Chapter one addresses a series of experiments designed to determine the functionality and 

efficacy of Franklin Robotics’ TertillTM and to explore its place in the growing field of robotic weeding. 

The TertillTM demonstrated high weed control efficacy, supporting its utility as a tool for home 

gardeners. However, in its current form, the TertillTM would require modification to be viable for farm-

scale use. Yet, its simple and effective design may offer insights to inform future development of farm-

scale weeding robots.    



 

Chapter two addresses an analysis of the early growth characteristics of wild radish (Raphanus 

raphanistrum L.) and four related Brassica species commonly used as surrogate weeds in physical weed 

control research. Plants of each species were grown in a greenhouse, destructively harvested at three 

distinct growth stages, and analyzed for anchorage force and root architecture. Wild radish and the 

selected Brassica surrogate weeds were comparable in biomass and root architecture. However, 

differences in anchorage force necessitates caution and field validation. 

Chapter three builds upon the previous chapter by making the explicit comparisons between 

surrogate weeds and their weedy counterparts that have hitherto been absent from the literature. 

Additionally, the viability of golf tees as artificial weeds was assessed. Field experiments were 

conducted in 2019 and 2020 using six flex-tine harrows to compare the reactions to cultivation of wild 

radish, two Brassica surrogate weeds, and golf tee artificial weeds. Rates of efficacy for both surrogate 

weed species were comparable to those of wild radish, indicating that these species are useful surrogates 

for this weed species. However, golf tees failed to accurately simulate weed seedling response to 

cultivation, and their response was highly variable. 

Chapter four addresses the challenges and inefficiencies apparent in diversified organic 

farming by evaluating the potential of inexpensive, wearable GPS watches to monitor farm labor.  

Labor data acquired with GPS watches was correlated with a reference system. However, 

elevated rates of error associated with commercially available GPS devices potentially limits 

their viability in tracking labor on small farms where error may result in significant inaccuracies. 
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CHAPTER 1 

FUNCTIONALITY AND EFFICACY OF FRANKLIN ROBOTICS’  

TERTILL™ ROBOTIC WEEDER 

 

INTRODUCTION 

Effective weed control has long been recognized as critical for agricultural production 

(Utstumo et al. 2018), yet weeds remain a major constraint to production and economic return in 

many agroecosystems (Gallandt and Weiner 2007; Jackson et al. 2004). While herbicides are the 

primary form of weed control in global cropping systems, herbicide-resistant weeds and the 

failure to commercialize any new herbicide modes of action over the last 30 years has led some 

to conclude that herbicides may have a limited future (Davis and Frisvold 2017; Duke 2012). In 

specialty crops (i.e., fruit, herbs, and vegetables), a lack of effective herbicides and labor 

shortages have prompted increasing interest in the development of autonomous robotic weeders 

for both conventional and organic systems (Fennimore and Cutulle 2019; Fennimore et al. 2016; 

Yunez-Naude et al. 2012). 

At present, state-of-the-art physical weeding technologies have focused on tractor 

mounted implements, using global positioning system (GPS)- or camera-guidance to improve 

precision (i.e., closeness to crop rows) and working rates, as well as tools designed for intra-row 

weeding in crops that are widely spaced within rows (e.g., cabbage, head lettuce). Rasmussen et 

al. (2012) described tools that used sensors or mapping to selectively target intra-row weeds as 

“intelligent weeders.” Presently, commercially available intelligent weeders, such as the 

Robovator (F. Poulsen Engineering ApS, Hvalsø, Denmark) or the Robocrop (Tillett and Hague 

Technology Ltd, England), are tractor-mounted implements that utilize “machine detection” to 
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locate weeds and a metal hoeing device or “actuator” to kill the weeds (Fennimore and Cutulle 

2019). Machine detection techniques may involve processing images taken while the tractor is in 

motion, pre-recording sown crop positions with GPS, or the interruption of a light beam directed 

over the crop row (Tillet et al. 2007). 

Lati et al. (2016) found that the Robovator improved weed control 18 to 41% compared 

to a standard cultivator, while Fennimore (2014) found that the Robocrop reduced weed densities 

in transplanted crops by 85%. These two tractor-mounted, weeding machines rely on cameras to 

detect crop plants and precise measurement of forward speed to time movement of weeding tools 

in and out of crop rows, avoiding damage to the widely spaced crop plants. While several 

intelligent weeding systems, such as those listed here, are commercially available, the cost 

associated with camera- and GPS-guided detection systems can be prohibitive for smaller farms 

(Grimstad et al. 2015; Peruzzi et al. 2017). In field experiments with the Robovator, Melander et 

al. (2015) found that the investment cost for an intelligent weeder can be as much as 13 times 

that of widely available non-intelligent intra-row weeders, e.g., torsion- or finger-weeders. 

During the early years of intelligent and autonomous weeding systems, investment costs will 

most likely be high due to the technologies used for plant detection (Fennimore et al. 2016) and 

possibly elevated rates of crop damage in direct seeded crops (Fennimore et al. 2014). 

Future weeding machines will surely be fully autonomous—true robots—but this remains 

a challenging goal. Merfield (2016) suggested that “every mechanical weeding job is different, 

requiring different weeders and different adjustments of the machinery.” Furthermore, Merfield 

(2016) suggested that a “genuine weeding robot” should be able to monitor both crops and weeds 

to determine optimal management implementation as well as make real-time adjustments to tool 

settings and perform basic tool maintenance. The Dino (Naïo Technologies, France) is an 
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example of an autonomous weeding robot commercially available today that employs GPS-

guided systems to cultivate as close to crops as possible (Pérez-Ruiz et al. 2012). However, like 

the Robocrop and Robovator, its complex design currently comes at a potentially prohibitive 

capital cost (Melander et al. 2015). Autonomous weeding robot subscription services are a 

possible answer to the potentially prohibitive capital costs associated with purchasing and 

operating expensive autonomous weeders (Naïo Technologies 2020). 

Franklin Robotics’ (Bellerica, MA, USA) recently commercialized Tertill™, an 

autonomous solar-powered weeding robot for home gardeners that demonstrates parsimony of 

design. Instead of complex, heavy and energy-consuming camera- or GPS- guided detection 

systems, the Tertill™ operates much like a Roomba® home vacuum cleaner, using capacitive 

sensors on its sides to detect and avoid obstacles such as large crops and walls; Tertill™ has an 

additional capacitive sensor on its bottom that detects small weeds and activates a weed 

whacking mechanism (Figure 1.1). Control of small seedlings is achieved both by this sensor and 

temporally random activation of the weed whacker. Designed to independently traverse an 

enclosed area, the Tertill™ is programmed with a random walk function, moving on four 

cambered wheels or “grousers,” suitable for moderately rough terrain. Following a successful 

crowdsource funding campaign, the Tertill™ was shipped to home gardening enthusiasts in 

September 2018 and was subsequently made commercially available. 

Our aim was to investigate the performance of the Tertill™ in a controlled environment 

using broadleaf and grass surrogate weeds. Observation of our early trials suggested that the 

grousers as well as the weed whacker were controlling weed seedlings, prompting an additional 

series of experiments examining this serendipitous weeding mechanism. The objectives of this 
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study were to investigate the ability of the Tertill™ to control broadleaf and grass weeds, with 

and without its sting-trimmer-like weeding implement, and to evaluate grass weed control over 

time. We hypothesized that, given a sufficiently sized area and daily use, the Tertill™ would 

more effectively control broadleaf weeds than grass weeds, due to the lower placement of a 

grass’s meristem. 

Figure 1.1 Underside of the 
TertillTM, showing four grousers, 
weed whacking mechanism, 
capacitive sensors, and solar 
panel. Source: Franklin 
Robotics. 

 

 

 

 

 

 

METHODS AND MATERIALS 

An experimental arena (6.7 x 1.5 m) was constructed in the University of Maine Roger 

Clapp Greenhouse in Orono, Maine. The arena was lined with black woven landscape fabric and 

filled with a 7 cm layer of vermiculite beneath a 10 cm layer of field soil, a Pushaw silt loam that 

was collected from the University of Maine Rogers Farm (44.93°N, 68.70°W). 

Weed control efficacy was determined by the percentage of weeds killed by the Tertill™ 

in permanent quadrats (Evans et al. 2012). Condiment mustard was used as a surrogate weed 

(Rasmussen 1991) to simulate a stand of broadleaf weeds; pearl millet was used instead for 

later experiments to determine efficacy with a monocot species. Prior to seeding, the 

experimental arena was scuffle hoed and flattened with a bed-shaping rake to remove any 
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surviving surrogate or ambient weeds. For each iteration of the study, surrogate weeds were 

hand broadcast at 2,800 seeds m-2 and raked into the soil with a bed-shaping rake (Brown 

and Gallandt 2018; Olsen et al. 2005). The resulting average surrogate weed density was 

256 plants m-2 quadrat across experiments. Due to the presence of weed seed in the field soil, 

ambient weeds were counted along with the surrogates. However, the population was small and 

declining over time (Sanchez and Gallandt, unpublished data). We did not expect it to affect the 

performance of the Tertill™ and therefore it is not included in analysis presented in this paper. 

During our methods development, observation of the working Tertill™ indicated that the 

grousers (wheels) caused considerable shallow soil disturbance, possibly resulting in the 

uprooting or burial of weed seedlings (Figure 1.2). Thus, our first series of experiments were 

designed to examine the proportion of weed mortality caused by the weed whacker relative to the 

soil disturbance caused by the grousers. The arena was divided into 1.5 x 1.6 m sections, in 

which the robot was released for a duration of 30 min. The duration 30 min was arbitrarily 

chosen to ensure that the Tertill™ adequately demonstrated its weed controlling ability while 

also ensuring that a sufficient number of surrogate weeds would remain for subsequent counting 

(Vanhala et al. 2004). Because the Tertill™ operates using a random walk, rather than a 

programmed path, we did not account for spatially repeated weed control. Robots were tested 

with and without the standard weed whacker attachment. Weed control efficacy was measured in 

five randomly placed 0.125 m-2 quadrats. Quadrat placement was marked using golf tees that 

were pushed level with the soil to ensure no interference with the robots. Within these quadrats, 

pre- and post-treatment counts of surrogate weeds were conducted to assess efficacy, which was 

calculated using the following equation: 

Efficacy (%) = ((Db- Da) / Db)           [1] 
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Where Db was the pre-treatment density of surrogate weeds in each quadrat and Da was the post-

treatment density of surrogate weeds in each quadrat. Experiments were replicated over time. 

The grouser efficacy experiments were replicated 3 times using mustard and 5 times using pearl 

millet. 

Figure 1.2 Soil disturbance caused by 
grousers. 

 

 

 

 

 

 

A subsequent series of experiments were designed to better understand the effect of the 

robot in monocot weed species, such as pearl millet, that were expected to regrow after mowing 

due to the location of the plant’s intercalary meristem. Franklin Robotics recommends that 

gardeners place a Tertill™ in a freshly weeded, enclosed garden. The 6.7 x 1.5 m arena was 

divided into five designated blocks to mitigate effects of an observed ambient soil moisture 

gradient. Ten permanent quadrats were randomly placed across the arena with two quadrats per 

block. The arena was seeded with pearl millet, and the robot was released daily, starting 

immediately after seeding. In the first experiment, the robot ran for 53 min before shutting down 

to recharge via solar panel. This duration was used for all subsequent iterations of the 

experiment. Because sunlight was not always adequate given the northern latitude and time of 

year, the robot was charged overnight rather than relying on its built-in solar panel. Post-

treatment counts were conducted 24 h after each daily use for one week. Evaluation of daily 
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deployment aimed to mimic continuous weeding with Tertill™ as experienced after release in a 

weed-free garden; this experiment was replicated three times with pearl millet.  

Statistical analyses were conducted in JMP 14 (SAS Institute Inc., Cary, NC, USA). To 

evaluate the grousers, treatment efficacy means, averaged over replicate quadrats (n = 4), were 

compared using Wilcoxon signed rank tests due to non-normality of the data. To avoid 

confounding effects due to regrowth between treatment and post-treatment weed counts, efficacy 

was also calculated the second day after treatment. Another Wilcoxon signed rank test was 

conducted to compare efficacy from both one and two days after the treatment.  

To evaluate the effects of daily use, means for day were averaged over replicate quadrats 

(n = 10) and plotted across the five days during which the robot was assessed. A regression 

analysis was used to examine the relationship between time and efficacy. 

RESULTS AND DISCUSSION 

Weed Control Contribution of Grousers. In trials using condiment mustard, efficacy ranged 

from 60 to 72% with the weed whacker but was reduced to 4 to 39% without the weed whacker. 

In pearl millet trials, efficacy similarly ranged from 54 to 75% and 16 to 29% with and without 

the weed whacker, respectively. Rates of efficacy with the weed whacker are similar to those 

found by Gallandt (2010) and Gallandt et al. (2018), who noted a mean efficacy of 70% with 

colinear hoes and an overall mean efficacy of 66% for tractor-mounted implements, respectively. 

While efficacy was greatest with the combined action of the grousers and weed whacking 

implement, the grousers alone contributed 16 and 22% efficacy in mustard and pearl millet trials, 

respectively (Figure 1.3). Operation of the weed whacker improved weed control efficacy for 

both mustard and pearl millet (P = 0.0006 and P = 0.0001, respectively). Additionally, there was 

no difference in efficacy between mustard and pearl millet when surrogate counts were 
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conducted 24 h after weeding (P = 0.6221), suggesting that the Tertill™ was as effective in both 

grass and broadleaf species tested here. Also, there were no differences between counts 

conducted one and two days after the treatment (P = 0.7289; data not shown).  

Figure 1.3 Weed control efficacy when 
TertillTM was equipped with weed 
whacking implement and without. 
Means from three replicate experiments 
using condiment mustard and five 
replicate experiments using pearl millet 
as surrogates. Error bars show the 
standard error of the mean. 

 

 

 

 

 

Effect of Daily Use on Weed Pressure. Density of the pearl millet increased rapidly, before 

declining at a slower rate (data not shown). This was likely due to the meristem of seedlings 

being too low for the weed whacker to kill initially. Linear regression analysis of efficacy over 

time indicated a negative trend (Figure 1.4), reflecting the ability of the Tertill™ to decrease the 

density of pearl millet within the arena over time (R2 = 0.9617).  

Figure 1.4 Pearl millet density 
recorded daily and plotted across 
five days. Error bars show the 
standard error of the mean. Best fit 
line equation: y = -1.12x + 11.113. 
R2 = 0.9617 
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Implications for Future Research. Autonomous weeding robots represent a possible solution to 

the stagnation of herbicide development and labor shortages in high-value fruit and vegetable 

crops, and perhaps also a way to address intractable problems with herbicide resistant weeds. 

The Tertill™ is a viable form of weed control for a small home gardener, with high rates of 

efficacy in both annual grass and broadleaf surrogate weeds. We found that the Tertill™ was 

effective when used daily in a garden, as recommended by its manufacturers. While the robot 

was more effective when it was utilizing its weed whacker, the serendipitous discovery of the 

weed controlling potential of its grousers is an opportunity for future design 

enhancements to improve this mechanism.  

In its current form, the Tertill™ would require modification to be viable for farm-scale 

use. In a commercial agricultural setting, a farm-scale autonomous weeding robot would need to 

overcome several shortcomings apparent with the Tertill™. While its modest design allows the 

Tertill™ to be lightweight, inexpensive, and simple to use, a farmer will demand greater 

efficacy, increased working rates, and perhaps the ability to work in conjunction with additional 

robots. Additionally, while the Tertill™ is designed to work in widely-spaced crops, farm-scale 

autonomous robots will need to control weeds between and within rows of crops of many spatial 

arrangements. These improvements will likely come at the cost of simplicity and may result in 

increased capital costs.  

Given the working rates we observed, it would take one Tertill™ approximately 353 

hours to cover an acre; 40 units could cover an acre in approximately 8 h. For comparison, based 

on working rates determined in a field study by Gallandt (2010), it would take approximately 19 

hours to weed an acre by hand using a stirrup hoe. While using multiple units would increase 

working rates, it would require a system of path planning and communication among the robots 
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to minimize overlap in coverage. Improvements such as the ability to communicate as part of a 

swarm would require a system for communication between robots, path planning, optimization, 

and supervision. This is the approach of the Mobile Agricultural Robot Swarms (MARS) system 

for autonomous farming operations (Blender et al. 2016). McAllister et al. (2019) found that as 

the number of robot units in a field increases, information sharing strongly improves overall 

system performance.  

Beyond the technological complexities associated with developing autonomous weeding 

robots, there are several real-world considerations with which new robots should be evaluated. 

Successful robotic weeding systems will be designed to perform in the context of variable weed 

(i) density (seedbanks), and (ii) diversity; and these factors will vary over (iii) time and (iv) 

space. The density of weeds varies widely. While seedbank densities on conventional farms may 

be relatively low and predictable, densities on organic farms vary widely. Jabbour et al. (2014) 

found germinable seed densities raged from 2,775 m-2 to 24,678 m-2 on 23 New England farms. 

Species abundance and richness of weed communities also vary across farms (Crowder and 

Jabbour 2014). Weed communities vary in time and space. Seasonal emergence periodicity 

results in a dynamic community with changing species, size, and density (Gallandt et al. 2018). 

Emergence periodicity has long been important in designing weed control strategies (Egley and 

Williams 1991; Stoller and Wax 1973). The spatial heterogeneity of weeds results in populations 

dispersed in patches that may range in size from fractions of a hectare to many hectares (Cardina 

et al. 1997), further complicating field research but representing an important consideration for 

the development of any physical weed controlling implement (Lindquist et al. 1998). Soil 

conditions such as moisture content, organic matter, textural class, residues, and heterogeneity 

across fields can affect the action of traditional physical weeding tools (Kurstjens et al. 2004; 
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Mohler 2001). Weeding robots may offer a solution to the problem of constantly changing weed 

conditions, but these changes in species and density must be considered in their design. As 

complex plant sensing technologies become more democratized, it is imperative that future 

research regarding autonomous weeding is contextualized in real world scenarios.  

Additionally, there must also be greater focus placed on actuator components. In a review 

of 55 mechanical cultivation studies, Gallandt et al. (2018) found that efficacy of mechanical 

cultivation tools is low and highly variable. Autonomous weeding robots would benefit from 

increased actuator response times, which would increase working rates (Fennimore and Cutulle 

2019). Improving actuator components should be a goal to ensure efficient use of robotic 

technologies.  

As weeds remain a challenge in agricultural production systems globally, technologies to 

reduce weeding labor and overcome challenges associated with herbicide resistance are a 

pressing need. Autonomous weeding machines represent an emerging solution. We found the 

simple design of Franklin Robotics’ Tertill™ to be effective for use at home garden scales, and 

though we do not recommend its deployment at the farm scale at this time, believe this tool 

offers insights to inform development of future farm-scale weeding robots. Further, we believe 

that the development of future intelligent and autonomous weeders should be contextualized by 

real-world considerations. 
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CHAPTER TWO 

A COMPARISON OF BRASSICA SURROGATE WEEDS AND WILD RADISH 

(RAPHANUS RAPHANISTRUM):                                                                                                

I. EARLY GROWTH AND DEVELOPMENT 

 

INTRODUCTION 

Improving physical weed control (PWC) would help farmers address increasing problems 

of herbicide resistance in weeds of grain and fiber crops (Gaines et al. 2020), and the high cost of 

hand weeding in vegetables (Lee and Thierfelder 2017; Thierfelder et al. 2018). Organic farmers 

also rely heavily on PWC to reduce weed density, and thus crop yield and quality losses 

(Gallandt et al. 2018). Unfortunately, research related to PWC has lagged well behind efforts to 

develop and optimize herbicides, and as a consequence, PWC efficacy and selectivity are 

comparatively low and variable. Weeds, crops, soil conditions, and tools all affect efficacy and 

selectivity. Moreover, weed presence is highly variable in time and space, due to seasonal 

emergence periodicity and spatial heterogeneity (Cardina et al. 1997; Egley and Williams 1991; 

Gallandt et al. 2018). Given these multiple, perhaps interacting factors, researchers often aim to 

simplify the system by using domesticated “surrogate” weeds in addition to, or instead of, real 

weeds (Appendix A. Supplemental Table 1).  

 Surrogate weeds are usually crop species that are related to wild weed species of interest 

(Rasmussen 1991). Surrogate weeds have been widely used in PWC research, providing a 

genetically uniform, even-aged cohort, and assuring uniform spatial distribution and densities 

(McCollough et al. 2020; Merfield et al. 2017; Page et al. 2012). Most common are Brassica 

species: Condiment mustards (Brassica juncea L., Guillenia flavescens Hook., Sinapis alba L.) 
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and rapeseed (Brassica napus L.), which have been used as surrogate weeds in PWC studies in 

organic grains and vegetable systems (Brainard et al. 2013; Kolb et al. 2010). 

Surrogate weeds are easy to work with and reliable, improving the efficiency of 

experimental research. In contrast to weedy species that often exhibit low and unreliable 

germination rates (Tricault et al. 2018) and high rates of seed dormancy (Cheam 1986), 

domesticated surrogates exhibit high viability, rapid and uniform germination and reliable 

establishment (Smith et al. 2015). They are often easier to differentiate from ambient weed 

species that naturally occur in the research area (Giambalvo et al. 2010), and can obviate 

possible confounding factors of real weeds, such as varying heights within a stand (Smith et al. 

2014). Furthermore, real weed species can be difficult and time-consuming to acquire whereas 

surrogates have a more readily available seed supply (Myers et al. 2005).  

Despite the relatively common use of surrogate weeds, explicit comparisons to real 

weeds have not been done (Melander and McCollough 2020). Dormancy and seed shattering are 

known to be lost during plant domestication (McGinty et al. 2021; Rodríguez et al. 2017), but 

other traits, such as growth rate and biomass allocation are likely to differ between domesticates 

and their weedy relatives. A more thorough understanding of these and other early development 

characteristics, such as anchorage force (i.e., the force required to vertically pull a plant out of 

the soil) and root architecture (i.e., the explicit geometric allocation of root axes and branches 

(Lynch 1995)) could inform the use of surrogate weeds in PWC studies, expanding inference 

from these studies. 

The objective of this study was to evaluate four Brassica crop species for their suitability 

as surrogates for PWC research focused on improved control of wild radish (Raphanus 
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raphanistrum L.), a common weed in small grains. We hypothesized that early growth of the 

candidate surrogate weeds would not differ significantly from that of R. raphanistrum, making 

all four species viable options for use in the field. Additionally, we hypothesized that the larger-

seeded surrogates would most closely reflect the early growth of R. raphanistrum.   

METHODS AND MATERIALS 

Early growth experiments were conducted May through June 2019 and November 

through December 2020 in the University of Maine Roger Clapp Greenhouse in Orono, ME. 

Using a factorial randomized block design with six replications, this study involved the 

destructive harvest of four surrogate weed species and one real weed species, all at three distinct 

growth stages (one, two, and three true leaves) (Hess 1997; Meier 2001). A blocked design was 

chosen to account for an observed environmental gradient in the greenhouse. 

Plant Material. Wild radish (Raphanus raphanistrum L.) seeds were collected in 2017 in 

Parkman, ME (45.1° N, -69.4° W). To improve germination, R. raphanistrum seeds were 

separated from the siliques by hand prior to sieving (Mekenian and Willemsen 1975). Condiment 

mustards (Guillenia flavescens L.), (Brassica juncea L.), (Sinapis alba L.), and canola (Brassica 

napus L.) were sourced from Johnny’s Selected Seeds (Winslow, ME) and selected based on 

previous uses as surrogate weeds in field studies (Brown and Gallandt 2018; Kolb et al. 2012; 

Melander et al. 2003; Melander and McCollough 2020). Real and surrogate weed 100-seed mass 

ranged from 264 to 532 mg (Table 2.1). G. flavescens, B. napus, and S. alba were considered 

large-seeded surrogates while B. juncea was designated as small-seeded, due to the relative 

similarity in 100-seed mass of the first three and dissimilarity of the latter. 
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Table 2.1. The 100 seed mass (mg) of R. raphanistrum and Brassica surrogate weed seed lots1, 
used in comparative early growth and anchorage force assays. 

Species 100 Seed Mass Size Classification 
 mg  

Raphanus raphanistrum (L.) 629 n/a 
Guillenia flavescens (Hook.) 532 Large-seeded 
Sinapis alba (L.) 518 Large-seeded 
Brassica napus (L.) 503 Large-seeded 
Brassica juncea (L.) 264 Small-seeded 

1 Raphanus raphanistrum (L.) seeds were removed from their siliques by hand and, along with 
seed lots of all other species, were sieved to ensure uniform size within species. Germination 
assays were performed on all seed lots to ensure viability. 

 

Seed Preparation. Seeds were sieved to ensure seed size uniformity within each species 

(Kaufmann and Guitard 1967; Westoby et al. 1996). Anticipating the unreliable germination of 

weed species, all seeds were germinated prior to planting (Fang et al. 2019). Seeds were placed 

in petri dishes (8.5 cm) on blotter paper (Ahlstrom-Munkjö, Helsinki, Finland) and wetted with 4 

ml of water before being placed into an incubator at 20° C (Baskin and Baskin 2014). Upon 

radicle protrusion of 3 mm, germinated seeds were planted in 720 ml conically shaped plastic 

containers (Stuewe and Sons Inc., Tangent, Oregon). The 25 cm by 7 cm containers allowed for 

adequate space in which plant roots could grow unimpeded (Poorter et al. 2012). Each plastic 

container was filled with coarse pool filter sand (Quikrete©) which was found to be a suitable 

substrate for producing realistic and easily cleaned roots (Parks, unpublished data 2019). 

Germinated seeds were planted in the sand at a depth of 1 cm. Plants were irrigated to field 

capacity three times daily and fertilized with 20-20-20 fertilizer (ICL Specialty Fertilizers, 

Summerville, SC, USA) three times per week. To avoid the possibly confounding effect of 

turgidity, plants were irrigated and fertilized a set amount of time before harvest. Temperature 
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and relative humidity were measured in 2020 using a HOBO Onset (Bourne, MA) data logger. 

Temperature ranged from 16.1 to 26.1° C while the relative humidity ranged from 24 to 74%.  

Anchorage Force. Anchorage force was measured at each developmental stage using a 

stationary FMI-B50 force gauge (Alluris GmbH & Co., Germany). A metal clip, blunted with 

rubber so as not to damage the stem, was affixed to each plant at the soil level (Figure 2.1). 

Plants were pulled vertically at a constant velocity until fully uprooted. To ensure uniform sand 

moisture and plant turgidity, plants were always harvested one hour after irrigation. The force 

gauge recorded the amount of force being exerted upon each plant at one second intervals, from 

which the maximum force was selected (Toukura et al. 2006).  

Figure 2.1. A Guillenia flavescens seedling, 
at one true leaf after being uprooted with an 
Alluris force gauge.   

 

 

 

 

Biomass Allocation. Four parameters of root architecture, in addition to shoot surface area, were 

measured using a WinRhizo flatbed scanning system (Version 2003b, Regent Instrument, 

Quebec, Canada) (Bouma et al. 2000). Parameters included root length, root surface area, 

average root diameter, and number of root tips. Plants were gently removed from the cones, 

before being washed with water. Roots were separated from shoots, spread out with rubber 

tweezers to minimize root overlap, and placed in a 30 cm by 40 cm Plexiglas tray containing a 4 

to 6 mm deep layer of water. Roots were then scanned using a large-format scanner (Epson 
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Expression 12,000 XL) (Fang et al. 2019). A 600 DPI grayscale image was obtained for each 

plant root. To quantify the shoot surface area of each plant, grayscale images were also generated 

for each corresponding plant shoot with leaves removed from the stem and pressed flat against 

the glass. Roots and shoots were subsequently placed in a drying oven at 60° C for three days 

before being weighed; root-to-shoot ratios were calculated using these dry weights.  

Statistical Analyses. Data were analyzed using JMP 15 Pro statistical software (SAS Institute 

Inc., Cary, NC, USA). Data were checked for normality, constant variance, and independence 

using Shapiro-Wilk’s test, Levene’s tests, and q-q plots before being subjected to Analysis of 

Variance (ANOVA) (Quinn and Keough 2014). Means were compared using orthogonal 

contrasts and Tukey’s HSD, where appropriate. Data that did not meet the assumptions of 

ANOVA were subjected to Box-Cox, square root, and natural log transformations as necessary 

(Box-Cox 1964). Untransformed summary statistics are presented. An alpha level of 0.07 was 

used throughout.  

RESULTS AND DISCUSSION 

Biomass Allocation. Both total dry biomass and shoot surface area differed between the two 

study years (P = 0.062; P = 0.001). In 2019, plants were on average 0.05 g or approximately 71% 

larger than in 2020 (Figure 2.2). This difference in biomass may have been related to the time of 

the year during which the experiments were conducted. Maine experienced an average of 14.5 

daylight hours from May to June when the experiment was conducted in 2019, but only an 

average of 8.9 daylight hours from November to December, when the experiment was conducted 

in 2020. Not surprisingly, Adams and Langton (2004) found that increased exposure to sunlight 

can increase rates of photosynthesis, resulting in greater accumulation of dry biomass. This has 

also been observed in members of the Brassica family (Chen et al. 2021). As both R. 
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raphanistrum and the selected Brassica species included in this study are considered long-day 

plants (D’Aloia et al. 2009; King and Kondra 1986; Simard and Légère 2017), the two study 

years were analyzed and will be discussed separately due to the possibly confounding effects of 

heterogenous growth patterns caused by different day length exposure. 

While total dry biomass did not vary between species in 2019 (Table 2.2), in 2020, the 

species did vary in total dry biomass (Table 2.3). However, differences in total biomass observed 

in 2020 were only between surrogate species, with the total biomass of R. raphanistrum not 

varying significantly from that of the surrogate species. The root-to-shoot ratio of R. 

raphanistrum tended to be smaller than those of the surrogate species at all leaf stages in 2019 

(Table 2.4), however, in 2020, the root-to-shoot ratio of R. raphanistrum differed from 

surrogates only at the second and third leaf stages (Table 2.5). Similarly, in both years, shoot 

surface area differed between R. raphanistrum and the Brassica surrogates only at the second and 

third true leaf stage (Tables 2.6 and 2.7). 
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Table 2.2. 2019 ANOVA for biomass, root architecture, and anchorage force dependent 
variables. Bold font indicates statistically significant P-values. 

 

 

Table 2.3. 2020 ANOVA for biomass, root architecture, and anchorage force dependent 
variables. Bold font indicates statistically significant P-values.  

 

 

 

 

 

 

Source df Biomass Root Architecture Anchorage 
Force 

  Total 
Biomass 

Shoot 
Surface 

Area 

Root-
to-

shoot 
Ratio 

Root 
Length 

Root 
Surface 

Area 

Average 
Root 

Diameter 

Number 
of Root 

Tips 

Maximum 
Anchorage 

Force 
Block 5 0.108 0.704 0.648 0.773 0.656 0.981 0.151 0.439 
Species 4 0.755 < 0.001 0.573 < 0.001 < 0.001 0.135 < 0.001 < 0.001 

Leaf Stage 2 0.301 0.001 0.016 < 0.001 < 0.001 < 0.001 0.003 0.001 

Species*Leaf 
Stage 8 0.789 0.059 0.241 < 0.001 < 0.001 0.816 0.148 0.598 

Source df Biomass Root Architecture Anchorage 
Force 

  Total 
Biomass 

Shoot 
Surface 

Area 

Root-
to-

shoot 
Ratio 

Root 
Length 

Root 
Surface 

Area 

Average 
Root 

Diameter 

Number 
of Root 

Tips 

Maximum 
Anchorage 

Force 
Block 5 0.704 0.482 0.316 0.753 0.767 0.271 0.692 0.728 
Species 4 0.050 < 0.001 0.017 0.001 0.001 0.010 0.006 < 0.001 

Leaf Stage 2 < 0.001 < 0.001 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

Species*Leaf 
Stage 8 0.066 0.001 0.001 0.079 0.139 0.275 0.715 0.029 
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Table 2.4. 2019 main effect means for biomass, root architecture, and anchorage force dependent 
variables. Data were square-root transformed to meet the assumptions of ANOVA. Back-
transformed mean values are shown. Means not connected by the same letter are 
signficantly different. No connecting letters represents a nonsignficant effect.  

 

 

Table 2.5. 2020 main effect means for biomass, root architecture, and anchorage force dependent 
variables. Data were square-root transformed to meet the assumptions of ANOVA. Back-
transformed mean values are shown. Means not connected by the same letter are 
signficantly different. No connecting letters represents a nonsignficant effect. 

 

Main 
Effects 

Total 
Biomass 

Shoot 
Surface 

Area 

Root-to-
shoot 
ratio 

Root 
length 

Root 
Surface 

Area 

Average 
Root 

Diameter 

Number 
of Root 

Tips 

Maximum 
Anchorage 

Force 
 --- g --- -- cm2 -- --- g/g --- -- cm -- -- cm2 -- --- mm --- -- no. -- ---- N ---- 
Species         

RR 0.08 29.4a 0.96b 103b 10.0c 0.31c 154b 0.77ab 

GF 0.10 12.3bc 1.71ab 108b 15.4b 0.45a 241a 0.65b 
SA 0.08 15.7bc 1.37ab 128b 16.1bc 0.40b 308a 0.60b 

BN 0.06 21.8ab 1.13ab 250a 24.6a 0.34c 421a 0.89a 

BJ 0.05 12.2c 1.79a 99b 11.9bc 0.39b 246ab 0.54b 

Leaf Stage        
One 0.07 9.2b 1.28 73b 8.4b 0.38 142b 0.49c 
Two 0.08 16.1b 1.43 96b 11.6b 0.39 188b 0.66b 
Three 0.08 31.2a 1.49 258a 27.7a 0.36 509a 0.91a 

Main 
Effects 

Total 
Biomass 

Shoot 
Surface 

Area 

Root-to-
shoot 
ratio 

Root 
length 

Root 
Surface 

Area 

Average 
Root 

Diameter 

Number 
of Root 

Tips 

Maximum 
Anchorage 

Force 
 ----- g ------ -- cm2 --- -- g/g --- -- cm -- -- cm2 --- --- mm --- -- no. --- ---- N ----- 
Species         

RR 0.025ab 13.0ab 1.77ab 79b 8.8bc 0.37ab 345b 0.94a 

GF 0.022ab 9.7bc 1.90ab 118ab 13.1abc 0.37ab 703a 0.66bc 

SA 0.021ab 10.7bc 1.58b 130ab 15.0ab 0.39a 745a 0.69bc 

BN 0.027a 18.1a 1.58b 155a 15.6a 0.34b 708a 0.72ab 

BJ 0.016b 5.8c 2.81a 75b 8.2c 0.35ab 474ab 0.46c 

Leaf Stage        
One 0.016b 6.4c 2.42a 61b 7.3b 0.39a 373b 0.46c 
Two 0.019b 10.3b 1.74ab 89b 10.2b 0.37a 549b 0.63b 
Three 0.030a 19.1a 1.59b 187a 19.2a 0.34b 883a 1.01a 
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As larger weeds have been shown to be more difficult to control across a range of PWC 

tools (Baerveldt and Ascard 1999; Lundkvist 2009; Pullen and Cowell 1997), differences in total 

biomass are potentially critical restrictions to the ability of a surrogate weed to reflect the 

reaction to cultivation of real a weed. Likewise, differences in biomass allocation, as reflected in 

root-to-shoot ratios, have been linked to susceptibility to mechanical uprooting (Ennos 2000). 

The similarities between R. raphanistrum and surrogate weeds in biomass and biomass 

allocation support our hypothesis that these Brassica species are viable surrogates. Additionally, 

similarities in root-to-shoot ratios at the first leaf stage are potentially more important than 

dissimilarities at later leaf stages (Table 2.4) as PWC studies generally focus on cultivation while 

weeds are in the cotyledon to first true leaf stages (Brown and Gallandt 2018), due to the 

importance of maintaining a size advantage for crops (Gallandt and Weiner 2015).  
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Figure 2.2. Total plant biomass of Raphanus raphanistrum and Brassica surrogate weed species. 
Means from two experiments in two different years, each with six replicates. Error bars 
show the standard error of the mean.  
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Root System Architecture. While R. raphanistrum had shorter roots than S. alba and B. napus 

in 2020 at all leaf stages (Table 2.7), in 2019 R. raphanistrum did not differ from the surrogates 

at the first leaf stage (Table 2.6). As expected, root length, across all species, increased with 

growth stage (Tables 2.4 and 2.5). Similarly, in 2020, R. raphanistrum had smaller root surface 

areas than S. alba and B. napus at all leaf stages (Table 2.7) but did not differ from any surrogate 

in 2019 at the first leaf stage (Table 2.6). Across all species, plants in 2020 had more root tips, 

but in both years, R. raphanistrum had significantly fewer root tips than all surrogate species at 

all leaf stages (Tables 2.6 and 2.7). R. raphanistrum had smaller average root diameters than G. 

flavescens, S. alba, and B juncea at all three leaf stages in 2019 and S. alba in 2020 (Tables 2.8 

and 2.9). Additionally, at all leaf stages, R. raphanistrum and surrogate roots were primarily 

composed of roots 0.55 mm, or smaller, in diameter (Figure 2.3).  

Root length and root tensile strength are generally correlated to the uprooting resistance 

of plants (Bailey et al. 2002; Edmaier et al. 2014; Ennos 1989; Dupuy et al. 2005). Also, root 

tensile strength was positively correlated to root diameter (Pollen and Simon 2005; Pohl et al. 

2011). Our results demonstrating similarities in root length and root surface area of R. 

raphanistrum and surrogates at earlier leaf stages support the use of these surrogate species for 

PWC research. Differences at later growth stages are less concerning as PWC studies are 

typically conducted while weeds are small and therefore characteristics at the third leaf stage 

might be of less consequence in this context. 
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Table 2.6. Interacting effects of species and plant growth stage on the shoot surface area, root 
length, and root surface area of Raphanus raphanistrum and Brassica surrogate weeds in 
2019. Data were square-root transformed to meet the assumptions of ANOVA. Back-
transformed mean values are shown. Bold font indicates significant P-values.   

 

 

 

 

 

 

 

 

 

Species 
Shoot Surface Area Root Length Root Surface Area 

One  Two Three One  Two Three One  Two Three 
 ----------- cm------------- ----------- cm ------------ ------------ cm2 ------------- 
R. 
raphanistrum 
(RR) 

11 31 47 63 105 143 7 10 14 

G. flavescens 
(GF) 9 11 19 71 95 184 10 14 26 

S. alba (SA) 9 14 24 84 98 203 10 13 26 
B. napus 
(BN) 8 17 44 73 119 619 7 13 59 

B. juncea 
(BJ) 9 9 18 70 67 157 9 9 18 

Contrasts ----------------------------------------- P > F ------------------------------------------- 
RR vs GF 0.978 0.008 0.001 0.803 0.854 0.241 0.360 0.249 0.004 
RR vs SA 0.715 0.032 0.005 0.501 0.856 0.114 0.348 0.545 0.005 
RR vs BN 0.618 0.068 0.723 0.766 0.605 < 0.001 0.810 0.394 < 0.001 
RR vs BJ 0.728 0.003 0.001 0.817 0.330 0.655 0.521 0.797 0.217 
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Table 2.7. Interacting effects of species and plant growth stage on the shoot surface area, root 
length, and root surface area of Raphanus raphanistrum and Brassica surrogate weeds in 
2020. Data were square-root transformed to meet the assumptions of ANOVA. Back-
transformed mean values are shown. Bold font indicates significant P-values.   

 

 

 

 

 

 

 

 

 

 

Species 
Total Biomass Shoot Surface Area Root-to-shoot ratio 

One  Two Three One  Two Three One  Two Three 
 ------------- g ------------ ------------ cm2 ------------ ------------- g/g ------------ 
R. 
raphanistrum 
(RR) 

0.02 0.03 0.03 6.6 11.8 21.9 1.8 2.5 1.0 

G. flavescens 
(GF) 0.01 0.02 0.03 6.8 7.2 16.3 1.6 2.1 2.0 

S. alba (SA) 0.02 0.02 0.02 7.6 9.8 14.5 2.4 1.6 0.7 
B. napus 
(BN) 0.19 0.02 0.04 6.9 16.3 31.1 3.0 1.2 0.5 

B. juncea 
(BJ) 0.01 0.01 0.03 4.3 5.6 8.12 3.2 1.4 3.6 

 ------------------------------------------- P > F ------------------------------------------- 
RR vs GF 0.619 0.124 0.467 0.937 0.118 0.077 0.750 0.327 0.032 
RR vs SA 0.547 0.502 0.118 0.719 0.637 0.019 0.363 0.110 0.452 
RR vs BN 0.625 0.167 0.111 0.914 0.145 0.002 0.095 0.045 0.265 
RR vs BJ 0.638 0.005 0.446 0.436 0.057 < 0.001 0.100 0.103 0.001 
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Table 2.8. The root-to-shoot ratios, average root diameters, number of root tips, and anchorage 
forces of R. raphanistrum and selected Brassica surrogate weeds in 2019. Data were 
square-root transformed to meet the assumptions of ANOVA. Back-transformed mean 
values are shown. Bold font indicates significant P-values.   

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.9. The root lengths, root surface areas, average root diameters, and numbers of root tips 
of R. raphanistrum and selected Brassica surrogate weeds in 2020. Data were square-root 
transformed to meet the assumptions of ANOVA. Back-transformed mean values are 
shown. Bold font indicates significant P-values.   

Species Root Length 
Root Surface 

Area 
Average Root 

Diameter 
Number of Root 

Tips 
 ----- cm ------ ----- cm2 ------ ----- mm ------ ------ no. ----- 
R. raphanistrum 
(RR) 79 8.8 0.34 345 

G. flavescens (GF) 118 13.1 0.37 703 
S. alba (SA) 130 15.0 0.39 745 
B. napus (BN) 155 15.6 0.34 708 
B. juncea (BJ) 75 8.2 0.35 474 
Contrasts ---------------------------------- P > F ---------------------------------- 
RR vs. GF 0.100 0.068 0.689 0.005 
RR vs. SA 0.034  0.010 0.081 0.002 
RR vs. BN 0.001 0.004 0.103 0.004 
RR vs. BJ 0.724 0.708 0.372 0.333 

Species 
Root-to-shoot 

ratio 
Average Root 

Diameter 
Number of Root 

Tips 
 ------- g/g ------- ------- mm ------- ------- no. ------- 
R. raphanistrum 
(RR) 0.9 1.4 154 

G. flavescens 
(GF) 1.1 1.6 241 

S. alba (SA) 1.1 1.5 308 
B. napus (BN) 1.0 1.4 421 
B. juncea (BJ) 1.2 1.5 246 
Contrasts ----------------------------- P > F ------------------------------ 
RR vs. GF 0.012 < 0.001 0.005 
RR vs. SA 0.061 < 0.001 0.002 
RR vs. BN 0.201 0.259 0.001 
RR vs. BJ 0.001 < 0.001 0.015 
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Figure 2.3. Raphanus raphanistrum root surface area separated, into first, second, and third leaf 
stages, within six size classes. Means from one experiment, each with six replicates. 
Error bars shown the standard error of the mean. 

 

 

Anchorage Force. R. raphanistrum, G. flavescens, and S. alba, had higher anchorage forces in 

2020 than in 2019 (Table 2.10). Higher anchorage forces in 2020 may be related to shorter 

daylengths, which have been noted in previous studies to result in shorter roots with more fine, 

lateral root growth (Franco et al. 2011; Macdonald and Owens 2010) that can increase anchorage 

(Ennos 1993; Edmaier 2014). In 2019, R. raphanistrum had a higher anchorage force than B. 

juncea at the second leaf stage and G. flavescens and S. alba at the third leaf stage but similar to 

all surrogates at the first leaf stage (Table 2.10). In 2020, R. raphanistrum had a higher 

anchorage force than all of the surrogate species across growth stages (Table 2.10). For all 
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species, anchorage force increased with each leaf stage (P = 0.0007), as expected and noted in 

previous studies (Bailey et al. 2002; Meyler and Rühling 1966) (Figure 2.4). 

As with biomass and root architecture parameters, anchorage force was analyzed 

separately by year. Results for both years were within the range of previously recorded root 

anchorage forces in similar studies (Edmaier et al. 2014). As noted in other studies, anchorage 

force is affected by root tensile strength, soil composition, and root-soil adherence properties 

(Ennos 1989; Ennos 1990). We observed that at the beginning of the uprooting process, the force 

exerted on each plant increased linearly with time until reaching a maximum, while in the latter 

half of the curve the force dropped sharply a number of times, presumably due to root release 

from the sand and breakage of small secondary roots (Figure 2.5).  

Several studies have investigated the relationship between anchorage force and the 

cultivation susceptibility of field weeds (Fogelberg and Dock Gustavsson 1998; Meyler and 

Ruhling 1966), and Kurstjens and Kropff (2000) developed a model for predicting the selective 

uprooting by flex-tine harrows based on plant anchorage forces. Comparable anchorage forces at 

the first leaf stage in 2019 are in accordance with previously stated similarities in root 

architecture at earlier leaf stages and suggest that R. raphanistrum and the surrogate weed 

species would theoretically react similarly to cultivation. However, the higher anchorage force of 

R. raphanistrum in 2020 is contrary to what one would expect given the observed root 

parameters (Table 2.3 and Table 2.5). Differences between the anchorage forces of real weeds 

and corresponding surrogate species, may decrease the viability of surrogate use in PWC studies, 

particularly while assaying tools for which uprooting is the primary mode of action.  
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Figure 2.4. Maximum anchorage force of Raphanus raphanistrum and Brassica surrogate weed 
species at one, two, and three true leaves. Means from two experiments, each with six 
replicates. Error bars show the standard error of the mean. 

 

Table 2.10. The anchorage forces of Raphanus raphanistrum and Brassica surrogate weeds 
separated into the two study years and the three leaf stages. Data were square-root 
transformed to meet the assumptions of ANOVA. Back-transformed mean values are 
shown. Bold font indicates statistically significant P-values. 
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Figure 2.5. The change in anchorage force as a Guillenia flavescens seedling at one true leaf was 
uprooted. The force exerted on the seedling increased linearly before decreasing 
sharply. Best fit line equation: y = 0.09358x + - 0.3738. R2 0.958 

 

Seed Mass. Both large- and small-seeded surrogate species were comparable to R. raphanistrum 

at the first leaf stage in root-to-shoot ratio, shoot surface area, root length, root surface area, and 

average root diameter (Table 2.11). At later leaf stages, large-seeded surrogates had similar total 

biomasses, root-to-shoot ratios and shoot surface areas while small-seeded surrogates had 

comparable root lengths and root surface areas (Table 2.11). Moreover, in 2019 both large- and 

small-seeded surrogates had comparable anchorage forces at the first leaf stage while varying at 

the second and third leaf stage in 2020 (Table 2.11).  

As previous research has linked seed mass to the early growth and establishment of 

seedlings (Westoby 1998) and has been shown to influence root architecture (Leishman et al. 

2000), we anticipated that seed mass could be an appropriate criterion for the selection of 
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growth characteristics of R. raphanistrum despite the influence of seed mass observed in past 

studies. Moreover, seed-size would appear to be even less consequential at the first leaf stage.  

In summary, R. raphanistrum and the four included Brassica surrogate weed species were 

comparable in a number of parameters of biomass and root architecture. These similarities are 

especially true at earlier growth stages, at which PWC studies are predominately conducted. 

However, significant differences in anchorage force (Table 2.10), may advocate for caution and 

further research concerning using surrogates for PWC studies where uprooting is the primary 

mode of action. Additionally, seed mass may not be a useful component of the surrogate weed 

selection process. 

Crops and weeds vary in susceptibility to PWC across species (Gallandt et al. 2018); 

therefore, the early growth and development, and susceptibility to PWC, of other commonly used 

surrogate species, such as winter wheat (Triticum aestivum) (Reid et al. 2014) or white proso 

millet (Panicum miliaceaum) (Brown and Gallandt 2018) should be included in future research. 

Additionally, we recognize that there may be cultivation modes of action other than uprooting 

(i.e., burial and slicing), for which other early growth characteristics may be of greater import, 

such as stem thickness.  

Moreover, in our related study (Sanchez and Gallandt 2021), Brassica surrogates 

exhibited correlated rates of cultivation efficacy to R. raphanistrum, suggesting that the use of 

surrogates could generate useful data if paired with a related real weed as an internal reference. 

This could be accomplished by either sowing a small number of subsamples with real weed 

seeds, or counting ambient weeds, while primarily relying on the efficiency gained by utilizing 

surrogates.   
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CHAPTER THREE 

A COMPARISON OF BRASSICA SURROGATE WEEDS AND WILD RADISH 

(RAPHANUS RAPHANISTRUM):                                                                                               

II. RESPONSE TO FLEX-TINE HARROWS 

 

INTRODUCTION 

Interest in the development of improved implements for physical weed control (PWC) 

has increased in recent years due to a lack of effective herbicides and labor shortages (Fennimore 

et al. 2016). Tools for PWC vary in design and adjustability and have been known to range in 

weed killing effectiveness as much as 21 to 90% (Gallandt et al. 2018). Moreover, the efficacy of 

PWC tools can be affected by soil conditions (Duerinckx et al. 2005), weed growth stage 

(Rasmussen et al. 2008), and weed community composition (Mohler 2001). A better 

understanding of how PWC tools perform would aid in the development of improved cultivation 

tools (Kurstjens and Perdok 2000).   

 Due to the multi-faceted nature of evaluating PWC tools, researchers often use 

“surrogate” weeds to remove sources of variation often found among real weeds such as high 

rates of seed dormancy (Malik et al. 2010), variable stands (Myers et al. 2005), and heterogenous 

emergence patterns (Egley and Williams 1991). Surrogate weeds are domesticated species used 

in place of, or in addition to, their weedy counterparts (Gallandt 2010; Kolb and Gallandt 2012; 

Melander and McCollough 2020). However, while McCollough et al. (2020) noted similarities 

between real and surrogate weed responses to hoeing, explicit comparisons have yet to be made.   

In an attempt to make these comparisons, we observed, in a related study, dissimilarities 

in the anchorage forces (i.e., the force necessary to uproot a plant) and the root architectures (i.e., 
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the spatial configuration of the plant root system) of wild radish (Raphanus raphanistrum L.) and 

selected Brassica surrogates (Sanchez and Gallandt 2021). Past studies have linked plant 

anchorage force to susceptibility to PWC (Fogelberg and Dock Gutavsson 1998; Kurstjens and 

Kropff 2000; Kurstjens et al. 2004). Given these differences between an actual Brassica weed 

species and commonly used weed surrogate species, explicit comparisons in the field are 

necessary to justify the continued use of surrogate weeds in studies of PWC.  

Variation is common not only between related species, but also within a species. To 

remove species variation, a number of studies have utilized “artificial” weeds, fashioned from 

simple and identical objects such as small wooden cylinders (Kshetri et al. 2019). Typically, 

artificial weeds have been used to assess mechanistic attributes of cultivation tools such as the 

capacity for soil upheaval (Zhang and Chen 2017) but also have potential for assaying PWC 

efficacy. However, the use of artificial weeds remains nascent, especially in field experiments, 

and requires further validation.    

The objective of this study was to evaluate the ability of two broadleaf, Brassica 

surrogate weeds to accurately reflect the cultivation susceptibility of a related weedy species, 

wild radish. To assess a wide range of PWC intensities, six different flex-tine harrows, with 

varying designs, were tested. Additionally, we assessed the suitability of seed mass as a metric 

for surrogate weed selection and the ability of golf tees to act as artificial weeds. We 

hypothesized that the included Brassica surrogate weed species would not vary significantly in 

response to cultivation from that of wild radish and expected that larger-seeded surrogate species 

would more closely reflect the rates of cultivation efficacy for the relatively large-seeded wild 

radish. Additionally, we expected artificial weeds to effectively simulate both surrogate and real 

weeds and to be less variable.  
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METHODS AND MATERIALS 

Field Preparation. Field trials were conducted at the University of Maine Rogers Farm 

(44.93°N, 68.70°W) in July 2019 and August 2020. Soils were a Pushaw-Boothbay silt loam in 

2019 and a Nicholville very fine sandy loam in 2020. In both years, fields were prepared by 

shallow rototilling, perfecta harrowing (Perfecta Field Cultivator, Unverferth Manufacturing 

Company, Kalida, OH), and culti-packing with an empty Brillion Sure Stand Grass Seeder 

(Landoll, Marysville, KS, USA). Due to the short duration of the experiments, and because we 

did not plan to take test crops to yield, soil amendments were not added to fields in either year. 

Treatments were established in a split-plot randomized complete block design with four blocks. 

The main-plot factor was flex-tine harrow while the subplot factor was weed species: wild 

radish, surrogate weed, or artificial weed. Test crops included bush beans (‘Provider’) in 2019 

and beets (‘Chioggia Guardsmark’) in 2020, which were both sown with a Wizard Vacuum 

Seeder (Sutton Ag, California) and planted in two rows 50 cm apart on beds 127 cm wide. 

Real, Surrogate, and Artificial Weeds. Two commonly used surrogate weeds, condiment 

mustard (Guillenia flavescens Hook.) and canola (Brassica juncea L.), were broadcast at a rate 

of 60 seeds 0.25 m-2 and raked into the soil to simulate a stand of wild radish (Raphanus 

raphanistrum L.) (Brown and Gallandt 2018; Kolb et al. 2010; McCollough et al. 2020). R. 

raphanistrum was sown in each plot at a target density of at least 60 plants per 0.25 m-2 (Vanhala 

2004). To ensure surrogate weeds and R. raphanistrum were in the cotyledon to first true leaf 

stage at the time of cultivation, and therefore simulate weed emergence after a pre-emergence 

harrowing (Lundkvist 2009; Meier 2001), they were broadcast by hand and subsequently 

incorporated into the soil 5-7 days after test crop emergence (Brown and Gallandt 2018). Each 



 
 
 

35 

species was sown in 0.25 m-2 subplots which were placed in random locations centered over the 

crop row in each plot.  

 Designation of surrogates as large- or small-seeded was based upon measurements of the 

100-seed masses, using a precision balance (Sartorius, Germany) (Sanchez and Gallandt 2021). 

G. flavescens (5.32 mg seed-1) was considered the large-seeded surrogate while B. juncea (2.64 

mg seed-1) designated as small-seeded. 

In 2020, 35 mm long wooden golf tees were also included, as an additional analogue for 

ambient weeds, herein referred to as “artificial weeds” to differentiate from the surrogate weed 

species above (Kshetri et al. 2019). Artificial weeds were placed in the soil at a depth of 33 mm 

and at a density of 25 per 0.125 m-2 subplots. 

Cultivation. Cultivation was conducted when a majority of surrogates and real weeds reached 

the cotyledon to first leaf stages (Meier 2001). Due to poor R. raphanistrum germination in a 

number of attempted experiments in both field seasons, bush beans were in the fourth true leaf 

stage (i.e., the second trifoliate leaf was unfolded) (Feller et al. 1995) and beets were in the fifth 

leaf stage (i.e., five true leaves were unfolded) (Meier et al. 1993) at the time of cultivation.  

 To include a range of designs, six flex-tine harrows were used in this study: the Johnny’s 

Selected Seeds Tine Weeding Rake (Johnny’s Selected Seeds, Fairfield, ME), Terrateck Double 

Wheelhoe with flex-tines (Terrateck, Lestrem, FR), Terrateck Tine Rake (Terrateck, Lestrem, 

FR), Tiny Treffler (Man@Machine, Molenstraat, NL), Two Bad Cats Tine Weeder (Two Bad 

Cats LLC., North Clarendon, VT), and Williams Tine Harrow (Market Farm Implement, 

Friedens, PA, USA). All flex-tine harrows were handheld and operated by a single individual 

except for the Williams Tine Harrow. Forward speeds for handheld tools ranged from 4.5 to 5.4 
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kph. The Williams Tine Harrow was mounted to a Case IH 265 Offset Cultivation Tractor driven 

at 5.4 kph. Varying design characteristics between tools were noted and settings deemed to be 

optimal were adjusted in the field (Table 3.2). The manufactured tine angles ranged from 27° to 

79°, spanning what has been used in other studies to represent the spectrum of harrowing 

intensity based on tine angle (Gerhards et al. 2020).     

Data Collection. Real and surrogate weeds were counted using 0.25 m-2 quadrats centered across 

the crop row. Stand counts were conducted before and after plots were harrowed. Due to low and 

variable stands, ambient weeds were not counted in either year of this study.  

Artificial weed mortality was scored using a qualitative scale wherein golf tees were 

considered “dead” when either fully uprooted (i.e., the pointed tip was visible) or when fully 

buried (i.e., the head of the golf tee was fully obscured with soil). Golf tees which were only 

partially uprooted or buried were considered “live.”  

 Weed control efficacy and crop mortality were determined by the percentage of plants 

killed (Evans et al. 2012; Kolb et al. 2010). Within subplots, pre- and post-treatment counts for 

crop plants, surrogate weeds, and artificial weeds were conducted, which were then used to 

calculate the percent efficacy and percent crop mortality using the following equation: 

Efficacy (%) = ((Db – Da) / Db)          [1] 

Where Db was the pre-treatment density in each quadrat and Da was the post-treatment density.  

Statistical Analysis. Statistical analyses were conducted in JMP 15 Pro (SAS Institute Inc., 

Cary, NC, USA). Cultivation efficacy was analyzed using an Analysis of Variance (ANOVA).  

Explanatory variables included in the ANOVA were block, year, species, and tool treatment. 

Assumptions of normality, constant variance, and independence of errors were evaluated using 
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Shapiro-Wilkes tests, Levene’s tests, residual-by-fitted plots, and q-q plots (Quinn and Keough 

2014). Data failing to meet the assumptions for ANOVA were subjected to Box-Cox and power 

transformations, as necessary (Box and Cox 1964). Means were compared using orthogonal 

contrasts and Tukey’s HSD, where appropriate. A significance level of 0.05 was used throughout 

the analyses for this study. 

RESULTS AND DISCUSSION 

Flex-tine Harrow Efficacy. Flex-tine harrow efficacy ranged from 23 to 53% across the tools 

(Figure 3.1). This range of weed control efficacy is comparable to results of previous flex-tine 

harrow studies (Brown and Gallandt 2018; Fontanelli et al. 2015; Pardo et al. 2008). The Tiny 

Treffler had a higher rate of efficacy than the Johnny’s Selected Seeds Tine Rake, the Two Bad 

Cats Tine Rake, and the Terrateck Tine Rake; there were no differences between the remaining 

tools (Figure 3.1). Additionally, while the tools performed in nearly identical rank orders in both 

years, rates of efficacy were higher in 2019 than 2020 (Table 3.1). Differences between the two 

years may be attributable to different soil types or amounts of precipitation, as total precipitation 

at the study site was 28% more in 2020 than in 2019 (Kurstjens and Perdok 2000).  

The design characteristics of the individual tools may have affected efficacy and crop 

mortality (Table 3.2). For instance, the implement with the greatest efficacy, the Tiny Treffler, 

had the longest and most rigid tines. Differences in tine angle have also been shown to influence 

tool aggressiveness (Peruzzi et al. 2010; Rasmussen and Svenningsen 1995).  
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Figure 3.1. Cultivation efficacy of flex-tine harrows. Means from two study years, averaged over 
real and surrogate weed species. Error bars show the standard error of the mean. Tools 
not connected by the same letter are statistically different.   

 
 

Table 3.1. Analysis of variance of the cultivation efficacy by six flex-tine harrows with 
Raphanus raphanistrum and Brassica surrogate weeds. Bold font indicates statistically 
significant P-values. 

Source df Efficacy 
Block 3 0.122 
Year 1 < 0.001 
Tool 5 0.002 
Species 2 0.098 
Year*Tool 5 0.473 
Year*Species 2 0.198 
Species*Tool 10 0.945 
Year*Species*Tool 10 0.867 
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Table 3.2. Design characteristics of selected flex-tine harrows. 

Tool Diameter Length Angle Rigidity 
Total 

Number of 
Tines 

 -- mm -- -- cm -- -- Degrees -- -- N -- -- no. -- 
Johnny’s 

Selected 
Seeds Tine 
Rake 

1.9 7.5 56.1 2.2 28 

Terrateck 
Double 
Wheelhoe 

3.1 9.5 27.1 4.4 14 

Terrateck Tine 
Rake 3.3 9.5 28.4 4.4 14 

Tiny Treffler 8.1 21.0 57.5 26.6 32 
Two Bad Cats 

Tine Rake 3.3 12.0 54.9 1.1 21 

Williams Tine 
Harrow 6.2 17.0 79.4 8.9 27 
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Crop Mortality. Based on the results of previous studies, we expected to observe crop mortality 

rates in the range of 12 to 18% (Melander and Hartvig 1995; Dastheib 2004). However, the 

mortality of bush beans ranged from 3 to 6% across the tools while that of table beets ranged 

from 0 to 6% (Figure 3.2). Due to their advanced size, test crops in both years resulted in low 

and highly variable rates of crop mortality across tools.  

 

Figure 3.2. Crop mortality of flex-tine harrows. To address the range in cultivation susceptibility 
in crop species, bush beans (‘Provider) were used as a test crop in 2019 while table 
beets (‘Chioggia Guardsmark’) were used in 2020 however, the experiment was 
conducted only once with each test crop due to constraints caused by low and variable 
weed germination. Error bars show the standard error of the mean. 
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Surrogate Weeds. The rate of cultivation efficacy for R. raphanistrum ranged across tools from 

21% with the Two Bad Cats Tine Rake to 45% with the Tiny Treffler (Table 3.3). Rates of 

efficacy for both G. flavescens and B. juncea were comparable to those of R. raphanistrum 

(Table 3.3), indicating that these species are useful surrogates for this weed species. 

 While not statistically different than the surrogate species, generally the rate of 

cultivation efficacy for R. raphanistrum was lower than that of either surrogate weed species 

(Table 3.3). Cultivation efficacy can be affected by many plant factors, including biomass, root 

architecture, and anchorage force (Mohler et al. 1997; Mohler et al. 2016). Anchorage force is 

particularly important for tools in which uprooting is an important mechanism (Kurstjens and 

Kropff 2000). In our related studies of the early growth of R. raphanistrum and Brassica 

surrogates, anchorage forces of R. raphanistrum were greater than G. flavescens and B. juncea, 

at the first leaf stage (Sanchez and Gallandt 2021). Field measurements of anchorage forces 

corroborated these results as R. raphanistrum had higher anchorage forces than B. juncea and 

comparable anchorage forces as G. flavescens (data not shown). Differences in the anchorage 

forces of R. raphanistrum and surrogate weeds could affect flex-tine harrow efficacy, but such an 

effect was not detected in our experiments.  

Moreover, rates of cultivation efficacy, averaged across all flex-tine harrows, for both G. 

flavescens and B. juncea were positively correlated with that of R. raphanistrum (r = 0.63, P = 

0.0009; r = 0.86, P = 0.0001, respectively) (Figure 3.3), possibly due to similarities in biomass 

allocation and root architecture (Sanchez and Gallandt 2021). Comparable rates of cultivation 

efficacy and positive correlations between the two surrogate species and R. raphanistrum support 

our hypothesis that selected Brassica surrogate weeds can accurately reflect the cultivation of R. 

raphanistrum with flex-tine harrows.    
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Table 3.3. Efficacy of selected flex-tine harrows on Raphanus raphanistrum, selected Brassica 
surrogate weeds, and artificial weeds. 

Species 

Johnny’s 
Selected 

Seeds 
Tine 
Rake 

Terrateck 
Double 

Wheelhoe 

Terrateck 
Tine 
Rake 

Tiny 
Treffler 

Two 
Bad 
Cats 
Tine 
Rake 

Williams 
Tine 

Harrow 
 -------------------------------- Efficacy (%) ----------------------------- 
R. 
raphanistrum   
(RR) 

30 25 33 45 21 24 

G. flavescens       
(GF) 38 40 38 56 22 36 

B. juncea              
(BJ) 27 45 43 60 26 29 

Artificial 
Weeds (AW)a 

41 26 17 48 10 63 

Contrasts ---------------------------------- P > F ------------------------------------ 
RR vs GF 0.507 0.161 0.650 0.391 0.919 0.283 
RR vs BJ 0.792 0.065 0.359 0.185 0.656 0.664 
RR vs AW 0.004 0.092 0.783 0.293 0.349 < 0.001 

a Efficacy data for artificial weeds is only for 2020 and was square-root transformed to meet the 
assumptions of ANOVA. Presented data are back-transformed least square means.  
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Figure 3.3. Cultivation efficacy of G. flavescens and B. juncea, across flex-tine harrows, plotted 
against that of R. raphanistrum. Best fit line equations: y = 0.865x + 0.180 and 1.085x 
+ 0.135, for G. flavescens and B. juncea, respectively. R2 = 0.754 and R2 = 0.398 for G. 
flavescens and B. juncea, respectively.  
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G. flavescens and B. juncea reacted similarly to cultivation with the six flex-tine harrows 

(Table 3.3). Mortality of B. juncea – the surrogate with the largest difference in seed mass from 

R. raphanistrum – was more strongly correlated with that of R. raphanistrum than G. flavescens, 

which has a similar seed mass to R. raphanistrum (Figure 3.3). Contrary to expectations, seed 

mass did not appear to be a useful metric for selecting either G. flavescens (large-seeded) or B. 

juncea (small-seeded) as a surrogate weed to simulate R. raphanistrum. 

 Artificial Weeds. Rates of efficacy for the artificial weeds and both surrogate species were 

comparable (Table 3.4) and were positively, albeit weakly, correlated (r = 0.432; P = 0.035 and r 

= 0.419; P = 0.041, respectively) (Figure 3.4). However, cultivation efficacy for R. raphanistrum 

and the artificial weeds were not correlated (r = 0.388; P = 0.061) (Figure 3.5). Unexpectedly, we 

observed higher variability in efficacy for artificial weeds, relative to surrogate weeds (Table 

3.5).  

While acknowledging that artificial weeds do not need to perfectly reflect the reaction to 

cultivation of real weeds, they should at least be strongly correlated. Our golf tee weed mimics 

failed to accurately simulate weed seedling response to cultivation, and their response was highly 

variable. Our study does not support the use of golf tees to simulate the effect of flex-tine 

harrows on broadleaf weed species. Future research into artificial weeds that more closely reflect 

the intricacies of the root system architecture and anchorage forces of real weeds may result in 

more accurate artificial weeds. It is important to note that the primary mechanisms of harrowing 

are burial and uprooting (Kurstjens and Kropff 2001; Leblanc et al. 2011), and therefore artificial 

weeds should also be evaluated using cultivation tools with different modes of action. 
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Table 3.4. Main effect of efficacy averaged over tool for Brassica surrogate weed species and 
golf tee artificial weeds. As artificial weeds were only included in 2020, the rate of 
cultivation efficacy for artificial weeds is only compared to the efficacy rates of real and 
surrogate weeds from the 2020 study year. Data were square-root transformed to meet the 
assumptions of ANOVA. Presented data are back-transformed means. 

Species Efficacy 
 ------- % ------- 
R. raphanistrum   (RR) 16 
G. flavescens       (GF) 32 
B. juncea              (BJ) 31 
Artificial Weeds (AW) 34 
  
Contrasts ----- P > F ----- 
AW vs. RR < 0.001 
AW vs. GF 0.828 
AW vs. BJ  0.672 

 

Figure 3.4. Cultivation efficacy of artificial weeds by flex-tine harrows. Means averaged over 
four blocks. Error bars show the standard error of the mean. Tools not connected by the 
same letter are statistically different.   
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Table 3.5 Coefficients of variation for R. raphanistrum, selected Brassica surrogates, and 
artificial weeds. 

Species Coefficient of Variation 
Raphanus Raphanistrum        79.7 
Guillenia flavescens    62.2 
Brassica juncea           67.3 
Artificial Weeds 76.4 

 

Overall, we conclude that selected Brassica surrogate weeds can be useful analogues for 

PWC studies of a related weedy species, in this case, R. raphanistrum. Additionally, seed mass 

was not a useful metric for the selection of surrogate weeds to simulate R. raphanistrum. 

Moreover, our results demonstrate a need for further research and development in the 

manufacturing of suitable artificial weeds that will be both accurate and less variable.    

 

Figure 3.5 Cultivation efficacy of R. raphanistrum, G. flavescens, and B. juncea, across flex-tine harrows, plotted 
against that of the Artificial Weeds. Best fit line equations: y = 0.257x + 0.077; y = 0.394x + 0.189; y 
= 0.348x + 0.196, for R. raphanistrum, G. flavescens, B. juncea, respectively. R2 = 0.15; R2 = 0.18; 
and R2 = 0.17, for R. raphanistrum, G. flavescens, B. juncea, respectively. 
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CHAPTER FOUR 

EVALUATING THE POTENTIAL OF INEXPENSIVE, WEARABLE GPS 

TECHNOLOGIES TO MONITOR ON-FARM ASSETS 

INTRODUCTION 

Organic farms often have diverse enterprises that provide economic benefits by 

expanding markets and reducing risk (Kremen and Miles 2012). Diversification presents 

challenges, including opportunity costs if less lucrative enterprises are chosen in lieu of more 

profitable ones, or if significant inefficiencies are present therein (Carsan et al. 2014). Farmers 

may not be aware of the real-time elements that contribute to profit, and expenses associated 

with individual enterprises because performance is highly context specific (Rosa-Schleich et al. 

2019). Ideally, farmers would monitor each of their ventures, adapting them through changes in 

pricing or the reduction of expenses (Wiswall 2009). Such nimble decision making requires 

access to reliable and timely data regarding farm assets, including inputs such as fertility, seed, 

equipment use and labor.  

Historically, farmers have recorded and reviewed budget information using pen and paper 

crop journals, often with spreadsheet software. Today, there are a vast array of digital farm 

management information systems (FMIS), including dozens designed specifically for diversified 

fruit and vegetable producers; examples include Granular® (Corteva Agriscience, Wilington, DE, 

USA), EasyFarm® (Vertical Solutions, Minot, ND, USA), Croptracker® (DragonFly Inc, 

Kingston, Ontario, Canada), and FarmOS® (farmos.org) that allow farmers to track many assets 
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across their farms. While these tools effectively manage data, expenses and revenue must be 

manually entered, a task that often is relegated to a “rainy day.”   

Tracking labor expenses can be especially complicated. Analyzing payroll records 

(Wiswall 2009) is straightforward, but it is difficult to differentiate between time spent on 

disparate farm tasks. Moreover, these records do not allow farm managers to understand 

inefficiencies in a timely manner. Crop-specific labor assessments are also complicated because 

activities are temporally sporadic and can span months or even years of work.  

Wearable GPS devices, including watches, pendants, and bracelets, are routinely used to 

locate and monitor individuals, and also for post-hoc tracking of activities (Stopher et al. 2018). 

GPS tracking has been used to better understand the effects on physical movement of cognitive 

disorders due to multiple sclerosis (MS) and advanced age (Neven et al. 2012; Williamson et al. 

2017). These studies suggest that wearable GPS devices are a viable method of spatial data 

collection while remaining non-hindering to the wearer. Given this, we hypothesized that 

wearable GPS devices could be used to track the time employees spent at particular farm 

locations, and by extension on specific farm tasks, throughout the day.  

Our objective specifically was to determine the viability of a relatively inexpensive 

system for monitoring farm labor expenses, using Garmin Instinct® watches. We hypothesized 

that the use of commercially available GPS technologies would be an improvement upon typical 

farm labor tracking methods by acquiring farm asset information more efficiently and could 

potentially be integrated into existing farm management information systems. 
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MATERIALS AND METHODS 

A field experiment was conducted at the University of Maine Rogers Farm (44.93°N, 

68.70°W) during the summer of 2020. A “model farm” was established across two fields (54 x 

20 m and 70 x 17 m, respectively); soils were a Nicholville very fine sandy loam (coarse-silty, 

isotic, frigid Aquic Haplorthods). Initial tillage was done with a tandem off-offset disk to control 

winter annual weeds. Nutri-wave™ 4-1-2 organic fertilizer (Envirem Organics, Fredericton, NB, 

Canada) was applied at 50.4 kg ha-1 and incorporated using a Perfecta Harrow mounted to a John 

Deere 6300. Feather meal (13-0-0) was applied by hand at 39.2 kg ha-1 to individual carrot beds 

and incorporated by hand. Immediately prior to crop planting, the study area was rototilled and 

culti-packed to firm the beds. Seeds were sourced from Johnny’s Selected Seeds (Winslow, ME). 

In field A, beds 152 cm on center were established and sown to eight different crops with a Jang 

Seeder (Jang Automation Co., LTD, Chungcheongbuk-Do, Korea) and, in field B, three beds 

were prepared similarly and sown to beet (Chioggia Guardsmark) with a Wizard vacuum seeder 

(Sutton Ag Enterprises Inc., Salinas, CA, USA). To represent a small, diversified vegetable 

farming operation, nine crops were sown, maintained, and harvested (Table 4.1).  

Labor inputs included planting, fertilizer applications, hand pulling weeds, weeding with 

scuffle hoes, weeding with wheelhoes, and harvesting. All labor inputs were tracked using 

Garmin Instinct® watches (Garmin Ltd., Olathe, Kansas, USA). The Garmin Instinct® is a single 

frequency device, capable of utilizing three global positioning systems – GPS, GLONASS, and 

GALILEO – which we believed made it well suited to tracking labor in rural locations. The 

Garmin Instinct® has a noted error margin of about 3 m, typical of commercially available 

navigational devices (Uradzinki and Bakuła 2020). Therefore, buffer beds of each crop were also 

planted to minimize overlap in GPS data collection (Figure 4.1). The GPS tracked data were 
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compared to a reference system in which paper records were kept throughout the season and the 

data was later uploaded to the online FarmOS® software.  

 

Table 4.1. Time spent within the boundaries of each crop and the associated cost of labor, as 
recorded with the paper reference. Labor rates were based on farm worker wage estimates by the 
USDA in 2019.  

Test crop Cropped Area  Tasks Tracked 
Cumulative 
Labor Time  

Total Labor 
Cost   

 m2  min $ 
Arugula 33.9 

  

Planting, weeding, 
harvesting 

22.95 5.42 

Bean 248.1 Planting, weeding 163.11 38.52 

Beets 90.6 Weeding, harvesting 105.48 24.91 

Broccoli 41.8 Planting, weeding, row 
covering, harvesting 

63.28 14.95 

Carrot 48.8 Planting, weeding, 
fertilizing, harvesting 

76.26 18.01 

Chard 82.7 Planting, weeding, 
harvesting 

49.53 11.70 

Kale 41.8 Planting, weeding, row 
covering, harvesting 

122.05 28.82 

Kohlrabi 18.6 Planting, weeding, row 
covering, harvesting 

35.05 8.28 

Radish 64.1 Planting, weeding, row 
covering, harvesting 

68.91 16.28 
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Prior to beginning any farm tasks, participants were asked to note the name of the task 

and start time in a provided notebook before engaging the GPS function on a provided watch and 

allowing it to acquire the position, via satellite connectivity. Participants were required to wear 

the watch, or have it on their person, before engaging the GPS tracking mode. To increase the 

accuracy of the position data logging, watches were set to record a data point every second, 

regardless of changes in direction or speed. While the watch tracked their movements, 

participants were asked not to leave the designated crop area, which included only the bed in 

which the crop was being grown and the wheel tracks on either side which were used as walking 

pathways. Upon the completion of each farm task, participants disengaged the GPS and noted the 

end time of the event.   

Data acquired by tracking the spatial movements of workers within the farm, using 

worker-worn personal GPS receivers, was overlaid onto the time-stamped location data output 

A 

B 

Figure 4.1. Georeferenced, digitized map of 
fields A and B, depicting separate 
polygons for each included test crop, 
produced from surveyed points, projected 
with Maine East Mercator NAD (2011 
realization) in U.S. survey foot.  
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on a georeferenced, digitized map delineating the different crops and other work areas within the 

farm (Figure 4.2). Prior to any analysis, the location of the corners of each crop area were 

precisely georeferenced using a NET-G5 GNSS reference receiver and an FC-5000 field 

controller, capable of referencing all GNSS constellations using GPS, GLONASS, and 

GALILEO (Topcon Electronics, Livermore, CA, USA). The spatial boundaries of individual 

crops within the farm were defined as separate polygons in a GIS. The intersection of each 

worker’s location history, stored as points, with the crop polygons was calculated to determine 

the time spent in each crop. Spatial data manipulation was conducted in ArcGIS (ESRI, 

Redlands, CA, USA). Labor expenditures within different arenas of farm operations were 

calculated by quantifying time spent by individual workers on specific activities and multiplying 

by the relevant labor rates (Table 4.1). Labor rates were based on farm worker wage estimates by 

the USDA (USDA 2019). 
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RESULTS AND DISCUSSION 

 A total of 11.9 hours were recorded using the reference system while conducting farm 

tasks across all crops grown. Labor requirements across crops varied from 22 minutes to 2.7 

hours of cumulative labor time and labor expenditures that ranged from $5.42 for arugula to 

$38.52 for beans, respectively. Cumulative labor times were similar to labor rates recorded in 

vegetable field operations for previous studies (Sørensen et al. 2005). Pen and paper records for 

each of the 83 farm tasks conducted over the season required approximately 3 minutes to be 

transferred to farmOS®, resulting in a cumulative 4.15 hours per season spent digitizing data for 

the reference system.  

A 

B 

Figure 4.2. Digitized map of fields A 
and B overlaid with time-stamped 
location data acquired with Garmin 
Instinct® watches for beets, beans, 
and carrots.  
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While data collected with the GPS receivers were correlated with the reference system (r 

= 0.9642, P = 0.0001), there was an associated average error rate of 37% across all crops (Figure 

4.3). Rates of error, by crop, ranged from zero for beets to 83% for beans. Moreover, the GPS 

devices tended to underestimate time spent within crop bed. The noted rates of error may be an 

inherent problem with using commercially available GPS devices which primarily utilize 

frequencies from only one satellite constellation at a time. This can potentially limit their 

viability in tracking labor on small farms where error may result in significant inaccuracies in the 

acquired data. Additionally, it should be noted that, because the data acquisition of this system 

was limited to the spatial boundaries of the crop bed, it did not take into account a number of 

labor tasks associated with each crop that would take place following harvest, such as washing 

and packaging.  
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 Despite this error, the Garmin Instinct® may be a viable GPS receiver on somewhat larger 

farms where field sizes are proportionally larger than the radius of error. This was apparent in the 

absence of any deviation from labor tracked with watches and the reference system in the beet 

plot (Figure 4.3) where the cropped area was roughly five times that of smaller areas in field A. 

However, the risk of overlapping labor tracks remains an issue if cropped areas are directly 

adjacent, as demonstrated by the considerable level of error associated with the relatively large 

area designated for beans. Alternatively, differentiation through the timing of the crops for which 

labor is tracked may be a useful method to avoid overlap in GPS tracks. For instance, if a farmer 

were to plant a crop that is typically harvested later in the season and requires minimal labor 

inputs earlier in the season directly adjacent to another crop with contrasting labor needs, it 

would be possible to distinguish GPS pathways and subsequently calculate labor expenditures 

accurately.  

There is potential for the further development of global navigation satellite systems 

(GNSS) to obviate these limitations as satellite constellations transmitting signals on two or more 

frequencies become more common (Chen and Chang 2020). Combining satellite constellations, 

essentially increases the number of visible satellites and therefore improves the precision of 

positioning systems (Hou et al. 2021). For nearly 20 years, only GPS and GLONASS transmitted 

dual frequency signals (Johnston et al. 2017), and recently, the use of three or more frequency 

signal transmitting systems have been shown to provide more robust positioning observations 

(Zeng et al. 2021). However, while GNSS technology has developed significantly in recent 

decades, multiple frequency systems have not been available in commercial grade devices, such 

as smartphones, tablets, or portable navigation systems. Today, dual frequency systems are 

available in commercially available devices, such as the Mi 8 (Xiaomi Corporation, Beijing, 
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China), the first smartphone capable of utilizing dual frequency technology, and have proven to 

be viable (Montenbruck et al. 2019). Given these developments, there is potential for this system 

to be adapted to FMIS which already utilize smartphone applications such as FarmOS Field Kit®.  

In summary, tracking on-farm assets can be difficult and expensive, making it less likely 

for farmers to do, and while an FMIS can facilitate data storage and description, data acquisition 

for labor is often challenging. A labor tracking system that is used at a suitable scale, or utilizes 

technology, that circumvents the limitations of contemporary GPS and is integrated into an FMIS 

in such a manner that removes the need for specialized spatial analysis skills could be a useful 

decision-making tool for vegetable farmers.  
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APPENDIX 

Appendix A. Literature review of studies using surrogate weeds for research involving physical, 

chemical, and cultural weed management as well as crop-weed competition. 
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Appendix A continued. 
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X X Brown 
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Smith et al. (2015) Cover-crop 
species as distinct biotic filters in 
weed community assembly. Weed 
Sci 63: 282-295. 
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Brown 
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juncea L.) 

Böhm (2016) Development of a 
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X X Oilseed 

rape 
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Merfield et al. (2017) Efficacy of 
heat for weed control varies with 
heat source, tractor speed, weed 
species and size. New Zea J Agric 
Res 60: 437-448. 
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Melander et al. (2018) Inter-row 
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Doctoral Dissertation.  
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Hodge et al. (2019) The potential 
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Doctoral Dissertation.  

X   Poppy 
(Eschscho
lzia 
californic
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white 
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(Trifolium 
repens 
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lupin 
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us); 
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oats 
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perennial 
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perenne 
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Schreb.) 

McCollough et al. (2020) Band 
sowing with hoeing in organic 
grains: I. Comparisons with 
alternative weed management 
practices in spring barley. Weed 
Sci 68: 285- 293. 
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Condimen
t mustard 
(Sinapis 
alba L.) 
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X 
  

Condimen
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(Sinapis 
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Melander and McCollough (2020) 
Influence of intra-row cruciferous 
surrogate weed growth on crop 
yield in organic spring cereals. 
Weed Res 60: 262-274. 
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Condimen
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(Sinapis 
alba L.) 

Kshetri (2020) Study of soil-tine 
interaction for the application of 
automated mechanical weeder. 
Doctoral Dissertation. Iowa State 
University.  
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Artificial 
Weeds 

Babiker (2020) Dandelion weed 
detection and recognition for a 
weed removal robot. Graduate 
Thesis. Concordia University. 

X 
  

Artificial 
Weeds 

Klaiss et al. (2020) Organic 
soybean production in Switzerland. 
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X Lentil 

(Lens 
culinaris); 
Flax 
(Linum 
usitatissim
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buckwhea
t 
(Fagopyru
m 
esculentu
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Sanchez and Gallandt (2020) 
Functionality and Efficacy of 
Franklin Robotics' Tertill robotic 
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condiment 
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