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Chromatin functions as a physical barrier regulating access to DNA, however pioneer factors are 

able to engage partial recognition motifs present within nucleosomal DNA to initiate access to specific 

DNA sequences. During spermatogenesis, genomic locations that become recombination hotspots are 

generally in regions of closed chromatin, or heterochromatin, before meiosis. However, in leptotene and 

zygotene stages of meiosis, PRDM9 marks nucleosomes at recombination hotspots with H3K4me3 and 

H3K36me3 and recruits other factors that deposit additional histone marks. Here I focus on the 

technological approaches by which we discovered that hotspots also transition from closed to open 

chromatin, dependent on the chromatin remodeler HELLS. HELLS and PRDM9 form a pioneer complex 

that targets hotspot sequences and provides access for the DNA double-strand break (DSB) machinery. 

Failure to reorganize chromatin at hotspots into an open conformation leads to DSBs at other open 

regions, such as promotors, causing a breakdown in recombination and cell death. 
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CHAPTER 1 

STATEMENT OF PURPOSE 

1.1. Description of thesis goal  

The purpose of this document is to describe the process of discovery that took place over three years 

and culminated in a paper co-authored by myself and other lab members, HELLS and PRDM9 form a 

pioneer complex to open chromatin at meiotic recombination hot spots, Genes Dev, 2020. Though I will 

cover the results of our experiments and our findings, the more structured and polished scientific 

significance of our work is in the published paper. My thesis will focus on the technologies that I used 

and follow the chronological course of my work, illustrating the successes and enigmas we encountered 

that inspired our work, and how we built on these to elucidate the novel role for Hells in meiosis and 

fertility. In this thesis, I will use first person singular to refer to work that I conducted, and first person 

plural to refer to work done in collaboration with other lab members, particularly my advisor, Dr. Baker. 
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CHAPTER 2 

INTRODUCTION 

2.1. Chromatin is remodeled to permit homologous recombination 

Homologous recombination is a defining event in meiosis when programmed double-stranded DNA 

breaks (DSBs) initiate a homology search resulting in homologous chromosome pairing and the 

resolution of the DSBs through exchange of genetic material. These programmed DSBs occur at 

hotspots, which are specialized sites that can be recognized by PRDM9 (Paigen and Petkov, 2010; 

Baudat et al., 2013). PRDM9 is a meiotic protein that is expressed in leptotene to zygotene stage of 

prophase I. The PRDM9 protein has several conserved domains; including a PR/SET domain for 

methylation of histones (Hohenauer and Moore, 2012, Mzoughi et al., 2016), KRAB-related (Krüppel-

associated box) and an SSXRD (SSX repression domain) domain for protein interactions (Imai et al., 2017, 

Parvanov et al., 2017), and a DNA-binding domain composed of a tandem array of C2H2 zinc fingers 

(Hayashi et al., 2005). Once PRDM9 binds at a hotspot, the SET domain allows PRDM9 to trimethylate 

both histone H3 trimethylation on Lysine 3 (H3K4me3) and histone H3 trimethylation on Lysine 26 

(H3K36me3) (Buard et al., 2009; Sun et al., 2015; Powers et al., 2016), a combination of marks that is 

unique to hotspots. These epigenetic modifications at hotspots by PRDM9 subsequently may play a part 

in allowing proteins like SPO11 to bind the hotspot and create meiotic DSBs necessary for synapsis 

(Romanienko and Camerini-Otero, 2000; Diagouraga et al., 2018). 

2.2. Homologous recombination is necessary for the progression of meiosis 

Progression of meiosis starts in leptotene stage when Prdm9 is expressed and activates hotspots. Next is 

zygotene stage where DSBs occur and homology search is initiated. Then in pachytene stage synapsis is 

completed between homologous chromosomes and DSBs are resolved by homologous recombination. 

Progression from zygotene stage into pachytene stage is particularly sensitive to completion of synapsis 
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and repair of DSBs. Meiotic recombination plays essential roles in promoting the recognition, pairing, 

and accurate segregation of homologous chromosomes (Hunter, 2015). In the absence of PRDM9, DSBs 

are relocated to other sites marked by H3K4me3, “default sites” of PRDM9-independent H3K4me3, 

including a large proportion of transcription promoters and enhancers (Brick et al., 2012). For unknown 

reasons these DSBs are not efficiently repaired, leading to incomplete synapsis and meiotic arrest at 

pachytene stage resulting in cell apoptosis (Hayashi et al., 2005).  

2.3. Evidence suggests hotspots are sites of open chromatin 

The question of whether open chromatin plays a role in hotspot activation and recombination began 

with Dr. Christopher Baker’s observation (Baker et al., 2014) of multiple histone marks associated with 

open chromatin at meiotic hotspots and evidence of nucleosome reorganization at active hotspots. 

Some of these histone marks are deposited by PRDM9 when it binds to hotspots, like H3K4me3 and 

H3K36me3. Additional active marks including H3K9ac and H3K4me1 are deposited by yet unknown 

factors (Spruce et al, 2020). The presence of activating histone marks led us the question whether 

nucleosome remodeling is also occurring to open chromatin at hotspots. Additional strong evidence of 

induced MNase sensitivity at hotspots upon presence of PRDM9 (Baker et al, 2014), and DNase 

hypersensitivity at a single specifically queried hotspot site (Shenkar et al., 1991) suggest DNA is made 

accessible at activated hotspots.  

2.4. Description of HELLS protein and expression 

HELLS, encoded by the Hells gene, (and also known as Lsh, PASG, or SMARCA6) is a chromatin 

remodeling protein in the SNF2 family (Jarvis, Geiman et al., 1996). SNF2 proteins are part of the 

SWI/SNF complex that remodels nucleosomes in an ATP-dependent manner to increase accessibility of 

DNA (Becker and Horz 2002). The HELLS protein contains seven conserved helicase domains (Jarvis, 

Geiman et al., 1996) and an ATPase-domain (Ren, Briones et al., 2015, Jenness, Giunta et al., 2018). Hells 

CKO mice are embryonic lethal, however not all SNF2 homologues share this phenotype (Essers, 
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Hendriks et al., 1997, Reyes, Barra et al., 1998, Wesoly, Agarwal et al., 2006), indicating a specific role 

for Hells in early development. Hells is expressed in undifferentiated ES cells, however it is significantly 

downregulated in differentiating cells (Xi, Geiman et al., 2009). Hells expression was originally identified 

in proliferating lymphocytes (Lsh – lymphoid-specific helicase) undergoing VDJ recombination (Jarvis, 

Geiman et al., 1996), and is correlated with poor T lymphocyte proliferation (Geiman and Muegge 2000). 

Poor proliferation is also a phenotype in neural stem/progenitor cells, which show a 60% decrease in 

replication efficiency in Hells CKO (Han, Ren et al., 2017), and oogenesis and spermatogenesis, which are 

completely arrested in Hells CKO (De La Fuente, Baumann et al., 2006, Zeng, Baumann et al., 2011). 

2.5. HELLS protein functional activities 

Previous studies have shown different roles for HELLS depending on its binding partner. For instance, 

HELLS can remodel nucleosomes in complex with a DNA binding partner CDCA7 in zebrafish (Jenness, 

Giunta et al., 2018), but cannot load onto chromatin or remodel nucleosomes in absence of CDCA7. 

HELLS interacts with yH2AX at DNA double-strand breaks and is required to phosphorylate yH2AX which 

is critical for efficient repair of DNA damage after ionizing radiation (Burrage, Termanis et al., 2012). 

HELLS participates in classical non-homologous end joining in HEK293 cells with DNA-binding protein 

CDCA7 (Unoki, Funabiki et al., 2018). HELLS is required for proper nucleosome density and de novo DNA 

methylation by remodeling nucleosomes through its ATPase-domain (Ren, Briones et al., 2015, Termanis 

et al., 2012, Torrea et al., 2016). DNMT3A/B de novo DNA methylation is dependent on HELLS 

interaction with DNMT3A/B, resulting in a 30-50% reduction in DNA methylation in Hells CKO mice, 

primarily at repeat regions (Dennis, Fan et al., 2001). Reduced methylation in these normally 

heterochromatic regions leads to deregulated expression of certain transposable elements and 

disrupted lamin B attachment (LADs) (Yu, McIntosh et al., 2014). These data suggest that the presence 

of HELLS is necessary to allow certain cell processes that are dependent on chromatin compaction. 

2.6. Hells phenotypes 
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In female meiosis, Hells CKO oocytes fail to complete meiosis and arrest at pachytene stage due to 

incomplete synapsis (De La Fuente, Baumann et al., 2006). The same phenotype was shown in male 

germ cells during spermatogenesis where deletion of Hells leads to meiotic arrest at pachytene stage 

and infertility (Zeng, Baumann et al., 2011). In embryonic cells, Hells expression is necessary for the 

establishment of de novo DNMT3A/B -dependent DNA methylation to silence retroviral genes and 

methylate endogenous genes (Zhu, Geiman et al., 2006). Altered chromatin structure due to global 

demethylation in Hells CKO fibroblasts causes reduced proliferation through failed chromosome 

segregation during mitosis (Fan, Yan et al., 2003, Sun and Arceci 2005). These phenotypes all show a role 

for Hells in creating the necessary epigenetic environment for cell-specific functions. Given the fertility 

phenotypes associated with Hells and our prior knowledge that epigenetic landscape at hotspots is 

critical for hotspot activity, we set out to investigate the potential role of DNA accessibility at hotspots 

and the potential role of the nucleosome remodeling protein Hells. 
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CHAPTER 3 

ATAC-SEQ ASSAY FOR OPEN CHROMATIN 

3.1. ATAC-Seq is a new assay to interrogate regions of open chromatin 

Increased DNA accessibility can lead to increased protein binding and many potential biological activities 

and is often associated with actively transcribed DNA. Assay for Transposase Accessible Chromatin using 

sequencing (ATAC-seq) uses direct transposition and ligation of DNA adapters compatible with high-

throughput sequencing into native chromatin through a modified transposase that can access and cut 

open chromatin (Buenrostro et al., 2013). The DNA adaptors allow PCR amplification to create a library 

of DNA fragments compatible with sequencing on the Illumina platform. This greatly increases efficiency 

and minimizing processing steps that lead to loss of product as compared to traditional sequencing 

library preparation.  

3.2. Determine optimal sample prep for ATAC-Seq 

We optimized ATAC-Seq in our hands by performing preliminary testing on mouse embryonic stem cells 

(mESCs) because they are easy to grow, tolerant to cryopreservation, and are the focus of another on-

going study in our lab. The published ATAC protocol was performed on extracted nuclei, so our plan was 

to optimize a nuclear extraction protocol for our cells. However, the three methods we tried: a three-

density sucrose gradient layered column, a single sucrose gradient, and a commercially available 

iodixanol gradient solution, all  had very poor yields of purified nuclei and we realized it would be 

difficult to impossible to collect enough spermatocyte cells from a fresh prep of 12-12dpp male testis to 

get enough purified nuclei for the ATAC protocol. Therefore, we additionally performed the ATAC 

protocol on intact fresh mESCs, avoiding nuclear purification altogether, and instead briefly lysing the 

cells before adding Tn5. We also performed ATAC on cryopreserved mESCs (80% media, 10% FBS, 10% 

DMSO, cooled at -1°/min to -80°), realizing there would be a huge advantage to having all samples 
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collected and frozen before performed ATAC in one batch, instead of performed ATAC one by one on 

each fresh sample. In the end, we tested three cell conditions: fresh intact cells, purified nuclei, and 

cryopreserved cells. 

3.3. Description of ATAC Tn5 mode of action 

Tn5 is a hyper-active transposase loaded with forward or reverse primers. The ATAC protocol is 

straightforward: Tn5 transposase is added to the cells where it diffuses into the nucleus. 

Heterochromatinized regions of DNA are resistant to Tn5, but relaxed regions of chromatin like those at 

regulatory regions are vulnerable to Tn5 transposase activity. Once in contact with exposed, 

nucleosome-free DNA, the Tn5 makes a single-stranded cut and ligates an adaptor on the cut strand (Fig. 

1A). The Tn5 must cut in two locations to liberate a DNA fragment from a nucleosome-free region. 

Nucleosomes are an octamer of histone proteins wrapped with ~140bp of DNA, with ~60bp of linker 

DNA between nucleosomes, so the DNA fragments liberated by Tn5 represent intranucleosomal, di-, and 

tri-nucleosome DNA lengths because the Tn5 can only access the DNA where it is NOT bound by 

nucleosomes. Additionally, Tn5 ligates adaptors onto the ends of DNA that are subsequently used to 

amplify the DNA fragment during PCR amplification. 

3.4. Description of library amplification of ATAC samples  

We started by using mouse embryonic stem cells (ESCs) for our initial ATAC trouble-shooting, because 

they are readily available and easily scalable. I used the original Greenleaf protocol (Wu et al., 2013) and 

the Tagmentation enzyme kit from Illumina (cat #20034198). The amount of DNA obtained after Tn5 

cuts at open chromatin regions is quite small and needs to undergo PCR amplification before there is 

enough DNA product for sequencing. For sequencing library preparation, I used primers designed by the 

Greenleaf lab that include an Illumina adaptor sequence, a barcode, an Illumina primer, and a Tn5 

adaptor sequence (Fig. 1B). Each part of the library primer performs a function to allow the DNA 

fragment to be sequenced. The Illumina adaptor sequence is complementary to the sequence on the 
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Illumina sequencing flowcell, it attaches the fragment of DNA to the flowcell and allows it to be 

amplified to make clusters. The barcode is a unique 8 base pair DNA sequence different between each 

primer. When individual ATAC samples are amplified with different barcodes for each ATAC-Seq library, 

the resulting libraries are pooled and the unique barcode sequence is used to demultiplex sequenced 

samples that are sequenced together on the same flowcell. The Illumina primer is complementary to the 

primers used in the NextSeq to initiate the sequencing reaction. Finally, the Tn5 adaptor sequence is 

complementary to the adaptor ligated onto the DNA by Tn5 and serves as the binding sequence to 

amplify the DNA fragments cut by Tn5. I used a PCR amplification program with 98°C denaturing step for 

10 sec, 60°C primer annealing step for 30sec, and 72°C polymerase extension step for 1 min and 

repeated these 3 steps for 8-12 cycles. PCR amplification both increases the amount of starting DNA and 

adds the needed adaptors and barcodes to the DNA fragments.  

3.4.1 Library PCR amplification considerations 

The final library is sensitive to both over- and under-amplification by PCR. Too many cycles of PCR  

amplification can randomly over-amplify some sequences over others, undermining library diversity and 

resulting in duplicate fragments getting sequenced. On the other hand, too few cycles of amplification 

will not yield enough product for downstream sequencing. The Greenleaf protocol recommends 

performing quantitative PCR on a fraction of the library to determine the optimal number of 

amplification cycles. After 4 cycles of PCR amplification, I removed the reaction and removed a 5 µl  

aliquot from the total 50 µl  reaction of amplified library to use in a separate qPCR reaction to determine 

the additional number of cycles needed. I used the 5 µl  of pre-amplified library in a 15 µl  qPCR reaction 

with SYBR green, and cycled 20X using the same amplification program. To maximize capture of the 

ATAC DNA fragments and avoid over-amplification of PCR duplicates, the optimal amount of library 

amplification is to stop the PCR at the transition to exponential amplification, as determined by the 

qPCR curves. For the most part, our samples required ~9-10 total cycles of library amplification (Fig. 1C), 
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which is exactly in the 8-12 cycle range recommended in the protocol. Samples requiring more cycles 

than this would indicate low starting levels of DNA and increased PCR duplication rate, both of which 

negatively affect the quality of sequencing results. 

3.4.2. ATAC library purification 

After completing library amplification, I purified the libraries using AMPure beads (Beckman Coulter 

#A63880). These are magnetic beads coated with carboxyl molecules that reversibly bind DNA in the 

presence of the “crowding agent” polyethylene glycol (PEG) and salt (20% PEG, 2.5M NaCl is optimal). 

PEG causes the negatively-charged DNA to bind with the carboxyl groups on the bead surface. The 

amount of DNA bound is dependent on the concentration of PEG and salt in the reaction, where adding 

more beads allows more of the smaller fragments to be bound and less beads captures only larger 

fragments of DNA. We experimented with using a two-step AMPure purification to exclude large 

fragments and small fragments. Large DNA fragments (>600bp) do not form clusters on the sequencing  

flowcell and therefore are not useful. Small fragments (<150bp) are mostly library primer dimers, and do 

not have any meaningful sample DNA sequence. To exclude these, we added a 1:1 ratio of AMPure 

beads to ATAC DNA library and then discarded the beads bound to large fragments. Then we added a 

1.7:1 ratio of beads to library and kept the beads while discarding the supernatant containing small 

fragments. After purification, BioAnalyzer was used to analyze library size and quantity.  

3.4.3. ATAC library QC 

The BioAnalyzer is a chip-based capillary electrophoresis machine to analyze RNA, DNA, and 

protein. We use Bioanalyzer to look at fragment size and quantity in our sequencing libraries. The 

BioAnalyzer results also showed that our ATAC libraries had distinct banding patterns indicative of 

nucleosome organization (Fig. 1D). We see in our BioAnalyzer results a population of smaller-sized DNA 

fragments that contain intranucleosomal fragments, then another population of fragments ~140bp 

larger, and another population ~140bp after that. These successive peaks represent DNA fragments that 
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were cut on either side of the nucleosome they occupied, liberating either mono-, di, or tri-nucleosome 

fragments. The presence of this banding pattern also indicates that the chromatin was still intact when 

we performed ATAC, a good indicator of quality. We found through experimentation that the dual size 

selection was not worthwhile because we lost product during the two-step process and the large 

fragments do not seem to interfere with the quality or quantity of our sequencing. We kept the 1.7:1 

AMPure purification, and although there is still a population of primer dimer that is not removed, we did 

not see evidence of these short sequences in our data. We did not want to increase the AMPure bead 

ratio  to eliminate the primers and risk losing smaller fragments that contain valuable sample DNA 

sequence. 

 

 

Figure 1. Description of ATAC assay. (A) Tn5 transposes cuts and ligates an adaptor on accessible DNA 

(Buenrostro et al., 2013). (B) Library amplification adds barcodes and adaptors for sequencing 

(Shashikant and Ettensohn, 2019). (C) Optimal PCR cycles for ATAC library are calculated from start of 

qPCR exponential amplification. (D) BioAnalyzer traces show nucleosome banding in quality ATAC 

libraries. (E) Comparison of ATAC peaks from fresh vs. frozen cells. 
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3.5. Sequence analysis of ATAC samples  

We sequenced the ATAC libraries from 8 experiments to determine the quality of the experiments and 

enrichment for open chromatin regions. Initially we sequenced to a depth of 80-100 mln reads per 

sample, paired-end reads, 75bp each. The resulting sequence files (i.e. fastq files) I ran through FastQC 

to look for red flags in sequencing quality, over-represented sequences, and duplication rate. Overall, 

the sample sequences passed quality criteria. There were some flags for adapter content at the 3’ end of 

reads and for duplication rate that stood out. Other than that, there were flags for per base sequence 

content at the 5’ end of reads, likely part of the library amplification process and Kmer content, which 

commonly flags samples that are fine and is not part of the FastQC program in subsequent versions. 

I used the Burrows-Wheeler Alignment tool (BWA) (Li and Durbin; 2009) to efficiently align short 

sequencing reads against a large reference sequence, allowing mismatches and gaps. For my data, I used 

the ‘bwa mem’ command to map the 75 bp ATAC-Seq reads to the B6 mouse genome (mm10). Next I 

sorted the mapped reads into chromosomal order and convert the file into a compressed bam file using 

‘samtools sort’ and samtools view’ (Li et al; 2009). I checked the number of reads mapping to each 

chromosome and proportion of reads mapping to mitochondrial sequences using ‘samtools idxstat.’ To 

check library complexity and estimate the number of unique reads I used Picard tools ‘MarkDuplicates’ 

to identify duplicate reads. These are reads from separate clusters on the flowcell but represent the 

same starting DNA fragment that was amplified by PCR to make many copies. I removed all but one of 

each duplicated fragment, because the copies represent the same biological instance and are not new 

occurrences. We next used a Greenleaf lab script to shift our single-end mapped reads. If the read is on 

the positive strand (as determined by the sam flag) it will add 4bp to the start and subtract 5bp from the 

partner start. The reads are shifted because the Tn5 enzyme has a 9bp binding site, so the DNA must 

have been open 4.5bp on either side of the integration, therefore by shifting the reads we are more 
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accurately placing the open chromatin. This same script removes low quality reads and mitochondrial 

reads. The output of these metrics is in Table 1.  

3.6. Identification of unmapped reads  

Immediately we noticed a depressed rate of mapped reads (Table 1). Looking closer at the sequence 

identity of the unmapped reads we found sequence fragments originating from the Tn5 adaptors and 

Illumina primers and adaptors. This can be explained if we imagine small fragments  

of sample DNA being sequenced through their entire length and into the primer and adaptors sequences 

on the 3’ side. The presence of the engineered sequence prevents alignment to the mouse genome 

which lacks this sequence, even though part of each sequence contains mouse DNA. This issue we 

resolved by using Trimmomatic ILLUMINACLIP:/opt/bin/Trimmomatic-0.39/adapters/NexteraPE-

PE.fa:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36 and specifying Nextera PE 

adaptors to remove the Illumina sequences and everything after, which includes the Tn5 adaptor 

sequence. Once the reads were trimmed, our alignment rate went back up to 97-100% (Table 1).  

3.7. Call ATAC open chromatin peaks using MACS  

To identify regions of open chromatin, pile-up of unique sequencing reads after alignment indicating 

open chromatin (i.e., peaks), was performed using MACS (Zheng et al., 2008) with the command 

‘macs14 -t <ATAC.bam> -f BAM -g mm -p 1e-5.’ MACS identifies peaks based on significant accumulation 

of reads over the local background. I set the significance level at 1e-5 to filter for peaks that are clearly 

and strongly enriched over the background, excluding less significant peaks that could be due to noise or 

are barely measurable and therefore are unlikely to be biologically significant. At this threshold I 

recovered ~80,000-170,000 peaks per sample (Table 1). I calculated the proportion of reads that were 

counted in a peak compared to the total number of reads. This measurement of the fraction of reads in 

peaks (FRiP) usually serves as a quality test for the specificity of the assay, where more reads in peaks is 
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a more specific assay, vs high background and low FRiP. The ATAC-Seq I performed had the highest FRiP 

and therefore sensitivity in the fresh mESC samples.   

3.8. Trouble-shooting ATAC-seq protocol to reduce MT reads 

One of the well-known issues with sequencing ATAC-Seq libraries is contamination with mitochondrial 

DNA reads (Corces et al., 2016). In our samples, almost 40-50% of reads were mitochondrial (Table 1). 

Since only  chromosomal reads are informative, this represents a significant loss of sequencing capacity 

and additional cost. One way to reduce mitochondrial read in ATAC-Seq data is to extract nuclei and 

purify them away from the mitochondria. We had success in reducing the mitochondria by purifying 

nuclei, but the cost was a huge reduction in yield, where we lost 75-95% of the nuclei during the 

purification process. In order to reduce the number of reads lost to mitochondrial DNA, I tested a newly 

published ATAC method called FastATAC, which was designed to reduce mitochondrial contribution. The 

FastATAC protocol skips cell lysis, and instead permeabilizes the cells with digitonin, a detergent that 

solubilizes lipids like those in cell membranes, making them more permeable. This allows the Tn5 to 

access the chromosomal DNA while minimizing the lysis of the membrane-bound mitochondria. Using 

the same number of ES cells but following the FastATAC protocol, we were able to reduce the 

mitochondrial percentage from 40-50% to 5-10%. This resulted in an increase in the number of usable 

chromosomal reads and allowed us to recover equal numbers of ATAC peaks from a sequencing depth 

of 50-60 mln reads per sample compared to 100 mln reads per sample with the previous protocol 

greatly reducing sequencing costs. 

3.9. Nuclear extraction or fresh cells are not necessary for successful ATAC-Seq 

Interestingly, the ATAC-Seq worked as well or better in intact cells vs nuclei and frozen vs fresh cells. 

Although nuclei had fewer mitochondrial reads, the number of peaks called was reduced and the 

fraction of reads in peaks was significantly lower than either fresh or frozen intact cells (Table 1). This 

suggested that the process of purifying nuclei has an adverse effect on the integrity of the chromatin. 
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Surprisingly, freezing cells and then thawing them for ATAC did not seem to impact assay quality in 

terms of # peaks and FRiP (Table 1). To confirm that the peaks I was collecting from the frozen cells were 

the same locations and relative intensities, I used the DiffBind analysis package(Ross-Innes et al., 2012) 

which includes functions to overlap and merge peaksets, count sequencing reads overlapping intervals 

in peaksets and identify statistically significantly differentially bound sites based on evidence of binding 

affinity (measured by differences in read densities). I used the ‘dba.peakset’ command to collate a 

consensus peakset for the fresh and cryopreserved frozen samples, and then ‘dba.count’ compare 

normalized read counts falling within those peaks. The resulting MA plot shows fresh and frozen 

samples have similar read counts in each peak, shown in black, and only ~7% of peaks are significantly 

different at FDR <0.01, shown in red and blue (Fig. 1E). Although the similar results for fresh and frozen 

mES cells may be cell type-specific, it is reassuring to think that samples could be collected for a project 

over time, and then then assayed for ATAC all at once to minimize effort and batch effects.  

 

  

Table 1. ATAC sequence analysis comparing fresh, frozen, or extracted nuclei conditions. 
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CHAPTER 4 

OPEN CHROMATIN AT HOTSPOTS IS DEPENDENT ON PRDM9 AND INDEPENDENT OF 

 DOUBLE -STRANDED BREAKS 

4.1. ATAC-Seq on spermatocytes to look for open chromatin at hotspots 

Based on the presence of histone marks that suggest open chromatin (H3K4me3, H3K36me3) and 

increased MNase sensitivity at hotspots, we tested whether activated hotspots are sites of open 

chromatin using ATAC-Seq. To investigate hotspot dynamics during male meiosis, we need to capture 

leptotene/zygotene (L/Z) stage spermatocytes when PRDM9 is active. Previous research has shown that 

the first wave of spermatogenesis in male mice is relatively synchronous and passes through L/Z stage at 

~12-14 days post-partem (dpp) (Ball et al., 2016). At this time point, the mouse testes are enriched for 

L/Z stage spermatocytes, increasing the chances of capturing activated hotspots and minimizing 

background from non-meiotic cells.  

4.2. Sample choice for spermatocyte ATAC-Seq  

Before performing ATAC-Seq on 12dpp spermatocytes, we needed appropriate controls in order to 

decisively conclude the signal we might find at hotspots was truly meiosis- or PRDM9-specific. We can 

take advantage of a genetically-modified knock-in mouse with a different allele of PRDM9. The knock-in 

mouse, B6-PRDM9CAST-KI/Kpgn (B6CAST-KI, Baker et al., 2014), has the same genetic background as 

C57BL/6J with the exception of the PRDM9 zinc-finger domain, which is from the CAST/EiJ Prdm9 allele. 

The zinc-finger domain for PRDM9Cst  has both different numbers of and different identity of zinc-fingers 

resulting in a protein variant that recognizes and binds different DNA sequences. Therefore, we expect 

that meiosis-specific open chromatin at hotspots will differentially appear at allele-specific sites for B6 

PRDM9Dom2 and the CAST PRDM9Cst , while all other open chromatin sites should stay the same. We 

performed ATAC-Seq on two replicates each B6CAST-KI and B6 12dpp spermatocytes. 
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4.3. Spermatocyte isolation and transposition 

To extract spermatocytes from the 12dpp testes, I used the established protocol for isolating 

spermatocytes for chromatin assays (Baker et al., 2014) and applied it to the ATAC-Seq protocol. Briefly, 

I collected testes from 12dpp male mice into HEPES-buffered DMEM and disaggregated them using a 

collagenase-based dissociation with Liberase TM (Sigma, cat# 5401119001). After two 15min 

incubations at 37° with Liberase TM, the tubules become fragmented by enzymatic digestion, and I 

further reduced them to single cell suspension by pipetting them vigorously 50X with a 10mL serological 

pipet. After filtering for single cells using a 40um filter and washing with PBS, I put the spermatocytes 

straight into the FastATAC protocol, using 100,000 spermatocyte cells per reaction. 

4.4. ATAC-Seq data from spermatocytes shows good nucleosome banding and enrichment at TSS’s 

After sequencing and processing the data with the workflow we established for ATAC-Seq, I performed 

further quality control tests looking at correlation between replicates, insert size metrics, and read 

coverage over TSS’s. To calculate correlation between the replicates, I used DiffBind to obtain a shared 

peakset and normalized reads, then plotted a scatter plot of normalized rpms for each peak. The 

correlation within replicates was excellent, Pearson’s r=0.96 for the B6 replicates and r=0.99 for the 

B6CAST-KI replicates (Fig. 2A, B6 shown). To examine DNA fragment lengths showing nucleosome 

occupancy, I ran Picard ‘CollectInsertSizeMetrics’ which outputs a histogram of read lengths for each 

sample. The insert size metrics for our ATAC libraries show a large proportion of reads with less than 100 

bp, which represents the nucleosome-free regions, and then fragment size periodicity corresponding to 

the approximate lengths of DNA wrapped around nucleosomes, indicating nucleosome occupancy from 

quality, intact chromatin (Fig. 2B).  
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Another hallmark of quality ATAC-Seq data is enrichment of reads at transcription start sites  

(TSS’s), where active chromatin at gene promoters are known to have open chromatin. I used 

CoverageView to inspect how the ATAC-Seq coverage distributed across the genome (Lowy, 2020), and 

specifically to plot read coverage profiles around TSS’s. I used as input our ATAC bam files and a bed file 

of ENCODE-curated TSS’s and ran CoverageView ‘cov.matrix’, and the program returned a matrix with 

read counts at each base pair location across the 2 kb region centered around each TSS. I plotted the 

means in a density plot to look at enrichment of ATAC reads and our libraries show a strong peak at the 

TSS that quickly tapers on either side to background levels, showing specificity. Our ATAC-Seq showed 

an enrichment of ~14-20 rpm at TSS’s compared to <1 rpm in the flanking regions (Fig. 2C, B6 shown). 

Our enrichment at TSS’s was within the range recommended by ENCODE, which suggests a TSS 

Figure 2. ATAC-Seq shows open chromatin at hotspots. (A) ATAC-Seq replicates on B6 spermatocytes 

show high correlation. (B) ATAC-Seq read length show evidence of nucleosome banding. (C) ATAC 

reads are enriched at transcription start sites (TSS’s) (D) ATAC reads are enriched at hotspots. (E) 

ATAC and PRDM9 read depths across a 2kb region centered on hotspots for 7,233 hotspots. (F) 

Density plot of aggregate signal over hotspots for both ATAC and H3K4me3. 
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enrichment of 10-15 is acceptable, and >15 is ideal (https://www.encodeproject.org/atac-seq, updated 

June 2020) 

4.5. ATAC peaks at hotspots show increased DNA accessibility during meiosis 

I recovered 88,474 shared ATAC peaks from the B6 spermatocyte samples. I annotated the peaks based 

on whether they overlapped with known TSS’s, PRDM9Dom2-hotspots, or other. In addition to open 

chromatin at promoters, our spermatocyte samples had ATAC peaks that overlap hotspots, confirming 

that hotspots are sites of open chromatin. Of 7,223 hotspots for which we know PRDM9 motif location , 

I recovered 1,527 by ATAC-Seq. Although this overlap is low, I am likely over-looking low-level ATAC 

peaks at hotspots due to my stringent peak-calling (e-5), lower signal at hotpots due to heterogenous 

cell types and assorted hotspot usage within meiotic cells, and the more limited dynamic range of the 

ATAC assay. I tested for enrichment for ATAC reads at all hotspots by plotting normalized reads per 

million from ATAC (rpm) using hotspot PRDM9 motifs as the center of a 2kb window. There is clear pile-

ups of ATAC reads at the hotspot centers compared to the flanking regions (Fig. 2D). A heatmap of the 

CoverageView matrix shows ATAC enrichments at individual hotspots, where the strongest hotspots 

from PRDM9 ChIP have the strongest ATAC signals (Fig. 2E). Though the largest ATAC signal is in the 

middle of the hotspots, there are secondary small peaks on either side that correlate with strict 

nucleosome remodeling around hotspots. Overall, these results confirm our hypothesis that hotspots 

are regions of open chromatin specific to the hotspot site. 

4.6. Hotspots show differential DNA accessibility dependent on PRDM9 allele 

To compare peaks between different samples, I concatenated the peak sets from all samples and then 

merged overlapping peaks with BEDTools (Quinlan and Hall, 2010) using ‘bedtools merge’ to make a 

shared “peakome.” This allowed me to standardize my analysis by using the same peaks for every 

sample. Using bedtools ‘multicov,’ I counted reads from bam files for each sample that map to the 

peakome. I then used edgeR (Robinson et al., 2010) to investigate differential expression of count data 



19 
 

from different samples. edgeR uses an overdispersed Poisson model to account for both biological and 

technical variability and correctly identify true differences and minimize background (Robinson et al., 

2010). I used ‘calcNormFactors’ to produce a matrix of normalized read counts per peak for each 

sample. I filtered for peaks with less than 3 reads to minimize low-level and sample-specific peaks that 

skew statistical analysis. I used this normalized peak matrix to test for differential ATAC peaks between 

B6CAST-KI and B6. 

I plotted an MA plot to determine the change in ATAC peak accessibility between the two 

strains. The MA plot showed that most ATAC peaks did not change between the two strains of mice, 

which would be expected since the mice have the same genetic background (Fig. 3A). However, there 

was another set of ATAC peaks that showed significantly different DNA accessibility, and these locations 

correspond to hotspots that are determined by either PRDM9Dom2 (blue) or PRDM9Cst (red). I uploaded 

bedgraph tracks for each of the ATAC-Seq samples to the UCSC genome browser to visualize ATAC reads 

along the genome. I looked at allele-specific hotspots and confirmed that the B6CAST-KI showed no DNA 

accessibility at PRDM9Dom2 hotspots but did have novel DNA accessibility at PRDM9Cst hotspots compared 

to B6 (Fig. 3B). For the ATAC peaks that were significantly higher (FDR<0.01) in the B6CAST-KI, 92% (n = 

5,305) overlap with reported PRDM9Cst-dependent hotspots (Baker et al., 2014). Reciprocally, for the 

ATAC peaks that are higher in B6, 94% (n = 1,643) overlap PRDM9Dom2-dependent hotspots (Baker et al., 

2014). The difference in the number of ATAC-enriched hotspots detected in the B6CAST-KI vs the B6 is due 

to PRDM9Cst having stronger binding affinity in the B6 genetic background than the endogenous 

PRDM9Dom2, which has been previously published (Baker et al., 2014; Baker et al., 2015a; Baker et al., 

2015b; Grey et al., 2017). Clearly, hotspots are sites of PRDM9-specific open chromatin 

4.7. Open chromatin at hotspots is independent of double-stranded breaks 

An alternative explanation for open chromatin at hotspots is the presence of double stranded DNA 

breaks (DSBs). It is known that DSB repair machinery can remodel nucleosomes and create DNA 
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accessibility to facilitate DNA repair (Price and D'Andrea, 2013). In meiosis, hotspots become sites of 

programmed DSBs after PRDM9 binds and the DNA is cut by meiosis-specific SPO11 (Baudat et al., 2000; 

Romanienko and Camerini-Otero, 2000). Therefore, we investigated whether the appearance of 

increased DNA accessibility at hotspots is due to meiotic DSBs or happens in the absence of DSBs. 

 

 

4.8. ATAC-Seq on Spo11 mutant mice shows open chromatin at hotspots 

We used a knock-out mouse with an inactive allele of Spo11 (B6.129X1-Spo11tm1Mjn/J) (Baudat et al., 

2000) and performed ATAC-Seq to look for open chromatin hotspots before DSBs by SPO11. Since 

SPO11 is catalytically dead and does not make DSBs, any open chromatin at hotspots in the Spo11 

mutant will be independent of DSB repair machinery suggesting it is dependent on PRDM9. Indeed, 

when I compared ATAC-Seq peaks from 12dpp Spo11 mutant to wildtype littermates, there were no 

differences in ATAC peaks, including at hotspots (Fig. 3C). Therefore, open chromatin at hotspots exists 

prior to and independent of SPO11 double-stranded breaks. 

  

Figure 3. Open chromatin at hotspots is dependent on PRDM9 binding and independent of DSBs. (A) 

MA plot of differentially open chromatin peaks between B6 and B6CAST-KI with known hotspots for 

each allele in color. (B) Bedgraph pile-ups of ATAC reads from B6 and B6CAST-KI ATAC-Seq over a 

Prdm9Cst and a Prdm9Dom2 hotspot. (C) MA plot of differentially open chromatin peaks between 

Spo11 KO and WT. Hotspots are highlighted in red. 
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CHAPTER 5 

HELLS AND PRDM9 ARE CO-EXPRESSED IN L/Z OF MEIOSIS AND FORM A PROTEIN COMPLEX 

5.1. HELLS is a good candidate for meiotic chromatin remodeling 

Above I showed that hotspots are sites of open chromatin and that open chromatin at hotspots is 

dependent on PRDM9. Although PRDM9 can bind DNA and modify histone marks at hotspots, it lacks 

the domains for nucleosome remodeling. If there is another protein creating open chromatin at 

hotspots, like we hypothesize, then loss of that protein should show an infertility phenotype similar to 

loss of PRDM9. We examined mouse phenotypes in mice with mutations in known chromatin 

remodeling proteins and found three candidates with a fertility phenotype: Brg1, Ino80, and Hells. We 

further narrowed the candidates by looking for a fertility phenotype that mimics PRDM9 knockout 

phenotype (Hayashi et al., 2005), specifically a block in early pachytene due to incomplete synapsis and 

persistent DSBs. Loss of Ino80 (Serber et al., 2016) and Hells (Zeng et al., 2011) mutations exhibited 

meiotic infertility phenotypes similar to loss of Prdm9, however Ino80 is involved in H2A.Z and H2A 

variant exchange (Papamichos-Chronakis et al., 2011), and previous work did not find evidence of H2A.Z 

at recombination hotspots (Spruce et al., 2020). Given that HELLS is capable of remodeling chromatin 

and creating DNA accessibility, and has a fertility phenotype, we sought to determine whether HELLS 

can associate with PRDM9, particularly in spermatocytes in L/Z stage meiosis. 

5.2. Hells RNA is expressed in meiotic spermatocytes 

On indication that Hells would play a role in meiotic recombination would be it is expressed during 

leptotene/zygotene stage spermatocytes, just like Prdm9. It would add strength to our hypothesis is 

Hells expression is also specific to this stage over others. We searched for Hells RNA expression using 

data from Jung et al., 2019 that performed single cell RNA-Seq on testes to define stages of 

spermatogenesis. We saw strong expression of Hells in L/Z spermatocytes, which correlated with 
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expression of Prdm9 (Fig. 4A and B). However, unlike PRDM9, Hells is additionally expressed in 

spermatogonia at an earlier stage in spermatogenesis (Fig. 4B). As a side note, Ino80 is expressed during 

meiosis, but more broadly and not correlated with Prdm9. This data shows that HELLS is present when 

PRDM9 is acting to establish recombination hotspots and during the acquisition of meiotic DSBs. 

5.3. Confirm HELLS protein expression in testis 

Now that we know Hells RNA is expressed in L/Z stage cells, we wanted to confirm that HELLS protein 

was indeed present, since RNA expression does not necessarily mean that the protein is being 

translated. Commercial anti-HELLS antibody are available through several vendors. The rabbit polyclonal 

anti-HELLS antibody from Millipore (cat# ADB41), was reported to work for Western blot and recognize 

both mouse and human HELLS. To test whether the anti-HELLS antibody worked, I extracted protein 

from mouse tissues that should be either positive (testis) or negative (heart and liver)for HELLS protein. I 

took a ~10mg piece of tissue for each sample and used the previously published RIPA extraction 

protocol to lyse the tissues and extract protein (Baker et al., 2015b). Samples were heated  to 95°C for 5 

min with 1X Laemmli’s buffer, which contains 1% SDS that helps denature and unfold proteins, allowing 

them to run on the gel at their proper size and expose latent epitopes. I loaded the Invitrogen 4-12% gel 

heavily with 60ug protein/lane to maximize my chances of seeing a signal I followed the manufacturer’s 

recommended concentration of 1:5000 anti-HELLS antibody in our primary incubation conditions of TBS 

+ 0.3% Tween, overnight, at 4°. The next day, I washed the blot and incubated it for an hour in 1:10,000 

anti-rabbit secondary conjugated with horseradish peroxidase (HRP) and washed it again. I developed 

the blot using SuperSignal™ West Pico PLUS Chemiluminescent Substrate (ThermoFisher Scientific,  

34579), which provides the substrate to the HRP enzyme to produce luminescence. I exposed the blot 

on film using at 1min, 30sec, 15sec, and 5sec intervals and then developed the film to look for signal at 

97kD, the expected weight for HELLS.  

5.4. Testis shows strong, specific signal for HELLS 
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The testis sample showed strong, specific signal for HELLS around 110kD (Fig. 4D). In contrast, none of 

the other tissues were positive for HELLS. The protein band for HELLS is higher than the calculated 

weight, but both the manufacturer’s example Western and Westerns for HELLS from other papers both 

show bands the same size as mine. Post-translational modifications, such as phosphorylation or 

glycosylation, could cause the protein to run slower on a Western gel. I concluded from these 

preliminary results that we could detect HELLS with our antibody, and I confirmed that HELLS is 

specifically expressed in testis. 

5.5. Immunohistochemistry on testis cross-sections shows co-localization of PRDM9 and HELLS in the 

same cells 

In addition to the positive results from the RNA-Seq and the western, we wanted proof that HELLS and 

PRDM9 are co-expressed in the same cells. Immunohistochemistry is a technique to detect proteins of 

interest in fixed tissue sections by fluorescently labeling them with modified antibodies. 

5.5.1 Fixation of adult testis and mounting cross-section onto slides 

Samples for immunohistochemistry are fixed to preserve the structure and cellular context of the tissue. 

I fixed 6-week old adult C57BL/6J testis in 4% PFA overnight at 4°. The next day, I moved the fixed tissue 

into 70% ethanol to wash away the fixative before submitting my sample to the Histology core where 

the fixed testis was embedding in paraffin and cross-sectioned onto slides. I requested 5µm thick 

sections spaced ~1 cm apart along the slide so I could perform multiple IHC assays on the same slide 

without touching between sections. 

5.5.2. Deparaffinization, rehydration, and antigen unmasking 

Embedding the tissue in paraffin supports the tissue structure for fine sectioning but interferes with IHC 

analysis. In addition, the sections need to be dehydrated to remove excess fixation solution and tissue 

fluids that will interfere with the IHC reaction. Both of these are accomplished by washing twice for 8 
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min in xylene, followed by 2 min washes in 100%, 95%, 80%, and 70% EtOH. I rinsed the slides for 5 min 

in H2O and rehydrated them with three 5 min washes in PBS.  

The process of sample fixation can lead to protein cross-linking, which masks antigens and can 

restrict antigen-antibody binding. Antigen unmasking permits antibodies to access the target protein 

within the tissue. To unmask antigens, I boiled the slides submersed in 10mM sodium citrate in the 

microwave for 10 min to break protein cross-links and unmask antigens. Afterwards, I let them cool to 

room temperature undisturbed before rinsing them three time for 5 min in PBS. 

5.5.3. Permeabilization of cells and blocking of non-specific binding 

IHC signals can be improved by increasing antibody access to cells by permeabilizing the cell membranes 

with a detergent like Triton X-100. I incubated my slides in 0.05% Triton-X100 in PBS for 30 min at room 

temperature to permeabilize, and then washed three times for 5 min in PBS. IHC signals can also be 

improved by reducing background noise from antibody binding to non-specific targets. Normal donkey 

serum (NDS)contains antibodies that do not recognize any mouse proteins. Therefore, any interactions it 

forms to tissues are non-specific, and pre-emptively displace potential non-specific interactions with our 

target antibody. I blocked my slides with 10% normal donkey serum in PBS for 30 min. I used a humid 

chamber to inhibit evaporation and allow me to reduce the amount of reagent I needed for each 

section. Instead of submerging the slide in 10% NDS, I circled each of my tissue sections with a 

waterproof marking pen to restrict run-off, and then deposited a 30-50 µl droplet of blocking solution 

into the circle and onto the section. After 30 min of blocking, I tilted the slide and tapped it gently to 

knock off the droplets from the sections, and then added the primary antibody. 

5.5.4. Titrating anti-HELLS IHC staining 

First, I needed to ensure our anti-HELLS antibody worked in our IHC assay and determine the optimum 

concentration of antibody. I based my anti-HELLS dilutions on the typical range of dilutions for IHC, 

which was ~1:200 to 1:500 for most antibodies. I have 5 testis sections per slide, so I diluted the anti-
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HELLS antibody to 1:1000, 1:500, 1:250, and 1:100 in PBS + 1% BSA and kept one section as a secondary-

only control. I deposited 20-30 µl of primary antibody solution to each of the sections, and PBS + 1% BSA 

only to the secondary-only control and incubated overnight in a humid chamber at 4°.  

5.5.5. Addition of fluorescently-conjugated secondary antibody and imaging 

The next day, I tapped off the primary antibody solution and submersed my slide in three 5min washes 

in PBS. I re-blocked with 10% NDS for 15 min before adding the secondary antibody. Secondary 

antibodies can be conjugated with several different fluorophores, and it is important to have a range of 

fluorophore options to perform co-staining with multiple antibodies and not have the secondary 

fluorophores overlap. I used goat anti-rabbit IgG, Alexa Fluor 488 conjugate (ab150077) to detect HELLS 

at 1:300 in PBS + 1% BSA for 2 hrs. It is crucial to perform the secondary incubation in the dark to 

protect the fluorophores from light. After secondary antibody incubation, I washed the slides and 

mounted them with antifade reagent with DAPI. I imaged the slides with the Zeiss AxioImager and saw 

strong, specific staining for HELLS in all four antibody dilutions, and nothing in the secondary-only 

control. I chose 1:250 as the concentration, because it appeared to be the best balance between strong 

staining and not overloading the signal. 

5.5.6. Immunostaining with antibodies to HELLS, PRDM9 and marker protein yH2AX 

The goal of my IHC staining was to confirm colocalization of PRDM9 and HELLS in the same cell. I 

performed IHC on adult testis sections and co-stained for HELLS, PRDM9, and yH2AX. I included yH2AX 

as a marker to help distinguish stages in spermatocytes. The yH2AX protein localizes to double-stranded 

DNA breaks, therefore it stains strongly and diffusely in L/Z stage when DSBs are present due to SPO11 

activity. In pachytene stage, yH2AX staining becomes restricted to the sex body. I used the optimized 

concentration for anti-HELLS (1:250 Millipore/Sigma, ABD41) along with previously optimized 

concentrations for anti-yH2AX (1:2000, Millipore 05636I, lot#2888552) and anti-PRDM9 (1:100, 

Parvanov et al. 2017) and was careful to use non-overlapping fluorophores for each of my secondary 
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antibodies (goat anti-rabbit IgG Alexa Fluor 594 conjugate (A-11037) 1:300, goat anti-mouse IgG Alexa 

Fluor 647 conjugate (A-21236) 1:300, goat anti-guinea pig IgG Alexa Fluor 488 conjugate (A-11073) 

1:300). I imaged the sections and saw clear, specific staining in each of my channels. The PRDM9 staining 

was not as strong or specific as the others, I needed to increase the exposure time and accept some 

non-specific signal in between the tubules. I tried trouble-shooting the protocol to increase PRDM9 

signal but was not able to improve it. Still, within tubules it was clear which cells were positive for 

PRDM9 and which were not, even if the staining was not as crisp as the other two antibodies. 

 

  

The results clearly show co-staining of both HELLS and PRDM9 (Fig. 4F), showing that HELLS and 

PRDM9 are active and expressed at the same time in the same cell. The co-stained cells appear to be L/Z 

stage judging by the diffuse yH2AX signal. In addition, I could see HELLS signal in type B spermatogonia, 

Figure 4. Hells is co-expressed in testis with Prdm9. Single-cell RNA-Seq tSNE plot of (A) Prdm9 (B) 

Hells (C) leptotene stage expression in spermatogenesis. (D) Western for HELLS of testis and various 

other tissues. (E) Western for HELLS of immunoprecipitation (IP) using IgG or PRDM9 antibodies on 

testis protein. (F) Immunohistochemistry (IHC) on adult testis sections staining for DAPI, HELLS, 

PRDM9, and yH2AX. 
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which are pre-meiotic cells showing no yH2AX signal, and also in pachytene-stage cells, where both 

HELLS and yH2AX are localized to the sex body. The immunohistochemistry results on testis sections 

shows co-localization of HELLS and PRDM9 and support our hypothesis that the two proteins may 

interact to activate hotspots in L/Z stage meiosis. 

5.6. HELLS protein forms a complex with PRDM9 protein 

HELLS has no DNA binding domain of its own and so likely needs to be tethered to a binding partner 

with DNA-binding specificity to be recruited to DNA (Zhu et al., 2006; Jenness et al., 2018) . I performed 

coIP for HELLS and PRDM9 to determine whether HELLS protein can form a complex with PRDM9 

protein, which would provide a mechanism for HELLS recruitment to hotspots. Protein co-

immunoprecipitation is a well-established technique to look for protein interactions. The technique 

works by using a bead-bound antibody to bind and purify the primary protein and whatever protein 

complex that is co-bound to it. Then a Western blot for the second protein of interest is run on the 

purified protein material, to interrogate whether the two proteins form a complex that can be co-

immunoprecipitated. Two working antibodies, one for each protein, are required for co-

immunoprecipitation. Luckily, we were gifted a working PRDM9 antibody from a collaborating lab 

(Parvanov et al., 2017).  

5.6.1. Protein extraction to preserve protein-protein interactions for co-IP 

For the co-immunoprecipitation, I extracted testes from four 12dpp mice and pooled them into one 

sample to get enough protein for a negative control co-IP, HELLS experimental co-IP, and untreated 

control protein. My previous protein extractions used RIPA buffer, which contains harsh detergents 

good for lysing cells and denaturing proteins. However, for the co-IP I used HEPES extraction buffer (50 

mM Hepes-KOH pH 7.4, 137 mM NaCl, 10% Glycerol, 0.4% NP-40) to minimize disruption of potential 

protein complexes and keep them intact for pull down. I added benzonuclease to degrade DNA and 

RNA. This is good for two reasons: to prevent clumping due to sticky DNA released from dying cells, and 
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to avoid spurious interactions from co-binding at the same chromatin site, rather than true protein-

protein binding. 

5.6.2. Co-IP experiment and controls 

The goal of the co-IP experiment is to test whether HELLS and PRDM9 form a complex in L/Z 

spermatocytes. I performed co-IP with anti-PRDM9 antibody to purify PRDM9 protein and any other 

proteins associated with it. In addition, I also performed co-IP with anti-IgG antibody which has no 

specificity to any protein and serves as a negative control to show non-specific background signal. First, I 

incubated 4 µl of either anti-PRDM9 or anti-IgG with 20 µl of Protein G magnetic beads for >20 min to 

bind the antibody to the beads. After washing to remove excess antibody, I added 40% of the testis 

protein to each co-IP with HEPES buffer with protease inhibitors. The leftover 20% of protein I saved as 

untreated input control. I incubated the co-IP overnight at 4° to allow the antibody to bind with its 

target protein. The next day I placed the co-IP solution against a magnet to draw the antibody-beads out 

of solution, and along with it the protein of interest and any co-bound proteins. I washed the away the 

unbound protein fraction from the beads and then eluted the bound protein from the beads by adding 

Laemmli’s buffer and heating to 95° for 10 min, allowing the SDS to simultaneously release the proteins 

and linearize them.  

5.6.3. co-IP for PRDM9 co-precipitates HELLS 

To determine whether HELLS is concurrently pulled down in an IP for PRDM9, I ran the resultant co-IP 

protein on a Western and blotted with anti-HELLS. The protein pulled down in the anti-IgG co-IP showed 

no enrichment for HELLS, a confirmation of the assay’s specificity, however, the anti-PRDM9 co-IP 

protein had a positive signal for HELLS, showing that the two proteins are in a complex together (Fig. 

4E). The strength of the HELLS signal in the anti-PRDM9 co-IP was weaker than the total signal from the 

untreated input protein, which could be due to either a weak bond between the two proteins that could 

not hold up to processing, or not every molecule of the PRDM9 protein is bound to a molecule of HELLS 
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protein. Still, the result of a co-IP is a qualitative rather than quantitative result and the positive 

interaction is clear. This evidence of PRDM9 interacting with HELLS encouraged us to believe that if 

PRDM9 binds to HELLS, it could be recruiting HELLS to hotspots. 
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CHAPTER 6 

CREATION OF A CONDITIONAL KNOCK-OUT OF HELLS IN MICE  

6.1. Creation of a conditional knock-out mouse model to investigate loss of HELLS in vivo 

In order to prove that Hells is the operative protein inducing DNA accessibility at hotspots, we needed to 

inactive or remove it during meiosis and determine effect on chromatin. Unfortunately, homozygous 

Hells null mice are not viable and die within a few hours of birth, probably due to liver problems 

(Geiman et al., 2001). Previous labs had attempted to circumvent this by surgically grafting newborn 

Hells KO testis cells into adult wildtype hosts (Zheng et al., 2011). Doing so they found a meiotic arrest at 

pachytene in the Hells KO spermatocytes. To improve on the previous study and determine the 

mechanism of the meiosis-specific functions of Hells in vivo we created a Hells conditional knock-out 

(CKO) mouse. 

6.1.1. Creation of mice from EUCOMM conditional KO mESCs 

An international consortium generated conditional knock-outs alleles for of most mouse genes, 

including Hells, so we did not need to design and construct a Hells KO allele de novo. We ordered 

conditional Hells KO embryos from EUCOMM, C57BL/6NTac- Hellstm1a(EUCOMM)Wtsi/Ieg, EM04583. In the 

case of the Hells allele, critical exon 12 is flanked by loxP sites (Fig. 5A). All conditional alleles from 

EUCOMM follow the same structure: a 5’ intronic integration upstream of a critical exon containing an 

FRT-flanked cassette that contains lacZ and neo genes followed by one loxP site, and another intronic 

integration containing just a loxP site on the 3’ side of a critical exon (Fig. 5B).  

6.1.2. Genotyping pups from rederivation 

The EUCOMM repository shipped frozen 2-cell embryos from a heterozygous C57BL/6NTac-

Hellstm1a(EUCOMM)Wtsi/Ieg male by a wildtype female. We employed the Reproductive Services core at The 

Jackson Laboratory to transfer the frozen embryos into pseudo-pregnant female B6 mice. The transfer 
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was successful, and we received 16 pups that must be either heterozygous Hells-tm1a or wildtype. To 

genotype the pups, I used the PCR assay provided by EUCOMM. The forward primer, Hells-5’arm-F, for 

both the wildtype and mutant alleles is upstream of the 5’ integration cassette in wildtype sequence. 

The reverse primer for the wildtype assay, Hells-3’arm-R, is 3’ of the integration site, and amplifies the 

native sequence in the wildtype allele. However, in a mutant allele, the presence of the lacZ and neo 

cassette will put the wildtype reverse primer too far away from the Hells-5’arm-F to amplify a PCR 

product. The reverse primer for the mutant allele, LAR3-R, is located within the integrated cassette and 

amplifies a product only when the conditional allele is present (Fig. 5B and C).  

6.1.3. Removal of lacZ and neo cassette by mating to FLP 

The Hells-tm1a allele that we currently had is a targeted trap allele with a splice acceptor upstream of 

the lacZ gene.  Left intact, the tm1a will interrupt proper splicing and generate a null allele. To remove 

the cassette, I mated Hells-tm1a heterozygous mice to homozygous transgenic ACTFlpe mice that 

constitutively express flippase recombinase protein (FLP) that will excise the DNA flanked by Frt sites, 

leaving behind a single inactive Frt site. I genotyped the offspring from the ACTFlpe/ACTFlpe x Hells-

tm1a/+ mating using the common forward primer that sits just outside of the integration cassette, Hells-

3’arm-F, and the reverse primer I designed that sits 3’ of the lacZ neo cassette integration, Hells 3’ 

integration-R, and saw the smaller PCR product expected if the cassette was removed, indicative of FLP-

excision. I also double-checked to be sure there was no Hells-tm1a allele remaining by genotyping with 

the Hells 5’arm-F and the LAR3-R and saw no evidence of the tm1a allele. After crossing to FLP, the 

tma1a allele was converted into tm1c, containing just the loxP-flanked Hells exon 12. I genotyped for the 

Hells-tm1c allele using a primer that overlaps the 5’ loxP site, giving it specificity to the conditional allele, 

with Hells 3’arm-R (Fig. 5C). This Hells-tm1c (“c” for conditional) allele is what I used in subsequent 

matings. 
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6.1.4. Mating of Hells-tm1c to Stra8-iCre to generate heterozygous null and on-board Stra8-iCre allele 

To improve my chances of a complete null, my strategy was to first ensure complete deletion of one 

conditional allele, and then pursue cell type-specific deletion of the second conditional allele in only 

spermatocytes. First, I made a constitutive heterozygous knock out of Hells by crossing Hells-tm1c to 

Stra8-iCre. Heterozygous Hells mice are viable and fertile, with no overt phenotypes. My goal is to 

completely delete Hells in L/Z stage spermatocytes, however Cre excision is not always completely 

efficient. By completely excising one of the floxed exons, I will increase my chances of getting complete 

excision of the one remaining floxed allele.  

The Stra8-iCre mouse expresses iCre under control of the Stra8 promoter, which is expressed 

specifically at the onset of meiosis in spermatocytes. Using Stra8-iCre is advantageous for two reasons: 

Figure 5. Visual description of EUCOMM conditional allele and Hells CKO genotyping assays. (A) Overview 

of Hells gene and integration of conditional knock out allele. (B) Cre mating scheme to generate 

conditional knock out in testis. (C) Visual representation of elements in tm1a, tm1b, and tm1c alleles. (D) 

Example gel showing bands from different genotyping assays. 
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first, the Stra8-iCre is expressed in male germ cell development, so offspring from a Stra8-iCre; Hells-

tm1c sire will be constitutive Hells null for the conditional allele; second, the Stra8-iCre is specifically-

expressed in L/Z stage meiosis, which is critical for the second step when I will generate conditional Hells 

null spermatocytes. By generating mice through these two matings, I can create a Hells conditional 

knock out in testis while the rest of the animal remains heterozygous for Hells, as depicted in Fig. 5B.  

I mated Hells-tm1c/+; ACTFlpe/+ mice to Stra8 iCre/+ to both breed away from the ACTFlpe 

allele and gain the Stra8 iCre allele. I genotyped the offspring and looked for male pups that were 

positive for Hells-tm1c and Stra8-iCre, and negative for ACTFlpe, which given the 50% probabilities of 

each of these alleles make the combined probability of about 1/16th of all pups. The resulting male Hells-

tm1c; Stra8-iCre offspring will produce heterozygous null germ cells. The second generation indeed 

genotyped positive for the deletion, becoming Hells-tm1d (“d” for deletion) (Fig. 5D).  

6.1.5. Mating of Hells-tm1c/Hells-tm1c females to Hells-tm1d; Stra8-iCre males to produce the 

genotype of interest 

Meanwhile, I mated Hells-tm1c/+; ACTFlpe/+ mice to each other to produce homozygous Hells-

tm1c/Hells-tm1c females that were negative for ACTFlpe (1/32th probability). To obtain males that were 

Hells null in L/Z spermatocytes, I mated Hells-tm1c/Hells-tm1c females to Hells-tm1c/+; Stra8-iCre/+ 

males (will be Hells-tm1d in germ cells) to produce offspring that are Hells-tm1c/Hells-tm1d; Stra8-iCre 

males, the final genotype of interest. I maximized my chances of getting Hells-tm1c/Hells-tm1d; Stra8-

iCre males through this final mating, but still the probability is only 1/8th. The only way I could increase 

my odds is by making the Stra8-iCre allele homozygous in the sire, which I was able to do in subsequent 

matings by identifying Hells-tm1d; Stra8-iCre/Stra8-iCre males through progeny testing, given that the 

generic iCre primers cannot differentiate between heterozygous and homozygous Stra8-iCre. 

 I genotyped the male offspring from my final cross for Stra8-iCre, Hells-tm1c, and Hells-tm1d. 

The Hells tm1d allele I genotyped using the Hells 5’arm-F primer with Hells 3’ integration-R, which span 
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the floxed exon.  In the tm1c conditional allele, the primers are 1200 bp apart, but in the Hells-tm1d 

excised allele, they are only 705 bp apart (Fig. 5C). I also genotyped for the maternal Hells-tm1c allele 

and the paternal Stra8-iCre. In my genotype of interest, the mouse tail DNA will genotype as Hells-

tm1d/Hells-tm1c; however, in the spermatocytes the Stra8-iCre allele will be active and will excise the 

floxed Hells-tm1c allele, making them null for Hells in spermatocytes. I used these Hells-tm1d/Hells-

tm1c; Stra8-iCre males to study the effects of loss of Hells in meiosis.  

In some progeny from the Hells-tm1c; Stra8-iCre sires there was evidence of incomplete 

conversion of the Hells-tm1c allele to Hells-tm1d (Fig. 5D, star). To mitigate this effect, I used the Hells-

tm1d/+; Stra8-iCre males from my final cross as sires in future matings, so the germ cells of these sires 

would have another round of exposure of Cre, which should eliminate any residual intact Hells-tm1c. 

The additional round of Cre exposure worked, where I sometimes saw residual Hells-tm1c in offspring 

from a Hells-tm1c/+; Stra8-iCre/+ sire, but not in offspring from a Hells-tm1d/+; Stra8-iCre sire. 
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CHAPTER 7 

HELLS CONDITIONAL KNOCK DOWN PHENOTYPE 

7.1. Hells conditional knock down males are infertile and have reduced testis size 

The Hells-tm1d/Hells-tm1c; Stra8-iCre mice were phenotypically normal, grew well, and looked similar 

to their littermates. I performed fertility testing on four Hells-tm1d/Hells-tm1c; Stra8-iCre adult males by 

mating them to proven fertile female B6 mice for 12 weeks, and none of the sires produced pregnant 

dams or any litters. I sacrificed the sires and compared their testis morphology to wildtype controls. All 

of the Hells CKO testis were much smaller in size than the wildtype, similar to the PRDM9 CKO 

phenotype (Fig. 6A). To quantify this comparison, I plotted the ratio of the total body weight of the 

males to the total weight of its two testes and could see that the testis:body weight ratio for the Hells 

CKO was significantly lower than the wildtype (Fig. 6B). 

7.2. Western blot analysis of testis protein from Hells CKO shows absence of HELLS 

To confirm that the knock down of Hells in spermatocytes was successful, I performed western blot on 

12dpp testis protein from Hells CKO, heterozygous, and wildtype littermates. I blotted for HELLS and saw 

absence of HELLS in the CKO and reduced level of HELLS in the heterozygote, compared to normal levels 

in the wildtype (Fig. 6C). This confirmed that our mating strategy and the Cre excision were effective at 

generating a tissue-specific Hells null. 

 I also blotted for PRDM9 on the same protein samples to check that PRMD9 expression 

remained unaffected by knock out of HELLS. Surprisingly, PRDM9 levels were slightly reduced in the 

Hells CKO compared to wildtype (Fig. 6C). I collected three additional replicates of Hells CKO and control 

littermates and performed HELLS and PRDM9 blots in triplicate with b-TUBULIN as a loading control and 

confirmed that indeed there was an ~20% reduction in PRDM9 protein in Hells CKO compared to 

matched controls (Fig. 6D). However, we ruled out that this slight reduction in PRDM9 protein could 
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cause the infertility phenotype in the Hells CKO since heterozygous PRDM9 mice have ~50% reduction in 

PRDM9 protein but still activate hotspots, albeit at a slightly reduced efficiency, and complete successful 

meiosis (Baker et al., 2015). We can only speculate that the loss of binding between HELLS and PRDM9 

in the Hells CKO somehow affects PRDM9 protein half-life or that presence of HELLS somehow regulates 

PRDM9 transcription. 

 

 

7.3. Histological analysis of Hells CKO seminiferous tubules show arrest at stage 10 of 

spermatogenesis 

I investigated the effects of Hells CKO in testis by examining their morphology in histological sections. I 

harvested testis from Hells CKO and Hells het littermates, as well as C57BL/6J wildtype control. I 

collected testis from both juvenile 12dpp males and adult 6-week old males and fixed the testis 

Figure 6. Hells CKO testis show infertility phenotype. (A) and (B) Comparison of testis size between 

Hells CKO and wildtype. (C) Western of testis protein showing levels of HELLS and PRDM9. (D) 

Normalized PRDM9 expression from 4 replicate Hells CKO testis as a fraction of wildtype. PAS 

staining of testis sections from (E) 6-week adult and (F) 12 dpp juvenile from wildtype and Hells CKO. 

(G) IHC staining for yH2AX, HELLS, and PRDM9 in adult Hells CKO testis. 
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overnight at room temperature in Bouin’s solution, which is a good fixative for fixing soft tissue and 

gives crisper and better staining for nuclei. The next day, I washed the fixed testis in three 1 hour washes 

of 70%, 50%, and 25% EtOH and then stored them in H2O to remove excess pigment from the fixed 

tissue. I brought the fixed tissue to the Histology core to be embedded in paraffin, cross-sectioned, and 

stained with PAS to look at cellular morphology and organization. I took the 5 µm PAS-stained slides and 

submitted them to our Microscopy for Nanozoomer imaging at 40X.  

I evaluated the images and it was immediately evident that the Hells CKO tubules were devoid 

of mature sperm and had empty tubules lacking cells (Fig. 6E). Because in adult testes spermatogenesis 

is asynchronous, each cross-section of tubules will capture individual tubules at different stages in 

spermatogenesis. Thus an experienced eye can identify the whole spectrum of stages in a sufficiently 

representative testis cross-section. Because I do not have the requisite experience, I consulted another 

scientist, Hui Tian, for her expert opinion. She analyzed the histological images and concluded that the 

Hells CKO were arresting at stage 10 of spermatogenesis, where she could find evidence of cells types 

leading up to that stage but none of the more mature cell types from subsequent stages. Stage 10 in 

spermatogenesis includes spermatocytes progressing through the pachytene stage of meiosis. Arrest at 

stage 10 means arrest at pachytene stage in meiosis, the same as seen in PRDM9 knock out and many 

other fertility phenotypes involving meiotic arrest.  

In contrast, PAS-staining on 12 dpp testis for both Hells CKO and wildtype showed no difference 

in morphology. The tubules in both Hells CKO and wildtype 12 dpp mice have not yet progressed into 

stage 10 and there appear to be no effects from loss of Hells (Fig. 6F). Both testes show equal 

proportions of tubules in each stage, so the meiotic arrest we see later is not due to pre-meiotic 

retardation in spermatogenesis in the Hell CKO but is only initiated when Hells CKO cells progress into 

pachytene stage. 

7.4. IHC on Hells CKO testis shows loss of HELLS in spermatocytes  
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I performed IHC for HELLS, PRDM9, and yH2AX on adult Hells CKO and wildtype testis sections and saw 

loss of HELLS in meiotic cells in the Hells CKO. The L/Z tubules still stained well and normally for PRDM9, 

but there was no concurrent HELLS signal in the Hells CKO (Fig. 6G). I could see evidence of specificity of 

the Stra8-iCre by the presence of HELLS in pre-meiotic spermatogonia, before Stra8 is expressed, in cells 

lacking PRDM9 signal. This is good for the integrity of our experiment, because it means the phenotype 

we see in the Hells CKO is specific to meiosis and is not due to some unknown function of Hells in 

spermatogonia. The staining for PRDM9 looked normal and equal intensity in the Hells CKO testis 

compared to the wildtype, indicating that meiotic arrest is not due to loss or misexpression of PRDM9. 

As a side note, I did see a small number of Hells CKO tubules that were able to progress through 

meiosis and produce sperm. When I performed IHC for HELLS in the Hells CKO sections I saw that some 

tubules still expressed HELLS despite carrying Stra8-iCre, and these were the tubules with sperm. This is 

due to incomplete excision of the conditional allele by Cre, which has also been described by other 

investigators using the Stra8-iCre allele (Tian et al., 2018). 

7.5. TUNEL staining shows increased apoptosis in Hells CKO tubules 

We predicted that absence of mature sperm and empty tubules meant that cells were undergoing 

apoptosis after arrest at stage 10. To confirm this, I stained Bouin’s fixed sections from Hells CKO and 

Hells heterozygous testis with the In Situ Cell Death Detection Kit (Roche). The kit labels dying cells by 

detecting DNA degradation that is a hallmark of apoptosis. The DNA double-stranded breaks can be 

detected by polymerization of fluorescently labelled nucleotides that cleave to the free 3’ OH of the 

breaks. This method has also been termed TUNEL (TdT-mediated dUTP-X nick end labeling). To use the 

kit, I first needed to prepare my sections by dehydrating them to remove all fixation solution and tissue 

fluid and then rehydrate them in PBS. I performed two washes in xylene followed by 100%, 95%, 80%, 

and 70% ethanol and then two washes each in H2O and PBS. Next, I incubated the tissue with 20 µg/µl 

proteinase K for 5 min at RT to permeabilize the cells. I rinsed twice with PBS to remove proteinase K 
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and labelled according to manufacturer’s recommendation. Once the sections were labeled, I co-stained 

with DAPI to identify nuclei and imaged the slides for fluorescence from the TUNEL staining (488nm, 

green) and fluorescence from the DAPI (405nm, blue). The difference in number of cells stained for 

apoptosis for the Hells CKO was immediately evident. Hells CKO tubules in stage 10 of spermatogenesis 

had lots of dying cells, compares to almost none in the wildtype control (Fig. 7A). I counted numbers of 

TUNEL-positive cells in six tubules from Hells CKO compared to six tubules from Hells wildtype and saw a 

large increase in apoptosis due to the loss of later stage germ cells (Fig. 7B). 

7.6. Meiotic chromosome spreads show lack of pachytene and diplotene cells in Hells CKO 

My results from IHC on testis sections showed arrest at stage 10 of spermatogenesis, but to look closer 

at individual cells undergoing meiosis I made chromosome spreads of spermatocytes to identify the 

cause of arrest. 

7.6.1. Preparing chromosome spreads  

I harvested testis from 12 dpp Hells CKO and wildtype littermates and placed them in hypotonic 

extraction buffer (30 mM Tris pH8.2, 50 mM sucrose, 17 mM sodium citrate, 5 mM EDTA, 2.5 mM DTT, 1 

mM PMSF). I used Dumont forceps to gently pull apart the tubules into a fluffy cloud to allow access of 

the lysis buffer. After 30 min lysis, I took small amount (half a grain of rice-sized) of testis tissue and 

placed it in 0.1 M sucrose.  I used forceps to cut tissue in ‘steak-like’ manner, lifting and dropping 

tubules to release cells into the sucrose until the mixture became cloudy. Next, I coated a clean slide in 

100 µl fresh 1% PFA, then dropped 7µl of testis/sucrose solution in one upper corner and tilted slowly 

back and forth like a making a “Z” all the way down the length of the slide. I put the slides with 

chromosome spreads in a humid chamber overnight at room temperature, then the next day took them 

out and let them air dry until all liquid evaporates, about 30min. After drying, I rinsed the slides in 0.04% 

Kodak Photo-Flo for 60min before storing them at -20°C.  

7.6.2 Immunofluorescence on chromosome spreads 
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For immunofluorescence, I first blocked slides and permeabilized them by covering them completely in 3 

mg/mL BSA, 1% normal donkey serum, and .005% Triton-X 100 in 0.05 M TBS, laying a strip of Parafilm 

on top of the slide to further reduce evaporation, and incubating at room temperature for ~6 hrs in a 

humid chamber. After blocking, I co-stained the chromosome spreads with anti-HELLS and anti-SYCP3 

(1:500 Santa Cruz SC74569, lot#J1314) or anti-HELLS and anti-yH2AX, using the same dilutions as I did 

for testis sections and incubated them overnight at 4°, covered with coverslips and sealed with rubber 

cement to prevent evaporation. The next day I performed washes and added fluorophore-labeled 

secondaries, and finally added antifade with DAPI before sealing the slides with coverslips and sewing 

them shut with clear nail polish. 

 I chose SYCP3 as a marker protein to show the progress of synapsis of chromosomes. SYCP3 is a 

synaptonemal complex protein that coats paired homologous chromosomes.  The signal is diffuse in 

leptotene phase, but then starts to condense along paired chromosome in zygotene phase, where the 

signal looks thin and “tangled” as the chromosomes start to pair along their length. In pachytene phase 

the chromosomes become completely paired and compacted, and the signal looks fat and stubby. I also 

used yH2AX as a marker protein to show unresolved double-stranded breaks, which we would expect to 

see if PRDM9 does not activate hotspots and SPO11 instead cuts at promoters or other H3K4me3-

marked regions of the genome, locations that will not be resolved in the course of meiosis (Brick et al., 

2012). 

7.6.3. Chromosome spreads from Hells CKO are devoid of pachytene cells and carry unrepaired DSBs 

The composition of chromosome spreads from Hell CKO testis was very different from wildtype spreads. 

In the wildtype, most cells were either pachytene or diplotene phase. In contrast, most of the cells in the 

Hells CKO were in zygotene phase and had very few cells in pachytene phase. I counted 200 cells from 

each Hells CKO and Hells wildtype spreads and scored them for meiotic stage to quantify the arrest of 

meiotic progression (Fig. 7C). The Hells CKO showed 56% of cells in zygotene and only 20% in pachytene, 
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as opposed to 6% of cells in zygotene for the wildtype and 58% in pachytene. Most of the Hells CKO 

pachytene phase cells showed evidence of unresolved DSBs, which appeared as yH2AX staining on parts 

of autosomes outside of the sex body, or SYCP3 staining that looked uncompacted in parts of the 

chromosomes (Fig. 7D). The Hells CKO appears enriched for zygotene-stage cells because the 

spermatocytes cannot progress into or past pachytene stage. 

 

 

7.7. Staining of chromosome spreads for DMC1 shows unresolved meiotic DSBs 

DMC1 is a meiosis-specific protein that binds to single-stranded DNA caused by DSBs at PRDM9-bound 

hotspots. Because we saw persistent yH2AX staining we wondered whether these were meiotically-

programmed DSBs and would label with DMC1. I stained a slide of chromosome spreads from 12 dpp 

Figure 7. Hells CKO testis show arrest at pachytene stage and apoptosis compared to wildtype. (A) 

TUNEL staining on Hells CKO and wildtype adult testis sections. (B) Number of TUNEL-positive cells 

per tubule. (C) Percentages of cells in each stage of meiosis counted from chromosome spreads. (D) 

Example of incomplete synapsis and persistence of yH2AX staining in Hells CKO “pachytene-like” 

cells compared to wildtype pachytene cells. (E) Staining for DMC1 foci in zygotene stage cells and (F) 

number of DMC1 foci per cell for Hells CKO and wildtype. 
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Hells CKO and wildtype with DMC1 and SYCP3. In the wildtype spreads I saw punctate DMC1 staining at 

DSB foci along the length of zygotene-stage chromosomes and no DMC1 staining in fully synapsed 

pachytene-stage chromosomes. Interestingly, the Hells CKO also showed DMC1 foci along zygotene-

stage chromosomes but the foci persist in pachytene-like chromosomes (Fig. 7E). This evidence shows 

that meiotic double-stranded breaks are persisting after zygotene and are preventing the chromosomes 

from fully synapsing. The phenotype is similar to the Prdm9 knock out, where misdirected meiotic DSBs 

are unable to participate in homologous recombination and remain unrepaired, causing a block in 

pachytene. I checked to be sure that the persistent DSBs in the Hells CKO were not due to an increase in 

the number of DSBs compared to wildtype by counting the numbers of DMC1 foci per cell during 

zygotene. The numbers of DSBs in Hells CKO and wildtype zygotene-stage cells are not significantly 

different (Fig. 7F). Therefore, the meiotic block is due to unrepaired DSBs that impede chromosomal 

synapsis. 
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CHAPTER 8 

HOTSPOTS FAIL TO ACQUIRE ACTIVE HISTONE MARKS AND OPEN CHROMATIN IN HELLS CKO 

Given our phenotype of meiotic arrest at pachytene phase and evidence of unresolved meiotic DSBS, we 

next investigated how the loss of HELLS affects chromatin configuration at hotspots.  

8.1. Loss of HELLS leads to loss of ATAC peaks at hotspots 

I performed ATAC-Seq on 12dpp Hells CKO and Hells wildtype, two replicates of each genotype. I 

processed the sequencing data with our pipeline for mapping, calling peaks, and normalizing read 

counts. For both genotypes, the ATAC-Seq passed QC and showed good enrichment at TSS’s. However, 

there was a serious batch effect in the ATAC-Seq data between the first set of ATAC performed on Hells 

CKO and het ATAC littermates and the second set, where batch explains 67.9% of the variance (Fig. 7A). I 

used edgeR ‘removeBatchEffect’ to correct for known batch effect in the samples. After batch 

correction, genotype now explains 62.7% of the variance (Fig. 8B) and the replicates are highly 

correlated (Pearson’s r=0.98 for CKO and Pearson’s r=0.98 for het).  

After annotating the peaks as hotspots, promoters, or other, I plotted the change in open 

chromatin at peaks between Hells het and Hells CKO. There was a clear population of sites that were 

drastically reduced in the Hells CKO that appear to be exclusively hotspots (Fig. 8C). Of the 1,391 

hotspots found in the ATAC peakset, 91% of them are reduced in the Hells CKO. In contrast, promoters 

show very little variation between Hells CKO and het (Fig. 8D). I looked at ATAC-Seq read pile-ups on the 

UCSC browser and confirmed the Hells CKO lost enrichment of reads at known hotspot locations 

compared to the het (Fig. 8E). Using CoverageView to count ATAC reads across the 7,233 hotspots 

shows loss of ATAC enrichment in the Hells CKO, except for some low strength hotspots that appear to 

have generalized open chromatin around them in both the CKO and the het (Fig. 8F). These results 

indicate that open chromatin at hotspots is obviated with loss of Hells.  
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These ATAC-Seq results from Hells CKO are in keeping with our hypothesis that Hells is the 

causative protein that opens chromatin at hotspots in meiosis. To validate this conclusion, we still 

needed to prove that PRDM9 was present at hotspots in the Hells CKO. Otherwise, the loss in chromatin 

remodeling could be due to loss pf PRDM9 binding, and not lack of Hells. 

 

 

8.2. ChIP for H3K4me3 shows failure of hotspots to acquire activated marks in Hells CKO 

Chromatin immunoprecipitation (ChIP) is a technique to look at interactions between protein and 

chromatin. Like co-IP, the method uses magnetic beads conjugated with an assay-specific antibody to 

pull down a target protein along with the chromatin to which it was bound. Using ChIP, we can 

investigate what DNA sequences are bound by the protein of interest or locations of histone 

Figure 8. ATAC-Seq on Hells CKO shows loss of open chromatin at hotspots. (A) MA plot of 

differentially accessible ATAC peaks between Hells CKO and wildtype. Hotspots are colored in blue. 

(B) MA plot of differentially accessible peaks at promoters. (C) Heatmap of ATAC read counts across 

a 2 kb region centered over 7,233 individual hotspots. (D) Bedgraph of read pile-ups at a single 

hotspot. (E) Density plot of wildtype ATAC reads across a 2 kb region centered on all hotspots. (F) 

Density plot of Hells CKO ATAC reads across a 2 kb region centered on all hotspots. 
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modifications. For our first ChIP on Hells CKO, I used an antibody directed to H3K4me3. Activated 

hotspots are known to acquire H3K4me3 only after binding by PRDM9 (Baker et al., 2014; Buard et al., 

2009; Eram et al., 2014; Sun et al., 2015; Wu et al., 2013). In fact, our lab typically uses H3K4me3 ChIP as 

a proxy for PRDM9 binding because the H3K4me3 histone mark is so strong in response to  PRDM9 

binding.  

8.2.1. Preparation of cross-linked chromatin for H3K4me3 ChIP 

For each ChIP, I harvested testes from 4-5 12 dpp male pups and pooled them to make one replicate. I 

collected 3 replicates of each Hells CKO and Hells het littermates and extracted spermatocytes as 

described for H3K4me3 ChIP (Baker et al., 2014). After washing with PBS, I cross-linked the cells with 1% 

formaldehyde for 10 min to preserve the protein-DNA complexes before stopping the reaction by 

adding 125 mM glycine to quench unreacted formaldehyde. Cross-linking cells forms covalent bonds 

between protein and DNA or protein and other proteins, stabilizing interactions subsequent 

experiments.  

8.2.2. Lysis of spermatocytes and digestion of cross-linked chromatin with MNase to fragment DNA 

After cross-linking, the cells are hypotonically lysed in 10mM Tris-HCL pH 8.0, 1mM KCl, 1.5 mM MgCl2 

with 1 mM PMSF and 1 X protease inhibitor cocktail for 30 min to release nuclei containing the protein-

bound DNA. Hypotonic lysis conditions challenge the cell membrane with low-salt conditions, causing 

the cell to swell and rupture to release nuclei, then high-speed pelleting recovers the nuclei from 

solution. The intact chromatin from the recovered nuclei is much too large to be efficiently pulled down 

by ChIP, and even if it was, the resulting DNA would be too long to determine precisely where the 

protein of interest in bound. For these two reasons, chromatin is fragmented before being used in ChIP. 

For ChIP for histone modifications, like H3K4me3, we take advantage of the fact that DNA wrapped 

around nucleosomes is relatively compacted, making the histone-bound DNA of interest protected from 

micrococcal nuclease (MNase), an enzyme that cleaves protein-unbound regions of DNA. Digesting the 
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chromatin with MNase results in soluble mononucleosome-length fragments ~150bp, plus any surviving 

di- and tri-nucleosome fragments. Two high-speed spins help purify the digested chromatin that remains 

in solution away from other cellular debris. 

8.2.3. Performing IP for H3K4me3 and collection of DNA fragments 

The protocol for H3K4me3 ChIP is described in Baker et al., 2014. The IP is performed in RIPA buffer 

augmented with 50 mg/mL BSA to reduce non-specific protein interactions with the beads and 

0.5mg/mL Herring sperm DNA to reduce non-specific DNA interactions with the beads. First, I 

conjugated 7.5 µl of anti-H3K4me3 antibody (Millipore, 07-473) to 60 µl Protein G Dynabeads for 

>20min in 300 µl buffer, and afterward washed to remove unbound antibody. I added 3 mln cells’ worth 

of chromatin to the antibody-bound beads in 300 µl total buffer and incubated at 4° for 2 hrs.  After 

washing to remove unbound chromatin, I harvested the DNA fragments using an elution buffer 

containing high SDS to elute the complexes from the beads, high NaCl to reverse cross-links, and 

proteinase K to digest the protein away. The remaining DNA I purified using a Zymo DNA Clean and 

Concentrator kit. 

8.2.4. Analytical ChIP-qPCR shows reduced H3K4me3 at Pbx1 hotspot in Hells CKO 

To test whether our H3K4me3 ChIP was successful, I tested our purified H3K4me3 ChIP DNA by qPCR to 

look for enrichment of sequences pulled down from hotspots. I would have tested my ATAC libraries by 

qPCR and I tried to develop an assay, but the variable fragment length as locations probably contributed 

to me being unable to amplify a product from ATAC. However, qPCR is an excellent measure of histone 

ChIP enrichment for specific sequences. For PRDM9Dom2 on a B6 genetic background, I chose two 

hotspots that are particularly active and show strong H3K4me3 binding at the flanking nucleosomes next 

to the PRDM9 binding site and used primer sets that amplify the nucleosome-occupied region next to 

the strong B6 hotspot. I also used primers sets that amplify next to a strong hotspot for PRDM9Cst as a 

negative control and the Actin promoter region as a positive control. Contrary to our expectations, I saw 
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strongly reduced levels of enrichment at Pbx1 in the Hells CKO, compared to strong enrichment in the 

Hells heterozygous control (Fig. 6A). Both samples showed low enrichment for the PRDM9Cst hotspot 

negative control and the high enrichment for the housekeeping gene promoter.  

8.2.5. H3K4me3 ChIP-Seq shows reduced H3K4me3 at all hotspots in Hells CKO 

We sequenced the three replicates of H3K4me3 ChIP for both Hells het and Hells CKO, ~50mln reads per 

sample, single-end. I mapped the reads with bwa, called peaks with MACS, and normalized reads in a 

shared peakome. I looked at QC metrics for the H3K4me3 ChIPs to confirm the assay was efficient and 

specific. The fraction of H3K4me3 reads that were found in peaks (FRiP) was high in all samples (30-50%) 

and replicates showed very good agreement with each other (Pearson’s r > 0.95). Most of the 71,877 

peaks annotated as hotspots that showed significant reduction in the Hells CKO (Fig. 9B). Of the 6,821

 

Figure 9. H3K4me3 ChIP-Seq on Hells CKO shows loss of signal at hotspots. (A) H3K4me3 ChIP qPCR 

showing loss of enrichment at hotspots in the Hells  CKO. (B) MA plot of differential H3K4me3 peaks 

between Hells CKO and wildtype, with PRDM9 ChIP-defined hotspots colored in blue (C) Heatmap of 

H3K4me3 read counts across a 2 kb region centered over 7,233 PRDM9 ChIP-defined hotspots. (D) 

Read depths across a 3kb region at a single hotspot. (E) Density plot of wildtype H3K4me3 reads 

across all hotspots. (F) Density plot of Hells CKO H3K4me3 reads across all hotspots. 
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H3K4me3 peaks showed similar trimethylation patterns in both the Hells CKO and Hells het. However, 

H3K4me3 peaks annotated as hotspots, 98% of them are reduced in Hells CKO compared to wildtype. A 

heatmap of read depths across all hotspots shows comprehensive depletion in the Hells CKO (Fig. 9C).  

 I visualized the read coverage profile for Hells CKO and wildtype H3K4me3 ChIP using the UCSC 

browser and found significant decrease, loss, or disorganization (nucleosomes not remodeled around 

PRDM9 motif) of the H3K4me3 signal at hotspots in the Hells CKO (Fig. 9D). Likewise, aggregate signal 

from all hotspot regions show almost complete loss of H3K4me3 organization at hotspots in the Hells 

CKO (Fig. 9F) compared to the control.  

There were 11,070 peaks that were greater than 2 logFC reduced in the Hells CKO, which I 

hypothesized were hotspots. However, for most of my analyses I used a smaller hotspot peak set of 

7,233 hotspots identified by PRDM9 ChIP binding that have PRDM9 motifs identified within them, a 

conservative measure of a true hotspot. I found 6,821 of these hotspots in my H3K4me3 ChIP data, of 

which 6,677 (98%) are reduced in the Hells CKO, but that leaves many H3K4me3 peaks that are 

significantly reduced in the Hells CKO unannotated. I wanted to annotate more of the 11,070 H3K4me3 

peaks that are reduced in Hells CKO as hotspots by using a larger list of hotspots from Spruce et al, 2020. 

Here we defined hotspots based on their unique chromatin signature using ChromHMM analysis (Ernst 

and Kellis, 2017) to assign chromatin-state signatures at genomic regions by using a multivariate hidden 

Markov model (HMM) that explicitly models the combinatorial presence or absence of each mark. Using 

the larger pool of 17,843 hotspots identified by ChromHMM I annotated 11,125 H3K4me3 peaks as 

hotspots, of which 11,121 were reduced in the Hells CKO. These results strongly support my hypothesis 

that the peaks reduced in Hells CKO are hotspots. There were still ~919 peaks that are reduced greater 

than 2 logFC in the Hells CKO but are not annotated. These unannotated peaks represent 1.2% of the 

total 71,877 peaks called in the H3K4me3 ChIP data, compared to 9.5% - 15.5% that are annotated as 
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hotspots. It is unclear if the remaining peaks are unannotated hotspots or something else, but the 

overwhelming majority of the peaks that decrease or disappear in the Hells CKO are hotspots. 
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CHAPTER 9 

HELLS LOCALIZES TO HOTSPOTS DURING MEIOSIS 

9.1. ChIP for HELLS shows binding at hotspots 

The molecular and morphological phenotype of the Hells CKO strongly indicate that HELLS in necessary 

for initiation of meiotic recombination. To provide a functional link between HELLS and hotspots I 

wanted to test whether HELLS bound on chromatin at hotspots by performing HELLS ChIP. Before I could 

do this, we needed to develop a protocol for ChIP on a protein that may not directly bind DNA (HELLS) 

and interacts through another protein partner with DNA-binding capabilities (PRDM9).  

9.1.1. Dual cross-linking spermatocytes to preserve HELLS interactions with chromatin 

For the HELLS ChIP, I modified our cross-linking to include a two-step cross-linking process to target both 

protein-DNA interaction and protein-protein interactions. Since HELLS has no DNA binding domain of its 

own, we speculated that it could only be recruited to chromatin through another DNA-binding protein, 

like PRDM9. Therefore, in order to recover chromatin from the HELLS ChIP, we would need to perform 

dual cross-linking to first cross-link protein-protein interactions (e.g. HELLS to PRDM9), then crosslink 

protein to DNA (e.g. PRDM9 to chromatin). Protein-protein interactions were cross-linked starting from 

12 dpp spermatocytes using fresh disuccinimidyl glutarate (DSG) at 2 mM in PBS with 1 mM MgCl2 for 30 

min at room temperature with rotation. Next, I added 1% fresh paraformaldehyde to cross-link protein-

DNA interactions and rotated another 5 min before stopping the reaction by adding 125 mM glycine to 

quench unreacted formaldehyde. 

9.1.2. Sonication of chromatin to fragment the DNA before ChIP 

In order to make DNA compatible with high-throughput sequencing and improve enrichment over 

background, longer pieces of chromatin need to be fragmented. Since HELLS is expected to create 

nucleosome-free DNA, I could not use MNase-digestion without potentially digesting away the DNA of 

interest. Instead, I used sonication to break the DNA through ultrasound waves that can cleave 
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hydrogen bonds and shear DNA while leaving proteins unharmed. There are four considerations for 

successful sonication: time, SDS concentration, heat, and intensity. Sonication sheared DNA by vibration, 

which also produces heat that can damage proteins. To control the heat, the Covaris sonication 

equipment maintains the sample in a temperature-controlled water bath. The Covaris has adjustable 

setting for intensity of sonication and length of time of sonication bursts. We followed the 

manufacturer’s recommendation for intensity: Duty 2%, Peak Incident Power 105 watts, Cycles per burst 

200.  

For length of time I tested three conditions, 5min, 10min, and 15min. I also tested two 

concentrations of SDS. SDS increases sonication efficiency and chromatin yield, but downstream is 

strongly interferes with ChIP binding efficiency. Therefore, I tested the recommended concentration for 

sonication, which was 1% SDS, and the recommended maximum concentration for ChIP, which was 

0.1%. For my sonication test I hypotonically lysed dual cross-linked cells and aliquoted them into six 1 

million cell aliquots in 130 µl for sonication, the maximum cell concentration recommended for 

sonication. I tested three different time conditions using two different SDS conditions. I took the 

resulting sonicated DNA, reversed cross-links and digested protein, and then ran the DNA fragments on 

a gel to analyze fragment size (Fig. 11A). The low SDS condition lost most chromatin, and what was left 

appeared unsonicated. The high SDS concentration showed good sonication in all three times. My aim 

was to recover DNA fragments around 300-600bp, which appeared to be in between 10 and 15 min. 

Based on these results I decided to sonicate my samples for 12min. 

9.1.3. Dialysis of chromatin to reduce SDS 

The optimum concentration of SDS in a ChIP assay is 0.1%, and my sonicated chromatin was at 1%. If I 

diluted my chromatin to 0.1% in ChIP buffer, the chromatin would be too dilute to bind efficiently in the 

ChIP. To reduce SDS concentration without increasing volume, I dialyzed the sonicated chromatin 

overnight in low-SDS dialysis buffer (0.01% SDS, 1.1% triton X100, 1.2 mM EDTA, 16.7 mM Tris-Cl pH 8.0, 
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167 mM NaCl) using Slide-A-Lyzer Mini Dialysis Devices, 10K MWCO, that will allow small molecules like 

SDS to pass through and equilibrate but keep the chromatin inside. Previous work in our lab (Baker et 

al., 2015a) determined that optimal dialysis requires an initial 1:1 dilution of sonicated chromatin to 

dialysis buffer and then two >8hr incubations in successive 1L dialysis buffer baths at 4°. 

9.1.4. Performing IP for HELLS and recover co-bound DNA 

The HELLS ChIP required more gentle buffer conditions than the H3K4me3 ChIP. Instead of using RIPA 

buffer, which is relatively harsh buffer with high detergents (50 mM Tris pH 8.0, 150 mM NaCl, 1.0% NP-

40, 0.5% Na deoxycholate, 0.1% SDS), I switched to using dialysis buffer (16.7 mM Tris-Cl pH 8.0, 167 

mM NaCl, 1.1% triton X100, 1.2 mM EDTA, 0.01% SDS) that is less likely to disrupt weak antibody binding 

but is also more prone to non-specific background signal. As blocking agents, I used 50mg/mL BSA and 

2mg/mL polyglutamate. Polyglutamate is water-soluble synthetic polymer that mimics DNA in its ability 

to neutrally coat but not bind the components in the ChIP assay. We made this change after finding 

evidence of non-mouse DNA sequence in our ChIPs using the gentle buffer, which we concluded came 

from Herring sperm DNA that was able to bind to beads in the less stringent buffer conditions. 

 For the HELLS ChIP, I performed three triplicate 500 µl ChIP reactions containing 25 µl  Protein G 

beads, 4 µl  anti-HELLS antibody (Millipore, ADB41), and chromatin from 3 million dual cross-linked cells. 

I also performed a negative control ChIP using anti-IgG antibody that does not bind protein and 

represents non-specific binding.  The next day I performed gentle washing with low salt, high salt, and 

LiCl washes described in the PRDM9 ChIP protocol in Baker et al., 2015a. To purify the DNA from the 

HELLS ChIP, I used a three-step process to elute from the beads, reverse cross-links, and digest protein, 

also described in the PRDM9 ChIP protocol in Baker et al., 2015a. The yield from the HELLS ChIP after 

purifying the ChIP DNA with the Zymo DNA Clean & Concentrator-5 (Zymo # D4013) kit was significantly 

lower than the yield from H3K4me3 ChIP, about 3.2 ng total ChIP DNA for HELLS compared to 10 ng ChIP 

DNA for H3K4me3. 
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9.1.5. qPCR on HELLS ChIP DNA shows enrichment at hotspots 

I chose to use B6CAST-KI mice for the HELLS ChIP because my previous HELLS ChIPs on B6 mice were very 

low yield, and though the qPCR showed the results we expected (HELLS enrichment at hotspots), it was 

low efficiency. We have seen poor outcomes from B6 in the PRDM9 ChIP previously, and the resolution 

was to use B6CAST-KI with the stronger allele of PRDM9 to capture more fragments. I compared HELLS ChIP 

on replicates of B6 vs B6CAST-KI spermatocytes and saw that I could double my yield (3.2ng vs 1.7ng) and 

relative enrichments at hotspots (3.1-fold vs 1.6-fold over control) by using B6CAST-KI vs B6.  I performed 

HELLS ChIP on three replicates of B6CAST-KI spermatocytes followed by qPCR to measure enrichment at 

hotspots and found HELLS was preferentially bound at PRDM9Cst hotspots compared to PRDM9Dom2 

hotspots (Fig. 11B). Compared to the replicates of HELLS ChIP on B6 spermatocytes, the enrichment at 

hotspots in HELLS ChIPs was specific to binding of PRDM9 and allele-specific hotspots.  

9.1.6. Sequence analysis of HELLS ChIP shows enrichment at hotspots 

We sequenced our two best HELLS ChIP replicates based on yield and qPCR enrichments and one IgG 

ChIP control to a depth of ~50mln reads per sample, single-end reads and I performed mapping, peak-

calling, and normalization on the data as before.  I checked the correlation between HELLS ChIP 

replicates as a quality control and they showed good agreement (Pearson’s r=0.91). Despite >94% reads 

mapping, there were only 2,675 HELLS ChIP peaks called at e-5 by MACS, which is low and only about 

1,000 more than the number of peaks called on IgG ChIP negative control  

I uploaded bedgraph files containing normalized reads from the HELLS ChIP to the UCSC browser 

to look at read pile-ups at HELLS ChIP peaks. There was enrichment HELLS reads at hotspots, though not 

every hotspot showed enrichment, perhaps as a consequence of poor ChIP efficiency. The hotspots with 

HELLS signal showed read pile ups centered over the PRDM9 binding motif, similar to ATAC peaks and in 

between H3K4me3 nucleosome peaks (Fig. 11C). It is interesting that although HELLS is a nucleosome 

remodeler, we did not see reads at nucleosomes flanking hotspots, like we see in H3K4me3 ChIP.  



54 
 

 

 

I annotated the peaks as hotspots, TSS’s, or other and found that 46% of the 2,675 HELLS ChIP peaks 

overlapped recombination hotspots, compared to 23% of the peaks at TSS’s (promoters) and 31% that 

were “other” (Fig. 11D). This result finding hotspots were the largest proportion of peaks supports the 

hypothesis that HELLS plays a role at hotspots. We also saw HELLS peaks at promoters, consistent with 

other findings that HELLS can act as an epigenetic regulator at chromatin regulatory regions like 

promoters and enhancers (Ren et al., 2019; Han et al., 2017; von Eyss et al., 2011). In contrast, the IgG 

negative control ChIP had 1,777 peaks, similar to one of our HELLS ChIP replicates, however only 2% of 

those peaks overlapped with HELLS peaks and there was no enrichment for IgG at hotspots, proving that 

the HELLS ChIP was truly enriched for at hotspots despite having low sensitivity. 

Figure 10. HELLS ChIP shows binding at hotspots. (A) Gel of sonication fragments from two SDS 

concentrations (1% and 0.1%) and three time lengths (5, 10, and 15min). (B) HELLS ChIP qPCR for 

hotspots (C) Bedgraphs of read pile-ups for H3K4me3 ChIP, ATAC, HELLS ChIP, and IgG ChIP at one 

hotspot. (D) Pie chart showing annotations of peaks recovered in HELLS ChIP. (E) Heatmap of HELLS 

ChIP read counts across a 2 kb region centered over 1,234 individual hotspots. 
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To examine enrichment across all hotspots, I plotted read counts across a 2kb region centered 

over the 1,234 hotspots recovered from the HELLS ChIP and compared it to ATAC, H3K4me3, and IgG 

heatmaps. The read depths from HELLS ChIP at hotspots was correlated with read depths from 

H3K4me3 ChIP and ATAC, showing that the strongest hotspots had the strongest signal in all three 

marks (Fig. 11D). In contrast, the IgG ChIP I performed on the same spermatocytes at the same time 

showed no enrichment of any hotspots. These results show that HELLS is bound at hotspots. 
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CHAPTER 10 

LOSS OF HOTSPOTS IS NOT DUE TO PRDM9 BINDING AT OTHER SITES IN THE HELLS CKO 

10.1. No evidence of novel H3K4me3 peaks in Hells CKO 

The loss of H3K4me3 was unexpected, since presumably if PRDM9 is still present in the Hell CKO it 

should be able to bind and trimethylated hotspots. We questioned whether in the Hells CKO the 

hotspots are relocated to other genomic sites by alternative binding by PRDM9 to other sites in the 

absence of HELLS. To investigate potential non-canonical binding of PRDM9 in the Hells CKO, I looked 

more closely at our H3K4me3 ChIP for emergence of increased trimethylated at sites in the Hells CKO 

that could indicate binding by PRDM9. There are very few peaks that are more trimethylated in the Hells 

CKO. The changes in H3K4me3 peaks that are differentially trimethylated in the Hells CKO are very 

uneven, only 7 peaks increase greater than 2 logFC in the Hells CKO compared to 5,513 hotspot peaks 

that decrease greater than -2 logFC reduced in the Hells CKO (Fig. 9B). PRDM9 can deposit H3K4me3 in 

vitro on its own without binding partners (Chen et al., 2020), so we would expect to see a new cohort of 

H3K4me3 peaks emerge if PRDM9 was binding elsewhere, therefore the H3K4me3 ChIP data shows 

strong evidence against relocation of hotspots. 

10.2. PRDM9 is not sequestered to TEs in absence of HELLS 

There is a potential role of Hells before meiosis occurs in de novo methylation of the germline. 

Transposable elements (TEs) become demethylated in fetal germ cells and must be silenced by de novo 

methyltransferases or piRNAs. In spermatogenesis, de novo methylation occurs in fetal 

prospermatogonia and is completed by E16.5. Interestingly, defects in de novo methylation also cause 

defects in meiotic progression and pachytene arrest, a phenotype similar to Hells CKO and Prdm9 KO. De 

La Fuente et al., 2006, found evidence of demethylation of transposable elements in Hells KO oocytes in 

addition to meiotic arrest at pachytene stage due to unresolved DSBs (De La Fuente et al., 2006). In our 
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conditional mouse model, Stra8-iCre is first observed in 3 dpp testes (Sadate-Ngatchou et al., 2008), so 

Hells is expressed normally when de novo methylation occurs and the phenotype we see is not due to 

demethylation of TEs.  

However, it did make us wonder if TEs have the potential to provide binding sites for the zinc-

finger in PRDM9, given that zinc-finger proteins evolved primarily to recognize and silence TEs. In the 

Hells CKO we observe no evidence of PRDM9 binding at hotspots in the Hells CKO but we know PRDM9 

protein is present, and we also see no novel genomic locations showing PRDM9 binding based on 

increased H3K4me3, therefore we wondered if PRDM9 could be sequestered to unmapped, repetitive 

TEs in the absence of HELLS. 

To investigate potential PRDM9 binding at TEs, I used SalmonTE to map TE reads from the 

H3K4me3 ChIP data. Most mapping algorithms exclude TE sequences because of their repetitive nature 

and the accompanying difficulty of assigning reads to an individual TE or location. SalmonTE uses an 

expectation-maximization (EM) algorithm and light-weight mapping approach to assign reads to 

consensus sequences of TE families (Jeong et al., 2018). I ran SalmonTE to search for reads in the 

H3K4me3 ChIPs that show sequence similarity to 275 consensus sequences of known mouse TEs. As 

control datasets, I included a Prdm9 KO H3K4me3 ChIP as a negative control, reasoning if we do see 

increase in H3K4me3 at TEs in the Hells CKO, that effect should be ablated in the Prdm9 KO. I also also 

analyzed previously published H3K4me3 ChIP-seq data from a Dnmt3L (Brick et al., 2018). Since de novo 

methylation TEs is dependent on Dnmt3L, we should see an increase in H3K4me3 at TEs in Dnmt3L 

knock out if the two are linked.  

After normalization and differential analysis, 0 TEs had an increase in Hells CKO greater than 2 

logFC of the 275 TE families queried. There were 23 (8%) TEs that showed a logFC > 1, which seems too 

low of a difference to be a true change in PRDM9 binding, considering that there are many individual TEs 

and therefore many potential binding sites represented by each SalmonTE consensus entry. I normalized 
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TE read counts to data from the Hells heterozygous animals and plotted a heatmap to show the change 

in H3K4me3 in the Hells CKO, Prdm9 knock out, and Dnmt3L knock out (Fig. 11A). After filtering for TEs 

that had a >1 logFC in the Hells CKO, I saw the TEs that appeared to be differentially trimethylated in the 

Hells CKO are similarly trimethylated in the Prdm9 knock out, suggesting the increase in H3K4me3 at 

these TEs is not specific to PRDM9 binding but may be due to differences in the meiotic stage in the 

infertile phenotypes. The Dnmt3L knock out showed stronger differences as expected, but perhaps 

unexpectedly for this subset of TEs there was less H3K4me3 at TEs in the Dnmt3L knock out compared 

to the Hells het, so clearly our Hells CKO phenotype is not reminiscent of failure of de novo methylation. 

In conclusion, the changes in H3K4me3 at TEs in the Hells CKO are not indicative of PRDM9 

sequestration to TEs. 

 

 

10.3. PRDM9-ChIP on Hells CKO does not show binding of PRDM9 

Although there was no evidence of alternative PRDM9 binding in the H3K4me3 data, I queried PRDM9 

directly by performing PRDM9 ChIP on three replicates of Hells CKO 12dpp spermatocytes compared to 

Figure 11. PRDM9 is not binding at non-hotspot locations. (A) Heatmap of log2 fold change 

compared to Hells het in H3K4me3 read counts mapping to TEs. (B) PRDM9 ChIP qPCR for hotspots 

in Hells CKO vs. wildtype. 
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CKO het controls. I followed the ChIP protocol described for HELLS ChIP, but with single cross-linking 

instead of dual cross-linking (though I tested PRDM9 ChIP on dual cross-linked cells and saw no 

difference in outcome). As mentioned above, the PRDM9 ChIP on B6 with the native Prdm9Dom2 allele is 

low efficiency, and the total recovery from all Hells PRDM9 ChIP samples was low. I performed qPCR for 

two Prdm9Dom2 hotspots (positives) and one PRDM9Cst hotspot (negative control), along with a genomic 

location with no PRDM9 binding that should be equal in all samples to use for normalization. I saw 

reduced binding at B6 hotspots in the Hells CKO, supporting previous observations that PRDM9 does not 

bind hotspots in the absence of HELLS (Fig. 11B). It is hard to say conclusively that PRDM9 is not binding 

at all in the Hells CKO, since enrichment is so low for this ChIP and we see background ChIP signal at 

supposedly negative locations. Overall, the PRDM9 ChIP suggests that PRDM9 binding at hotspots is 

impaired in Hells CKO, but more optimization would be needed to be absolutely certain. 
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CHAPTER 11 

CONCLUSIONS 

11.1. The chromatin remodeler HELLS creates open chromatin at hotspots 

In total my thesis work demonstrated 1. activated hotspots are regions of open chromatin, 2. open 

chromatin at hotspots is dependent on PRDM9 and independent of SPO11, 3. HELLS forms a complex 

with PRDM9 in testis, 4. Loss of Hells prevents chromatin reorganization at hotspots leading to failure of 

homologous recombination. These results advance the field of meiosis by showing a role for open 

chromatin at hotspots to allow homologous recombination, and by describing HELLS as a binding 

partner of PRDM9 that is necessary for PRDM9 function. 

 In my first set of experiments, I showed that activated hotspots are locations of open chromatin 

by using ATAC-Seq to query nucleosome-depleted regions in the genome. Open chromatin at hotspots is 

dependent on PRDM9 binding as shown by allelic differences in open chromatin sites and is 

independent of DSBs as shown by presence open chromatin at hotspots in the Spo11 KO where no DSBs 

have occurred. In my next set of experiments, I introduced the chromatin remodeler HELLS. I used coIP 

to show that HELLS and PRDM9 form a protein complex and performed IHC on testis sections to show 

protein co-expression of HELLS and PRDM9 in L/Z stage cells. 

 To investigate HELLS in male meiosis, I imported a mouse with a conditional knock out allele of 

Hells and mated it to Stra8-iCre to knock out Hells expression in spermatocytes starting at L/Z stage in 

meiosis. The Hells CKO spermatocytes showed meiotic arrest and apoptosis at pachytene stage due to 

unresolved DSBs. The Hells CKO spermatocytes had no open chromatin at hotspots but normal open 

chromatin everywhere else, indicating that in the absence of HELLS, nucleosomes are not remodeled at 

hotspots. Concurrently in the Hells CKO there was a lack of H3K4me3 histone modifications at hotspots 

suggesting loss of PRDM9 binding, however there is no evidence of PRDM9 binding at novel locations in 
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the absence of HELLS by H3K4me3 ChIP. Finally, I confirmed that HELLS is preferentially bound at 

hotspots by performing a HELLS ChIP in normal spermatocytes, verifying that HELLS is part of the protein 

complex recruited by PRDM9 to remodel chromatin at hotspots and allow homologous recombination in 

meiosis. 

11.2. The role of HELLS in PRDM9 function is unclear 

One question that came up repeatedly during this project is what is happening to PRDM9 in the Hells 

CKO. I assumed in the Hells CKO that PRDM9 would still bind hotspots and trimethylate H3K4 however it 

appears that PRDM9 does not bind at all in the absence of HELLS. In fact, we performed an shRNA knock 

down of Hells in cell culture and confirmed loss of PRDM9 binding without HELLS as a co-factor. The lack 

of binding is not an issue with protein quantity: we see plenty of PRDM9 protein in the Hells CKO, even if 

protein levels are slightly reduced compared to wildtype. However, impaired binding could be explained 

if HELLS is a critical binding partner for PRDM9 to be active. There are many protein complexes that 

require all protein components to be present before the complex is competent and active. However, 

previous papers have shown PRDM9 has methylase activity in purified in vitro assays (Powers et al., 

2016; Chen et al., 2020), so it appears that HELLS protein is not necessary for PRDM9 to methylate 

purified histones. HELLS could potentially play a role in allowing PRDM9 to bind DNA, although again 

other studies have used PRDM9 in vitro and showed that PRDM9 can bind naked DNA without additional 

protein partners (Billings et al.; 2013; Grey et al., 2011).  

Another possibility I explored was the potential that PRDM9 was binding elsewhere. I tried 

several assays (H3K4me3 and PRDM9 ChIP) and looked at possible binding to TEs, but there was no 

evidence to support non-canonical binding. I could not even recover enough DNA from PRDM9 ChIP in 

Hells CKO to sequence, suggesting that PRDM9 is not binding anywhere in the genome. We also 

performed a DMC1 ChIP on Hells CKO with the help of a collaborator (Hui Tian) from the Paigen Lab to 

look for non-canonical DSB sites, but the data returned promoter regions and other H3K4me3-enriched 
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loci exactly like Prdm9 KO with no sign of alternative sites. Together these observations suggest that co-

binding with HELLS is necessary for PRDM9 to be competent to interact with intact chromatin. 

In total, this work describes PRDM9 as a pioneer factor that can recognize binding motifs in 

condensed chromatin and deposit open chromatin histone marks to encourage other factors to bind. 

Most described pioneer factors behave this way, where the pioneer factor binds first and then open 

chromatin and histone marks appear before DNA accessibility (Iwafuchi-Doi and Zaret; 2014; King and 

Klose, 2017). In our case the role seems to be reversed: seemingly PRDM9 cannot trimethylate histones 

without DNA being accessible. The previous studies showing PRDM9 binding to DNA in vitro used naked 

DNA, i.e., DNA that is already accessible and is parsimonious with this explanation. In fact, previous 

studies have already shown that chromatin compaction negatively impacts PRDM9 binding efficiency 

(Walker et al., 2015). PRDM9 shows transient binding and a short residency time at hotspots (Spruce et 

al., 2020), suggesting a weak association that could be easily lost without stabilization by other factors. 

Future work will be required to test whether HELLS may act to stabilize PRDM9 binding before activation 

of hotspots can occur. 
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