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The Gulf of Maine northern shrimp (Pandalus borealis) once supported a significant 

winter fishery for the Gulf of Maine (GOM). Although the shrimp fishery is not comparable to 

the lobster business, it provided fishermen and many coastal communities jobs and incomes in 

winters after lobster seasons. However, a moratorium has been put on the shrimp fishery since 

2014 due to record low population abundance and perceived recruitment failures. The 

recruitment failures have been correlated with warming water temperatures over the past decade. 

The GOM has been recognized as experiencing rapid warming as a result of global climate 

change. Uncertain impacts of the changing environment on the life cycle and the fishery of 

northern shrimp could hamper the efforts to rebuild a resilient and sustainable shrimp fishery. 

Consequently, there is a pressing need to understand the impacts of climate change on the life 

cycle and population dynamics of the GOM northern shrimp. The objectives of this research 

project are to 1) develop a cost-effective sampling protocol for building a comprehensive 

fecundity database including maternal body size, and number and size of eggs; 2) examine the 

impacts of climate-induced environmental variabilities on egg mortality; 3) develop a complete 



  

size-fecundity relationship in order to derive a robust estimate of reproductive potential of the 

population; 4) illuminate the effect of water temperature on spatial structure for each life stage; 

and 5) investigate the relationship between environmental variabilities and habitat suitability in 

northern shrimp spawners’ distribution. The findings reveal that the GOM bottom temperatures 

might have changed considerably over the past fifty years; however, the correlation between 

water temperature and parasitic infection eggs was not significant and the changes in 

reproductive potential might be related to population density rather than bottom temperature. The 

results also showed that the distributions of mature groups were getting patchier and shifting 

northward, which were correlated with declined population abundance and warming temperature, 

respectively. Furthermore, the quality of habitat has declined significantly for mature groups in 

summer and fall, especially in the 2010s, which could result from warming temperature and 

subsequently lead to declined spawning stock biomass.  
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CHAPTER 1. AN INTRODUCTION TO NORTHERN SHRIMP (PANDALUS 

BOREALIS) 

 

1.1 Biology, ecology, and life cycle 

There are several populations of northern shrimp (Pandalus borealis) in the north 

Atlantic coastal shelf (Jorde et al. 2015), including Canada, eastern and western Greenland, 

Norway, Iceland, Alaska, and the Gulf of Maine (GOM). The GOM northern shrimp is 

considered a genetically distinct unit stock at the southernmost of their distribution, which makes 

them perceived to be very susceptible to environmental variabilities (Richards et al. 2012).  

Northern shrimp is a protandric hermaphrodite (Shumway et al. 1985). They start their 

lives as males in inshore area in the Gulf of Maine (GOM). After 6-7 molts of larval stages, they 

grow into juveniles at around 5-9 months (Table 1.1). The molting rates depend on the water 

temperature (Stickney and Perkins 1977). After the age of 1 year old, they start to migrate to 

offshore areas and grow into mature adult males (Apollonio et al. 1986). They undergo the 

transitional stage at the age of 3 years before they turn into mature females (Shumway et al. 

1985). Mating and spawning of mature males and females takes place in late summer and fall in 

offshore areas in the GOM (Shumway et al. 1985). After spawning, females attach the fertilized 

egg to their pleopods, becoming ovigerous females (Haynes and Wigley 1969; Apollonio et al. 

1986). The ovigerous females carry the eggs until they migrate to inshore areas for shedding the 

embryos in winter and early spring (Shumway et al. 1985; Apollonio et al. 1986). Some females 

are able to complete the second reproduction cycle before they die at the age of 6; however, 

Haynes and Wigley (1969) indicated that there could be a high mortality rate for females after 

the first reproduction cycle.  
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Table 1.1. Life cycle of Gulf of Maine northern shrimp. Sp: spring, Su: summer, Fa: fall, Wi: 

winter, F1: Female I, OviF: Ovigerous Female, F2: Female II. 

 

Year 0 1 2 3 4 5 

Season Sp Su Fa Wi Sp Su Fa Wi Sp Su Fa Wi Sp Su Fa Wi Sp Su Fa Wi Sp Su Fa Wi 

Life 
Stage Immature Male Mature Male Transition F1 OviF F2 OviF 

 

Apart from seasonal inshore-offshore migration, diurnal vertical migration was also 

observed for non-ovigerous shrimp at night when they arose off bottom for feeding, while 

ovigerous females remained on the bottom due to limited mobility (Apollonio and Dunton 1969; 

Apollonio et al. 1986). Northern shrimp is an opportunistic omnivore, feeding on polychaetes, 

molluscs, crustaceans, mud, etc., their feeding patterns vary with seasons and geographic 

locations (Apollonio and Dunton 1969; Shumway et al. 1985).  

 

1.2 Fishery and stock status 

Northern shrimp supported a significant winter fishery for the GOM, targeting ovigerous 

females when they move to the shore to shed their eggs in winter (ASMFC NSTC 2019). 

However, the GOM northern shrimp fishery experienced several boom-and-bust cycles since the 

fishery was established in 1938 (Fig. 1.1). The landings in the 1940s were reported to be low; 

with landings declining in the late 1940s (ASMFC NSTC 2019). The fishery stopped from 1954 

through 1957 due to low abundance which was associated with high temperature at a 4-year lag 
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(Dow 1977). The fishery resumed in 1958, and the landings grew exponentially and reached 

above 10000 mt in the early 1970s (Fig. 1.1).  

 

 

Figure 1.1. Annual commercial landings of the Gulf of Maine northern shrimp (data source: 

Atlantic States Marine Fisheries Commission Northern Shrimp Technical Committee, 2013). 

 

The summer fisheries developed in the early 1970s which impacted northern shrimp at all 

ages including young males (Clark et al. 1999; ASMFC NSTC 2019). Clark et al. (1999) 

indicated that the summer fisheries was a major contributor to the increased fishing mortality and 

likely lead to subsequent recruitment failures. The fisheries declined very quickly and collapsed 

in 1977 with less than 500 mt landed (Clark et al. 1999; ASMFC NSTC 2019). The fishery was 

closed again in 1978. Since this second collapse of the shrimp fishery, the fishing months have 

been restricted to December through May (Clark et al. 1999; ASMFC NSTC 2019).  
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The third collapse happened in the 2010s. The landings declined from 2485 mt in 2012 to 

345.5 mt in 2013 (Fig. 1.1). A moratorium has been imposed on the fishery since 2014, however 

the stock has not recovered yet. The third collapse of the shrimp fishery, also the most recent 

collapse, was due to low levels of abundance and recruitment failures in consecutive years 

(ASMFC NSTC 2019). The recruitment failures have been perceived to be correlated with 

warming water temperatures in the past decade (ASMFC NSTC 2019) as a result of global 

warming (Kavanaugh et al. 2017).  

 

1.3 Overview 

Temperature has been considered an important factor in shifting the seasonal migration 

patterns of geographic distribution (Apollonio et al. 1986) and in influencing phenology 

(Richards 2012) of the GOM northern shrimp. Various hypotheses that have been postulated for 

the recent collapse of the population were also temperature-related, including the temperature 

effects on parasite incidence, reproduction, habitat quality, and spatial structure. Therefore, this 

dissertation aims to examine these hypotheses and propose possible explanations for the collapse 

of the fishery.  

Chapter 2 uses simulation of a resampling approach to evaluate two sampling strategies, 

developing a cost-effective protocol for collecting fecundity data from biological samples. 

Chapter 3 evaluates the effects of biotic and abiotic factors on parasite-infected egg mortality as 

well as proportion of infected females. Chapter 4 evaluates the effects of environmental variables 

on reproductive potential of northern shrimp population. Chapter 5 uses survey data to explore 

the relationships between spatial structure and water temperature and population abundance. 

Chapter 6 examines the temperature effects on habitat quality and the relation to spawning stock 
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biomass index. This dissertation aims to enhance our understanding of northern shrimp response 

to the environmental changes, providing important information for fishery management and 

conservation.  
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CHAPTER 2. EVALUATING SAMPLING STRATEGIES FOR COLLECTING SIZE-

BASED FISH FECUNDITY DATA: AN EXAMPLE OF GULF OF MAINE NORTHERN 

SHRIMP PANDALUS BOREALIS 

 
2.1 Abstract 

Fecundity information is critical in determining reproductive potential of a population.  

Collecting fecundity data, however, can be cost prohibitive or ineffective if a sampling protocol 

is not well designed. Inappropriate sampling can lead to biased estimates of fecundity, which 

may result in biased estimate of reproductive potential. Processing egg samples tends to be time-

consuming and labor-intensive.  For many fish and crustacean species, fecundity is dependent on 

female sizes. Nevertheless, at extreme size classes, fecundity may decrease or level off due to 

senescence. In order to account for this maternal effect, female samples of a wide size range need 

to be collected for developing a complete relationship between fecundity and body sizes. Using 

the Gulf of Maine northern shrimp, Pandalus borealis, as an example, we evaluated two 

sampling strategies, simple random sampling and size-based stratified random sampling, with a 

different number of sampling locations and different number of animals sampled per sampling 

location or length interval. The study shows that both the sampling strategies, simple random 

sampling and size-based stratified random sampling, can generate representative samples. 

However, the simulation analysis suggests that when the population size distribution is skewed 

with a lack of large and/or small individuals, size-based stratified random sampling is preferred 

due to lower variation in differences of means and medians between samples and the population. 

This study provides a simulation framework for identifying a cost-effective sampling protocol 

that can improve the estimate of fecundity, leading to an improved estimate of fish population 

reproductive potential. 
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2.2 Introduction 

For many crustaceans and fish species, reproductive output of a female individual tends 

to increase with body size as larger females have higher capacity to accommodate more eggs or 

offspring (Hannah et al. 1995; Hixon et al. 2014). However, the relationship between 

reproductive output and female body size is usually not linear. Instead, reproductive output tends 

to increase approximately exponentially with body size (Hixon et al. 2014; Barneche et al. 2018). 

At extreme size classes, however, reproductive output of a female may decrease or level off due 

to senescence (Shelton et al. 2012). In order to account for this maternal effect, a wide range of 

sizes of females should be collected for developing a comprehensive relationship between 

reproductive output and female body sizes in order to have a robust estimate of reproductive 

potential of a population (Marshall et al. 2006). 

Sample sizes and locations may also influence the quality of fecundity estimates because 

of large variability in space and among individuals (Parsons and Tucker, 1986; Hannah et al. 

1995). An insufficient number of samples may lead to underestimated or overestimated fecundity 

for a given size of fish. A large number of samples is usually encouraged for estimating 

biological traits of a population. However, collecting biological data such as fecundity can be 

very time-consuming and labor-intensive laboratory processes (Rogers et al. 2019). Excessive 

samples are not only a waste of resources, but also a source of unnecessary pressure on the 

population especially when the stock is in an unhealthy status. Therefore, to reach a balance 

between deriving robust estimates of life history traits and efficient use of available resources, an 

appropriate sampling design is important for collecting biological samples from a population. 
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Based on availability of resources and samples, two sampling designs are often used to 

collect biological data like fecundity: simple random sampling (Collins et al. 1998; Pennington 

and Helle, 2011) and stratified random sampling (Hannah et al. 1995). Simple random sampling 

is to randomly select samples from a population. Stratified random sampling is to divide the 

population into more than one group (e.g. length-intervals), and to randomly select samples from 

each group. In general, size-based stratified random sampling is theoretically more appropriate 

for collecting fecundity data, as it is more likely to include samples from each classification 

(length intervals), thus able to establishing a more complete biological database and fecundity-

body size relationship over a full size range. However, it might not be feasible for some species 

whose gravid individuals are encountered by chance. In addition, it takes extra effort to classify 

each individual before randomly sampling from each stratum. In this case, simple random 

sampling is usually used as a default sampling strategy. Nevertheless, whether the samples 

collected by these 2 sampling schemes can be representative of the population is rarely 

discussed. 

The Gulf of Maine (GOM) northern shrimp used to support a significant winter fishery 

for the New England states (ASMFC NSTC 2018), however the shrimp fishery has been on 

moratorium since 2014 due to presumed recruitment failures which were perceived to be a 

consequence of warming water temperature in the GOM in the past several years (Richards et al. 

2012; ASMFC NSTC 2018). Recruitment is usually related to reproductive potential of a 

population which can be evaluated with fecundity. However, the relationship between shrimp 

body sizes and fecundity was estimated more than thirty years ago using 47 ovigerous females 

selected for size and wholeness of the egg mass (Haynes and Wigley 1969). These data were 

fitted with a parabola for estimating fecundity for females larger than 22-mm (Richards et al. 
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2012; ASMFC NSTC 2018): fecundity = -0.198 l2+128.81l-17821, where l is carapace length 

(0.1-mm). The body size-fecundity relationship estimated with the parabola was likely biased as 

small spawners were not included in their study and the estimated parabola equation generated 

negative values for fecundity when female carapace length was below 20-mm. Therefore, there 

is a pressing need to develop an updated fecundity database to provide more robust estimates for 

northern shrimp reproductive potential, which makes northern shrimp an appropriate case study.  

The aim is to compare different sampling strategies for estimating fecundity for species 

such as northern shrimp that have maternal effects on fecundity and the number of ovigerous 

individuals were unevenly collected in sampling locations. The study can identify a cost-

effective sampling design for collecting fecundity data, leading to improved fecundity 

estimation. 

 

2.3 Materials and Methods 

This study uses simulation of resampling approach to simulate different sampling 

strategy scenarios based on collected survey data. 

 

2.3.1 NEFSC fall bottom trawl survey data 

The GOM northern shrimp spawning season takes place in late summer and fall, and 

most females become ovigerous in fall. Therefore, the ovigerous females used for the fecundity 

study were sampled in the Northeast Fisheries Science Center (NEFSC) fall bottom trawl 

surveys which were designed for multispecies surveys in the northeast coastal areas. As the 

surveys are not specifically designed for northern shrimp, in the sampling location with presence 

of ovigerous females, the number of shrimp varied from one to several hundred among tows. 
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Given the limited resources, it is unrealistic to process all collected shrimp. Thus, there is a need 

to optimize the number of sampling locations in a year and number of shrimp collected in a 

sampling location. Moreover, as many other species are collected in the survey, which face 

similar needs, the methodology developed in this survey are applicable to other species. 

The northern shrimp data and tow information were collected by NEFSC fall bottom 

trawl surveys (Smith 2002) from 2012 to 2016, including dorsal carapace length (DCL), life 

stage, date of catch, and longitude and latitude of sampling location. The DCLs of shrimp were 

measured to the nearest 0.1-mm, from the posterior limit of eye socket to the posterior limit of 

dorsal carapace (Haynes and Wigley 1969). Only ovigerous female data were used for simulation 

as the ultimate goal was to collect fecundity data based on maternal body sizes.  

 

2.3.2 Simulation of resampling study 

Data from 2012 to 2016 were resampled separately with two sampling strategies of 

simple random sampling and size-based stratified random sampling. Sampling locations were 

randomly resampled without replacement from each year’s sampling locations for each scenario. 

Sampling intensity was determined by the number of shrimp of interest from a sampling location 

and the percentage of sampling locations in each year.  

 

2.3.2.1 Simple Random Sampling 

The sampling scenarios were considered with the percentage of sampling locations and 

number of shrimp sampled from each sampling location. Two potential sample sizes (i.e., 10 and 

20) were considered for a sampling location in the simulation. For sampling locations with less 

than the required number of shrimp (i.e., 10 or 20), all shrimp in that location were used. For 



 11 
 

sampling locations with more than the specified shrimp, 10 or 20 shrimp were randomly sampled 

without replacement (Fig. 2.1). 

 

Figure 2.1. A flowchart illustrating the procedure of the simulation analysis. Scenarios of 10 and 

20 shrimp per sampling location were considered for simple random sampling at different 

sampling intensity (percentage of sampling locations). Scenarios of 1 and 2 shrimp per 1.5-mm 

length interval were considered for stratified random sampling at different sampling intensity. 

Range of simulated dorsal carapace lengths, equivalence testing of means and medians, statistical 

power, and coefficient of variation were used for examining the simulated samples in each 

scenario. 
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2.3.2.2 Stratified Random Sampling  

For stratified random sampling, minimal and maximal lengths were determined to be the 

minimum and maximum DCLs of samples collected in a year with a length interval of 1.5-mm. 

A given number (1 or 2) of shrimp was sampled from each length interval until no more shrimp 

were available in that length interval. The sampling scenarios were developed with a different 

sampling intensity and number of shrimp sampled from each length interval. For sampling 

locations which had less than 10 shrimp collected, all shrimp in that location were used for 1-

shrimp scenarios (20 shrimp for 2-shrimp scenarios, Fig. 2.1). 

 

2.3.2.3 Equivalence testing  

Null hypothesis significance testing framework is commonly used in ecology to examine 

the differences between the two groups (Martinez‐Abrain 2008; Beninger et al. 2012). However, 

it is criticized in some ecological studies for the following reasons: (1) a lack of significance 

(P>α) simply means there is not sufficient evidence to reject the null hypothesis, but it does not 

mean the null hypothesis is true (Brosi and Biber 2009; Beninger et al. 2012; Lakens 2017); and 

(2) the statistical power needed to detect a difference is low. Alternatively, two one-sided 

equivalence tests within a frequentist framework can be used to ascertain effect quality by 

specifying meaningful effect size based on biological or ecological understanding (Parkhurst 

2001; Lakens 2017). Moreover, the lower and upper bounds constructed with a priori specified 

effect size allow the researchers to evaluate significant differences with reduced type II error 

defined in traditional hypothesis testing (Parkhurst 2001; Brosi and Biber 2009). Therefore, 

instead of using traditional null hypothesis testing, we use two one-sided equivalence testing for 

the simulated data in each scenario. 
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Before we performed equivalence testing, a difference of 1.5-mm (∆) was determined as 

the minimum effect size that we would like to detect. Effect size was defined as the magnitude of 

the observed difference (Beninger et al. 2012). Our data suggested that mean DCL of ovigerous 

females was around 25-mm, which is equivalent to an age of 3.5 years based on age-DCL growth 

curve (ASMFC NSTC 2018) with age 3 being estimated at 23.5-mm and age 4 at 26.5-mm. We 

thus determined the effect size interval at 1.5-mm, as shrimp in DCLs smaller or larger than 1.5-

mm are likely to be at a different age of years. The lower and upper bounds of equivalence 

intervals for each sample were constructed as (Nakagawa and Cuthill 2007; Lakens 2017): 

 

(#! −#") ± '#,%&('(()*%)
+
,!
+ +

,"
                                                           (1) 
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where #! = mean (or median) DCL of samples from a given scenario in year y; #" = mean (or 

median) DCL of all samples collected in year y; '#,%& = t statistic at a significance level of α at 

degree of freedom at df; α = 0.05, df = -! + -" − 2 ;	-! = number of samples of a given 

scenario; -" = number of samples collected in year y; (! = standard deviation of samples from a 

scenario in year y; and (" = standard deviation of all the samples collected in year y. 

Two one-sided tests were performed to means and medians of samples simulated from 

each scenario in each year. The null hypothesis is /0) ≤ ∆ and /04 ≥ ∆, and the alternative 

hypothesis is −∆	< /450678/-9/	0-'/:678 < ∆, where /0) = lower bound of equivalence 

interval, /04 = upper bound of equivalence interval. Both components in the stated null 
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hypothesis must be false to reject the null hypothesis. Thus, if the equivalence interval falls 

within the equivalence interval, the difference between the means or medians is smaller than the 

magnitude of effect size we specified. 

Statistical power of detecting the specified effect size (∆	= 1.5-mm) was estimated with 

the number of samples simulated in each scenario at the significance level of 0.05. Statistical 

power of 0.95 was set as a reference instead of traditional 0.8, as we assume the cost of 

committing a type II error was the same as that of committing a type I error (Peterman 1990; Di 

Stefano 2003). Coefficient of variation (CV) was also calculated for evaluating the dispersion of 

samples for each simulation scenario. All analyses were performed in R 3.5.1 (R Core Team 

2018).  

 

2.4 Results 

2.4.1 Number of sampling locations in each year 

The total yearly number of sampling locations and total number of ovigerous females 

collected in each year from 2012 to 2016 were shown in Table 1. Our data showed that the mean 

DCL of ovigerous females varied between 24.08 and 25.86 from 2012 to 2016 (Fig. 2.2). In 

addition, samples collected in 2014 deviated from normal distribution with a mean at 25.43-mm-

DCL and a median of 26.5-mm-DCL, and with an unusual wide standard deviation (SD) of 2.89-

mm (SD varied from 1.52 to 1.66 in the other four years). 
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Figure 2.2. Boxplots of dorsal carapace length (DCL) of ovigerous female northern shrimp 

Pandalus borealis, collected from Northeast Fisheries Science Center (NEFSC) fall bottom trawl 

surveys from 2012 to 2016. The blue symbols are means and the horizontal bars in the boxes are 

medians. The lower and upper limits of the boxes are the first (Q1) and third (Q3) quartiles (25th 

and 75 percentiles). The difference between Q1 and Q3 is interquartile range (IQR). Potential 

outliers are defined as observation points falling outside the range of Q1-1.5*IQR and 

Q3+1.5*IQR. If potential outliers are presented, the whiskers extend to 1.5 times the IQR from 

Q1 or Q3. If no outliers are presented, the whiskers extend to the minima and maxima of the 

distributions. 
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2.4.2 Equivalence tests 

The equivalence tests of means for all the scenarios showed that most equivalence 

intervals of means fell within the specified effect size interval when at least 20% of the sampling 

locations were sampled except for 2014 (Fig. 2.3). Similar results could be found in tests for the 

difference in medians (Fig. 2.4). The equivalence interval of medians barely fell within the effect 

size interval for simulated samples in 2014 even if all stations were sampled. 

 

Figure 2.3. Differences between means of samples in each scenario and the population (all 

shrimp collected in a given year) and 90% confidence intervals (dashed lines) with equivalence 

bounds (-1.5 and 1.5) for each scenario at percentage of sampling locations for each year. 
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Vertical solid lines denote mean differences at zero. Gray dashed lines are y-axis grid lines, 

denoting 25, 50, and 75% of sampling locations. 

 

 

Figure 2.4. Differences between medians of samples in each scenario and the population (all 

shrimp collected in a given year) and 90% confidence intervals (dashed lines) with equivalence 

bounds (-1.5 and 1.5) for each scenario at percentage of sampling locations for each year. 

Vertical solid lines denote mean differences at zero. Gray dashed lines are y-axis grid lines, 

denoting 25, 50, and 75% of sampling locations. 
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For means of 20-shrimp scenarios in 2014, the equivalence intervals started to fall within 

the specified effect size interval when more than 50% of the sampling locations were sampled. 

When less than 50% of the locations were sampled in 2014, both sampling strategies failed to 

reject the null hypothesis. However, the differences in means of simple random sampling had a 

wider variation than those of stratified random sampling scenarios (Fig. 2.3).  

As for the equivalence tests of medians for 2014 samples, almost all scenarios failed to 

reject the null hypothesis (Fig. 2.4). Similar to the equivalence tests of means, when less than 

50% of the locations were sampled, the median differences for random sampling method tended 

to have larger variations than those of stratified random sampling.  

 

2.4.3 Statistical power 

The statistical power of detecting the minimal effect size (∆ =1.5-mm) increased with 

sampling intensity, when more than 20% of sampling locations were sampled, all scenarios could 

reach the statistical power of 0.95 except for scenarios of 2014 (Fig. 2.5). Simulated samples of 

2014 could reach the statistical power of 0.95 when at least 30% of the locations were sampled. 

There was a trade-off between the number of shrimp per location (or length interval) and 

percentage of sampling locations. Given a sampling strategy, more numbers of shrimp per 

sampling location (or length interval) could reach the statistical power of 0.95 with a lower 

percentage of sampling locations. The coefficients of variation were mostly below 0.1 for each 

scenario except scenarios in 2014 due to large standard deviation of DCL collected in 2014 (Fig. 

2.5). 
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Figure 2.5. Relationships between statistical power (Power), coefficient of variation (CV), 

number of samples, and percentage of sampling locations for each scenario. Left column: 

statistical power; middle column: coefficient of variation; right column: number of samples. Top 

2 rows: 10 and 20 shrimp per sampling location for simple random sampling; bottom 2 rows: 1 

and 2 shrimp per length interval for stratified random sampling.  

 

2.4.4 Sample size 

The numbers of shrimp simulated in each scenario increased with sampling intensity, and 

simple random sampling strategy tended to generate larger sample sizes than stratified random 
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sampling strategy at a given sampling intensity (Figs. 2.5 and 2.6). When 20% of sampling 

locations were sampled, the total numbers of shrimp in the simulation for five years ranged from 

129 to 349 for different strategies with different intensity (Fig. 2.6). When 30% of the locations 

were sampled, the total numbers of shrimp increased to 215-612 (Fig. 2.6).  

 

 

Figure 2.6. Relationships between total number of samples and percentage of sampling locations. 

SRS_10 and SRS_20 are scenarios of 10 and 20 shrimp per sampling location for simple random 

sampling. STR_1 and STR_2 are scenarios of 1 and 2 shrimp per length interval for stratified 

random sampling.  

 

The means, medians, and ranges of samples simulated in each scenario were compared 

with the assumed populations (samples collected from the surveys) in each year (Fig. 2.7). When 

more than 20% of the locations were sampled, the simulated samples could include the central 

95% of DCL of the assumed population for both sampling strategies. When less than 50% of the 
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location were sampled, the stratified random sampling, as expected, was more likely to include 

the minimum and maximum of DCLs of the assumed population than the simple random 

sampling. 

 

 

Figure 2.7. A summary of the ranges, means, medians, and the central 95% intervals of dorsal 

carapace lengths (DCLs) for the assumed populations (all samples collected from the surveys in 

a year) and samples simulated in each scenario. 
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2.5 Discussion 

The results of equivalence testing showed that there were no large differences between 

samples simulated with simple random sampling and stratified random sampling strategies when 

the population distribution is approximately normal. Both sampling strategies can collect 

samples that are representative of the population (i.e., including the central 95% of the 

distribution) and the means and medians did not significantly differ from the specified effect size 

when more than 20% sampling locations were sampled. However, if we conducted traditional 

null hypothesis significance testing, many of the simulated samples would suggest statistical 

significance as the confidence interval of error did not include zero, which might not be 

biologically significant. The results suggested the merits of equivalence testing over traditional 

null hypothesis significance testing with the ability to detect a biologically meaningful or 

ecologically important effect size (Parkhurst 2001; Brosi and Biber 2009).   

The number of shrimp simulated for each scenario with different strategies, in general, 

linearly increased with the number of sampling locations. However, as the surveys were not 

specifically designed for northern shrimp, number of shrimp collected at a station could be only a 

few. Therefore, the ultimate sampling intensity (number of shrimp simulated for a scenario) was 

not exactly proportional to the number of locations sampled. An extreme example was the 20-

shrimp scenario with three sampling stations with simple random sampling strategy, which had 

only four DCLs simulated in that scenario. The statistical power was hence low (Fig. 2.5). Our 

simulation reflects the discrepancy between samples collected in multispecies surveys and ideal 

sampling for fecundity data. Care should be taken to adjust sampling strategy in such 

circumstances.  
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Increasing sampling intensity by either raising the number of shrimp per location, length 

interval, or the number of sampling locations can reduce sampling error and increase statistical 

power. However, the cost of increasing sampling intensity may not be effective as the magnitude 

of precision that can be improved is trivial when sampling intensity is above a certain level 

(Pennington et al. 2002). Although both the sampling strategies we adopted in this study 

suggested that the equivalence interval can fall within the effect size interval when at least 20% 

of the locations were sampled (except for 2014), we determined stratified random sampling may 

be a more effective sampling strategy for collecting fecundity data as it pointed to a lower 

sample size compared to the simple random sampling.  

With stratified random sampling at a fixed overall sampling size (number of shrimp 

simulated for all five years), based on the trade-off between the number of shrimp per length 

interval and the percentage of the locations, a desired statistical power can be achieved at a lower 

percentage of sampling locations for 2-shrimp per length interval scenarios. However, the 

stratified random sampling strategy with one shrimp per length interval is preferred in this case, 

as a higher percentage of sampling locations allows a broader spatial coverage of the study area. 

Therefore, the optimal sample size for collecting fecundity data was estimated at 215 shrimp for 

five years (30% of the locations) with size-based stratified random sampling. 

Both sampling strategies generated unrepresentative samples which were significantly 

different from the specified effect size when less than 50% of the locations were sampled for 

2014 due to the skewed distribution of DCLs in 2014. Generally, it is not possible to know the 

length distribution of the population which is usually assumed to be approximately normally or 

log-normally distributed. Caution is warranted when many small spawners are observed in the 

population, which could be a sign of early sexual maturity resulting from fishing pressure, 
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environmental changes and consequent food availability to females (O’Brien 1999; Koeller et al. 

2007). Spawners at small sizes make less contribution per individual to reproductive potential of 

a population, as small spawners tend to produce fewer offspring per individual with lower 

survival rates (Shelton et al. 2012; Barneche et al. 2018).  

Aanes and Volstad (2015) used a simulation approach to evaluate subsampling strategies 

for collecting age data for Northeast Arctic cod (Gadus morhua), suggesting that length-stratified 

sampling is more effective than simple random sampling because length-stratified sampling can 

ensure a better coverage of the age composition when age data were collected from a small 

subsample of measured lengths of fish. Our findings agree with Aanes and Volstad (2015). For 

the purpose of collecting fecundity data, stratified random sampling strategy is preferred over 

simple random sampling when the size distribution of ovigerous females is actually skewed with 

many small spawners (deviating from the assumed normally distributed population). Because it 

is often not possible to have enough resources for a high sampling intensity, and simple random 

sampling is more likely to generate a biased sample in a low sampling intensity (Figs. 2.3, 2.4, 

and 2.7). Conversely, although stratified random sampling also generates biased samples, the 

variation of means and medians of samples are relatively stable when sampling intensity is low. 

Furthermore, laboratory process for collecting fecundity data can be very time-consuming and 

labor-intensive. The time needed for processing a shrimp to collect fecundity data is generally 3-

4 hours. Given a sampling intensity of 20% of the sampling location, the 10-shrimp simple 

random sampling scenario generates a larger number of sample size than the 1-shrimp per length 

interval stratified random sampling scenario by 69 shrimp. Thus, the simple random sampling 

may take 207 additional hours (69 shrimp × 3 hours), which would cost additional $4140 (i.e., 
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207 hours × $20 per hour per person) for laboratory process alone. Our analyses suggest that 

length-stratified random sampling is a more cost-effective strategy for collecting fecundity data. 

The shrimp samples Haynes and Wigley (1969) used for collecting fecundity data ranged 

from 22 to 31-mm-DCL. Except for 2014, the central 95% of ovigerous females collected from 

the survey ranged from a similar interval of 22-28-mm-DCL in this study. However, it appeared 

that if shrimp outside the central 95% length interval were excluded from the regression of 

length and fecundity, the regressed relationship may not be able to provide reliable estimates of 

fecundity for the population as the fecundity-DCL relationship developed with 47 female shrimp 

by Haynes and Wigley (1969) generates negative numbers for shrimp at DCLs<20-mm. It 

suggested that, when estimating size-based fecundity for a population, (1) a complete range of 

size data is necessary for developing a fecundity-body size relationship; (2) several years of 

samples may be needed for building a complete fecundity database; and (3) parabola equation 

should be used with caution as it may generate biologically meaningless estimates of fecundity 

(negative values). Estimating the magnitude of the bias in reproductive potential of a population 

is beyond the scope of this study. Consequently, before we take a further step into investigation 

of the misestimates of fecundity, there is a pressing need to develop a new fecundity-DCL 

relationship with proper sampling design for collecting fecundity data.  

This study proposes a simulation framework that can be used to develop a cost-effective 

sampling strategy for estimating fecundity data for many marine fish and crustacean species 

which share the characteristics of (1) a strong maternal effect on fecundity (i.e., number of 

offspring increase with female body sizes; Haynes and Wiley, 1969); (2) number of individuals 

collected varied among sampling locations and number of sampling locations varied by year; and 

(3) extensive length frequency data have been collected for multiple years which can be used for 
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sampling design. Collecting fecundity data can be very time-consuming and labor-intensive. 

Insufficient samples may result in biased estimates; however, excess samples can be a waste of 

resources. Therefore, an appropriate sampling design for optimizing effective sample size is 

needed for building a complete fecundity database. We advocate the use of equivalence testing 

and power analysis before collecting samples in order to determine biologically meaningful 

effect size instead of statistical significance in traditional null hypothesis significance testing. 

 

  



 27 
 

CHAPTER 3. POSSIBLE CLIMATE-INDUCED ENVIRONMENTAL IMPACTS ON 

PARASITE-INFECTION RATES OF NORTHERN SHRIMP PANDALUS BOREALIS 

EGGS IN THE GULF OF MAINE 

 
3.1 Abstract 

 
The Gulf of Maine northern shrimp Pandalus borealis population once supported a 

significant commercial winter fishery for the New England states. However, the fishery has been 

on moratorium since 2014 due to consecutive recruitment failures. The issue of parasite-infected 

eggs, so-called ‘white eggs,’ has long been identified for the Gulf of Maine northern shrimp, 

which makes shrimp eggs nonviable and subsequently hampers the recruitment potential. 

Furthermore, the proportion of infected females was observed to increase with water 

temperature. As Gulf of Maine temperatures have been increasing for decades, it is important to 

re-visit issues related to white eggs to evaluate possible impacts of climate-induced 

environmental changes on the white egg infection rates. We used biological samples collected by 

the Northeast Fisheries Science Center in 2012−2016 to evaluate the probability that a female 

shrimp was infected (Pinf) and the proportion of white eggs in an infected female shrimp (pwe). 

Although Pinf was high, with an average of 73.81% over the Gulf of Maine, pwe was mostly <5%. 

The variation in both Pinf and pwe examined in this study was not well explained by 

environmental factors or female body size. However, the average rates of both Pinf and pwe 

observed in this study were higher than those observed in the 1960s when the bottom 

temperatures were cooler. The results can be used to account for egg mortality and provide 

information on potential impacts of possible climate-induced variability on shrimp population 

dynamics. 
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3.2 Introduction 

The Gulf of Maine (GOM) has been experiencing intense warming over the past 15 year 

at a higher rate than 99% of the global oceans (Pershing et al. 2015). The sea surface temperature 

has increased at an average rate of 0.26°C year−1 since 2004 (Mills et al. 2013). Such rapid 

changes in temperature have impacts on suitable thermal habitats (Kleisner et al. 2017), life 

cycles (Richards et al. 2012), and fisheries (Pershing et al. 2015) of various species. 

GOM northern shrimp Pandalus borealis once supported a significant winter fishery for 

the New England states (Clark et al. 2000). However, a moratorium has been in place since 2014 

due to recruitment failures for several consecutive years (ASMFC NSTC 2018). The recruitment 

failures have been correlated with warming water temperatures in the GOM for the past decade 

(Richards et al. 2012). GOM northern shrimp are considered sensitive and vulnerable to climate-

induced environmental variabilities as they are distributed at the southern end of their 

distribution in the North Atlantic Ocean (Richards et al. 2012; ASMFC NSTC 2018). However, 

the mechanism of how recruitment in this species is affected by the environment has not been 

identified. 

Fecundity is a key characteristic that can be used for estimating the reproductive potential 

of a population (Hannah et al. 1995). Fecundity is affected by many biotic and abiotic factors, 

including maternal body size, food availability to females, population density, environmental 

conditions, and diseases (Haynes and Wigley 1969; Apollonio et al. 1986; Hannah et al. 1995). 

Non-viable eggs (‘white eggs’) have been a known issue for GOM northern shrimp since 

the 1960s (Haynes and Wigley 1969; Elliot 1970; Stickney 1981a; Apollonio et al. 1986; Parsons 

and Tucker 1986). Stickney (1978) examined white eggs and inferred that they are infected by a 

group of dinoflagellates which eventually cause egg death. The parasitic organisms enter the 
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eggs and develop into plasmodia inside the eggs (Shields 1994). The yolk materials are depleted 

and replaced by the plasmodia of the parasite after a week from the start of infection (Stickney 

1978). The egg ruptures by the end of the second week, and the flagellated cells are released at 

8°C (Stickney 1978). Meyers et al. (1994) suggested that the dinoflagellate-like parasite that 

occurred in shrimp eggs was a Peridinium sp.; however, the exact species of parasite infecting 

northern shrimp eggs has yet to be conclusively identified. 

Parasite incidences were also perceived to be correlated with water temperature (Stickney 

1981b; Apollonio et al. 1986). The proportion of infected female shrimp was observed to 

increase with water temperature (Apollonio et al. 1986). Stickney (1981b) suggested that the 

annual variation in fecundity could be related to environmental variability and/or egg disease, 

indicating that the influence of temperature on egg development may have an effect on 

recruitment. However, the effect of parasitism on egg mortality has not been quantified, and the 

relationship between infection and temperature remains unclear. 

Northern shrimp are assumed to have a high natural mortality at early life stages 

(ASMFC NSTC 2018), but egg mortality is rarely addressed. We hypothesized that an increased 

white egg infection rate, potentially a result of climate-induced changes in thermal habitat, can 

lead to increased egg mortality and subsequent recruitment failure, which has been identified as a 

main cause for the collapse of the GOM northern shrimp fishery. Given large changes in the 

GOM thermal habitat (Pershing et al. 2015), this hypothesis needs to be carefully considered and 

tested to identify key drivers resulting in the collapse of the GOM northern shrimp fishery. This 

study aimed to test the above hypothesis by examining the effects of biotic and abiotic factors on 

parasitic infection incidence. Such an investigation can enhance our understanding of egg 

mortality and provide important information about the impact of parasitism on reproductive 
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potential and subsequently better estimate recruitment of the northern shrimp population in the 

GOM. 

 

3.3 Materials and Methods 

Biological samples were collected by the National Oceanic and Atmospheric 

Administration (NOAA) ship ‘Albatross IV’ during the Northeast Fisheries Science Center 

(NEFSC) fall bottom trawl surveys in the GOM in 2012−2016 (Fig. 3.1). The sampling locations 

were randomly determined from each stratum, and the number of stations within a stratum was 

generally proportional to the area of the stratum and the overall variation of multispecies 

distribution among strata (Smith 2002). Details of the survey sampling design and vessel 

configuration were documented by Stauffer (2004) and Politis et al. (2014). The spawning 

season of GOM northern shrimp starts in late summer (August−September). Biological samples 

were collected in October and November, when most females have extruded and attached eggs to 

their pleopods. Fall is also the time of year when most infected eggs were observed (Haynes and 

Wigley 1969; Elliot 1970; Apollonio et al. 1986). Only egg-bearing females were used in this 

study. 
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Figure 3.1. Sampling area of the Northeast Fisheries Science Center bottom trawl surveys in fall  

(black outlines indicate different strata) in the Gulf of Maine during 2012−2016 

 

Abiotic data including bottom temperature, bottom salinity, and latitude and longitude of 

the sampling location were collected by the NEFSC fall bottom trawl surveys for each tow at 

each sampling location. Bottom temperature and salinity data were measured with electronic 

profiling conductivity/temperature/ depth instruments (Smith 2002). 
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Biological data including dorsal carapace length (DCL, mm; Table 1) and numbers of 

both normal and white eggs were collected. Ten ovigerous females of different sizes were 

collected from each sampling location with a stratified random sampling design. Length intervals 

with the range from minimum to maximum DCL of a bag (samples from a sampling location) 

were divided into 10 length intervals. If there were more than 10 shrimp collected in a sampling 

location, 1 shrimp was randomly chosen from each size class available at that location. Although 

a pre-planned sampling design was followed, more than half of the biological samples of eggs 

rotted due to improper preservation. Therefore, biological samples were taken from all available 

sampling locations and rotten samples were excluded from the analysis. 

 

Table 3.1. List of abbreviation used in this chapter. 

  Abbr. Definition 
Data Pwe Proportion of white eggs of an egg mass 

 Pinf Possibility of a female is infected 

 DCL Dorsal carapace length 

 BOTTEMP Bottom temperature 
  BOTSAL Bottom salinity 
Statistics >! Random effect of year 

 >l Random effect of sampling location 

 Marginal R2GLMM Proportion of variance explained by the fixed effects in the model 

 Conditional R2GLMM Proportion of variance explained by both fixed and random effects 
 ΔAIC Difference in AICs between the best model and the competing model 

 LOOCV Leave-one-out cross-validation 

 RMSE Root mean squared error 
  VIF Variance inflation factor 

 

 

Eggs were removed from the body of each sampled shrimp. As white eggs can be easily 

distinguished from normal eggs by eye (Fig. 3.2), each egg mass was examined for the presence 

of white eggs. An individual was considered infected if it carried at least 1 white egg. All 
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removed eggs were preserved in 10% neutral formalin (Parsons and Tucker 1986), and then later 

imaged under a trinocular dissecting microscope (OMAX V434B- L54P-C140U) mounted with a 

digital camera (OMAX A35140U3). White eggs are easily recognized due to their irregular 

swollen shape and opaque white coloration (Fig. 3.2; Haynes and Wigley 1969). The 

preservation of formalin did not lead to misidentification of egg infection status. Numbers of 

normal eggs (noninfected) and white eggs (infected) were counted with assistance from ObjectJ 

(Schneider et al. 2012). The proportion of white eggs for each individual was the number of 

white eggs divided by the total number of normal and white eggs. 

 

 

Figure 3.2. Eggs of northern shrimp. (a) Fresh eggs attached to a female's abdomen. (b) Eggs 

preserved in 10% neutral formalin after 1 wk. The arrows indicate parasite-infected eggs (so-

called ‘white eggs’) 
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Before fitting a model to the data, a variance inflation factor (VIF) analysis was 

conducted to identify multicollinearity. A threshold VIF of 3 was set for evaluating possible 

collinearity between predictors in the data set (Schmiing et al. 2013; Brosset et al. 2019). All 

predictors were centered at means in order to have biologically meaningful intercepts when fit- 

ting models to the data. 

Binomial generalized linear models (Bolker 2008; Zuur et al. 2009) were used to model 

the probability of an individual being infected (Pinf), and beta generalized linear models were 

used to model the proportion of white eggs (pwe) through a logit link function (Bolker 2008): 

8?@0'(A)~C + D+E+,5 + D3E3,5 +⋯+ D6E6,5 + >" + >) + >5 

where y is Pinf or Pwe, xk is the kth explanatory variable, α and β’s are parameters, εy and εl are 

random effects of year and sampling location, and εi is residual errors. Year and sampling 

location are included in the model as random effects because multiple samples were collected 

from the same location or the same year which might cause pseudoreplications (Hurlbert 1984; 

Weltz et al. 2013). Including these nested random effects can account for variations among years 

and sampling locations (Bolker et al. 2009; Thorsen and Minto 2015). Only 3 out of 73 locations 

were resampled in different years. Therefore, crossed random effects were not considered in the 

models. 

Models with different combinations of predictors were built and compared. Predictors 

were excluded from a model if the effect sizes (estimated regression coefficients, i.e. the 

magnitude of an effect) were not significantly different from zero, and then the data were 

refitted. The p-values from the Wald tests for significance testing tend to be anti-conservative 

(Luke 2017). Therefore, when the p-values from the Wald tests were <0.05, parametric bootstrap 
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methods were used to obtain p-values from likelihood ratio test statistics (Luke 2017) to evaluate 

the significance. 

Model selection was based on graphical inspection, Akaike’s information criterion (AIC, 

Akaike 1973), and marginal and conditional pseudo R2 for generalized linear mixed models 

(R2GLMM) developed by Nakagawa et al. (2017) for evaluating the goodness of fit of each model. 

The AIC provides a measure of model fitting with model complexity accounted for (Akaike 

1973). The marginal R2GLMM represents the proportion of variance explained by the fixed effects 

in the model, and the conditional R2GLMM represents the proportion of variance explained by both 

fixed and random effects (Nakagawa et al. 2017; Bartoń 2019). Predictive performance of 

models was evaluated by root mean squared error (RMSE) estimated with leave-one-out cross-

validation (Zuur et al. 2009; Arlot and Celisse 2010). 

The fixed effects were first assessed when all random effects were included in the models 

(Zuur et al. 2009; Barr et al. 2013). The model with only random effects was therefore the null 

model. After the variable selection was determined, random effect was dropped from the model 

if the variance was estimated to be zero (Pasch et al. 2013). The model with the lowest AIC and 

RMSE and highest R2 was selected as the optimal model (Zuur et al. 2009; Mac Nally et al. 

2018). 

Residual diagnosis was graphically examined through histograms and plots of Pearson 

residual errors from the best model against fitted values for evaluating the distribution and 

deviation of residual errors (Zuur et al. 2009). Semivariance of Pearson residual errors from the 

best model was examined for the presence of spatial autocorrelation (Cressie 1993; Pebesma 

2004; Gräler et al. 2016). 
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Three potential outliers were removed (see Section 3.4) from the dataset. Models were 

refitted to the new dataset with outliers removed. The procedures for the model selection 

described above were followed. All analyses were performed with R version 3.5.1 (R Core Team 

2018). 

The bottom temperature observed in this study was 5.7−11.7°C with a mean of 8.1°C. 

However, the bottom temperatures observed in December 1967 to January 1968 and November 

to December 1968 by Apollonio et al. (1986) were 4.3−8.6°C with a mean of 6°C. The 

proportion of infected females (Pinf) and bottom temperatures collected by Apollonio et al. 

(1986) were then incorporated with data collected in this study. Pinf and bottom temperature data 

were aggregated by sampling locations in order to be incorporated with data of Apollonio et al. 

(1986). To examine the effect of bottom temperature on Pinf, we fitted a model to the combined 

data through a logit link function with an assumed binomial error distribution. 

 

3.4 Results 

 
3.4.1. Probability of an individual being infected 

A total of 565 females collected from 73 locations in 2012−2016 were examined for 

infection. The overall infection rate was 73.81%, with over 50% of the sampling locations 

having infection rates higher than 90%. Thus, more than 90% of the sampled females had at least 

1 white egg in more than half of the sampling locations. 

All explanatory variables (bottom temperature, salinity, and DCL) had VIFs <3. 

Collinearity between variables was thus not considered an issue in the models. Including bottom 

temperature and DCL in the models did not help explain the variation in Pinf (Table 3.2), 

suggesting that bottom temperature and DCL had no significant impacts on the infection rate. Pinf 
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was estimated to be 83.2% at an average salinity and was negatively correlated with bottom 

salinity, with 1‰ increase in salinity resulting in a 27.93% decrease in Pinf (Fig. 3.3). Although 

the effect of bottom salinity was statistically significant (p = 0.045) based on the parametric 

bootstrapped likelihood ratio test, the proportion of variation that bottom salinity could explain 

was rather small, less than 6%. 

 

Table 3.2. Model statistics for the null model and the competing models for factors associated 

with possibility of a female being infected (see Table 3.1 for abbreviations). *: p<0.05 

Model (Binomial) 
Marginal 
R2GLMM 

Conditional 
R2GLMM 

ΔAIC 
LOOCV 
RMSE 

Pinf ~     BOTSAL*   + >) 0.048 0.548 0.000 0.330 
Pinf ~     BOTSAL* + >" + >) 0.048 0.548 2.000 0.330 
Pinf ~ DCL   + BOTSAL* + >" + >) 0.052 0.551 2.793 0.331 
Pinf ~        + >) NA 0.564 3.064 0.329 
Pinf ~   BOTTEMP + BOTSAL* + >" + >) 0.053 0.550 3.444 0.331 
Pinf ~ DCL + BOTTEMP + BOTSAL* + >" + >) 0.056 0.553 4.283 0.331 
Pinf ~      + >" + >) NA 0.564 5.064 0.329 
Pinf ~ DCL     + >" + >) 0.002 0.568 6.233 0.329 
Pinf ~   BOTTEMP   + >" + >) 0.008 0.567 6.394 0.329 
Pinf ~ DCL + BOTTEMP   + >" + >) 0.010 0.571 7.601 0.329 
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Figure 3.3. Relationship between the proportion of infected female northern shrimp and bottom 

salinity. Shaded area denotes the 95% confidence interval. Vertical bars at the top and bottom are 

positive and negative residuals 

 

More than 50% of the variation can be explained by the random effect of sampling 

locations (Table 3.2). The differences between the intercept of each sampling location and the 

overall intercept of the model was approximately normally distributed. This implies that the Pinf 

varies among sampling locations, but none of the variables we used is the main driver. The 

variance of the random effect of year was estimated to be zero, and it was therefore excluded 

from the model. The semivariance of model residual errors did not suggest the presence of 

spatial autocorrelation (Fig. 3.4). All models had similar predictive performance, with RMSEs 

ranging from 0.33−0.34 (Table 3.2), suggesting the differences between predictions and 

estimations ranging from 0.33−0.34. 
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Figure 3.4. Variogram computed with residuals of the generalized linear mixed model with 

bottom salinity and the random effect of sampling location for the proportion of infected female 

northern shrimp 

 

A total of 90 observations of bottom temperatures and Pinf were combined with data from 

Apollonio et al. (1986). Bottom temperature was statistically significant (p < 0.001) and 

explained 41% of the variation, indicating that bottom temperature had a significant effect on 

Pinf. Mean Pinf at mean bottom temperature (7.7°C) of the data set was 41.86% and increased to 

62.56% when bottom temperature increased 1°C from the mean. The bottom temperatures 

observed by Apollonio et al. (1986) during 1967−1968 were below 9°C, and Pinf observed was 

lower than 50%. The bottom temperatures observed in our study were 5.7−11.7°C with a mean 

of 8.1°C, and more than 75% of the sampling locations had Pinf > 90% over the observed bottom 

temperatures with high variations (Fig. 3.5). The model results showed that when bottom 

temperature was higher than 8°C, at least 50% of females were infected. 
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Figure 3.5. Relationship between proportion of infected female shrimp and bottom temperature 

fitted with combined data from this study and from Apollonio et al. (1986). Gray shading 

denotes the 95% confidence interval 

 
3.4.2. Proportion of white eggs 

A total of 82 infected females were randomly selected from 32 sampling locations during 

2012− 2015 and examined for pwe. pwe ranged from <1 to 33%, with more than 90% of the 

examined individuals having less than 5% of white eggs. The overall average pwe was 2.16%.  

The VIFs for all variables were <3. The best model selected by the lowest AIC had 

bottom salinity and DCL as fixed effects and sampling location as a random effect (Table 3.3). 

Both bottom salinity and DCL together explained 14.5% of the variation in pwe. Adding bottom 

temperature to the model improved the marginal R2GLMM by less than 2%, but the model 

goodness-of-fit (AIC) decreased, indicating overfitting. The parametric bootstrapped likelihood 

ratio tests suggested statistical significance for the effect size of DCL (p = 0.01) but not for 
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bottom salinity (p = 0.06). The estimated pwe at mean DCL (25.22 mm) at mean bottom salinity 

(33.75‰) was 1.41%. Given the effect sizes of bottom salinity and DCL, pwe decreased by 

0.83% on average with a 1‰ increase in bottom salinity and by 0.15% with a 1 mm increase in 

DCL (Fig. 3.6). Three potential outliers of observations with high pwe (>10%) were graphically 

identified (Fig. 3.6). These potential outliers were removed from the data and the models were 

refitted. 

 

Table 3.3. Model statistics for the null model and the competing models for factors associated 

with proportion of white eggs of an egg mass (see Table 3.1 for abbreviations).*: p<0.05; **: 

p<0.01 

Models (Beta) 
Marginal 
R2GLMM 

Conditional 
R2GLMM 

ΔAIC 
LOOCV 
RMSE 

Pwe ~ DCL**   + BOTSAL*   + >) 0.145 0.590 0 0.019 
Pwe ~ DCL**   + BOTSAL* + >" + >) 0.145 0.590 2.000 0.019 
Pwe ~ DCL** + BOTTEMP + BOTSAL* + >" + >) 0.163 0.573 2.081 0.019 
Pwe ~ DCL*     + >" + >) 0.061 0.602 4.318 0.019 
Pwe ~ DCL** + BOTTEMP   + >" + >) 0.010 0.589 4.337 0.018 
Pwe ~     BOTSAL* + >" + >) 0.074 0.613 6.700 0.020 
Pwe ~        + >) NA 0.629 6.749 0.020 
Pwe ~   BOTTEMP + BOTSAL* + >" + >) 0.088 0.596 7.141 0.020 
Pwe ~      + >" + >) NA 0.629 8.749 0.020 
Pwe ~   BOTTEMP   + >" + >) 0.030 0.617 9.194 0.020 
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Figure 3.6. Relationships between proportion of parasite-infected shrimp eggs (‘white eggs’) and 

(a) bottom salinity and (b) dorsal carapace length (DCL). Circles: all observations; closed circles: 

potential outliers (but included in the regressions). Gray shading denotes the 95% confidence 

interval 
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After the 3 potential outliers were removed, all observations of pwe were below 10% for 

each individual. The new best model was with bottom temperature as a fixed effect and sampling 

location as a random effect (Table 3.4). pwe for an individual at mean bottom temperature 

(7.21°C) was estimated at 1.1%, and decreased by 0.84% with a 1°C increase in bot- tom 

temperature. The proportion of variation in pwe explained by bottom temperature was 6.5%. 

 

Table 3.4. Model statistics for the null model and the competing models for factors associated 

with proportion of white eggs of an egg mass (see Table 3.1 for abbreviations). *: p<0.05; **: 

p<0.01 

Models (Beta) 
Marginal 
R2GLMM 

Conditional 
R2GLMM 

ΔAIC 
LOOCV 
RMSE 

Pwe ~   BOTTEMP     + >) 0.065 0.387 0.000 0.011 
Pwe ~        + >) NA 0.377 1.070 0.011 
Pwe ~   BOTTEMP   + >" + >) 0.065 0.387 2.000 0.011 
Pwe ~   BOTTEMP + BOTSAL + >" + >) 0.087 0.379 2.872 0.011 
Pwe ~      + >" + >) NA 0.377 3.070 0.011 
Pwe ~     BOTSAL + >" + >) 0.023 0.367 3.671 0.011 
Pwe ~ DCL + BOTTEMP   + >" + >) 0.064 0.387 3.972 0.011 
Pwe ~ DCL + BOTTEMP + BOTSAL + >" + >) 0.087 0.380 4.812 0.011 
Pwe ~ DCL     + >" + >) 0.002 0.378 4.885 0.011 
Pwe ~ DCL     + BOTSAL + >" + >) 0.026 0.368 5.434 0.011 

 

All explanatory variables included in the models were not statistically significant, 

suggesting that these variables had no significant effects on pwe. Furthermore, the proportion of 

variation in pwe explained by the fixed effects was less than 9%, even if all 3 variables were 

included in the model. The variance of the random effect of year was estimated to be zero and 

was thus dropped from the model. The random effect of sampling location was able to account 

for 37.7% of the variation. The predictive errors were not improved by inclusion of variables. 
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The difference in predictive error (RMSE) between the models with and without potential 

outliers was around 1%, suggesting that all models have similar predictive performance. The 

semivariance of model residuals did not suggest the presence of spatial autocorrelation. 

The results show that pwe varied among sampling locations in the GOM. However, more 

than 95% of the observations of pwe were <5%; thus pwe did not appear to be associated with any 

of the explanatory variables measured in this study. 

 
3.5 Discussion 

 
Although bottom salinity showed significant impacts on the probability that a female was 

infected (Pinf), the magnitude of the salinity effect was small, and thus did not seem to be 

biologically relevant. The possibility of a female carrying at least 1 white egg was high; 

however, changes in bottom salinity did not appear to be the main driver. 

The issue of white eggs has been observed and associated with temperature since the 

1960s, and Pinf seemed to vary considerably among years in the GOM. Pinf was between 0 and 

74% in the 1960s (Haynes and Wigley 1969; Apollonio et al. 1986) and between 55 and 92% in 

the 1970s (Stickney 1980). In our study, mean Pinf was 73.81% during 2012−2016 and was not 

correlated with bottom temperatures. However, based on the bottom temperatures observed in 

the 1960s by Apollonio et al. (1986) and in our study, more observations of higher temperatures 

were recorded during 2012−2016. Furthermore, the model with combined data suggested that Pinf 

increased with bottom temperature. 

Apollonio et al. (1986) indicated that when temperature was lower than 5.5°C, Pinf was 

zero or low. Our observations corresponded to those of Apollonio et al. (1986), as Pinf was high 

at temperatures above 6°C. The findings and comparisons from these 2 studies imply that (1) the 
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environment in the GOM regarding bottom temperature might have changed considerably over 

the past 50 year, and (2) warming temperatures had a negative impact on Pinf. 

Although Pinf seems to be high, pwe was mostly below 5%, with an average of 2.16% and 

3 observations higher than 10%. pwe was around 1% in the 1960s (Haynes and Wigley 1969) and 

1−5% in the 1970s (Stickney 1980). Occasional high pwe was also observed. Stickney (1981a) 

indicated that pwe was mostly 2−5%, but could be up to 30%. It is likely that the magnitude of the 

temperature effect was too small to be statistically detectable in our study, as most (more than 

75%) of the observed pwe values were lower than 3% at warm temperatures compared to 

temperatures collected in the 1960s by Apollonio et al. (1986). 

Haynes and Wigley (1969) reported 1% pwe on average for an individual, with 0−27 

white eggs per female observed from 47 individuals (2.3 white eggs on average). In this study, 

we observed 0−173 white eggs per female from 143 examined individuals, with 13.7 white eggs 

on average for an individual. Assuming that bottom temperatures during Haynes and Wigley's 

(1969) surveys were similar to the temperature data collected by Apollonio et al. (1986), 

temperature might influence the number of white eggs, as the observed number of white eggs per 

female in our study was much higher than observed in the 1960s (Haynes and Wigley 1969). 

Furthermore, correlations between pwe or number of white eggs per female and female body size 

were not found in this study or in the study by Haynes and Wigley (1969). However, temperature 

data were not provided with pwe or number of white eggs per female observed in the 1960s and 

1970s for further analyses and comparisons. 

Although pwe seems to be low, and high pwe only happens occasionally, the possibility of 

a female carrying at least 1 white egg was generally high and appears to be negatively impacted 

by warming water temperatures. However, the extent of the white egg issue on reproductive 
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potential requires a study of integrated information on quality and quantity of eggs of individuals 

in the shrimp population, because reproductive potential is related to the fecundity− female body 

size relationship as well as size frequency of females in the population. The results derived from 

our study provide essential information that can be used to improve the estimation of 

reproductive potential of northern shrimp in the GOM. 

The issue of white eggs has been reported for the GOM northern shrimp stock since the 

1960s, while it seems to have not been an issue for other shrimp stocks. Temperature has been 

hypothesized as a contributing factor affecting variability in recruitment of several northern 

shrimp stocks in the North Atlantic in the last decade (Wieland and Siegstad 2012; Jónsdóttir et 

al. 2013; Brosset et al. 2019). Although the exact species of parasite infecting the shrimp eggs 

has not been conclusively identified, the results of this study suggest that the infection of white 

eggs is associated with bottom temperature, providing a potential underlying mechanism that 

affects egg mortality and subsequent recruitment of northern shrimps in the North Atlantic, as 

warming water temperatures have been widely observed in the North Atlantic (Mills et al. 2013). 

However, more studies are needed to evaluate the trend in white egg infection rates with the 

continuing increases in water temperature in the GOM. Biological samples may also need to be 

collected from other northern shrimp stocks (e.g. Atlantic Canada and Greenland) to identify if 

white eggs are present in these more northern stocks. With a continuing increase in water 

temperature throughout the distributional range of northern shrimp, white eggs may be observed 

in areas in which they have not been observed previously. A broader monitoring program across 

the whole distributional range of northern shrimp needs to be developed to improve our 

understanding of the mechanisms of white egg infections and possible consequences on the 

northern shrimp fisheries throughout the North Atlantic Ocean. 
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In addition to white eggs, other diseases such as black spot gill syndrome have also been 

reported for northern shrimp in the North Atlantic (Lee et al. 2019). Black spot gill syndrome has 

been an issue for northern shrimp since the 1960s (Rinaldo and Yevich 1974). Although the 

parasitic ciliate (Synophrya sp.) was recently identified (Lee et al. 2019), there is a lack of 

evidence linking black spot gill syndrome to the recruitment failures and the declines of the 

fishery in recent years. Alternatively, black spot gill syndrome could have an impact on the 

recruitment failures of GOM northern shrimp. Further investigation is needed to evaluate the 

impacts of diseases on the shrimp populations in the GOM as well as the North Atlantic. 
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CHAPTER 4. EFFECTS OF ENVIRONMENTAL FACTORS ON REPRODUCTIVE 

POTENTIAL OF THE GULF OF MAINE NORTHERN SHRIMP (Pandalus borealis) 

 

4.1 Abstract 

 

The northern shrimp (Pandalus borealis) once supported a significant winter fishery in the 

Gulf of Maine (GOM). However, the population collapsed in 2012 and a fishery moratorium has 

been in effect since 2014 due to record low levels of spawning stock biomass and persistent 

recruitment failure. An important parameter in determining population dynamics, fecundity, has 

not been evaluated for more than 30 years, during which time the GOM has warmed 

significantly.  In this study, we quantified three reproductive characteristics related to fecundity: 

potential fecundity (PF, number of viable eggs), relative fecundity (RF, number of viable eggs 

per gram of body weight), and egg size (ES) for GOM northern shrimp. The results showed that 

PF was strongly related to body size, while RF was independent of body size. Egg size declined 

with increasing body size for larger females. Egg size is related to size at larval hatch, suggesting 

that although larger females produced more eggs, those eggs may produce smaller larvae. In 

contrast with previous studies, PF and RF were positively correlated with bottom temperature in 

the relatively warm years of our study. We hypothesize that the positive temperature-fecundity 

relationship we observed may not reflect a direct effect, but possibly a compensatory response 

relating to decreased population density during the time period of our study. In addition, the 

environmental effects we observed may to some extent reflect progression of the inshore 

migration of females. The information derived in this study can help us have a better 

understanding of environmental effects on reproductive potential for climatically vulnerable 

species such as the GOM northern shrimp. 
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4.2 Introduction 

Northern shrimp once supported a significant winter fishery in the Gulf of Maine (GOM) 

(Clark et al., 2000). However, landings have fluctuated widely and the fishery has collapsed 

three times since its inception in the 1930s (Clark et al., 2000; ASMFC NSTC, 2018). The most 

recent collapse occurred in 2012, and a moratorium has been imposed on the shrimp fishery 

since 2014 due to low stock size and recruitment failure for several successive years (ASMFC 

NSTC, 2018). Recent recruitment failures have been associated with unfavorably warm water 

temperatures in the GOM (ASMFC NSTC, 2018), which has been warming faster than 99% of 

the global oceans (Pershing et al., 2015). The intense warming rates have shifted hatch timing of 

northern shrimp (Richards, 2012), driven distributional (Nye et al., 2010; Kleisner et al., 2017) 

and phenological shifts (Staples et al., 2018; Staudinger et al., 2019) of various marine species, 

and impacted fisheries in the GOM (Mills et al., 2013; Pershing et al., 2015; Mazur et al., 2018).  

Northern shrimp are sequential hermaphrodites (Shumway et al., 1985). They hatch as 

males in near-shore areas in GOM during winter-spring. During their second year of life, they 

migrate to offshore areas where they mature as males and remain until they transform to mature 

females at presumed age 3. They then reproduce for 2 years as females. Following molting and 

mating, females extrude eggs that are fertilized externally and attached to their pleopods. The 

eggs are carried for several months before the females move to near-shore areas to release the 

offspring (Shumway et al., 1985; Richards, 2012). Unlike many fish species, most crustacean 

species’ egg development is synchronous and fecundity is determinant (Parsons and Tucker, 

1986). This means that all fertilized eggs develop at the same pace and no new eggs are extruded 
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during incubation, thus the number of eggs (reproductive potential) can be estimated at the onset 

of spawning. 

A well-defined stock-recruitment relationship is highly beneficial to fisheries 

management because it facilitates the estimation of exploitation levels that ensure future 

recruitment and sustainable fisheries (Hannah et al., 1995). Stock can be represented by several 

measures, including parental stock biomass, mature female stock biomass, or egg production 

(Hilborn and Walters, 1992). Of these, egg production estimated from size-specific (or age-

specific) fecundity is considered the best measure of spawning stock (Morgan et al., 2011). An 

advanced understanding of reproductive potential and its relationship with environmental 

variables could help elucidate the causes of recruitment failure of northern shrimp in the GOM.  

Direct and indirect effects of climatic factors are important for determining species’ 

vulnerability to climate change (de los Ríos, 2018). GOM northern shrimp are perceived to be 

particularly susceptible to environmental variability as they are at the southernmost limit of their 

distribution in the North Atlantic Ocean (Shumway et al., 1985). A few studies have estimated 

size-fecundity relationships for GOM northern shrimp (Apollonio and Dunton, 1969; Haynes and 

Wigley, 1969; Apollonio et al., 1986) and one of these examined possible temperature effects on 

fecundity, but found no correlation between spatial variation in bottom temperature and 

fecundity (Apollonio et al., 1986). However, these studies were conducted more than fifty years 

ago, before the steep warming trend began (Richards et al., 2012; Pershing et al., 2015). In the 

current study, we provide a contemporary estimate of the size-fecundity relationship for GOM 

northern shrimp and examine possible effects of environmental variability on potential fecundity 

(PF), relative fecundity (RF) and egg size (ES) in order to better understand environmental 
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effects on reproductive potential of northern shrimp, and their possible relations to recruitment 

failures.   

 

4.3 Materials and Methods 

4.3.1 Biological samples and environmental data 

Samples of female shrimp were collected during bottom trawl surveys conducted in the GOM by 

the Northeast Fisheries Science Center (NEFSC) during October and November, 2012-2016 

(Fig. 4.1 and Table 4.1). The NEFSC bottom trawl surveys were designed to capture a broad 

range of species across the northeast continental shelf of the United States. The survey uses a 

stratified random sampling design in which sampling locations are randomly selected within 

strata that are defined by bathymetry and latitude (Politis et al., 2014). The number of stations 

within a stratum is generally proportional to the area of the stratum and the overall variation of 

multispecies distribution among strata (Politis et al., 2014). At each sampling station, bottom 

temperature and bottom salinity data were measured with electronic profiling 

conductivity/temperature/depth sensors (Politis et al., 2014). Samples of the shrimp catch were 

frozen at sea, then thawed and processed at NEFSC for collecting size and life stage data, then 

refrozen for later laboratory processing for fecundity data collection. A total of 143 samples 

collected from 46 sampling locations in October and November 2012-2016 were used for 

estimating PF, RF, and ES (Table 4.1). 
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Figure 4.1. Sampling locations of the Northeast Fisheries Science Center fall bottom trawl 

surveys where northern shrimp (Pandalus borealis) were collected in the Gulf of Maine during 

2012-2016 
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Table 4.1. Number of stations where northern shrimp (Pandalus borealis) were collected and 

number of northern shrimp successfully used for estimating fecundity and egg size 

Year Number of stations Number of northern shrimp used Sampling period 

2012 7 14 Oct 3-Nov 10 

2013 5 8 Nov 13-Nov 15 

2014 12 40 Oct 31-Nov 10 

2015 21 76 Oct 21-Nov 5 

2016 1 5 Nov 7 

Total 46 143 
 

 

4.3.2 Laboratory procedures 

Only shrimp bearing early developmental stage (non-eyed) larvae (Haynes and Wigley, 

1969) were used for estimating fecundity. These could be readily identified under a microscope 

because the eggs were transparent and eyes had not yet formed. Non-eyed individuals comprised 

99.9% of the samples collected. Fecundity (number of viable eggs of an individual female) 

estimated from our samples taken in the fall were considered PF rather than realized fecundity 

(number of eggs successfully hatched per female) due to potential egg loss during the remaining 

3-4 months of incubation. RF was estimated as the number of eggs per gram of female body 

weight (potential fecundity/female body weight without eggs), which is a measure of individual 
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reproductive investment (Pereira et al., 2017). Parasite-infected eggs (white eggs; Haynes and 

Wigley, 1969, Apollonio et al., 1986, Chang et al., 2020) were recognized under a microscope 

based on their appearance. The proportion of white eggs ranged from 0-33% with an average of 

2.16% of all eggs for an individual (Chang et al., 2020). These white eggs were excluded from 

the analyses as they are non-viable (Chang et al., 2020). 

An analysis of the optimal number of samples needed for estimating fecundity indicated 

that length-stratified random sampling is more cost-effective than simple random sampling 

assuming the fecundity of northern shrimp is size-dependent (Chang and Chen, 2020). Therefore, 

we used length-stratified sampling which divided the range of shrimp sizes (dorsal carapace 

length, DCL, mm) into 10 length intervals (approximately 1 mm per length interval) and sampled 

1 shrimp from each length interval. All available samples were processed, adhering as closely as 

possible to the protocols developed in Chang and Chen (2020). 

Shrimp were processed for fecundity estimation by thawing the specimens at room 

temperature and using forceps to gently tease the eggs masses off the pleopods. Biological data 

including DCL (mm), lateral carapace length [LCL, mm; for comparing with Apollonio et al., 

(1986)], wet weight of each egg mass (g), and female body weight [air-thawed wet weight (g)] 

without eggs were measured. Egg samples were then preserved in 10% neutral formalin (Parsons 

and Tucker, 1986) for later processing. Eggs were removed from formalin, stained with toluidine 

blue and imaged under a trinocular dissecting microscope (OMAX V434BL54P-C140U) 

mounted with a digital camera (OMAX A35140U3). Egg masses were gently teased apart using 

forceps. ObjectJ (Schneider et al., 2012) was used to count all eggs (except white eggs) in each 

egg mass and measure their longest diameter (µm). ES of an individual female was defined as 

the average diameter (µm) of viable eggs in her egg mass. 
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4.3.3 Statistical analysis 

Generalized additive mixed models (GAMMs; Wood, 2017) with negative binomial, Gaussian, 

and lognormal distributions were used to examine the relationships between predictors and PF, 

RF, and ES, respectively. The distributions chosen were based on the distributions of the 

dependent variables (Zuur et al., 2009).  A variance inflation factor (VIF) analysis was 

conducted to identify multicollinearity before fitting models to the data. Predictors with VIFs 

exceeding 3 were considered collinear with other variables, a threshold VIF of 3 was thus set for 

evaluating possible collinearity between predictors in the data set (Schmiing et al., 2013; Brosset 

et al., 2019). The form of the GAMMs was: 

!(#)~& +()!(*!)
"

!#$
+ +% + +& + + 

where g() is the link function, y is PF, RF or ES, fi is the ith smooth function based on thin 

plate regression splines, xi is the ith explanatory variable, εy and εl are random effects of year and 

sampling location, and ε is residual error. Year and sampling location were included in the 

models as nested random effects to account for possible spatial or temporal pseudoreplication 

and for variation among years and sampling locations (Hurlbert, 1984; Zuur et al., 2009; Weltz et 

al., 2013, Thorsen and Minto, 2015).  

The VIF analysis indicated that multicollinearity was not an issue as all explanatory 

variables (DCL, bottom temperature, and bottom salinity) had VIFs < 3. Therefore, models of all 

combinations of the three explanatory variables were built (Fisher et al., 2018).  Model selection 

was based on full-subsets information theoretic approaches (Anderson and Burnham, 2002; 

Fisher et al., 2018), using Akaike’s information criterion corrected for small sample sizes (AICc; 
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Akaike, 1973; Hurvich and Tsai, 1989), Bayesian information criterion (BIC; Wit e al., 2012), 

AICc weights (ωAICc) and BIC weights (ωBIC, Fisher et al., 2018), deviance explained by the 

model, and graphical inspection. Root mean squared error (RMSE) estimated with leave-one-out 

cross-validation (LOOCV) was used to evaluate predictive performance of models (Zuur et al., 

2009; Arlot and Celisse, 2010). The random structure was first assessed by AICc with all the 

smooth terms included in the models (Zuur et al., 2009) using restricted maximum likelihood 

(REML) methods. The random effects included in the model that had the lowest AICc were 

considered the optimal random structure. 

After the random components were determined, models with different combinations of 

predictors were developed and compared using maximum likelihood methods. The base model 

for estimating PF included DCL based on previous studies (Haynes and Wigley, 1969; Apollonio 

et al., 1986). Little is known about the effect of DCL on RF and ES for northern shrimp, so the 

effect of DCL was not included in the null model for RF and ES. 

Models with differences in AICc (ΔAICc) <2 were considered candidate models that 

were well supported by the data (Anderson and Burnham, 2002). Models with the lowest AICc 

scores were refit with REML (Zuur et al., 2009; Wood, 2017) and effect plots of these models 

were presented. Biological relevance and the relationships between response variables and 

predictors were graphically examined. Relative importance of predictors was quantified as the 

sum of AICc weights of models in which a predictor is present (Anderson and Burnham, 2002; 

Fisher et al., 2018). 

 

 



 57 
 

The residuals of the optimal model were graphically evaluated with QQ-plots and plots of 

Pearson residual errors against fitted values to inspect any patterns in the residual errors (Zuur et 

al., 2009). Semivariance of Pearson residual errors from the most optimal model was examined 

for the presence of spatial autocorrelation (Cressie, 1993; Pebesma, 2004; Gräler et al., 2016). 

Simple linear regression models were fit to bottom temperature and bottom salinity data with day 

of year for exploring potential effects of spawning migration on the environmental relationships 

with reproductive characteristics.  

 

4.3.4 Population fecundity 

To fully compare with Richards et al. (2012), a GAM model was built for individual PF 

using only DCL as the explanatory factor in the model. 

 

PF5 = I(JKL5) + >5 

 

The size-fecundity relationship was then applied to the stratified mean population size 

composition estimated in Richards et al (2012) for estimating population fecundity: 
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where s=stratum, i=length, y=year, Ns,i,y = mean number of ovigerous female at length i in 

stratum s in year y, Asy = area of stratum s in year y.  

The same data of Ni,y were used to estimate population fecundity based on the model 

developed in Richards et al. (2012): 

Q?R587'0?-	I/95-S0'A" N= U−0.198L5,"3 + 128.81L5," − 17821ZM),"

8

57+
 

where Li,y is the ith DCL in 0.1 mm in year y. 

DCLs of the full range were used for the PF model in this study, and only ovigerous 

females ! 20 mm DCL were used for Richards et al."s (2012) model. 

Variability in northern shrimp PF was compared with previous studies (Haynes and 

Wigley, 1969; Apollonio et al., 1986). RMSEs were estimated using the data and corresponding 

models in each study. The DCLs of Apollonio et al. (1986) were converted from lateral dorsal 

carapace length (LCL) based on the equation: LCL = 1.464+1.086DCL (n=653, r2=0.92) which 

was developed using data collected in this study (Fig. A1). 

 

4.4 Results 

Maps of the sampling locations, number of samples, and contours of interpolated bottom 

temperature and salinity data collected by NEFSC fall bottom trawl surveys during October-

November 2012-2106 are shown in Fig. 4.2. 
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Figure 4.2. Sampling locations of the Northeast Fisheries Science Center fall bottom trawl 

surveys where northern shrimp (Pandalus borealis) were collected in the Gulf of Maine during 

2012-2016. Different sizes of dots denote number of shrimp used from each location. Maps of 

contours of interpolated bottom temperature and bottom salinity were overlaid on the bottom. 

 

4.4.1. Potential fecundity (PF) 

The observed PF ranged from 124-3557 eggs per female, and the observed DCL ranged 

18.15-30.84 mm. The average PF was 1442 eggs (standard deviation, SD, 620.73) for an average 

sized female (25 mm DCL) (Table 4.2). The spatial distribution of DCL in each year is shown in 

Figure A.3. Spatial autocorrelation was not suggested by semivariance over the sampling area 

(Figure A.4). 
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Table 4.2. Table 2. Observed ranges, means, and standard deviations of response and explanatory variables in this study, Richards et 

al. (2012), and Apollonio et al. (1986). DCL = dorsal carapace length; BOTTEMP = bottom temperature; BOTSAL = bottom salinity; 

PF = potential fecundity; RF = relative fecundity; ES = egg size; SD = standard deviation; n = number of samples; RMSE = root mean 

squared error. The DCLs of Apollonio et al. (1986) were converted from lateral dorsal carapace length (LCL) based on the equation: 

LCL = 1.464+1.086DCL (n=653, r2=0.92) which was developed using data collected in this study. 

Study 
DCL (mm) BOTTEMP (°C) BOTSAL (‰) PF (number of eggs) RF (number of 

eggs/g) ES (μm) n RMSE 
 

 

range mean SD range mean SD range mean SD range mean SD range mean SD range mean SD    

This study 18.15-
30.84 25 2.56 5.67-

11.01 7.6 1.19 32.42-
34.63 33.83 0.43 124-

3557 1442.2 620.7 15.0-
289.3 161.9 52.3 891.8-

1335.9 1091.6 69.2 143 417  

Richards 
et al. 
(2012) 

22.24-
30.82 27 2.4 NA NA NA NA NA NA 882-

3396 2425.9 628.2 NA NA NA NA NA NA 47 288.8  

Apollonio 
et al. 
(1986) 

21.93-
30.78 25.65 1.66 NA NA NA NA NA NA 734-

2775 1616.4 344.2 NA NA NA NA NA NA 202 221.6  
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The optimal model for PF included the random effect of year, and the smoothers of 

bottom temperature and bottom salinity (DCL was included in the base model, Table 4.3). This 

model had strong support from the data with an AICc weight of 0.98. The model was able to 

explain 48.4% of the deviance, and the predictive error (i.e. the average bias between prediction 

and observation) was 476.5 eggs. Both bottom temperature and bottom salinity were significant 

factors explaining the variation in PF, as the best model outcompeted other models (Fig. 4.3). 

 

Table 3. Model statistics of the best models within 2 ΔAICc for potential fecundity (PF), relative 

fecundity (RF), and egg size (ES) of northern shrimp (Pandalus borealis). DE=deviance 

explained, EDF=estimated degrees of freedom, LOOCV RMSE=leave-one-out cross validation 

root mean squared error, ωAICc=AICc weights, ωBIC=BIC weights, DCL=dorsal carapace 

length, TEMP=bottom temperature, SAL=bottom salinity. σy and σl =random effects of year and 

sampling location. The DCL in the PF model is in parentheses as DCL was included in the null 

model. 

Models        DE EDF LOOCV 
RMSE ΔAICc ΔBIC ωAICc ωBIC 

PF ~ (DCL) + TEMP + SAL + σy   0.484 7.155 476.494 0 1.236 0.977 0.334 
RF ~   TEMP + SAL + σy + σl 0.569 28.031 52.075 0 0 0.456 0.782 
RF ~     SAL + σy + σl 0.582 29.792 51.433 1.821 4.569 0.183 0.08 
ES ~ DCL   + SAL   + σl 0.59 30.81 65.376 0 3.356 0.388 0.133 
ES ~     SAL   + σl 0.564 29.203 67.431 0.387 0 0.32 0.713 
ES ~   TEMP     + σl 0.573 30.624 69.667 1.841 3.414 0.154 0.129 
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Figure 4.3. A heatmap of importance scores of each variable estimated from full-subsets 

generalized additive mixed models with information theoretic approaches for potential fecundity 

(PF), relative fecundity (RF), and egg size (ES). DCL=dorsal carapace length (mm); BOTTEMP 

= bottom temperature; BOTSALIN = bottom salinity. 

 

The partial effects of predictors are shown in Fig. 4.4. Both DCL and bottom temperature 

had estimated degrees of freedom of 1, which means the relationships between PF and these two 

variables are linear via the link function. PF increased with DCL, showing that larger females are 

able to produce more eggs (Fig. 4.4a). Biological senescence (i.e. an asymptotic relationship) 

was not observed for PF. PF was also positively correlated with bottom temperature (Fig. 4.4b). 

The relationship between PF and bottom salinity was nonlinear (Fig. 4.4c). PF increased with 

bottom salinity when the bottom salinity was lower than 33.9‰, and decreased slightly when 

bottom salinity was higher than 33.9‰. The semivariance of the Pearson residual errors did not 

suggest a pattern of spatial autocorrelation (Fig A.5a). No clear patterns were found in the QQ 

plot and Pearson residuals against fitted values (Fig A.6a-b). 
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Figure 4.4. Partial effects of each variable included in the best model with lowest AICc on 

potential fecundity (PF). The black solid lines denote the modeled relationship, the gray bands 

denote the 95% confidence intervals about the estimated relationship, and colored dots are 

observations of each year. (red=2012, blue=2013, green=2014, black=2015, and orange=2016; 

DCL=dorsal carapace length) 
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The relationship between bottom temperature and bottom salinity is shown in Fig. 4.5 

(slope=0.076, p<0.05, r2=0.04). The observed bottom temperature where shrimp were collected 

increased with day of year with a slope of 0.028 (Fig. 4.6a, p<0.05, r2=0.03). The observed 

bottom salinity where shrimp were collected decreased with day of year with a slope of -0.013 

(Fig. 4.6b, p<0.05, r2=0.06). 

 

 

 

Figure 4.5. Relationships between bottom temperature and bottom salinity. The gray dashed lines 

are linear regression lines, and colored dots are observations of each year. (red=2012, blue=2013, 

green=2014, black=2015, and orange=2016) 
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Figure 4.6. Relationships between (a) bottom temperature and (b) bottom salinity with day of 

year. The gray dashed lines are linear regression lines, and colored dots are observations of each 

year. (red=2012, blue=2013, green=2014, black=2015, and orange=2016) 

4.4.2 Relative fecundity (RF) 



 67 
 

The observed RF ranged 15.0-289.3 eggs/g of body weight with a mean of 161.9 

(SD=52.3), and the observed body weight (without eggs) ranged 3.33-15.8 g (SD=2.4) (Table 

4.2). The optimal random structure for RF included sampling location and year in the model 

selected by AICc. The best model selected by both AICc and BIC included bottom temperature 

and bottom salinity with ωAICc=0.46 and ωBIC=0.78 (Table 4.3). This model explained 57% of 

the deviance. Both bottom salinity and bottom temperature were identified as important factors 

across the top models (relative importance scores of 0.79 and 0.76 respectively). RF was not 

driven by DCL as DCL was not found in the top models and had a relatively low importance 

score (Fig. 4.3). 

RF increased linearly with bottom temperature (Fig. 4.7a), indicating that females with 

higher reproductive investment were found at higher bottom temperature. Similar to PF, RF 

increased with bottom salinity when bottom salinity was lower than 33.9‰, and it leveled off 

when bottom salinity was higher than 33.9‰ (Fig. 4.7b). The semivariance did not suggest a 

presence of spatial autocorrelation (Fig A.5b). No patterns were found in the QQ-plot and 

Pearson residuals against fitted values (Fig A.6c-d). 
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Figure 4.7. Partial effects of each variable included in the best model with lowest AICc on 

relative fecundity (RF). The black solid lines denote the modeled relationship, the gray bands 

denote the 95% confidence intervals about the estimated relationship, and colored dots are 

observations of each year. (red=2012, blue=2013, green=2014, black=2015, and orange=2016) 
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4.4.3 Egg size (ES) 

The optimal random effect structure selected by AIC included sampling location. The 

model with the lowest AICc included DCL and bottom salinity with an ωAICc of 0.39 (Table 

4.3). The second best model which included a single factor of bottom salinity was preferred by 

BIC with a ωBIC of 0.71 (ωAICc=0.32). The third ranking model included only bottom 

temperature, with ωAICc=0.15, showing relatively lower importance of bottom temperature for 

explaining the variation in ES. Bottom salinity (importance score=0.73) and DCL (importance 

score=0.50) had higher importance for explaining ES than did bottom temperature (importance 

score=0.21) (Fig. 4.3). The top three models within 2 ΔAICc had similar percentages of deviance 

explained and predictive errors, showing a level of model uncertainty.  

The average ES increased with DCL when females were smaller than 25 mm DCL (Fig. 

4.8a), then started decreasing with DCL when females were larger than 25 mm DCL. For the 

relationship between ES and bottom salinity, the average ES linearly decreased with bottom 

salinity, with larger eggs found in lower bottom salinity (Fig. 4.8b). The presence of spatial 

autocorrelation was not suggested by the semivariance of the Pearson residuals (Fig A.5c). No 

patterns were found in the plot of Pearson residuals against fitted values (Fig A.6f), although the 

QQ-plot right tail deviated from a normal distribution due to a few large values of ES 

observations (Fig A.6e). 
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Figure 4.8. Partial effects of each variable included in the best model with lowest AICc on egg 

size (ES). The black solid lines denote the modeled relationship, the gray bands denote the 95% 

confidence intervals about the estimated relationship, and colored dots are observations of each 

year. (red=2012, blue=2013, green=2014, black=2015, and orange=2016; DCL=dorsal carapace 

length) 
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4.4.4 Population fecundity comparison 

The females used in Haynes and Wigley (1969) for estimating a size-fecundity 

relationship ranged 22.2-30.8 mm, and the observed PF ranged 881.7-3396.2 eggs. The stock 

assessment (ASMFC NSTC 2018) and Richards et al. (2012) used a parabola to fit Haynes and 

Wigley’s (1969) size-fecundity data (Fig. 4.9). Their estimated PF was generally higher than that 

estimated in this study at a given DCL. For example, the estimated PF for a 25 mm female in this 

study was 1394.0 eggs and was 44% higher in Richards et al (2012) (2007 eggs). Estimated PF 

became negative for shrimp with DCL<20 mm when a parabola was used [as in Richards et al. 

(2012)]; however, most shrimp < 20 mm DCL are males. The average absolute difference 

between fecundity of females > 22 mm DCL estimated by Richards et al. (2012) and this study 

was 34.0%. 

 

 

Figure 4.9. Relationships between potential fecundity and dorsal carapace length (DCL) 

estimated by Richards et al. (2012) and this study for northern shrimp (Pandalus borealis). Black 
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dots denote observations in this study, and blue dots denote observations in Richards et al. 

(2012). The gray shadowed area is the 95% confidence interval for the estimated size-fecundity 

relationship in this study. 

 

Population PF estimated in this study using Richards et al.’s (2012) model is shown in 

Fig. 4.10. The population PF estimated by these two models had similar trends, although 

Richards et al.’s (2012) population PF was almost always higher than the fecundity estimated in 

this study over the time series except for 2014. The average absolute difference between 

population PF was 0.173 million eggs.  

 

 

Figure 4.10. Annual population fecundity of northern shrimp estimated by PF (potential 

fecundity) models developed in this study and Richards et al. (2012) using Atlantic States 
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Marine Fisheries Commission (ASMFC) summer shrimp survey data during 1984-2016. The 

orange line denotes population fecundity estimated from the PF model in this study, the blue line 

denotes Richards et al. (2012). 

 

4.5 Discussion 

The reproductive characteristics investigated in this study describe different aspects of 

reproductive investment. PF describes the potential number of eggs a female can produce, and 

the size-fecundity relationship is typically used to estimate egg production of populations 

(Hilborn and Walters, 1992). RF puts egg production into the context of energetics by taking into 

account the size (energy content) of individual females (Dautov et al., 2004; Pereira et al., 2017). 

RF can also be easily applied to the population size composition for estimating reproductive 

potential. ES can be an indicator of egg quality, with larger eggs generally thought to be of 

higher quality as larger eggs contain higher amounts of yolk (Dautov et al., 2004; Zimmermann 

et al., 2015). This in turn may be related to larval survival (Ramirez-Llodra et al., 2000; Dautov 

et al., 2004; Zimmermann et al., 2015). All these reproductive characteristics and consequently 

the reproductive potential of the population may be affected by environmental factors such as 

water temperature and salinity (Apollonio and Dunton, 1969). 

 

4.5.1 Potential fecundity and relative fecundity 

Relatively higher variability in northern shrimp PF was observed in this study compared 

to previous studies (Haynes and Wigley, 1969; Apollonio et al., 1986; Table 4.2). The higher 

RMSE could be due to sample sizes, ranges and variation in DCL, differences in spatiotemporal 

scales, sampling seasons, and higher natural variability. High variability in PF between years, 
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seasons, or areas had been observed for Pandalid shrimp by several previous studies (Parsons 

and Tucker, 1986; Hannah et al., 1995; Jónsdóttir, 2018). Although the PF varied substantially 

among locations, spatial autocorrelation was not suggested by the spatial variogram for PF in this 

study.  

Several studies have investigated the effects of water temperature on fecundity of 

northern shrimp (Nunes, 1984; Apollonio et al., 1986; Parsons and Tucker, 1986). Temperature 

effects were not consistently detected, but when they were, the relationships were negative, i.e. 

fecundity was lower at higher temperatures. Apollonio et al. (1986) noted that differences in 

individual fecundity of northern shrimp collected from eight sampling locations in the GOM in 

August and September 1968 were not significant and could not be correlated with the ambient 

bottom temperatures. Parsons and Tucker (1986) also found no clear relationship between 

individual fecundity and ambient temperatures using samples collected intermittently from 

several locations in Canadian waters (northwest Atlantic) during 1971-1982. However, Nunes 

(1984) concluded that cold (3°C) to moderate (6°C) temperatures were more suitable than high 

(9°C) temperature in laboratory studies of northern shrimp egg production in Alaska, as 

fecundity-at-size was higher for northern shrimp in 3 and 6°C. Furthermore, Apollonio et al. 

(1986) reported a negative relationship between predicted mean fecundity of a 25 mm DCL 

female and annual bottom temperature (April-July) during 1968-1982 (non-consecutive years). 

In contrast with these previous studies, we found that potential fecundity was positively 

correlated with temperature. However, bottom temperatures in the GOM have changed 

considerably since those earlier studies, and northern shrimp population size is much smaller 

(ASMFC NSTC 2019). The bottom temperature observed in Apollonio et al.’s (1986) study in 

October-December 1967-1968 ranged ~2-6°C, and the bottom temperature observed in Oct-Dec 
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in this study ranged 5.7-11°C with a mean of 7.6°C.  Bottom temperatures in NEFSC bottom 

trawl surveys in October and November 1967-1968 (temporal and spatial coverage comparable 

to our study) ranged 3.6-10.1 °C (mean 6.5).  

In addition to temperature effects (see Discussion for ES), northern shrimp fecundity 

could also be affected by factors such as density-dependence (Shumway et al., 1985; Moraes-

Valenti et al., 2010; Jónsdóttir, 2018). It has been suggested that ovigerous female GOM 

northern shrimp may gravitate towards the coldest water available to them when they encounter 

thermal gradients (Stickney and Perkins, 1977, Shumway et al., 1985). Furthermore, Chang et al. 

(in prep) found that the variability around the center of gravity of ovigerous northern shrimp 

distribution was positively correlated with population abundance and negatively correlated with 

bottom temperature. Therefore, we hypothesized that population density of ovigerous females 

may be negatively associated with bottom temperature in the GOM, and fecundity is assumed to 

be negatively correlated with population density due to competition for food and cannibalism of 

eggs of neighbor females (Elliot, 1970). More data and further analysis are needed to test this 

hypothesis. 

The effect of bottom salinity has been rarely investigated. In our study, around 53% of 

the females were found in the range of 33.5-34.2‰, and bottom salinity had a very high 

importance score (0.998) for explaining PF. In the GOM, females undertake an extensive 

onshore migration to hatch their brood in relatively shallow, less saline water (Fig 4.2, Haynes 

and Wigley 1969, Apollonio et al. 1986). In our study, bottom salinity was negatively correlated 

with day of year, which likely reflects the progress of this onshore migration. Thus the high 

importance score of salinity may reflect changes in the ambient environment during females ’

inshore migration, rather than a direct association between PF and salinity. Females that have 
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reached lower salinities presumably have been carrying their egg masses longer, so may have 

had greater egg loss by the time of sampling. 

All three of the explanatory factors we investigated (size, bottom temperature and 

salinity) had high importance scores for explaining variation in fecundity; however, the 

correlations between PF and variables suggested by the models may not imply causal effects. 

Other habitat variables associated with bottom temperature or bottom salinity may be important, 

such as dissolved oxygen or food availability. Brillon et al. (2005) observed that females provide 

parental care to embryos by beating the pleopods, presumably to oxygenate the egg mass. These 

habitat variables can also directly or indirectly influence females ’fitness, and consequently 

influence reproductive potential.  

RF can be used as a measure of reproductive investment of an individual female. Unlike 

PF which increased with body size, RF was independent of DCL. Pereira et al. (2017) also found 

no association between reproductive investment and female body size, suggesting that 

individuals at all sizes make similar reproductive investment per unit of body. RF was dependent 

on bottom temperature and salinity and both variables had high importance scores for explaining 

relative fecundity. The effects of bottom temperature and salinity on RF are similar to that on PF, 

confirming that higher temperatures and higher salinities were correlated with higher PF and RF 

during incubation. Bottom temperature and salinity in our study reflected the offshore 

environment in October and November 2012-2016. As female shrimp migrate to inshore areas 

for hatching, their exposure to the environment at different stages may change as shown in the 

correlation between bottom temperature/salinity and day of year. These environmental effects 

during incubation on the final quantity and quality of eggs need further investigation. 
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4.5.2 Size-fecundity relationships 

The size-fecundity relationship can be an important input in stock assessment (ASMFC 

NSTC, 2018). Size-fecundity relationships have been estimated for Pandalid shrimp using 

parabolic (Richards et al., 2012), power (Parsons and Tucker, 1986; Hannah et al., 1995), and 

linear regression models (Apollonio et al., 1986). In all of these, the PF was strongly correlated 

with female body size; however, a high level of variation may exist within sizes. Hannah et al. 

(1995) indicated that the curvature of the size-fecundity relationship might not be easily detected 

due to high variation in fecundity at a given length. Therefore, this study used a GAMM to have 

more flexibility to account for curvilinearity and possible biological senescence, making a 

biological meaningful size-fecundity relationship covering females at a wide range of sizes. 

Comparison between fecundity studies is complicated by several factors in addition to 

different model structures. These include size range of females sampled; methods for counting 

number of eggs; and spatial and temporal variation.  A lack of small females may result in 

incomplete size-fecundity relationship and lead to biased estimates of fecundity for small 

females (e.g., Haynes and Wigley, 1969). Zero to five percent (mean=1%) of the ovigerous 

females in our study were smaller than 20 mm, and 0-16% (mean=5%) were smaller than 22mm 

during 1991-2018. There could be biases in methods for counting number of eggs if eggs were 

subsampled and fecundity estimated by expansion. Instead of using estimated number of eggs by 

weight, we counted all the eggs of an egg mass for each female in this study. Our estimates of PF 

are thus likely more accurate than fecundity estimated from expanded subsamples. In terms of 

spatial and temporal variation, fecundity may differ between years and areas due to changes in 

environmental conditions or diseases (Parsons and Tucker, 1986; Chang et al., 2020). Assuming 

Haynes and Wigley’s (1969) samples (collected during 1953-1966, mostly 1963-1965) were 
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collected from similar environmental conditions as Apollonio et al. (1986) in the 1960s, the 

changes in the environment could also be a reason for the differences in the size-fecundity 

relationships between Richards et al. (2012) and this study.   

In this study, spatial patterning or significant differences between years were not 

observed, which is consistent with the observations of Apollonio et al. (1986). Given the fact that 

the GOM has been experiencing rapid warming in the past two decades (Pershing et al., 2015; 

Kavanaugh et al., 2017), it seems possible that the size-fecundity relationship could change due 

to changes in the environmental conditions. However, the sampling years in this study were 

mostly warm years and the time series too short to identify a pattern in temporal changes.  

 

4.5.3 Egg size 

ES can be a measure of egg quality as larger eggs contain higher amounts of yolk and 

produce larger offspring which may be better prepared for competition and predator avoidance 

(Ramirez-Llodra et al., 2000; Dautov et al., 2004; Zimmermann et al., 2015). Therefore, ES 

could be a key factor in determining the success of larval survival. Wieland (2004) observed 

reduced size-at-sex change of Greenlandic northern shrimp in the late 1990s and inferred that it 

could have resulted from smaller eggs due to shorter incubation periods under warmer water 

temperatures (Wieland, 2005). This implies that temperature could have lagged effects on egg 

and larval sizes and consequently population productivity. In our study, DCL had a moderate 

importance score for explaining the variation in ES and the relationship between ES and DCL 

was nonlinear, which might not be detected by linear regression models (Nunes, 1984; Ahamed 

and Ohtomi, 2011). Larger females (DCL>27 mm) produced more eggs but the average ES was 

smaller, possibly reflecting biological senescence or a tradeoff in quantity versus quality. If egg 
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quality and offspring survival rates are positively associated with ES, then larger females do not 

necessarily produce offspring with higher survival rates than females at average sizes (around 25 

mm DCL). However, our results could also be explained by size-dependent spawning times. If 

large females spawn later than small ones, larger females would have smaller eggs at an earlier 

developmental stage at a given sampling time. Apollonio et al. (1986) indicated that females of 

an older age group spawn later than the younger age group although this has not been well-

documented, and the delay in spawning time between age groups was not estimated.  

Although Clarke et al. (1991) suggested that factors determining reproductive output and 

egg size are different, in our study bottom salinity was identified as an important factor for 

explaining PF, RF, and ES with high importance scores across models. However, PF and RF 

were positively correlated with bottom salinity, while ES was negatively correlated with bottom 

salinity. This likely reflects progress of the inshore migration because eggs develop and ES 

increases over time while bottom salinity decreases as the females migrate towards the shore.  

 

4.5.4 Other factors 

The models we built in this study were able to explain 48-59% of the variation in PF, RF, 

and ES. Other factors that might explain variation in reproductive potential and fitness of female 

shrimp include food availability (Hannah et al., 1995), population density (Apollonio et al., 

1986), disease (Chang et al., 2020), and egg loss during incubation (Elliot, 1970; Skuladottir et 

al., 1978; Stickney, 1981; Nunes, 1984; Apollonio et al., 1986; Brillon et al., 2005). Skuladottir 

et al. (1978) estimated 30-54% egg loss during seasonal migration in Iceland, and Brillon et al. 

(2005) observed high variation in individual egg loss (1-99%) during incubation in laboratory 

experiments. The ovigerous females sampled in this study were collected from an early phase of 
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incubation (October-November), thus the fecundity estimates would not reflect total egg loss 

during the entire incubation period (5-6 months). Further investigations are needed for evaluating 

egg loss during incubation for GOM northern shrimp.  

Several explanations have been observed or postulated for egg loss, including diseases 

(Apollonio et al., 1986), incomplete fertilization (Parsons and Tucker, 1986), cannibalism by 

neighboring shrimp, parental behavior (Elliot, 1970), and temperature (Brillon et al., 2005). 

Brillon et al. (2005) observed higher egg loss when ambient temperature of females increased, 

but Nunes (1984) reported highest egg loss at low temperature. Brillon et al. (2005) suggested 

that more intense movements of pleopods may be needed in warmer temperatures for ovigerous 

females to supply the higher oxygen demand of developing embryos, which might increase egg 

loss during incubation.  

In addition to egg loss, ambient temperature during incubation could also affect size of 

larvae at hatching (Nunes, 1984; Brillon et al., 2005). Although the temperature effect was less 

important than DCL and bottom salinity on ES in this study, in laboratory studies larger larvae 

were observed to hatch from eggs incubated at lower temperatures with higher survival rates and 

growth rates in Alaskan waters (Nunes, 1984) and in the St. Lawrence estuary (Brillon et al., 

2005). 

A number of hypotheses have been postulated or tested for explaining the most recent 

collapse of the GOM northern shrimp population. Chang et al. (2020) examined the effects of 

bottom temperature and salinity on the incidence of parasitized eggs (white eggs) of the GOM 

northern shrimp, but correlations between white eggs and environmental factors were not 

significant. Richards (2012) indicated that the hatching timing and duration of the GOM northern 

shrimp hatch period has shifted due to warming water temperatures; however, the match-
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mismatch theory (Hjort 1914, Cushing 1990) was not able to explain variation in shrimp survival 

at early life stages (Richards et al. 2016). Richards and Hunter (2021) presented evidence that the 

sudden shrimp population collapse might have been due to a spike in predation by longfin squid 

(Doryteuthis pealeii) after a distributional shift during the 2012 heatwave. Charleson (2020) 

observed decreases in size-at-transition of northern shrimp at higher water temperatures, which 

could result in smaller average female size and consequent skewed population size structures, 

leading to decreased reproductive potential. Chang et al. (in prep) examined habitat suitability 

for adult GOM northern shrimp during summer and fall and found that increasing proportions of 

low quality habitat were correlated with a declining spawning stock biomass index at a 2-year 

lag. Consequently, in addition to changes in reproductive potential of the GOM northern shrimp, 

high predator pressure and loss of suitable habitat might have significant impacts on population 

size.  

 

4.6 Conclusions 

This study examined three different measures of reproductive output of GOM northern 

shrimp and their relationships with biotic and abiotic factors. PF quantified reproductive 

potential of an individual female, and the size-fecundity relationship derived from this study can 

be used for estimating egg production of the shrimp population. PF was most strongly correlated 

with female body size, yet our results showed that the ambient environmental conditions (bottom 

temperature and salinity) were also important for explaining the variation in PF. RF was 

independent of female body size, suggesting that relative reproductive output is constant across 

female size. RF was affected by environmental conditions similarly to PF. ES declined in large 

females (> 27 mm DCL), which could indicate biological senescence or may reflect differences 
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in spawning times of large and small females. In contrast with previous studies, PF and RF were 

positively correlated with bottom temperature in the relatively warm years of our study. We 

hypothesize that the positive temperature-fecundity relationship we observed may not reflect a 

direct effect, but possibly a compensatory response relating to decreased population density 

during the time period of our study. In addition, the environmental effects we observed may to 

some extent reflect progression of the inshore migration of females.  

 

GOM northern shrimp are considered vulnerable and sensitive to environmental 

variability as they are at the southernmost of their distribution. Various hypotheses for the most 

recent collapse of the GOM northern shrimp population examined or tested in this and previous 

studies suggest there may be multiple factors undermining population growth and sustainability, 

primarily through indirect effects. Accordingly, reproductive potential should be monitored and 

considered in evaluating population dynamics for such vulnerable species, because it may play 

an important role in the process of population recovery.  
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CHAPTER 5. TEMPERATURE AND ABUNDANCE EFFECTS ON SPATIAL 

STRUCTURES OF NORTHERN SHRIMP (PANDALUS BOREALIS) AT DIFFERENT 

LIFE STAGES IN THE OCEANOGRAPHICALLY VARIABLE GULF OF MAINE 

 

5.1 Abstract 

The Gulf of Maine (GOM) northern shrimp, Pandalus borealis, once supported a 

significant winter fishery, but a moratorium has been placed on the fishery since 2014 due to 

recent recruitment failures that have been attributed to unfavorably warm water temperatures. 

The GOM is at the southernmost end of the northern shrimp’s range, suggesting its population 

dynamics and distribution may be vulnerable to warming water temperatures. While spatial 

distributions may provide important insights on temporal changes in abundance, the spatial 

structures of the GOM northern shrimp have not been thoroughly explored. In this study we used 

survey data to estimate density-based spatial indicators for GOM northern shrimp at various life 

stages, and explore temporal changes in the spatial structures of northern shrimp. We also 

examined the relationships between abundance and bottom temperature with the season- and life 

stage-specific spatial distribution indicators. We observed patchier distributions over time with a 

distributional shift toward the shore for adult shrimp, which were associated with declining 

population abundance and warming bottom water temperatures, respectively. These season- and 

life stage-specific density-dependent spatial distribution indicators depict spatial structures for 

the GOM northern shrimp, providing important information for a better understanding of shrimp 

population dynamics under climate change and improved management. 
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5.2 Introduction 

The northern shrimp, Pandalus borealis, a caridean decapod, is an ecologically important 

and commercially-harvested demersal species in the Gulf of Maine (GOM) that once supported a 

significant winter fishery targeted on egg-bearing females. Commercial shrimp landings in the 

GOM over the last five decades have fluctuated widely, from a low of less than 100 mt to more 

than 12,000 mt, during which the fishery has experienced three major collapses (ASMFC NSTC 

[Atlantic States Marine Fisheries Commission Northern Shrimp Technical Committee] 2018).  

The fishery has been under a moratorium since 2014 as a result of repeated recruitment failures 

(ASMFC NSTC 2018), which have been attributed to unfavorably warm water temperatures in 

recent years (Richards et al. 2012; ASMFC NSTC 2018). 

Northern shrimp are protandrous hermaphrodites and have a complex life history.  In the 

Gulf of Maine, they mature at age 2 as males, before transitioning to females at presumed age 3 

(Table 1.1).  These age 3 females spawn with mature males in the deeper waters offshore in the 

western GOM in late summer and early fall. During late fall and early winter, adult females 

(presumed age 4 to 5) carry their developing eggs externally and begin their inshore migration to 

shallower (~50 m) inshore waters in the northern GOM (Haynes and Wigley 1969; Incze 

unpublished).  The females brood the developing eggs externally as they migrate inshore where, 

arriving in winter, the larvae are released.  Following a period of planktonic development that 

lasts several weeks, the larvae settle to the benthos as juveniles in late spring and early summer, 

remaining in inshore waters as males for one to three years before returning to deeper offshore 

waters.  Spawning and the transition of males to females at age 3, all occur in deep, offshore 

waters of the western GOM (reviewed in Shumway et al. 1985; Apollonio et al. 1986; Clark et 
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al. 2000; Richards et al. 2012, and summarized in Table 1.1).  It is during the winter months in 

inshore GOM waters when the egg-bearing females are targeted by the commercial fishery.  

The temperature dependence of shrimp population dynamics is not straightforward.  The 

inshore-offshore migrations by maturing males and egg-bearing females are thought to be 

triggered by seasonal water temperature cues (Apollonio and Dunton 1969; Shumway et al. 

1985; Apollonio et al. 1986), and Apollonio et al. (1986) suggested that the GOM northern 

shrimp are intolerant of abnormally warm water temperature during certain stages in their life 

cycle.  More recent analyses (Clark et al. 2000) support the contention of Apollonio and Dunton 

(1969), Haynes and Wigley (1969), and Apollonio et al. (1986) that shrimp reside in the deeper 

offshore waters of the western GOM in summer where bottom water temperatures generally 

remain the coldest (4 to 6 ºC), with the 6 ºC bottom isotherm delineating the boundary of 

shrimp’s preferred temperatures (only lower abundances of shrimp were found outside that 

boundary in bottom waters warmer than 6 ºC). 

In addition to water temperatures, other factors – e.g., salinity, depth, and bottom 

sediment grain sizes – have been reported to influence the distributions of northern shrimp 

(Shumway et al. 1985; Apollonio et al. 1986; Wieland 2005).  In their study, Worm and Myers 

(2003) ruled out predation by cod as affecting significantly shrimp population abundance in the 

GOM. However, Richards and Hunter (2021) reported that the most recent collapse of the 

northern shrimp population could be due to the invasion of longfin squid (Doryteuthis pealeii) 

into the GOM during the 2012 heat wave, resulting in high predator pressure on the northern 

shrimp population. As for bottom-up influences, variability in food limitation accompanying 

temperatures changes should perhaps be considered.  Shumway et al. (1985) characterized 

shrimp as opportunistic omnivores, functioning both as predators and scavengers. Haynes and 
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Wigley (1969) reported a direct relationship between shrimp abundances and high organic 

content of fine sediments in the GOM, and cite various earlier workers who observed the same 

apparent preference of shrimp for organic-rich, fine-grained bottom sediments which was 

correlated with depth. Apollonio et al. (1986) reported that shrimp feed on various benthic 

invertebrates and detrital phytoplankton and other organic detrital remains and that their 

examination of stomach contents revealed mostly mud and unrecognizable debris.  There has 

been little if any follow up to these early studies on the food and feeding of shrimp, however.  

The general consensus is that water temperature exerts an overriding control on the dynamics of 

their abundance (Dow 1977; Worm and Myers 2003) and recruitment (Richards et al. 2012), and 

the fishery moratorium in place since 2014 was a reaction to record low levels of recruitment and 

spawning stock biomass as well as presumed unfavorable environmental conditions for the GOM 

northern shrimp (ASMFC NSTC 2019).  

Based on satellite sea surface temperature (SST) analyses, surface temperatures in the 

GOM have been argued to be warming rapidly over the past two decades (e.g., Mills et al. 2013; 

Pershing et al. 2015).  Such analyses of high spatial and temporal resolution satellite surface 

temperature data stand in stark contrast to available data on actual measurements of bottom 

temperatures, which, though far less extensive in their spatial and temporal coverage, would 

seem to be more relevant to bottom-dwelling (demersal) shrimp populations. Although the 

bottom temperature is relatively more stable than the SST in the GOM, it was shown that the 

bottom temperature has also been warming over the past three decades (Kavanaugh et al. 2017). 

Water temperatures in the GOM are driven by a complex and highly variable interaction 

between both positive and negative seasonal surface heat fluxes, as well as advective processes 

that exchange GOM water masses with very different waters (different temperatures and 
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salinities) farther offshore, outside the GOM, and beyond the 200 isobath (Townsend et al. 2006; 

Townsend et al. 2015).  Deep and bottom waters of the GOM are the result of influxes of 

relatively warm and salty Slope Waters from beyond the edge of the continental shelf; this Slope 

Water layer may extend upward from the bottom to depths less than 75 m (Bigelow 1927).  

Additional inflow to the GOM occurs as a surface layer of cold and relatively fresh Scotian Shelf 

Water that enters from the east and around Cape Sable, Nova Scotia, as a continuation of the 

Nova Scotia Current (Smith 1983; 1989).  Sandwiched between these two layers in the interior 

GOM resides seasonally a cold intermediate water layer: convective sinking and mixing of cold 

surface waters produced in winter creates the relatively cold water temperatures at depth, which 

subsequent seasonal warming at the surface isolates as a cold intermediate water layer that 

slowly erodes during the remainder of the year (Hopkins and Garfield 1979).  The bottom water 

temperatures that can be expected to affect shrimp populations in the western GOM will 

therefore reflect those water mass intrusions into the eastern GOM and their subsequent mixing 

as they spread to the western GOM, and the intensity of winter convection in the western GOM 

(Brown and Beardsley 1978).  

The changes in bottom temperature would be expected to have impacts on spatial 

distribution and abundance of northern shrimp in the GOM. Based on density-dependent habitat 

selection (DDHS), the relationship between abundance and spatial distribution is positive—

individuals would occupy the most optimal habitat when population abundance is low; as 

abundance increases, the population density in the most optimal habitat increases, resulting in 

decreasing habitat quality due to competition for food and other resources (Reuchlin-Hugenholtz 

et al. 2015; Thorson et al. 2016). As a result, as abundance increases, individuals start to spread 

into suboptimal habitats (Reuchlin-Hugenholtz et al. 2015; Thorson et al. 2016). The spatial 



 88 
 

distribution indices that incorporate spatial structure information may therefore provide useful 

information to conservation and fisheries management. Nevertheless, the spatial structure of 

northern shrimp has not been explored in detail. 

In this study we used survey data to estimate density-based spatial distribution indicators 

and examine the temporal changes of these spatial distribution indicators. We explored the 

relationship between abundance and bottom temperature with the spatial distribution indicators 

for northern shrimp at various life stages, and examined if these indicators provide important 

information and may be useful proxies of abundance. Specifically, we used survey data to 

estimate evenness and proportions of low/high density areas of the population to see how these 

spatial indicators are correlated with abundance and bottom temperature. Furthermore, we used 

center of gravity of each life stage to evaluate possible distributional shifts and develop 

hypothesis for the observed distributional shift. 

 

5.3 Materials and Methods 

5.3.1 Data 

Shrimp samples and bottom water temperatures were collected by NOAA’s Northeast 

Fisheries Science Center (NEFSC) during their fall bottom trawl surveys from 1991 to 2018, and 

by the ASMFC during their summer shrimp surveys from 1984 to 2019 (ASMFC NSTC 2018).  

Data collected by NEFSC spring bottom trawl surveys were not used due to incomplete time 

series. During the NEFSC fall surveys since 1991 and during the ASMFC shrimp surveys since 

1984, bottom temperatures were measured with expendable bathythermographs (XBTs) or with a 

conductivity, temperature and depth profiler (CTD).  
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The ASMFC summer surveys were designed specifically for northern shrimp in the GOM 

for monitoring relative abundance, providing data required for northern shrimp annual stock 

assessment (Cao et al. 2017; ASMFC NSTC 2018). The NEFSC fall bottom trawl surveys were 

designed for multispecies such as demersal fish species and invertebrate species including 

northern shrimp, providing relative abundance for each species in the GOM (Politis et al. 2014).  

Both surveys were conducted with a stratified random sampling design, following 

consistent sampling protocols. The sampling locations were allocated throughout the western 

GOM which was divided into several strata based on depth and geographical location (Fig. 5.1). 

For the summer northern shrimp survey, historical fishing pattern was also considered for 

stratification (Clark 1989; Cao et al. 2017). The sampling locations were randomly selected from 

each stratum, and the number of stations within a stratum was generally proportional to the area 

of the strata and the overall variation of multispecies distribution among strata for fall surveys 

(Politis et al. 2014); the importance of the stratum to the northern shrimp assessment was 

considered for summer survey (Cao et al. 2017). Details of the survey sampling design and 

vessel configuration were documented by Stauffer (2004) and Politis et al. (2014). A contour 

map of depth in the GOM (Fig. 5.2) was made using depth data collected by NOAA National 

Centers for Environmental Information (Boyer et al. 2018). 
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Figure 5.1. Sampling areas of Atlantic States Marine Fisheries Committee (ASMFC) summer 

shrimp bottom trawl surveys in 1984-2019 and Northeast Fisheries Science Center (NEFSC) fall 

bottom trawl surveys in 1991-2018. 
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Figure 5.2. A map of bathymetry of the Gulf of Maine. (Data resources: NOAA National Centers 

for Environmental Information) 

 

Biological data including carapace length and life-stage were collected from NEFSC fall 

surveys and ASMFC summer surveys. male, ovigerous female, female I, and female II data were 

used in this study. Male shrimp were further classified into recruits and mature males based on a 
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cutoff carapace length for recruitment in summer and fall each year (Hunter personal comm.). 

Because samples of shrimp actually undergo the transition from males to females in winter, 

relatively few shrimp at transitional stage were available in summer and fall. Therefore, data on 

transitional stage shrimp were not used. female I shrimp were defined as mature females that had 

not yet spawned, which can be distinguished morphologically by sharply pointed abdominal 

spines that are lost after the first spawning (McCrary 1971). Ovigerous (or, egg-bearing) females 

were defined as shrimp carrying eggs on their pleopods.  Female II shrimp were identified by 

their vestigial abdominal spines, which indicate that they have spawned at least once before 

(McCrary 1971).  Spawning occurs in deep waters offshore in late summer and fall, therefore 

most females sampled in the fall surveys were ovigerous, and we did not include the few female 

I and female II shrimp captured in our analysis. For each tow, a maximum of 2-kg shrimp were 

taken as subsamples. Data of life-stage and carapace length composition were collected for these 

subsamples. Data of the remainder of samples (unstaged) collected in a tow were expanded for 

each tow based on carapace length distribution and proportion of life-stage of staged data 

collected from that tow. 

If a tow caught no shrimps in a stratum where any shrimp (season and life-stage specific) 

was present, the tow was considered a zero-catch tow. Tows in strata where shrimp has never 

been caught were removed. Datasets were processed season and life-stage specifically. 
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Catch per unit effort (CPUE) for each life stage was standardized as number of shrimp 

per 20 minutes tow duration. The average standardized CPUE of a stratum was weighted by 

stratum area (nmi2) to derive the overall stratified mean (Reuchlin-Hugenholtz et al. 2015): 
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The stratified bottom temperature data of a stratum was weighted by stratum area: 
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where -.//$0"11111111111111 = average bottom temperature in a stratum, k = year, s = stratum, A = area 

 

Spatial aggregation of each life-stage was evaluated using modified Camargo’s index 

(Camargo 1995, Payne et al. 2005): 

! = 1 − %& & '()*+!! − )*+!"(, -
#

"$!%&

#

!$&
. 

where E=Camargo’s index, n = number of tows, CPUEi and CPUEj = CPUE at ith location and jth 

location. This evenness index value ranges from 0 to 1, indicating patchy to even distribution. 

This indicator is relatively unaffected by different types of sampling (e.g., random and non-

random) and is able to generate unbiased estimates (Payne et al. 2005). 
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Each tow is classified into low and high CPUE. We defined low CPUE as CPUE < 25% 

quantile of the entire time series (season and life-stage specific), and high CPUE as CPUE > 

25% quantile of the entire time series based on preliminary analyses described below. Proportion 

of low/high CPUE tows in a stratum is considered low/high density area (LDA/HDA). These 

density areas (DAs) are weighted by CPUE and area of strata (Reuchlin-Hugenholtz et al. 2015): 
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A preliminary analysis was conducted to determine the boundaries of low/high CPUE. 

LDAs and HDAs were calculated using a range of quantiles (0%, 10%, 20%, 25% and 33%), and 

the time series at each threshold examined graphically. These LDAs and HDAs had similar 

trends. However, at the 10% quantile LDAs were 0 for at least a few years, and HDAs were 0 for 

several years after the stock collapsed. DAs at 20%, 25%, and 33% were highly correlated, and 

20% and 25% almost overlapped. Therefore, 25% was selected. Zero density areas (ZDA) were 

almost constant over years for most life-stages in the two seasons except for Summer Young 

Male. Yet, ZDAs of Summer Young Male are highly correlated with LDAs at 25%. Therefore, 

ZDA was not used.  

Based on DDHS, we hypothesized that LDAs would increase and HDAs would decrease 

when the population was declining, as areas with optimal conditions were selected by shrimp and 

the population density in suboptimal areas would decrease. 
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The center of gravity (CG) and its variance (termed inertia) were estimated for each life-

stage in each season to examine possible changes in distribution. The CG was defined as 

(Woillez et al. 2009): 
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And inertia (I) (Woillez et al. 2009) as 
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where L is the nth location in stratum s in year k. Ik consists of variances of x and y axes 

(longitude and latitude). The variability around CG was defined as the product of the squared 

root of Ik multiplied by p as: 

4)* = 9:4+4, 

 

5.3.2 Data analysis 

Time series of estimated annual Camargo’s evenness indices, proportions of LDA and 

HDA, latitude and longitude of CG, and inertia were examined graphically, and linear regression 

models and segmented linear models were used to explore trends of temporal changes and 

change points indicating possible regime shifts (Muggeo 2003; 2017; Friedland et al. 2020). 

Change points of segmented linear models were estimated using functions in the “strucchange” 

R-package (Zeileis et al. 2002). 
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The relationships between the spatial distribution indicators and abundance indices and 

abundance-weighted bottom temperature were further examined using multiple linear regression 

models where the spatial distribution indicators were response variables, and bottom temperature 

and abundance were predictor variables in each model. Before fitting the models, variance 

inflation factor (VIF) analyses were conducted for evaluating possible multicollinearity. Only 

predictors with VIFs <3 were included in the linear regression models (Schmiing et al. 2013; 

Brosset et al. 2019). A predictor was excluded from the model if it was not significant (P > 0.05). 

Once the significant predictor variables were identified, a set of autoregressive integrated 

moving average (ARIMA) models were examined for residual structures, including multiple 

linear regression (not correcting for residual structures), ARIMA (0, 0, 1), ARIMA (1, 0, 0), 

ARIMA (1, 0, 1), ARIMA (0, 1, 1), ARIMA (0, 1, 0), and ARIMA (1, 1, 0) where the first 

number in the parentheses is AR order, the second is degree of differencing, and the third is MA 

order. Autocorrelation of residuals was not found for the best models (see Results), higher order 

of lags were therefore not used for the residual structure. Model selection for ARIMA residual 

structures were based on Akaike information criterion (AIC), R-squared (R2), and root mean 

squared error (RMSE). Models with the highest R2 and lowest AIC and RMSE were considered 

the best. Normality and autocorrelation of residuals were graphically examined using QQ-plots 

and temporal autocorrelation plots for the time series. All analyses were performed using R 

version 4.0.3 (R Core Team 2020). 
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Accumulated percentage of stations and percentage of northern shrimp (life stage 

specific) at ranked bottom temperature were used to further examine if northern shrimp had a 

preference for colder water temperature. A logistic model was used to describe the relationship 

between accumulative percentage of stations (or shrimp) and bottom temperature:  

"(<) =
1

1 + @-"(/-/"#)
 

where t is bottom temperature; P(t) is accumulative percentage of stations (or shrimp) at a given 

bottom temperature t, k is the steepness of the logistic curve, t50 is the bottom temperature where 

50% of the stations (or shrimp) had bottom temperature lower (or higher) than t50, i.e. the 

bottom temperature of the midpoint of the curve.  

The t50 for number of stations, the bottom temperature where 50% of the stations had 

lower values of bottom temperature, was then considered unweighted bottom temperature. The 

t50 for number of shrimp, the bottom temperature where 50% of the shrimp were found had 

lower values of bottom temperature, was then considered abundance weighted bottom 

temperature. The values of t50 for each year were used to evaluate the differences between 

unweighted and abundance weighted bottom temperature (difference = abundance weighted – 

unweighted). 

 

5.4 Results 

5.4.1 Surveys  

The numbers of stations sampled for each survey (including zero-catch) are given 

graphically by year in Fig. 5.3. The NEFSC fall bottom trawl surveys had higher numbers of 

stations sampled due to its larger survey area (Fig. 5.1). The bottom temperatures for all life 

stages in summer and fall and the estimated abundance index were shown in Fig. 5.4. The 
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bottom temperatures were relatively higher in the past 15 years (Fig. 5.4a). The estimated 

abundance index was relatively stable before 2004, and after reaching a high peak in 2006 it 

started decreasing until the population collapsed in 2012 (Fig. 5.4b). The time series of mean day 

of year for summer and fall bottom trawl surveys were shown in Fig. 5.5. The average mean day 

of year for summer surveys ranged 210-220 during 1984-2000, and it ranged 200-210 during 

2000-2019 (Fig. 5.5a). For fall surveys, the average mean day of year ranged 290-305 during 

1991-2010, and it ranged 305-320 after 2010 (Fig. 5.5b).   

 

 

Figure 5.3. Number of stations sampled by Atlantic States Marine Fisheries Committee 

(ASMFC) summer shrimp bottom trawl surveys in 1984-2019 and Northeast Fisheries Science 

Center (NEFSC) fall bottom trawl surveys in 1991-2018. 

 



 99 
 

 

 

Figure 5.4. Time series of (a) bottom temperature in summer (black line) and fall (blue line) and 

(b) abundance index of the Gulf of Maine northern shrimp population. 
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Figure 5.5. Time series of mean day of year(DOY) for Atlantic States Marine Fisheries 

Committee (ASMFC) summer shrimp bottom trawl surveys in 1984-2019 and Northeast 

Fisheries Science Center (NEFSC) fall bottom trawl surveys in 1991-2018. 

 
5.4.2 Summer  
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The temporal changes of CG are shown in Fig. 5.6. The CG of summer mature groups 

concentrated in the Platts Bank, shifting toward the shore over time (roughly decadal, Fig. 5.6). 

While the summer recruits had different distributions from the mature groups, which 

concentrated in the Jeffreys ledge in the western GOM (Fig. 5.6).  

 

 

 

Figure 5.6. Maps of center of gravity (CG) of each year for different life stages in summer and 

fall. 
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The summer mature groups (female I, female II, and mature males) had similar patterns 

and trends in the time series of Camargo’s evenness index and latitude of CG with significant 

linear trends (negative slopes for Camargo’s evenness index and positive slopes for latitude of 

CG, Figs. 5.7-5.9), indicating patchier distribution and northward shifts of CG over time for all 

summer mature groups.  
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Figure 5.7. Time series of Camargo’s evenness index, proportion of LDA and HAD (low and 

high density areas), latitude and longitude of CG (center of gravity), and Inertia for summer 

female I of the Gulf of Maine northern shrimp. The blue (significant, p<0.05) and gray 

(nonsignificant, p>0.05) lines were fitted linear regression models. The orange dashed lines 

denoted change points identified by the segmented regression models. The lightblue lines 

denoted the year (2013) when the northern shrimp population collapsed. 
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Figure 5.8. Time series of Camargo’s evenness index, proportion of LDA and HAD (low and 

high density areas), latitude and longitude of CG (center of gravity), and Inertia for summer 

female II of the Gulf of Maine northern shrimp. The blue (significant, p<0.05) and gray 

(nonsignificant, p>0.05) lines were fitted linear regression models. The orange dashed lines 

denoted change points identified by the segmented regression models. The lightblue lines 

denoted the year (2013) when the northern shrimp population collapsed. 
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Figure 5.9. Time series of Camargo’s evenness index, proportion of LDA and HAD (low and 

high density areas), latitude and longitude of CG (center of gravity), and Inertia for summer 

mature males of the Gulf of Maine northern shrimp. The blue (significant, p<0.05) and gray 

(nonsignificant, p>0.05) lines were fitted linear regression models. The orange dashed lines 

denoted change points identified by the segmented regression models. The lightblue lines 

denoted the year (2013) when the northern shrimp population collapsed. 
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The best models of each index for each life stage were shown in Table 5.1. The models 

suggested that the changes in Camargo’s evenness index was positively correlated with 

population abundance for all summer groups, meaning the patchier distribution was associated 

with lower population abundance. The effects of bottom temperature and population abundance 

on Camargo’s evenness index of summer recruits were not significant, and no patterns or trends 

were found in the time series of Camargo’s evenness index for summer recruits. 

 

Table 5.1. Best linear models of each spatial distribution indicators for each life stage in summer 

and fall. Log(Abund) and Bottemp are estimated parameters for log(Abundance index) and 

Bottom temperature. *: p<0.05; **: p<0.01; ***: p<0.001. ARIMA structure is the auto 

regressive integrated moving average structure of residuals for each model. AR = estimated auto 

regressive parameter; MA = estimated moving average parameter, RMSE = root mean squared 

error. OviF = Ovigerous Female. 

 
  

Log(Abund) Bottemp ARIMA 
structure AR MA R2 RMSE 

  
Summer female I             
Camargo’s 0.055***  (1, 0, 0) 0.510*** NA 0.572 0.062 
LDA ⎼0.140***  (0, 0, 0) NA NA 0.695 0.105 
HDA 0.154***  (0, 0, 0) NA NA 0.564 0.154 
Latitude  0.044 (0, 1, 1) NA ⎼0.722*** 0.44 0.116 
Longitude 0.050*  (0, 0, 0) NA NA 0.104 0.168 
Inertia  ⎼0.079* (0, 0, 0) NA NA 0.124 0.145 
Summer female II             
Camargo’s 0.037**  (1, 1, 0) -0.701*** NA 0.679 0.056 
LDA ⎼0.083***  (0, 0, 0) NA NA 0.597 0.078 
HDA 0.085**  (1, 0, 0) 0.407** NA 0.416 0.149 
Latitude  0.066* (0, 1, 1) NA ⎼0.755*** 0.458 0.12 
Longitude 0.050***  (1, 0, 1) 0.558*** ⎼1.000*** 0.308 0.166 
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Inertia   ⎼0.155*** (1, 0, 0) 0.282 NA 0.318 0.162 
Summer mature male             
Camargo’s 0.049***  (0, 0, 1) NA 0.352* 0.464 0.066 
LDA ⎼0.135***  (0, 0, 0) NA NA 0.774 0.083 
HDA 0.158***  (0, 0, 1) NA 0.481** 0.746 0.117 
Latitude  0.055 (0, 1, 1) NA ⎼0.740*** 0.315 0.131 
Longitude 0.069* 0.114* (0, 0, 0) NA NA 0.158 0.209 
Inertia  ⎼0.079* (0, 0, 1) NA 0.466* 0.244 0.133 
Summer Recruits             
LDA ⎼0.175***  (0, 0, 1) NA ⎼0.234 0.7 0.138 
HDA 0.181***  (0, 0, 0) NA NA 0.51 0.201 
Latitude  0.134** (1, 0, 1) ⎼0.570* 0.858*** 0.295 0.133 
Fall ovigerous female             
Camargo’s 0.02***  (0, 0, 0) NA NA 0.348 0.031 
LDA ⎼0.046***  (0, 0, 0) NA NA 0.344 0.072 
HDA 0.053 ⎼0.002 (1, 0, 0) 0.727*** NA 0.571 0.155 
Latitude  0.114*** (0, 0, 1) NA 0.395* 0.443 0.12 
Inertia 0.113*** ⎼0.103* (0, 0, 0) NA NA 0.476 0.171 
Fall mature male             
HDA 0.101*** 0.039 (1, 0, 0) 0.472** NA 0.548 0.132 
Latitude  0.083* (0, 0, 1) NA 0.625*** 0.414 0.142 
Inertia 0.091*   (0, 0, 0) NA NA 0.174 0.226 
Fall Recruits             
LDA ⎼0.086**  (0, 0, 0) NA NA 0.238 0.176 
Latitude  0.247*** (1, 0, 1) 0.512** ⎼1.000*** 0.397 0.243 

 

The changes in latitude of CG were significantly positively correlated with bottom 

temperature for summer female II and recruits, indicating the northward shifts of CG were 

associated with warmer temperature. Although no clear trends were found in the time series of 

longitude of CG for all summer groups (Figs. 5.7-5.10) and only one change point was identified 

for female II at 2012 (Fig. 5.8), the changes in longitude of CG were positively correlated with 

population abundance for summer mature groups (Table 5.1). The models suggested the 
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westward shifts of CG of summer mature groups were associated with lower population 

abundance.  

 

 

 

Figure 5.10. Time series of Camargo’s evenness index, proportion of LDA and HAD (low and 

high density areas), latitude and longitude of CG (center of gravity), and Inertia for summer 

recruits of the Gulf of Maine northern shrimp. The blue (significant, p<0.05) and gray 

(nonsignificant, p>0.05) lines were fitted linear regression models. The orange dashed lines 



 109 
 

denoted change points identified by the segmented regression models. The lightblue lines 

denoted the year (2013) when the northern shrimp population collapsed. 

 
Two change points were identified by segmented regression models for the time series of 

Camargo’s evenness index of the summer mature groups in 1992 and 2010 (Figs. 5.7-5.9). 

Before 1992, the Camargo’s evenness index remained at 0.38-0.46 for the summer mature 

groups. During the period of 1993-2010, the averages of Camargo’s evenness index of these 

three life stages decreased to the level of 0.28-0.34. After 2011, the averages of Camargo’s 

evenness index of these three life stages decreased to an even lower level of 0.18-0.22. However, 

no trends or change points were found in the Camargo’s index time series for summer recruits 

(Fig. 5.10). A summary of change points of the time series of the indices was shown in Fig. 5.11.  
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Figure 5.11. A summary plot of all the change points of each spatial distribution indicator 

identified by the segmented regression models for each life stage of the Gulf of Maine northern 

shrimp in summer and fall. The blue lines denoted two coldest years over the time series, and the 

orange lines denoted two hottest years over the time series. 

 

Two change points were identified for the time series of latitude of CG of the two 

summer female groups (Figs. 5.7-5.8). The latitude of CG was at around 42.9°N before the first 

change point in 1993, it then increased to around 43.1°N before the second change point in 2008 

and 2006 for summer female I and II, respectively (Figs. 5.7-5.8). It shifted northward to around 

43.25°N since the second change points of the two summer female groups. One change point 
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was identified for summer mature male in 2006 (Fig. 5.9)-the latitude of CG was around 

43.08°N before the first change point, and shifted northward to around 43.25°N since 2007. 

As for Inertia (variability around CG), the decreasing linear trends of Inertia were 

significant only for summer female I with no change points identified (Fig. 5.7), indicating the 

variability around the CG decreased over time for summer female I. Although the patterns of 

Inertia were not clear and no linear trends or change points identified for other summer groups, it 

was noted that the Inertia of summer female II and recruits remained at low levels over almost 

the entire time series (<0.25 for female II and <0.15 for recruits) but reached a high peak around 

0.35 in 2004 which was the coldest year in the time series (Figs. 5.4, 5.8 and 5.10). Furthermore, 

the model suggested that the changes in Inertia for summer mature groups were negatively 

correlated with bottom temperature (Table 5.1), with warmer temperature associated with lower 

variability around the CG. 

The linear trends were significantly positive for all LDA time series of summer groups 

(Figs. 5.7-5.10), indicating more and more proportions of LDA over time for all summer groups. 

On the other hand, the linear trends of HDA time series were significantly negative for summer 

male groups but not for female groups (Figs. 5.7-5.10), indicating less and less proportion of 

HDA for summer male groups over time.  

For all summer groups, the models suggested that the changes in LDA were negatively 

correlated with population abundance and the changes in HDA were positively correlated with 

population abundance (Table 5.1), with decreasing population abundance associated with more 

LDA and fewer HDA. While the bottom temperature effects were not significant on both LDA 

and HDA (Table 5.1). 
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The LDA of summer groups remained at low level with low variations until the change 

points in 2012-2014 where the population collapsed, while after the change points the LDA 

increased dramatically from below or around 0.1 to above 0.3-0.6 (Figs. 5.7-5.10).  

Three change points were identified for summer female I and mature male HDAs (Figs. 

5.7 and 5.9). The HDAs remained at around 0.4 before the first change point in 1998 and 1999 

for summer female I and mature male, respectively. The HDAs of these two life stages decreased 

to around 0.2 during the first two change points, and increased to around 0.6 during 2005-2011 

before it dropped to a very low level below 0.1 after 2012. 

No autocorrelations were found in the residuals of all summer models after accounting 

for the ARIMA structures (Figs. B.1-B.4). 

In summary, the distributions of summer mature groups were getting patchier and 

shifting northward over time. The changes in distribution evenness, proportions of LDA and 

HDA were associated with population abundance, while the shifts of CG were associated with 

bottom temperature for summer groups.  

 

5.4.3 Fall 

In fall, the mature groups (ovigerous female and mature male) concentrated in the Platts 

Bank and Cashes Ledge areas (Fig. 5.6). While the recruits migrate from Jeffreys ledge in 

summer to more offshore areas toward Platts Bank. The shifts of CG toward the shore over time 

were also observed for fall mature groups (Fig. 5.6). 

Similar to summer mature groups, significant northward shifts of CG over time (Figs. 

5.12-5.13) were also found for the fall mature groups. The changes in the latitude of CG were 

positively correlated with abundance weighted bottom temperature for fall mature groups (Table 
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5.1), with warmer temperature associated with northward shifts of CG. One change point was 

identified for fall ovigerous female and mature male in 2007 and 2002, respectively (Figs. 5.12-

5.13). Before the change point, the latitude of CG for fall mature groups was around 43°N, it 

shifted to around 43.2°N after the change point. No significant linear trends were found in the 

time series of longitude of CG for fall mature groups, although one change point was identified 

in 1996 for ovigerous female.  
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Figure 5.12. Time series of Camargo’s evenness index, proportion of LDA and HAD (low and 

high density areas), latitude and longitude of CG (center of gravity), and Inertia for fall 

ovigerous female of the Gulf of Maine northern shrimp. The blue (significant, p<0.05) and gray 

(nonsignificant, p>0.05) lines were fitted linear regression models. The orange dashed lines 

denoted change points identified by the segmented regression models. The lightblue lines 

denoted the year (2013) when the northern shrimp population collapsed. 
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Figure 5.13. Time series of Camargo’s evenness index, proportion of LDA and HAD (low and 

high density areas), latitude and longitude of CG (center of gravity), and Inertia for fall mature 

male of the Gulf of Maine northern shrimp. The blue (significant, p<0.05) and gray 

(nonsignificant, p>0.05) lines were fitted linear regression models. The orange dashed lines 

denoted change points identified by the segmented regression models. The lightblue lines 

denoted the year (2013) when the northern shrimp population collapsed. 
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With regards to Inertia, a significant decreasing linear trend was found for fall ovigerous 

female, indicating the variability around the CG decreased over time for ovigerous female (Fig. 

5.12). Two change points in 1994 and 2012 were identified for the time series of Inertia of 

ovigerous female (Fig. 5.12). The Inertia were at moderate level around 0.17 and decreased to a 

very low level around 0 after 2013. Although no linear trends or change points were found in the 

time series of Inertia for summer mature males (Fig. 5.13), the models suggested that the changes 

in Inertia were positively correlated with population abundance for fall mature groups (Table 

5.1), with lower variability around CG associated with lower population abundance. In addition 

to abundance effects, the model indicated that the Inertia of ovigerous females was negatively 

correlated with bottom temperature (Table 5.1), with warmer temperature associated with lower 

variability around CG.  

For distribution evenness in the fall, significantly decreasing Camargo’s evenness index 

(i.e. patchier distribution) over time was found for ovigerous female (Fig. 5.12), which was 

associated with declining population abundance (Table 5.1). One change point was identified in 

2011 for the time series of Camargo’s evenness index of fall ovigerous female (Fig. 5.12). After 

2011, the Camargo’s evenness index of fall ovigerous female decreased from 0.14 to below 0.10. 

No significant linear trends were found for the LDA time series of fall mature groups. 

Similar to summer groups, the models suggested that the changes in LDA of fall ovigerous 

females and recruits were negatively correlated with population abundance (Table 5.1), with 

higher proportions of LDA associated with lower population abundance.  

 

The linear trends of HDA time series were not significant for fall mature groups. In 

contrast to the significant negative effects of population abundance on LDA for ovigerous 
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female, both effects on HDA were not significant for fall ovigerous female after accounting for 

the ARIMA structure for the residuals (Table 5.1). As for fall mature males, the changes in HDA 

were positively correlated with population abundance (Table 5.1), with higher proportions of 

HDA associated with higher population abundance. The bottom temperature effects on HDA of 

fall mature male were positive but not significant after accounting for the ARIMA structure for 

the residuals (Table 5.1).  

Two to four change points were identified for LDA and HDA of fall mature groups (Figs. 

5.12-5.13). The time series of LDA and HDA of fall mature groups showed a roughly reversed 

pattern that LDA was at a lower level and HDA was at a higher level during 2006-2012 (Figs. 

5.12-5.13).  

As for fall recruits, although one and two change points were identified for Camargo’s 

evenness index and LDA, respectively, the patterns of the time series of these indices were not 

clear and no linear trends were found in these time series (Fig. 5.14).  
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Figure 5.14. Time series of Camargo’s evenness index, proportion of LDA and HAD (low and 

high density areas), latitude and longitude of CG (center of gravity), and Inertia for fall recruits 

of the Gulf of Maine northern shrimp. The blue (significant, p<0.05) and gray (nonsignificant, 

p>0.05) lines were fitted linear regression models. The orange dashed lines denoted change 

points identified by the segmented regression models. The lightblue lines denoted the year 

(2013) when the northern shrimp population collapsed. 
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No autocorrelations were found in the residuals of all fall models after accounting for the 

ARIMA structures (Figs. B.5-B.7). 

In summary, similar to summer mature groups, the CG of fall mature groups were also 

shifting northward. However, the distribution was getting patchier only for ovigerous females. 

The northward shifts of CG were correlated with bottom temperature, while the changes in 

distribution evenness, proportions of LDA and HDA were more associated with population 

abundance,  

The unweighted and abundance weighted bottom temperatures were shown in Fig. 5.15. 

The abundance weighted bottom temperature was generally lower than the unweighted bottom 

temperature for all life stages in summer and fall (Fig. 5.15).  
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Figure 5.15. Differences of unweighted and abundance weighted bottom temperatures for 

summer and fall(differences = abundance weighted - unweighted). Fem1 = female I, Fem2 = 

female II, MM = mature male, Rec = recruits, OviF = ovigerous female. 
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The differences (abundance weighted – unweighted) ranged -1.97-0.17 for summer 

mature groups (Table 5.2 and Fig. 5.15). The differences were larger for summer recruits, with a 

mean of difference of -0.97 (Table 5.2 and Fig. 5.15), meaning the abundance weighted bottom 

temperature was lower than unweighted bottom temperature by around 1 °C for summer recruits.  

 

Table 5.2. Summary of differences of unweighted and abundance weighted bottom temperature 

for each life stage  

(SD = standard deviation). 

 Minimum Maximum Mean SD 
Summer 
Female I -1.325 0.057 -0.484 0.345 
Female II -1.245 -0.006 -0.537 0.321 
Mature male -1.972 0.173 -0.595 0.452 
Recruits -2.899 0.386 -0.966 0.630 
Fall         
Ovigerous female -2.482 1.564 -0.803 0.962 
Mature male -3.126 0.779 -1.112 0.881 
Recruits -3.090 1.742 -0.869 1.016 

 

The differences between unweighted and abundance weighted bottom temperatures for 

fall groups were larger than summer groups (Table 5.2 and Fig. 5.15). The abundance weighted 

bottom temperatures were lower than unweighted bottom temperature by from 0.8 °C (for fall 

ovigerous females) to 1.1 °C (for fall mature males) (Table 5.2 and Fig. 5.15). Some estimates of 

the parameters were missing for some years as the models did not converge. 
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5.5 Discussion 

Our results suggest that evenness, LDA and HDA are correlated with abundance for 

almost all life stages in summer and Fall, while shifts in CG were more bottom temperature 

related. These indicators provided different information on the spatial structure of the 

distribution. The Camargo’s evenness index evaluates the evenness or patchiness of the 

distribution, implying how aggregating a species or a life stage may be. LDA and HDA can also 

be indicators of distribution evenness, providing different information on spatial structure 

(proportion of low and high density areas). It is intuitive that the LDAs are negatively correlated 

with abundance and HDAs are positively correlated with abundance as, based on DDHS, the 

proportion of LDA would increase when the population decline and the proportion of HDA 

would increase when the population abundance increase. The indicators of CG and Inertia 

quantify the possible distributional shifts and variation of the population distribution.  

Our results showed that the distributions were getting patchier over time for mature 

groups except fall mature males. The changes in Camargo’s evenness index could be explained 

by the DDHS for the mature groups (except fall mature males) as the patchier distributions were 

associated with declining population abundance, not bottom temperature. Intuitively, the 

declining population abundance also led to changes in LDA and HDA, consequently resulting in 

patchier distribution.  

The information of LDA and HDA together is consistent with DDHS theory predictions 

that when population abundance is low, individuals occupy the optimal habitat; but when 

population abundance is high, individuals spread into suboptimal habitat (Thorson et al. 2016). 

Our results showed that the temporal changes of LDA and HDA were roughly a counterpart of 

each other for fall mature groups. The higher levels of LDA and lower levels of HDA during 
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2006-2012 reflected higher levels of population abundance during 2005-2010. The beginning of 

this period occurred right after the coldest year (2004) over the time series (Fig. 5.11), and the 

higher levels of HDA ended when it entered the so-called warm years after 2010 (hottest in 2012 

over the time series). Change points of HDA time series were also identified around these cold 

and warm years for mature groups in both summer and fall (Fig. 5.11), implying that the HDA 

entered into a different level after the change points. Nevertheless, for summer mature groups, 

the temporal changes of LDA and HDA had different patterns and were not a reversed counter 

part of each other. The LDA of summer mature groups remained at low levels and started to 

surge to high levels when the population started to collapse in 2013, and change points of LDA 

were also identified one year before 2013 for summer female I and mature males (Figs. 5.7 and 

5.9). Therefore, comparing to HDA, LDA of summer mature groups may be less sensitive to 

population abundance changes.  

The differences between unweighted and abundance weighted bottom temperature 

showed that northern shrimp at different life stages had a preference for colder water 

temperature. However, it should be noted that the differences between unweighted and 

abundance weighted bottom temperature were positive values for fall ovigerous females in 2010-

2014 which were the years with warmer temperature. i.e. more than half of the ovigerous females 

stayed in the locations where water temperatures were higher than the average temperature 

during the warm years (2010-2014). Furthermore, after the stock collapsed, the HDA of fall 

ovigerous female only dropped to a similar level as before the high HDA period (2006-2012), 

but a surge of LDA was still observed. It was thus hypothesized that fall ovigerous females may 

have certain requirement for habitat possibly for reproduction-when the population collapsed, 

individuals aggregate in the optimal habitat, which result in a delayed decline in HDA but rapid 
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surge in LDA. The results of Camargo’s evenness index and Inertia also supported this 

hypothesis as the distribution of fall ovigerous female became patchy and the variability around 

the CG decreased to a very low level after the population collapsed. 

In addition to patchier distribution, the CG of the mature groups shifted around 33km 

(~42.9-43.2°N) northward over time, which was correlated with warming temperature. The 

bottom temperatures in summer and fall were relatively higher in the past 15 years, as a result of 

greater influxes of Warm Slope Water relative to Cold Labrador Slope Water and/or Scotian 

Shelf Water on top of a baseline of warming waters globally (Townsend et al., 2015; Fig. 5.4). 

The temperature could have indirect effects on the northern shrimp population. Richards and 

Hunter (2021) reported that changes in distribution and migration phenology of predatory longfin 

squid during the marine heatwave of 2012 may have been major factors in the collapse of the 

GOM northern shrimp. The collapse of the population could result in changes in spatial 

structures such as CG shifts due to declined population abundance. However, the northward 

shifting of CGs started in the 1980s, which could not be explained by the invasion of longfin 

squid. Combining with the results of CG, I, Camargo’s evenness index, LDA, and HDA, it is 

likely the warming temperature in summer in the southern areas of their current habitat prevents 

adult northern shrimp from migrating further southward. The distances of inshore-offshore 

migration therefore become shorter and shorter over time as the shoreline runs northeast to 

southwest, which means the adult shrimp remain increasingly closer to the shore over the years 

and their distribution become patchier. Dow (1981) reported that normal inshore migration of 

ovigerous females did not occur in the mid-1950s when temperatures were high in the GOM. 

However, Haynes and Wigley (1969) reported incomplete inshore migration of ovigerous 

females during low temperatures. 
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The northward shifting CG may also be explained by the changes in survey timing. The 

timing of summer surveys had been earlier by 10-20 days compared to the 1980s. Most mature 

groups migrate to offshore areas during spawning season which takes place in late summer and 

fall. The northward shifting CG might reflect the earlier timing of survey as shrimp are on their 

offshore migration prior to spawning season. On the other hand, the timing for fall surveys had 

been later by around 15 days. After spawning season, ovigerous females start their inshore 

migration. Therefore, the northward shifting CG might reflect later survey timing as ovigerous 

females migrate to inshore areas after spawning season. Nevertheless, the northward shifting CG 

was also found for fall mature males.  

No matter what role water temperature plays in the shifting of CG of adult shrimp, our 

results showed that the CG of mature northern shrimp population concentrated in Platts Bank and 

was slowly shifting northward over time rather than leaving the GOM. Greater winter heat flux 

(both sensible and latent [evaporative] heat flux) from surface waters in the western Gulf, result 

from cold, dry air outbreaks nearer the North American continent. This leads to deeper winter 

convective mixing, and, in addition to less tidal mixing of deep waters in the western Gulf, 

results in generally colder bottom waters throughout much of western GOM (Townsend et al., 

2006). Apollonio et al. (1986) indicated that the Jeffreys Basin in the western GOM was 

considered a refuge for northern shrimp, providing suitable temperature conditions to support 

offshore life stages of northern shrimp. In contrast to the western GOM, the stronger turbulence 

in the eastern GOM produces greater vertical instability and more through mixing of surface and 

bottom waters throughout the year, the bottom temperature in the eastern GOM is therefore 

slightly higher than the western GOM (Apollonio et al. 1986). Moreover, the higher water 

temperature in the southern GOM prevents northern shrimp from extending its geographic range 



 126 
 

toward Cape Cod and Georges Bank (Haynes and Wigley 1969). Therefore, the distribution of 

northern shrimp is effectively limited to deeper waters (c. 120-150 m) in the western GOM. 

The CG results in this study showed that summer recruits were found close to the shore 

around Jeffreys ledge and migrate toward Platts Bank and Cashes Ledge in the fall. These 

migrating recruits are likely immature males which mature in offshore waters (Apollonio et al. 

1986). However, the fall recruits in our data may not be representative as they were only a small 

portion of young males in the population, which were not fully recruited to the survey areas. As a 

result, in some years the numbers of observations of fall recruits were less than 10 as the 

majority of young males remain in inshore waters. This may also be one of the reasons that the 

patterns of spatial distribution for fall recruits were found unclear or nonsignificant, and our 

observations of these recruits may reflect their ontogenetic migration. 

This study aimed to examine the temporal changes in spatial distribution indicators which 

incorporated information from bottom trawl survey, associating the changes in spatial structure 

with population abundance and bottom temperature. These spatial indicators were correlated 

with population abundance but could provide different information on spatial structure of the 

population. Nevertheless, some phenomena remained unexplained such as the distribution 

getting patchier and shifting slowly northward since the 1980s. Plausibly, the patchier 

distribution might simply be a result of shifting CG which was associated with changes in 

bottom temperature. Despite the models suggestion that the shifts of CG were associated with 

bottom temperature, the mechanisms behind the correlation were not clear. Therefore, further 

investigations are needed for better understanding the driving mechanisms.   
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CHAPTER 6. HABITAT SUITABILITY MODELS USING SURVEY AND FINITE-

VOLUME COMMUNITY OCEAN MODEL BOTTOM TEMPERATURE DATA FOR 

THE GULF OF MAINE NORTHERN SHRIMP (PANDALUS BOREALIS) 

 

6.1 Abstract 

The Gulf of Maine northern shrimp (Pandalus borealis) population collapsed in 2013, 

and a moratorium has been imposed on the fisheries since 2014 due to low population abundance 

and perceived continuous recruitment failures. The collapse of the population has been 

hypothesized to be associated with warming water temperature in the past decade. This study 

examines temperature effects on the quality of habitat for adult shrimp in summer and fall when 

spawning take place using habitat suitability index (HSI) as well as the relationships between 

HSI and spawning stock biomass (SSB) index for adult male and female. The HSI in this study 

described habitat selection for depth and bottom temperature. The results showed that the quality 

of habitat had declined significantly for adult shrimp in both summer and fall, especially over the 

past decade. Furthermore, the increasing proportion of low quality habitat in summer and fall 

was correlated with declining SSB index at a 2-year lag. This study provides an alternative 

hypothesis for the collapse of the fishery for the GOM northern shrimp. 

 

6.2 Introduction 

Northern shrimp (Pandalus borealis) is one of the ecologically and economically 

important demersal species in the Gulf of Maine (GOM) once supported a significant 

commercial fishery that targeted egg-bearing female shrimps in the New England states. The 

annual commercial landings fluctuated from less than 100 mt to over 12,000 mt, and the fishery 
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has experienced three major collapses over the past five decades (ASMFC NSTC 2019). The 

fishery has been on moratorium since 2014 due to a steep decline of abundance and consecutive 

recruitment failures for several years (ASMFC NSTC 2019). The low abundance and recruitment 

failures have been perceived to be related to unfavorably high water temperature (ASMFC 

NSTC 2019). 

Northern shrimp are protandric hermaphrodites; they start their lives as males, maturing 

and mating at around 2.5 years old before they transfer to females for the remainder of their lives 

(Shumway et al. 1985, Richards et al. 2012). Young males start their offshore migration during 

their first year of life (Shumway et al. 1985; Apollonio et al. 1986). Spawning takes place in late 

summer and fall and egg-bearing females migrate inshore to hatch their eggs in winter. This 

historically observed seasonal inshore-offshore migration was perceived to be water temperature-

induced and makes spatial distribution vary by seasons and life stages (Haynes and Wigley 1969; 

Apollonio et al. 1986).  The northern shrimp seemed to be less tolerant of warm temperature at 

certain stage in their life span, and egg-bearing females and hatching larvae preferred colder 

bottom water temperature which drives inshore migration for them (Apollonio et al. 1986). 

There has been increasing concern about the ecological impact of climate change and 

variability on the marine ecosystem and fisheries (Mills et al. 2013; Kleisner et al. 2017). 

Climate-induced changes in marine ecosystem includes the variability in temperature, sea level, 

ocean CO2 uptake, and extreme weather (IPCC 2014), which could have significant effects on 

distributional shift of habitat, growth, and reproduction of marine species (Hare and Able 2007; 

Richards et al. 2012; Hare et al. 2016). The sea surface temperature in the Gulf of Maine 

between 1982-2013 had increased faster than 99 % of the global oceans (Pershing et al. 2015). 
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The bottom water temperature in the GOM has also been increasing especially over the past 

decade, which could have impact on the benthic species (Kavanaugh et al. 2017).  

The GOM northern shrimp are considered very susceptible to environmental variability 

as they are at the southern end of their distribution in the North Atlantic Ocean (Richards et al. 

2012). It is essential to assess the relationship between the recent collapse in shrimp population 

and potential quality habitat loss due to climate-induced effects. Therefore, this study aims to 

develop habitat suitability index (HSI) models, quantifying the relationship between the quality 

of habitat and environmental factors and providing essential information on the spatiotemporal 

distribution and habitat preference for effective habitat-related fishery management for northern 

shrimp. Estimating the effects of climate change on spatial variation of habitat quality will help 

address how fisheries management can adapt to climate change. 

 

6.3 Materials and Methods 

6.3.1 Data 

Shrimp catch data were collected by the Atlantic States Marine Fisheries Commission 

(ASMFC) northern shrimp summer surveys in July and August during 1984-2019, and by the 

Northeast Fisheries Science Center (NEFSC) fall bottom trawl surveys in October and November 

during 1991-2018. The ASMFC shrimp summer surveys were designed specifically for northern 

shrimp to estimate population abundance and provide essential input information for stock 

assessment for the GOM northern shrimp (ASMFC NSTC 2018; Cao et al. 2017). The NEFSC 

fall bottom trawl surveys were designed for multispecies including demersal fish species and 

invertebrate species for providing relative abundance of each species in the GOM (Politis et al. 

2014). Both surveys followed consistent sampling protocols with stratified random sampling 
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designs. For the NEFSC fall bottom trawl surveys, the station locations were allocated 

throughout the western GOM which was divided into several strata based on depth and 

geographical location (Politis et al. 2014). The ASMFC summer northern shrimp surveys also 

considered historical fishing pattern for stratification (Cao et al. 2017; Clark, 1989). The 

sampling locations were randomly sampled from each stratum, and the number of stations within 

a stratum was generally proportional to the area of the strata and the overall variation of 

multispecies distribution among strata for fall surveys (Politis et al. 2014); the importance of the 

stratum to the northern shrimp assessment was considered for summer survey (Cao et al. 2017). 

Details of the survey sampling design and vessel configuration were documented by Stauffer 

(2004) and Politis et al. (2014). 

Both surveys collected biological data including carapace length and life-stage. Life 

stages were classified into male, female I, female II, transition, and ovigerous female. Transition 

stage shrimp were not used as samples of shrimp at transition stage were relatively few and the 

time series was incomplete. Male shrimp were further classified into recruits and mature male 

based on carapace length of recruitment cutoffs for each year (DMR). Female I shrimp were 

defined as mature females that have not yet reached spawning age, possessing sharply pointed 

abdominal spines (McCrary 1971). Female II shrimp were defined as having vestigial abdominal 

spines and which have spawned at least once before (McCrary 1971). Female I and female II in 

summer were combined as Female. For summer data, female and mature male data were used in 

this study. As for fall data, ovigerous female and mature male data were used as only a few 

female I and female II were caught in fall.  
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Unstaged data were expanded for each tow based on carapace length distribution and 

proportion of life-stage of staged data collected from that tow. If a tow caught no shrimps in a 

stratum where any shrimp (season and life-stage specific) was present, the tow is considered a 

zero-catch tow. Carapace length distributions of males were used to determine length of 

recruitment cutoffs in fall and summer of each year, male shrimp were then further classified into 

Recruits and mature male based on the cutoffs. 

Abiotic data included water temperature and sampling depth. During the NEFSC fall 

surveys since 1991 and during the ASMFC shrimp surveys since 1984, bottom temperatures 

were measured with expendable bathythermographs (XBTs) and with a CTD (conductivity, 

temperature and depth profiler). 

 

6.3.2 Analysis 

Datasets are processed season- and life-stage specifically. Survey catch per unit effort 

(CPUE) for each life stage was standardized as number of shrimp per 20 minutes tow duration. 

 

6.3.2.1 Suitability index (SI) 

Water temperature and depth were used for calculating suitability index (SI) and 

consequent habitat suitability index (HSI) based on literature review and expert opinion 

(Apollonio et al. 1986; Richards et al. 2012; M. Hunter, personal communication). Apollonio et 

al. (1986) indicated that water temperature may be a driver for inshore-offshore migration for the 

GOM northern shrimp. The success of recruitment and strength of year classes were also 

considered to be affected by water temperature (Richards et al. 2012).  
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Each variable was classified into 10 bins using Jenk’s natural breaks classification 

(Bivand et al. 2020). The suitability index for each variable was calculated as: 

 

A41," =
!"#$1," − !"#$1,21%
!"#$1,23+ − !"#$1,21%

 

 

where i = variable, k = bin, CPUEi,k = the average CPUE in kth bin of i variable, the CPUEi,min 

and CPUEi,max are the bins with minimum and maximum average CPUEs of i variable. The SI 

ranged from 0 to 1, with 0 for the lowest CPUE and 1 for the highest CPUE.  

In a preliminary analysis, the SI of bottom temperature for fall groups showed a bimodal pattern 

(see Results section). Therefore, each of fall ovigerous female and mature male were further 

subset into small ovigerous Female (DCL ≤ 25 mm), large ovigerous female (DCL > 25 mm), 

small mature male (DCL ≤ 20 mm), and large mature male (DCL > 20 mm). 

 

6.3.2.2 Habitat suitability index (HSI) 

 

Habitat suitability index (HSI) was estimated as the geometric mean (GMM) of SIs of all 

the variables: 

BA4 = CDA41
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The GMM was used as it assumes that if an SI in an area is zero then the HSI in that area 

is rated zero. The arithmetic mean was not considered in this study as it allows a non-zero HSI 

value even if one of the SIs was zero in an area, which may not be biologically meaningful 

(Draugelis-Dale 2008).  

A Generalized Additive Model (GAM; Hastie and Tibshirani 1990) with lognormal 

distribution was used to quantify the relationships between HSI and candidate habitat variables. 

A variance inflation factor (VIF) analysis was conducted to identify multicollinearity before 

fitting models to the data. A threshold VIF of 3 was set for evaluating possible collinearity 

between predictors in the data set (Schmiing et al. 2013; Brosset et al. 2019). The form of the 

GAMs was: 

F(G)~I +JK1(L1)
"

1&'
+ M1 

where g() is the link function, y is HSI, fi is the ith smooth function based on thin plate regression 

splines, xi is the ith explanatory variable, and εi is residual errors. 

The VIF analysis suggested that multicollinearity was not an issue in modeling the 

dataset as all explanatory variables (bottom temperature, depth, longitude, and latitude) had VIFs 

< 3. Longitude and latitude were included in the base model in order to catch significant spatial 

trends not captured in other variables. Models of all combinations of other variables (bottom 

temperature and depth) were built using maximum likelihood methods (Fisher et al. 2018).  

Model selection was based on full-subsets information theoretic approaches (Anderson 

and Burnham 2002; Fisher et al. 2018), using Akaike’s information criterion (Akaike 1973), AIC 

weights (ωAIC), deviance explained by the model, and graphical inspection. Root mean squared 
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error (RMSE) estimated with leave-one-out cross-validation (LOOCV) was used to evaluate 

predictive performance of models (Zuur et al. 2009; Arlot and Celisse 2010). 

Models with ΔAIC <2 were considered best models (Anderson and Burnham 2002). 

Models with the lowest AICc scores were refit with REML (Zuur et al. 2009; Wood 2017) and 

effect graphs of these models were presented. Biological relevance and the relationships between 

response variables and predictors were graphically examined. Relative importance of predictors 

was calculated as the sum of AICc weights of models in which a predictor is present (Anderson 

and Burnham 2002; Fisher et al. 2018). 

The residuals of the optimal model were graphically examined with QQ-plots to inspect 

any patterns in the residual errors (Zuur et al. 2009). Semivariance of Pearson residual errors 

from the most optimal model was examined for the presence of spatial autocorrelation (Cressie 

1993; Pebesma 2004; Gräler et al. 2016). Autocorrelation (AC) and partial autocorrelation (PAC) 

plots of Pearson residuals were used for inspecting temporal autocorrelation (Stoffer and 

Shumway 2017). If temporal autocorrelation was suggested by the plot, then year was included 

in the model in order to account for the autocorrelation between years.  

Depth data collected by NOAA National Centers for Environmental Information (NCEI) 

and bottom temperature data interpolated from ASMFC and NEFSC surveys data were used for 

hindcasting spatiotemporal variation in HSI for northern shrimp in summer and fall. Seasonal 

mean values of bottom temperature simulated from Finite-Volume Community Ocean Model 

(FVCOM) were also used for hindcasting the expected HSI. The predicted HSI using the two 

data sources of bottom temperature was qualitatively compared. Linear regression models were 

fit to hindcasted HSI time series for examining temporal trends.  
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The estimated HSI were classified into low (< 0.25 quantile of HSI), medium (> 0.25 

quantile and < 0.75 quantile), and high (> 0.75 quantile) quality groups for each year and each 

life stage. The proportions of high and low quality HSI were cross correlated with estimated 

spawner biomass (SSB) indices (ASMFC NSTC 2019). The SSB was estimated based on the 

size-distribution of the population and length-weight relationship. The spawners were defined as 

females larger than 22 mm (dorsal carapace length) (ASMFC NSTC 2019). All statistical 

analyses were performed using R 4.0.3 statistical software (R Core Team 2020).  

 

6.4 Results 

The maps of distribution of CPUE (number of shrimp per 20 minutes tow) were shown in 

Fig. 6.1. In summer, high densities of mature female and male shrimp were found in Jeffrey’s 

Ledge, Platts Bank, Jeffrey’s Bank, and Cashes Ledge. In fall, small ovigerous female were more 

concentrated in Jeffrey’s Ledge. While large ovigerous female, small and large mature male 

were more spread out toward Jeffrey’s Bank and Wilkinson Basin.  
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Figure 6.1. Maps of distribution of survey CPUE (number of shrimp per 20 minute tow time) for 

(a) summer female and (b) summer female collected from Atlantic States Marine Fisheries 

Commission (ASMFC) summer northern shrimp survey, and (c) fall small ovigerous female, (d) 

fall large ovigerous female, (e) fall small mature male, and (f) fall large mature male collected 

from Northeast Fisheries Science Center (NEFSC) fall bottom trawl survey. 

 

The suitability indices of bottom temperature and depth for summer and fall female and 

male northern shrimp were shown in Fig. 6.2. The suitability indices for both summer female and 

male decreased with increasing bottom temperature. The suitability indices for depth had similar 

trends in summer and fall for both female and male, with the highest suitability indices around 

120-130 m. However, the trends of suitability indices of bottom temperature for both female and 

male in the fall were not clear, showing a bimodal distribution with one mode around 6-7°C and 

one mode around 9.5°C. Each of the fall groups (ovigerous female and mature male) were thus 

further subset into small and large sizes.  
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Figure 6.2. The relationships between suitability index and bottom temperature (a and c) and 

depth (b and d) for female (orange lines) and male (blue lines) northern shrimp in summer and 

fall. 

 

The SI of small ovigerous female and mature male have higher values when bottom 

temperature < 7°C, while all four fall groups have a higher level of SI with bottom temperature ~ 

9.5°C (Fig. 6.3). The SI of depth for fall small ovigerous female and mature male have similar 

patterns with a single mode at around 100 m for small ovigerous female and at around 120 m for 

small mature male. While the SI of depth for both large ovigerous female and mature male have 

a bimodal distribution with a second mode at around 150 m (Fig. 6.3). 
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Figure 6.3. The relationships between suitability index and bottom temperature (a and c) and 

depth (b and d) for fall small ovigerous female (SF, orange solid lines), fall large ovigerous 

female (LF, blue solid lines), fall small mature male (SM, orange dashed line), and fall large 

mature male (LM, blue dashed lines). 

 

6.4.1 Models 

For both summer and fall groups, the full model was selected as the best model with the 

lowest AIC value (Table 6.1) for each group. Moreover, the best models outcompete the rest of 

models with ΔAIC>10 and ωAIC=1, suggesting that bottom temperature and depth are two 

important variables and showing low level of model uncertainties. The models were able to 

explain 96.1% and 96.6% of the variation in HSI for female and male, respectively (Table 6.1).  
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Table 6.1. The best models with the lowest AIC values for each group in summer and fall. 

N=number of observations, DE = deviance explained, EDF=effective degrees of freedom, Adj 

R2=adjusted R2, LOOCV RMSE=leave-one-out cross-validation root mean squared error, 

LON=longitude, LAT=latitude, BOTTEMP=bottom temperature. 

Models               N DE EDF Adj R2 LOOCV 
RMSE 

Summer 
female s(LON, LAT) + s(BOTTEMP) + s(DEPTH)     1767 0.961 18.9 0.961 0.090 

Summer 
male s(LON, LAT) + s(BOTTEMP) + s(DEPTH) +  YEAR 1767 0.966 17.8 0.965 0.041 

Fall small 
ovigerous 
female 

s(LON, LAT) + s(BOTTEMP) + s(DEPTH)   1149 0.866 23.0 0.877 0.074 

Fall large 
ovigerous 
female 

s(LON, LAT) + s(BOTTEMP) + s(DEPTH)   1226 0.801 20.8 0.797 0.099 

Fall small 
male s(LON, LAT) + s(BOTTEMP) + s(DEPTH) +  YEAR 1184 0.726 17.5 0.716 0.134 

Fall large 
male s(LON, LAT) + s(BOTTEMP) + s(DEPTH)     1162 0.838 21.6 0.835 0.095 

 

The models explained 72.6-86.6% of the variation for fall groups (Table 6.1). The 

LOOCV RMSEs (predictive errors, i.e. the average bias between prediction and observation) 

ranged from 0.041 to 0.134 among the six groups. However, the AC and PAC plots showed 

temporal autocorrelation at lag 1 for summer male and at lag 4 for fall small mature male. Year 

was therefore included in the models of these two groups for accounting for temporal 

autocorrelation. Spatial and temporal autocorrelations were not suggested by semivariance (Fig. 

6.4), AC and PAC plots (Fig. 6.5) for models of other groups.  
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Figure 6.4. Variogram computed with Pearson residuals of the best models with lowest AIC 

values for (a) summer female, (b) summer male, (c) fall small ovigerous female, (d) fall large 

ovigerous female, (e) fall small adult male, and (f) fall large adult male. 
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Figure 6.5. Autocorrelation (AC) and partial autocorrelation (PAC) plots of Pearson residuals of  

the best  models with lowest AIC values for (a) summer female, (b) summer male, (c) fall small 

ovigerous female, (d) fall large ovigerous female, (e) fall small adult male, and (f) fall large adult 

male.  

 
The partial effects of bottom temperature on HSI for each group were shown in Fig. 6.6. 

For summer female and male, HSI decreased with increasing bottom temperatures, although the 

uncertainty increased when bottom temperature >10°C.  
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Figure 6.6. Partial effects of bottom temperature on habitat suitability index (HSI) of the best 

models with lowest AIC values for (a) summer female, (b) summer male, (c) fall small ovigerous 

female, (d) fall large ovigerous female, (e) fall small adult male, and (f) fall large adult male.  
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In contrast to summer groups, the bottom temperature effects on HSI for fall groups did 

not show clear trends (Fig. 6.6c-f). For small ovigerous female, the HSI increased when bottom 

temperature > 8°C, while the HSI of large ovigerous female was at higher levels at bottom 

temperatures of around 10 and 12°C (Fig. 6.6c-d). For fall male groups, both small and large 

mature male had higher HSI values at bottom temperatures of around 7-8°C and 10°C (Fig. 6.6e-

f).  

The partial effects of depth on HSI for each group were shown in Fig. 6.7. For summer 

groups, both female and male had the highest HIS when depth ranged 120-170 m (Fig. 6.7a-b). 

The fall groups had similar patterns except the HSI was higher at deeper depth for both large 

ovigerous female and adult male (Fig. 6.7c-f). 
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Figure 6.7. Partial effects of depth on habitat suitability index (HSI) of the best models with 

lowest AIC values for (a) summer female, (b) summer male, (c) fall small ovigerous female, (d) 

fall large ovigerous female, (e) fall small adult male, and (f) fall large adult male. 
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6.4.2 Interpolated survey bottom temperature 

The maps of hindcasted HSI using interpolated survey bottom temperature data for 

Summer Female and Male were shown in Figs. 6.8-6.9. The HSI distributions had similar 

patterns for summer female and male.  

 



 148 
 

 

Figure 6.8. Maps of habitat suitability index (HSI) hindcasted with interpolated bottom 

temperature data for summer female from 1984 to 2019. 
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Figure 6.9. Maps of habitat suitability index (HSI) hindcasted with interpolated bottom 

temperature data for summer male from 1984 to 2019. 
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The HSI for female and male in the areas where most female and male distributed in the 

summer, i.e. Jeffrey’s Ledge, Platts Bank, and Jeffreys Bank, were generally above 0.5 for most 

years before 2010. However, the HSI for both female and male in these areas were around or 

below 0.5 for most years after 2010, especially in 2010-2013.  

As for HSI distribution for fall groups (Figs. 6.10-6.13), the small and large ovigerous 

female had similar patterns. However, the small ovigerous female tended to have higher HSI 

values, especially prior to 2008. The HSI for both small and large ovigerous female were 

relatively higher in Jeffrey’s Ledge, Platts Bank, and Cashes Ledge for most years before 2008. 

However, the HSI in these areas were at low level (HSI<0.25) for most years after 2010. Similar 

to fall ovigerous female, The high HSI areas were mostly in Jeffrey’s Ledge, Platts Bank, and 

Cashes Ledge for most years before 2008, with generally higher HSI values for small mature 

male than large mature male in these areas.  
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Figure 6.10. Maps of habitat suitability index (HSI) hindcasted with interpolated bottom 

temperature data for fall small ovigerous female from 1991 to 2018. 
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Figure 6.11. Maps of habitat suitability index (HSI) hindcasted with interpolated bottom 

temperature data for fall large ovigerous female from 1991 to 2018. 
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Figure 6.12. Maps of habitat suitability index (HSI) hindcasted with interpolated bottom 

temperature data for fall small adult male from 1991 to 2018. 
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Figure 6.13. Maps of habitat suitability index (HSI) hindcasted with interpolated bottom 

temperature data for fall large adult male from 1991 to 2018. 
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The slopes of temporal changes for each group were shown in Fig. 6.14, and the 

corresponding p-values were shown in Fig. 6.15. The HSI for summer female and male were 

generally significantly decreasing over 1984-2019, especially in east and west fringe of 

Wilkinson Basin, Platts Bank, cashes Ledge, and Jeffreys Bank. 
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Figure 6.14. The maps of slopes of temporal changes in habitat suitability index (HSI) hindcasted 

with interpolated bottom temperature and FVCOM bottom temperature for summer female (a 

and b) and male (c and d). 
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Figure 6.15. The maps of the p-values of temporal changes in habitat suitability index (HSI) 

hindcasted with interpolated bottom temperature and FVCOM bottom temperature for summer 

female (a and b) and male (c and d). 
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Similar patterns were also found for fall groups (Figs. 6.16-6.17); however, the HSI for 

fall groups in Jeffreys Bank were improving although not significantly (Figs. 6.18-6.19). 

Moreover, the decreasing trends of HSI in Cashes Ledge for both small and large fall ovigerous 

female over 1991-2018 were significant (Fig. 6.18). The changes in temporal trends for both 

small and large mature male in high density areas (Jeffrey’s Ledge, Platts Bank, and Cashes 

Ledge) were not statistically significant (Fig. 6.19).  
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Figure 6.16. The maps of slopes of temporal changes in habitat suitability index (HSI) hindcasted 

with interpolated bottom temperature and FVCOM bottom temperature for fall small ovigerous 

female (a and b) and large ovigerous female (c and d). 
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Figure 6.17. The maps of slopes of temporal changes in habitat suitability index (HSI) hindcasted 

with interpolated bottom temperature and FVCOM bottom temperature for fall small adult male 

(a and b) and large adult male (c and d). 
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Figure 6.18. The maps of the p-values of temporal changes in habitat suitability index (HSI) 

hindcasted with interpolated bottom temperature and FVCOM bottom temperature for fall small 

ovigerous female (a and b) and large ovigerous female (c and d). 
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Figure 6.19. The maps of the p-values of temporal changes in habitat suitability index (HSI) 

hindcasted with interpolated bottom temperature and FVCOM bottom temperature for fall small 

adult male (a and b) and large adult male (c and d). 
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The proportions of low quality habitat were negatively correlated with SSB index at a 2-

year lag for summer female (r=-0.55) and Summer Male (r=-0.58), meaning that if the proportion 

of low quality habitat increased, the SSB index would decrease two years later (Fig. 6.20-a and 

c). The proportions of low quality habitat were also negatively correlated with SSB index at a 2-

year lag for fall large ovigerous female (r=-0.38, maximum r=-0.44 at lag 5), small mature male 

(r=-0.52), and large mature male (r=-0.56), but not significant for small ovigerous female (Fig. 

6.20-e, g, I, and k).  
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Figure 6.20. Cross correlation for proportions of low quality habitat (<0.25Q) and spawning 

stock biomass index (SSB) for adult life stages in summer and fall. Left panel plots are estimated 

with interpolated survey bottom temperature, and right panel plots are estimated with 

interpolated survey bottom temperature, and right panel plots are estimated with FVCOM bottom 

temperature data. 

 

Conversely, the proportions of high quality habitat were positively correlated with SSB at 

a 2-year lag for summer female (r=0.49) and summer male (r=0.47), meaning that if the 

proportion of high quality habitat increased, the SSB index would increase two years later (Fig. 

6.21-a and c). As for fall groups, the correlations between the proportion of high quality habitat 

and SSB were not significant for both small and large ovigerous females (Fig. 6.21-e and g). The 

proportions of high quality habitat were positively correlated with SSB at a 4-year lag for small 

mature male (r=0.41, maximum r=0.44 at lag 6) and large mature male (r=0.40) (Fig. 6.21-i and 

k). 
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Figure 6.21. Cross correlation for proportions of high quality habitat (<0.75Q) and spawning 

stock biomass index (SSB) for adult life stages in summer and fall. Left panel plots are estimated 

with interpolated survey bottom temperature, and right panel plots are estimated with 

interpolated survey bottom temperature, and right panel plots are estimated with FVCOM bottom 

temperature data. 

 

6.4.3 FVCOM bottom temperature 

The HSI estimated with FVCOM data for summer female and male (Figs. 6.22-6.23) 

generally had lower HSI values prior to 2010 and higher HIS values after 2010 compared to 

those estimated with interpolated survey bottom temperature data. This is because the FVCOM 

yearly averaged bottom temperatures for the western GOM were generally higher than the yearly 

averaged survey bottom temperatures prior to 2010 for both summer and fall (Fig. 6.24). 

Moreover, the estimated HSI with FVCOM bottom temperature data had higher proportion of 

high quality HSI areas in the 2010s for fall large ovigerous female, small and large mature male, 

especially in 2012 (Figs. 6.25-6.28). 
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Figure 6.22. Maps of habitat suitability index (HSI) hindcasted with FVCOM bottom 

temperature data for summer female from 1984 to 2017. 
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Figure 6.23. Maps of habitat suitability index (HSI) hindcasted with FVCOM bottom 

temperature data for summer male from 1984 to 2017. 
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Figure 6.24. Annual average of bottom temperature of interpolated survey bottom temperature 

(survey, black lines) and Finite-Volume Community Ocean Model (FVCOM, blue lines) for (a) 

summer and (b) fall in the western Gulf of Maine. 
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Figure 6.25. Maps of habitat suitability index (HSI) hindcasted with FVCOM bottom 

temperature data for fall small ovigerous female from 1991 to 2017. 
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Figure 6.26. Maps of habitat suitability index (HSI) hindcasted with FVCOM bottom 

temperature data for fall large ovigerous female from 1991 to 2017. 
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Figure 6.27. Maps of habitat suitability index (HSI) hindcasted with FVCOM bottom 

temperature data for fall small adult male from 1991 to 2017. 
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Figure 6.28. Maps of habitat suitability index (HSI) hindcasted with FVCOM bottom 

temperature data for fall large adult male from 1991 to 2017. 
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The slopes of temporal changes of HSI estimated with FVCOM data also showed a 

different pattern from those estimated with interpolated survey bottom temperature data. The 

slopes in Platts Bank and Cashes Ledge for summer female and male were still negative values 

and were statistically significant (p<0.05). However, the slopes of temporal changes for summer 

female and male in the Jeffreys Ledge were positive (Fig. 6.14-b and d) although they were not 

statistically significant (p>0.05, Fig. 6.15-b and d).  

Discrepancies between the HSI estimated with the two data sources were also found for 

fall groups. The slopes estimated with FVCOM data were mostly positive values for fall groups 

in Jeffreys Ledge, Platts Bank, and Cashes Ledge (Figs. 6.16-6.17), although most of them were 

not statistically significant (p>0.05, Figs. 6.18-6.19).  

The proportions of low quality habitat for summer groups estimated with FVCOM 

bottom temperature data had similar results as those estimated with interpolated survey bottom 

temperature data (Fig. 6.20). The proportions of low quality habitat were negatively correlated 

with SSB index at a 2-year lag for both Summer Female (r=-0.48) and Male (r=-0.47), meaning 

the increased proportion of low quality habitat would lead to decreasing SSB two years later . 

For fall groups, the correlations between the proportions of low quality habitat and SSB index 

were not significant (p>0.05) for small ovigerous female and small mature male (Fig. 6.20-f and 

j). While the proportions of low quality habitat were negatively correlated with SSB index for 

large ovigerous female (r=-0.40) at a 2-year lag and for large mature male (r=-0.47) at a 3-year 

lag (Fig. 6.20-h and l).  

Similar to estimates with interpolated survey bottom temperature data, the proportions of 

high quality habitat estimated with FVCOM data were also positively correlated with SSB index 

at a 2-year lag for summer female and male (Fig. 6.21-b and d). However, it was negatively 
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correlated with SSB for fall large ovigerous female (r=-0.38) at no time lags (Fig. 6.21h), 

implying the higher the proportion of good habitat for large ovigerous female, the lower values 

of SSB would be found. The proportion of high quality habitat was positively correlated with 

SSB index for large mature male (r=0.39) at a 4-year lag, while the correlations between the 

proportions of high quality habitat and SSB were not statistically significant (p>0.05) for small 

ovigerous female and small mature male. 

 

6.5 Discussion 

Our study showed that the high density of northern shrimp was mostly found in Jeffreys 

Ledge, Platts Bank, Cashes Ledge, and Jeffreys Bank; the density became lower toward the sea 

in the deeper central Wilkinson Basin area. This is consistent with the observations of previous 

studies (Haynes and Wigley 1969; Apollonio et al. 1986), suggesting that these areas are 

important habitat for the GOM northern shrimp in summer and fall. Haynes and Wigley (1969) 

indicated that higher water temperature in the Georges Band and Cape-Cod areas may be one of 

the important factors that creating a thermal barrier which prevents the GOM northern shrimp 

from extending their distribution.  

The selection of environmental factors included in the models was literature-based, and 

our analysis agreed on the suggestions of previous studies (Haynes and Wigley 1969; Apollonio 

et al. 1986). The models could explain 72.6-96.6% of the variation in HSI, and the full models 

that included bottom temperature and depth outcompeted the rest of the models for all life stages. 

Haynes and Wigley (1969) noted that the depth of northern shrimp distribution changed 

seasonally due to seasonal migration and may be an indirect association resulted from the 
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occurrence of suitable habitat of these depths. Therefore, the inclusion of depth and coordinate 

data was able to explain the variation in the space that was not explained by bottom temperature.  

In this study, we used two sources of bottom temperature data (interpolated survey 

bottom temperature and FVCOM bottom temperature) for estimating HSI. It showed that the 

FVCOM bottom temperature tended to be higher than the interpolated survey bottom 

temperature in the western GOM, especially prior to 2010. The absolute difference between the 

yearly temperature of the two data ranged 0.04-1.99°C with a RMSE of 0.96 for summer and 

ranged 0.04-2.15°C with a RMSE of 0.92 for fall.  

These differences might result from two possible reasons. One is the model predictive 

errors. Li et al. (2017) compared FVCOM bottom temperature data with Environmental Monitors 

on Lobster Traps (eMOLT) bottom temperature data and provided a RMSE of 2.28°C. However, 

the eMOLT bottom temperature sites were mostly in inshore areas, and may not be applicable of 

offshore areas bottom temperature data with confidence (Li et al. 2017).  The second possible 

reason is due to the specific temperature preference of the GOM northern shrimp. Stickney and 

Perkins (1977) suggested that ovigerous female may gravitate toward cooler water when they 

encounter gradients. Apollonio et al. (1986) also indicated that older shrimp tended to avoid 

higher water temperature. Therefore, the ambient bottom temperature of where shrimp occurred 

might be lower than the average of the bottom temperature due to their preference.  

More likely, the discrepancies between the HSI estimated with the two bottom 

temperature data were resulted from a combination of these two reasons stated above. The 

discrepancies of bottom temperature could lead to biased results of HSI. For example, the cross 

correlation between SSB index and proportion of high quality habitat estimated with interpolated 

survey bottom temperature for fall large ovigerous female was found not statistically significant. 
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However, the proportion of high quality habitat estimated with FVCOM bottom temperature for 

fall large ovigerous female was negatively correlated with SSB index at no time lags, implying 

the higher proportion of high quality habitat the higher SSB could be expected in a given year.  

FVCOM data have been widely used for hindcasting distributions or HSI for many 

species (Decelles et al. 2015; Torre et al. 2018; Runnebaum et al. 2018; Mazur et al. 2019). 

These hindcasted models outputs were usually used for providing information for fisheries 

management or conservation. However, to our knowledge, the biases in estimated models 

outputs were rarely assessed or addressed. In this study, the differences in annual bottom 

temperature for summer and fall can be up to around 2°C. For the GOM northern shrimp which 

was perceived to be sensitive to temperature changes (ASMFC NSTC 2018), a difference of 2°C 

may lead to huge bias in estimated HSI. Furthermore, the biased estimation may not reflect the 

observations and result in inaccurate interpretations. Based on the existing data and our 

understanding on northern shrimp so far, we determined the HSI estimated with FVCOM was 

inaccurate and biased that may lead to incorrect inferences. We therefore considered the 

interpolated survey bottom temperature data more appropriate for hindcasting HSI for the GOM 

northern shrimp and are more likely to reflect the observations. 

The collapse of northern shrimp population has been perceived to be correlated with 

recruitment failures and declining population biomass resulting from unfavorably warm water 

temperatures (ASMFC NSTC 2018). Water temperature may have impacts on northern shrimp 

life cycle in various aspects. Water temperature effects on the incidence of parasites (white eggs) 

of the GOM northern shrimp were examined, yet the correlations between white eggs and 

environmental factors were found not significant (Chang et al. 2020). Chang et al. (unpublished) 

indicated that the annual population fecundity was found to be lower than those estimated four 
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decades ago, which might be due to environmental changes over the past four decades as well as 

different analysis methods used. The warming water temperature has shifted hatching timing and 

duration of the GOM northern shrimp (Richards 2012), although Richards et al. (2016) indicated 

that match-mismatch theory (Hjort 1914; Cushing 1990) did not seem able to explain shrimp 

survival at early life stages. Richards and Hunter (2021) examined the spatial overlaps in 

distributions of the GOM northern shrimp and their major predators, and hypothesized that the 

distributional shift of longfin squid (Doryteuthis pealeii) after the heatwave in 2012 might be the 

reason of shrimp population collapse due to spatial overlap and subsequent predation.  

In this study, we provide an alternative hypothesis that the deterioration of habitat quality 

for adult shrimp in summer and fall (spawning season) might also be one of the reasons that the 

shrimp population collapsed. The hindcasted HSI maps showed that the HSI was at lower levels 

in the 2010s for most groups in summer and fall. The increase in the proportion of low quality 

habitat and the decrease in the proportion of high quality habitat were negatively and positively 

associated with SSB index at 2-4 year time lags, respectively. Our results suggest that the 

Jeffreys Ledge, Platts Bank, Cashes Ledge, and Jeffreys Bank are very important habitat for 

adult shrimp in summer and fall when the spawning takes place. The deterioration of these areas 

would have a negative impact on spawners.  

It should be noted that the classification of small and large ovigerous female and mature 

male was based on the average sizes of fall ovigerous female and mature male, which could be 

somewhat arbitrary. Different thresholds used could influence the model outcome. Therefore, 

further investigation may be needed for a better understanding of northern shrimp distribution 

and gathering behaviors based on their life cycle. 
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Appendix A.Chapter 4 Supplementary Data 
 

 

 

Figure A.1. The relationship between dorsal carapace length (DCL, mm) and lateral carapace 

length (LCL, mm) for the Gulf of Maine northern shrimp 
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Figure A.2. Spatial distributions of dorsal carapace length (DCL, mm) in 2012-2016 and years 

pooled 
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Figure A.3. Spatial variogram of dorsal carapace length (DCL, black line) and average DCL 

(blue line) over distances 
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Figure A.4. Spatial variogram computed with Pearson residuals of the best models with lowest 

AICc for (a) potential fecundity (PF), (b) relative fecundity (RF), and (c) egg size (ES) 
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Figure A.5. QQ-plots and plot of Pearson deviance against fitted values of potential fecundity 

(PF, a-b), relative fecundity (RF, c-d), and egg size (ES, e-f) 
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Appendix B.Chapter 5 Supplementary Data 
 

 

Figure B.1. (a) QQ-plot, (b) temporal autocorrelation plot, and (c) temporal partial 

autocorrelation plot of residuals of models for summer female I in Table 5.1. 
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Figure B.2. (a) QQ-plot, (b) temporal autocorrelation plot, and (c) temporal partial 

autocorrelation plot of residuals of models for summer female II in Table 5.1. 
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Figure B.3. (a) QQ-plot, (b) temporal autocorrelation plot, and (c) temporal partial 

autocorrelation plot of residuals of models for summer mature male in Table 5.1. 
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Figure B.4. (a) QQ-plot, (b) temporal autocorrelation plot, and (c) temporal partial 

autocorrelation plot of residuals of models for summer recruits in Table 5.1. 
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Figure B.5. (a) QQ-plot, (b) temporal autocorrelation plot, and (c) temporal partial 

autocorrelation plot of residuals of models for fall ovigerous female in Table 5.1. 
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Figure B.6. (a) QQ-plot, (b) temporal autocorrelation plot, and (c) temporal partial 

autocorrelation plot of residuals of models for fall mature males in Table 5.1. 
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Figure B.7. (a) QQ-plot, (b) temporal autocorrelation plot, and (c) temporal partial 

autocorrelation plot of residuals of models for fall recruits in Table 5.1. 
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