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 Potato early dying (PED) is a yield-constraining soilborne disease of potato, caused 

by Verticillium spp. with V. dahliae being the predominant causal agent. Since the pathogen 

inhabits soil for long periods, PED management aims to reduce the population of V. dahliae 

in soil. Benzovindiflupyr and azoxystrobin are effective chemicals and frequently used in the 

control of V. dahliae. In this study, field trials were conducted at Aroostook Farm, Presque 

Isle, ME in 2019 and 2020. Chemical and biological products have been studied for PED 

control, and fungicide resistance was also examined. To evaluate fungicide resistance, 

benzovindiflupyr was characterized on sensitivity baseline and resistance risk development in 

V. dahliae. Benzovindiflupyr-resistant mutants of V. dahliae were generated, and evaluated 

for resistance stability, fitness, and pathogenicity. Results showed that most mutants 

maintained a high level of resistance and the same fitness and pathogenicity compared to 

their parents, indicating a high risk of resistance in fields. Therefore, the resistance of V. 

dahliae to benzovindiflupyr should be monitored in disease management. In field trials, 

Elatus (a.i. azoxystrobin and benzovindiflupyr), Aprovia (benzovindiflupyr), Stargus 

(Bacillus amyloliquefaciens) and Regalia (Reynoutria sachalinensis extract) were examined. 

In a second field trial, Vapam (a.i. metam sodium) was studied at three rates for soil 



 

 

fumigation. Disease was evaluated during the growing season and postharvest. Bulked soil 

was sampled at different time points of the season. Soil DNA was extracted from the soil and 

root samples. Quantity of V. dahliae in soil was measured using quantitative polymerase 

chain reaction (qPCR). Soil microbial communities of soil from plots applied with Elatus at 

280.9 ml/A and Vapam at 35 gal/A and 50 gal/A were examined using Illumina sequencing 

targeting the V4 region of the 16S rRNA gene for bacteria and ITS1 region for fungi. Results 

showed that all the fungicides and the fumigant significantly reduced PED disease incidences 

and V. dahliae population. Soil microbial community richness, abundance, and diversity were 

affected after Elatus and Vapam applications, and most bacterial and fungal families that 

recovered rapidly were non-pathogenic. All products can be used for PED control, but the 

impact on soil microbiome needs to be addressed.
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1.CHAPTER 1 

LITERATURE REVIEW 

 

Chapter Abstract 

The potato is a highly nutritious and valued food crop which has been constrained by 

many diseases, such as potato early dying (PED). PED is caused by Verticillium spp. with V. 

dahliae being the predominant causal species, which have a wide host range. It infects potatoes 

through the roots and blocks water and nutrient transportation in the vascular system, resulting in 

up to a 50% yield loss of potato. Therefore, PED control is dependent on reducing pathogen 

populations in the soil and utilizing plant resistance. Soil fumigation has been considered the 

most effective way to manage PED. Some biological control agents have potential for disease 

control, either through directly inhibiting the pathogen or by inducing plant resistance. Currently, 

synthetic fungicides are still a major and usually effective strategy. For example, azoxystrobin, a 

quinone outside inhibitors (QoIs) fungicide, and benzovindiflupyr, a succinate dehydrogenase 

inhibitors (SDHIs) fungicide, are frequently used. The downside of using chemical fungicides is 

fungicide resistance developed in pathogen populations. A risk assessment of fungicide 

resistance can be done by examining the sensitivity of numerous pathogen isolates to a specific 

fungicide, selecting resistant mutants, and testing the resistance and fitness of the mutants. All 

the above strategies affect soil microbiome, which is an important indicator of soil health, and 

can be analyzed using metagenomic tools to examine the abundance and diversity of the soil 

microbiome. Overall, PED should be managed in an integrated way and risk assessment should 

be implemented as part of the management operations.   
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1.1. The potato 

Potatoes (Solanum tuberosum L.) were first discovered in the Andes mountains of South 

America and cultivated by indigenous people (Smith, 2012). They are within the genus Solanum, 

family Solanaceae, and order Solanales (KewScience, 2020). Potatoes are the third most 

important food crop for direct human consumption after rice (Oryza sativa L.) and wheat 

(Triticum aestivum L.), and are the most important vegetable crop worldwide, as potatoes 

provide food security for millions of people. (CIP, 2017). The United States produced about 22 

million tons of potatoes in 2017, making it the fifth largest potato producing country in the world 

(NPC, 2018). The farm-gate value for sales was approximately $3.77 billion in 2017 (NASS, 

2018). In the same year, Maine ranked the sixth largest potato harvested area and ninth largest 

potato production state in the U.S. (NPC, 2018). 

Potatoes are annual, herbaceous, dicotyledonous plants (CIP, 2017). The growth of 

potatoes takes about 75 to 150 days depending on the climate and variety (Smith, 2012). The 

growth can be divided into five stages, including sprout development, plant establishment 

(vegetative growth), tuber initiation, tuber bulking, and maturation (Thornton, 2020). When a 

seed potato is planted, it first breaks dormancy to start sprouting and grows to about 8 to 10 

inches tall (Davies & Ross, 1984). Seed-borne diseases spread during this period since the 

nutrition is provided by the seed potato. After the leaves and stolons are grown, the plants enter a 

rapid growth phase until tuber initiation (Thornton, 2020). At this stage, the plants are threatened 

by soilborne or foliar diseases. Tubers are produced by transferring composite-leaves-produced 

starch to the underground stolon (CIP, 2017). Post-harvest diseases cause damage to tubers at 

this stage. Potato tubers can be used for consumption and as seed. Each year, 5% to 15% of the 

harvested potatoes are saved as seed potatoes for the next year (CIP, 2017). A mature tuber has 2 

to 10 eyes. After a dormant period, eyes will germinate and grow into a new plant. 
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1.2. Potato diseases 

Diseases are a major constraint to potato production. There are around 100 known 

diseases that can cause the loss of potato production to different extents (Hooker, 1981). Most 

diseases can be infectious (caused by biological pathogens) and the rest are non-infectious 

(caused by adverse environmental conditions) for potatoes (Agrios, 2005; Hooker, 1981). Potato 

plants can be affected by diseases at any part of the plant, such as roots, stems and shoots, either 

systemically or locally. Important infectious diseases include early blight (Alternaria solani), late 

blight (Phytophthora infestans), soft rot and blackleg (Dickeya spp. and Pectobacterium spp.), 

common scab (Streptomyces spp.), powdery scab (Spongospora subterranea f. sp. subterranea), 

potato mosaic virus (Potato Virus Y), potato mop top (Potato mop-top virus), root-knot nematode 

(Meloidogyne spp.), pythium leak (Pythium ultimum Trow var. ultimum), dry rot (Fusarium 

spp.), pink rot (Phytophthora erythroseptica), stem canker and black scurf (Rhizoctonia solani), 

and potato early dying (Verticillium spp.). Non-infectious diseases can be caused by plant 

genetic factors or congenital defects, unfavorable environmental factors, deterioration of 

chemical factors, excessive or insufficient supply of fertilizer elements, pollution, and 

phytotoxicities (Yang, 2018).  

Plant diseases are not just the result of pathogen infection, but a consequence of the 

interactions among pathogen, host and environment (Scholthof, 2007). Both plants and 

pathogens require favorable environments for their growth, including but not limited to 

temperature, humidity, and pH conditions. The host plant passively provides adequate nutrition 

and space for the pathogens to multiply. Pathogen spreads by environment factors, such as rain 

and wind (Bauske, Mitchell et al., 2018; Ristaino et al., 2018). At the end of plant growth, the 

pathogen survives by a variety of methods into a next season to start a new round of infection. 
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1.3. Potato early dying (PED) 

Verticillium spp. is a notorious pathogen of potato and causes potato early dying (PED), 

which is exacerbated by a lesion nematode, Pratylenchus penetrans (Martin et al., 1982). This 

disease makes infected potato plants mature 2 to 3 weeks earlier compared to normal growth 

conditions, and hence the yield is impacted negatively due to the tuber incomplete growth 

(CropIPM, 2009). Yield losses to PED typically range from 10% to 15% but can reach up to 

50% in severely affected fields (K. B. Johnson et al., 1986; Powelson & Rowe, 1993). Since V. 

dahliae is predominant in most potato growing areas, it will be used as a representative species 

for discussion in this review.   

1.3.1. Taxonomy and biology of Verticillium dahliae 

The Verticillium genus comprises a small group of soilborne pathogens (Pegg & Brady, 

2002). Historically, it was placed in class Deuteromycetes (Fungi Imperfecti) because its sexual 

stage had not been identified (Berlanger & Powelson, 2005). With the repeal of the 

Deuteromycota, Verticillium is considered as an anamorphic form of the Plectosphaerellaceae 

family in the Sordariomycetes class of the Ascomycota phylum (Inderbitzin et al., 2011). 

Currently, there are 10 species in the genus Verticillium, and seven of them are pathogenic to 

potato, including V. albo-atrum, V. isaacii, V. nonalfalfae, V. nubilum, V. tricorpus, V. 

zaregamsianum, and V. dahliae (Inderbitzin & Subbarao, 2014).  

The hyphae of V. dahliae are hyaline, septate, multinucleate, and haploid (Berlanger & 

Powelson, 2005). Some hyphae specialize into branched conidiophores (Yu et al., 2016), the 

branching starts at the central axis, expands in a form of spokes (St-Germain & Summerbell, 

1996). The name Verticillium was given by the verticillated structure of conidiophore (Berlanger 

& Powelson, 2005). Since the sexual stage has not been observed, it is described by ovoid- or 

ellipsoid-shaped conidia, which are borne on phialides—a structure borne by conidiophore 

(Gómez-Alpízar, 2001). Abundant black microsclerotia is also a feature of V. dahliae. 
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Microsclerotia are masses of melanized hyphae formed in host tissues at later stages of infection, 

which overwinter and stay viable in soil for over 14 years (Wilhelm, 1955; Slattery, 1981). 

Verticillium dahliae reproduces by production of massive numbers of conidia or germinates 

directly from microsclerotia. 

1.3.2. Disease cycle of PED 

After entering host plants, V. dahliae colonizes in the cortex of the roots as the roots 

absorb nutrients from the soil, and then moves through the xylem, forming conidia (Steere et al., 

2015). Lesion nematodes can accelerate V. dahliae colonization by causing wounds from feeding 

on the roots to form a port of entry (Martin et al., 1982). Colonized V. dahliae reproduces by 

hijacking the upward transportation of water and minerals from the roots (Yadeta & Thomma, 

2013). Hence, the symptoms of PED includes chlorosis and wilting, usually starting from the 

basal leaves after flowering (CropIPM, 2009). At the early stage of infection, the flow water and 

minerals are partially blocked due to the presence of V. dahliae in the xylem. Early symptoms 

develop in the lower portion of the plant and move to the top of the plant or to the newly 

developed shoots, resulting in the stem vascular system turning brown. In the later stages, 

chlorotic leaves transition to complete necrosis due to increased colonization within the plant 

(Berlanger & Powelson, 2005). The infected or dead plants in the field usually stand up higher 

than other plants, as a flag, and thus, called flagging (CropIPM, 2009). Meanwhile, tuber 

initiation also requires water and nutrients from roots. The symptoms shown on tubers include 

brown vascular discoloration on the stem end area (Steere et al., 2015). After host tissues 

senesce, microsclerotia are formed and remain in plant tissues for overwintering (Steere et al., 

2015). Verticillium dahliae becomes saprophytic at this stage. When new hosts are planted and 

the environment is favorable, microsclerotia are induced by exudates from plant roots to 

germinate and conidia growth is promoted by xylem sap (Fradin & Thomma, 2006; Mace, 2012; 

Mol, 1995; Steere et al., 2015). Initiating a new round of infection.  
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1.3.3. Disease epidemiology 

Verticillium dahliae cannot travel long distances by itself. However, human activities 

spread it by transporting infected potatoes. An example is that V. dahliae and V. albo-atrum were 

detected in 39% of seed potatoes during transportation in 1969 (Berlanger & Powelson, 2005; 

Easton et al., 1972). Once V. dahliae is carried to a field, microsclerotia can easily be spread by 

crop cultivation, rainwater, and irrigation water (Berlanger & Powelson, 2005). Therefore, V. 

dahliae can colonize the field as susceptible host plants are planted. Beyond that, inoculum 

densities and disease severity tend to increase year to year due to the high survival rate of 

microsclerotia, which allows them to spread when infected hosts die (Berlanger & Powelson, 

2005; D. A. Johnson & Dung, 2010). Verticillium dahliae mainly remains in the top 30 cm from 

the soil surface and the density decreases as depth increasing, low numbers could still be found 

at greater depth (41 cm) of survival (Berlanger & Powelson, 2005). Yield loss of potato is often 

directly correlated with the amount of the pathogen in the soil (J. Li et al., 2017). A threshold of 

5 to 30 cfu/cm3 is the level observed for causing economic losses (Powelson & Rowe, 1993). 

The most favorable temperature for V. dahliae is about 21 to 27°C, and disease severity tends to 

maximize at temperatures near the higher limit (D. A. Johnson & Dung, 2010). For this reason, 

potato production may be threatened more by V. dahliae in Maine due to global warming. In 

addition, V. dahliae has a wide host range, comprised of more than 200 species of plants 

(Berlanger & Powelson, 2005; Klosterman et al., 2009). This wide host range makes it difficult 

to manage PED using crop rotation. 

1.4. Soil treatment on PED control  

1.4.1. Soil fumigation 

 Soil fumigation has been utilized for five decades and during that time thiophanate-

methyl, chloropicrin, 1,3-dichloropropene, ethylene dibromide, 1,2-dibromo-3-chloropropane, 

methyl isothiocyanate (MITC), and ammonia gas are the most common products used (Gamliel 
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et al., 1997; Lembright, 1990). The mechanism of fumigation is to suffocate organisms, 

particularly pathogens, pests, and weeds by toxic gas released by the fumigant in the target area. 

Fumigation lowers the number of pathogens in the soil and often results in increased crop yield 

(Giovanni Bubici et al., 2019; Gullino et al., 2002; Leah Tsror et al., 2000; Yellareddygari & 

Gudmestad, 2018). Metam sodium (sodium N-methyldithiocarbamate) is a widely used 

fumigant, which takes effect through breaking down into the compound MITC, which is highly 

toxic, after applied in the soil (Zheng et al., 2006). Metam sodium is the active ingredient of the 

commercial product Vapam (AMVAC, Commerce, CA, United States). Soilborne fungi, soil 

arthropods, and nematodes can be eliminated due to its high toxicity (Lam et al., 1993). In 

studies conducted by Tsror et al. (2005), the application of metam sodium increased potato yield 

of up to 32%.  

1.4.2. Chemical fungicides  

Fungicides refer to a group of antifungal chemicals that kill or inhibit fungi. The 

Fungicide Resistance Action Committee (FRAC) has classified all common fungicides into 55 

classes based on the mode of action (MOA) (Fisher et al., 2018; FRAC, 2020). Among all groups 

of fungicides, the group 7 quinone outside inhibitors (QoIs) and group 11 succinate 

dehydrogenase inhibitors (SDHIs) have potential to be effective in the control of PED. Both are 

mitochondrial-function-targeted fungicides with advantages such as broad-spectrum activity and 

high efficiency (Fernández-Ortuño et al., 2010; Sierotzki & Scalliet, 2013).  

1.4.2.1. Quinone outside inhibitors (QoIs)  

The fungicidal activity of QoIs acts as an inhibitor to block the electron transfer between 

cytochrome b and cytochrome c1 on the outer quinol-oxidation (Qo) site of cytochrome bc1 

enzyme complex (complex III) (Fernández-Ortuño et al., 2010). It suppresses ATP production, 

and causes fungal cells to die due to energy deficiency (Fernández-Ortuño et al., 2010). The 

cytochrome bc1 is an integral membrane protein complex which functions critically in 
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respiration. The catalytic core formed by cytochrome b, cytochrome c1, and Rieske iron-sulfur 

protein (Fernández-Ortuño et al., 2010). The sites for catalytic reaction include the quinol 

oxidation (Qo) site and the Quinone reduction (Qi) site (N. Fisher & Meunier, 2008). Different 

QoIs may bind with different sites on this complex. Because the mode of action of QoIs is to 

inhibit the production of energy, it is more likely to slow down the growth of pathogens rather 

than kill them. Thus, the application timing of QoIs is critical—prior to infection or early stage 

of infection application is most effective (Fernández-Ortuño et al., 2010).  

Azoxystrobin is a QoI fungicide, which was developed by Syngenta (Greenboro, NC, 

United States) in 1992 (Balba, 2007) and became popular in 1996 due to its board-spectrum 

disease-control capability (Balba, 2007; Fernández-Ortuño et al., 2010). Azoxystrobin is 

effective on many fungal pathogens such as Alternaria alternata (Bertelsen et al., 2001), 

Plasmopara viticola (Godwin & Cortesi, 1999), and V. dahliae (Syngenta, 2020).  

1.4.2.2. Succinite dehydrogenase inhibitors (SDHIs) 

The market adapted to newly produced SDHIs incredibly fast as many pathogens have 

been found to resist against the demethylation inhibitors (DMIs) and QoIs (Sierotzki & Scalliet, 

2013). SDHIs function by affecting the respiratory electron transport system of pathogens by 

inhibiting the electron transfer in succinate dehydrogenase (SDH) complex (complex II) (Avenot 

& Michailides, 2010). The SDH complex plays a critical role in both the respiration system and 

tricarboxylic acid cycle. When succinate is oxidated to fumarate, the quinone (UQ) is reduced to 

ubiquinol (UQH2) through the direct transition of the succinate-derived electrons without soluble 

NAD+ intermediates (Horsefield et al., 2006; Sierotzki & Scalliet, 2013). The SDH is also 

known as succinate ubiquinone reductase (SQR) that is composed of a membrane-peripheral 

domain and a membrane-anchor domain (Avenot & Michailides, 2010). The membrane-

peripheral domain is the soluble part of the complex which oxidizes succinate to fumarate, it 

consists of two highly-conserved subunits—flavoprotein (Fp, SDHA) and iron-sulfur protein (Ip, 
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SDHB) (Avenot & Michailides, 2010). The SDHA contains a covalently FAD cofactor, while the 

SDHB contains three iron-sulfur clusters –[2Fe-2S], [4Fe-4S] and [3Fe-4S] (Avenot & 

Michailides, 2010; Ōmura & Shiomi, 2007). The membrane-anchor domain consists of two 

highly variable subunits—large subunits of cytochrome b (cybL, SDHC) and small subunits of 

cytochrome b (cybS, SDHD), contains specific binding sites for ubiquinone reduction and 

inhibitors, and anchors the catalytic subunits (SDHA and SDHB) to the inner mitochondrial 

membrane, thus facilitating the transfer of electrons to ubiquinone (Ackrell et al., 1992; Avenot 

& Michailides, 2010; Ōmura & Shiomi, 2007). In addition, there is a prosthetic heme b 

complexed between SDHC and SDHD (Ackrell et al., 1992; Avenot & Michailides, 2010). All 

those SDHB, SDHC, SDHD, and heme b group compose a ubiquinone binding pocket, and 

SDHIs specifically block the electron transport from the [3Fe–4S] cluster to ubiquinone binding 

pocket, hence the pathogens die from energy deficiency (Horsefield et al., 2006).  

Benzovindiflupyr is a new SDHI fungicide, which was introduced by Syngenta in 2013 

and commercialized in 2015 (EFSA, 2015; Wiglesworth & Tally, 2015). It is effective on 

pathogens such as Colletotrichum spp. (Ishii et al., 2016), Sclerotinia sclerotiorum (X. Huang et 

al., 2019), Puccinia spp., Pseudomonas spp., Venturia inaequalis, and Verticillium spp. 

(Syngenta, 2020).  

1.4.3. Biological fungicides  

Biologically based fungicides, or bio-fungicides can also suppress or kill plant pathogens. 

The major mode of actions of biological fungicides includes induced resistance in host, plant 

growth promotion, and antibiosis (Dicklow & Madeiras, 2018). Induced resistance has been 

mainly studied in Systemic Acquired Resistance (SAR) and Induced Systemic Resistance (ISR), 

which are mediated by pathogens and rhizosphere microbes, respectively (Romera et al., 2019). 

By applying resistance-inducing agents，plant diseases can be reduced by 20% to 85% (Walters 

et al., 2013). ISR is triggered by biological or chemical inducers and has a broad-spectrum 
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protection (Pieterse et al., 2014). Flavonoid compounds are chemical inducer of ISR, and extract 

of Reynoutria sachalinensis is one of many compounds that can trigger its accumulation 

(Osborne et al., 2009). Moreover, plant extracts such as canola, rapeseed, seaweed, and Canada 

milkvetch have been shown to effectively control V. dahliae (Uppal et al., 2008). Regalia (a.i. 

Reynoutria sachalinensis extract, Marrone Bio-Innovations, Davis, CA) is therefore being 

utilized as a potential resource for PED control. Regalia was introduced by Marrone and it is 

effective in controlling pathogens such as Erysiphe spp., Alternaria solani, Fusarium spp., 

Rhizoctonia spp., etc. by igniting the systemic resistance in plants (Marrone, 2020a). 

On the other hand, plant growth promotion and antibiosis are also effective on V. dahliae 

control. Plant growth promoting bacteria (PGPB) can promote plant growth in various ways, 

such as biological nitrogen fixation, phosphate solubilization, phytohormone production, etc 

(Souza et al., 2015). Root-colonizing bacteria and fungi can suppress the pathogen with 

antimicrobial substances, or through parasitism or competition (Dicklow & Madeiras, 2018). In 

the management of PED, the available agents include Bacillus spp., Pseudomonas spp., 

Leptosphaeria sp., Acremonium sp., Talaromyces sp., etc. (Deketelaere et al., 2017; Y. Yuan et 

al., 2017), with Bacillus spp. being the most reported (Gomaa, 2012; Khan et al., 2018; B. Li et 

al., 2013; S. Li et al., 2013; Zhao et al., 2021). For example, Bacillus subtilis HJ5 can reduce 

infection of V. dahliae on cotton through root colonization and biofilm formation (S. Li et al., 

2013); B. licheniformis and B. thuringiensis can suppress Verticillium spp. on soybean (Gomaa, 

2012); and B. amyloliquefaciens has a prominent effect on controlling V. dahliae in vitro (B. Li 

et al., 2013). The commercial product Stargus (a.i. Bacillus amyloliquefaciens strain F727, 

Marrone Bio-Innovations, Davis, CA) has therefore become another candidate for PED control. 

It was also introduced by Marrone, and has been shown to effectively reduce the severity of 

diseases caused by Sclerospora spp., Fusarium spp., and Botrytis cinerea (Marrone, 2020b).  
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1.4.4. Other products for soil treatments 

Soil organic amendments can be used in managing PED. For example, blood meal and 

fish meal were found decades ago to reduce the infection of V. dahliae on tomatoes. (Wilhelm, 

1951). The mechanism of this activity was through high concentrations of volatile fatty acids 

under acidic soil conditions that reduce V. dahliae inoculum by breaking down into toxic 

substances (Conn & Lazarovits, 2000). Then, researchers found that many different kinds of 

animal or plant organic debris have been used to reduce the severity of disease caused by V. 

dahliae (Goicoechea, 2009; Inderbitzin et al., 2018; Tubeileh & Stephenson, 2020)  

Crop rotation can help to reduce the severity of PED (LaMondia, 2006; Wheeler & 

Johnson, 2016), but studies have concluded that rotation with economically valuable crops is less 

effective for pathogens like V. dahliae which can infect more than 200 different host species 

(Borza et al., 2018; Larkin et al., 2010; Lazarovits & Subbarao, 2010). Interestingly, rotation 

with green manures can be more effective, as rotation with broccoli or other Brassica crops as 

green manures have been shown to be effective in reducing the inoculum of V. dahliae. The 

mode of action is through biofumigation, in which compounds in the mustard oils 

(glucosinolates) break down to produce isothiocyanate fumigants that have a broad spectrum 

fungicidal effect (Berlanger & Powelson, 2005; Xiao et al., 1998). In addition, sudangrass 

(Sorghum vulgare var. sudanense ‘Monarch’) and corn (Zea mays ‘Jubilee’) have also been used 

for the control of V .dahliae (Davis et al., 1996). High-glucosinolate mustard blend and a 

sorghum-sudangrass hybrid green manures also reduced the severity of disease caused by V. 

dahliae in field trials (Larkin et al., 2011). Irrigation can also be effective for PED control, 

although the requirement for available soil moisture is relatively high at up to 90% (Berlanger & 

Powelson, 2005; Cabral et al., 2020). 
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1.5. Fungicide resistance in pathogen 

1.5.1. Mechanisms of fungicide resistance 

Efficacy of some fungicides can be overcome by pathogen resistance through genetic 

mutation (Fernández-Ortuño et al., 2010). Pathogen resistance to a fungicide is developed in 

three steps: emergence, selection and adjustment (Van Den Bosch et al., 2011). At the early stage 

of fungicide application, there are only sensitive fungal pathogens in the community, and then 

resistant pathogens are selected because fungi have highly plastic genomes and reproduce rapidly 

(Fisher et al., 2018; Zhan et al., 2014). The population of mutated fungi will then continue to 

increase due to their competitive advantage and will outnumber the sensitive fungi within the 

population. As a result, the resistant mutants become dominant in the population and the efficacy 

of the fungicide is weakened or may even become ineffective completely (Zhan et al., 2014). 

Therefore, the application strategy is critical to lower the resistance risk.  

QoI fungicides have a high resistance risk, mainly because the mutation usually occurs on 

only one gene - cytochrome b. This could result in a relatively high probability of mutation and 

consequently a high level of resistance in the pathogen (Zhan et al., 2014). Moreover, there are 

other ways for pathogens to survive under QoIs, such as the alternative oxidase (AOX) pathway 

which can sustain cyanide-resistant respiration (Fernández-Ortuño et al., 2010). Due to its high 

risk, azoxystrobin should be used with other products having different mechanisms of action.  

The resistance against SDHI fungicides is usually induced by the mutation of different 

subunits of the SDH complex, which leads to changes in the protein structure (Avenot et al., 

2008, 2009; Sierotzki & Scalliet, 2013). The conservative subunits of the SDH complex 

displayed a higher probability of point mutation (Zhan et al., 2014). As the SDHB is a highly 

conserved subunit in the membrane-peripheral domain, the SDHC and SDHD are highly variable 

subunits, and the mutation points of amino acids are on conserved positions of the ubiquinone 

binding pocket (Avenot & Michailides, 2010). In addition, the mutation point on SDHB is 
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monotonous, which means that the mutation usually happens on the same group of amino acids 

even among different pathogens, while mutation points on SDHC and SDHD are relatively 

variable (Zhan et al., 2014). However, it has also been reported that no mutation on SDH-related 

subunits were detected in some SDHI-resistant pathogens, which means there may be other 

mechanisms of resistance (Miyamoto et al., 2010). Resistance caused by SDH-related subunit 

mutations is usually detected in a variety of regions such as H/Y (or H/L) at 257, 267, 272 or P/L 

(or P/F) at 225, etc., which depend on different species of pathogens (FRAC, 2020; Sierotzki & 

Scalliet, 2013). In all, the resistance can commonly develop in the pathogen, but the cross 

resistance may not exist between the newly developed SDHI fungicides from the same class due 

to multiple mutation sites (Zhan et al., 2014).  

1.5.2. Fungicide resistance risk evaluation 

The probability of resistance development and the potential resistance level varies 

depending on the mode of actions of fungicides and the pathogen itself. The risk of fungicide 

application and the risk of pathogen resistance can be generally classified as high, medium or 

low levels based on the number of reported resistance occurrences (Brent & Hollomon, 1998). 

For example, Botrytis cinerea, the pathogen that causes gray mold, is a high-resistance risk 

pathogen because it has been reported to be resistant against 15 different fungicides (Hahn, 

2014). To assess the risk of resistance requires massive field trial data. However, laboratory or 

greenhouse experiments can simulate the occurrence of resistance in the field. Resistant mutants 

can be obtained by exposing the initially sensitive cultures to a fungicide-amended environment. 

The risk evaluation therefore is determined by establishing a baseline sensitivity, and analyzing 

fitness, pathogenicity and cross-resistance of fungicide-resistant mutants (Brent & Hollomon, 

1998; Egüen et al., 2015; Miao et al., 2016). The establishment of a sensitivity baseline is needed 

to understand how susceptible the wild type strains are. The resistance test for mutants 

determines the frequency of mutation and the level of resistance. It can be assessed by measuring 
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conidial germination and mycelial growth on fungicide-amended agar plates (Wise et al., 2008; 

Yuan et al., 2006), in a microplate (Egüen et al., 2015), or using a spiral plater which provides a 

gradient of concentrations in a Petri dish (Förster et al., 2004; Torres-Londoño et al., 2016). An 

effective concentration at 50% inhibition (EC50) value is then calculated and used to determine 

the sensitivity. Fitness analysis investigates whether the resistant mutant could survive and 

dominate in field production. Pathogenicity analysis shows the possibility of whether the mutant 

will be a threat to production. Cross-resistance refers to whether one resistant mutant may 

develop resistance to another fungicide with a different mode of action, which can be used as a 

guide to develop fungicide application strategies. All the laboratory data can help to reveal the 

interactions between fungicides and pathogens, and therefore determine the risk (Brent & 

Hollomon, 1998).  

There are three methods to determine the EC50 described above, which have their own 

advantages and disadvantages. The advantage of using toxic plates is that it is easy to perform, 

but the disadvantages are determination of the concentration range requires pre-experiment (too 

high or too low will impact on the results) and low efficiency for the pathogens with slow growth 

rate (Förster et al., 2004). The conidial germination method is done by making a series of 

conidial suspensions with different concentration of fungicide. The resistant individuals can 

germinate while spores without resistance are killed. Thus, the EC50 can be determined by 

calculating the spore germination rate, with the advantage of accuracy. However, the 

disadvantages of such a method are inefficiency of counting conidia under the microscope 

(Förster et al., 2004) and not being able to be performed on pathogens that do not produce 

conidia, such as Rhizoctonia solani. In contrast, the spiral plate works by linear sprinkling of 

fungicides on a plate, so that the medium contains the highest amount of fungicide in the central 

part while the lowest (zero) on the edge. The EC50 can be determined by calculating the 

fungicide concentration at where growth is 50% of the edge colony. The advantages of using 
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spiral plate are that it is extremely efficient and has a higher range and resolution at high 

fungicide concentrations. While disadvantages are the machine is costly and has relatively low 

accuracy.  

The mutations occurring in fungicide resistance can be detected using molecular 

methods. For example, the resistance-related gene(s) of QoIs is on cytochrome b while SDHIs 

are SDHA, SDHB, SDHC, and SDHD. To examine a potential mutation on a specific gene, the 

target gene is amplified by polymerase chain reaction (PCR), and the PCR product can be 

sequenced and analyzed. By comparing changes of nucleotides, mutations can be identified. 

Mutations generally occur in only one gene for QoIs, which could be one of the reasons for its 

high risk. For SDHIs, on the other hand, the number and site of mutations can have different 

effects on resistance (Avenot et al., 2008, 2009; Miles et al., 2014).  

1.5.3. Prevention of resistance development 

In addition to risk evaluation of fungicides, an ideal way to prevent the risk of resistance 

is to develop fungicides with new modes of action (Fisher et al., 2018). However, the most 

practical way is to avoid or slow down the development of resistance by using fungicides with 

different modes of action and reducing the frequency and the dosage of fungicides (Zhan et al., 

2014). Azoxystrobin and benzovindiflupyr are both effective in controlling V. dahliae with 

different modes of action and are combined in the formulated commercialized product Elatus 

(Syngenta, Greenboro, NC, United States).  

1.6. Soil microbial communities 

1.6.1. Soil microbiome 

Soil is a natural medium that contains a wide variety of microorganisms, including 

bacteria, fungi, and archaea. All microorganisms within a certain area of soil comprise the soil 

microbiome. The abundance and structure of soil microorganisms is closely associated with 

soilborne diseases (Larkin et al., 2011; Stark et al., 2007). To suppress soilborne disease of 
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potato, there are a large number of beneficial microorganisms, including Bacillus spp., 

Streptomyces spp., Pseudomonas spp. and Rhizobium spp. (Nihorimbere et al., 2011). Most of 

the beneficial microorganisms can inhibit the growth of pathogens by secreting anti-biotic 

metabolites or by parasitizing pathogens (Dicklow & Madeiras, 2018; Nihorimbere et al., 2011). 

Moreover, beneficial microorganisms can also break down soil organic matter and promote 

humus formation (Vossbrinck et al., 1979); symbiosis with plants to promote plant growth 

(Prasad et al., 2015); absorb, fix and release nutrients (Roy & Singh, 1994); and reduce heavy 

metal contamination (Boopathy, 2000). There are also neutral microorganisms, which can 

suppress pathogens by competing for limited space and resources against pathogens since 

pathogens need host plants for reproduction (Abdullah et al., 2017).  

Fumigants and fungicides not only suffocate pathogens, but also poison natural or 

beneficial organisms due to the broad-spectrum nature of them. By changing the proportion of 

bacteria and fungi in the soil, soil health may increase and proliferation of soilborne diseases 

decrease (Zhou & Ding, 2007). For example, it was observed that the diversity of the soil 

microbiome and the dominant population was changed after metam sodium application, and the 

dominant taxa were primary contributors to biological activity and healthy soil (J. Li et al., 2017; 

Sederholm et al., 2018).  

1.6.2. DNA sequencing-based analysis on microbial communities 

The abundance and diversity of soil microbial communities have been used as an 

indicator of soil health. However, due to fumigation and fungicide applications that can kill 

microorganisms in a broad spectrum, reduced populations of beneficial microorganisms is a 

concern for plant health (Neilson et al., 2020; Podio et al., 2008).  

The next-generation sequencing (NGS) technologies are a powerful tool for the analysis 

of soil microbial communities (Coats et al., 2014; van Elsas et al., 2008). NGS allows parallel 

sequencing of large-scale DNA amplicons, and makes possible for genotyping of hundreds to 
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thousands of samples in one run (Shendure & Ji, 2008). Five platforms in NGS are available: 454 

pyrosequencing, Illumina/Solexa, SOLiD, Ion Torrent technology, and PacBio RS (Krishna et 

al., 2019; Liu et al., 2012). Illumina sequencing platform is chosen by more researchers as it is 

more efficient and cost effective than other platforms (Luo et al., 2012). Miseq is a next 

generation sequencing instrument of Illumina. It features reversible-terminator sequencing-by-

synthesis technology to provide end-to-end sequencing solutions. Different amplicons can be 

used for different variable regions sequencing. For example, 16S ribosomal RNA (rRNA) v4 

hypervariable region is used for bacterial community analysis while internal transcribed space1 

(ITS1) hypervariable region is used for fungal community analysis (Huang et al., 2015).  The 

data set generated by NGS is subjected to bioinformatic pipelines such as quantitative insights 

into microbial ecology (QIIME) and Mothur for analysis (López-García et al., 2018). The 

operating taxonomic units (OTUs) and amplicon sequence variants (ASV) can be used for 

classifying the sequences (Prodan et al., 2020).  

Microbial community analysis is frequently performed using three estimators. Alpha 

diversity is for within-community analysis; beta diversity is for between-community analysis; 

and gamma diversity is for between-region diversity analysis (Sepkoski Jr, 1988). Therefore, soil 

microbial community richness and diversity can be analyzed by alpha diversity, and the data can 

be presented as statistical indices such as Chao, Ace, Shannon, and Simpson (J. Li et al., 2017). 

Chao is an index for estimating the number of OTUs contained in a sample using the chao1 

algorithm. Chao1 is commonly used in ecology to estimate the total number of species (Chao, 

1984). Ace is an index used to estimate the number of OTUs in a community (Chao et al., 2006). 

Shannon and Simpson indices are commonly used to reflect the alpha diversity (Shannon, 1948; 

Simpson, 1949). The higher the Shannon index, the higher the diversity, while the opposite of 

Simpson index.  
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1.7. Conclusions 

PED is an important soilborne disease of potato that threatens potato production. Due to 

V. dahliae features long life span and wide host range, the control strategy is mainly based on the 

reduction of inoculum. Therefore, the most widely used control methods include soil fumigation 

and applying chemical fungicides. Soil fumigation and chemical fungicides not only affect 

pathogens, but also poison natural or beneficial organisms. It is of great importance to 

understand and evaluate the outcome of fumigant and chemical fungicide applications on the 

alteration of the soil microbiome, especially beneficial microorganisms. One of these alterations 

is pesticide resistance and risk evaluation.   
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2.CHAPTER 2 

SENSITIVITY AND RESISTANCE OF VERTICILLIUM DAHLIAE TO 

BENZOVINDIFLUPYR  

 

Chapter Abstract  

 Verticillium dahliae is a soilborne pathogen causing potato early dying resulting in 

significant losses to potatoes. Benzovindiflupyr, a succinate dehydrogenase inhibitor (SDHI), has 

been commonly used as an effective fungicide in controlling V. dahliae. However, frequent 

applications of a fungicide may result in the development of fungicide resistance in the pathogen. 

To evaluate the risk of benzovindiflupyr resistance, 38 V. dahliae isolates were obtained from 

potato stems showing early dying symptoms in Maine. Sensitivity was determined and a baseline 

was established based on the effective concentration for 50% inhibition (EC50) values, which 

ranged from 0.07 to 11.28 µg/ml. By exposing V. dahliae to a high concentration of 

benzovindiflupyr, 18 resistant mutants were obtained from eight isolates, with EC50 ranging from 

18 to more than 1000 times higher than their parental isolates. To examine their fitness, the 

mutants were continuously cultured up to the 10th generation. Mycelial growth, conidial 

production, competitiveness, pathogenicity, and cross-resistance of the 10th generation mutants 

were further examined. Results showed that 50% and 60% of the resistant mutants retained the 

adaptive level in mycelial growth and conidial production similar to their parents. All mutants 

had no changes in pathogenicity. No cross resistance was detected in the mutants between 

benzovindiflupyr and either azoxystrobin, boscalid, fluopyram, or pyrimethanil. Moreover, all 

mutants were highly sensitive to azoxystrobin. Thus, the resistance of V. dahliae to 

benzovindiflupyr should be considered in fungicide management, and azoxystrobin could be a 

candidate used along with benzovindiflupyr to reduce the risk of resistance.  
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2.1. Introduction  

Verticillium dahliae is a notorious soilborne pathogen that features a long life-span and 

wide range of hosts. Microsclerotia serve as a survival structure, allowing V. dahliae to stay 

viable in soil for over 14 years (Wilhelm, 1955). Verticillium dahliae can infect more than 200 

species of plants, including many economically important crops such as potatoes, cotton, 

strawberries, and alfalfa (Berlanger & Powelson, 2005; Klosterman et al., 2009). When the 

conditions become favorable, V. dahliae infiltrate into the cortex of potato roots and produce a 

massive number of conidia to colonize in the xylem (Martin et al., 1982). As a result, upward 

transportation of water and minerals from the roots is blocked (Yadeta & Thomma, 2013). 

 Currently, controlling V. dahliae relies on soil fumigation and chemical fungicides, 

although cultural practices are also important (Gamliel et al., 1997; Lembright, 1990; Syngenta, 

2020). Among the fungicides available in the market, Elatus and Aprovia (both Syngenta, 

Greenboro, NC, United States) are most promising products. Benzovindiflupyr is the active 

ingredient in both fungicides (EFSA, 2015; Wiglesworth & Tally, 2015). Benzovindiflupyr 

functions as blocking the electron transport from the [3Fe–4S] cluster to ubiquinone binding 

pocket, resulting in the death of pathogens through energy deficiency (Horsefield et al., 2006). 

This mode of action is known as a succinite dehydrogenase inhibitor (SDHI).  

As a respiratory inhibitor, the occurrence of pathogen resistance is inevitable. Although 

SDHI fungicides target multiple genes of pathogens, the risk is considered medium to high by 

the Fungicide Resistance Action Committee (FRAC, 2020). Therefore, naturally occurring 

resistance to benzovindiflupyr should be monitored. Risk assessment of fungicide resistance can 

be conducted through laboratory or greenhouse experiments, which mimic the occurrence of 

resistance in the field in a much more efficient way (Brent & Hollomon, 1998). By establishing a 

baseline sensitivity of natural populations of pathogen, any change of sensitivity can be noticed. 

Once a resistant strain occurs, its risk is determined by its adaptation, fitness, pathogenicity and 
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cross-resistance to other fungicides (Brent & Hollomon, 1998; Egüen et al., 2015; Miao et al., 

2016). Resistant mutants can be obtained by exposing wild-type (initially sensitive) cultures to 

the fungicide. Fitness indicates whether the resistant mutant can survive and dominate in field 

production. Pathogenicity assay shows the possibility of whether the mutant will be as virulent 

and aggressive as the wild type. Cross-resistance assessment gives an indication of whether 

another fungicide is effective if resistance occurs.  

Benzovindiflupyr resistance in V. dahliae has not yet been reported. The objectives of 

this study were to examine the natural population of V. dahliae in benzovindiflupyr sensitivity 

and to determine the risk of benzovindiflupyr resistance.  

2.2. Materials and Methods  

2.2.1. Verticillium dahliae isolates  

Verticillium dahliae isolates were obtained from potato stems and tubers showing disease 

symptoms. Twenty-nine isolates were from two locations in Houlton, Maine: GPS 46.137691; -

67.835751 and GPS 46.098363; -67.892044. The remaining 19 isolates were obtained from Hao 

Lab, University of Maine, Orono, Maine, most of which were isolated in previous years from 

various locations. Isolation was performed by cutting either the wilted stems with microsclerotia 

or discolored tubers into 0.5-cm-long pieces, disinfestation with 75% ethanol for 30 seconds 

followed by 10% bleach solution for 5 min, and then immediately rinsing with sterile tap water. 

The disinfested pieces were placed onto the semi-selective medium NP-10 in a Petri plate (Kabir 

et al., 2004). Pure cultures of each isolate were derived using a single spore method on potato 

dextrose agar (PDA) plates. Genomic DNA of V. dahliae isolates was extracted by FastDNA 

spin kit (MP Biomedicals, Solon, OH, United States), which was used as a template for 

performing polymerase chain reaction (PCR) targeting the ITS gene. PCR products were 

sequenced and analyzed using BLAST algorithm against the National Center for Biotechnology 

Information Search (NCBI) database for fungal identification. 
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2.2.2. Fungicides  

Technical grade benzovindiflupyr (97% active ingredient) was provided by Syngenta 

Crop Protection Inc. (Greensboro, NC, United States). The stock solution was prepared by 

dissolving the fungicides into methanol to make a concentration of 10,000 µl/ml, which was 

stored at 4ºC in the dark. In addition, technical grade azoxystrobin (96% active ingredient, 

Syngenta, Greenboro, NC, United States), boscalid (98% active ingredient, BASF, Research 

Triangle Park, NC, United States), and commercial products Velum prime (a.i. 41.5% 

fluopyram, Bayer, Whippany, NJ, United States), and Luna Tranquility (a.i. 25% fluopyram and 

75% pyrimethanil, Bayer, Whippany, NJ, United States) were also prepared for the cross-

resistance study. Salicylhydroxamic acid (SHAM) (a.i. 99%, Sigma-Aldrich, Sigma-Aldrich, St. 

Louis, MO, United States) was used as an auxiliary inhibitor for alternative oxidase pathway.  

2.2.3. Sensitivity of Verticillium dahliae to benzovindiflupyr in vitro  

Conidia germination assay was used for resistant mutants and their parental isolates. A 6-

mm-diameter culture plug of V. dahliae was transferred into a 2 ml vial containing 1 ml potato 

dextrose broth (PDB) and incubated at 22ºC for 5 days for conidial suspension. Twenty 

microliters of conidial suspension adjusted to 105 conidia/ml were added to 20 µl 

benzovindiflupyr at concentrations of either 10, 5, 2.5, 1.25, 0.625, 0.3125, or 0.15625 μg/ml on 

a well of a repression-welled glass slide. Sterile tap water was used as a negative control. The 

slide was incubated in a moist container. Each treatment was triplicated. After 15 to 24 hours of 

incubation, the number of germinated conidia was counted under a microscope when that of the 

negative control reach 80%. The effective concentration for 50% growth inhibition (EC50) value 

was estimated for each isolate by regressing the probit-transformed relative germination 

inhibition on the logarithm of fungicide concentration. 

In a second method, spiral plating method was employed (Förster et al., 2004). 

Benzovindiflupyr solution at 500 µg/ml was spirally distributed by an Autoplate 4000 plater onto 



 

23 

 

a 15-cm Petri dish containing 58 ml of PDA (Spiral Biotech, Inc., Norwood, MA, United States). 

The 100 µl exponential mode was used to make the final concentration range from 0.05 µg/ml to 

108.17 µg/ml. Conidial suspension was prepared by transferring 3 plugs of 5-day old V. dahliae 

cultures into a flask with 10 ml of sterile tap water. Three autoclaved wood stirrers (5.2 cm x 0.6 

cm) were soaked into the conidial suspension and shaken for hominization. After 10 min, those 

conidia-carried wood stirrers were placed across the fungicide-amended PDA plate. The plate 

was sealed with parafilm and incubated for two weeks at room temperature. The position of 50% 

growth of V. dahliae was recorded and the track number was then measured (Figure 2-1). 

Concentration of each radius was calculated as [(Vlocal / Vagar)/1000] x fungicide concentration x 

dilution factor, where Vlocal was the agar volume of each radius track, Vagar was total agar 

volume, and dilution factor was technical numbers provided by the manufacturer.  

 

 
Figure 2-1. Schematic diagram of spiral plating procedure. Modified from Torres-Londoño et al., 

2016. 
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2.2.4. Generation of benzovindiflupyr-resistant Verticillium dahliae mutants  

Eight V. dahliae isolates were chosen for resistant mutant induction. One plug of a 5-day-

old culture was transferred into a 2 ml vial containing 1 ml of 20 µg/ml benzovindiflupyr-

amended PDB. The cultures in the liquid medium were incubated for three days in the dark. An 

aliquot of 100 µl conidial suspension was spread on a 20 µg/ml benzovindiflupyr-amended PDA 

plate, which was incubated for 2 days at 22ºC. Fungal growth on the plate was considered as a 

mutant and transferred to a new PDA plate for storage. The mutant was then subjected to a 

conidial germination test for sensitivity. Resistance factor (RF) was used to show the fold 

increase in resistance and calculated as EC50 of mutant / EC50 of parental isolate.  

2.2.5. Resistance stability 

Mutants were transferred to a fungicide-free PDA plate and incubated at 22ºC. After 2 

days of incubation, the newly grown colony was transferred to another new PDA plate, which 

was repeated for 10 generations. EC50 was determined by the conidial germination method on the 

transfer of 10th generation, and the RF was then calculated.  

2.2.6. Fitness of V. dahliae mutants  

2.2.6.1. Mycelial growth and conidial production 

Ten 10th generation mutants with 10 times or greater RF value were chosen for the 

following test. A 6-mm-diameter agar plug was cut from the cultures with a cork borer and 

placed on a PDA plate. After a 7-day incubation at 22C, colony diameter was measured 

perpendicularly. Each culture was triplicated.  

After the mycelial growth assay, a 6-mm-diameter agar plug of both mutants and their 

parental isolates were transferred into a 2 ml vial containing one milliliter of sterile tap water. 

Ten microliters of suspension was transferred to Bright-Line™ hemocytometer (25×16) (Sigma-

Aldrich, St. Louis, MO, United States) for estimating conidial production. Each conidial 

suspension was measured three times. Number of conidia in the four corners and the central 
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square was recorded. Total number of conidia per milliliter was then calculated as (Sum of 

recorded conidia number / 80) x 400 x 10,000. 

2.2.6.2. Competitiveness of V. dahliae mutants  

Conidial suspensions of mutants (M) and wild-type isolates (W) were made by 

transferring one plug (d = 6 mm) of culture into one milliliter of sterile tap water. The 

suspensions of the M and the W were mixed in ratios of M:W = 0%:100%, 25%:75%, 50%:50%, 

75%:25%, and 100%:0%. One hundred microliters of each mixed suspension were evenly spread 

onto a PDA plate. After three days of incubation, a 6-mm-diameter agar plug was cut and placed 

into a 2 ml vial containing one milliliter of PDB. Twenty microliters of conidial suspension were 

mixed with the same volume of 10 µg/ml benzovindiflupyr to make the final concentration of 5 

µg/ml. Conidial germination was determined after 20 hours of incubation at 22C in a 100% 

moisture chamber. Competitiveness was estimated by comparing the expected germination ratio 

to the observed germination ratio. The expected value was obtained by comparing the 

germination ratio of the wild-type isolate and mutant under benzovindiflupyr-amended 

condition, calculated as (Germination ratio mutant x M:W) + Germination ratio wild-type x (1 - M:W). 

2.2.6.3. Pathogenicity of V. dahliae mutants 

A greenhouse experiment was conducted in Roger Clapp Greenhouse, University of 

Maine, Orono, ME. Potato variety ‘Superior’ seed pieces were planted in on 1-gallon plastic pots 

containing potting soil. Plants were watered as needed after emergence. Six weeks after planting, 

conidial suspensions of mutants and their parental isolates were prepared by washing off conidia 

from a 7-day old culture on a 9-cm PDA plate. The suspensions were then diluted to a 

concentration of 106 conidia/ml (Dung et al., 2013). Two hundred milliliters of conidial 

suspensions were poured into the soil along plant stem. There were four replicates per treatment. 

Disease was evaluated three weeks post inoculation by cutting potato stems or stem-end tubers 

for the examination of vascular discoloration. Disease severity was categorized into four levels, 
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with 0 = healthy, 1 = discoloration in vascular system but no symptom on plant, 2 =chlorosis of 

potato plant or slight discoloration on tuber, 3 = wilting of potato plant or discoloration on tuber, 

4 = dieback potato plant (Figure 2-2 and Figure 2-3).  

 

 

Figure 2-2. Potato early dying plant symptom in greenhouse. A: healthy potato plant, B: 

chlorosis and wilting of potato plant, C: dieback of potato plant.  

 

 

 
Figure 2-3. Potato early dying vascular symptoms on potato stem and tuber. A: healthy stem, B: 

discoloration of stem, C: healthy tuber, D: discolored stem-end tuber.  

 

2.2.6.4. Cross-resistance  

All test fungicides were prepared at a concentration of 500 µg/ml. Each fungicide was 

distributed on 15-cm PDA plates using the spiral plating method as described above. EC50 was 

determined on V. dahliae mutants and their parental isolate by culturing them on the fungicide-

amended PDA plates. There were three replicates per treatment. For azoxystrobin test, SHAM 
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was evenly amended on the plate at the final concentration of 100 µg/ml to inhibit alternative 

oxidase pathway.  

2.2.7. Statistical analyses 

Data was analyzed using SPSS 27 software (IBM Corp., Armonk, NY, United States). A 

one-way analysis of variance (ANOVA) was used to compare differences of mycelial growth, 

conidial production, and disease severity. Chi-square goodness-of-fit test was used to compare 

the theoretical expected ratios of germination for competitiveness test. Spearman’s rank 

correlation test was used for examining cross resistance between benzovindiflupyr and other 

tested fungicides.  

2.3. Results 

2.3.1. Baseline sensitivity of Verticillium dahliae to benzovindiflupyr 

A total of 38 isolates were subjected to sensitivity test by using either spiral plating or 

conidial germination. The EC50 of tested isolates ranged from 0.07 to 11.28 µg/ml, where 37% of 

them were distributed between EC50 of 0.51 and 1.00 µg/ml, and 89% showed EC50 <3.0. A gap 

was observed between 3.51 and 4.50 µg/ml. Three relatively resistant isolates with EC50 greater 

than 5 µg/ml were found (Figure 2-4).  
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Figure 2-4. Distribution of effective concentration at 50% inhibition (EC50) values (µg/ml) to 

benzovindiflupyr for 38 Verticillium dahliae isolates. 

 

2.3.2. Mutants and their resistance stability  

Eighteen mutants were obtained from eight V. dahliae isolates. RF values ranged from 

4.2 to over 1000 (two with RF < 1 were excluded), while most of them were between 0 and 49, 

accounting for 39%, followed by 50 to 99 and >1000 (Figure 2-5). Ten mutants were chosen for 

resistance stability test. After 10 generations of continuous culture, 30% isolates showed reduced 

resistance, while the other 70% showed increased resistance (Table 2-1). The largest increase in 

EC50 was found in H7M4, with an increase of 236 µg/ml after 10 generations of culture. In 

addition, those 10th generation mutants with reduced EC50 were still more resistant than their 

parental isolates. 
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Figure 2-5. Distribution of resistance factor (RF) for 18 Verticillium dahliae resistant mutants to 

benzovindiflupyr. RF was calculated as EC50 of mutant / EC50 of parental isolates. 

 

Table 2-1. Stability of benzovindiflupyr-resistant Verticillium dahliae mutants 

Parental 

isolate 

Mutant 

EC50 (µg/ml) z 

Difference y 

Parental isolate 1st generation mutant 10th generation mutant 

H1 H1M2 0.704 20.190 13.000 ↓ 

H2 H2M1 0.940 34.580 43.870 ↑ 

H2 H2M3 0.935 0.750 61.410 ↑ 

H4 H4M2 0.623 31.800 14.40 ↓ 

H5 H5M3 0.759 78.030 152.00 ↑ 

H7 H7M1 0.113 14.750 7.590 ↓ 

H7 H7M2 0.113 10.030 15.180 ↑ 

H7 H7M3 0.113 8.930 35.000 ↑ 

H7 H7M4 0.113 8.760 245.000 ↑ 

H14 H14M1 2.061 0.003 152.000 ↑ 

z EC50: Effective concentration at 50% inhibition (EC50). 
y Difference between 10th generation 

mutants and their 1st generation mutants. ↑: EC50 increased for 10th generation mutants, ↓: EC50 

decreased for 10th generation mutants.  
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2.3.3. Fitness of V. dahliae mutants  

2.3.3.1. Mycelial growth and conidial production  

After one-week of incubation, 50% of the mutants showed different growth rates from 

their parental isolates (P < 0.01). Among them, three of the five had significantly slower 

mycelial growth rates than their parents, while the other two grew significantly faster (Table 

2-2). However, a different pattern emerged in the conidia production test, where 60% of the 

mutants did not show a significant difference in conidia production compared to the parental 

isolates, and the other 40% produced less conidia than their parental isolates (P < 0.01) (Table 

2-3). 

 

Table 2-2. Mycelial growth (colony diameter) z of benzovindiflupyr-resistant Verticillium 

dahliae mutants and their parental isolates  

Parental  

isolate 

Mutant 

Mutant growth 

(cm) 

Parental isolate (wild-

type) growth (cm) 

P 

H1 H1M2 1.78 2.23 0.002 

H2 H2M1 2.27 2.15 0.025 

H2 H2M3 1.82 2.15 <0.001 

H4 H4M2 2.28 1.55 <0.001 

H5 H5M3 2.05 2.18 0.275 

H6 H6M2 1.68 2.43 0.004 

H6 H6M4 2.28 2.43 0.354 

H6 H6M5 1.98 2.43 0.022 

H7 H7M1 1.15 1.1         0.842 

H7 H7M2 2.38 1.1        <0.001 

z Diameter of colony was determined by culturing the 10th-generation mutants or parental isolates 

on potato dextrose agar 22ºC for one week. Each measurement was triplicated.  
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Table 2-3. Conidial production (10,000 unit/ml) of Verticillium dahliae mutants resistant to 

benzovindiflupyr compared to their parental isolates  

Parental 

isolate 

 

Mutant 

Mutant conidial 

production z 

Parental isolate 

 (wild-type)  

conidial production 

P 

H1  H1M2 190 325 0.001 

H2  H2M1 237 480 0.008 

H2  H2M3 318 480 0.108 

H4  H4M2 176 85 0.041 

H5  H5M3 40 210 <0.001 

H6  H6M2 165 183 0.702 

H6  H6M4 718 183 0.041 

H6  H6M5 170 183 0.743 

H7  H7M1 605 475 0.321 

H7  H7M2 245 475 0.004 

z Conidia were counted using a 25x16 hemocytometer.  

  

2.3.3.2. Competitiveness assay  

Chi-square goodness-of-fit test showed that five out of six mutants had the same 

competitiveness as their parental isolates, while one mutant was different from its parent in 

competitiveness (P < 0.01). When the ratio of mutant and wild-type isolate was same (M:W = 

50%:50%), the mutant H2M3 showed a higher competitiveness than its parent H2 (Table 2-4). 

When the mutant was at different population, H2M3 showed a lower competitiveness than H2 

(Table 2-4).   
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Table 2-4. Germination ratios of mutants to wild-type isolates of Verticillium dahliae mutants 

under 5 µg/ml benzovindiflupyr 

Mutant Parental isolate 

Expected  Observed  P 

25:75 z 50:50 75:25 25:75 50:50 75:25  

H2M1 H2 47.6 57.1 66.6 44.0 68.0 59.3 0.864 

H2M3 H2 27.5 47.1 66.8 10.3 68.0 59.7 <0.01 

H7M2 H7 40.5 58.4 76.4 39.3 70.3 65.7 0.701 

H7M3 H7 2.9 5.9 8.8 7.3 4.0 6.30 0.993 

H7M4 H7 45.0 61.4 77.9 57.0 55.3 72.0 0.561 

H19M2 H19 18.1 36.1 54.2 26.3 59.7 22.3 0.096 

z The ratio of mutants to wild type isolates (M:W). 

 

2.3.3.3. Pathogenicity test  

Through disease evaluation of inoculated potato plants, benzovindiflupyr-resistant V. 

dahliae mutants caused an average disease severity that ranged from 1.25 to 2.75 rating units 

compared to 1.5 to 2.75 for their parent isolates. Statistical analysis indicated mutants had the 

same virulence as their parental isolates (P ranged from 0.11 to 0.79) (Table 2-5). 
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Table 2-5. Pathogenicity of benzovindiflupyr mutants and their parental isolates on potato plants 

in greenhouse conditions 

Parent 

isolates 

Mutants 

Disease severity 

caused by mutants z 

Disease severity caused 

by parental isolates 

P 

H2 H2M3 2.50 2.25 0.79 

H5 H5M4 2.75 1.75 0.11 

H7 H7M4 1.25 1.5 0.54 

H19M2 H19M2 2.25 2.75 0.55 

z Disease severity was determined by categorizing disease symptoms on potato plant into five 

levels. 0: healthy, 1: discoloration in vascular system but no symptom on plant, 2: chlorosis of 

potato plant or slightly discoloration on tuber, 3: wilting of potato plant or discoloration on tuber, 

4: dead potato plant. 

 

2.3.3.4. Cross-resistance  

No cross-resistance was shown between benzovindiflupyr and either boscalid, fluopyram, 

azoxystrobin, or pyrimethanil. The average EC50 of V. dahliae isolates and their 

benzovindiflupyr-resistant mutant to boscalid, azoxystrobin, mix of fluopyram and pyrimethanil, 

and fluopyram were 69.98, 0.76, 39.59, and 89.15, respectively. Most of the tested strains were 

resistant to boscalid/fluopyram, and the resistance did not change when sensitivity to 

benzovindiflupyr changed (ρ = -0.054, P = 0.876 and ρ = 0.218, P = 0.519 respectively) (Figure 

2-6 A, D). For azoxystrobin, all strains tested were sensitive and did not increase resistance to 

azoxystrobin in the strains with a high resistance to benzovindiflupyr (ρ = -0.487, P = 0.128) 

(Figure 2-6 B).  According to the statistical analysis, there also was no cross-resistance between 

benzovindiflupyr and pyrimethanil (ρ = -0.159, P = 0.640) (Figure 2-6 C).    



 

34 

 

   
Figure 2-6. Cross-resistance of benzovindiflupyr-resistant Verticillium dahliae mutants, 

evaluated on their sensitivities to between benzovindiflupyr and A: boscalid, B: azoxystrobin, C: 

25% fluopyram and 75% pyrimethanil, and D: fluopyram.  

 

2.4. Discussion 

For the 38 isolates of V. dahliae, a baseline sensitivity was generated, with EC50 ranging 

from 0.07 to 11.28 µg/ml, where 37% of them were distributed between EC50 of 0.51 and 1.00 

µg/ml, and 89% showed EC50 <3.0. Three isolates with EC50 greater than 5 µg/ml were found. It 

indicated that natural resistance might have already occurred. Results of fitness test showed that 

most benzovindiflupyr-resistant mutants had a high level of adaptation. Therefore, frequent 

applications of benzovindiflupyr may result in a quick development of resistance and loss of 

fungicide efficacy. As such, the resistant population would become predominant.  

There 18 benzovindiflupyr-resistant mutants obtained from eight V. dahliae isolates. 

Most of the mutants had high RF values and they were stable through generations. More 

importantly, they did not have significant trade off fitness and adaptation with resistance 

development, and they all maintained aggressive pathogenicity. Apparently, it can be a risk in 

the production. In fact, at least three isolates were found naturally resistant to benzovindiflupyr.  
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To reduce the risk, a practical way is to employ another fungicide that does not have 

cross resistance or have the same mode of action with benzovindiflupyr (Brent & Hollomon, 

1998). By mixing or rotating applications, the probability that resistance occurs and becomes 

dominant is reduced (Brent & Hollomon, 1998). Azoxystrobin, a quinone outside inhibitor (QoI), 

had no cross resistance with benzovindiflupyr and was highly effective in inhibiting V. dahliae. 

Rotating application of azoxystrobin- and benzovindiflupyr-based fungicide or simply applying 

azoxystrobin and benzovindiflupyr combined fungicide such as Elatus can help to sustainably 

control PED in the field.  

The mechanisms by which pathogens develop resistance may vary depending on the 

mode of actions of fungicides. Resistance controlled by fewer genes would result in a more 

consistent resistance with no significant change in RF values (Chen et al., 2019; Mao et al., 

2018; Markoglou et al., 2006; Pang et al., 2013). The resistance against SDHIs is derived from 

mutations on different subunits, including SDHA, SDHB, SDHC, and SDHD, with mutations on 

the SDHB gene being the most common (Avenot et al., 2008, 2009; Sierotzki & Scalliet, 2013). 

The mutants to multi-site-target fungicides such as SDHI might have a varied resistance. For 

example, a study on the evaluation of resistance of Didymella tanaceti to SDHI fungicides 

reported that mutations at different sites led to different levels of resistance and can be classified 

by the RF values as low resistance (10 to 100), medium resistance (100 to 1000), and high 

resistance (>1000) (Pearce et al., 2019). Similar results were also observed in this study, where 

the RF values could be grouped into three clusters, with one being below 49, one between 50 and 

249, and one above 1000. Therefore, molecular detection of mutation type may be worthwhile 

being carried out as the next step. As the mutation sites which lead to high resistance are 

addressed, it will be helpful for an integrated management. 

Moreover, the multi-site-target feature of SDHI fungicides can also explain the great 

variation in the inhibitory effect of different SDHI fungicides on the same pathogen. Although 
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the mode of action is the same, different fungicides target on different sites and different 

pathogens have different sensitivities on different sites. For example, a study carried by Ishii et 

al. (2016) showed that tested Colletotrichum spp. isolates were sensitive to benzovindiflupyr 

while being completely insensitive to several other SDHI fungicides. This is similar to the data in 

the present study where boscalid and fluopyram, both SDHIs, showed very poor inhibition of V. 

dahliae. Therefore, although there is no cross resistance between different tested SDHI 

fungicides, it is still difficult to control PED by using another SDHI fungicide. 

2.5. Conclusions 

Verticillium dahliae had potential risk of resistance to benzovindiflupyr. This was based 

that benzovindiflupyr-resistant mutants have stable resistance and mostly possess equal or 

greater environmental fitness compared to their parents, suggesting a population of resistant 

isolates could overcome the effectiveness of benzovindiflupyr and be predominant. Therefore, 

strategic plans should be considered in fungicide applications. 
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3.CHAPTER 3 

EFFECTS OF CHEMICAL AND BIOLOGICAL TREATMENTS ON POTATO EARLY 

DYING AND SOIL MICROBIOME 

 

Chapter Abstract  

Potato early dying (PED) is a soilborne disease caused by Verticillium spp., with V. 

dahliae being a predominant species. To control PED, chemical and biological products were 

studied, including Elatus (azoxystrobin and benzovindiflupyr), Aprovia (benzovindiflupyr), 

Stargus (Bacillus amyloliquefaciens), and Regalia (extract of Reynoutria sachalinensis) at 

Aroostook Farm, Presque Isle, ME in 2019 and 2020. Potato ‘Superior’ was grown, immediately 

followed by applying V. dahliae inoculum in the furrow. Test products were applied as a soil 

treatment after inoculum application, and Stargus and Regalia were also applied after row 

closure. Soil and plant roots were sampled, and DAN was extracted from the samples. Field plant 

diseases were evaluated before vine killing. Tuber disease and yield were measured after harvest. 

Quantitative polymerase chain reaction (qPCR) was performed using the extracted DNA as a 

template to quantify V. dahliae. Results showed that all products reduced plant disease 

incidences by 28% to 34% in 2019 and 20% to 43% in 2020, and reduced tuber disease 

incidences by 25% to 26% in 2019 and 21% to 41% in 2020 compared to non-treated plots. The 

population of V. dahliae was reduced in plant roots and soil by all these products. Soil microbial 

communities were analyzed by Illumina sequencing on V4 region of 16S rRNA gene for bacteria 

and ITS1 region for fungi. Fungal abundance at the family level varied, but less associated with 

beneficial or neutral plant interactions. Elatus treatment resulted in an increase in richness and 

alpha diversity of fungi one month after the application. Indigenous fungi were more likely to 

rebound quickly after soil treatment, while some pathogen populations remained low. Bacterial 
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communities were less impacted by fungicides. Thus, all the treatments were effective in PED 

control.   
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3.1. Introduction 

The potato is the number one vegetable crop, and Maine is the ninth largest potato 

producing state in the U.S. (NASS, 2018). The crop is constrained by many biological stresses 

including potato early dying (PED). PED is caused by Verticillium dahliae and several other 

Verticillium spp. (Martin et al., 1982; Pegg & Brady, 2002). It can decrease potato yield by 10% 

to 15%, and up to 50% in severe situations (K Johnson et al., 1986; Powelson & Rowe, 1993).  

Verticillium dahliae has a long life-span and wide range of hosts. The survival structure, 

microsclerotia, enables V. dahliae to stay viable in soil for over 14 years (Wilhelm, 1955), and 

more importantly, it can infect over 200 species of hosts (Berlanger & Powelson, 2005; 

Klosterman et al., 2009), which makes crop rotation less effective as a control strategy. Because 

the severity of PED is correlated with the amount of pathogen in soil (Li et al., 2017), PED 

control mainly focuses on reducing pathogen populations in soil and utilizing plant resistance. 

Some fungicides, such as azoxystrobin and benzovindiflupyr are effective and frequently used in 

potato production (G Bubici et al., 2006; Mihajlović et al., 2021; Syngenta, 2020; Wiglesworth 

& Tally, 2015). The mode of action of azoxystrobin is known as a quinone outside inhibitor 

(QoI) (Fernández-Ortuño et al., 2010), and that of benzovindiflupyr is a succinate dehydrogenase 

inhibitor (SDHI) (Avenot & Michailides, 2010).  

Biologically based fungicides can also be candidates for PED control. Bacillus spp., 

mostly B. subtilis, B. licheniformis, and B. velezensis (formerly B. amyloliquefaciens) (Khan et 

al., 2018), are effective in the suppression of Verticillium spp. (Gomaa, 2012; B. Li et al., 2013; 

S. Li et al., 2013). The mode of actions of these products include direct inhibition of plant 

pathogens, nutrient and space competition, and induced localized or systemic resistance, and 

growth promotion of the plant (Dicklow & Madeiras, 2018). Plant extracts have been shown to 

effectively control V. dahliae by inducing plant defense (Uppal et al., 2008; Romera et al., 2019). 

Extract of Reynoutria sachalinensis is an example of this type of product (Osborne et al., 2009).  
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Fungicides that have a mode of action as respiration inhibitors have a broad-spectrum 

target. They not only suffocate pathogens, but also can poison natural or beneficial organisms. 

Therefore, the entire soil microbiome, consisting of bacteria, fungi, and archaea, can be impacted 

(J. Li et al., 2017; Sederholm et al., 2018). It is not clear how applied fungicides affect soil 

microbiome.  

The objectives of this study were to investigate the effect of chemical and biological 

products on V. dahliae populations, PED, and related yield of potato through field trials. 

Additionally, the changes in soil microbial communities under chemical fungicide treatment will 

be examined in order to understand the impact of soil treatments.   

3.2. Materials and Methods  

3.2.1. Verticillium dahliae isolates  

Nineteen V. dahliae isolates were obtained from diseased potato stems collected in 

Maine, previously by Lambert lab, University of Maine. Isolation was performed by cutting the 

wilted stems with microsclerotia as well as discolored tubers into 0.5-cm-long pieces, 

disinfesting with 75% ethanol for 30 seconds followed by 10% bleach for 5 min, and 

immediately rinsing with sterile tap water. The disinfested stem pieces were placed onto the 

semi-selective medium NP-10 in a Petri plate (Kabir et al., 2004). Pure culture of each isolate 

was derived using a single spore method on PDA plates. Genomic DNA of V. dahliae isolates 

was extracted, which was used as a template for performing polymerase chain reaction (PCR) 

targeting the ITS region. The PCR products were sequenced, which were analyzed using basic 

local alignment search tool (BLAST) algorithm against the National Center for Biotechnology 

Information (NCBI) database for positive identification.  

3.2.2. Soil treatment materials  

Fungicides Aprovia (active ingredient or a.i. 10.3% benzovindiflupyr) and Elatus (a.i. 

30.0% azoxystrobin and 15.0% benzovindiflupyr) (Syngenta, Greenboro, NC, United States) 
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were selected for both 2019 and 2020 field trials. Additionally, Stargus (a.i. 96.4% >109 cfu/ml 

Bacillus amyloliquefaciens) and Regalia (a.i. 20% extract of Reynoutria sachalinensis) were 

used as biological fungicides in the 2020 field trial.   

3.2.3. Inoculum preparation  

Inoculum of V. dahliae was prepared using oat seed as a medium. Six liters of oat seeds 

were placed in a 12-liter filtered mushroom growing bag and autoclaved at 121°C for 60 min 

twice in a 24-h interval. Ten plugs of fresh cultured V. dahliae isolates were cut by a 6-mm cork 

borer and transferred into the bag, which was then sealed immediately. The culture was 

incubated at room temperature for at least four weeks. During incubation, the bags were shaken 

every other day for better inoculum distribution and aeration. After the incubation, the inoculated 

oat seed was air dried and stored at 4 °C until use.  

3.2.4. Field trials  

Field trials were conducted at Aroostook Research Farm, located in Presque Isle, ME in 

2019 and 2020. In the 2019 trial, each plot consisted of three 25-ft-long and three-ft-wide rows 

with 1-ft plant spacing. Verticillium dahliae inoculum was evenly spread in the furrows at the 

rate of 12.5 ml/foot and potato variety ‘Superior’ seed pieces were hand planted on May 24th. 

Fertilizer (N:P:K = 14:14:14) was applied at planting at 1,100 lb/A. Test products included 

Elatus (a.i. azoxystrobin and benzovindiflupyr; Syngenta, Greensboro, NC, United States), 

Aprovia (a.i. benzovindiflupyr; Syngenta), Stargus (Bacillus amyloliquefaciens; Marrone Bio-

Innovations, Davis, CA, United States) and Regalia (extract of Reynoutria sachalinensis; 

Marrone). Elatus at 280.9 ml/A and Aprovia at the rate of and 303.5 ml/A were applied in the 

furrow at planting. Non-chemical applied plots (NT) were set as a positive control group, while 

non-chemical non-inoculation (NTNI) plots were set as negative control. The trial was arranged 

in a randomized complete block design with four replications.  
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On June 24th emergence was determined by counting those emerged out of 50 planted 

potatoes in 2 rows. Emergence rate was calculated as (the number of emerged plants / number of 

total number of seed) x 100%. Evaluation of plant symptoms was performed on August 20th by 

counting the number of symptomatic plants in the middle two rows and calculated as (number of 

symptomatic plants / number of total plants) x 100% (Figure 3-1B). Potato vines were killed 

using Reglone (a.i. diquat dibromide) at 1.5 lb/A on 4th and 11th of September. Potato tubers in 

the middle two rows of each plot were harvested by a one-row harvester on September 14th. The 

harvested tubers were washed and weighed, and the severity of tuber disease was rated on 

October 7th. A total of 50 tubers were randomly selected to evaluate severity of diseases by 

measuring the percentage of tuber lesions by cutting the tuber into two parts and observing the 

symptoms (Figure 3-1A). 

 

 

Figure 3-1. Symptoms of potato early dying showing vascular discolored ring on potato tuber 

(A) and wilt or flagging dying symptoms on potato plant (B).  
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In 2020, a field trial was conducted and operated as described above with additional 

treatments added. Treatments included applying 1) Elatus at 280.9 ml/A in the furrow at 

planting; 2) Aprovia at 303.5 ml/A in the furrow at planting; 3) Stargus at 0.5 gal/A in furrow at 

planting for the first time and 1 gal/A by soil drench at emergence for the second time; and 4) 

Regalia at 2.7 gal/A in furrow at planting and 0.25% v/v in water on foliage one month after 

planting and again 10 days after that. Non-chemical (NT) and non-chemical non-inoculation 

(NTNI) plots were set as controls. Potato variety ‘Superior’ seed pieces were hand placed in 

furrow on May 27th. Emergence was counted and calculated on July 2nd. Evaluation of plant 

symptom was performed on September 5th. Potato vines were killed on 15th and 21st of 

September. Potato tubers in the middle two rows of each plot were harvested by a one-row 

harvester on September 25th. The harvested tubers were washed and weighed, and the severity of 

tuber disease was rated on October 9th.  

Soil was sampled by collecting a minimum of 15 core samples from two rows in each 

plot using a 6-inch hand trowel. Soil sampling was done at planting (May 27th in 2019 and May 

25th in 2020), one month after planting (July 3rd in 2019 and June 29th in 2020), and at harvest 

(20th in 2019 September 5th in 2020). In addition, on June 29th, 2020, potato plants were dug out 

and rhizosphere soil and roots were collected by shaking off the excess soil. The collected soil 

was immediately put in an iced cooler and transported to the lab. The soil was sieved through a 

10-mesh (2 mm) sieve to remove the rocks and weeds, then stored in 15 ml centrifuge tubes in a 

-80°C freezer.  

3.2.5. Soil DNA extraction 

Genomic DNA was extracted from 0.25 g sampled soil from each plot using the DNeasy 

PowerSoil Pro Kit (QIAGEN Inc., Germantown, MD, United States) following the 

manufacturer's instruction. DNA concentration was quantified with a NanoDrop 2000 (Thermo 

Fisher Scientific, Wilminton, DE, United States). Each DNA sample was measured three times 
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and the mean value was used. PCR was performed using ITS1 and ITS4 primer pairs to confirm 

the DNA quality. 

3.2.6. Quantification of Verticillium dahliae via qPCR 

The quantification of V. dahliae was performed by qPCR. A pair of V. dahliae-specific 

primers was used targeting on the β-tubulin gene (VertBT F/VertBT R) (Atallah et al., 2007). 

Reaction mix was prepared by adding 1 µl DNA, 10 µl Luna® Universal qPCR Master Mix 

(New England Biolabs Inc., Ipswich, MA, United States), 0.5 µl forward primer (VertBT_F 5′-

AACAACAGTCCGATGGATAATTC3′) and reverse primer (VertBT_R 5′-

GTACCGGGCTCGAGATCG-3′), and adjusted to 20 µl with DNase-free. The PCR was 

performed on Bio-Rad CFX96 Touch Real-Time PCR Detection System (Bio-Rad Laboratories, 

Hercules, CA, United States) using the settings: starting at 95℃ for 3 min, followed by 40 cycles 

of 95℃ for 10 sec and 63℃ for 35 sec (Aljawasim & Vincelli, 2015). To calculate the quantity 

of V. dahliae in soil, a standard curve was established by amplifying pure V. dahliae DNA at 20 

ng/ul, 2 ng/ul, 0.2 ng/ul 0.02 ng/ul and 0.002 ng/ul.  

3.2.7. Soil microbiome analysis  

3.2.7.1. Bacterial community  

Soil DNA samples were amplified by PCR using primer pair 515f 

(GTGCCAGCMGCCGCGGTAA) and 806r (GGACTACHVGGGTWTCTAAT) to the (Kozich, 

2013). The reaction was in a 25 µl volume, which consisted of 5 µl of 5x Green GoTaq reaction 

buffer, 0.5 µl of dNTPs, 0.5 µl of each pair of primers, 0.13 µl of GoTaq DNA Polymerase, 1 µl 

of DNA, and 17.4 µl of DNase-free water. Thermal cycler setting consisted of an initial 

denaturation of 3 min at 95°C, followed by 30 cycles of 45 sec at 95°C, 60 sec at 50°C and 90 

sec at 72°C, with a final elongation of 10 min at 72°C. PCR amplicons were examined by gel 

electrophoresis (2%) to ensure they were the expected size. DNA from Elatus treated and non-

fungicide treated plots were diluted into 4 ng/ul and submitted to Michigan State University 
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Genomic Core Facility (East Lansing, MI, United States) for Illumina sequencing. Submitted 

DNA was amplified by same Illumina compatible amplicon libraries of the 16S rRNA V4 

hypervariable region using barcoded primer pair 515f/806r, followed by sequencing via Illumina 

MiSeq platform (Illumina Inc., San Diego, CA, United States) using a 2 x 250 bp paired end 

format. 

3.2.7.2. Fungal community  

The two-step PCR method was employed. The first step was performed using ITS1/ITS2 

primer pair with tags on the 5’ ends (CS1-ITS1: ACACTGACGACATGGTTCTACA – 

TCCGTAGGTGAACCTGCGG; CS2-ITS2: TACGGTAGCAGAGACTTGGTCT - 

GCTGCGTTCTTCATCGATGC). The reaction was in a 25 µl volume using the same 

formulation as bacterial amplification. Thermal cycler setting consisted of an initial denaturation 

of 2 min at 94°C, followed by 35 cycles of 45 sec at 94°C, 45 sec at 53°C and 60 sec at 72°C, 

with a final elongation of 10 min at 72°C. A gel electrophoresis (2%) was run to confirm the 

amplicons were at the expected size, and off-target products were not present. All PCR 

amplicons were diluted into 4 ng/ul and submitted to Michigan State University Genomic Core 

Facility (East Lansing, MI, United States) for Illumina sequencing. Submitted samples were then 

amplified by Illumina compatible amplicon tags using barcoded primer pair CS1 

(ACACTGACGACATGGTTCTACA) and CS2 (TACGGTAGCAGAGACTTGGTCT), 

followed by sequencing via Illumina MiSeq platform (Illumina Inc., San Diego, CA, United 

States) using a 2 x 250 bp paired end format. 

3.2.8. Data analysis  

Data were analyzed using SAS studio (SAS Institute, Cary, NC, United States). General 

linear model (GLM) was used for examining treatment effects. The Student-Newman-Keul test 

(α = 0.05) and Fisher's LSD test (α = 0.05) were used for the analysis of emergence rate, disease 

incidences, and yield. The Illumina sequencing data were analyzed using the MOTHUR software 
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pack (version 1.39.5, https://mothur.org/). Operational taxonomic unit (OTU) was used to group 

microbes based on 97% similarity (Schloss et al., 2009). Sequences were processed according to 

the MiSeq SOP (https://mothur.org/wiki/miseq_sop/), including reducing sequences and PCR 

errors, finding unique sequences, aligning sequences to the Silva reference database for bacteria 

and to the UNITE reference database for fungi (UNITE, 2019; Yilmaz et al., 2014), and 

assessing error rates. The output was then processed in RStudio (http://www.rstudio.com/) for 

visualization of data. Relative abundance at 0.5% and 2% was used as a cut-off point for 

bacterial and fungal community analysis at the family level, respectively.    

3.3. Results 

3.3.1. Emergence evaluation  

In the 2019 field trial, the highest emergence rates were found in both Elatus- and 

Aprovia-treated plots, both of which were significantly higher than the NT plots, with the Elatus-

treated plots being the highest and the Aprovia treated plot being the second. Emergence rates in 

the NTNI plots were not significantly different from either the NT plots or the two fungicide 

plots (Table 3-1). 

The emergence rate in 2020 was much lower than in 2019. The highest emergence rate 

was only 46%, which was one third less than the lowest emergence in 2019. There were no 

significant differences in emergence rate between treatments, all ranging from about 40% to 

45%, except for the Aprovia treated plots, which were as low as 33% (Table 3-2). Due to the low 

emergence rate, an arial view photo was used to compare the differences between positions 

(Figure 3-2). The SRR (combination of Stargus and Regalia and applied Regalia again) plot 

emergence rate at the top row was significantly lower than the other SRR plots; the NTNI (non-

treated non-inoculated) plot on the left of the top row had minimal emergence; similarly, on the 

right of the top row, Elatus (applied Elatus) and NT plots (non-treated) also showed lower 

emergence than the other plots of the same treatments (Figure 3-2). 
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Figure 3-2. Aerial view of field trial plot arrangement in 2020. Photo was taken on August 4th, 

2020. Different treatments were masked with different colors: Elatus at 280.9 ml/A, Aprovia at 

303.5 ml/A, combination of 0.5 gal/A Stargus and 2.7gal/A Regalia at planting and Regalia at 

0.25% v/v on foliar at emergence followed by same foliar application of Regalia 10 days later 

(SRR), combination of 0.5 gal/A Stargus and 2.7 gal/A Regalia at planting and 1 gal/A Stargus 

soil drench at emergence (SRS), non-treated (NT) for Verticillium dahliae infested soil, and non-

treated and non-inoculated (NTNI). 

 

3.3.2. Disease incidence and yield assessment  

In 2019, field plant disease incidences in plots with treatment of either Elatus or Aprovia 

was 34% and 28% lower than the NT plots and 116% and 136% higher than the NTNI plots, 

respectively (Figure 3-3A). A similar pattern was observed in the tuber disease incidence 

evaluation. The lowest values were found in the NTNI plots, followed by Elatus, and Aprovia, 

with NT plots showing the highest disease levels. However, tuber disease incidences were not 

statistically different between groups. Elatus-treated plots showed the highest numerical yields, 
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with values 19% higher than NT plots, whereas Aprovia treated plots showed the lowest 

numerical yield, but yield differences were not statistically significant (Table 3-1). 

In 2020, the highest and lowest field plant disease incidences belonged to NT and NTNI 

plots, respectively, and they were significantly different from each other. All of the fungicide-

applied plots decreased the disease symptoms by 41%, 21%, 34%, 29% in Elatus-treated, 

Aprovia, the SRR, the SRS plots, respectively. The combination of Stargus and three-

applications of Regalia (SRR) had the overall best performance on disease suppression (Figure 

3-3B). Yield under the different treatments ranged from 118.79 to 161.76 cwt/A, where the 

highest yield was observed in SRR plot and the nominally lowest in low-emergence plot—

Aprovia, although there were no significant differences in yield among treatments (Table 3-2).  

 

Table 3-1. Emergence and yield of potato in 2019 

Treatment Application time Soil infestation z Emergence (%) Yield (cwt/A) 

Elatus (@ 280.9 ml/A) At planting Yes 96 a y 181.32 a 

Aprovia (@ 303.5 ml/A) At planting Yes 94 a 146.38 a 

Non-treated - Yes 79 b 152.34 a 

Non-treated - No 82 ab 168.11 a 

z Inoculum Verticillium dahliae grown on oat seed was applied at 20 g/foot plot. y Column 

numbers followed by the same letter are not significantly different at α = 0.05 as determined by 

Student-Newman-Keuls test. 
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Table 3-2. Emergence and yield of potato in 2020 

Treatment Application time z Soil infestation y Emergence (%) Yield (cwt/A) 

Elatus (@ 280.9 ml/A) A Yes 42 a x 141.25 a 

Aprovia (@ 303.5 ml/A) 

 
A Yes 33 a 118.79 a 

Stargus (@0.5 gal/A) 

Regalia (@2.7 gal/A at A; 

0.25% v/v at B and D) 

 

A  

 

ABD 

 

Yes 43 a 161.76 a 

Stargus (@0.5 gal/A at A; 

1gal/A soil drench at C) 

Regalia (@2.7 gal/A) 

AC 

 

A 

Yes 44 a 132.88 a 

Non-treated - Yes 46 a 143.65 a 

Non-treated - No 41 a 145.41 a 

z Application time: A: in furrow at planting; B: on foliar at emergence; C: soil drench at 

emergence; D: 10 days after B. y Inoculum Verticillium dahliae grown on oat seed was applied at 

20 g/foot plot. x Column numbers followed by the same letter are not significantly different at α = 

0.05 as determined by Student-Newman-Keuls test. 
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Figure 3-3. Disease incidence on plant and tuber potato in field trials in 2019 (A) and 2020 (B) 

Treatments included 1) Elatus at 280.9 ml/A, 2) Aprovia at 303.5 ml/A, 3) combination of 0.5 

gal/A of Stargus and 2.7gal/A of Regalia at planting and Regalia at 0.25% v/v foliar application 

at emergence followed by same foliar application of Regalia 10 days thereafter (SRR), 4) 

combination of 0.5 gal/A Stargus and 2.7 gal/A Regalia at planting and 1gal/A Stargus applied as 

a soil drench at emergence (SRS), 5) non-treated (NT) for Verticillium dahliae infested soil, and 

6) non-treated and non-inoculated (NTNI). Significance was determined by Student-Newman-

Keuls test (α = 0.05). 

 

B 2020 

A 2019 
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3.3.3. Verticillium dahliae quantification  

In 2019, the NT plots started with a higher population of V. dahliae at planting but 

decreased throughout the season. Similarly, the NTNI plots had the same trend but with a lower 

overall V. dahliae population. At all three sampling times, both Elatus and Aprovia reduced V. 

dahliae in soil, with some exceptions (Figure 3-4A).  

In 2020, a similar trend was observed. The numbers of V. dahliae in the SRS, NT, NTNI 

plots significantly increased after two weeks. However, NT plots had an unexpectedly low 

number of V. dahliae at planting. One month post planting, the lowest numbers were observed in 

the NTNI plots, while the highest numbers were observed in the SRS plots followed by Elatus-

treated plots (Figure 3-4B). Compared to the inconsistency in soil samples, the data in root soil 

samples were more consistent with expectations and showed a lower standard error. The highest 

numbers of V. dahliae were observed in the NT plots while the lowest were in the NTNI plots. 

Among four fungicide-treated plots, Aprovia-treated plots and the SRR plots had lower V. 

dahliae numbers than Elatus-treated and the SRS plots (Figure 3-4B).  
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Figure 3-4. Quantitative estimation of Verticillium dahliae in soils of 2019 (A) and 2020 (B) 

treated with 1) Elatus at 280.9 ml/A, 2) Aprovia at 303.5 ml/A, 3) combination of 0.5 gal/A 

Stargus and 2.7gal/A Regalia at planting and Regalia at 0.25% v/v on foliar at emergence 

followed by same foliar application of Regalia 10 days later (SRR), 4) combination of 0.5 gal/A 

Stargus and 2.7 gal/A Regalia at planting and 1gal/A Stargus soil drench at emergence (SRS), 5) 

non-treated (NT) for Verticillium dahliae infested soil and 6) non-treated and non-inoculated 

(NTNI). Data was analyzed by quantitative polymerase chain reaction. Error bar was used for 

significance. 
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3.3.4. Bacterial community changes under Elatus application 

A total number of 1,254,831 reads and 21,516 OTUs were obtained from 16S amplicon 

sequencing in 2019. According to observed OTUs, Chao1, and ACE estimators, Elatus-treated 

plots showed a relatively lower bacterial richness at planting. One month later, although richness 

decreased in both Elatus-treated plots and the NT plots, Elatus-treated plots had a higher richness 

than NT plots (Figure 3-5A). Shannon diversity showed that Elatus-treated plots and NT plots 

had a similar diversity at both time points, with a decrease in diversity being observed after one 

month of potato growth (Figure 3-5A).  

A total of 33 families were classified in 2019. All families are listed in the Figure 3-6, 

and all microorganisms that could not be classified were grouped as "Other". One month after 

the application of Elatus, families Chitinophagaceae, Geobacteraceae, Nocardiaceae, 

Nocardioidaceae, Phyllobacteriaceae, Pseudomonadaceae, Sphingobacteriaceae, 

Sterptomycetaceae, Xanthomonadaceae slightly increased in their abundance, while 

Polyangiaceae slightly decreased. Families that decreased in abundance one month after planting 

compared to at planting were Gemmatimonadaceae, Sphingomonadaceae, Planctomycetaceae, 

while families Caulobacteraceae, Rhizobiaceae, Paenibacillaceae, Oxalobacteraceae increased 

(Figure 3-6). 

In 2020, a total number of 983,874 reads and 20,182 OTUs were obtained. Observed 

OTUs, Chao1, and ACE estimators showed a similar richness for both Elatus-treated plots and 

the NT plots at planting, and they both dropped after one month (Figure 3-5B). Shannon 

diversity estimator indicated that Elatus-treated plots and the NT plots had a similar diversity at 

planting, but the diversity in Elatus-treated plots dropped after one month (Figure 3-5B). 

In 2020, there were 36 families that were classified, excluding the non-classified 

"Others". The families with increased abundance in both Elatus-treated and NT plots one month 
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post planting were Alicyclobacillaceae, Geodermatophiaceae, Mycobacteriaceae, 

Nocardioidaceae, Oxalobacteraceae, Rhizobiaceae, Sphingomonadaceae, Sterptomycetaceae, 

Xanthomonadaceae, while the abundance of Bradyrhizobiaceae, Hyphomicrobiaceae, 

Micrococcaceae, Phyllobacteriaceae, Planctomycetaceae decreased (Figure 3-7). One month 

after the application of Elatus, families with a greater abundance increase than that of NT plots 

were Enterobacteriaceae, Nakamurellaceae, Sphingobacteriaceae, while Methylobacteriaceae 

decreased (Figure 3-8). 
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Figure 3-5. Bacterial alpha diversity in soils in 2019 (A) and 2020 (B). Time points included A: 

at planting; B: one month after planting. Treatments included Elatus applied at 280.9 ml/A and 

Non-treated (NT). Analyses were performed using observed OTUs, Chao1 index, ACE index, 

and Shannon diversity index. 

B 2020 

A 2019 
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Figure 3-6. Relative abundances of bacteria at the family level in soils at different time points 

under fungicide applications in 2019. Time point A: At planting; B: One month post planting. 

Treatments included Elatus applied at 280.9 ml/A and Non-treated (NT). Taxa with relative 

abundance < 0.5% were excluded. Each color represents a different bacterial family. 
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Figure 3-7. Relative abundances of bacteria at the family level in soils at different time points 

under fungicide applications in 2020. Time point A: At planting; B: One month post planting. 

Treatments included Elatus applied at 280.9 ml/A and Non-treated (NT). Taxa with relative 

abundance < 0.5% were excluded. Each color represents a different bacterial family. 

 
3.3.5. Fungal community changes under Elatus application  

 In 2019, a total number of 1,330,476 reads and 7705 OTUs were obtained from ITS 

amplicon sequencing. Observed OTUs and two richness estimators Chao1 and ACE indicated 

NT plots had a higher richness at planting, but richness dropped one month after planting. The 

richness in Elatus-treated plots increased one month after planting (Figure 3-8A). Shannon 

diversity index showed a similar trend, as the highest diversity was shown in NT plots at 

planting, and the Eltaus-treated plots showed a higher diversity one month post planting (Figure 
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3-8A). Overall, the NT plots decreased in their richness and diversity as potatoes grew, while the 

Elatus-treated plots increased.  

A total of 23 families were classified in 2019 as shown in the Figure 3-9. All 

microorganisms that could not be classified were grouped as "Other". Abundance increased in 

both Elatus-treated and NT plots one month post planting for families Hydnodontaceae, 

Trichomeriaceae, Tubeufiaceae, while decreased for Aspergillaceae, Periconiaceae (Figure 3-9). 

Compared to NT plots, abundance increased after the application of Elatus for families 

Hydnodontaceae, Mortierellaceae, Mrakiaceae, Piskurozymaceae, Phaeospaeriaceae, 

Pseudeurotiaceae, Rhizopodaceae, while decreased for Amniculicolaceae, Chaetomiaceae, 

Cucurbitariaceae, Didymellaceae, Didymosphaeriaceae, Ganodermataceae, Helotiaceae, 

Melanommataceae, Periconiaceae, Trichomeriaceae (Figure 3-9).  

In 2020, a total number of 1,195,107 reads and 5443 OTUs were obtained. Observed 

OTUs, Chao1, and ACE estimators showed a higher richness in Elatus-treated plots in both the 

time points at planting and one month post planting. Fungal richness declined in the NT plots as 

potatoes grew (Figure 3-8B). Shannon diversity index indicated that Elatus-treated plots had a 

relatively higher diversity at planting and a relatively lower diversity one month post planting 

(Figure 3-8B).  

A total of 28 families were identified in 2020, excluding the non-classified "Others". The 

families with increased abundance in both Elatus-treated and NT plots one month post planting 

were Piskurozymaceae, Pleosporaceae, Rhizopodaceae, Sonoraphlyctiadaceae, while abundance 

of Aspergillaceae, Bulleribasidiaceae, Helotiaceae, Mortierellaceae, Mrakiaceae, 

Mycosphaerellaceae, Myxotrichaceae, and Pseudeurotiaceae decreased. One month post 

planting, the Elatus-treated plots showed families with a greater increased abundance than that of 

NT plots were Herpotrichiellaceae, Microdochiaceae, Trichocomaceae, while Corticiaceae, 

Phaeosphaeriaceae decreased in their abundance (Figure 3-10).   
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Figure 3-8. Fungal alpha diversity in soils in 2019 (A) and 2020 (B). Time points included A: at 

planting; B: one month after planting. Treatments included Elatus applied at 280.9 ml/A and 

Non-treated (NT). Analyses were performed using observed OTUs, Chao1 index, ACE index, 

and Shannon diversity index. 
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Figure 3-9. Relative abundances of fungi at the family level in soils at different time points under 

fungicide applications in 2019. Time point A: At planting; B: One month post planting. 

Treatments included Elatus applied at 280.9 ml/A and Non-treated (NT). Taxa with relative 

abundance < 2% were excluded. Each color represents a different fungal family. 
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Figure 3-10. Relative abundances of fungi at the family level in soils at different time points 

under fungicide applications in 2020. Time point A: At planting; B: One month post planting. 

Treatments included Elatus applied at 280.9 ml/A and Non-treated (NT). Taxa with relative 

abundance < 2% were excluded. Each color represents a different fungal family. 

 

3.4. Discussion  

Both Elatus and Aprovia significantly suppressed PED, as well as V. dahliae population. 

Elatus and Aprovia share the same active ingredient, benzovindiflupyr, but Elatus contains 

second product azoxystrobin. Therefore, Elatus may have a better efficacy over Aprovia and 

possibly is hard to be overcome by V. dahliae developing fungicide resistance (Chapter 2), 

because the two active ingredients have different modes of action (M. C. Fisher et al., 2018). In 

addition, the emergence in plots treated with Elatus and Aprovia was significantly higher than in 
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non-treated plots in 2019. These chemicals might stimulate potato germination but need further 

investigation.  

That lower V. dahliae populations in Aprovia-treated plots did not transfer to a higher 

yield in both years. In contrast, Elatus-treated plots produced 24% and 19% higher yield than 

Aprovia-treated plots in 2019 and 2020, respectively, although no statistically significant 

difference was detected. Biological products, Stargus and Regalia also significantly reduced V. 

dahliae populations and mitigated disease symptoms. Numerically, the plots with twice 

applications of Regalia had the best result. They had advantages in yield increase over Elatus- 

and Aprovia. Therefore, these products have potential for PED control.  

Unexpectedly, none of the treatments showed a statistical difference in yield. The 

possible reasons might be due to dry weather conditions and large variation. A drought condition 

may result in a reduction of tuber yield greater than 15% (Deblonde & Ledent, 2001). From May 

to September of 2020, Maine experienced its worst drought since the 2000s (Birkel, 2020), 

which may have caused a higher impact on potato yield than disease since the potatoes were not 

irrigated.  

Broad-spectrum fungicides impact soil microbial communities (Wang et al., 2020; Zhang 

et al., 2021). Families Geobacteraceae, Nocardioidaceae, Sphingobacteriaceae, 

Streptomycetaceae, and Xanthomonadaceae all increased in all tested plots in both years.  In 

contrast, it was not observed that any of the families showed a consistent increasing or 

decreasing trend in both years in Elatus-treated plots. In addition, it was observed that the 

changes in abundance of the fungal families differed significantly between 2019 and 2020. 

Seventeen fungal families changed in their abundance in 2019 while only five changed in 2020. 

So this could be the reason for Elatus-treated plots having higher bacterial richness than NT plots 

in 2019 but lower in 2020. It makes sense that fungicides like Elatus did not affect bacterial 



 

63 

 

communities, and the community changes were more due to the result of the environment 

factors, plant growth, and changes in fungal communities.  

Fungal composition of the two years differed greatly. There were 23 and 28 families of 

fungi observed in 2019 and 2020, respectively. Only 11 families were same for both years. This 

might reflect the variation field location. Aspergillaceae remained the same level. Although some 

species in Aspergillaceae could be beneficial to disease suppression (Abdallah et al., 2015), 

changes in its population might be caused by environmental factors as it is not directly dependent 

on potato. The other 10 families did not show a consistent increasing or decreasing trend in both 

years. Most of them appear to be neutral regarding their interactions with plants, they participate 

in nutrient cycling but do not directly affect disease on plants. For example, Mortierellaceae was 

the most represented family in both years, and it was reported to be beneficial by contributing to 

the phosphorus cycle in the soil (F. Li et al., 2018; Loit et al., 2020). Trichocomaceae and 

Corticiaceae were two families that might be beneficial to potato growth. Penicillium oxalicum 

in Trichocomaceae could suppress the disease caused by nematodes (Martinez‐Beringola et al., 

2013) while the microorganisms in Corticiaceae could have the potential to control the disease 

caused by Rhizoctonia solani and Pythium spp. (Burdsall Jr et al., 1980).  

In Elatus-treated plots, 7 families of fungi increased and 10 families decreased in 

abundance in 2019, and 3 families increased and 2 decreased in abundance in 2020. None of 

them had a consistent trending of change in both years. Therefore, it is difficult to conclude 

which neutral or beneficial fungal families are promoted or suppressed under the application of 

Elatus. However, fungal richness and diversity were higher in Elatus-treated plots than in NT 

plots (except Shannon index in 2020). In addition, the population of V. dahliae decreased under 

Elatus application, which supported the disease evaluation data.  

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/penicillium-oxalicum
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3.5. Conclusions  

Elatus and Aprovia significantly reduced PED. Stargus and Regalia also showed 

significant inhibition of PED with a similar effect. Soil microbial community structure and 

diversity were affected after Elatus application. Neutral or beneficial fungi rebounded back more 

quickly after soil treatment compared to pathogen.  
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4.CHAPTER 4  

EFFECTS OF SOIL FUMIGATION ON POTATO EARLY DYING AND SOIL 

MICROBIOME 

 

Chapter Abstract 

Verticillium dahliae is a soilborne pathogen causing potato early dying (PED). Soil 

fumigation has been widely used to reduce its population. In this study, a two-year field trial 

using soil fumigation with Vapam (a.i. metam sodium) at 0, 35, 45 and 50 gal/A was conducted 

at Aroostook Farm, Presque Isle, ME. Oat-seed-mediated inoculum of V. dahliae was evenly 

incorporated in soil prior to fumigation in the fall. Potato ‘Russet Burbank’ was planted in the 

following Spring. PED was evaluated since the first symptoms was observed in the growing 

season. Tuber diseases and yield were measured after harvest. Genomic DNA was extracted 

from soil samples collected at two weeks after fumigation, at planting, two months after planting 

and two weeks before harvesting for genetic analysis. Verticillium dahliae in soil was measured 

using quantitative polymerase chain reaction (qPCR). Illumina MiSeq was used for sequencing 

the V4 region of the 16S rRNA gene of bacteria and ITS1 region of fungi. Operational 

taxonomic unit (OTU) was used to analyze the sequence and microbial taxa. Fumigation at all 

three rates decreased incidences of plant disease by 48% to 67% and reduced tuber diseases by 

51% to 67%, but no significant differences were observed with increasing dosage. Vapam 

decreased V. dahliae populations in soil by up to 89%. In soil microbiome at the family level, 

diversity, richness, and abundance were affected by fumigation. Vapam at 50 gal/A had a similar 

effect on bacterial communities as 35 gal/A, and a greater impact on fungal communities than 35 

gal/A. After fumigation, most bacterial and fungal families that recovered rapidly were non-

pathogenic. Thus, Vapam was effective in reducing V. dahliae, but its impact on soil microbiome 

needs to be addressed.   
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4.1. Introduction 

Potato early dying (PED), caused by Verticillium spp. with V. dahliae being the 

predominant species, is a yield-constraining disease (Martin et al., 1982; Pegg & Brady, 2002). 

Potato yield may be decreased by up to 50% by its infection (K Johnson et al., 1986; Powelson & 

Rowe, 1993). Verticillium dahliae can survive in soil for over 14 years (Wilhelm, 1955) and has 

more than 200 species of hosts (Berlanger & Powelson, 2005; Klosterman et al., 2009), which 

make the disease extremely hard to control. Currently, the most effective strategy for controlling 

PED is reducing pathogen populations in soil (Li et al., 2017), and soil fumigation has been used 

for decades for this purpose (Giovanni Bubici et al., 2019).  

The most frequently used fumigant for PED control is metam sodium (sodium N-

methyldithiocarbamate). Vapam is a common trade name of this product (AMVAC, Commerce, 

CA, United States). It takes effect by decomposing into several derived compounds, with methyl 

isothiocyanate (MITC) as the major active ingredient, which is more toxic than the original 

structure to suffocate organisms, particularly pathogens, pests, and weeds (Zheng et al., 2006). It 

is noticeable that due to its broad-spectrum toxicity, the whole soil microbiome is impacted (J. Li 

et al., 2017; Sederholm et al., 2018).  

A soil microbiome includes bacteria, fungi, and archaea, which can be measured by 

microbial abundance and structure (Larkin et al., 2011; Stark et al., 2007). Some of them are 

plant pathogens, but some are beneficial. Many microorganisms can inhibit the growth of 

pathogen by secreting anti-biotic metabolites or by parasitizing pathogens (Dicklow & Madeiras, 

2018; Nihorimbere et al., 2011). They can also indirectly affect diseases by inducing plant 

defense (Prasad et al., 2015) or fixing nutrients (Roy & Singh, 1994). Some microorganisms may 

not be antagonistic but suppress pathogens by competing for space and nutrients (Abdullah et al., 

2017). Our goal is expected to reduce pathogen populations while maintaining beneficial 

microorganisms. 
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This study aimed to evaluate the impact of soil fumigation by Vapam on potato yield, 

PED, V. dahliae populations, changes in soil bacterial and fungal communities, and determining 

optimal rate of application. Therefore, the result may contribute to sustaining and increasing the 

benefit of both the potato yield and potato business in Maine and other potato production areas.   

4.2.  Materials and Methods  

4.2.1. Verticillium dahliae isolates and inoculum preparation  

Verticillium dahliae isolates were obtained from diseased potato stems in Maine potato 

fields. Genomic DNA of V. dahliae isolates was extracted and used as a template for performing 

polymerase chain reaction (PCR) targeting the ITS gene. PCR products were sequenced and 

analyzed using basic local alignment search tool (BLAST) algorithm against the National Center 

for Biotechnology Information (NCBI) database for positive identification. 

Inoculum of V. dahliae was prepared using double-sterilized oat seed as a medium. Ten 

plugs of freshly cultured V. dahliae isolates were transferred into a mushroom growing bag 

having an air filter that contained 6 liters of oat seed, which was autoclaved for 45 min twice in 

24 hr. The bag was incubated at 22 ± 1 °C for at least four weeks. During incubation, the bags 

were shaken every other day for better inoculum distribution and aeration. After the incubation, 

the inoculated oat seed was air dried and stored at 4 °C until use.   

4.2.2. Field trials 

A field trial was established at the Aroostook Research Farm, Presque Isle, Maine, in 

2019 to 2020. A 2-row plot with 25-ft-long beds was arranged in September 2019 as a 

randomized complete block design (RCBD) with 4 replications. Verticillium dahliae inoculum 

was evenly spread on soil surface at the rate of 20 ml/foot and lightly incorporated in the soil 

with a rototiller on September 16th,2019. For control purposes, one plot was not infested with V. 

dahliae and used as a negative control. Vapam (a.i. 42.0% metam sodium) was applied at 35, 45, 

and 50 gallons per acer on inoculated plots with a fumigant applicator on September 19th, 2019. 
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Non-fumigated plots with or without V. dahliae infestation were included for control, Potato 

‘Russet Burbank’ seed pieces were planted on May 27th, 2020, using a planter at a plant spacing 

of 16 inches and a row spacing of 3 feet. Fertilizer (N:P:K = 14:14:14) was applied at planting at 

1,400 lb/A. The plots were maintained using local standard operations.  

Plant emergence was observed on June 26th, 2020. Disease symptoms were evaluated on 

September 5th. Disease incidence (%) was calculated as (number of symptomatic plants / number 

of total plants) x 100%. Potato vines were killed on September 10th. Harvest was done on 

September 24th. Potato yield was determined by weight, and tuber disease was measured by 

examining 50 tubers that were cut into two parts. Tuber disease incidence was calculated as 

(number of diseased tubers / number of total tubers) x 100%. 

Soil samples were taken by compositing 15 samples per plot collected at random 

positions in the furrow by a 6-inch hand trowel. Sampling time points included post fumigation 

(October 8th, 2019), at planting (May 27th, 2020), two months after planting (mid-season) (July 

29th, 2020), and before harvest (September 5th, 2020). Soil samples were immediately put in an 

iced cooler and transported to the lab. The soil was sieved through a 10-mesh (2 mm) sieve to 

remove the rocks and weeds, then stored in 15 ml centrifuge tubes in a -80°C freezer. 

4.2.3. Soil DNA extraction 

Genomic DNA was extracted from 0.25 g sampled soil per plot using the DNeasy 

PowerSoil Pro Kit (QIAGEN Inc., Germantown, MD, United States) following the 

manufacturer's instructions. DNA concentration was quantified with a NanoDrop 2000 (Thermo 

Fisher Scientific, Wilminton, DE, United States). Soil DNAs were stored in a -80°C freezer until 

use. 

4.2.4. Quantification of Verticillium dahliae  

Quantitative polymerase chain reaction (qPCR) was performed using V. dahliae-specific 

primers VertBT F and VertBT R (Atallah et al., 2007). Reaction mix was prepared by adding 1 
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µl DNA, 10 µl Luna® Universal qPCR Master Mix (New England Biolabs Inc., Ipswich, MA, 

United States), 0.5 µl forward primer (VertBT_F 5′-AACAACAGTCCGATGGATAATTC3′) 

and reverse primer (VertBT_R 5′-GTACCGGGCTCGAGATCG-3′), and adjusted to 20 µl with 

DNase-free water. Prepared reaction mixes were loaded on Bio-Rad CFX96 Touch Real-Time 

PCR Detection System (Bio-Rad Laboratories, Hercules, CA, United States). Thermal cycler 

settings were 95℃ for 3 min, followed by 40 cycles of 95℃ for 10 sec and 63℃ for 35 sec 

(Aljawasim & Vincelli, 2015). A standard curve was established by amplifying pure V. dahliae 

DNA at 20 ng/ul, 2 ng/ul, 0.2 ng/ul 0.02 ng/ul and 0.002 ng/ul and used for calculating DNA 

concentration of V. dahliae in soil samples.  

4.2.5. Soil microbiome analysis  

4.2.5.1. Bacterial community  

Primer pair 515f (GTGCCAGCMGCCGCGGTAA) and 806r 

(GGACTACHVGGGTWTCTAAT) was used to amplify 16S rRNA gene V4 region (Kozich, 

2013). PCR mix was prepared by adding 5 µl of 5x Green GoTaq reaction buffer, 0.5 µl of 

dNTPs, 0.5 µl of each pair of primers, 0.13 µl of GoTaq DNA Polymerase, 1 µl of DNA, and 

adjusted to 25 µl using DNase-free water. Thermal cycler setting was 3 min at 95°C, followed by 

30 cycles of 45 sec at 95°C, 60 sec at 50°C and 90 sec at 72°C, with a final elongation of 10 min 

at 72°C. PCR amplicons were examined by gel electrophoresis (2%) to ensure they were the 

expected size. DNA from Vapam at 35 gal/A and 50 gal/A fumigated plots were diluted into 4 

ng/ul and submitted to Michigan State University Genomic Core Facility (East Lansing, MI, 

United States) for Illumina sequencing. Submitted DNA was amplified by same Illumina 

compatible amplicon libraries of the 16S rRNA V4 hypervariable region using barcoded primer 

pair 515f/806r. The sequencing was performed via Illumina MiSeq platform (Illumina Inc., San 

Diego, CA, United States) using a 2 x 250 bp paired end format. 



 

70 

 

4.2.5.2. Fungal community 

Two-step PCR was used for fungal community sequencing. The first step was to amplify 

the soil DNA samples using ITS1/ITS2 primer pair with tags on the 5’ ends (CS1-ITS1: 

ACACTGACGACATGGTTCTACA – TCCGTAGGTGAACCTGCGG; CS2-ITS2: 

TACGGTAGCAGAGACTTGGTCT - GCTGCGTTCTTCATCGATGC). DNA from Vapam at 

35 gal/A and 50 gal/A fumigated plots were selected for the amplification. Reaction mix was 

prepared in a 25 µl volume using the same formulation as bacterial amplification. Thermal cycler 

setting was 2 min at 94°C, followed by 35 cycles of 45 sec at 94°C, 45 sec at 53°C and 60 sec at 

72°C, with a final elongation of 10 min at 72°C. A gel electrophoresis (2%) was used to confirm 

the amplicons were at the expected size, and off-target products were not present. PCR 

amplicons were diluted into 4 ng/ul and submitted to Michigan State University Genomic Core 

Facility (East Lansing, MI, United States) for Illumina sequencing. Submitted samples were then 

amplified by Illumina compatible amplicon tags using barcoded primer pair CS1 

(ACACTGACGACATGGTTCTACA) and CS2 (TACGGTAGCAGAGACTTGGTCT). The 

sequencing was performed via Illumina MiSeq platform (Illumina Inc., San Diego, CA, United 

States) using a 2 x 250 bp paired end format. 

4.2.6. Data analysis  

Data were analyzed using SAS studio (SAS Institute, Cary, NC, United States). General 

linear model (GLM) was used for examining treatment effects. The Student-Newman-Keul test 

(α = 0.05) and Fisher's LSD test (α = 0.05) were used for the analysis of emergence rate, disease 

incidences, and yield. The Illumina sequencing data were analyzed using the MOTHUR software 

pack (version 1.39.5, https://mothur.org/). Operational taxonomic unit (OTU) was used to group 

microbes based on 97% similarity (Schloss et al., 2009). Sequences were processed according to 

the MiSeq SOP (https://mothur.org/wiki/miseq_sop/), including reducing sequences and PCR 

errors, finding unique sequences, aligning sequences to the Silva reference database for bacteria 
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and to the UNITE reference database for fungi (UNITE, 2019; Yilmaz et al., 2014), and 

assessing error rates. Visualization of the outputs was processed in RStudio 

(http://www.rstudio.com/). Relative abundance at 0.5% was used as a cut-off point for family-

level bacterial community analysis, and 2% was used for fungal community analysis. 

4.3. Results 

4.3.1. Soil fumigation effects on PED and potato yield  

Fumigated plots at different rates of Vapam application had a similar effect, reducing the 

incidences of plant disease by 48% to 67% and tuber diseases by 51% to 67% (Figure 4-1). All 

Vapam-treated plots had significantly lower PED incidences than the NT plots. Tuber disease 

incidences were also lowered by Vapam applications, but only 45 gal/A were statistically 

different from non-treated plots (Figure 4-1). Disease incidences did not decrease with increasing 

Vapam dosage. Instead, the lowest point was found in the 45 gal/A plots. The 35 gal/A and 50 

gal/A plots were similar in terms of disease incidence (Figure 4-1). However, no differences in 

yield were observed under Vapam application at different rates (Table 4-1).  

 

Table 4-1. Effects of soil fumigation with Vapam on potato yield  

Treatment Soil infestation z Yield (cwt/A) 

Vapam (@ 35 gal/A) Yes 157.32 a y 

Vapam (@ 45 gal/A) Yes 148.80 a 

Vapam (@ 50 gal/A) Yes 152.34 a 

Non-treated Yes 164.39 a 

Non-treated No 184.00 a 

z Verticillium dahliae inoculum grown in oat seed was applied at 20 g/foot.  y Means of yield 

followed by the same letter are not significantly different at α = 0.05 as determined by Fisher’s 

LSD test. 
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Figure 4-1. Plant and tuber disease incidences in a field trial. Treatments included non-treated and 

non-inoculated (NTNI), non-treated (NT), and Vapam at 35 gal/A, 45 gal/A, and 50 gal/A. 

Significance was determined by Student-Newman-Keuls test (α = 0.05).  

 

4.3.2. Verticillium dahliae quantification 

qPCR results revealed that Vapam fumigation at all three rates decreased V. dahliae 

populations (Figure 4-2). Vapam at 45 gal/A had an overall consistent efficacy and was the 

closest to the NTNI among all three different dosages. Plots applied with 50 gal/A Vapam had 

best performance at planting and at mid-season, V. dahliae inoculum decreased by 89% and 

60%, respectively, but an increase in V. dahliae was observed before harvest (Figure 4-2).  
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Figure 4-2. Quantitative estimation of Verticillium dahliae in soils treated with Vapam at 0, 35, 

45, and 50 gal/A, and at time points analyzed by quantitative polymerase chain reaction. NTNI: 

non-inoculated and non-treated used for control. Error bar was used to determine significance. 

 

4.3.3. Bacterial community changes under Vapam fumigation   

A total number of 3,584,853 reads and 36,647 OTUs were obtained. Observed OTUs, 

Chao1, and ACE indices indicated that highest bacterial richness was observed in the NT plots 

two weeks post fumigation. Comparison among time points showed that the lowest relative 

abundance occurred at planting. The NT plots exhibited overall higher richness than Vapam 

fumigated plots at the time points of post fumigation, at planting, and before harvest. Richness in 

fumigated plots increased to a similar level as the NT plots at mid-season (Figure 4-3). Shannon 

diversity index showed the same trend. Vapam fumigated plots resulted in a lower diversity of 

bacteria than NT plots two weeks after fumigation and before harvest. For all treatments, the 

highest diversity was observed at two weeks after fumigation, with lower diversity for all 

treatments at subsequent time points (Figure 4-3). 
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Forty-two families were classified in the bacterial communities (Figure 4-4), and all 

bacteria that could not be classified to family taxonomic level were grouped as "Other". 

Excluding “Other”, the most abundant families were Sphingomonadaceae (7.04%), 

Micrococcaceae (4.36%), and Conexibacteraceae (2.68%). Among them, Vapam did not result in 

significant changes in abundance of Sphingomonadaceae, and the abundance peaked at mid-

season. Micrococcaceae abundance in the NT plots was lower than in the fumigated plots at all 

time points, with the greatest difference observed at the post fumigation sampling. 

Conexibacteraceae abundance was higher in the 50 gal/A Vapam fumigated plots than the NT 

plots at all time points, same pattern was observed for Intrasporangiaceae. In contrast, the 

abundance of Planctomycetaceae was lower in the 50 gal/A Vapam fumigated plots than in the 

NT plots. The highest abundance was observed at the time point of post fumigation. The 

abundance of Bacillaceae decreased in all fumigated plots and remained slightly lower than that 

in the NT plots (Figure 4-4). Moreover, Phyllobacteriaceae could not be observed after 

fumigation, but it was observed at planting and at mid-season and was more abundant in 

fumigated plots than in NT plots. Abundance of Microbacteriaceae in the NT plots was lower 

than in the fumigated plots at two weeks post fumigation, and it increased to higher than the 

fumigated plots at planting but decreased to less than the fumigated plots at subsequent 

timepoints. Polyangiaceae abundance in the fumigated plots decreased at two weeks post 

fumigation, and reduced to non-detectable at subsequent timepoints (Figure 4-4).   
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Figure 4-3. Bacterial alpha diversity in soils at different time points after fumigation: A: two 

weeks post fumigation; B: at planting; C: two months after planting (mid-season); D: one week 

before harvest. Observed: box plot of observed operational taxonomic unit (OTU). Chao1: box 

plot of bacterial Chao1 index. ACE: box plot of bacterial ACE index. Shannon: box plot of 

Shannon diversity index. Treatments included 0, 35 and 50 gal/A Vapam applied.  
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Figure 4-4. Relative abundances of bacteria at the family level in soils at different time points 

after fumigation: A: two weeks post fumigation; B: at planting; C: two months after planting 

(mid-season); D: one week before harvest. Treatments included 0, 35 and 50 gal/A Vapam 

applied. Taxa with relative abundance < 0.5% were excluded. Each color represents a different 

bacterial family. 

 A-35    A-50   A-NT    B-35   B-50   B-NT    C-35   C-50   C-NT     D-35   D-50   D-NT 
 



 

77 

 

4.3.4. Fungal community changes under different Vapam dosage 

A total number of 3,102,919 reads and 17,536 OTUs were obtained. Observed OTUs, 

Chao1, and ACE richness estimators revealed that although a reduction in richness was not 

observed two weeks post fumigation, the effects of fumigation on the fungal communities were 

evident at planting and mid-season (Figure 4-5). According to Shannon diversity index, the 

highest diversity was observed in 50 gal/A Vapam fumigated plots two weeks post planting, 

while the lowest diversity was in 35 gal/A Vapam fumigated plots. Diversity in 50 gal/A Vapam 

fumigated plots and the NT plots dropped at planting, but they increased at mid-season. All plots 

reached a similar diversity before harvest, with diversity in the NT plots being relatively higher 

(Figure 4-5). Overall, fungal diversity and abundance increased with potato growth and 

decreased when the field was vacant. 

Nineteen fungal families were classified as shown in Figure 4-6. All fungi that could not 

be classified were grouped as "Other". The most abundant families were Aspergillaceae 

(30.37%), Trichocomaceae (22.09%), and Mortierellaceae (19.59%). Abundance of 

Aspergillaceae was higher in the fumigated plots than in the NT plots two weeks post fumigation 

and was lower than that of the NT plots at subsequent time points. Abundance of 

Trichocomaceae was higher in the fumigated plots than in the NT plots for all timepoints. 

Fumigation resulted in a lower abundance for Mortierellaceae two weeks post fumigation, 

however, the abundance increased at subsequent timepoints. In addition, Mrakiaceae abundance 

in the fumigated plots was lower than in the NT plots for all timepoints, with the differences 

being closest two weeks post fumigation. Microdochiaceae was first observed in 50 gal/A 

Vapam fumigated plots at planting, and the abundance remained higher than 35 gal/A Vapam 

fumigated plots and the NT plots at subsequent timepoints. Rhizopodaceae abundance in the 

fumigated plots was undetectable until mid-season, and it dropped to undetectable level before 

harvest. Didymellaceae and Bulleribasidiaceae could not be detected two weeks post fumigation. 
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However, Didymellaceae was found at mid-season, and the abundance was higher in the 

fumigated plots than that of the NT plots; Bulleribasidiaceae was not detected until harvest, and 

the abundance was higher in the fumigated plots than that of the NT plots. Myxotrichaceae 

abundance was higher in the fumigated plots than that of the NT plots at planting and mid-

season, but they dropped to undetectable level at subsequent time points (Figure 4-6).   
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Figure 4-5. Fungal alpha diversity in soils at different time points after fumigation: A: two weeks 

post fumigation; B: at planting; C: two months after planting (mid-season); D: one week before 

harvest. Observed: box plot of observed operational taxonomic unit (OTU). Chao1: box plot of 

bacterial Chao1 index. ACE: box plot of bacterial ACE index. Shannon: box plot of Shannon 

diversity index. Treatments included 0, 35 and 50 gal/A Vapam applied. 
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Figure 4-6. Relative abundance of fungi at the family levels in soils at time points after 

fumigation with Vapam at 0, 35, and 50 gal/A: A: two weeks post fumigation; B: at planting; C: 

two months after planting (mid-season); D: one week before harvest. Taxa with relative 

abundance < 2% were excluded. Each color represents a different fungal family.  

 

4.4. Discussion  

Soil fumigation using metam sodium has been shown to effectively suppress the 

population of V. dahliae and PED as well as increase potato yield in many studies (Pasche et al., 

2013; Taylor et al., 2005; L. Tsror et al., 2005; Yellareddygari & Gudmestad, 2018). In some 

cases, disease is reduced but no yield benefit is obtained under soil fumigation (Neilson et al., 

A-35  A-50  A-NT  B-35  B-50  B-NT  C-35  C-50  C-NT  D-35  D-50  D-NT 
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2020). In this study, soil fumigation reduced PED and V. dahliae population in soil, but effects 

on yield were not significant. Part of the reason for this was possibly due to weather conditions 

(Deblonde & Ledent, 2001), as from May to September of 2020, Maine experienced its worst 

drought since the 2000s (Birkel, 2020).  

That yield was not promoted by fumigation can be explained in several ways in this 

study. Firstly, field disease incidences on both stems and tubers were lowered by soil fumigation, 

which was supported by qPCR data. After fumigation, V. dahliae populations in both 45 gal/A 

and 50 gal/A plots decreased substantially and remained low until planting. This was most 

obvious at planting, where an application rate of ≥ 45 gal/A reduced V. dahliae populations to 

even lower than non-inoculated plots. This may be due to the pathogen needing the host plant to 

effectively multiply. To maximize the interval between fumigation and planting will help 

maximize competition between pathogens and neutral microorganisms (Abdullah et al., 2017).  

Unexpectedly, 50 gal/A Vapam application resulted in an increase in V. dahliae 

populations near the end of the season. This could be explained in part by the slow rebound of 

the probiotic microbes after being eliminated by fumigant, and therefore the suppression to V. 

dahliae or plant protection reduced. qPCR data also indicated that Vapam at 45 gal/A provided a 

more consistent efficacy as the V. dahliae population in 45 gal/A Vapam fumigated plots was 

lower than in the NT plots at all timepoints. Although this is not as expected, the fact was that 

increasing the fumigant dosage may not always lead to better performance. Similar results can be 

found in other studies, for example, Pasche et al. (2014) found that metam sodium at 467 l/ha 

(comparable to 50 gal/A) resulted in lower V. dahliae population than at 373 l/ha, 561 l/ha, 655 

l/ha. Similar studies also revealed that different dosages of metam sodium at different injection 

depth resulted in different effects, and the highest dosage did not always have the best efficacy 

(Yellareddygari & Gudmestad, 2018). Higher dosages of metam sodium might benefit the yield 

by eliminating more pathogen, while lower dosage might benefit the yield by lowering the 
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impact of fumigant to beneficial microorganisms. Therefore, balancing the suppression of 

pathogens and reducing the impact of fumigant on the soil microbial communities may be the 

key to find the optimal dosage. The results in this study suggested Vapam at 45 gal/A might be 

the sweet spot that balanced the impacts on the beneficial and pathogenic microorganisms.  

Soil fumigation with metam sodium impacts the diversity and structure of the soil 

microbial community (Collins et al., 2006; J. Li et al., 2017; Macalady et al., 1998; Toyota et al., 

1999). In this study, alpha diversities of both bacterial and fungal communities were impacted by 

fumigation. For bacterial communities, the highest richness and diversity occurred in the NT 

plots two weeks post fumigation, and the richness/diversity advantage in the NT plots was 

retained all the way through to harvest. This indicated that Vapam affected bacterial 

communities, and the richness and diversity of bacterial community in fumigated plots did not 

quickly recover. In addition, bacterial richness and diversity decreased between fumigation and 

at planting. This might be affected by the cold weather during the winter. Most of the bacteria 

that increased in fumigated plots are considered commensals to plants, such as bacteria in 

Conexibacteraceae, Intrasporangiaceae, Micrococcaceae. In addition, some families of 

potentially beneficial bacteria such as Bacillaceae decreased after fumigation (Gomaa, 2012; B. 

Li et al., 2013; S. Li et al., 2013). This might help to explain why higher dosages did not lead to 

higher yield.  

An interesting pattern was observed in fungal communities. Under the treatment with 

Vapam at 50 gal/A, the highest diversity but relatively low richness occurred post fumigation. 

This indicated that many fungi were killed by Vapam, resulting in abundant space and nutrients 

becoming available. As a result, low populations of remaining fungi in diverse groups grew 

unhindered, and diversity increased. However, the diversity advantage in 50 gal/A Vapam 

fumigated plots was not retained at subsequent timepoints. This might be due to the less 

competitive fungi being able to multiply during the window period, but not when other 
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competitive fungi became predominant. In the fungal communities, families that increased in 

their population during potato growth were mainly neutral, while some of them contained 

pathogenic species, such as Trichocomaceae (Stošić et al., 2020). Overall, the effects Vapam at 

different rates were similar after fumigation, but higher Vapam rate resulted in higher richness 

eventually. Vapam at a higher rate resulted in higher diversity post fumigation but converged 

with that in lower Vapam treated plots at later stages.  

4.5. Conclusion  

Soil fumigation by Vapam significantly reduced the severity and incidence of PED at 

rates greater than 30 gal/A. Fumigation impacted the diversity, richness, and abundance of both 

bacterial and fungal communities. After fumigation, pathogens are suppressed but non-

pathogenic fungi rapidly recovered.  
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