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Climate change is expected to lead to novel climate conditions with an increase in frequency 

and severity of drought across many places around the globe including the north-eastern (NE) 

United States. Therefore, experimental studies that test the impacts of changing environmental 

conditions over long time scales or experimental studies that mimic these conditions are crucial 

to understand the potential impact on crops in this region. Wild lowbush blueberries and 

highbush blueberries are two important crops in NE USA. In this study, the leaf functional, 

structural, nutrient traits across genotypes of wild blueberries (Vaccinium angustifolium and V. 

myrtilloides) at Blueberry Hill Farm, Jonesboro, Maine were monitored across two crop growth 

cycles for four years and were related to changing environmental conditions. Additionally, I 

investigated how four blueberry population- varieties (two V. angustifolium populations and 
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two V. corymbosum varieties) respond to extreme experimental drought conditions to reveal 

the physiological mechanisms regulating their drought responses. 

The results showed that wild blueberries showed strong variation both within and across 

genotypes in leaf structure, physiology, and nutrient status. The variation could be explained 

more by intra-genotype variance than by inter-genotype variance. Comparing their leaf 

economic spectrum (LES) traits to the Glopnet (a global dataset of plant leaf traits), the 

blueberries fell within the domain of Glopnet species, but global LES relationships were not 

always found. Also, I found that these two species showed similar or higher values across most 

traits compared to Vaccinium species in the Glopnet. Further, a principal component analysis 

(PCA) with all leaf functional, nutrient, structural traits, soil properties, rainfall and 

temperature showed overlaps in the soil nutrient requirements but clear separation in leaf 

nutrient, structural traits, physiological traits, and rainfall. Therefore, there was a clear 

differentiation in water and nutrient use between these two species and temporal variation in 

environmental conditions also shifted the traits.  These findings can help us to predict how 

these species will respond to future climate change, and how changes in environmental 

conditions will shape the trait development and coordination, as well as the community 

composition.  

In the drought experiment, the two lowbush populations (Ang 1 and Ang 2) and two highbush 

varieties (Bluecrop and Patriot) showed a coordinated response of all the physiological 

processes including stomatal conductance, photosynthesis rate, transpiration rate, 

photochemistry, and plant hydraulic systems under declining stem water potential (Ψstem; a 

measure of water tension within the plant) and soil moisture conditions. Notably, there were 

quick declines in stomatal conductance, photosynthesis, and water loss before the turgor loss 

point (TLP) and the progressive decline of photochemistry, leaf browning, and leaf dropping 
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after the TLP as Ψstem and soil moisture declined across all population- varieties of blueberries 

and reached -4.0MPa to -4.5MPa Ψstem and less than 5% soil moisture at the end of the drought 

treatment. Importantly, physiological processes, for example, Fv/Fm in Ang 2 and Patriot 

declined more quickly compared to Ang 1 and Bluecrop during the drought treatment. Ang 1 

and Patriot showed 100% loss of hydraulic conductivity (PLC), while the Ang 2 and Bluecrop 

reached 87% and 83% PLC at the end of the 4-week-long drought. Ang 1 and Ang 2 

populations had high regrowth of new stems from underground rhizomes in the following 

season, indicating the resilience of wild lowbush blueberries. All groups showed high stem 

mortality when water potentials were as low as -4.0MPa to -4.5 MPa, indicating that these 

population- varieties are vulnerable to extreme drought. The results of this study not only 

allowed us to understand the drought responses of these population- varieties but also allowed 

us to understand the turgor loss point as a threshold beyond which damages in photochemistry, 

leaf shedding, hydraulic failure, and plant mortality occur. In the blueberry fields, blueberry 

population- varieties may respond to drought in different ways especially for Angustifolium 

populations. The wild blueberry populations in the field conditions might show higher 

resistance compared to potted plants because of their large rhizome systems in the field. 

Therefore, the findings from this study could be further tested at larger scales in the field.  
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CHAPTER 1: ECOLOGICAL NICHES AND LEAF ECONOMIC SPECTRUM 

ACROSS GENOTYPES OF WILD BLUEBERRIES IN A SEMI-NATURAL 

AGRICULTURAL SYSTEM 

1.1 ABSTRACT 

Wild blueberries are an important crop to the state of Maine commercially and culturally.  They 

are characterized by high inter-genotypic variation seen both within and across two main 

species Vaccinium angustifolium and Vaccinium myrtilloides, which have been coevolving for 

thousands of years. These wild blueberries species spread by rhizomes underneath the soil but 

above ground appear as a mosaic of individual genotypes, which differ in biological traits, like 

height, color and hue, phenology, and yield. Despite the likely impact that genotypic variation 

has on structural and physiological traits, we know very little about the natural variation and 

range of these characteristics. It is also unknown whether their leaf trait development follows 

the global leaf economic spectrum (LES) principles, and how changing environmental 

conditions are shaping their variability and the coexistence of the two species. To address these 

questions, leaf functional traits across genotypes of V. angustifolium and V. myrtilloides were 

measured at Blueberry Hill Farm, Jonesboro, Maine for two crop growth cycles across four 

years. Wild blueberries showed strong variations both within and across genotypes in leaf 

structure, physiology, and nutrient status. The overall variation was explained more by intra-

genotype variance rather than inter-genotype variance. I also found that the functional traits of 

blueberries fell within the domain of Glopnet (a global dataset of plant functional traits 

including mainly angiosperms), but global LES relationships were not always found. Similarly, 

I found that the two studied species showed similar or higher values in most traits compared to 

Vaccinium species in the Glopnet. Further, a principal component analysis (PCA) of all plant 

traits and environmental conditions showed that the two species showed overlaps in soil 

nutrient requirements but a clear separation in leaf nutrient, structural traits, physiological 
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traits. Also, changes in environmental conditions over the years were shifting the traits. 

Therefore, clear differentiation in water and nutrient use was found between these two species 

and the temporal variation in environmental conditions also shift the traits. These findings can 

help us to predict how these species will respond to future climate change, and how changes in 

environmental conditions will shape the trait development, and the community composition.  
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1.2 INTRODUCTION 

Leaf economic spectrum or LES (Westoby et al., 2002; Garnier & Navas, 2013; Wright et al., 

2004) is widely used to identify the manifold of strategies within and among communities 

(Falster et al., 2012). LES characterizes a strategy for a fast or a slow rate of return on a carbon 

investment in leaves (Reich et al. 1997; Wright et al. 2004) and reflects a trade-off between 

long leaf lifespan and high photosynthetic rate. Trait variations can be found at all 

spatiotemporal and organizational scales: within a single organism (Pigliucci, 2001), within a 

species (Valladares et al., 2000; Takahashi et al., 2005; McGill et al., 2006; Rozendaal et al. 

2006), among species (Wright et al., 2001; Westoby et al., 2002), and among communities 

(Ackerly et al., 2002; Wright et al., 2004; Rozendaal et al., 2006; Ackerly & Cornwell, 2007). 

These trait variations also follow some well-known LES trait relationships at the global scale 

(Wright et al., 2004), in different plant lineages (Zhang et al., 2015; Mason et al., 2015; Edward 

et al., 2014; Bai et al., 2015; Martin & Issac, 2021), and certain geographical regions (Asner et 

al., 2016; Hu et al., 2015; Pan et al., 2020; Wright et al., 2005). However, the LES trait 

relationships in uniform agricultural systems and semi-natural agricultural systems are 

relatively not well-understood (Xiong & Flexas, 2018; Martin et al., 2018). 

The wild blueberry agricultural system is a unique and semi-natural agricultural system with 

diverse genotypes naturally growing in the field and managed to promote high yield. The two 

common species of wild blueberry typically found in managed fields in North America are 

sweet blueberry Vaccinium angustifolium Aiton and the sour top or velvetleaf blueberry 

Vaccinium myrtilloides Michx (Hall et al., 1979). In this system, inter-genotype variation is 

highly pronounced of the two co-occurring species (Bolnick et al., 2003), which have been 

coevolving for thousands of years (Borns, 2004; Drummond et al., 2009). These two species 

have a unique growth habit and life cycle (Bell et al., 2009) i.e., they grow vegetatively by 

rhizome and have a two-year production cycle alternating between a crop year (reproductive 
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year) and a prune year (vegetative growth year). Also, these two species coexist in most of the 

managed fields in Maine, which I here refer to as a semi-natural agricultural system. I examined 

the leaf functional traits of these two species through two crop growth cycles over four years 

to understand the spatial and temporal variation of the highly diversified wild blueberry system. 

Functional traits can indicate how an individual relates and responds to its environment, which 

offers a powerful approach to address ecological questions (McGill et al., 2006). Managed wild 

blueberry fields show highly pronounced inter-genotype and intra-genotype variations within 

each species (Vander Kloet, 1978; Smagula et al.,1997). Thus, this is a good system to study 

both different scale processes in shaping community composition and how ecosystem function 

responds to environmental conditions (Lavorel & Garnier, 2002; McGill et al., 2006; Westoby 

& Wright 2006). Although it is well-known that the wild blueberry fields have a high 

phenotypic diversity, the physiological diversity of these wild blueberry species are yet 

unknown. Nor do we know whether the variation in traits in this unique system would be 

constrained by similar LES principles as in other angiosperms (Wright et al., 2004). Studies of 

LES traits and different functional traits in this wild blueberry system may reveal unique 

patterns in trait correlations and how LES in a semi-natural agricultural system differs from the 

global LES.  

A niche is defined by the set of conditions, resources, and interactions that a species needs to 

carry out its ecological role (Miller & Spoolman, 2009). Each species fits into an individualistic 

ecological community and has its own tolerable ranges for many environmental factors. Two 

co‐occurring species in the same environment that often show substantial niche overlap 

(Berdugo et al., 2018; Mahdi, Law, & Willis, 1989) are also able to coexist if they are nearly 

equivalent in their average competitive abilities (Pastore et al., 2021), if they have close-to-

equal performance in the same environment (Hubbell, 2001), and/or if they partition resources 
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as they grow (Chesson, 2000). However, the competition between the two co-occurring species 

can also be doubled if they have high niche overlap, limited resources, and/ or large competitive 

differences (Simberloff et al., 1991). A community characterized by low niche overlap and 

small competitive differences is more resilient to change than a community with high niche 

overlap or large competitive differences (Pastore et al., 2021). Unfortunately, these concepts 

of niche overlap, species coexistence, and competition have not been applied in wild blueberry 

systems. We also do not know how the two species of wild blueberry partition their resources, 

their relative competitive advantages, the extent of their resource overlaps and differences, and 

the mechanism for their coexistence in terms of convergence or divergence in functional traits 

and resource use. 

Environmental filtering is also one of the key community assembling processes that constrain 

species establishment through the selection of functional traits (Diaz et al., 1998). During this 

process, habitats act as filters removing species lacking trait attributes for persisting under a 

given environment (Keddy, 1992). Precipitation and temperature also act as strong 

environmental filters by driving the differences in vegetation and between biomes (Grime et 

al., 2006; Ordonez et al., 2009) that constrain the number of successful trait combinations and 

lead to community-level trait convergence (Bruelheide et al., 2018). As a result, co-occurring 

species in a given habitat exhibit similar ecological strategies and share similar traits (Cornwell 

et al., 2006), leading to the trait convergence of co-occurring species and shaping community 

structure (Lavorel & Garnier, 2002; Lebrija-Trejos et al., 2010). Investigating trait environment 

linkages or consistent associations between sets of plant attributes and certain environmental 

conditions could provide insights into the mechanisms of species coexistence and species 

distribution (Keddy, 1992). The role of local-scale environmental filters in shaping wild 

blueberry community composition and structure and how wild blueberry respond to shifting 

environmental condition is not well-understood.  
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The wild blueberry is an important crop to the State of Maine culturally and economically. 

Therefore, how these species respond to changing environmental conditions is important to 

consider for future management of these wild blueberry fields and to understand species 

coexistence and competition behavior. Importantly, wild blueberries are a two-year cycle crop 

with a vegetative growth and a crop year, which is very unique among crop species aside from 

biennial bearing plants. Therefore, how wild blueberry species differ in their crop growth 

cycles is important for us to understand from the management point of view. Additionally, 

most studies have focused on studying LES at large or global spatial scales and with a large 

number of species, but very little attention has been given to LES studies at local scales in 

agricultural systems. Therefore, there is limited knowledge on how the LES relationships at 

local scales in a farm setting differ from those found globally. Here, I aimed to assess for 

blueberry species the traits associated with photosynthetic rate, nutrient composition, and leaf 

structure based on studies of angiosperms for four years on a farm. Our objectives were to 1) 

to test whether the LES principles hold in the unique blueberry system where there is high 

inter-genotype and intra-genotype variations, 2) to examine whether the two coexisting species 

show convergence in functional traits or divergence in niches in the field, 3) to test whether the 

leaf functional, nutrient and structural traits shifts over years due to changes in environmental 

conditions, and 4) to understand whether LES traits in crop year differ from those observed in 

prune year. This study can help us understand whether the two coexisting species show 

convergence in traits or have different sets of resource availability.  

1.3 MATERIALS AND METHODS 

1.3.1 STUDY SITES AND PLANT MATERIALS 

This research was carried out on Blueberry Hill Farm in Jonesboro (latitude of 44.6439° N, 

longitude of 67.6465° W, elevation 257 meters), Maine, USA. The study site has a yearly 

average temperature of 6.3oC and yearly average precipitation of 1297.94 mm (USCD, 2021) 
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typified by large seasonal temperature differences, with warm summers and cold winters. The 

two species of wild blueberries (V.  angustifolium and V. myrtilloides) were used under our 

study for four years from 2017 to 2020 for the measurement of physiological and 

morphological traits. Both of these species were in the prune (vegetative growth) phase in 2017 

and 2019, and the crop (reproductive) phase in 2018 and 2020. According to climatic 

conditions of the growing season from the month of May to August, 2017 was an extreme 

drought year with precipitation of 11.83 mm, 2018 was a moderate year with precipitation of 

8.72 mm, 2019 was an extremely wet year with high precipitation of 16.6 4mm, and 2020 was 

a drought year with precipitation of only 7.95 mm (Table A1.6). These climatic condition data 

were obtained from a weather station that was installed in Blueberry Hill Farm Research 

Station, Jonesboro, Maine. All the measurements under our study were carried out from May 

to August in all four years.  

The genotypes of V. angustifolium and V. myrtilloides studied were selected randomly in 2017 

and 2019 and the same genotypes were studied for all the years. The way I selected these 

genotypes was by separating the farm into a number of grids and generating random numbers 

to pick the grids for sampling. In the 2017- 2018 crop growth cycle, 12 genotypes (6 for each 

species) were studied, while four more were added in the 2019- 2020 crop growth cycle and 

increased the sample size leading to a total of 16 genotypes (8 from each species).  The 16 

genotypes showed high variation in terms of phenological characteristics and morphological 

features such as leaf and fruit color, taste, and fruit yield. Variation in environmental conditions 

and soil nutrients among genotypes were also considered.  Six stems were selected for 

measurements and marked with a ribbon for each genotype. The middle section of the leaves 

was used for physiological measurements such as gas exchange and chlorophyll concentrations 

and all other morphological, phenological, and physiological measurements were taken using 

the marked stems and their branches.  
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1.3.2 LMA, LEAF SIZE, TOTAL LEAF AREA, AND LEAF THICKNESS 

Morphological data like plant height was recorded for the main stem from 2 cm above the 

ground to its top excluding the winter injury section and the stem diameter was recorded from 

a stem section where 2 cm was marked above the ground surface for six marked stems with a 

ribbon from each genotype. For leaf size measurement, all fully mature and healthy leaves from 

six different plant stems across all genotypes were collected from the stems that were not 

marked with a ribbon. The total area of leaves from each individual stem was determined by a 

leaf area meter (LI-3000A area meter, Li-Cor, Lincoln, NE, USA) and leaf size was calculated 

by dividing total leaf area by total leaf number. For Leaf Mass per Area (LMA) measurements, 

six matured healthy leaves from six individual stems from each genotype were measured for 

leaf area by the leaf area meter (LI-3000A area meter, Li-Cor, Lincoln, NE, USA) then the 

leaves were oven-dried at 70°C for 48 hours, and weighed, and LMA was determined as leaf 

dry mass divided by leaf area (gm-2). Leaf thickness was measured using a digital micrometer 

(Mitutoyo, digital micrometer, 0.0001mm accuracy). 

1.3.3  GAS EXCHANGE MEASUREMENTS 

The light-saturated net CO2 assimilation rate per area (Aa, µmol m-2 s-1) and stomatal 

conductance (gs; µmol m-2 s-1) were measured using a portable photosynthetic system LI-6400 

(Li- Cor, Lincoln, NE, USA) in the year 2017 and 2018 and LICOR-6800 (Li-Cor, Lincoln, 

NE, USA) in year 2019 and 2020. The leaves were measured on sunny days between 08:30 

and 10:30 h solar time subjected to 10 minutes of a constant light intensity with the 

photosynthetic flux density (PPFD) at 1000 µmol m-2 s-1, ambient CO2 concentration, and 

temperatures. Relative humidity ranged from 40% to 63% during the measurements. All the 

photosynthetic parameters were expressed on a projected leaf area basis. Light-saturated net 

CO2 assimilation rate per mass (Am; µmol g -1 s-1) was determined as Aa divided by LMA. 

Intrinsic water use efficiency was calculated by dividing the light-saturated CO2 assimilation 

per leaf area by stomatal conductance (Hatfield & Dold, 2019). 
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1.3.4 NUTRIENT AND CHLOROPHYLL CONCENTRATIONS 

For leaf nutrient concentrations, ~40-60 fully mature and healthy leaves from each genotype 

were collected during August, and oven-dried at 70°C for 48 hours. After oven drying leaves 

were ground into a fine powder and sent to the University of Maine Soil Testing Laboratory 

for Standard Plant Tissue Analysis. Standard Plant Tissue Analysis was done separately for 

each genotype in both prune year and crop year during our study. Photosynthetic N use 

efficiency (AN) and P use efficiency (AP) were determined as Am divided by mass-based 

concentrations of N and P (Nm and Pm), respectively. Leaf chlorophyll concentration was 

measured with a chlorophyll meter (SPAD 502 DL meter, Konica-Minolta, Japan) for six sun-

exposed mature leaves from six stems per genotype that were marked with a ribbon. Leaf C 

and N ratio was determined by dividing carbon per mass by nitrogen per mass. 

1.3.5 SOIL NUTRIENT CONCENTRATIONS 

For the soil nutrient concentration test, 8-10 samples (to fully represent the plot) from each 

genotype were extracted using a soil sampling probe at the depth of 10 cm for the analysis. All 

the 8- 10 samples collected from each genotype were mixed thoroughly and stems, leaves, 

stones, or any other bigger particles to prevent the contamination of testing were removed. The 

mixed soil sample was filled in the sample container box labeled with the genotype name and 

was sent to the University of Maine Soil Testing Laboratory for the measurements of and soil 

pH, levels of nitrogen (N), potassium (K), phosphorus (P), calcium (Ca), magnesium (Mg), 

sulphur (S), and organic matter level (OM). 
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1.3.6 STATISTICAL ANALYSIS 

The leaf (structural, photosynthetic, and nutrient) traits were averaged within genotypes and 

genotypes within species for regression analysis. Statistical analyses were applied using R 

v.4.0.3 (R core team 2021). I analyzed the relationship between functional traits using linear 

or nonlinear regressions according to which best approximated the structure of the relationship. 

Equal variances of the variables were tested, and nested one-way ANOVA was used to 

determine the trait variation within and between two blueberry species since eight genotypes 

of V. angustifolium were different from the eight genotypes of V. myrtilloides. In the nested 

one-way ANOVA, species were assigned as the fixed factor in which random factors (eight 

genotypes each) were nested within the fixed factor (two species).  And variance was calculated 

from the mean sum of squares of the nested one-way ANOVA results using samples within 

each genotype. Then, a stem plus error variance and genotype variance was extracted using 

‘varcomps’ function to extract variance components using R v.4.0.3 (R core team 2021).  The 

standardized major axis (SMA) tests were used to see the differences in slope and intercept of 

bivariate relationships (LMA, Am, and Nm) between blueberries and the global datasets (Wright 

et al., 2004) using the ‘smatr’ package in R (Warton et al., 2012). I calculated SMA regressions 

to determine whether there were significant differences in slope between the genotypes of two 

lowbush blueberry species (V. angustifolium and V. myrtilloides) versus the Glopnet leaf 

economics data set (Wright et al., 2004). A Principal Component Analysis (PCA) was 

performed to summarize the joint variation of the functional traits for the two species (Pearson, 

1901), with mean trait values of each species used for the analyses.  

1.4 RESULTS 

1.4.1 VARIATION IN LEAF TRAITS AMONG V. ANGUSTIFOLIUM AND V. MYRTILLOIDES 

The two species of lowbush blueberries varied greatly in leaf morphology and shape (Figure 

A1.2), significantly in photosynthetic traits, and leaf nutrient concentration as well as in other 
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leaf structural and functional traits (Figure 1.1; Table 1.1). In both crop years, Aa, Am, and LMA 

were significantly higher in V. angustifolium than in V. myrtilloides but AP and Nm were 

significantly higher in V. angustifolium than in V. myrtilloides in only one crop year, 2018. 

Similarly, Cm and Fem were significantly higher in V. myrtilloides than in V. angustifolium in 

both crop years, but C/N was significantly higher in V. myrtilloides than in V. angustifolium in 

only one crop year, 2018. In both prune years, Cm was significantly higher in V. myrtilloides 

than in V. angustifolium, but Fem was significantly higher in V. myrtilloides in only one prune 

year, 2017. Similarly, Aa, Pm and C/N were significantly higher in V. angustifolium than in V. 

myrtilloides in only one prune year, 2017 and LMA was significantly higher in V. angustifolium 

than in V. myrtilloides in another prune year, 2019.  

In several trait variations, V. angustifolium and V. myrtilloides showed lower values than the 

Glopnet species but similar to higher values compared to the Vaccinium species in the Glopnet 

(Table 1.1, A1.2). However, the values were not always lower in V. angustifolium and V. 

myrtilloides compared to Glopnet species in all years of measurement. Instead, I found that Aa, 

Am, AN, AP, Pm, LMA of both species showed higher mean values compared to Glopnet species 

and Vaccinium species in the Glopnet in 2019, a prune year (Table 1.1, A1.2). But Nm of both 

species showed lower values compared to Glopnet species in the same year but similar values 

compared to Vaccinium species in the Glopnet (Table 1.1, A1.2). In 2017, another prune year, 

all the traits of both the species had lower values than the Glopnet species and Vaccinium 

species in the Glopnet but LMA had higher values compared to Vaccinium species in the 

Glopnet (Table 1.1, A1.2). Similarly, all the traits of both the species had lower values than the 

Glopnet species in both crop years but Aa, Am, AN and AP were higher compared to Vaccinium 

species in the Glopnet in both crop years (Table 1.1, A1.2).  Further, the LMA of both species 

was lower compared to Vaccinium species in the Glopnet in both crop years. 
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The variance partition analysis revealed that the trait variation of these two species was 

generally explained more by intra-genotype (stem) variance plus error rather than inter-

genotype (genotype) variance (Figure 1.1; Table A1.3). However, the source of variation did 

not always show a consistent pattern across years, across species, and across traits (Figure 1.1a, 

b, c, d, e, f). Instead, I found a consistent pattern in V. myrtilloides where stem plus error 

variance was always higher than genotype variance and was significantly different in all years 

(Figure 1.1b, d, f). Similarly, I found that V. angustifolium had significantly higher values of 

stem plus error variance than genotype variance in 2020, but not in 2019 and 2018 (Figure 

1.1b, d, f).  
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Table 1.1: Comparison of two species of blueberries during four years of field study included in this study in the mean and range of light-saturated 

photosynthetic rate per area (Aa), light-saturated photosynthetic rate per mass (Am), photosynthetic nitrogen (N) use efficiency (AN), photosynthetic phosphorus 

(P) use efficiency (AP), Nitrogen concentration per mass (Nm), Phosphorus concentration per mass (Pm), Chlorophyll concentration per mass (Chlm), leaf mass 

per area (LMA), leaf size (LS), Carbon concentration per mass (Cm), Iron concentration per mass (Fem), Carbon/ Nitrogen ratio (C/N) values. Treatments with 

the different letters are significantly different and treatments with the same letters are not significantly different. Differences were testedwith the Nested ANOVA 

using species as a factor and genotypes as a factor for each year at alpha level 0.05 and 95% confidence interval. 

  Aa Am AN AP Nm Pm Chlm LMA LS Cm Fem C/N 

2020             
 

V. angustifolium Mean 9.49a 127.79a 0.08a 1.19a 1.51a 0.11a 0.39a 75.82a 1.05b 48.34b 42.14b 32.12a 
 SE 0.40 6.11 0.01 0.16 0.02 <0.01 0.01 1.29 0.06 2.08 0.13 0.52 

V. myrtilloides Mean 6.91b 97.41b 0.06a 0.85a 1.49a 0.11a 0.37a 70.89b 1.41a 49.29a 65.91a 33.34a 
 SE 0.31 4.09 0.01 0.13 0.04 < 0.01 0.01 1.43 0.13 8.23 0.11 0.92 

2019             
 

V. angustifolium Mean 18.21a 178.01a 0.11a 1.59a 1.51a 0.11a 0.35a 105.42a 2.09a 49.21b 31.3a 32.85a 
 SE 0.37 5.62 0.01 0.14 0.06 0.01 0.01 2.55 0.09 1.78 0.14 1.19 

V. myrtilloides Mean 17.56a 183.2a 0.12a 1.76a 1.51a 0.1a 0.37a 98.69b 2.14a 50.05a 41.75a 33.27a 
 SE 0.33 5.67 0.01 0.15 0.03 < 0.01 0.01 2.25 0.09 4.61 0.13 0.62 

2018             
 

V. angustifolium Mean 9.92a 117.58a 0.08a 1.14a 1.37a 0.1a 0.34a 87.13a 1.85b 50.72b 28.64b 37.2b 
 SE 0.47 5.27 0.01 0.13 0.02 0.01 0.01 2.80 0.10 1.01 0.08 0.49 

V. myrtilloides Mean 6.97b 92.75b 0.07a 0.79b 1.21b 0.11a 0.35a 75.2b 2.21a 51.37a 34.74a 42.71a 
 SE 0.37 6.48 0.01 0.07 0.02 < 0.01 0.01 1.50 0.08 1.00 0.1 0.81 

2017             
 

V. angustifolium Mean 7.57a 68.72a 0.05a 0.59a 1.4a 0.11a 0.39a 93.36a  50.92b 30.72b 36.83a 
 SE 0.22 2.51 < 0.01 0.03 0.02 < 0.01 0.02 3.92  0.72 0.10 0.48 

V. myrtilloides Mean 6.34b 56.9a 0.04a 0.52a 1.5a 0.11b 0.37a 104.86a  51.64a 36.52a 34.64b 

 SE 0.55 8.87 0.01 0.06 0.01 < 0.01 0.02 5.24 
 

0.75 0.06 0.29 
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       Glopnet             

 Mean 11.50 128.00 6.31 1.18 1.94 0.11  128.0  
   

 SD 5.93 103.13 0.02 0.60 0.98 0.09  118.35  
   

 Minimum 1.00 4.80 0.63 1.74 0.25 0.01  14.00  
   

 Maximum 42.00 662.00 25.50 0.25 6.36 0.60  1510     

Vaccinium Glopnet             

 Mean 6.69 79.62 < 0.01 0.09 1.52 0.08  90.29     

 Minimum 4.96 40.00 < 0.01 < 0.01 0.89 < 0.01  40.20     

 Maximum 10.96 140.1 600.0 1.00 2.50 0.22 
 

246.21     

 SE 0.03 0.06 21.50 0.42 0.04 0.14  0.05     

 

Table 1.1 Continued 
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Figure 1.1 Source of variation of different traits for the two species studied (V. angustifolium and V. 

myrtilloides) across different years. A large fraction of the total variance in each trait is found within 

the stems plus error (red) vs between genotypes (green). Species names are at the top and trait names 

are at the bottom (a, c, e). Percentage contribution of genotype and stem plus error variance of both the 

species in different years when traits percentage variance was all averaged together (b, d, f). Explained 

variance percentages was calculated from the mean sum of square values obtained from the Nested 

ANOVA results. Data are means ± SE, n=total number of traits of each corresponding year on the left 

side. For trait abbreviations, refer to Table A1.3. 
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1.4.2 COMPARISON ON TRAIT RELATIONSHIPS IN V. ANGUSTIFOLIUM AND V. 

MYRTILLOIDES WITH THOSE OF GLOPNET SPECIES 

Although all traits fell within the domain of the Glopnet species, the bivariate relationships 

among LMA, Am, and Nm across genotypes of V. angustifolium and V. myrtilloides were not 

always consistent with the relationships found in the Glopnet (Figure 1.2a to 1.2l). The Am and 

Nm relationship found in the Glopnet was also found here across species in one crop year 

(Figure 1.2b), but not found within species for both species in both crop and prune years (Figure 

1.2a, b, c, d). I found a significant negative relationship between Am and LMA within V. 

angustifolium and across both species in prune years (Figure 1.2e, g), but the relationships were 

absent in crop years (Figure 1.2f, h). Whereas in Vaccinium myrtilloides, the relationship was 

only present in one prune year (Figure 1.2g), but absent in the other prune year (Figure 1.2e) 

and both crop years (Figure 1.2f, h).  Similarly, the negative relationship between Nm and LMA 

was only found in V. myrtilloides in one of the crop years (2020; Figure 1.2l), but the 

relationship was absent in the other crop year (Figure 1.2j), and the prune years (Figure 1.2i, 

k).  
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Figure 1.2 Mass-based photosynthetic rate (Am) in relation to leaf nitrogen concentration (Nm; a, b, c, 

d), and leaf mass per area (LMA; e, f, g, h), and leaf nitrogen concentration (Nm) in relation to leaf mass 

per area (LMA; i, j, k, l) for 2017, 2018, 2019, and 2020 across and within two blueberry species V. 

angustifolium (VA, red circles) and V. myrtilloides (VM, green circles) and global dataset (Glopnet). 

The grey points are from a global dataset of Wright et al. (2004). All variables were log-transformed. 

Break lines are standardized major axis (SMA) lines fitted to the global dataset, whereas solid lines are 

SMA lines fitted across (black solid line) and within (red solid line, V. angustifolium and blue solid line, 

V. myrtilloides) to the blueberry species. P values of less than 0.05 are significant and are marked with 

a corresponding line color as described above. 

 

1.4.3 COORDINATION OF LEAF TRAITS WITHIN AND ACROSS V. ANUSTIFOLIUM 

AND V. MYRTILLOIDES SPECIES 

For other functional traits, V. angustifolium and V. myrtilloides species showed some trait 

relationships but the relationships were not always consistent within and across species across 

years (Figure 1.3a to 1.3l). There was a significant negative relationship between Am and Cm in 

both crop years (Figure 1.3b, d) and a significant positive relationship between Am and Chlm 

across species in prune years (Figure 1.3e, g). Within species, V. angustifolium and V. 

myrtilloides showed a significant negative relationship between Am and Cm in one of the crop 
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years, but not all other (Figure 1.3 a, c, b, d). V. angustifolium had significant positive 

relationship in one of the prune years between Am and Chlm (Figure 1.3e), but not in the other 

prune year (Figure 1.3g) and both crop years (Figure 1.3f, h). A relationship between Am and 

C/N across species relationship was found in one of the crop years (Figure 1.3j) but not in all 

other years (Figure 1.3i, k, l).  

Interestingly, leaf structural traits showed relationships with some photosynthetic traits, but the 

relationship was not always present and consistent across all years and both within and across 

species. I found a negative significant relationship of AN and AP with LMA across species in 

prune years (Figure 1.4a, c, e, g), but the relationship was absent in crop years (Figure 1.4b, d, 

f, h). The relationship between AN and LMA was also found within species V. angustifolium in 

both prune years (Fig1.4a, c). The relationship between AP and LMA was found within both V. 

angustifolium and V. myrtilloides in one of the prune years (Figure 1.4e, g). The relationship 

between Chlm and LMA was found within both V. angustifolium and V. myrtilloides species in 

one of the prune years (Figure 1.4i, k), and across species in one prune year (Figure 1.4k). Chlm 

was significantly and positively related to Nm across species in only one prune year (Figure 

1.4o), and within V. angustifolium in one crop year (Figure 1.4p).  
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Figure 1.3 Mass based photosynthetic rate (Am) in relation to carbon concentration per mass (Cm; a, b, 

c, d), chlorophyll concentration per mass (Chlm; e, f, g, h) and carbon nitrogen ratio (C:N; i, j, k, l) for 

2017, 2018, 2019, and 2020 across and within two blueberry species V. angustifolium (VA, red circles) 

and V. myrtilloides (VM, green circles). Points are means. Linear (a & c) regressions were fitted to the 

data across (black solid line) and within (red solid line, Angustifolium and green solid line, Myrtilloides) 

blueberry species. p values of less than 0.05 are significant and are marked with a corresponding line 

color as described above. 
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Figure 1.4 Photosynthetic nitrogen (N) use efficiency (AN; a, b, c, d), photosynthetic phosphorus (P) 

use efficiency (AP; e, f, g, h) and chlorophyll concentration per mass (Chlm; i, j, k, l) in relation to Leaf 

Mass per Area (LMA) and chlorophyll concentration per mass (Chlm) in relation to nitrogen 

concentration per mass (Nm; m, n, o, p) for 2017, 2018, 2019, and 2020 across and within two blueberry 

species, V. angustifolium (VM, red circles) and V. myrtilloides (VM, green circles). Points are means. 

Linear (a & b) regressions were fitted to the data across (black solid line) and within (red solid line, 

Angustifolium and green solid line, Myrtilloides) blueberry species. P values of less than 0.05 are 

significant and are marked with a corresponding line color as described above.  

 

1.4.4 RELATIONSHIP OF LEAF TRAITS ACROSS YEARS 

The same leaf traits of different years showed correlations only in some cases. LMA in 2019 

was correlated to that of 2020 across species (Figure 1.5b). LMA in 2018 was also correlated 

with that of 2020 across species. There was no relationship between LMAs of different years 
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within species. There was no relationship between LS from different years within species and 

across genotypes of the two species (Figure 1.5e, f). 

 

 

Figure 1.5 Relationship of leaf mass per area (LMA) of 2017 with LMA of 2018 (a), LMA of 2019 

with LMA of 2020 (b), LMA of 2017 with LMA of 2019 (c) LMA of 2018 with LMA of 2020 (d), Leaf 

size (LS) of 2018 with LS of 2020 (e), and LS of 2019 with LS of 2020 across and within two blueberry 

species V. angustifolium (VA, red circles) and V. myrtilloides (VM, green circles). Points are means. 

Linear (i) regressions were fitted to the data across (black solid line) and within (red solid line, 

Angustifolium and green solid line, Myrtilloides) blueberry species. P values of less than 0.05 are 

significant and are marked with a corresponding line color as described above. 
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1.4.5 OVERALL TRAIT VARIATION ACROSS YEARS AND THE INFLUENCE OF 

ENVIRONMENTAL FACTORS 

Changes in environmental conditions over the years strongly shape leaf functional traits, leaf 

structural traits, and leaf nutrient traits variation in V. angustifolium and V. myrtilloides species. 

In the PCA analysis of all leaf traits, soil properties, rainfall and temperature, PC1 explained 

21.6% while PC2 explained 20.1% of the total variance (Figure 1.6a). The PCA1 was mainly 

positively associated with SD and Cm, and negatively with Aa, Am, and Chl. The PC2 was 

mainly positively associated with Aa, Am, and Chl, and negatively mainly with C: N ration. The 

PC1 represented a trade-off between productivity and carbon, while the PCA represented a 

trade-off between productivity and leaf toughness. An an extremely wet year, 2019 was clearly 

separated from 2018 and 2020 (Fig, 1.6a). Importantly, rainfall was positively related to leaf 

photosynthetic traits, leaf nitrogen, LMA, LS, water use efficiency whereas temperature was 

negatively related to these traits. Meanwhile, the temperature was positively related to leaf 

carbon traits Cm, C/N but rainfall was negatively related to these traits (Figure 1.6a). The 

species and genotypes loading of different years (Figure 1.6b, c, d) in the principal component 

analysis showed overlaps in the functional, structural, nutrient availability of both the species 

in 2019 (Figure 1.6c) and traits in this year were completely different from those of other years. 

However, there was a clear separation of species and genotypes in 2018 and 2020. In 2018 and 

2020, Vaccinium angustifolium was located more towards the centre and V. myrtilloides was 

located away from the centre but lied on the same side of the PCA (Figure, 1.6b, d). However, 

the pattern was not distinct in 2020 compared to 2018 as genotypes 2 and 7 in 2020 showed 

some overlaps near the centre. 

In the PCA analysis of leaf nutrient traits and other functional traits, rainfall, and temperature, 

PC1 explained 36.3% while PC2 explained 16.4% of the total variance (Figure 1.6e). The PC1 

was mainly positively associated with C/N and Cm, and negatively mainly with Nm. The PC2 
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was mainly positively associated with Aa, Am, and Chl, and negatively mainly with Fem and Pm. 

The loadings of different years leaf nutrient and functional traits in the same principal 

component clearly separated all three years; 2018 was associated with Cm, C/N, and several 

other traits, 2019 was associated with leaf photosynthetic traits, water use efficiency, rainfall, 

and several other leaf nutrient traits, whereas 2020 was associated with Fem, Pm and temperature 

showing distinct species trait availability in each year (Figure, 1.6e).  The two species in 2019 

showed more overlaps compared to 2018 and 2020. Also, V. angustifolium genotypes were 

located more towards the centre and V. myrtilloides were located away from the centre in 2018 

and 2020 (Figure, 1.6f).  

In the PCA analysis of leaf structural, functional traits, rainfall, and temperature, PC1 explained 

57.8% while PC2 explained 15.3% of the total variance (Figure 1.6g). The PC1 was mainly 

positively associated with SD and negatively mainly with Aa, Am, A/g. The PC2 was mainly 

positively associated with LMA and LS, and negatively mainly with temperature. The loadings 

of leaf structural, functional traits, rainfall, and temperature clearly separated 2019, a wet year 

from 2018 and 2020. Species and genotypes loadings of different years in the principal 

component also clearly separated genotype and species trait availability in each year where 

2018 was scattered mostly in the first quadrant between the structural trait, 2019 was scattered 

mostly in the second and third quadrants between the leaf photosynthetic traits, LMA and 

rainfall whereas, 2020 was mostly scattered in fourth quadrants and seems to be associated 

with temperature (Figure 1.6h, i, j).  The species and genotypes in 2018 and 2020 showed no 

overlaps, but in 2019 there were more overlaps between the genotypes of the two species 

(Figure 1.6h, i, j).   

In the PCA analysis of soil nutrients traits, the first axis explained 45.9% of the total variation 

and the second axis explained 13.3% of total variation (Figure 1.7). The PC1 was mainly 
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positively associated with soil N and P, and negatively mainly with soil Fe, soil acidity. The 

PC2 was mainly positively associated with soil PH, and S, and negatively mainly with B, CEC, 

OM. Interestingly, the PCA analysis of species loadings showed overlaps in the soil nutrient 

availability as both species were scattered between the first and second axis in the PCA (Figure 

1.7).  
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Figure 1.6 Principal Component Analysis (PCA) of mean values of the combination of leaf functional 

traits, leaf structural traits, leaf nutrient traits, and soil nutrient traits combined for 2018, 2019, 2020 

with years loading on the background (a) and with genotypes and species loadings on the background 

(b, c, d). PCA of leaf nutrients and leaf functional traits combined for 2018, 2019, 2020 with years 
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loading on the background (e) and species loadings on the background (f). PCA of leaf structural and 

leaf functional traits combined for 2018, 2019, 2020 with years loading on the background (g) and 

species loadings on the background (h, i, j). PCA of soil nutrients for 2018 with species and genotypes 

loadings on the background (k). Trait symbols are listed in supporting information in the table A1.4. 

Green triangles represent 2018, blue squares represent 2019, and purple circles represent 2020 on the 

background PCA. Red triangles represent V. angustifolium (Angustifolium), and blue square represents 

V. myrtilloides (Myrtilloides) where each species is labelled with their corresponding genotypes number 

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12). 

 

 

Figure 1.7 Principal Component Analysis (PCA) of mean values of the soil properties of the year 2018 

with species and genotypes loadings on the background (a). Red triangles represent V. angustifolium 

(Angustifolium), and blue squares represents V. myrtilloides (Myrtilloides) where each species is 

labelled with their corresponding genotypes number (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12). 

 

1.5 DISCUSSION 

Blueberries have previously been characterized by high inter-genotype variations in many 

biological traits, e.g., age, height, color and hue, phenology, and yield (Vander Kloet, 1978; 

Smagula et al., 1997).  Here I found a high variation in leaf structure and physiology. Most 

impressively, the blueberries showed higher intra-genotype variance plus error as compared to 

inter-genotype variance in the majority of leaf physiological, nutrient, and structural traits. 

Vaccinium angustifolium and V. myrtilloides species showed lower mean nutrient 

concentrations and mean gas exchange values than the Glopnet mean values but were similar 
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to that of Vaccinium species in Glopnet. Also, the LES relationships found in the Glopnet were 

not always present across genotypes in V. angustifolium and V. myrtilloides. The PCA analysis 

revealed the influence of environmental conditions in shifting functional traits across years, 

confirming the vital role of environmental conditions in shaping plant structure and function 

(Ballejo et al., 2018; Grassel et al., 2015; Wright 2002) over time. 

Trait variations exist at all spatiotemporal and organizational scales: within a species 

(Valladares et al., 2000; Takahashi et al., 2005; McGill et al., 2006; Rozendaal et al., 2006), 

and across species (Wright et al., 2001; Westoby et al., 2002). Our study revealed high intra-

genotype variations, within and across blueberry species. The LES relationships found in the 

Glopnet were not always present in our study across genotypes in two species in a farm setting, 

suggesting global LES relationships might not always be found at smaller scales such as a 

single field location, and with fewer species. Messier et al. (2016) suggested that global LES 

correlation might be absent or showing the opposite at local scales but is consistent across 

global scales (Wright et al., 2004; Albert et al., 2010a; Asner et al., 2014), which is similar to 

our findings. 

1.5.1 VARIATION IN LEAF FUNCTIONAL TRAITS AND COMPARISONS WITH 

GLOPNET SPECIES 

The large variations found in leaf structure, physiology, and nutrient content within and across 

blueberry species when compared to Glopnet species mean values suggest high physiological 

diversity among the blueberry species. Blueberry genotypes grow vegetatively by a slowly 

expanding underground network “rhizomes”, the distribution and genetic variation evident in 

millions of different lowbush wild blueberries may be because of the natural selection process 

that took place over a period perhaps millennia (Borns 2004; Drummond et al., 2009) or may 

be due to genetic drift over evolutionary timescales (Smith et al., 1985; Roff, 2000; McGuigan, 

2006; Gardner & Latta, 2007). The two species of wild blueberry, V. angustifolium and V. 
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myrtilloides examined at a single research farm varied strongly across years especially in traits 

known to shift with the change in environmental conditions like LMA, photosynthetic rate 

(Am), and nitrogen (Nm) concentration. Notably, V. angustifolium possessed higher and 

statistically different mean values of photosynthetic traits (Aa, Am, AP), LMA, Nm, and lower 

mean values of leaf size (LS), carbon (Cm), iron (Fem) and carbon nitrogen ratio (C/N) 

compared to V. myrtilloides species, suggesting that V. angustifolium invested larger proportion 

of its energy in photosynthetic machinery, and less in structural and stress tolerance traits. This 

strategy can result in a faster growth rate (Mathan et al., 2016), greater above-ground biomass 

(Thompson et al., 2017), sugar accumulation and yield increase  (Ainsworth and Long, 2005; 

Kooi et al., 2016), and increased abundance (Li et al., 2015). This could be the reason for the 

higher yield and abundance of V. angustifolium compared to V. myrtilloides in the field 

according to Drummond. (2019) and Drummond & Rowland (2020). In contrast, V. 

myrtilloides possessed significantly higher leaf size, Cm, C/N, and Fem (traits related to 

toughness and construction) and lower mean values of photosynthetic traits, suggesting a 

conservative strategy that a relatively larger part of the energy is invested in structural and 

stress tolerance. This could be the reason for having low productivity in V. myrtilloides as 

compared to V. angustifolium species (Minore et al., 1972; USDA Forest Service, 2020). This 

pattern suggests differentiated resource use between these two species, which may minimize 

competition between them and promote co-existence in the community (Pastore et al., 2021). 

However, the mean value of C/N was greater in V. angustifolium than in V. myrtilloides in 

2017, a drought year, which could be the effect of drought in trait development and the high 

plasticity of V. angustifolium. Environmental conditions are an important factor in the trait 

development (Tardieu et al., 2013; Jung et al., 2010; Paine et al., 2011; Enquist et al., 2015). 

Interestingly, V. myrtilloides tend to show significantly higher intra-genotype variation, which 

was higher than inter-genotype variations in all years. Although V. angustifolium had higher 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5550704/#B2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5550704/#B104
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intra- genotype or inter stem variation in most of the years, this species only showed 

significantly higher intra-genotype variation than inter-genotype variations in one of the years. 

According to Albert et al. (2010b), intra-genotype variations reflect environmental 

heterogeneity rather than being driven by genetic factors. This pattern of higher intra-genotype 

or inter stem plus error variation than inter-genotype variations in both the studied species 

suggests that species are affected by the environment in idiosyncratic ways (Hultine & Marshall 

2000), meaning that each species is uniquely affected by environmental conditions. Some of 

the micro-environmental factors like soil (pH, organic matter content, texture), disturbance 

(fire, and mowing), and competition (weeds) (Albert et al., 2010) might have also played a 

significant role in shaping traits at the individual level in this semi-natural agricultural system. 

Also, ecologists increasingly appreciate that within-species variation can have greater 

consequences for community dynamics and structure (Bolnick et al. 2003; Clark et al. 2004; 

Clark, 2005) than the interspecies variation. 

1.5.2 TRAIT RELATIONSHIPS IN WILD BLUEBERRIES WITH RESPECT TO THE 

GLOBAL LEAF ECONOMIC SPECTRUM 

The relationships of fundamental leaf functional traits previously reported in the global leaf 

economic spectrum (Field & Mooney, 1986; Reich et al., 1997; Wright et al., 2004) do not 

always hold in wild blueberries. A large variation in LES associated traits at local scales have 

been found in studies of several grass, herb, shrub, and tree species including those of V. 

myrtilloides (Albert et al. 2010), and tropical forest species (Hulshof and Swenson 2010). 

Another study on trees by Messier et al. (2016) revealed that LES relationships at smaller scales 

(site, species, individual) might not be present compared to the LES at the global scale. This 

difference in LES trait relationships between local scales and the global scales could be because 

of a shift in the dominant drivers of phenotypic integration, and that the locally dominant driver 

of phenotypic integration (biophysical constraints, genetic constraints, environmental filtering) 
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favors distinct traits and relationships from those observed globally (Messier et al., 2017). Also, 

different selective pressures might dominate at different scales, particularly within species 

versus across species (Albert et al., 2010b; Messier et al., 2010; Kichenin et al., 2013), and 

different traits have different sensitivities to such pressures (Messier et al., 2016) leading to 

distinct trait relationships at local scales. 

Notably, the relationship of Nm and LMA was only found within V. myrtilloides in one of the 

crop years but was absent within V. angustifolium and across species. The relationship between 

Am and Nm was also absent within both species in all the years but was found across species in 

one crop year. Reich et al. (1999) analyzed the data from six study sites and found out that the 

relationships between Am and Nm could be absent within species, similar to our findings in 

which Am and Nm relationships were absent within species. The absence of Am and Nm could 

also be due to significantly lower nitrogen of blueberry species than the Glopnet species mean 

values (Table 1.1), resulting in a relatively narrow range in Nm. However, the presence of Am 

and Nm relationship across genotypes of both species supports its universal application and the 

direct causal relationship between Nm and Am (Field & Mooney, 1986). Interestingly, the 

relationship between Am and LMA was present across species and within V. angustifolium in 

both prune years but was absent in crop years. Also, within the V. myrtilloides, the Am vs LMA 

relationship was only present in one year. The presence of Am and LMA relationships across 

species and within V. angustifolium species in both the prune years could be because of the 

energy allocation pattern in the vegetative growth phase. V. angustifolium and V. myrtilloides 

had higher LMA values in both the prune years compared to crop years thus it is evident that 

blueberry species spent more energy in building leaf structure traits (LMA). The absence of 

the Am and LMA relationship in crop years (reproductive phase) could be due to the 

confounding effect of investment in reproduction. The variable environmental conditions 

across years may also affect the LES trait relationships (Ordonez et al., 2009; Messier, McGill 
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& Lechowicz, 2010; Sandel et al., 2010). Gerdol (2005) showed that two related species from 

the same growth form (deciduous dwarf shrubs, V. myrtillus and V. uliginosum) can have very 

different growth performance and nutrient concentrations along environmental gradients. From 

variance partition analysis I have observed significantly higher intra-genotype - variance plus 

error compared to inter-genotype variance in all of the years in V. myrtilloides and in one of 

the years in V. angustifolium.  

In addition to the relationships among LMA, Am, and Nm, I found relationships of Am with Cm, 

Chlm, C/N, and LMA with Chlm, Fem, and photosynthetic nutrient use efficiency (AN and AP), 

but the relationships were not always found across all years. Some relationships, e.g., between 

photosynthetic traits (Am, AN, AP) and LMA across species were found in both prune years but 

absent in both crop years. In contrast, I found a strong relationship between Am and Nm as well 

as between Cm, and C/N across species in one of the crop years (2018) and the relationship of 

Chlm with Nm within V. angustifolium in one of the crop years (2020). This shows how the 

difference in dominant factors shape functional traits in crop and prune years. It is likely that 

blueberries species spend less energy on leaf toughness, structure, and construction traits like 

Cm and C/N. Overall, several trait relationships studied in blueberry species showed differences 

among years. 

1.5.3 TRAIT RELATIONSHIP OF LEAF MASS PER AREA AND LEAF SIZE ACROSS 

YEARS. 

The functional traits of one year cannot be used to predict the traits in other years. The 

relationship of LMA and LS across years showed variation in crop or prune year which could 

be related to differences in energy allocation between crop and prune years, as well as changes 

in environmental conditions across years. There was a significant and positive relationship of 

LMA between crop years, but the relationship was absent between the prune years. The absence 

of the relationship in the prune years could be due to the completely different environmental 



33 

conditions prevalent in prune years as one being a dry year and another being an extremely wet 

year. Similarly, there were LMA trait relationships in one crop cycle (between 2019 and 2020), 

that were absent in another crop cycle (between 2017 and 2018). This also could be an effect 

of variable environmental conditions prevalent in a given year, as each year was unique in 

terms of variable environmental conditions. I also did not find LS trait relationships in crop 

cycles and prune years. Thus, the trait values measured in one year cannot be used to predict 

the performance of these species in the other years. These species might not necessarily have 

the same energy allocation patterns, and different genotypes may show different responses to 

environmental changes.  

1.5.4 ENVIRONMENTAL INFLUENCE, COEXISTENCE OF TWO BLUEBERRY 

SPECIES 

The PCA analysis overall demonstrated a strong influence of environmental conditions on trait 

variations, and the differentiated response of two co-occurring species to changing 

environmental conditions. The PCA of all traits for all the years showed that traits in the 

extremely wet year 2019 were completely different and were located on a different side of the 

PCA compared to species in 2018 and 2020, which were located on the same side of the PCA 

(Figure 1.6a). The PCA for leaf structure and physiological traits was consistent with the above 

pattern but the PCA for leaf nutrient and physiological traits separated all three years from one 

another on completely different sides of PCA (Figure 1.6e). Changing environmental 

conditions may be acting as a filtering effect in shaping the community composition of these 

two species, and different species have advantages in different years and environmental 

conditions. High rainfall resulted in high leaf physiological, nutrient, and structural traits in an 

extremely wet year (2019), whereas the relatively dry conditions of 2018 and 2020 resulted in 

traits related to high leaf toughness, low leaf nutrients and plant morphological traits (Figure 

1.6a). The PCA analysis of leaf structural and physiological traits (Figure 1.6g) was consistent 



34 

with the above pattern and showed traits and year 2019 on the completely different side of the 

PCA as compared to traits and year 2018 and 2020 position on the PCA.  

The selection of different functional traits under changing environmental conditions became 

clearer when PCA was plotted for the leaf physiological and nutrient traits (Figure 1.6e). The 

PCA analysis showed that, every year was unique in that species occupied the first quadrant in 

2018, fourth quadrant in 2020 and second and third quadrants in 2019. The adaptations 

observed in our study could be due to phenotypic plasticity, as it has been shown that species 

can respond to changing environmental conditions through phenotypic plasticity (Pelletier et 

al., 2018; Hendry et al., 2016). This similarly relates Shi et al. (2018), who mentioned that 

changing environmental conditions act as a strong environmental filter that constrains the 

number of successful trait combinations and leads to community-level trait convergence 

(Bruelheide et al., 2018). As a result, co-occurring species in a given habitat exhibit similar 

ecological strategies and share similar traits (Cornwell et al., 2006), leading to trait 

convergence in co-occurring species and shaping community structure (Lavorel & Garnier, 

2002; Lebrija-Trejos et al., 2010). 

Importantly, I also revealed some mechanisms for the coexistence of these two species. There 

were few or no overlaps between the two species (Figure 1.6b, d, f, j, l) in 2018 and 2020 across 

all PCA, whereas there were clear overlaps between the species (Figure 1.6c, f, k) in the 

extremely wet year 2019. According to the modern coexistence theory species may coexist if 

they have differentiated resource use and thus might not significantly interact, or they can 

coexist with partially overlapping resource use if they are nearly equivalent in their average 

competitive abilities (Pastore et al., 2021). These two species exhibited significant differences 

in mean leaf physiological, nutrient, and structural traits in 2018 and 2020, but they were not 

significantly different in 2019. Thus, each species has its differentiated traits and resource use 
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in the community. In contrast, the PCA for 2019 revealed notable overlap suggesting wet 

conditions may weaken the advantages of V. angustifolium. Thus, the separation of niches 

could be in the temporal scales. Hubbell (2021) suggested that if species have close-to-equal 

performance in the same environment, species can coexist for extended periods of time.  

The overlaps in the genotypes of both the species in 2019 suggest that the particularly wet 

conditions allowed for the equal performance of both species resulting in increased 

competition. Positive environmental effects can increase species competition (Chesson et al., 

2000), which could explain the partial overlaps in the genotypes of different species in the PCA 

for 2019. High rainfall can increase species competition by creating opportunities for species 

by improving soil moisture availability or creating nutrient diversity and contributing to species 

fitness to shape community composition (Kimball et al., 2012). In contrast, negative 

environmental effects like higher temperatures decrease species competition by limiting 

opportunities for species through increased evapotranspiration, disrupting photosynthesis, 

decreasing soil moisture (Berry & Bjorkman 1980; Goyal 2004), jeopardizing the species 

fitness in the community. Therefore, the pattern of species overlaps or lack of overlaps 

according to changing environmental conditions in the PCA reflects the species coexistence 

and competition of blueberry species. Overall, the temporal dynamics of environmental 

variation play an important role in shaping species coexistence and competition as well as trait 

convergence and community composition. 

Interestingly, I also observed mixed patterns in the soil properties as both species were scattered 

along both the axis in the PCA. From the soil nutrients PCA, both species seem to be more 

abundant in locations with high soil acidity, low pH, and high boron content, which are typical 

characteristics of the blueberry plants that thrive in acidic soil conditions (Bell et al., 2009; 

Smagula, 1993). Fujita et al. (2013) mentioned that the availability of soil nutrients is one of 
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the main factors in determining the species composition of plant communities, because each 

species is evolved to adapt to certain environments and therefore has contrasting availability 

for nutrients (Fujita et al., 2013). Overall, these two species shared soil nutrient preferences, 

indicated by overlaps in the PCA. V. myrtiloides tend to occupy locations with more extreme 

soil conditions, and both species showed high variation among genotypes. Thus, spatial 

heterogeneity in soil properties might not be the driving force for species coexistence. Rather, 

differentiation in water and nutrient use, and variable environmental conditions across temporal 

scales could be more important factors in shaping the pattern of coexistence.  

1.6 CONCLUSION 

This study quantified the structural and physiological diversity of wild blueberries in a semi-

natural agricultural system, which helped us understand both inter-genotype and intra-genotype 

variations. Further, the study provides evidence that general global leaf economic spectrum 

relationships are not always consistent with those observed globally at local scales within a 

farm across genotypes within the species. Importantly, changing environmental conditions act 

as a strong filter for shaping trait combinations. Additionally, I found overlaps in the soil 

nutrient traits of both species but a clear differentiation in water and nutrient use, which play 

vital roles in shaping coexistence and community composition. Our findings provide insights 

on wild blueberry diversity, coexistence, and how changing environmental conditions shape 

functional traits. This information can be important for the prediction of the community 

composition of these species especially in the face of rapidly changing environmental 

conditions. 
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CHAPTER 2: RESPONSES OF WILD AND HIGHBUSH BLUEBERRIES TO 

EXTREME DROUGHT: THRESHOLD OF COORDINATED DECLINES IN 

PHYSIOLOGICAL PROCESSES AND BRANCH DIEBACK 

2.1 ABSTRACT 

Although previous studies suggested that blueberry plants can resist drought, we lack a 

mechanistic understanding of the thresholds for irreversible declines in physiological function 

and plant dieback. How different population- varieties of blueberries respond to extreme 

drought is also not well-studied. As the frequency and severity of drought are increasing at an 

alarming rate in many places including North-eastern (NE) US, there is an increasing need to 

understand how different population- varieties of blueberries respond, and how different 

physiological processes respond to extreme drought conditions. Therefore, in this study, I 

investigated different physiological processes including turgor loss, stomatal conductance, 

photosynthesis rate, transpiration rate, photochemistry, and plant hydraulics in four different 

population- varieties of blueberries (two lowbush populations and two highbush varieties) 

native to NE US. The two lowbush populations (Ang 1 and Ang 2) and two highbush varieties 

(Bluecrop and Patriot) showed a coordinated response of all the physiological processes 

including stomatal conductance, photosynthesis rate, transpiration rate, photochemistry, and 

plant hydraulic systems under declining stem water potential (Ψstem; a measure of water status 

and xylem tension within the plant) and soil moisture conditions. Notably, all the studied 

population- varieties reduced their stomatal conductance to the minimum levels before the 

turgor loss point of nearly -2.0MPa and after turgor loss point there was a progressive decline 

of Fv/Fm along with the declining midday Ψstem and soil moisture conditions until plants 

experienced extreme drought at midday Ψstem of -4.0MPa to -4.5MPa and soil moisture of less 

than 5%. Importantly, Fv/Fm was unaffected before the turgor loss point but as soon as all the 

population- varieties reached turgor loss point of -2.0MPa, there was a quicker decline of the 
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maximum quantum efficiency of PSII (Fv/Fm) in Ang 2 and Patriot compared to Ang 1 and 

Bluecrop. Ang 1 and Patriot showed 100% loss of hydraulic conductivity (PLC), while the Ang 

2 and Bluecrop reached 87% and 83% at the end of the 4-week-long drought. Ang 1 and Ang 

2 populations had high regrowth of new stems from their underground rhizomes in the 

following season, indicating the resilience of these populations. Interestingly, all of the plant 

groups showed high branch mortality under Ψstem as low as -4.0MPa to -4.5 MPa indicating 

that these population- varieties were vulnerable to extreme drought. The results of this study 

not only allowed us to understand the drought response of these population- varieties but also 

allowed us to understand that the turgor loss point is a threshold beyond which declines in 

photochemistry, leaf shedding, hydraulic failure and plant mortality occurred, leaving some 

plants beyond recovery.  
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2.2 INTRODUCTION 

Global climate change is increasing the likelihood of heatwaves, warmer temperatures, and 

drought that can have negative consequences to the plants (Eisenach, 2019). Drought is one of 

the most prevalent environmental factors that can lead to decreased gross primary productivity, 

carbon storage (Allen et al., 2010, McDowell and Allen 2015, D’Orangeville et al., 2018), and 

even lead to plant death (Allen et al., 2010) under extreme conditions. Maine has already 

experienced several incidences of drought between 1900 and 2000, but the occurrence during 

2002 and 2003 was notably severe and had a substantial impact on the state of Maine (Maine’s 

Climate Future, 2020). During this period, approximately 17000 private wells dried, most 

major surface-water reservoirs released water at levels below their regulatory minimum flows, 

instream flows for aquatic life were reduced, critical summer irrigation was limited and farmers 

in Maine lost more than 32 million dollars in crops (Lombard, 2004). Some wild blueberry 

growers recorded crop losses of 80 to 100 percent according to a Maine Department of Agricul-

ture water-use survey to which 28 percent of Maine farmers responded (Maine Agricultural 

Water Management Advisory Committee, 2003). More recently, Maine experienced moderate 

to severe drought recently in both 2016 and 2020 (NOAA, 2020). As the climate warms, future 

droughts and periods of limited moisture are likely to worsen, with higher temperatures 

favoring increased drying as the average annual atmospheric temperature is expected to 

increase by 2 to 6oC in Maine by 2100 (Jacobson et al., 2009). Climate models have predicted 

increased severity of both short- and long-term drought and extreme heatwave events that are 

expected to increase in frequency by two to three times (Wake et al., 2014) under the ongoing 

changes in global climate scenarios (IPCC 2007; Walter et al., 2011; Coumou & Rahmstorf 

2012; Coumou et al., 2013; IPCC, 2013; Perkins-Kirkpatrick et al., 2017). Importantly, many 

plant species, including blueberries, may lack the adaptations necessary to withstand expected 

future drought conditions (Lienard et al., 2016). As the likelihood of extreme drought events is 
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expected to increase in frequency, there is a need to study the drought response in blueberries 

and the threshold for causing severe damage to them. The information derived from studying 

drought response in blueberries can help predict their responses to future drought, and lead to 

the development of more informed mitigation strategies for farmers. 

Identifying the threshold for declines in a physiological process during dehydration is critical 

for understanding and predicting plant response to drought (Anderegg et al., 2017). Under mild 

drought conditions, some plants adjust stomatal conductance to avoid low water potentials 

(Sperry at al., 2016). As drought stress becomes more severe, plants are no longer able to 

maintain the balance between water loss and uptake, and as a result, turgor loss and xylem 

cavitation take place (Mingeau et al., 2000).  As the drought stress becomes more severe, it is 

increasingly difficult for the plant to avoid dehydration. This results in substantial damage to 

the photochemical apparatus, and high levels of xylem embolism (Hoffmann et al., 2011) , and 

almost complete canopy loss, which often leaves the plants beyond recovery (Gauthey et al., 

2021). Notably, a field study by Glass et al. (2005) using rainfall protectant shelters suggested 

that blueberry plants were able to maintain turgor and other physiological processes without 

affecting photosynthesis rate when they were exposed to a stem water potential of as low as -

2.5 MPa. Although -2.5MPa stem water potential causes drought stress and turgor loss in many 

other crop species (Kaufmann and Levy, 1976; Smart 1974; West and Gaff 1976), blueberries 

in the study by Glass et al. (2005) were unaffected at this stem water potential. However, 

studies conducted by Ameglio et al. (2000) and Mingeau et al. (2000) on the most popularly 

cultivated highbush blueberry cultivar ‘Bluecrop’ found that under drought stress the plants 

reacted quickly by decreasing transpiration and stomatal conductance. In their study, as the 

drought progressed to severe conditions it resulted in stem cavitation or embolisms in the xylem 

vessels with cavitation threshold or P12 (xylem water potential causing 12% loss of conductivity) 

reaching only at -1.2 MPa. Ameglio et al. (2000) also found that the efficiency of their stomatal 
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regulation protected the plant from both runaway embolism and shrub drying. Bluecrop plants 

in the drought experiment by Ameglio et al. (2000) also showed a good aptitude at recovery 

after rehydration. According to Xu et al. (2010), depending upon the duration and the intensity 

of drought, application of a watering pulse could acclimatize plants to episodic drought or 

watering pulses by abandoning older plant parts and renewing their younger plant parts, and 

by promoting re-allocation of biomass especially starch into roots. However, whether or not 

the recovery process occurs in blueberry species and at what water potential values the drop-

down of different physiological processes occur is not yet well understood.  

Plants may respond differently under declining soil moisture conditions. When plants 

experience low water availability in the soil, they exhibit different stomatal responses with 

variable strategies; some tend to close their stomata earlier than others under increasingly 

negative water potential conditions and some keep their stomata open. Some species that 

maintain plant water status at relatively safe levels via stringent stomatal control (Bartlett et 

al., 2016, Fu & Meinzer, 2018) may be vulnerable to carbon depletion, especially under chronic 

drought conditions, while species that maintain open stomata and allow water potentials to drop 

close to critical thresholds of xylem cavitation may be more vulnerable to desiccation and 

catastrophic hydraulic failure (Blackman et al., 2019). Similarly, a low (more negative) turgor 

loss point (TLP) can allow the leaf to remain turgid despite decreasing leaf water potentials 

and thereby maintain photosynthesis, water transport, transpiration, and growth, conferring 

high drought resistance as a mechanism of desiccation tolerance (Larcher et al., 2003., Tyree 

et al., 2003). A high (less negative) TLP may also promote drought resistance by leading to 

early stomatal closure, enabling plants to maintain high water potentials and hydration even 

under declining soil water status, reflecting a mechanism of desiccation avoidance (Tyree et 

al., 2003; Sun et al., 2020). Additionally, species or cultivars with higher hydraulic conductivity 

can have higher transpiration and photosynthesis but tend to be susceptible to drought-induced 
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hydraulic failure in accordance with the widely reported trade-off between hydraulic efficiency 

and cavitation resistance (Martínez-Vilalta et al., 2002; Tombesi et al., 2014). How blueberries 

respond to much lower water potential conditions and the strategies they use to respond to 

extreme drought conditions are not yet well understood.  

Blueberries are an important part of the agricultural industry in Maine which faces challenges 

such as increasing temperature anomalies and drought effects. Therefore, understanding how 

different population- varieties of blueberries will respond to future extreme drought conditions 

is an important consideration for the protection and management of an industry that carries a 

huge cultural significance. Importantly, most studies on drought in blueberries have focused 

on the exposure of these blueberry plants to medium level drought and studied effects on 

limited physiological processes (Ameglio et al., 2000; Percival et al., 2003; Glass et al., 2003; 

Glass et al., 2005). There is less knowledge on how extreme drought impacts other aspects of 

physiological processes, such as stomatal conductance, photosynthesis rate, transpiration rate, 

plant hydraulic conductance, turgor loss point, chlorophyll fluorescence, chlorophyll content, 

and leaf browning. Additionally, highbush blueberries may be more vulnerable to extreme 

drought conditions since they lack large rhizomatous growth and have larger vessels size and 

larger leaves to lose water through transpiration compared to lowbush blueberries. To 

investigate the response of different physiological processes to extreme drought conditions, I 

conducted a drought experiment to estimate the threshold of stem water potentials that would 

cause severe declines in high- and lowbush blueberries, in order to identify the potential 

differences in response to extreme drought. Our objectives were to 1) understand how extreme 

droughts would impact different population-varieties, and 2) quantify the threshold of stem 

water potential for declines in different physiological processes.  
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2.3 MATERIALS AND METHODS 

2.3.1 STUDY DESIGN AND PLANT MATERIALS 

To study the drought response of blueberry species native to NE US, I studied four blueberry 

population- varieties (Table 2.1), which I expected to have differences in drought response. A 

5.5m length, 3.0m width and 2.1m high rectangular-shaped rainfall exclusion house was 

constructed on the University of Maine campus in Orono, Maine in July 2019, in which 40 

individually irrigated plants were planted in individual 2-gallon buckets with seven 1-inch 

holes. For our study two populations of the wild blueberry species Vaccinium angustifolium 

(hereafter referred to as Ang 1 and Ang 2) and two varieties of cultivated highbush blueberry 

species Vaccinium corymbosum (hereafter referred to as Bluecrop and Patriot) were used. The 

plants were arranged in a randomized complete block design with five experimental blocks of 

eight plants each (40 plants in total; Figure 1.1A). Out of 40 plants from above mentioned 

population- varieties, 30 (10 each of Ang 1, Bluecrop, Patriot) of them were bought from the 

local nursery. The plants were imported from New Jersey by the nursery. The plants were then 

transplanted to a 2-gallon bucket that contained a potting mix of 4:2:1 ratio of peat: vermiculite: 

perlite (modification of Smagula, 1983). And 10 (Ang 2) of them were the field-grown 

population, which was dug to a 10cm depth from Blueberry Hill Farm, Jonesboro, Maine filled 

with soils and plants in a 2-gallon bucket. For the first year, these plants were allowed to grow 

in the open area without rainfall exclusion structure and experienced ambient rainfall and 

climatic conditions, and were each hand irrigated three times per week. I observed that some 

of our plants experienced winter damage at the tip of the stems due to extreme cold, but the 

rest of the plant parts had a good regrowth of new shoots, branches for our experiment. Plants 

that had high percentages of dead stems (approximately 90%) and few branches were excluded 

from our experiment (2 individually potted plants across all species).  

 



44 

Table 2.1: Study populations or variety, the species they belong to, their origin and the plants 

category as lowbush or highbush. 

Population- 

varieties 

Species Name Origin Lowbush/ 

Highbush 

Category 

Ang 1 Vaccinium angustifolium New Jersey Lowbush 

Ang 2 Vaccinium angustifolium Blueberry Hill Farm, Jonesboro Lowbush 

Bluecrop Vaccinium corymbosum New Jersey Highbush 

Patriot Vaccinium corymbosum New Jersey Highbush 

                 
Figure 2.1 a) Experimental layout of 5.5m × 3.0m × 2.1m rainfall exclusion house. 40 plants were 

arranged in 5 blocks in a randomized complete block design (RCBD), with each population- varieties 

and treatment combination appearing once per block, for a total of 5 replicates per population- varieties 

and treatment combination. b) One experimental block of saplings in August 2020. c) Rainfall 

exclusion house in July 2020 after construction. 
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2.3.2 EXPERIMENTAL TREATMENT 

To understand the drought response of four blueberry population- varieties, I withheld water 

from them for one month (four weeks). The plants were arranged in a randomized complete 

block design with 5 experimental blocks, two treatments (control and drought) where four 

population- varieties were assigned in each block with each treatment combinations (Figure 

2.1a). Each experimental block (Figure 2.1b) contained all four population- varieties and two 

individuals of each species, such that each block only had one individual replicate of each 

unique population- varieties and treatment combination. Population- varieties and treatment 

combinations were randomly arranged within each block. Blocking was done by size class to 

reduce the impact of natural variation in the initial sizes of plants. The experiment consisted 

of control plants, which were watered thrice per week. Drought-treated plants were allowed to 

dehydrate gradually by withholding water. To block the rainfall and impose the drought, a 

polyvinyl greenhouse covering was installed over the structure in 2020, and sides were covered 

by a black muslin cloth throughout the experiment that facilitated air circulation, and limited 

heating (Figure 2.1c). Weeds growing in containers with plants were removed weekly by 

cutting at the soil surface. The variation in temperature and relative humidity of the 

experimental site was recorded every 10 minutes with two weather station sensors ATMOS 14 

(METER Group Inc. USA) connected to ZL6 data loggers (METER Group Inc. USA) that 

were placed on two different sides inside the rainfall exclusion structure throughout the 

experiment. Soil moisture (volumetric water content; VWC) was measured at every two days 

in each container using a soil moisture meter with 10 cm probes (TDR 150 Soil Moisture 

Sensor, Spectrum Technologies Inc., IL, USA) inserted at the soil surface.  

In this study, I took measurements before, during, and after the drought treatment. Before the 

drought phase, data were recorded before 21 July at the peak of the growing season (hereafter 
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referred to as day -5), during the drought phase, data were recorded from 22 July (hereafter 

referred to as day 0) and after drought or at rehydration phase, data were recorded for mortality 

rate, regrowth of new stems and branches. Physiological changes were recorded at every one- 

or two-days interval starting from the first day of water withholding (day 0) to until plants 

experienced extreme drought conditions at day 31. Chlorophyll content was measured once 

per week for all the plant samples throughout the experiment using a SPAD- 502 chlorophyll 

meter (Konica-Minolta, Japan). All other destructive (predawn water potential; predawn Ψstem, 

midday stem water potential; midday Ψstem) and non-destructive (midday photosynthesis rate; 

Amidday, maximum and midday stomatal conductance (gs); max gs and midday gs, Fv/Fm, soil 

moisture, phenology; leaf browning and leaf drop) measurements were measured at every one- 

or two-days throughout the experiment. 

2.3.3 PRESSURE-VOLUME ANALYSIS 

Pressure volume analysis was carried out before the start of the drought experiment for 6 

samples per population- varieties. A small section of the terminal branch was enclosed inside 

a zip bag covered with aluminium foils the evening before the measurement day. Later the 

enclosed samples were cut in the early morning and the samples were taken 30-45 minutes 

after watering to obtain less negative leaf water potentials for initial measurements. Samples 

were transported to the laboratory within 10 minutes for measurement. The water potential of 

the leaf was measured using a pressure chamber (Model 1505D; PMS Instrument Company, 

Corvallis, OR USA) and weight was measured using a high precision analytical balance 

(RADWAG X2 PLUS, NE, USA). This process was repeated over time until at least eight 

points were obtained beyond the point at which zero turgor was detected. The leaf area of the 

sample was measured by a leaf area meter (LI-3100; Li-Cor Biosciences, Lincoln, NE, USA) 

and samples were oven-dried at 65 °C for 72 h. Pressure–volume curves were established by 
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plotting the inverse of leaf water potential (−1/Ψ) of each sample vs relative water content. 

From the pressure–volume curve, leaf water potential at turgor loss point (Ψtlp), and modulus 

of elasticity (ɛ) were calculated according to methods described by Bartlett et al., 2012. 

2.3.4 SOIL MOISTURE CONTENT (%)  

Soil moisture content was measured at midday for all the samples at the same time when plants 

were measured for leaf gas exchange and midday Ψstem. A TDR 150 (Spectrum Technologies 

Inc., IL, USA) soil moisture sensor was used for the measurement of soil relative water content 

and soil temperature.  

2.3.5 ΨSTEM AND CANOPY LEAF DEATH 

Stem water potential (Ψstem) was measured at predawn (predawn Ψstem) and at midday (midday 

Ψstem) by cutting three leaves of each population- varieties selected randomly from each control 

and drought treated plants totaling 24 samples from five blocks at each sampling effort. 

Samples for the predawn Ψstem were collected at least one hour before the first light (3:30 AM 

- 5:30 AM) using a fresh razor blade, placed inside a cooler, and were immediately transported 

to the laboratory for water potential measurements using a pressure chamber (Model 1505D; 

PMS Instrument Company, Corvallis, OR USA). The samples for the midday Ψstem were 

measured using a non-transpiring leaf covered with a Ziplock bag that was wrapped with an 

aluminium foil and allowed to stabilize for 45 minutes to produce a non-transpiring leaf before 

being collected from 12:30 pm to 2:30 pm (Begg & Turner 1970; Nardini, Tyree & Salleo 

2001; Sack, Cowan & Holbrook 2003; Bucci et al. 2004). Samples for the midday Ψstem were 

again cut using fresh razor blades, placed inside a cooler, and were immediately transported to 

the laboratory and then measured for water potential using the pressure chamber (Model 

1505D; PMS Instrument Company, Corvallis, OR USA). 
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I also monitored browning and canopy leaf shedding for all the plants during the drought 

experiment where the rating was based on the whole plant. On each date, we gave each plant a 

rating of 0 (All green) to 6 (No leaves) based on the proportion of leaf canopy that was dead or 

brown; 0= All green, 1= 0-24 %, 2= 25-49 %, 3= 50-74 %, 4= 75-99 %, 5= 100 % brown, and 

6= No leaves (Modified from Blackman et al., 2019).  

2.3.6 LEAF GAS EXCHANGE AND QUANTUM YIELD OF PSII (FV/FM)  

Daily maximum stomatal conductance (Max gs) was measured by an SC-1 leaf porometer 

(METER Group Inc. USA), starting from 10:00 am to 11:00 am whereas midday stomatal 

conductance (Midday gs) and midday photosynthetic rate (Amidday) was measured at 12:05 pm 

to 1:05 pm using LICOR-6800 (Li-Cor, Lincoln, NE, USA). The sampled plant used for the 

measurement of maximum gs was later used for the measurement of Amidday, midday gs and 

midday Ψstem. During the measurement of midday gs and Amidday, leaves were subjected to 10 

min of a constant light intensity with PPFD (photosynthetic flux density) at 1000 µmol m-2 s-1. 

The air flow was turned on but temperature, CO2 and H2O control was turned off as I used 

ambient conditions for these measurements. A buffer bottle was used to avoid any CO2 

contamination from our breathing while taking the measurement. All the photosynthetic 

parameters were expressed on a projected leaf area basis and were later converted to mass-

based dividing by Leaf mass per area (LMA).  

The maximum quantum yield of PSII (Fv/Fm) was measured using a portable leaf fluorescence 

meter FluorPen (FP 110, Drásov, Czech Republic) with a modulated light source of 0.2 μmol 

m-2 s-1 at 660 nm and a saturation pulse from a white light-emitting diode with an intensity of 

7700 μmol m-2 s-1 for a duration of 1.5 sec for all the control and drought-treated plants of all 

population- varieties. Measurements were performed on the adaxial surface at the middle part 

of the leaf blade, avoiding main veins for about 1.5 sec. Leaves were dark-adapted all night 
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and the measurement was done from 3:00 am to 3:45 am using a leaf clip to avoid the effects 

of nonphotochemical acute photoinhibition during measurements. The (Fv/Fm) was estimated 

as the ratio of variable to maximum fluorescence. Fv/Fm indicates the maximum efficiency at 

which light is absorbed by the PSII for reduction of the primary electron acceptor quinone 

molecule of PSII (Genty et al., 1989) and is used as an important indicator of drought resistance 

in plants. 

2.3.7 PERCENTAGE LOSS OF HYDRAULIC CONDUCTIVITY (PLC) AND PLANT 

HYDRAULIC CONDUCTANCE (KPLANT) 

Percentage loss of hydraulic conductivity (PLC) was measured for all the samples at the end 

of the drought experiment using single unbranched stem segments (Sperry et al., 1988; Lo 

Gullo & Salleo, 1991). Before cutting the samples for the hydraulic measurement, plants were 

watered early in the morning for 45 minutes, allowed them to uptake water and relax their water 

potential as the plants were under stress. To avoid possible artifacts of cutting under tensions I 

took a petri dish filled with water close to the ~3cm to 4.5cm long stem section and the stem 

was cut under water using fresh razor blades. The cut samples were then placed inside the 

cooler filled with water and were transported to the laboratory in submerged condition. During 

the measurement in the lab, the excised stem segment was submerged underwater, and 1 cm 

sections were trimmed from both segment ends with a fresh razor to eliminate potentially air-

filled conduit elements (Zimmerman, 1983). While still submerged, the proximal end of the 

stem section (~0.5 cm) was securely attached to a tubing and the water in the tubing was 

replaced by a 2 mmol KCL solution prepared with deionized degassed distilled water filtered 

at 0.22 μm. The stem section with the tubing was then attached to the hydraulic apparatus where 

the deionized distilled water was flowing from the pressure head or height of ~13 cm or 14 cm 

via stem section and to the balance for recording the flow rate. The flow rate was recorded 

using a BC Wedge software (V. 1.0, TAL Tech Inc. USA) that communicates with a high 
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precision (accurate to 0.01 mg) analytical balance (RADWAG X2 PLUS, NE, USA) and 

records the flow rate at every 2 sec intervals. Then, any embolism was removed by flushing 

the stem for 10 min at constant pressure (1.5 bar). Native and the maximum flow rate was 

calculated from the slope of initial and background and maximum and background. Finally, 

Percentage loss of conductivity (PLC) was calculated by:  

PLC =
Kmax−Knat

 Kmax   
  × 100% 

Where, Kmax is maximum hydraulic conductivity, Knat is native hydraulic conductivity and 

PLC is the percentage loss of hydraulic conductivity. All the plants from both the control and 

drought treatment were measured for PLC after which the plants were allowed to rehydrate. 

Similarly, plant hydraulic conductance (Kplant) was measured by the evaporative flux method 

(EF method) (Tsuda & Tyree, 2000), involving the measurement of steady state evaporative 

flux densities (E) and water potential of soil Ψ (Predawn Ψstem) and midday Ψstem (Midday 

Ψstem). E is assumed to be proportional to water potential difference:  

E= Kplant (Ψsoil − Ψstem) 

Where Kplant is the stem and root hydraulic conductance, and Ψsoil and Ψstem are water potential 

of soil and root boundary, respectively.  

2.3.8 MORTALITY AND RESPROUTING 

After the drought experiment was completed in 2020, plants were rehydrated and left outside 

to experience winter dormancy. Then I evaluated the mortality rate and resprouting of new 

stems based on individual and stem basis in June 2021, nine months after the termination of 

drought. On an individual basis, I first counted the number of pots with completely dead plants 

and pots with living plants to calculate the individual mortality rate. Plants with the living basal 

part that had growth of new leaf buds were also counted as living although the apical part was 
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dead. On a stem basis, I counted completely dead stems, completely new stems growth (new 

sprouts), and new branches growth in each pot and calculated both stem mortality rate, 

completely new stem regrowth rate, and new branches regrowth rate.  

2.3.9 STATISTICAL ANALYSIS 

To test the significant difference between plant height, stem diameter, leaf size, leaf mass per 

area of different population- varieties, I used one-way ANOVA. To determine the rate of 

change in soil moisture, predawn and midday Ψstem, Amidday, maximum and midday gs, Kplant, E, 

Fv/Fm, leaf browning, and leaf drop among population- varieties and treatments over the course 

of the experiment, the graph was plotted using the R package ‘ggplot 2’, ‘lubridate’ (Spinu et 

al. 2021), ‘dplyr’ (Wickham et al. 2018) with species and day of drought as covariates. I then 

fitted the relationship between soil moisture and stem water potentials (midday Ψstem or 

predawn Ψstem) using negative exponential models. To determine the pattern of Amidday, 

maximum and midday gs, Kplant, E, Fv/Fm, leaf browning and leaf drop among population- 

varieties and treatment as a function of predawn and midday Ψstem was plotted using the R 

package ‘ggplot 2’, ‘lubridate’ (Spinu et al. 2021), ‘dplyr’ (Wickham et al. 2018), ‘multcomp’ 

(Hothorn et al. 2021). Also, the turgor loss point line was fitted in the above-mentioned 

relationships using R v.4.0.3 (R core team 2021). To determine the difference in PLC, stem 

level mortality rate, individual-level mortality rate, stem level resprouting rate, individual-level 

resprouting rate, branch level regrowth rate, individual-level branch regrowth rate among the 

different population- varieties and treatment, a bar graph was plotted taking the mean of five 

samples and fitting error bars using R package ‘ggplot 2’. The graph of temperature and VPD 

with time was plotted in Excel taking the averages of an hourly record of the parameters. Data 

for all traits were taken averages from at least three data points for the standard error values 

that are in each graph.  
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2.4 RESULTS 

2.4.1 SOIL MOISTURE AND ΨSTEM DECLINE DURING DEHYDRATION 

During the first day of the drought (day 0) all the population- varieties had similar soil moisture 

content (30-40%) and midday stem water potentials (midday Ψstem; ~-1.0MPa) in both control 

and drought treatment (Figure 2.2a, 2.2b). As the drought progressed, population- varieties 

under the drought treatment appeared to drop both its soil moisture and midday Ψstem and 

reached ~0% and ~4.5MPa respectively by the day 31 of drought treatment (Figure 2.2a, 2.2b). 

From the soil moisture and day of experiment graph, Patriot and Ang 2 dropped their soil 

moisture quickly, while Bluecrop and Ang 1 lost their soil moisture relatively slowly. Although 

Patriot and Bluecrop are taller and thicker stem diameter variety as compared to smaller and 

thinner Ang 1 and Ang 2 populations (Table A2.3), Bluecrop lost its soil moisture later and 

Ang 2 lost earlier irrespective of their size difference. Also, Patriot reached ~0% soil moisture 

on day 21, when all others were still maintaining higher soil moisture (~3%) on this date 

(Figure 2.2a). At the end of the drought experiment on day 31, Ang 1 maintained the soil 

moisture at 0.8%, Ang 2 maintained at 0.78%, Bluecrop maintained at 0.84%, while Patriot 

was at 0%.  

Similarly, at the starting of the drought, all the population- varieties maintained high midday Ψstem 

at the range of -0.6MPa to -1.0MPa. On the last day of the drought treatment (day 31), midday 

Ψstem of Patriot and Ang 2 dropped to -4.5MPa and -4.06MPa, respectively, whereas Ang 1 and 

Bluecrop appeared to drop their midday Ψstem to -3.9MPa and -3.6MPa, respectively (Figure 

2.1a, 2.2b). Although Patriot and Ang 2 appear to drop their midday Ψstem quickly together with 

soil moisture compared to Bluecrop and Ang 1, Patriot lost its turgor together with Ang 2 and 

Bluecrop on day 21, respectively. And Ang 2 lost its turgor on day 17- 18, which was earlier 

than all others (Figure 2.2b). After the turgor loss, there were sharp drops in midday Ψstem 

across all population- varieties and reached midday Ψstem of nearly -4.5MPa at the end of the 

drought treatment. 
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Figure 2.2 Changes in soil moisture (%; a) midday stem water potential, midday Ψstem (MPa; b) as a 

function of the day of the experiment (DOE) recorded in the control treatment (blue dots and line) and 

the drought treatment (red triangle and line) of each population- varieties:  Ang 1, Ang 2, Bluecrop, and 

Patriot, during the course of the drought experiment. The blue dotted lines mentioned are the first day 

of the start of the drought experiment, represented by day 0, the intersection of black and brown dotted 

lines mentioned are the Turgor Loss Point, represented by TLP and light grey background bounded with 

dashed grey lines are the mean TLP ± SE values. Values are means ± SE for stem water potential (n = 

3) and soil moisture (n = 5).  

 

2.4.2 STEM WATER POTENTIALS (ΨSTEM) RESPONSE TO SOIL MOISTURE DURING 

DEHYDRATION  

Blueberry population- varieties under high soil moisture (30-40%) maintained high predawn 

Ψstem at the range of -0.19 and -0.5 MPa and midday Ψstem at the range of -0.6 and -1.0 MPa 

for all population- varieties (Figure 2.3a, 2.2b). As the soil moisture declined to 20%, the 

midday Ψstem and predawn Ψstem of blueberries population- varieties also started to drop to 

below -1.5 MPa and -1.0 MPa, respectively. Predawn and midday Ψstem of Ang 2 started to 

drop earlier and reached turgor loss point at only -1.66 MPa and at 7% soil moisture on day 

17-18 followed by Bluecrop, Patriot, and Ang 1 which reached turgor loss point at -1.90MPa, 

-1.98MPa and -1.99MPa respectively at less than 5% soil moisture on day 21 (Figure 2.3a, 

2.3b). Patriot lost its turgor later than Ang 2, and both recached -4.5MPa and -4.06MPa 
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midday Ψstem when soil moisture was 0% in Patriot and 0.08% in Ang 2 on day 31. The midday 

Ψstem of Bluecrop and Ang 1 declined relatively slower after turgor loss point compared to 

Patriot and Ang 2 and reached -3.6MPa and -3.9MPa at 0.8% soil moisture on day 31. The 

turgor loss points were reached when soil moisture was around 5% for all population- 

varieties. 

 

Figure 2.3 The midday stem water potential, midday Ψstem (MPa; a) and the predawn stem water 

potential, predawn Ψstem (MPa; b) as a function of soil moisture in the control treatment (blue dots) and 

drought treatment (red triangle) of each population- varieties: Ang 1, Ang 2, Bluecrop, and Patriot. 

Negative exponential models (solid black line) were fit for each study population- varieties mentioned 

above. The intersection of black and brown dotted lines mentioned are the Turgor Loss Point, 

represented by TLP and light grey background bounded with dashed grey lines are the mean TLP ± SE 

values. Values are means ± SE for midday and predawn Ψstem (n=3) and soil moisture (n = 5).  
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2.4.3 MINIMUM LOSS OF PHYSIOLOGICAL PROCESSES BEFORE TLP, THEIR 

PROGRESSIVE DECLINE AFTER TLP, AND THE ASSOCIATED WATER 

POTENTIALS AND SOIL MOISTURE 

Midday and maximum stomatal conductance (Midday gs, Max gs), midday photosynthesis rate 

(Amidday), transpiration rate (E), plant hydraulic conductance (Kplant) dropped to their minimum 

values before or during the occurrence of turgor loss (TLP) in all population- varieties of 

blueberries (Table 2.2). However, the photosynthetic efficiency of PS II (Fv/Fm) did not show 

declines at TLP for Ang 2, Bluecrop, Patriot but had started to decline for Ang 1 and reached 

0.7. Leaf browning in Ang 1 had already reached 60% at TLP (-1.99MPa). The decline in Fv/Fm 

and leaf browning of Ang 1, occurred on day 21 of drought treatment when midday Ψstem and 

soil moisture were -1.76MPa and 3.02%. Ang 2 lost its turgor earlier (day 17-18) than all other 

at -1.66MPa; leaf browning had reached 20%, soil moisture was 7%, midday Ψstem was only -

1.34MPa. After the turgor loss point, both Ang 1 and Ang 2 increased their leaf browning and 

leaf dropping progressively.  

Bluecrop and Patriot lost their turgor at -1.90MPa and -1.98MPa. When they lost their turgor 

on day 21, soil moisture had already reached 0% in Patriot and 2.66% in Bluecrop. However, 

Fv/Fm does not seem to be affected in both the varieties at TLP, but leaf browning had reached 

20% in Patriot and in Bluecrop browning had not started. Bluecrop and Patriot, after the TLP, 

increased their leaf browning and leaf dropping progressively. Thus, in all the blueberries 

population- varieties, after turgor loss point, Fv/Fm started to decline, while leaf browning and 

leaf dropping also started to increase rapidly. 
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Table 2.2 The minimum loss of midday stomatal conductance (Midday gs), maximum stomatal conductance (Max gs), midday photosynthesis rate (Amidday), 

transpiration rate (E), plant hydraulic conductance (Kplant), leaf browning (Leaf Br), photosynthetic efficiency of PS II (Fv/Fm) before the occurrence of Turgor 

Loss Point (TLP), TLP values and TLP± SE values, midday Ψstem of minimum loss of midday gs, Amidday, E, Fv/Fm, leaf browning before TLP, soil moisture and 

day of the drought treatment of minimum loss of midday gs, Amidday, E, Fv/Fm, leaf browning before TLP in each population- varieties: Ang 1, Ang 2, Bluecrop, 

and Patriot.  

Populatio

n- 

varieties 

Midday 

gs before 

TLP 

Max gs 

before 

TLP 

Amidday 

before 

TLP 

E before 

TLP 

Fv/Fm 

before 

TLP 

Kplant 

before TLP 

Leaf Br 

before 

TLP 

ΨTLP ΨTLP ±SE 

Ψstem of minimum 

midday gs, Amidday, 

E, Fv/Fm, leaf 

browning before 

TLP 

Soil 

moisture 

Drought 

Day 

Unit 
mmol 

m−2 s−1 

mmol 

m−2 s−1 

μmol CO2 

m−2 sec−1 

Mol 

m−2 sec−1 
 mmol H2O 

m2 MPa−1 
% MPa MPa MPa % day 

Ang 1 0.04 0.19 2.66 0.002 0.70 0.005 60% -1.99 -1.99± 0.099 -1.76 3.02% 21 

Ang 2 0.07 0.21 2.40 0.003 0.81 0.004 20% -1.66 -1.66± 0.031 -1.34 6.96% 17-18 

Bluecrop 0.03 0.33 1.26 0.001 0.82 0.001 0% -1.90 -1.9± 0.038 -1.91 2.66% 21 

Patriot 0.03 0.26 2.35 0.001 0.80 0.003 20% -1.98 -1.98± 0.105 -1.94 0% 21 
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2.4.4 STOMATA RESPONSE TO WATER POTENTIALS AND SOIL MOISTURE 

DURING DEHYDRATION  

Maximum and midday gs were highly sensitive to declining predawn and midday Ψstem and soil 

moisture. At high soil moisture (30-40%) and the midday Ψstem of nearly -1.0MPa, midday gs 

was at the high values of ~0.27 mmol m−2 s−1 for all populations or variety (Figure 2.4a). 

Midday gs appeared to decline linearly with the decline in midday Ψstem. By the time midday 

Ψstem had reached TLP (< 5% soil moisture), midday gs declined to the minimum values; 0.03 

mmol m−2 s−1 in Bluecrop and Patriot, 0.04 mmol m−2 s−1 and 0.07 mmol m−2 s−1 in Ang 1 and 

Ang 2 respectively (Figure 2.4a, c).  

Maximum gs also declined linearly with the decline in predawn Ψstem and soil moisture. At high 

soil moisture (30-40%) under the predawn Ψstem of nearly -0.5MPa, maximum gs was at the 

high values of ~0.37 mmol m−2 s−1 for Bluecrop, Patriot, and Ang 2 while maximum gs was 

~0.23 mmol m−2 s−1 for Ang 1 (Figure 2.4b). When predawn Ψstem reached the turgor loss point 

(< 5% soil moisture), maximum gs declined to the minimum values (0.33 mmol m−2 s−1 in 

Bluecrop and Patriot, 0.19 mmol m−2 s−1 and 0.26 mmol m−2 s−1 in Ang 1 and Ang 2 

respectively; Figure 2.4b, d).  
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Figure 2.4 The midday stomatal conductance, Midday gs (mol m−2 sec−1) as a function of midday stem 

water potential, midday Ψstem (MPa; a), maximum stomatal conductance, Max gs (mol m−2 sec−1)as a 

function of predawn water potential, Predawn Ψstem (MPa; b), and midday stomatal conductance, 

Midday gs (mol m−2 sec−1; c) and maximum stomatal conductance, Max gs (mol m−2 sec−1; d) as a 

function of soil moisture (%) in the control treatment (blue dots) and drought treatment (red triangle) 

of each population- varieties: Ang 1, Ang 2, Bluecrop, and Patriot. In (a) and (b), light grey background 

bounded with dashed grey lines represents mean TLP ± SE values and the brown solid lines in the 

middle are Turgor Loss Point, represented by TLP for the corresponding population- varieties. Values 

are means ± SE for midday and predawn gs, midday and predawn Ψstem (n=3) and soil moisture (n = 5).  
 

2.4.5 RESPONSE OF PLANT HYDRAULIC CONDUCTANCE TO DEHYDRATION 

Kplant was also very sensitive to the decline in midday Ψstem. With the decrease in midday Ψstem, 

Kplant reached minimum when midday Ψstem reached -1.3MPa for Ang 2, -1.76MPa for Ang 1, 
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and -1.9MPa for Bluecrop and Patriot, which were before the occurrence of TLP (Figure 2.5; 

A2.1d).  

 

Figure 2.5 Plant hydraulic conductance, Kplant (mmol H2O m2 MPa−1) as a function of midday stem 

water potential, midday Ψstem (MPa) in the control treatment (blue dots) and drought treatment (red 

triangle) of each population variety: Ang 1, Ang 2, Bluecrop, and Patriot. Light grey background 

bounded with dashed grey lines represents mean TLP± SE values and the brown solid lines in the middle 

are Turgor Loss Point, represented by TLP for the corresponding population- varieties. Values are 

means ± SE (n=3) for midday Ψstem and Kplant.  

 

2.4.6 RESPONSE OF PSII TO WATER POTENTIAL AND SOIL MOISTURE DURING 

DEHYDRATION 

Fv/Fm was not sensitive to declining midday Ψstem and soil moisture at the initial stage before 

TLP. At high soil moisture (30-40%) and before TLP, Fv/Fm was at the high values of 0.8 for 

all populations or variety (Figure 2.6a, b). At TLP, these populations still seemed to maintain 

high Fv/Fm values i.e., Ang 1 had 0.7 Fv/Fm and Bluecrop, Ang 2, Patriot had 0.8 Fv/Fm values 

(7% soil moisture on day 17-18). After TLP or the range of TLP, there was a progressive 

decline of Fv/Fm values across all population- varieties i.e., Patriot and Ang 2 reached 0.14 

Fv/Fm values at -4.5MPa midday Ψstem when soil moisture was less than 5%. But Blucerop and 
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Ang 1 reached Fv/Fm values of 0.4 at -4.0MPa midday Ψstem when soil moisture was less than 

5%.  

 

Figure 2.6 Maximum photochemical efficiency of PSII (Fv/Fm) as a function of midday stem water 

potential, midday Ψstem (MPa; a), and soil moisture (%; b) in the control treatment (blue dots) and 

drought treatment (red triangle) of each population- varieties; Ang 1, Ang 2, Bluecrop, and Patriot. 

Light grey background bounded with dashed grey lines represents mean TLP± SE values and the brown 

solid lines in the middle are Turgor Loss Point, represented by TLP for the corresponding population- 

varieties. Values are means ± SE for Fv/Fm (n = 5) and soil moisture and for midday Ψstem (n = 3).  

2.4.7 LEAF PHOTOSYNTHETIC RATE IN RELATION TO STOMATAL 

CONDUCTANCE DURING DEHYDRATION 

Amidday was significantly and positively related with midday gs in all the population- varieties 

(Figure 2.7). Thus, the decline in Amidday during the drought was closely related to declines in 

gs. 
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Figure 2.7 Midday photosynthesis rate, Amidday (μmol CO2 m−2 sec−1) as a function of midday stomatal 

conductance, Midday gs (mol m−2 sec−1) in the control treatment (blue dots) and drought treatment (red 

triangle) of each population- varieties: Ang 1, Ang 2, Bluecrop, and Patriot. Data are means ± SE (n=3). 

 
2.4.8 RESPONSE OF LEAF BROWNING TO WATER POTENTIALS DURING 

DEHYDRATION 

Leaf browning in Ang 1 and Ang 2 started early (day17- 18) at -1.5MPa midday Ψstem and 

reached 60% and 20% before TLP (Figure 2.8a, A2.3a). Leaf browning in Patriot appeared to 

start at -2.0 MPa midday Ψstem (day 21) which is close to TLP (-1.98 MPa). In Bluecrop, leaf 

browning did not occur before TLP until day 25 of the drought experiment (Figure 2.8a, A2.3a). 

However, after TLP, leaf browning seemed to increase rapidly in all the population- varieties 

and reached almost 100% in Ang 1, 75% in Ang 2 and Patriot, and 40% in Bluecrop at the end 

of the drought treatment (Figure 2.8a).   

Similarly, leaf dropping was also detected as midday Ψstem declined in all blueberry population- 

varieties. Ang 1 appeared to start leaf dropping at -1.7MPa midday Ψstem, which was before the 
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TLP. For Ang 2 and Patriot, leaf dropping did not occur before TLP until day 27 of the drought 

treatment and only occurred when midday Ψstem was -4.0MPa and -4.5MPa, respectively on 

day 30 of the drought treatment (Figure 2.8b, A2.3b). Bluecrop did not drop leaves even at the 

end of the drought treatment. 

 

Figure 2.8 Leaf browning as a function of midday stem water potential, midday Ψstem (MPa; a), and 

leaf dropping as a function of midday stem water potential, midday Ψstem (MPa; b), in the drought 

treatment (red triangle) of each population- varieties: Ang 1, Ang 2, Bluecrop, and Patriot. Light grey 

background bounded with dashed grey lines represents mean TLP ± SE values and the brown solid lines 

in the middle are Turgor Loss Point, represented by TLP for the corresponding population- varieties. 

Values are means ± SE for midday Ψstem (n=3) and n= variable number for leaf browning and leaf 

dropping depending upon the color change and leaf dropping pattern. Numbers on Y axis are the 

percentages for leaf browning and leaf dropping from 0% to 100% where 0= All green and 100% is all 

brown leaves. 

2.4.9 PLC, PLANT MORTALITY, AND REGROWTH DURING DEHYDRATION AND 

AFTER RECOVERY 

At the end of the drought treatment, PLC in Ang 1 and Patriot was close to 100%, which is 

higher than Ang 2 and Bluecrop that maintained PLC at 86.7% and 83.27%, respectively 

(Figure 2.9). Although Ang 1 and Patriot had high PLC, only Ang 1 had high individual 

mortality (40%) and stem mortality rate (60.1%). In contrast, Patriot had a high stem mortality 

rate (84.3%) and a low individual mortality rate (20%; Figure 2.10a, b). Bluecrop and Ang 2 
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showed an individual mortality rate of 20%. The stem mortality rate was 81% in Ang 2 and 

68.3% in Bluecrop (Figure 2.10a, b).  

Regrowth of new stem and branches in blueberries population- varieties were detected. 

Regrowth of new stems from rhizomes underneath the soil was found in Ang 1 and Ang 2, and 

regrowth of new branches in Patriot and Bluecrop occurred from the living parts of the stems. 

Ang 1 and Ang 2 showed 40% and 80% individual regrowth rate, and 10% and 11% stem 

regrowth rate (Figure 2.10c, d). Aside from the growth of completely new stems, Patriot and 

Bluecrop showed regrowth of completely new branches and showed 80% and 40% individual 

level branch regrowth rate and 15.5% and 10.2% branches regrowth rate respectively (Figure 

2.10e, f).  

                        

Figure 2.9 Percentage loss of hydraulic conductivity (PLC) of each population- varieties: Ang 1, Ang 

2, Bluecrop and Patriot at the end of the drought experiment. The blue bars represent control treatment 

and red bars represent drought treatment. Values are means ± SE (n=5) for PLC in both control and 

drought treatment.  
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Figure 2.10 Stem mortality rate (a), individual mortality rate (b), stem regrowth rate (c), individual 

level stem regrowth rate (d), branch regrowth rate (e), individual level branch regrowth rate (f) of each 

population- varieties: Ang 1, Ang 2, Bluecrop and Patriot at the end of the drought experiment. Red 

bars represent drought treatment across all graphs. The controls of all population- varieties are not 

plotted from as they never reported mortality rate and regrowth is taking place as a continuous process.  

Values are means ± SE (n = 5) traits.  

2.5 DISCUSSION 

Our study revealed quick declines in stomatal conductance, photosynthesis, and water loss 

before the turgor loss point (TLP), and the progressive decline of photochemistry, leaf 

browning, and leaf dropping after the TLP as Ψstem and soil moisture declined across all 

population- varieties of blueberries. Thus, TLP is a threshold for all population- varieties after 

which there was a progressive decline. The stomata of all population- varieties were very 

sensitive to declining Ψstem and soil moisture.  Interestingly, the leaf browning increased after 

TLP, which coincided with declines in Fv/Fm showing a coordinated response. Blueberry 

population- varieties showed 83 to 100% loss of hydraulic conductivity (PLC) and high 

mortality rates when Ψstem reached -3.6 to -4.5 MPa. However, these population- varieties 

showed high regrowth of new stems and branches. In addition, Ang 1 experienced 100% PLC, 
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and the highest mortality rate but demonstrated a high regrowth of new stems from the 

rhizomes post- drought. Our results provide important insight regarding blueberry response to 

extreme drought and drought-induced damages before and after TLP. This information is 

critical for understanding the response of blueberries to extreme drought conditions especially 

in preparation for a future in which drought events are expected to increase in frequency all 

over North-eastern US (Wake et al. 2014). 

2.5.1 TURGOR LOSS POINT AS A PROXY OF DROUGHT STRESS AND THRESHOLD 

FOR THE DECLINE OF DIFFERENT PHYSIOLOGICAL PROCESSES 

Maximum and midday gs, Amidday, E, and Kplant in the studied blueberry population- varieties 

were all sensitive to declines in Ψstem and reached minimum values before or at TLP. This 

demonstrates that all of them adopted a more drought-avoidance strategy to avoid water stress 

using sensitive stomatal control. The loss of leaf turgor pressure is recognized as the initial 

stage of leaf wilting, and that the loss of guard cell turgor is related to stomatal closure (Cowan, 

1977). The downregulation of stomatal conductance and several other physiological processes 

as well as turgor loss in blueberry population- varieties might serve as a protective mechanism 

against xylem cavitation or xylem embolism (Hochberg et al., 2017). Davies and Johnson 

(1982) reported a critical water potential of -2.2 MPa in Vaccinium ashei Reade (Rabbiteye 

blueberry) for stomatal closure, which is close to the TLP in our study. Also, leaf browning 

had already started in Ang 1 and Ang 2 populations at or around the range of TLP, suggesting 

high sensitivity of leaf tissues in Vaccinium angustifolium species to declines in water 

potentials. 

In contrast, leaf biochemistry indicated by Fv/Fm was not sensitive to drought at the initial 

stages or before the occurrence of TLP at -2.0MPa in Bluecrop, Patriot and Ang 2. Ang 1 

dropped its Fv/Fm slightly and reached 0.7, along with an increase of leaf browning to 60% at 

TLP. In Patriot and Ang 2, leaf browning reached 20% at TLP, while Bluecrop did not initiate 



66 

leaf browning at TLP. Thus, although a Ψstem of -2.0MPa indicates a lethal dose of water stress 

in many perennial crops such as grapes, citrus, apples (Smart, 1974; Kaufmann and Levy, 1976; 

West and Gaff, 1976), and some trees (Barigah et al., 2013), it is not the case in studied 

blueberry population- varieties. However, following TLP, there was a progressive and 

relatively fast decline in Fv/Fm, and a progressive increase of leaf browning and leaf dropping 

across all population- varieties. This shows the close coordination between Fv/Fm, leaf 

browning, and leaf shedding. The decline of physiological processes after TLP could be due to 

the disconnection of the stem from the soil and the formation of significant xylem embolism 

across blueberry population- varieties. This suggests that TLP is an important indicator of water 

stress in blueberries, beyond which can cause branch dieback and plant mortality. By the time 

midday Ψstem had reached -4.5MPa and soil moisture was less than 5%, all the physiological 

processes dropped to zero and all blueberry population- varieties showed high PLC (83% to 

100%) and mortality rates (20% to 40%).  Thus, these midday Ψstem and soil moisture values 

seemed enough to create extreme drought stress in blueberry plants.  

In previous research conducted by Glass et al. (2005), it was determined that wild blueberries 

exposed to midday Ψstem as low as -2.5 MPa were unaffected by this water potential and were 

able to maintain turgor and physiological process. They also found that the relationship 

between the midday Ψstem and the photosynthesis rate was absent, indicating that the 

photosynthesis rate was not limited by moisture supply. Considering the nature of the project, 

Glass et al., 2005 exposed the field-grown plants of size 3m × 3m to drought, while in this 

study potted plants (2.5gallon size and 15 cm deep) were exposed to drought. Differences 

between potted and field-growing plants could be part of the reason for observed differences. 

In the Glass et al. (2005) experiment, blueberries were able to maintain all the physiological 

processes at -2.5MPa, which could be due to overnight recharging of plant water and 

recharging through rainfall events of ≤50%. But blueberries in our experiment had no 
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probability of overnight recharging. Glass et al. (2005) also concluded that blueberries are 

drought resistant plants when exposed to lower midday Ψstem of -2.5MPa. Based on my 

finding’s blueberries can resist drought conditions up to the turgor loss point of -2.0MPa after 

which photochemistry showed a progressive decline. Our findings also revealed that when the 

midday Ψstem reached -4.5MPa and soil moisture was less than 5%, they showed a high 

percentage loss of conductivity and high mortality rates.  

Among the differences in drought response observed among population- varieties was that 

decline in predawn Ψstem and midday Ψstem was slower in Bluecrop and Ang 1, and occurred 

when soil moisture was less than 5%. But in Bluecrop, the decline of both Ψstem 3 days later 

compared to others as well as a decline of lower loss of hydraulic conductivity compared to all 

others, suggesting Bluecrop could be more drought resilient than other varieties. Further, the 

coordinated decline of physiological processes along with midday Ψstem after the TLP was 

quicker in Patriot and Ang 2 than in Ang 1 and Bluecrop. This pattern could be because Patriot 

and Ang 2 could be more vulnerable to embolism compared to Ang 1 and Bluecrop, supported 

by 100% PLC under extreme drought stress conditions in these two population-varieties. 

Patriot has a larger vessel size than all other varieties whose xylem might be more vulnerable 

to embolism. In research conducted by Ameglio et al. (2000) on the Bluecrop variety, they 

found that embolism increased rapidly below -1.2 MPa midday Ψstem, and that below -2.1 MPa, 

embolism was total. The findings of Ameglio et al. (2000) relate to ours in that most 

physiological processes dropped to lower values before the turgor loss point of nearly -2.0MPa 

midday Ψstem, and after turgor loss point there was a progressive decline in photochemistry. It 

is likely that embolism might have already occurred at TLP across all the blueberry population- 

varieties in our studies based on the findings of Ameglio et al. (2000).  
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2.5.2 HYDRAULIC SAFETY AND PRODUCTIVITY  

There could be a tradeoff between maximum productivity and hydraulic safety. Patriot showed 

higher plant hydraulic conductance to support higher maximum and midday gs, higher Amidday, 

and higher E, meanwhile it also showed higher PLC (100%).  In contrast, Bluecrop with 

intermediate maximum and midday gs, Amidday, E, and Kplant values experienced 83% loss of 

hydraulic conductivity, which was less than all others irrespective of its larger plant and stem 

size. However, Ang 1 with relatively low maximum and midday gs, E, Amidday and Kplant had 

100% loss of hydraulic conductivity. High PLC in Ang 1 could be a strategy to protect the 

rhizomes and roots by abandoning the aboveground parts. Also, leaf browning and leaf 

shedding could be mechanisms to avoid further water loss and to protect the rhizomes and 

roots. 

2.5.3 MORTALITY AND REGROWTH  

High PLC and branch dieback were detected at the end of the drought treatment, but some 

population- varieties were able to regrow new stems from their surviving parts showing high 

recovery capacity. Patriot experienced 100% PLC in terminal stems and had the highest stem 

mortality rate (84%), coupled with a low individual mortality rate (20%) and high regrowth of 

new branches (15.54% at branch level; 80% at the individual level). Regrowth and resprouting 

occurred from the living stems and rhizomes, whereas terminal branches remained dead. Aug 

2 with 87% PLC showed the highest stem mortality rate but had a lower individual mortality 

rate. Also, Ang 2 had the highest rate of resprouting of new stems at the individual level (80%) 

and had a high rate of regrowth of new stems (10%) at the stem level. Its rapid leaf browning, 

leaf shedding, and high stem dieback could potentially protect them from further water loss 

and prevent the depletion of carbohydrates in the rhizomes and roots (Moreira et al.,2012), 

which could be used for regrowth and resprouting in the following year, as found in other 

shrubs and some tree seedlings (Galvez et al.,2011; Barigah et al.,2013; Vilagrosa et al., 2014). 
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Ang 1 also showed rapid browning and leaf shedding, which could protect its stem by 

minimizing water loss. As the drought progressed to – 3.6 MPa of midday Ψstem, Ang 1 

reached 100% PLC with high stem and individual mortality, suggesting high vulnerability to 

embolism. However, it also displayed a high individual and stem regrowth rate (40% and 11%). 

In contrast, Bluecrop had very low browning percentages, did not show leaf drop, and 

maintained the lowest PLC (83%) with the lowest individual and stem mortality, suggesting 

that this variety could be highly resistant to drought-induced embolism. In contrast to Patriot, 

Bluecrop did not show high regrowth of new branches, due to a low mortality rate and the 

regrowth of new branches that was observed only in those stems whose basal stems parts were 

alive; the terminal branches remained dead. Despite high PLC and high mortality rate, high 

resprouting and regrowth in the following year could be a mechanism in shrub drought 

response (Zeppel et al., 2014). In angustifolium populations, almost 85% of the lowbush 

blueberry biomass exists as a shallow underground rhizome (Hall, 1957) providing an ability 

to recover through resprouting. The pots used limit the size of the rhizomes (Kramer, 1983), 

which could lead to lower resistance in studied Ang 1 and Ang 2 populations compared to 

plants in the field. 

2.6 CONCLUSIONS 

This study provides an examination of how stomatal, transpiration, photosynthetic, 

photochemistry, and plant hydraulic systems coordinated in the respond of blueberries to 

extreme drought. The results showed that the turgor loss point (TLP) is an important threshold 

for different physiological processes. Stomatal conductance, photosynthesis, and transpiration 

all reached the minimum before or at TLP. After TLP, the decline in stem water potential 

accelerated likely because of xylem embolism, which limited the supply of available water to 

stem and leaves. This resulted in declines in photochemistry (indicated by Fv/Fm), as well as 

accelerated leaf browning and leaf shedding after TLP. This study concludes that blueberry 
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plants could be resistant to the level of TLP at -2.0MPa, while lower levels of drought can 

result in significant damages, high leaf browning, and leaf shedding. When exposed to extreme 

drought of -4.5 MPa, they showed high PLC of 83 to 100% and high branch dieback. However, 

the blueberries had a high regrowth rate, and high resprouting rates of new stems from rhizomes 

were observed in Angustifolium populations. Replicating this experiment in the field and 

further study of the recovery processes would provide more insights into the drought response 

strategies of blueberries. I recommend that growers use the leaf turgor loss point as the critical 

water potential threshold, which should be avoided in the field to minimize tissue damage and 

branch mortality.  
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APPENDICES 

APPENDIX 1. 

Table A1.1 Blueberry species studied in Blueberry Hill Farm, Jonesboro, Maine (BBHF), the blueberry 

research station of the University of Maine. Nomenclature, distribution and native habitats were taken 

from Native Plant Trust Go Botany 

(https://gobotany.nativeplanttrust.org/species/vaccinium/angustifolium/ and 

https://gobotany.nativeplanttrust.org/species/vaccinium/myrtilloides/), The USDA Forest Service 

(https://www.fs.fed.us/database/feis/plants/shrub/vacang/all.html)  and (Rogers, 1974; Pritts and 

Hancock, 1984) and (Smith and William, 1966; Smith, D. 1969; Uttal and Leonard, 1987; Kloet et al., 

1981) 

Species Family Original distribution Native habitat 

V.angustifolium Ericaceae Northern Canadian tundra 

to the New England states, 

westward to Minnesota and 

southward to Virginia  

Alpine or subalpine zones, cliffs, 

balds, or ledges, grassland, 

meadows and fields, mountain 

summits and plateaus, ridges or 

ledges, woodlands 

V. myrtilloides Ericaceae Canada to British Columbia 

and the Northwest 

Territories, In eastern North 

America, it extends 

southward through the 

mountains of New England, 

New 

York, and Pennsylvania to 

West Virginia and Virginia  

Bogs, cliffs, balds, or ledges, fens, 

forests, meadows and fields, 

mountain summits and plateaus, 

ridges or ledges, woodlands 

  

  

https://gobotany.nativeplanttrust.org/species/vaccinium/angustifolium/
https://gobotany.nativeplanttrust.org/species/vaccinium/myrtilloides/
https://www.fs.fed.us/database/feis/plants/shrub/vacang/all.html
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Table A1.2 Percentile distribution of mean trait values of Vaccinium angustifolium and 

Vaccinium myrtilloides compared to the mean trait values of species in the Glopnet.  

 Aa Am AN AP Nm Pm LMA 

2020 % % % % % % % 

V. angustifolium 41.94 63.90 42.21 66.22 35.80 54.26 36.8 

V. myrtilloides 22.30 48.44 5.06 1.20 34.98 56.65 33.0 

2019        
V. angustifolium 87.27 79.09 67.27 87.23 36.09 56.65 57.70 

V. myrtilloides 85.70 79.87 73.12 100.0 35.81 53.06 53.75 

2018        

V. angustifolium 46.30 58.83 40.52 56.65 30.62 53.32 46.54 

V. myrtilloides 22.42 46.75 17.53 0.80 24.84 53.59 36.33 

2017        

V. angustifolium 26.91 33.64 1.43 0.00 31.78 57.71 50.34 

V. myrtilloides 17.45 25.32 0.65 0.00 35.27 54.26 57.05 
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Table A1.3 Variance explained by interspecific variation (Genotype), intraspecific variation (Stem+ Error) of functional traits and morphological 

traits of 2 blueberry species in Blueberry Hill Farm in Jonesboro, Maine. Trait observations are as listed below.  

2020 Source Aa Am Chl LMA PHt gs SD LS TLA LT WD 

V. angustifolium Genotype 63.64 61.15 35.83 35.89 53.14 71.25 17.05 45.85  28.92 0.50 

 Stem+ Error 36.36 38.85 64.17 64.11 46.86 28.75 82.95 54.15  71.08 99.50 

V. myrtilloides Genotype 43.04 29.29 53.66 50.88 64.77 19.51 25.92 6.44  12.07 14.49 

 Stem+ Error 56.96 70.71 46.34 49.12 35.23 80.49 74.08 93.56  87.93 85.51 

2019             

V. angustifolium Genotype 32.98 27.09 41.65 44.20 84.57 16.80 73.82 73.32  53.23 0.50 

 Stem+ Error 67.02 72.91 58.35 55.79 15.43 83.19 26.18 26.68  46.77 99.50 

V. myrtilloides Genotype 42.42 32.73 52.42 16.26 40.85 52.24 4.59 52.58  21.37 67.24 

 Stem+ Error 57.58 67.27 47.58 83.74 59.15 47.76 95.40 47.42  78.61 32.76 

2018             

V. angustifolium Genotype 35.22 15.86 66.5411 62.25 63.79 35.23 43.36 73.88 79.01   

 Stem+ Error 64.78 84.14 33.4589 37.75 36.20 64.77 56.64 26.12 20.99   

V. myrtilloides Genotype 10.81 26.85 58.7 27.79 15.48 3.73 43.46 36.65 43.92   

 Stem+ Error 89.19 73.15 41.3 72.21 84.52 96.27 56.54 63.35 56.08   
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Table A1.4 Traits, symbols, and units 

Trait Symbols Units 

Leaf Size LS 
 

Leaf mass per area  LMA g m-2 

Total leaf area TLA g m-2 

Stem height/ Plant height SH/PH cm 

Light-saturated CO2 assimilation per leaf area  Aa µmol m-2 s-1 

Maximum stomatal conductance gs mol m-2 s-1 

 Water use efficiency  Alg µmol mol-1 

Light-saturated CO2 assimilation per leaf dry mass  Am nmol g-1 s-1 

Light-saturated CO2 assimilation per nitrogen  AN µmol g-1 s-1 

Light-saturated CO2 assimilation per phosphate  AP µmol g-1 s-1 

Chlorophyll concentration per area Chl spad 

Nitrogen per mass  Nm % 

Carbon per mass  Cm % 

Phosphorus per mass  Pm % 

Iron per mass  Fem mg kg-1 

Potassium per mass Km % 

Calcium per mass  Cam % 

Zinc per mass  Znm mg kg-1 

Sulphate per mass  Sm % 

Manganese per mass Mnm % 

Magnesium per mass Mgm % 

Aluminium per mass Alm % 

Boron per mass Bm % 

Soil PH PH 
 

Soil phosphorus P ppm 

Soil potassium K ppm 

Soil magnesium Mg ppm 

Soil calcium Ca ppm 

Cation exchange capacity CEC me/100gm 

Soil Acidity Ac 
 

Soil organic matter OM % 

Soil sulphur S ppm 

Soil copper Cu ppm 

Soil iron Fe ppm 

Soil manganese Mg ppm 

Soil zinc Zn ppm 

Soil nitrogen N ppm 

Soil Ammonium nitrate NH4 ppm 
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Table A1.5 Means and standard errors for each trait by species. Trait symbols are in Table S2. 

Year/ Species Aa Am AN AP Nm Pm 

2020       

V. angustifolium 9.49± 0.69 127.79±12.72 0.085±0.01 1.19±0.13 1.51±0.02 0.11±0.004 

V. myrtilloides 6.91±0.67 97.41±6.52 0.066±0.01 0.89±0.08 1.49±0.04 0.11±0.002 

2019       

V. angustifolium 18.21±0.77 177.27±9.19 0.12±0.01 1.667±0.16 1.51±0.06 0.11±0.01 

V. myrtilloides 17.51 ±0.7 181.01±9.15 0.12±0.01 1.77±0.12 1.51±0.03 0.1±0.004 

2018       

V. angustifolium 10.16±0.85 116.47±5.4 0.08±0 1.06±0.1 1.38±0.02 0.11±0.01 

V. myrtilloides 7.15±0.47 95.83±7.38 0.08±0 0.9±0.05 1.21±0.03 0.11±0.01 

2017       

V. angustifolium 7.57 ± 0.22 84.60 ± 6.74 0.06 ± 0.01 0.76 ± 0.10 1.40 ± 0.05 0.11±0.01 

V. myrtilloides 6.34 ± 0.55 61.98 ± 6.89 0.04 ± 0.00 0.58 ± 0.06 1.50 ± 0.02 0.11±0.01 

  
      

Year/ Species Chlm LMA Cm Fem C/N gs 

2020       

V. angustifolium 28.98±1.81 75.82±2.85 48.34±0.13 42.14±2.08 32.12±0.52 0.16±0.01 

V. myrtilloides 25.83±1.53 70.89±2.69 49.29±0.11 65.91±8.23 33.34±0.92 0.11±0.01 

2019       

V. angustifolium 35.94±1.67 105.42±4.56 49.21±0.14 41.75±4.61 32.85±1.19 0.21± 0.02 

V. myrtilloides 35.63±1.7 98.69±3.96 50.05±0.13 31.3±1.78 33.27±0.62 0.2± 0.02 

2018       

V. angustifolium 29.83±2.13 87.13±6.13 50.68±0.13 28.9±1.11 36.9±0.68 0.17±0.02 

V. myrtilloides 26.3±1.15 75.31±3.17 51.37±0.17 34.74±1.56 42.63±1.25 0.11±0.01 

2017       

V. angustifolium 33.98 ±1.35 89.47 ± 6.51 50.92 ±0.19 30.72 ±1.63 36.79 ± 1.17 

V. myrtilloides 36.55 ±1.54 98.18 ± 5.20 51.64 ±0.12 36.56 ±1.13 34.57 ± 0.48 

  
      

Year/ Species Alg  LS LT WD PH SD 

2020       

V. angustifolium 65.33±5.28 1.05±0.43 0.15±0.01 0.57±0.04 21.88±1.13 2.12±0.11 

V. myrtilloides 65.92±3.8 1.41±0.58 0.15±0.01 0.57±0.01 20.14±1.29 2.76±0.17 

2019       

V. angustifolium 91.14±5.39 2.09±0.12 0.22±0.01 1.39±0.13 21.75±1.57 1.89±0.1 

V. myrtilloides 92.19±6.59 2.14±0.17 0.19±0.01 1.42±0.04 22.61±1.91 2.34±0.12 

2018       

V. angustifolium 62.08±3.68 1.83±0.25   22.78± 2.37±0.2 

V. myrtilloides 66.43±3.81 2.21±0.14   23.47±1.06 2.98±0.19 

2017       

V. angustifolium       

V. myrtilloides       
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Table A1.6 Mean and standard errors of Temperature, Precipitation, and Relative Humidity of 

Blueberry Hill Farm, Jonesboro, Maine from May to August for the years 2017, 2018, 2019, 

and 2020. 

Temperature (oC) May  June  July  August  

FY-2017 10.59±0.74 15.94±0.66 18.01±0.41 17.8±0.5 

FY-2018 12.08±0.57 14.62±0.72 19.71±0.44 20.18±0.53 

FY-2019 9.14±0.41 15.38±0.34 20.03±0.40 18.38±0.33 

FY-2020 10.62±0.94 17.0±0.71 20.09±0.47 19.02±0.6 

Precipitation (mm)     

FY-2017 6.81±2.30 2.44±0.85 1.18±0.50 1.4±0.60 

FY-2018 1.36±0.65 4.45±1.89 0.91±0.46 2.0±0.73 

FY-2019 3.66±0.91 5.41±1.8 2.79±0.98 4.78±1.96 

FY-2020 2.56±0.98 1.84±10 1.55±0.58 2.0±1.19 
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Figure A1.1: Map showing the location of Vaccinium angustifolium and Vaccinium 

myrtilloides species used in our study in the Blueberry Hill Farm, Jonesboro, Maine. 
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Figure A1.2: Diversity in leaf form, color, size, and morphology of V. angustifolium and V. 

myrtilloides species of lowbush blueberry. Genotype 8 does not have red leaves.  
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Figure A1.3: Relationship of area-based chlorophyll concentration (Chla) with mass-based nitrogen 

(Nm), and leaf mass per area (LMA), and mass-based iron (Fem) with LMA for 2017, 2018, 2019, and 

2020 across and within two blueberry species, V. angustifolium (VM, red circles) and V. myrtilloides 

(VM, green circles). Points are means. Linear (a & b) regressions were fitted to the data across (black 

solid line) and within (red solid line, Angustifolium and green solid line, Myrtilloides) blueberry species. 

P values of less than 0.05 are significant and are marked with a corresponding line color as described 

above.  
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Figure A1.4: Principal Component Analysis of mean values of soil nutrient, leaf nutrient, and structural 

traits of V. angustifolium and V. myrtilloides species along with their genotypes for year 2018, 2019 

and 2020. 
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APPENDIX 2. 

Table A2.1 Blueberry species studied in the nursery at The University of Maine, in Orono, Maine. 

Nomenclature, distribution and native habitats were taken from Native Plant Trust Go Botany 

(https://gobotany.nativeplanttrust.org/species/vaccinium/angustifolium/,  

https://gobotany.nativeplanttrust.org/species/vaccinium/corymbosum/, The USDA Forest Service 

(https://www.fs.fed.us/database/feis/plants/shrub/vacang/all.htmland 

https://www.fs.fed.us/database/feis/plants/shrub/vaccor/all.html) and (Rogers, 1974; Pritts and 

Hancock, 1984) and (Kloet et al., 1980). 

 

Species Family Original distribution Native habitat 

V. 

angustifolium 

Ericaceae Northern Canadian tundra to 

New England states, westward 

to Minnesota and southward to 

Virginia 

Alpine or subalpine zones, cliffs, 

balds, or ledges, grassland, 

meadows and fields, mountain 

summits and plateaus, ridges or 

ledges, woodlands 

V. 

corymbosum 

Ericaceae Northeastern Illinois and 

northern Indiana 

northeastward to southwestern 

Nova Scotia, south to Florida, 

and west to 

north-eastern Texas and 

adjacent Oklahoma 

Bogs, fens, forests, shores of 

rivers or lakes, swamps, 

woodlands 

https://gobotany.nativeplanttrust.org/species/vaccinium/angustifolium/
https://gobotany.nativeplanttrust.org/species/vaccinium/corymbosum/
https://www.fs.fed.us/database/feis/plants/shrub/vacang/all.html
https://www.fs.fed.us/database/feis/plants/shrub/vaccor/all.html
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Table A2.2 Traits, symbols, and units 

Trait Symbols Units 

Leaf Size LS  
Leaf mass per area  LMA g m-2 

Leaf thickness                                                                LT mm 

Plant height PH cm 

Stem diameter SD mm 

Maximum photochemical efficiency of PSII Fv/Fm  
Midday photosynthesis rate Amidday µmol CO2 m-2 s-1 

Midday stomatal conductance Midday gs mol m-2 s-1 

Midday transpiration Rate E mol m-2 s-1 

Plant hydraulic conductance Kplant mmol H2O m2 MPa−1 

Predawn stem water potential Predawn Ψstem MPa 

Midday stem water potential Midday Ψstem  MPa 

Turgor Loss Point TLP  
Soil moisture  % 

Chlorophyll concentration Chl spad 

 

 



96 

Table A2.3 Comparisons of plant height, stem diameter, leaf mass per area (LMA), and leaf size of each population- varieties: Ang 1, Ang 2, 

Bluecrop, and Patriot. Values are means ± SE (n = 10). 

Species Population- varieties Plant height ± SE Stem Diameter ± SE LMA ± SE Leaf Size ± SE 

Unit  cm cm gm-2 m-2 

V. angustifolium Ang 1 30.21 ± 2.56b 3.55 ± 0.33b 0.0068 ± 0.0003a 1.40 ± 0.17a 

V. angustifolium Ang 2 18.21 ± 1.45c 2.25 ± 0.10b 0.0054 ± 0.0002b 1.39 ± 0.11a 

V. corymbosum Bluecrop 68.62 ± 5.40a 8.95 ± 0.82a 0.0073 ± 0.0004a 5.19 ± 0.27b 

V. corymbosum Patriot 60.92 ± 3.37a 9.556 ± 0.32a 0.0075 ± 0.0001a 5.49 ± 0.35b 
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Table A2.4 Physiological traits measured for each population- varieties (Ang 1, Ang 2, Bluecrop, 

and Patriot) using pressure- volume analysis. 

 Parameters Ang 1 Ang 2 Bluecrop Patriot 

SWC 29.28 39.89 25.69 31.87 

Po (MPa) -1.61 -1.39 -1.59 -1.65 

YTLP (MPa) -1.99 -1.66 -1.90 -1.98 

RWCTLP  98.33 99.34 99.13 99.22 

e (MPa) 181.07 209.14 213.86 237.17 

CFT (MPa-1) 0.008 0.004 0.005 0.004 

CTLP (MPa-1) 0.020 0.014 0.017 0.013 
CFT* (mol m-2 MPa-

1) 0.64 0.55 0.309866 0.38 
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Table A2.5 Survival, mortality and regrowth of each population- varieties (Ang 1, Ang 2, 

Bluecrop, and Patriot) at individual level after the drought experiment. 

Varieties/population Survival Mortality 

New stew 

regrowth 

New branch 

regrowth 

Ang 1 3/5 2/5 2/5 0 

Ang 2 4/5 1/5 4/5 0 

Bleucrop 4/5 1/5 0 2/5 

Patriot 4/5 1/5 0 4/5 
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Figure A2.1 Changes in midday stomatal conductance, Midday gs (mol m−2 sec−1; a), midday 

photosynthesis rate, Amidday (μmol CO2 m−2 sec−1, b), transpiration rate, E (mol m−2 sec−1; c), plant hydraulic 

conductance, Kplant (mmol H2O m2 MPa−1; d), Fv/Fm (e), and chlorophyll content (f) as a function of the day 

of experiment (DOE) recorded in the control treatment (blue dots and line) and the drought treatment (red 

triangle and line) of each population- varieties:  Ang 1, Ang 2, Bluecrop, and Patriot, during the course of 

the experiment. The blue dotted lines mentioned are the first day of the start of drought experiment and is 

represented by day 0, light grey background bounded with dashed grey lines in figure (g) represents mean 

TLP ± SE values and the intersection of black and brown dotted lines in the middle are Turgor Loss Point, 

represented by TLP for corresponding population- varieties. Values are means ± SE for midday stomatal 

conductance, midday photosynthesis rate, transpiration rate, plant hydraulic conductance, predawn Ψstem (n 

= 3), and Fv/Fm and chlorophyll content (n = 5). 
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Figure A2.2 The midday photosynthesis rate, Amidday (μmol CO2 m−2 sec−1; a), and transpiration rate, E 

(molm−2 sec−1; b), and chlorophyll content (c) as a function of stem water potential (stem Ψ; MPa) in the 

control (blue dots) and drought treatment (red triangle) of each population- varieties: Ang 1, Ang 2, 

Bluecrop, and Patriot. Light grey background bounded with dashed grey lines represents mean TLP ± SE 

values and the brown solid lines in the middle are Turgor Loss Point, represented by TLP for corresponding 

population- varieties. Values are means ± SE for midday Ψstem, Amidday, E (n = 3) and chlorophyll content (n 

= 5). 
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Figure A2.3 Changes in leaf browning, (a) and leaf dropping (b) as a function of the day of experiment 

(DOE) recorded in the control treatment (blue dots and line) and the drought treatment (red triangle and 

line) of each population- varieties:  Ang 1, Ang 2, Bluecrop, and Patriot, during the course of the 

experiment. The blue dotted lines mentioned are the first day of the start of drought experiment and is 

represented by day 0. Values are means ± SE (n = 5). 
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Figure A2.4 Hourly changes in air temperature (oC; a), and vapor pressure deficit (kPa; b) over the course 

of the experiment (7/22 to 8/22) inside the rainfall exclusion house. Hourly values are means ± SE (n = 6); 

6 is the change in air temperature and vapor pressure deficit recorded every 10 minutes interval. 
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Figure A2.5 Hourly changes in soil temperature (oC; a), soil water content (m3/m3; b), and soil water 

potential (kPa; c) over the course of the experiment (7/22 to 8/22) inside the rainfall exclusion house. Hourly 

values are means ± SE (n = 6); 6 is the change in soil temperature, soil water content and soil water potential 

recorded every 10 minutes interval. 
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