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ABSTRACT 

Working on holistic approaches that aim to capture a wide range of knowledge, 

researchers are usually faced with phenomena characterized by different time and 

geographical scales. This is the case of energy systems and Integrated Assessment Models 

(IAMs). More specifically, the nature of the variable renewable energy supply (VRES) 

has traditionally posed a barrier to accurately capturing the effects inflicted by VRES in 

the energy system.  

 

This research provides a soft link between an energy system model running with an hourly 

time step, on the one hand, and a yearly-based IAM, on the other hand, by the 

implementation of an emulator. The proposal here presented is a bridge, based on 

different types of knowledge, which successfully allows the flow of information between 

time scales. Results achieve a 100% renewable energy system on a case of Bulgaria. After 

a brief literature review on the topic, the method is explained in detail, including some 

results between EnergyPLAN (energy system model) and MEDEAS (Integrated 

Assessment Model, IAM) for Bulgaria. Results show that the ability of assessment is 

notably increased from the previous MEDEAS version. 

 

Finally, both results and limitations of this method are discussed. The authors hope this 

article captures interest in the field of IAMs, especially those which address with energy 

transition studies. 
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INTRODUCTION  

Policymaking used to be the principal objective public in the field of integrated 

assessment modelling. There is a strong relationship between projects and policy 

measures, as it was recently published in [1]. Nor should this create surprise when energy 

transition – from a fossil fuel-based economy towards another one supported with large 

contribution of so-called renewable energies – is finally placed as one of the major 

challenges of the human development [2][3][4]. 

 



In the pathway of energy transition, methods proposing cross-sectoral integration of 

energy allow high shares of Renewable Energy Sources (RES) in terms of primary energy 

supply already account a substantial body of research. Most relevant approaches address 

synergies between power generation, heating, road transport and responsive demand 

sectors with demand side management. The integration of larger solar-photovoltaic 

capacities into the Croatian energy system was studied using the synergies between 

heating and transport sectors [5]. Results showed that higher VRES integrations are easier 

to be achieved when the system is harmoniously followed up by fostering technologies 

such as power-to-heat (P2H) and vehicle-to-grid (V2G). In the recent monography, prof. 

Henrik Lund elaborated renewable heating strategies for reaching a 100% renewable 

energy solution and grid balancing [6]. Furthermore, distribution of fuels in CHP units 

can be displaced using different taxing approaches, as shown in [7], through multi-

objective optimization, which in turn enables for large power-to-heat implementation.  

 

Energy transition from coal-based towards renewable-based Kosovo’s energy system was 

analysed in [8], with emphasis on P2H technologies. Decarbonisation of an integrated 

energy system of Italy by 2050 was analysed in [9]. Authors concluded that the whole 

spread of technologies – cogeneration, trigeneration, V2G, P2H and thermal energy 

storage – would be required for that transition goal. According to a recent review  [10] of 

best practice examples in P2H implementation, the influence of economic and policy 

framework factors on the implementation of P2H as demand response emerged as a larger 

issue compared to the technological development. A number of researchers addressed the 

flexible operation of the system in the last steps of energy transition, namely the issues of 

electrification of fuels, producing electro-fuels, synthetic fuels  from biofuels and 

captured CO2 and similar applications [11]. In [12], a zero-emission pathway for the 

Nordic and Baltic European region was investigated and modelled, concluding that an 

scenario of a high share of VRES and sector-coupling capacities would be the most 

economically feasible way forwards. Also, energy system optimizations indicated that 

most of the investments required for the zero-emission pathway until 2050 would take 

place already by 2030. 

 

Environmental and economic indicators were used in [13], on the basis of results from 

the HOMER energy planning tool. Results showed that systems with hybrid storage 

(electricity and hydrogen) can achieve adequate and reliable decarbonized transport 

systems while increasing independency in a small island and optimizing the economic 

and environment sides of sustainability.  

 

The Power-to-Gas concept (P2G) was investigated in [14] to analyse the performance of 

such innovative storage system. A possibility to integrate co-electrolysers and high 

temperature methanation was demonstrated, resulting in energy savings. In [15], a 

decision-making tool for determining the most sustainable use of biomass for carbon 

management was investigated. The mathematical principles were based on break-even 

analysis. Emissions-Cost Nexus was considered in identifying the most sustainable 

pathway using biomass under different baseline conditions. Electrodialysis and hybrid 



power plants (solar-PV or wind farms) were coupled in [16]. Such hybrid plants are of 

very attractive flexibility since they also increase the stability of electricity generation. At 

the same time, electrodialysis was claimed to be a more flexible process compared to 

reverse osmosis. Results showed that the electrodialysis process was suitable for the 

integration as a storage within polygeneration systems.  

 

In terms of modelling approaches and scenario analyses, different approaches can be 

observed. In [17], France was modelled and contrasted under some scenarios, from 0% 

to 100% renewable share in power production by 2050. Authors tested different 

configurations of VRES: production, imports, demand flexibility and biomass potential. 

It was shown that high renewable energy penetration would need significant investments 

in new capacities, new flexibility options along with imports and demand-response 

strategies. In the same supply side, it is likely to deteriorate power system reliability 

whether no technologies dedicated to this issue were installed.  

 

On the economic side, [18] investigated components of the levelized cost of energy 

(LCOE), emphasizing the idea that external costs of power generation technologies were 

neglected in the past. Since LCOE was a critical indicator for policy and decision makers, 

the authors juxtaposed actual costs of renewable and conventional power generation 

technologies. The same authors internalized some of these external and GHG emission 

costs across various power generation and storage technologies in all the G20 countries, 

as they account for 85% of global power consumption. Results showed that renewables 

were far cheaper than fossil and nuclear sources by 2030, providing statistically display 

that all the G20 countries had the opportunity to decrease their energy costs significantly. 

Furthermore, in [19], the marginal prices forecasting method was developed for future 

energy planning models. The presented “K-SVR” method required also significantly less 

computational time compared to best known models. In another article, the paradox of 

energy transition was found in the falling prices of energy. To offer better future 

electricity prices forecast, the authors proposed a modelling for prices from the residual 

load obtained by subtracting non-flexible productions from the power load [20]. 

 

According to [21], where the IAM “MESSAGE” was used to study the role of hydrogen 

and storage technologies in a low-carbon energy transition, large VRES shares were 

supported by the deployment of low-carbon flexible technologies such as hydrogen 

combustion turbines and concentrating solar power (CSP) with thermal storage. The 

importance of analysing this kind of flexibility options was also emphasized in [22]. This 

last study examined an extended an open source energy system model (OSeMOSYS), 

simulating the operating reserve and related investments for Ireland. That case study 

covered the effects of linking a long-term energy system model (TIMES) with a unit 

commitment and dispatch model (PLEXOS). Results showed that investment mismatches 

decreased from 21.4% to 5.0%. Energy planning processes may be automatized to show 

deviations in annualize total costs from the optimal energy system structure as [23] stated 

for an study in the Republic of Serbia. 

 



The country of interest for this document, Bulgaria, was previously modelled to determine 

what renewable targets would be realistic until 2030 [24]. They used LEAP software and 

the multi-criteria evaluation method AMS – previously described in [25]. Three scenarios 

aiming to different RES targets for 2030 supported by different policy mixtures were 

developed and simulated. Results and related official information were used as inputs. 

The AMS outputs allowed the identification of the most appropriate scenario for the 

country. However, this method did not allow hourly analysis. 

 

Regarding IAMs, [26] developed a framework consisting of 18 features to be considered 

when modelling the dynamics of the power system in order to provide with useful 

information in high-VRES scenarios, after which a review of novel modelling approaches 

was done. According to the results, new modelling approaches represented different 

emerging features but there was a need for further research on inclusion of synergies and 

for decarbonizing other sectors of the energy system. 

 

Methodologies and methods have being constantly improved, rendering more and more 

dimensions and feedbacks within complex systems as climate and human-economy 

metabolism are. Among the tools used to study and assess about such complex systems, 

the evolution and relevance of integrated assessment models have presented them on the 

top of policymaking activities [27], not without criticisms [28]. IPCC and global 

governance and assessment seem to be the natural niche areas of a new branch of science 

known as “Limits to Growth” or ecology, whose highway started in 70’s. Such models 

contain some advantages regarding holistic – as philosophical meaning – measure to be 

implemented to improve the whole system, taking into account feedbacks between parts. 

Global and long-time scales, as well as top-down methodologies are usually common 

features of IAMs. 

 

Among the methods we found in this short literature review, Residual Load Duration 

Curve (RLDC) was perhaps the most implemented one in IAMs. The first reference of 

this method can be read in [29]. Later on, some of the original authors compared their 

approach with the previous state-of-the-art modelling [26], showing their method had 

fairly influenced in IAMs (AIM/CGE, IMAGE, MESSAGE, POLES, and REMIND) at 

different levels of importance to “describe the fundamental dynamics of the power sector 

and the effect of VRE”. 

 

The core idea of this approach was the representation of the influence of variable 

renewable energies into the shape which was drawn by subtracting – step by step in the 

data – the production of these supply technologies from the electricity demand (see Figure 

1). After that, the curve was sorted into some strategical parts, conforming to supply 

technologies in the positive axis (underproduction), and power-to-X technologies in the 

negative quadrant (overproduction). So, given the curve, it was supposed availability of 

the different technologies at each part, partially losing the hourly management of either 

over- or underproduction. 

 



 
Figure 1. Schematic explanation about the concept of residual load duration curve in the 

article [29]. The right figure is a simplification of the left one, which is created from 

substracting the VRES production from the electriticy demand each time step in the 

data. 
 

The same reference [26] pointed out other methods such as multinomial logit based on 

LCOE to represent competition between suppliers – IAMs like AIM/CGE and POLES – 

and exogenous equations with fixed parameters – the case of WITCH. 

By looking for global models covering  time horizons +50 years, a good review article 

[30] saved linear programming, mixed integer programming, partial equilibrium, time 

slides, computable general equilibrium (AURORAxmp, ETM, GCAM, GEM-E3, 

MESSAGE, POLES, ReMIND, WEM, and WITCH). Nor did they be related to the 

system dynamics methodology. 

 

Another kind of strategy was based on soft-linking, i.e., not a direct integration of code 

but the coupling of two different models to deliver a deeper insight in results than they 

could by separately. This kind of approaches are currently common between bottom-up 

models, e.g., between PLEXOS and TIMES [31]. Systems dynamics (SD) software was 

linked with a load profile model to study the dynamics of the electricity demand in rural 

areas [32]. However, the literature review we have covered for this article did not include 

studies of soft-linking between a top-down IAM like MEDEAS – or its next generation, 

WILIAM – and energy or power flow models.  

 

In order to have a relevant fact in the summary of this introduction, the national climate 

and energy integrated plan (PNIEC as Spanish acronym) used the bottom-up TIMES-

Spain model to develop the policies facing 2030. This model was based on a whole region 

– Spain – with twelve time slices (four seasons, and three daily periods, peak, night and 

day) (Section B.1.1. “Modelo TIMES-Sinergia de la DGPEM”, [33]). 

 



Two simplification of the complex dynamics produced within the power system were the 

starting approach in MEDEAS (the IAM of this research). The first simplification 

regarded the non-VRES side. A polynomial function of order two (see Figure 2) which 

input was the penetration of variable renewables – wind onshore, wind offshore, solar-

photovoltaic (Solar-PV), Concentrated Solar Power (CSP) – into the electricity mix did 

decrease the capacity factor of dispatchable power plants – hydropower, biogas, 

bioenergy, geothermal, oceanic, and nuclear power plants. Remaining demand was 

covered by fossil fuel-based power plants since their capacities were not originally 

modelled in MEDEAS. 

 

 
Figure 2. Reduction in the capacity factor of baseload power stations (hydropower, 

biogas, geothermal, bioenergy, oceanic, and nuclear power plants) due to the 

penetratino of variable renewable technologies in MEDEAS. This figure was included 

in the suppplementary material of [34], as figure SM1, created from NREL data 

(reference 35 of the document). The parabolic equation has the shape y = -0.6209 * x2 – 

0.3998 * x + 1.0222 (y is then constained to values between 0 and 1). 
 

On the VRES side, the penetration of these technologies in the electricity mix was 

translated to estimate their own CF reduction through an exponential function (see Figure 

3). So, this second simplification assumed that the whole system deals with curtailment 

due to overproduction in some hours of the year of the simulation. 

 

Taken into account both simplifications alone, MEDEAS could achieve a total 

decarbonisation of the power system with an overcapacity of around three times the 

capacity required to cover the electricity demand without reductions in the CFs, not 

without sacrificing the other technologies grouped by the MEDEAS concept of 

‘baseload’. The main “handicap” of this approach was the fact that such baseload facilities 

(like hydropower plants) experienced higher reductions in the capacity factor than VRES 

ones, as well as the uncertaintly estimating the overcapacity requirements to achieve 

100% power systems. 

 



 
Figure 3. Overcapacity of variable renewable technologies (a, left) and reduction in their 

capacity factor (b, right) due to the penetration of these technologies in the electricity 

mix of MEDEAS. The right equation is related to the left one through the equation CF 

reduction = 1 / (1 + overcapacity). This figure was included in the suppplementary 

material of [34], as figure SM2, created from the reference 32 of the document. 

 

The work here presented has the principal goal of representing variables of a system 

which naturally requires a lower time resolution than the unit of a model. Bringing that 

to our research, the article aims to show the procedure and limitations of an approach to 

include information from the hourly level to a model running in a yearly basis. 

The previously shown method did not involve the effect of flexibility options, which we 

are going to include in the model and explore further. 

MATERIAL & METHOD 

The material of this article may be sorted according to the two model frameworks of 

Figure 4. On the right hand, the IAM named MEDEAS-Bulgaria requires a wide range of 

data from economy to energy and demography accounts. The article of reference where 

MEDEAS is explained is [35]. The Bulgarian version of this model was developed to 

check the feasibility of the approach carried out on this research. 

 

 
Figure 4. General diagrams of the EnergyPLAN (left) and MEDEAS (right) models, 

used in this research. The version of EnergyPLAN was 15.1 (15 September 2020), 

while the version of MEDEAS was MEDEAS_BGR_v12 (Deliverable 4.3). 

 



Hourly resolution was reached by using EnergyPLAN. This energy modelling software 

was chosen because of its applicability in estimating integration of renewable energy as 

well as relative simplicity and capability of being automated. Data requirements of 

EnergyPLAN covers a spread range of the official energy statistics, both in annual – a 

value – and hourly – a series of values – scales, for both demand and supply sides of the 

energy system. The documentation of the version used in this research can be read in [36]. 

Figure 5 summarizes the general flow of steps carried out in the approach. At the right, 

the subroutines or subtasks define what is done within each step. The first one is the 

processing of data from different sources to fulfil all the requirements for running both 

models. Data is analysed to know appropriate technologies delivering flexibility into the 

regional energy system, as well as the features of the inputs in the next step of 

permutations (pseudocode in Table 1).  

 

To properly run EnergyPLAN, a technology of interest should not only be defined by its 

supply side (e.g., capacity and storage) but also by the demand side that concerns to such 

technology. For instance, the role of power-to-heat (P2H) in EnergyPLAN can briefly be 

explained. This flexibility option allows for using electricity to produce heat (electric 

boilers) or to move heat (heat pumps) in two complementary facilities, district grids and 

the agents grouped as “individual”†. Both types of facilities have different profiles of 

heating and cooling demands. The inputs of P2H are the capacities of boilers (incl. fuel 

distribution) and heat pumps, the contributions of solar thermal (municipal waste can be 

used in district grids as well), the storage, and the annual demands of heating and cooling. 

This complexity is key to understand the main limitation of this approach, which is related 

to the feasible number of inputs – clusters – when doing the permutations and explained 

in next paragraphs. Third variables such as conversion factors, efficiencies and capacity 

factors have influence in the inputs and outputs of the permutations, so they should be 

also included – as constants or not. 

 

 
† “Individual” refers to suppliers and consumers without district grids connectivity. The agent may encompass households, 

industries and State sectors. 



 
Figure 5. Steps and sub-routines of the approach. 

 

The representation of a basis year for the energy system is necessary to compare results 

in terms of emissions and share of renewables in final and primary energy consumption, 

revealing what technologies can do more flexible the system in relation to the intrinsic 

regional conditions (hourly distributions). Once the base year is ready, authors search for 

additional data (projections) to determine the values to permutations (inputs of 

EnergyPLAN). Such permutations are described by means of some features: name, range 

of values – maximum and minimum –, and number of values in the range (points of 

resolution). 

 

At this step, a subjective step comes to group inputs into representative clusters. Figure 6 

shows the issue why clusters are needed. Without limiting the number of permutations 

greatly increases the number of permutations and calculation run time. Therefore, 

clustering serves as a compromise between required run time and output quality. The 

method here presented would not be feasible in time as of seven variables with ten points 

of resolution or ten variables with 5 points of resolution. Since we are dealing with 

subjective steps, the process is iterative up to permutations are decided. The clustering 

criteria is twofold. A cluster must allow the effect of the represented technology, in such 



a way that proportionality is assumed within the cluster. Additionally, some technologies 

may have a similar effect, so all of them may or not be grouped in the same cluster, 

depending on what is being studied by the modellers. For instance, pump hydropower 

storage and electric batteries in the power grid both increase the flexibility option so-

called “storage” while electric batteries of vehicles rely so different on the demand of 

road transport that they are considered as another cluster. Some general ideas might be 

considered to create the clusters: 

 

• Variables allowing the use of a technology that provides with flexibility to the 

energy system. These variables can be sorted into first, second and third spheres 

of influence. 

• Projections may help to determine what variables should have wide range 

(according with the units) to reveal the influence of flexibility and what others 

may be considered as constant. 

 

 
Figure 6. Computational cost in days of the permutation process with EnergyPLAN, 

according with a number of points by variable and the number of variables. The time of 

one simulation is assumed to be one second. 
 

We would like to highlight that clusters have specific ranges to do the permutations, so 

the results are correct as long as the model does work within these ranges. 

 

An example of features structure for the inputs of permutations can be shown in Figure 

9, as well as the related clusters in Figure 10. Three points were included to render the 

input “Electricity smart” (units in TWh), i.e., the electricity demand of electric vehicles 

able to run in smart mode‡. The maximum value corresponds to 100% of the electricity 

demand running as smart mode. In this case, related parameters such as charging capacity, 

 
‡ EnergyPLAN has two different modes to represent the hourly simulation of electric vehicles – dump and smart modes. Smart mode 

allows charging and discharging electricity from and to the power grid to flexibilize the demand side, always satisfying the hourly 
demand. Further information in the documentation of EnergyPLAN. 
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battery storage and the use of other fuels were proportionally modified in accordance to 

the values of the input (“Electricity smart”). 

 

Clustering and pre-processing of data is done with MS Excel, while Power Query 

software facilitated the creation of permutations as well as the post-processing tasks with 

results (EnergyPLAN’s files “output.csv”). Then, a Python code is used to run 

EnergyPLAN as times as permutations were created. This code translates the values of 

permutations into input files of EnergyPLAN (code in Table SM 2). Once these input 

files are generated, EnergyPLAN is run and generated outputs are saved and allocated  

(code in Table SM 3). EnergyPLAN’s warnings§ are also saved to decide whether or not 

repeat the permutations. 

 

Table 1. Pseudocode summarizing the process from gathering data up to the creation of 

the linear regression models. 

Define input parameters 

Define path of the folder containing the input files 

Define path where outputs are saved 

Open the list of files to be run by EnergyPLAN 

For each file in the list: 

          Open case in EnergyPLAN 

          Save the outputs of interest from the results file 

          Clear workspace 

Check errors in simulations 

If error is detected: 

          Run the specific case with a bigger time step between parts of the process. 

 

The results of the permutations, i.e., the values of the clusters (inputs) and the 

EnergyPLAN’s results, are used to build up the linear regression models which will 

represent some hourly features of the system inside the yearly IAM. We create as 

regressions as outputs we would like to represent. Each of the linear regression are built 

in the same iterative way. The procedure can be quickly followed in Table 2.  

 

Firstly, the correlation matrix between inputs and the output to be estimated is calculated. 

The highest score (between 0 and 1) means the variable it refers to is the most correlated 

among all of them. It is selected to the first linear regression. The raw residuals –

difference between the actual and the estimated value– of this first regression model yet 

saves information about the output, so we did again the correlation matrix however now 

with the residuals as output. The first input is not correlated with the residuals (score equal 

to zero), so we select the next highest value. This process is repeated up to all the 

correlation scores are below a criteria. Then, the final linear regression is made up by 

superposition, i.e., all the independent terms are added, and the dependent terms are 

related to its corresponding input variable. 

 
§ EnergyPLAN might deliver some warnings after the simulation is run: critical excess of electricity production (CEEP), grid stability 

problem, power plant or import problem, synthetic or biogas shortage, V2G connection too small, and negative electricity demand. 
Further information in the documentation of EnergyPLAN. 



 

Table 2. Pseudocode explaining the process of building a linear regression model to 

estimate an output based on permutations. 

Import values of the permutations –inputs and outputs. 

Define the value of correlation score (p) by which the process of creating the regression 

model is stopped. 

Initialize variables required to the loop 

Calculate the correlation matrix with the original output 

Select the variable of the highest score 

While score > p: 

           Create the linear regression model 

           Save the independent value of the regression 

           Save the dependent values of the regression           

           Calculate and save the residuals of the regression 

          Calculate the correlation matrix with the residuals as output 

          Select the highest score 

end of the while loop 

Addition of the independent values 

Save the information of interest into a file 

 

Finally, the meaning of inputs in the IAM should be as similar as possible to the energy 

model’s input. Consistency should be present in this last step of the approach. 

BULGARIA AS CASE OF STUDY. RESULTS & DISCUSSION 

Bulgaria was selected as case of study because of both available models, EnergyPLAN 

(energy model) and MEDEAS (Integrated Assessment Model). The availability of data 

was another relevant factor to choose for this country. Eurostat’s database [37], IEA 

database [38] and the Query tool (VBA macros) of IRENA [39] were the data sources of 

this study. Atlas of wind speed [40] and solar irradiation [41] facilitated hourly data to 

create the distributions of both related renewable technologies. 

 

In order to capture the behaviour of the Bulgarian energy system, the input files of 

EnergyPLAN were switched 34992 times (permutations). The features of representative 

clusters were defined in Table 3 and Table SM 1 of the supplementary material. 

 

The selection of clusters relied on the characteristics of the region analysed. Criteria was 

subjective and based on the expertise of the modellers and assesors. Authors searched 

through published data and accordingly determined the structure of permutations. Some 

key sentences were written following this lines to understand the selection carried out for 

Bulgaria. 

 

• The proyections of run-of-river hydropower capacity does not seem to be relevant. 

This technology was represented as constant due to its relatively small size and 

potential in the country. 

• Dounabe river –the largest river of Europe –  runs along the Bulgarian-Romania 

border. The gradient of this river is not stimulating for building dam hydropower 



plants since the construction would require massive lakes and agreements between 

both countries. One should take into account that such agreements would be 

firmed by different national enviromental regulations.  

• The distribution of solar irradiation for Bulgaria (Figure 7) provided a potential 

of up to 100 GW of solar-PV capacity with an average solar iradiation of 1300 

kWh/m2. Other technical conditions such as crop yields or protected areas to 

install solar pannels are out of this research. 

• The distribution of wind speed for Bulgaria (Figure 8) provided a great potential 

of wind power technology in the mountainous regions and the Noth-East of the 

country, on the shore of the Black sea. Other technical conditions such as 

maximum slope or sea depth to install wind turbines are out of this research. 

• District heating demand represented 12,55 TWh –60 % of total heat demand in 

Bulgaria, the rest was considered as “individual”, supplied by boilers fueled with 

biomass. 

 

 
Figure 7. Distribution of solar iradiation for Bulgaria. Source: [42].  

 

 
Figure 8. Distribution of average wind speeds for Bulgaria. Source: [40]. 



Table 3. Definition of the clusters made to do the permutations with EnergyPLAN. All 

the variables of the same cluster are modified together when the permutations are being 

generated. More information in the Supplementary Materials. 

 

Name of the 

cluster Meaning of the cluster 

Number of 

EnergyPLAN’s 

input to 

represent the 

cluster 

Resolution 

of the 

cluster 

INPUTS 

Wind Wind power plants. 1 3 

SolarPV Solar-photovoltaic power plants. 1 4 

DamHydro Dammed hydropower plants. 1 2 

Backing 

Power plants with rankine cycle with 

back-up features. 

2 2 

ElecTransport Electrification of the transport sector. 13 2 

P2H Power-to-heat. 2 3 

Storage 

Storage in the power grid, pump 

hydropower plants and Rockbed 

(high temperature) storages. 

6 3 

FlexibleDemand Flexible electricity demand. 7 3 

FossilIndustry Level of decarbonization in Industry. 4 3 

SynthGas 

Use of hydrogen to generate synthetic 

gas. 

1 3 

 

Further clarification of clusters, parameters, value of the parameters and their relations is 

displayed in Figure 9. And Figure 10. On this example, cluster displaying transport 

electrification is displayed. As can be observed, change of one parameters value 

influences the change in the rest of the values. 

 

 
Figure 9. Partial view showing the relations in the features of some inputs for the 

Bulgarian case of study. An input is given by the name, a range, and the number of 

points within the range. 



 

 
Figure 10. Final structure of inputs and clusters for the Bulgarian permutations. Ten 

clusters with different resolution of inputs. 
 

As mentioned before, we needed a criteria to stop the procedure when building up the 

linear regression model. The value selected for our case of study was 0.05, so we selected 

and create linear regressions up to the correlation scores are below this value. 

The outputs of interest with their related linear models are enumerated following this 

paragraph. The equation to calculate the variation in the capacity factor (input for the 

regression models) follows the structure Variation CF = (Maximum CF – Calculated CF) 

/ (Maximum CF). The inputs appears in the same order than they are relevant according 

with the correlation scores. 

 

• Variation in the capacity factor of wind power plants. 

 𝑉𝑎𝑟𝐶𝐹𝑤𝑖𝑛𝑑 =  0.741214 + 0.000799 ∗  𝑆𝑜𝑙𝑎𝑟𝑃𝑉 + 0.000957 ∗ 𝑊𝑖𝑛𝑑 +

0.006613 ∗ 𝐵𝑎𝑠𝑒𝑙𝑜𝑎𝑑 − 0.120798 ∗ 𝐹𝑜𝑠𝑠𝑖𝑙𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦 − 0.001173 ∗ 𝑆𝑡𝑜𝑟𝑎𝑔𝑒 −

0.749565 ∗ 𝑆𝑦𝑛𝑡ℎ𝐺𝑎𝑠 − 0.04446 ∗ 𝑉2𝐺𝑠𝑡𝑜𝑟𝑎𝑔𝑒 

• Variation in the capacity factor of solar-photovoltaic power plants. 

𝑉𝑎𝑟𝐶𝐹𝑠𝑜𝑙𝑎𝑟𝑃𝑉

=  −0.387804 + 0.000602 ∗  𝑆𝑜𝑙𝑎𝑟𝑃𝑉 + 0.00072 ∗ 𝑊𝑖𝑛𝑑

− 0.105805 ∗ 𝐹𝑜𝑠𝑠𝑖𝑙𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦 − 0.745347 ∗ 𝑆𝑦𝑛𝑡ℎ𝐺𝑎𝑠 + 0.002903

∗ 𝐵𝑎𝑠𝑒𝑙𝑜𝑎𝑑 − 0.038897 ∗ 𝑉2𝐺𝑠𝑡𝑜𝑟𝑎𝑔𝑒 − 0.000416 ∗ 𝑆𝑡𝑜𝑟𝑎𝑔𝑒 

• Variation in the capacity factor of run-of-river hydropower plants. 

𝑉𝑎𝑟𝐶𝐹𝑅𝑜𝑅 =  0.693932 + 0.002626 ∗ 𝐵𝑎𝑠𝑒𝑙𝑜𝑎𝑑 − 0.000614 ∗ 𝑆𝑡𝑜𝑟𝑎𝑔𝑒

+ 0.000068 ∗  𝑆𝑜𝑙𝑎𝑟𝑃𝑉 + 0.00101 ∗ 𝐹𝑙𝑒𝑥𝑖𝑏𝑙𝑒𝐷𝑒𝑚𝑎𝑛𝑑 + 0.009445

∗ 𝑉2𝐺𝑠𝑡𝑜𝑟𝑎𝑔𝑒 + 0.08698 ∗ 𝑆𝑦𝑛𝑡ℎ𝐺𝑎𝑠 − 0.005322 ∗ 𝐹𝑜𝑠𝑠𝑖𝑙𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦 

• Variation in the capacity factor of dam Hydropower plants. 

𝑉𝑎𝑟𝐶𝐹𝐷𝑎𝑚𝐻𝑦𝑑𝑟𝑜

=  0.169749 + 0.000404 ∗ 𝐷𝑎𝑚𝐻𝑦𝑑𝑟𝑜 − 1.21024678190544𝐸 − 07

∗ 𝑆𝑜𝑙𝑎𝑟𝑃𝑉 

• Variation in the capacity factor of backing facilities (traditional Rankine-cycle 

power plants). 



𝑉𝑎𝑟𝐶𝐹𝑃𝑃 =  75.508738 − 0.0313042 ∗ 𝐵𝑎𝑠𝑒𝑙𝑜𝑎𝑑 + 0.000476 ∗  𝑆𝑜𝑙𝑎𝑟𝑃𝑉

− 0.11511 ∗ 𝐹𝑜𝑠𝑠𝑖𝑙𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦 + 0.000582 ∗ 𝑊𝑖𝑛𝑑 + 0.003385

∗ 𝐹𝑙𝑒𝑥𝑖𝑏𝑙𝑒𝐷𝑒𝑚𝑎𝑛𝑑 − 0.343115 ∗ 𝑆𝑦𝑛𝑡ℎ𝐺𝑎𝑠 − 0.019282

∗ 𝑉2𝐺𝑠𝑡𝑜𝑟𝑎𝑔𝑒 

• Variation in the capacity factor of combined heat and power plants. 

𝑉𝑎𝑟𝐶𝐹𝐶𝐻𝑃 =  26.250991 + 0.016443 ∗ 𝐵𝑎𝑠𝑒𝑙𝑜𝑎𝑑 + 0.001694 ∗ 𝑊𝑖𝑛𝑑 + 0.000901

∗  𝑆𝑜𝑙𝑎𝑟𝑃𝑉 − 0.139477 ∗ 𝐹𝑜𝑠𝑠𝑖𝑙𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦 − 0.000836 ∗ 𝑆𝑡𝑜𝑟𝑎𝑔𝑒

+ 0.002362 ∗ 𝐹𝑙𝑒𝑥𝑖𝑏𝑙𝑒𝐷𝑒𝑚𝑎𝑛𝑑 − 0.301596 ∗ 𝑆𝑦𝑛𝑡ℎ𝐺𝑎𝑠 

• Variation in the capacity factor of nuclear power plants. 

𝑉𝑎𝑟𝐶𝐹𝐶𝐻𝑃 =  0.005535 − 5.1878𝐸 − 06 ∗ 𝐵𝑎𝑠𝑒𝑙𝑜𝑎𝑑 + 6.0674𝐸 − 07 ∗ 𝑊𝑖𝑛𝑑

+ 3.7992𝐸 − 07 ∗  𝑆𝑜𝑙𝑎𝑟𝑃𝑉 − 0.000090 ∗ 𝐹𝑜𝑠𝑠𝑖𝑙𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦 − 0.00068

∗ 𝑆𝑦𝑛𝑡ℎ𝐺𝑎𝑠 − 0.000041 ∗ 𝑉2𝐺𝑠𝑡𝑜𝑟𝑎𝑔𝑒 

• Heat losses in storage (TWh). 

𝐻𝑒𝑎𝑡𝐿𝑜𝑠𝑠𝑒𝑠𝑆𝑡𝑜𝑟𝑎𝑔𝑒

=  −3.242717 + 0.000486 ∗ 𝑊𝑖𝑛𝑑 + 0.000313 ∗  𝑆𝑜𝑙𝑎𝑟𝑃𝑉

− 0.003575 ∗ 𝐵𝑎𝑠𝑒𝑙𝑜𝑎𝑑 + 0.000810 ∗ 𝑆𝑡𝑜𝑟𝑎𝑔𝑒 − 0.051809

∗ 𝐹𝑜𝑠𝑠𝑖𝑙𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦 − 0.357013 ∗ 𝑆𝑦𝑛𝑡ℎ𝐺𝑎𝑠 − 0.021264

∗ 𝑉2𝐺𝑠𝑡𝑜𝑟𝑎𝑔𝑒 

• Losses of electricity in the storage of electric vehicles (TWh). 

𝐿𝑜𝑠𝑠𝑒𝑠𝑉2𝐺 =  −0.256752 + 0.015472 ∗ 𝑉2𝐺𝑠𝑡𝑜𝑟𝑎𝑔𝑒 + 0.00002 ∗  𝑆𝑜𝑙𝑎𝑟𝑃𝑉

+ 0.003939 ∗ 𝐹𝑜𝑠𝑠𝑖𝑙𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦 − 0.000162 ∗ 𝐵𝑎𝑠𝑒𝑙𝑜𝑎𝑑 − 0.000205

∗ 𝐹𝑙𝑒𝑥𝑖𝑏𝑙𝑒𝐷𝑒𝑚𝑎𝑛𝑑 + 0.024668 ∗ 𝑆𝑦𝑛𝑡ℎ𝐺𝑎𝑠 

 

At this point, we would like to write some notes about the accuracy of the proposed linear 

regression models to estimate variables of interest. The variation in the capacity factor of 

wind and solar-PV power stations was selected to illustrate this discussion. A regression 

model is a tool to estimate values from evidence materialized on data. The values of the 

permutations are the evidence to check the level of accuracy for the regressions. When 

raw residuals are zero, it means the estimated value is the same than the one calculated in 

EnergyPLAN. Of course, since we are doing clusters of some inputs which may have 

non-linear relationships, residuals necessarily exists and they are going to be analysed. 

The difference between the estimated and the permutation values (residuals) are 

represented in relative probability of occurrence in Figure 11 to show a general view of 

the accuracy in the regression model. On the right of the same figure, the normal 

probability plot are represented to show the degree of similarity the residuals seems to be 

regarding with a normal probability distribution. Looking the right side of Figure 11, we 

can conclude that normal distributions does not fit well the residuals. 

 



  

 
 

Figure 11. Probability of occurence (relative to the number of permutations) on the left 

side and normal probability plot on the right, for two outputs: the variation in the 

capacity factor of solar-photovoltaic –VarCFsolarPV – and wind –VarCFwind – 

technologies. 

 

Difference between the values of the permutations and the estimated values emerged from 

regression models of wind and solar-PV technologies is rendered in Figure 12. There 

were some points for the discussion. Firstly, the linear regression model underestimated 

the impact of the variability before roughly 60%, provinding less impact on the 

technology than EnergyPLAN, specialy relevant for solar-PV cases. The maximum 

absolute difference reached 49% for the case of wind as well as 84% for the case of solar-

PV. However, this changes above 60%, when regressions seemed to overestimate such 

impact into the technology. Secondly, the regression models must be upper constrained 

by the maximum capacity when implementing the approach in the IAM, since we cannot 

provide negative variations –it would mean a greater capacity factor than the maximum 

of that technology. Thirdly, it was surprising the convergence to zero variation (less 

impact) in both wind and solar figures when increasing the penetration of renewables. 

  

The convergence of capacity factors happened due to the constrains implemented by the 

authors to model Bulgaria as a closed energy system (without international power 

connections). When a region is modeled in such a way, a number of simulations may not 

satisfy system stability requiring emergency import of electricity. In this case, the results 



with emergency import present are not being considered. Thus, only the cases with 

succesful integration of RES are being analyzed which means that capacity factor 

increases with the increase of the share of RES. 

 

Actually, a reduction of more than a percentage in the capacity factor of any technology 

would lead for reducing investments since profit would be reduced. This is subjected to 

discussion because of the dynamics of fixed and variable costs of technologies –e.g., 

LCOE (Levelized Cost Of Energy) of solar-PV is decreasing more and more, from 

currently 0.142 $/kWh to 0.093-0.128 $/kWh or even less in 2030 [43]. For this study, it 

was decided to be conservative so a maximum percentage of decline in capacity factors 

of all variable renewables equal to 20% was included, for which completelly stoped new 

required capacity. VRES development continued to support the pathway to a 

decarbonized energy system whether flexibility technologies were fostered. 

 

  

Figure 12. Permutation values and corresponding estimated values for variations in the 

capacity factors of wind (left) and solar-PV(right) technologies. 

 

Going deeper into detail, greater values corresponded with odd scenarios. For instance, 

the case of the maximum difference in solar-PV stated a capacity ratio wind/solar-PV of 

1/3, the lower value of storage, and zeros in the last three variables (FlexibleDemand, 

FossilIndustry, and SynthGas). This point was located at the left on the figure.  

 

Almost all inputs of the regression models were represented in MEDEAS-BGR. 

However, a consistent approach for some technologies was required in order to be 

coherent with the regular results of this IAM, respecting the general framework of the 

system.  

 

Synthetic gas was required to model the regressions and firstly included in MEDEAS 

models. This fuel has been endogenously modelled taking into account the whole chain 

(25% of global efficiency), from the energy demanded by the economy, checking for 

available energy resources, and feedback to the economy.  

 

MEDEAS-BGR has five final fuels –electricity, heat, liquids, gases, solids. The demand 

of this hydrogen-based gas was calculated from the final energy demand of three sectors 

for gases: “Coke, Refined Petroleum and Nuclear Fuel”, “Chemicals and Chemical 



Products”, and “Basic Metals and Fabricated Metal”. So, it was assumed that gases 

demand of these industries can be replaced by synthetic gas. An exogenous policy 

progressively increased both the share of substitution and the capacity of Power-to-Gas 

facilities. The electricity required to produce synthetic gas was added to the total 

electricity demand.  

 

Since extraction of fossil fuels in MEDEAS-BGR was the last step to fulfil the demand – 

after biogas and X-to-gas transformations) – natural gas by synthetic gas could not be 

directly substituted. To solve this issue, synthetic gas was selected as first-priority fuel to 

satisfy the demand of gases (final energy), which diminished the extraction of natural gas 

so resulting in a higher security facing possible scarcity of this fossil fuel. The last 

influence took into account the reduction of GHG emissions. A bottom can either activate 

or deactivate the consequences of this flexibility option.  

 

Capacities of thermal power plants (steam power turbines, combined cycle gas turbines, 

internal engines) were also firstly modelled in Bulgaria. The rest of inputs of the 

regression models were linked according with variables of same meaning.  

 

The same scenario (Table SM 5) was introduced to show differences between simulations 

in the Bulgarian version of MEDEAS. The four simulations come from switch on/off two 

features of the model: method (original and regressions) and synthetic gas (yes or no). 

Three results of interest are plotted in Figure 14. 
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Figure 13. Results in MEDEAS-BGR for the variation in the capacity factor of wind 

power plants (first), capacity of hydropower plants (second), capacity of wind power 

plants (third), and capacity of solar-photovoltaic power plants (fourth). Four cases of the 

same scenario were represented: original method without synthetic gas (black dotted 

line), original method with synthetic gas (green continuous line), regression method 

without synthetic gas (red dotted line), and regression method with synthetic gas (blue 

continuous line). 

 

Analysing the new method (regressions) in the scenario (Figure 13), variation of capacity 

factor for solar-PV and nuclear units was zero over the simulation. However, technology 

moved by wind experimented three periods of time with reduction due variability, from 

2009 to 2019, from 2060 to 2065, and from 2075 forward, when variation sharply 

increased. Synthetic gas reduces the impact on this indicator in comparison with the 

simulation without production of this H2-fuel. As the rest of figures show, the new method 

allow for more integration of capacities of variable renewables (roughly +29% for wind 

and +75% for solar-PV in 2050) when comparing with the old version of MEDEAS-BGR, 

what partially stopped the hydropower deployment since it had less priority to deliver 

electricity than VRES. Synthetic gas restricted the deployment of VRES a little, due to 

differences in the EROI of the system. Production of this fuel increased the electricity 

demand in a poor efficiency process of 25%, which get worse the whole whole energy 

system to satisfy goods such as pannels and wind turbines. This effect can be shown in 

the solar-PV figure, which development achieves higher levels than wind. 
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Figure 14. Results in MEDEAS-BGR for the share of renewable energy in the 

electricity mix (first), share of renewables in the primary energy supply (second), 

equivalent carbon emissions (third), and GDP (fourth). Four cases of the same scenario 

were represented: original method without synthetic gas (black dotted line), original 

method with synthetic gas (green continuous line), regression method without synthetic 

gas (red dotted line), and regression method with synthetic gas (blue continuous line). 

 

Looking for information in general indicators of interest for this research, a broader scope 

of the new approach got value added. Regressions does not restrict as much as the old 

method of MEDEAS-BGR, achieving about +34% of share in the power system in 2050 

(goal of 100% renewable power system was completed in 2060) and +30% of share in 

primary energy supply in 2050 (close to 80% at the end of simulation). As one expected, 

greenhouse gas emissions fall to levels below first year of simulation, 1995. Finally, 

behaviour of regressions showed to be also beneficial for GDP of Bulgaria because of the 

0

0.02

0.04

0.06

0.08

0.1

0.12

C
O

2
 e

q
u

iv
al

en
t 

em
is

si
o

n
s 

[G
to

n
]

Time [years]

Regression_YES_SynthGas_YES Regression_YES_SynthGas_NO

Regression_NO_SynthGas_YES Regression_NO_SynthGas_NO

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

G
ro

ss
 D

o
m

es
ti

c 
P

ro
d

u
ct

 (
G

D
P

) 
[T

$
]

Time [years]

Regression_YES_SynthGas_YES Regression_YES_SynthGas_NO

Regression_NO_SynthGas_YES Regression_NO_SynthGas_NO



availability of energy to satisfy the economic demand. Among simulations, without 

production of synthetic gas was the best in this way. The reason was related to EROI 

again. A higher EROI meant less energy involved within energy system to satisfy the 

same demand. 

CONCLUSIONS 

Along this document, we examined recent literature about traditional and novel 

technologies to flexibilize the power system and reach scenarios of high renewable share 

in different parts of the energy system, especially in the power system. It was highlighted 

the energy system go forward to be smart and complex in terms of sector coupling, 

number of different technologies involved, and uses of electricity. 

 

This first insight provides a valuable comparison between the “old” and “new” method 

joining knowledge of bottom-up energy systems and top-down energy-economy-

environment IAMs. A simulation of 100% renewable power system was shown based on 

a green growth scenario, achieving high levels of primary renewable energy in the supply 

side of the system. Results delivers a considerable flexibility gap between both methods, 

being the new one more beneficial for variable renewables in scenarios of energy 

transitions. 

 

An hydrogen-based fuel was introduced in MEDEAS-BGR to realistically estimate its 

potential in this country, based on some industries. Results show Bulgaria has a modest 

potential to use hydrogen due to the weight of the related three industries in the economy. 

However, there was noted that this kind of fuel would reduce the EROI of the system 

while increase the renewable share of primary energy supply.  

 

We would like to highlight the conclussion that reductions in LCOE of VRES 

technologies can provide better energy systems without the use of hydrogen as energy 

carrier (perhaps generation and consumption in situ, but not transport and distribution of 

the fuel). 

 

Further research can include a higher number of industries and sectors using this fuel. 

Regarding with the modelling framework, it could be included as a new final energy to 

correctly follow the demands of this fuel and intermediate energy transformation, when 

data allow for get the intensity of synthetic gas by industry, as well as other possible 

hydrogen-based liquid fuels in transport sector. 

 

Next steps of this approach will be conducted towards a more complete integration – soft-

linking – of inputs and outputs within the modelling framework.  

 

Finally, we would like to mention that the approach here presented is going to be 

implemented for 35 regions ([44], appendix A) in the WILIAM model of the Locomotion 

project, what opens new insights to verify the approach in different geophysical regions 

and fossil-fuel and renewable policy frameworks. 
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SUPPLEMENTARY MATERIAL 

Table SM 1. Characteristics of the inputs for the permutation process. 

Name in the Excel Definition Units Values 

Wind [MW] Capacity of wind power plants in the region. MW 4000, 10000,20000 

PV [MW] Capacity of solar-photovoltaic power plants in the region. MW 4000, 10000, 20000,30000 

Damed hydro [MW] Capacity of Dammed Hydro power plants. MW 153, 2500 

Ppminimum [MW] 
Minimum operating capacity in Power Plants (PP1/PP2 in 

EnergyPLAN) MW 0, 1600 

Nuclear partload [-] Flexibility share of nuclear power plants (totally rigid = 1) - 0, 1 

Electrification and V2G 

share Electrification of transport sector as share - 0, 0.5, 1 

Jet fuel Jet fuel consumption in transport sector TWh/year 0, 0.1, 0.2 

Bio jet fuel Jet biofuel consumption in transport sector TWh/year 0, 0.1, 0.2 

Diesel Diesel consumption in transport sector TWh/year 0, 8.9, 17.8 

Biodiesel Biodiesel consumption in transport sector TWh/year 0, 0.5, 1 

Petrol Petrol consumption in transport sector TWh/year 0, 2.45, 4.9 

Biopetrol Biopetrol consumption in transport sector TWh/year 0, 0.942, 1.884 

Natural gas Gris gas (natural gas) consumption in transport sector TWh/year 0 

LPG Liquified Petrol Gas consumption in transport sector TWh/year 0, 2.8, 5.6 

Electricity dump charge Electricity demand for electric vehicles in dump charge mode TWh/year 0, 1 

Electricity smart charge Electricity demand for electric vehicles in smart charge mode TWh/year 0, 5.18, 10.36 

Storage Storage in electric vehicles GWh 0, 56, 112 

Charging/discharging 
capacity Capacity of electric storage in the power grid MW 0, 9800, 19600 

P2H [MW] Power-to-heat capacity (heat pumps+electric boilers) MW 0, 1898.4, 3796.8 

P2H storage [GWh] Storage of heat for power-to-heat facilities GWh 0, 56.952, 113.904 

Battery power capacity 

[MW] Capacity of batteries in the power grid MW 0, 2667.1235, 5334.247 
Battery storage capacity 

[GWh] Storage of batteries in the power grid GWh 0, 13.3355, 26.671 

PHS [MW] Capacity of pumping mode in hydropower plants MW 1400, 1711.3685, 2022.737 

PHS [GWh] Storage in hydropower plants to the pumping mode GWh 9.23, 11.283, 13.336 
High temperature storage 

[MW] 

Capacity of Rockbed storage dedicated to high temperature 

processes MW 0, 833.476, 166.952 

High temperature storage 
[GWh] 

Storage of Rockbed facilities dedicated to high temperature 
processes GWh 0, 13.3355, 26.671 

Flexible demand [-] Percentage of electricity demand that is flexible % 0, 25, 50 

Day energy flexible [TWh] Flexible electricity demand in the day TWh/year 0, 3.89, 7.78 

Week energy flexible [TWh] Flexible electricity demand in the week TWh/year 0, 2.92, 5.83 

Month energy flexible [TWh] Flexible electricity demand in the month TWh/year 0, 2.92, 5.83 

Day power flexible [MW] 

Flexible capacity in the demand side of the power system in the 

day MW 0, 713.3, 1426.6 

Week power flexible [MW] 
Flexible capacity in the demand side of the power system in the 
week MW 0, 534.98, 1069.95 

Month power flexible [MW] 

Flexible capacity in the demand side of the power system in the 

month MW 0, 534.98, 1069.95 

Industry decarbonization [-] Percentage of fossil fuels in Industry % 0, 50, 100 

Natural gas in industry 
[TWh] Natural gas in Industry TWh/year 0, 10.88, 21.76 

H2 in industry [TWh] Hydrogen in Industry TWh/year 0, 5.44, 10.88 

Electricity in industry [TWh] Electricity in Industry TWh/year 0, 5.44, 10.88 

Synthetic gas [TWh] Synthetic gas production TWh/year 0, 5, 10 



CONSTANT VALUES 
River hydro 

Capacity of Run-of-River hydropower plants. MW 800 

Nuclear 
Capacity of Nuclear power plants. MW 2000 

PP1 
Capacity of back-up (traditional fossil fuels) power plants. MW 4000 

CHP 
Capacity of Combined Heat and Power plants. MW 1464 

District heating in gr3 
Demand of district heating in group 3. TWh 12.55 

District heating in gr2 
Demand of district heating in group 2 TWh 0.52 

Natural gas in HH 
Demand of natural gas in households. TWh 1.89 

Biomass in HH 
Demand of biomass in households. TWh 9.55 

Fuels in power plants and 

boilers 

Fuel distribution. Biomass and natural gas may be replaced by 

synthetic gas in case hydrogen is considered a flexibility option. - 50:50 

 

Table SM 2. First part of the Python code with which permutations are done. 

from tkinter import filedialog 

from tkinter import Tk 

from tkinter import * 

import openpyxl 

root = Tk() 

root.input = filedialog.askopenfilename(filetypes=((".xlsx", "*.xlsx"), ("All files", 

"*.*")), 

                                        title="Open input data table") 

root.withdraw() 

folder_EnergyPLAN = filedialog.askdirectory(title="Open EnergyPLAN folder") 

 

'--------------------define input file----------------------------' 

path = ((root.input)) 

wb_obj = openpyxl.load_workbook(path) 

sheet_obj = wb_obj.active 

m_row = sheet_obj.max_row 

m_col = sheet_obj.max_column 

'-------------------define file storage location-------------------------------' 

for j in range(1, m_col+1): 

    name = sheet_obj.cell(row=2200, column=j).value 

    outputFile = open(r'{0}\energyPlan 

Data\Data\{1}.txt'.format(folder_EnergyPLAN,name), 'w') 

    for i in range(1, m_row + 1): 

        cell_obj = sheet_obj.cell(row=i, column=j) 

        print(cell_obj.value, file=outputFile) 

    outputFile.close() 

 

Table SM 3. Second part of the Python code with which permutations are done. 

'-------------------import plugins-----------------------' 

from tkinter import filedialog 

from tkinter import Tk 

from tkinter import * 

import os 

import subprocess 

import openpyxl 

import pyautogui 



import time 

'-------------------define file locations-----------------------' 

root = Tk() 

 

folder_EnergyPLAN = filedialog.askdirectory(title = "Open EnergyPLAN folder") 

folder_csv_xlsx = filedialog.askdirectory(title = "csv folder") 

outputtable = filedialog.askopenfilename( filetypes = ( (".xlsx", "*.xlsx"), ("All files", 

"*.*") ),title = "Open case name table" ) 

 

'-------------------run simulations in EnergyPLAN-----------------------' 

 

 

path = (outputtable) 

wb_obj = openpyxl.load_workbook(path) 

sheet_obj = wb_obj.active 

m_row = sheet_obj.max_row 

m_col = sheet_obj.max_column 

time.sleep(10) 

 

for j in range (1, m_col+1): 

    name = sheet_obj.cell(row=1, column=j).value 

    pyautogui.click(119, 96) 

    pyautogui.typewrite('{}.txt'.format(name)) 

    time.sleep(0.05) 

    pyautogui.typewrite(['enter']) 

    t1= time.time() 

    pyautogui.moveTo(317, 119) 

    time.sleep(0.05) 

    while pyautogui.pixel(360, 119)[2] != 69: 

        time.sleep(0.05) 

        t2 = time.time() 

        if pyautogui.pixel(360, 119)[2] == 69: 

            break 

        if t2-t1 > 10: 

            pyautogui.typewrite(['enter']) 

            pyautogui.typewrite(['enter']) 

    pyautogui.click(317, 119) 

    time.sleep(0.05) 

    while pyautogui.pixel(360, 119)[2] != 69: 

        time.sleep(0.05) 

        if pyautogui.pixel(360, 119)[2] == 69: 

            break 

    time.sleep(0.4) 

    POWERSHELL_COMMAND = 

r'C:\WINDOWS\system32\WindowsPowerShell\v1.0\powershell.exe' 

    subprocess.Popen([POWERSHELL_COMMAND, 

                      'Get-clipboard > {0}\{1}.csv'.format(folder_csv_xlsx, name)], 

                     stdout = subprocess.PIPE, 

                     stderr = subprocess.PIPE) 

    time.sleep(0.8) 



    os.system('cmd /c "echo off | clip"') 

    time.sleep(0.1) 

 

for j in range(1, m_col + 1): 

    name = sheet_obj.cell(row=1, column=j).value 

    from pathlib import Path 

    file = Path() / (r'{0}\{1}.csv'.format(folder_csv_xlsx, name))  # or Path('./doc.txt') 

    size = file.stat().st_size 

    if size < 70000: 

        pyautogui.click(119, 96) 

        pyautogui.typewrite('{}.txt'.format(name)) 

        pyautogui.typewrite(['enter']) 

        pyautogui.moveTo(317, 119) 

        time.sleep(0.1) 

        while pyautogui.pixel(360, 119)[2] != 69: 

            time.sleep(0.1) 

            if pyautogui.pixel(360, 119)[2] == 69: 

                break 

        pyautogui.click(317, 119) 

        time.sleep(0.1) 

        while pyautogui.pixel(360, 119)[2] != 69: 

            time.sleep(0.1) 

            if pyautogui.pixel(360, 119)[2] == 69: 

                break 

        time.sleep(2.5) 

        POWERSHELL_COMMAND = 

r'C:\WINDOWS\system32\WindowsPowerShell\v1.0\powershell.exe' 

        subprocess.Popen([POWERSHELL_COMMAND, 

                          'Get-clipboard > {0}\{1}.csv'.format(folder_csv_xlsx, name)], 

                         stdout=subprocess.PIPE, 

                         stderr=subprocess.PIPE) 

        time.sleep(2.5) 

        os.system('cmd /c "echo off | clip"') 

        time.sleep(0.5) 

    else: print(name, 'is ok') 

 

Table SM 4. Matlab code to generate the information of interest of  linear regression 

models. 

%% Import data from spreadsheet 

% Regression models for Bulgaria 

% 

clear, clc 

%% Setup the Import Options and import the data 

opts = spreadsheetImportOptions("NumVariables", 19); 

  

  

% Specify sheet and range 

opts.Sheet = "Regression"; 

opts.DataRange = "A2:S34993"; 

  



% Specify column names and types 

opts.VariableNames = ["Wind", "SolarPV", "DamHydro", "Backing", 

"ElectTransport", "P2H", "Storage", "FlexibleDemand", "FossilIndustry", 

"SynthGas", "VarCFwind", "VarCFsolarPV", "VarCFRoR", "VarCFDamHydro", 

"VarCFPP", "VarCFCHP", "VarCFNuclear", "HeatLossesStorage", "LossesV2G"]; 

opts.VariableTypes = ["double", "double", "double", "double", "double", "double", 

"double", "double", "double", "double", "double", "double", "double", "double", 

"double", "double", "double", "double", "double"]; 

  

% Import the data 

currentFolder = pwd; 

pathfile = strcat(currentFolder,'\Bulgaria.xlsx'); 

tbl = readtable(pathfile, opts, "UseExcel", false); 

  

%% Clear temporary variables 

clear opts 

  

  

%% Convert to output type 

Wind = tbl.Wind; 

SolarPV = tbl.SolarPV; 

DamHydro = tbl.DamHydro; 

Backing = tbl.Backing; 

ElectTransport = tbl.ElectTransport; 

P2H = tbl.P2H; 

Storage = tbl.Storage; 

FlexibleDemand = tbl.FlexibleDemand; 

FossilIndustry = tbl.FossilIndustry; 

SynthGas = tbl.SynthGas; 

  

VarCFwind = tbl.VarCFwind; 

VarCFsolarPV = tbl.VarCFsolarPV; 

VarCFRoR = tbl.VarCFRoR; 

VarCFDamHydro = tbl.VarCFDamHydro; 

VarCFPP = tbl.VarCFPP; 

VarCFCHP = tbl.VarCFCHP; 

VarCFNuclear = tbl.VarCFNuclear; 

HeatLossesStorage = tbl.HeatLossesStorage; 

LossesV2G = tbl.LossesV2G; 

  

name_variables = tbl.Properties.VariableNames; 

  

%% Clear temporary variables 

clear opts tbl 

  

%% Automatic Linear regression model --> VarCFwind 

X_all = [Wind, SolarPV, DamHydro, Backing, ElectTransport, P2H, Storage, 

FlexibleDemand, FossilIndustry, SynthGas]; 

criteria_value = 0.05; % To control the while loop (criteria: when all the correlation 

values are below 0.05, brake the loop. 



iter_y = 1; % to control the name of the sheet in the Excel file 

  

for output = [VarCFwind, VarCFsolarPV, VarCFRoR, VarCFDamHydro, VarCFPP, 

VarCFCHP, VarCFNuclear, HeatLossesStorage, LossesV2G] 

    size_inputs = size(X_all); 

    max_val_R = 1; 

    A_corr = [Wind, SolarPV, DamHydro, Backing, ElectTransport, P2H, Storage, 

FlexibleDemand, FossilIndustry, SynthGas, output]; 

  

    Intercept = 0; % Independent term of the equation in the regression model 

    dependent_factors = zeros(1,size_inputs(2)); % To save the dependent terms of the 

regression model, one by input took into account 

    n = 1; 

    names_result = {}; % To save the names of the inputs selected in correct order 

  

    while max_val_R > criteria_value 

        % Matrix of correlation (R) 

        R = corrcoef(A_corr); 

        max_val_R = max(abs(R(size_inputs(2)+1,1:size_inputs(2)))); 

        [row_max,c_max] = find(abs(R) == max_val_R); 

        names_result(n,1) = name_variables(row_max(2)); 

  

        % Regression model 

        mdl = fitlm(X_all(:,row_max(2)), output); 

        Residuals = table2array(mdl.Residuals(:,1)); % Raw Residuals are selected 

        Intercept = Intercept + mdl.Coefficients.Estimate(1); 

        dependent_factors(n) = mdl.Coefficients.Estimate(2); 

  

        % New correlation matrix and update variables 

        A_corr = [Wind, SolarPV, DamHydro, Backing, ElectTransport, P2H, Storage, 

FlexibleDemand, FossilIndustry, SynthGas, Residuals]; 

        output = Residuals; 

        R = corrcoef(A_corr); 

        max_val_R = max(abs(R(size_inputs(2)+1,1:size_inputs(2)))); 

        n = n+1; 

    end 

  

    % Write data in the Excel file 

    filename = 'Bulgaria_MatlabResults_Autom.xlsx'; 

  

    Sheet_name = char(name_variables(size_inputs(2)+iter_y)); 

    xlswrite(filename, {'Independent factor'}, Sheet_name,'A1') 

    xlswrite(filename, Intercept, Sheet_name,'B1') 

  

    TableResults = table(names_result, 

transpose(dependent_factors(1:size(names_result)))); 

    writetable(TableResults, filename, 'Sheet', Sheet_name, 'Range', 'A3') 

    iter_y = iter_y + 1; 

     

    % Save figure 



    fig = plotResiduals(mdl); 

    xlabel(strcat('Residuals of' ,{' '}, Sheet_name)); 

    ylabel('Probability of occurrence, normalized')  % The area of each bar is the 

relative number of observations. The sum of the bar areas is equal to 1. 

    saveas(fig, Sheet_name, 'png'); 

end 
 

 

Table SM 5. Relevant parameters defining the green-growth scenario introduced in 

MEDEAS-BGR. 
Scenario inputs & assumptions Value 

Desired GDPpc growth (2015-2060 yearly 

average) 

3 %/year 

Population growth (2015-2060 yearly average) -0.59 %/year 

Target labour share 2050 50 % 

A matrix Constant values of 2009 IOT. 

Phase-out oil for electricity and heat? No, constant current share. 

Efficiency improvements (Final energy intensity) 2x times increase historical efficiency 

improvement trends by sector/households and 

fuel. 

Inland and households transport. Electric vehicles&hybrid shares target per category in 2050. 

4-wheel vehicles (including light cargo) 60 % 

2-wheel vehicles 92.54 % 

Heavy vehicles 20 % 

Bus 90 % 

Train 95 % 

Nuclear installed capacity No more nuclear capacity is installed. Current 

capacity is depreciated over the simulation. 

Recycling rates of minerals 

(19 minerals) 

5 %/year of improvement in the rate up to 

maximum. 

Renewables 

Potential of installed capacity of power plants 

Hydropower 17.52 TWh 

Geothermal 4.38 TWh 

Pumped Hydropower Storage 4.38 TWh 

Wind onshore 21.9 TWh 

Wind offshore 21.9 TWh 

Oceanic 0.438 TWh 

Solar-CSP 0 TWh 

Annual capacity growth of RES for electricity 

Hydropower 1.4 %/year 

Geothermal 6.8 %/year 

Solar-PV 19 %/year 

Solar-Thermal (for heating) 14 %/year 

Solar-CSP 7.2 %/year 

Average solar irradiation 1300 kW/m2 

Wind onshore 17.4 %/year 

Wind offshore 25.4 %/year 

Oceanic 0.8 %/year 

Solid bioenergy 7 %/year 

2nd Gen cropland 8 %/year 

3rd Gen cropland (starting 2025) 8 %/year 

Residues for non-biofuels (starting 2020) 20 %/year 

Biogas 30 %/year 



Non-renewable energies depletion curves** 

Conventional oil Mohr15 high-EU [45] 

Unconventional oil Mohr15 Low-EU [45] 

Conventional gas Mohr15 BG-EU [45] 

Unconventional gas Mohr15 Low-EU [45] 

Coal Mohr15 BG-EU [45] 

Uranium EU domestic uranium extraction 2015 

Climate Change impacts No activated 

Power-to-Gas 

Synthetic gas demand 
Ramp from 0% to 100% of gases demand of three 

industries, from 2021 to 2041. 

Capacity of Power-to-Gas facilities Ramp of slope 0.2 MW/year from 2021 to 2041 

Capacity factor of Power-to-Gas facilities 0.95 

Thermal power plants: time of planning [years] / time of construction [years] / lifetime [years] / 

heat-power ratio 

Steam power turbines 1 / 2 / 40 / 4.15 

Combined-cycle gas turbines 1 / 2 / 40 / 4.15 

Diesel internal engines 1 / 2 / 40 / 4.15 

Required capacity of thermal power plants 
50 MW/year for the three categories, from 2018 

to 2050. 
 

Table SM 6.probability distributions of the raw residuals by linear regression model 

used in the article can be shown below. 

 

 
** The methodology to build the depletion curves from time series data from Mohr et al is documented in [46]. 



 

 



 

 



 

 
 


