
Unlinkability through Access Control:
Respecting User-Privacy in Distributed Systems

Apu Kapadia∗, Prasad Naldurg, Roy H. Campbell
University of Illinois at Urbana-Champaign, Urbana, IL, USA

{akapadia, naldurg, rhc}@cs.uiuc.edu

Abstract

We propose a policy-based framework using
RBAC (Role Based Access Control) to address
the unlinkability problem in the context of corre-
lating audit records generated from access to dis-
tributed services. We explore this problem in an
environment where the enforcement of access con-
trol policies is decentralized and ensuring policy
consistency as the protection state of the system
evolves becomes important. We introduce the no-
tion of an audit flow associated with a user’s ac-
cess transactions, which represents the flow of in-
formation through audit logs within an adminis-
trative domain. Users of our system can present a
set of audit flows to a decision engine that uses
global access rules to detect potential linkability
conflicts. Users can use this information to specify
discretionary unlinkability requirements, depend-
ing on whether these accesses can expose sensi-
tive attributes. We present an algorithm that can
generate policy constraints based on these discre-
tionary requirements. We also show how these pol-
icy constraints can be attached to individual audit
log records to enforce unlinkability in a distributed
manner. We prove that our proposed algorithm
generates constraints that are secure and precise
under strong tranquility assumptions with respect
to the system’s protection state. When we relax
these assumptions, we show how versioning can
cope with evolving protection state, trading off pre-

∗Apu Kapadia is funded by the U.S. Dept. of Energy’s
High-Performance Computer Science Fellowship through
Los Alamos National Laboratory, Lawrence Livermore Na-
tional Laboratory, and Sandia National Laboratory.

cision to maintain the security of deployed poli-
cies.

1. Introduction

We examine the problem of preventing admin-
istrators from accessing (or “linking”) multiple
audit records corresponding to transactions ini-
tiated by the same user. Our problem is moti-
vated by user identity and location privacy con-
cerns in our university environment, where both
physical access1 to our facilities as well as vir-
tual access to computing resources across our de-
partment and the wider campus are controlled by
software. While the problem of loss of privacy
when a user’s actions are observed in person by
a third party persists, the integration of physical
and virtual access control mechanisms exposes a
new concern. Users are now worried about other
users being able to track their movement as well
as their service-access behavior remotely by cor-
relating system audit logs. These system audit
logs are stored in various databases with indepen-
dent access control mechanisms, making the en-
forcement of unlinkability a difficult task. While
centralized mechanisms can solve such problems
in theory, such approaches are not practical in our
setting. They present a bottleneck for distributed
access to resources and also provide a single point
of failure for access control.

1Users have to swipe their i-card to gain access to the
building, labs, offices etc. Each access attempt, along with
the user-id and time stamp as well as the access decision,
is recorded in a database.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4820324?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Traditionally, unlinkability is defined as the in-
feasibility of an adversary to correlate two trans-
actions initiated by the same user who does not re-
veal his/her identity, even when the user presents
the same set of attributes to gain access. To ad-
dress this problem, researchers have proposed a
number of cryptographic mechanisms to construct
anonymous credentials [3, 1, 2, 8] that make it
computationally infeasible for a server to link the
use of these credentials. However, even if a user
presents an anonymous credential to access a ser-
vice, the set of users allowed to possess those cre-
dentials in the first place may be small enough
compromise anonymity. Furthermore, while many
of these schemes rely on providing user anonymity,
there are systems in which users cannot be anony-
mous. For example, an organization may be re-
quired to keep detailed audit records about who
accessed payroll information by law. However,
access to such information should only be pro-
vided to authorized users. In such systems, it be-
comes important to provide unlinkability through
access control, allowing for linkability in only cer-
tain cases, e.g., legal subpoenas. We also note
that cryptographic mechanisms are also vulnera-
ble to collusion attacks between verifiers and is-
suers that correlate timing information for access
logs [9], and adequate access control mechanisms
can prevent such attacks.

In this context, we introduce policy-based un-
linkability as the problem of restricting access
to multiple audit records belonging to the same
user, corresponding to multiple access transac-
tions, which can be correlated to expose sensitive
information. For example, two or more log records
that can link a user Alice’s identity with her loca-
tion or other privacy sensitive attributes must not
be accessible by administrative users unless they
are explicitly authorized by a mandatory system
policy or allowed by Alice. Our goal therefore is
to provide a framework that can analyze conflicts,
and change the authorizations (except when they
are explicitly required by system policy) to access
audit logs, and prevent such exposures. For ex-
ample, the system may inform Alice that users in
role Network Administrator can access informa-
tion about her network transactions. There may

be some Network Administrators who are also Stu-
dents and Research Programmers. Based on Al-
ice’s privacy requirements, she can then request
that Network Administrators who are Students be
prevented from linking her audit records. In ef-
fect, the system allows Alice to negotiate a set of
constraints to prevent certain administrative users
from linking her transactions.

In this aspect, our work is related to the Sepa-
ration of Duty (SoD) problem [17] in the context
of RBAC, where different tasks and their associ-
ated authorizations are distributed among multi-
ple users to prevent fraud and errors. Our problem
is similar to the SoD problem in the sense that we
are interested in engineering an appropriate set
of roles with specific audit access authorizations
subject to constraints. However, while the SoD
problem is to prevent a single user from perform-
ing two or more related actions on single object in
the context of a work flow, our problem is in pre-
venting a single user from accessing two or more
related data objects, across different audit flows.
This distinction impacts the way in which unlink-
ability constraints can be enforced. With respect
to the SoD problem, dynamic SoD constraints in
the context of a work flow can be enforced by an-
notating the history of who accessed the object to
the object itself, and preventing access to the same
user [13]. This is not a viable option for our un-
linkability problem as each object can only record
its local history and cannot exchange this infor-
mation with other related objects without explicit
coordination.

Furthermore, the task of building a system that
can accommodate for individual users’ unlinkabil-
ity constraints for any ordering of access transac-
tions, with guarantees that extend over long pe-
riods of time, is formidable. It is not feasible for
the security engineers to simulate all the possi-
ble access transaction scenarios for different users,
identify unlinkability violations and enforce au-
thorizations accordingly, especially when new ser-
vices, users and modes of interaction are added
periodically. To tackle this problem, we propose
a policy engineering framework where a system
entity called the Policy Negotiation Server (PNS)
works with the user to refine the authorizations

2

to access audit traces based on discretionary un-
linkability concerns. The PNS collects informa-
tion about different audit logs and their associ-
ated authorized users and stores it in a policy
database. A user Alice can present to the PNS
a set of access transactions constituting a session,
ask the PNS to analyze these sessions for conflicts,
and subsequently update this set by adding new
transactions. We explore this problem in the con-
text of RBAC [14, 4] (Role-Based Access Control)
system, where users are assigned to roles, which
are associated with a set of permissions. The
PNS identifies conflicts and generates authoriza-
tion constraints in terms of access restrictions on
user roles, which can be attached to Alice’s audit
flow records in our system.

Assuming that we trust the underlying enforce-
ment mechanisms, given a set of user transac-
tions, we show how we can generate policy con-
straints that are both secure and precise with re-
spect to enforcing unlinkability properties. We
first prove these results under the strong tranquil-
ity assumption where the user-role assignments
and permission-role assignments do not change
over a session. Subsequently, we show how we
can relax these assumptions and present an algo-
rithm that uses versioning to handle changes in the
authorizations under a weak tranquility assump-
tion, sacrificing precision for the ability to change
protection state. Using versioning we can always
identify the set of users for which the policies are
secure and precise. In both cases we show how
users can add new flows to their sessions, refining
their unlinkability requirements iteratively.

The rest of the paper is organized as follows:
In Section 2 we present an architectural overview
of system components and describe the basic pol-
icy negotiation protocol. Section 3 describes our
approach, highlighting the assumptions, formulat-
ing the problem, and presenting our algorithm to
generate policy constraints in detail. This section
also presents a proof of how our algorithm is se-
cure and precise under the strong tranquility as-
sumption. Section 4 relaxes this assumption, and
presents results for systems with evolving protec-
tion state. Section 5 presents related work and we
present our conclusions in Section 6.

2. Architecture

In this section, we provide a brief overview of
our system architecture. We introduce some ter-
minology and outline the steps involved in policy
negotiation shown in Fig. 1.

Policy

Negotiation

Server

Access
Transactions

User

1 2

4

5

6

3

7

Audit log databases

���������
���������
���������
���������

�������
�������
�������
�������

�������
�������
�������
�������

��������������

�
�
�
�
�
�
�
�
�
�
�

Policy
Database

Figure 1. System Architecture

We assume a distributed system for sharing
resources that allows us to specify and enforce
system-wide access control policies. Users in the
system access services by presenting credentials
resulting in an access transaction. We focus on
a single administrative domain, where users may
engage in attribute-based authentication, possibly
with cryptographically unlinkable certificates, al-
though identity-based authentication may be used
as well. Users negotiate unlinkability policies with
a policy negotiation server (PNS) that generates
policy constraints, which when enforced correctly
prevents any exposure of sensitive information
through audit log analysis by other administrative
users.

Information related to an access transaction
(e.g., audit logs for location tracking) is stored in
one or more databases. We define an audit flow
for a given transaction as the set of databases and
their associated authorizations that define the pos-
sible flow of audit information to other users in
the organization. A collection of transactions and
their associated audit flows that a user desires to
keep unlinkable is called a session. Sessions are
associated with individual users and may be open-
ended, i.e., they last for the lifetime of the system

3

and users are allowed to update the list of transac-
tions in their session. As mentioned earlier, users
and access permissions are organized into roles us-
ing RBAC.

We now describe a high level overview of our
system with the aid of Figure 1. (1) In the first
step, a concerned user Alice sends her session in-
formation to the policy negotiation server (PNS).
This is a set of unique identifiers corresponding
to access transactions. In steps (2)-(3), the PNS
looks up relevant information for each service in-
cluding access policies and flow policies (replica-
tion of data between servers), builds the audit
flows I1, · · · , In, and analyzes them for unlinka-
bility conflicts. The PNS presents Alice with a
set of roles whose users can access her audit log
information from two or more audit flows.

In Step (4) Alice identifies her discretionary un-
linkability requirements in terms of roles whose
users she wants to prevent from linking her au-
dit information. This approach places the bur-
den of specifying useful privacy policies on Alice.
In a real system, Alice can be guided to make
an informed choice based on standard organiza-
tional policy. The granularity of access to records
in a database can be finer, and Alice can spec-
ify requirements for specific fields in records. For
simplicity of notation, we only model access to a
database record as an all-or-nothing permission,
and this can be extended to finer-grained permis-
sions as necessary.

As mentioned earlier, the PNS may not be able
to enforce some of Alice’s choices if there are
mandatory access requirements. After Alice and
the PNS agree on the policies, in (5) the PNS
sends the Alice a certificate with policy constraints
for her audit records. This certificate is a dig-
itally signed and can be tagged to Alice’s audit
data and sent to the databases as the informa-
tion is generated. The PNS also stores Alice’s
discretionary policies and session information in
the policy database. In Steps (6)-(7), for each ac-
cess transaction, Alice presents these certificates,
which are attached to audit records that make up
the audit flows. These policy constraints enforce
her unlinkability requirements for the session. We
assume that all interactions are cryptographically

secured for authenticity, confidentiality, and in-
tegrity.

Alice may update her session at any time and
introduce new transactions, which may introduce
new conflicts. The PNS generates new constraints
in this situation and sends the updated credentials
to Alice. We assume that Alice has no motiva-
tion to delete any transactions from her session.
Therefore, we can guarantee that all old policies
will still be honored and each successive iteration
of our system will be a refinement of the original
access restrictions. However, updating policy con-
straints every time there is a change in protection
state can be prohibitively expensive. In Section 4,
we show how we can maintain security by trad-
ing precision for the ability to change protection
state, without impacting the privacy guarantees of
previously issued policy constraints.

We deliberately choose to limit the functional-
ity of our PNS as a decision engine that gener-
ates and distributes access constraints. Users (or
agents working on behalf of the user) have to at-
tach these constraints to their audit records. An
alternative design would be to centralize policy
decision making at the PNS and require that all
databases contact the PNS every time an audit
record is accessed, to evaluate whether it should
be allowed or denied based on the current set of
sessions and discretionary policies in the policy
database. While this alternative design is more
precise with respect to enforcement of the privacy
policies, we believe it induces a performance over-
head and may create a single point of failure.

Throughout this paper we will refer to three
types of policies. Flow policies are explicit repre-
sentations of data flows between databases. For
example a policy such as (d1, d2) allows database
d1 to supply copies or transformations of data
to d2. The system can use these flow policies
to construct graphical representations of audit
flows throughout the system. Access policies are
Permission-Role assignments (d, r), where role r
may access database d. Lastly policy constraints
are described in Section 3.5, and are attached
to audit records. Access to an audit record is
granted to users based on the access policy for
that database, and the policy constraints of that

4

audit flow, which can override the former.
An important point to note in our framework

is that we address the unlinkability problem at
the level of RBAC access permissions, and assume
that the system is aware of the semantics of how
the information stored in the audit logs can be
linked to expose sensitive user information. How-
ever, we do not require that users are aware of the
semantic relationships across audit logs. If a user
is not aware of the relationships, our system can
still enforce a default policy that is conservative
and prevent anybody who has access to two or
more flows from accessing audit records in both.
Techniques such as information hiding, anonymiz-
ers and statistical mixing etc., address the unlink-
ability problem at the semantic level by modify-
ing the contents of the databases. We believe that
using access control to enforce unlinkability com-
plements these other approaches and our solution
explores the effectiveness of using access control
permissions to perform audit flow analysis com-
prehensively, and prevent linkability in this con-
text.

3. Approach

In this section we present our algorithm for con-
structing audit flow graphs and for generating pol-
icy constraints from these graphs based on the
system’s mandatory requirements and the user’s
discretionary unlinkability policies. Users in the
system typically interact with various services over
the lifetime of the system. The set of access trans-
actions that a user wishes to keep unlinkable is
referred to as a session.

Our first goal is to provide users with a set of
mechanisms to negotiate and enforce unlinkabil-
ity for all their transactions as specified in their
session. We explain our system with regard to a
particular user Alice who wishes to keep her trans-
action information unlinkable from other users in
the system. For example, Alice may decide that
her location information should not be linked with
the use of physical services that she may access
anonymously. Correlating logs with the location
database would expose her identity. Hence, Al-
ice may want to restrict the ability of other users

in the system to access both audit flows, viz., lo-
cation information and Alice’s service audit trail.
We also show how we can extend this protection
when Alice iteratively adds transactions to her ses-
sion, which we call “open-ended sessions.”

One way to specify policy constraints to pre-
serve unlinkability for Alice’s session is to find all
the users who can access information from two or
more flows and restrict their access to sensitive
audit records. We propose that data objects in
an audit flow are tagged with these access policy
constraints in terms of lists of users that are not
authorized to view the data. We rely on the trust-
worthiness of the underlying access mechanisms to
enforce these authorizations correctly. Since we
assume that the system is working with the users
to protect their privacy, access is granted only if
these constraints are not violated.

One of the issues with this approach is that
these access lists associated with audit flow
records could become very large. Furthermore,
changes in user permissions during the lifetime of
the session will affect the validity of the policy con-
straints. To improve the compactness of policy
representation and handle dynamically changing
authorizations, we feel that an RBAC system can
address these concerns effectively. In an RBAC
system, users are removed and added to roles, and
the permissions for roles will not be affected by
these operations.

We now propose an approach to enforce unlink-
ability for Alice’s transactions, defined by her ses-
sion, by finding all possible roles that are explic-
itly granted read access to each audit flow. We
then examine all the users in this set of roles and
construct a set of overlapping roles, i.e., the set
of roles that these users can activate in the sys-
tem. Roles with a common user are overlapping
roles. The main idea here is that if two audit flows
have common overlapping roles, then the flows are
potentially linkable. A common overlapping role
indicates that there may be users with that role
who can access both audit flows.

For example, say role Administrator can read
audit flow I1. Now suppose that there are two
users u1, u2 in the system with the Administra-
tor role that also possess the Student role, which

5

is an overlapping role. Further, suppose that
u1 in the Teaching Assistant role can read au-
dit flow I2. Since Student appears in both au-
dit flow graphs, it is a common overlapping role.
Since there is a particular user u1 in role Student
who can access both flows, we call Student a con-
flicting role. An access policy constraint can be
generated if Alice would like to prevent Students
from linking her flows. Alice could specify “Do
not allow any user whose role set contains all the
roles 〈Student ,Administrator ,TeachingAssistant〉
to access audit flow records tagged I1 and I2.”
While this will prevent Students from accessing
Alice’s information, it will still allow other (non-
Student) Administrators and Teaching Assistants
to access I1 and I2 respectively. Furthermore, stu-
dents who are not linkability threats (i.e., those
who can access only one flow), will still be allowed
to access Alice’s audit records. A reference mon-
itor enforcing access to the audit record database
will check if a particular user has all three roles
at the time of access and deny access appropri-
ately. This is more concise than listing all the
possible users that can link audit flows. We now
formalize these concepts, and show how we can
provide users with unlinkability with respect to
audit flows. The key idea here is that Alice can
specifically deny users of certain roles from linking
her information.

3.1. Notation

Our system includes roles, databases, and users.
In this paper we refer to these entities both in the
context of general access control, and as vertices in
graphs. For simplicity, we use the same notation
for both contexts, instead of having separate “role
vertices” for the corresponding roles, and so on.

3.2. Audit flow graph

Let the set of roles in the system be Γ, and
the set of databases be ∆. Let U be the set of
users in our system. Let URA and PRA be the
user-role assignment and the permission-role as-
signment, defined according to standard RBAC
terminology. URA(u) returns all the roles that

a user u can activate. Similarly, PRA(r), returns
all the permissions or accesses allowed to a role r.

An audit flow graph for an access transaction
is a directed graph I = (V,E) with the set of ver-
tices V ⊆ ∆∪Γ, representing databases, roles, and
overlapping roles. Overlapping roles are discussed
shortly. A directed edge (u, v) ∈ E indicates the
flow of audit information from u to v. We identify
the first database in the audit flow Ii of a given
user as the root vertex δi for that flow.

R2

R1

R4R3

R2 R5 R6
���
���
���
���

���
���
���
���

R7 R4

���
���
���
���

���
���
���
���

R8

2I

���
���
���
���

���
���
���
���

R1

���
���
���
���

���
���
���
���

R3

1

11

2

2 2 2

1 1

1

2 2

2 2

I1
Database 1 Database 2

Database 4Database 3

root node

root node

1,2 1,2

1,2 1,2 2222

1
1

1

1

22
2 2 2

2

{u1}

{u5}{u2}
{u2}

{u1,u2}

{u2,u4}
{u2}2 2 2

{u3}

{u2}

{u3} {u3} {u4}{u4}

{u4}

{u3}

2

Figure 2. Session Graph

We now describe how to create an audit flow
graph, given a root vertex that represents Alice’s
transaction, and show how to construct the com-
bined session graph for multiple audit flows. Fig-
ure 2 represents an example session graph for two
audit flows, which we will refer to for clarity. The
audit flow graph Ii for transaction i for user u is
constructed as follows:

1. Adding databases: The root vertex δi rep-
resents the start of the audit flow Ii. Starting from
this vertex, we iteratively add vertices and edges
corresponding to all databases that receive audit
log information about the access transaction δi ini-
tiated by the user. This operation is repeated until
all databases for the audit flow have been added
to the audit flow graph. For databases d1, d2 we

6

have (d1, d2) ∈ E if and only if the audit flow in-
formation for that transaction flows from d1 to d2.

In Figure 2, databases are represented as rect-
angles. The root vertex for I1 is Database 1. As
information related to audit flow I1 flows from
Database 1 to Database 2, we have a directed edge
from Database 1 to Database 2. Similarly, we have
audit flow I2 flowing from Database 3 to Database
4.

2. Adding roles: For each database d ∈ V ,
determine the set of roles R ⊆ Γ with read permis-
sion to database d. These roles are added to the
audit flow graph vertices V , along with the edges
(d, r) for each r ∈ R. We have (d, r) ∈ E if and
only if role r has permission to read database d.

In Figure 2, roles are represented as circles.
The individual access policies of Database 1 and
Database 2 allow read access to users with role
R1. Hence we have directed edges from Database
1 and Database 2 to R1, and so on.

3. Adding overlapping roles: For each role
r ∈ V , we generate the corresponding overlapping
roles, and include directed edges to them. Let
O ⊆ Γ be the set of overlapping roles such that
for every o ∈ O, some user u can activate role o in
addition to r. We call r the parent of overlapping
role o. We have (r, o) ∈ E if and only if o is an
overlapping role of r.

Consider the following URA for a
system with five users u1, u2, u3, u4, u5.
URA(u1) = {R1, R8}, URA(u2) = {R1, R3, R7},
URA(u3) = {R2, R5, R6}, URA(u4) = {R3, R4}
and URA(u5) = {R3, R8} Figure 2 shows the
overlapping roles overlapping roles (represented
as squares). Role R1 has overlapping roles
{R1, R3, R7, R8}, R2 has overlapping roles
{R2, R5, R6}, and so on. The user-sets on edges
of overlapping roles show the users common to
both roles.

We now examine the complexity of creating an
audit flow graph for a given transaction. In Step
1, at most |∆| new vertices can be added to the
graph. For each vertex, at most |∆| − 1 new
edges can be added. Therefore we are bounded by
O(|∆|2) operations. In Step 2, for each database,
at most |Γ| role edges can be added to the graph.
Therefore Step 2 is bounded by O(|∆||Γ|) opera-

tions.

3.2.1 Constructing the AURA graph

Step 3 involves generating overlapping roles. We
show how we can amortize the cost of this step
by augmenting a standard URA mapping to in-
clude overlapping role assignments. We call this
the AURA graph (Augmented User Role Assign-
ment graph). A directed edge (u, r) mean that
user u is assigned to role r. An undirected edge
(r1, r2) means that r1 and r2 are overlapping roles.
Each undirected edge is associated with the set of
overlapping users for roles r1 and r2, U(r1, r2). In
Section 3.3 we will use these user-sets to identify
conflicting roles. A conflicting role is a role that
contains one or more users who can access two or
more audit flows within a session.

We show how we can use the AURA graph
to maintain overlapping role information, and de-
scribe how to update an AURA graph when the
protection state of the system changes:

Adding a Role: This operation does not create
any extra overhead, since overlapping roles are not
affected until a User-Role assignment changes.

Adding a User-Role assignment: If a User-Role
assignment (u, r) is added, then for each of u’s
roles r′ ∈ URA(u), the undirected edges (r, r′) are
added unless these edges exist already, and u is
added to the set U(r, r′). There are |URA(u)| op-
erations, which is bounded by |Γ|. The time com-
plexity for set union for adding u to U(r, r′) is con-
stant (using hash tables). For example, consider
the AURA graph in Figure 3(a). We omit self-
loops (r, r) with user-sets U(r, r) equal to the set
of all users in r. We add the assignment (u2, R1)
as shown in Figure 3(b). We must now update
edges (R1, R1), (R1, R2) and (R1, R3), resulting
in three operations on the AURA graph. Since
URA(u) = {R1, R2, R3}, we have |URA(u)| = 3
as expected. The resulting AURA graph is shown
in Figure 3(c).

Removing a User-Role assignment: If a User-
Role assignment (u, r) is removed, then for each of
u’s roles r′ ∈ URA(u), u is removed from U(r, r′).
If U(r, r′) = ∅, the edge (r, r′) is removed. There
are |URA(u)| + 1 operations, which are bounded

7

1u

2u

R

R

1

2

3

R

{u1}

{u2}

(a) Current AURA
Graph

1u

2u

R

R

1

2

3

R

{u2}

{u2}

{u1,u2}
{u1}

(b) Adding User-Role as-
signment (u2, R1)

1u

2u

R

R

1

2

3

R

{u2}

{u1,u2}

{u2}

(c) New AURA Graph

1u

2u

R

R

1

2

3

R

{u2}

{u1}
{u1,u2}

{u2}
{}

(d) Removing User-Role
assignment (u2, R1)

Figure 3. AURA Graph example

by |Γ|. Again, removing u from U(r, r′) can be
done in constant-time with the use of hash tables.
In our previous example we added the assignment
(u2, R1), resulting in the AURA graph shown in
Figure 3(b). To remove this assignment, we must
update the edges (R1, R1), (R1, R2) and (R1, R3),
as shown in Figure 3(d). Here URA(u) = {R2, R3}
since the assignment (u2, R1) was removed, and we
have |URA(u)|+1 = 3 as expected. The resulting
AURA graph is the same as the original AURA
graph in Figure 3(a).

Removing a Role: Each User-Role assignment
must be removed first. Let U be the set of users for
the role being removed. Hence we have |URA(u)|
operations for each user u ∈ U . This is bounded
by |U||URA(u)|.

Therefore, this approach requires at most
|URA(u)| operations on the AURA graph for each
addition/deletion of a User-Role assignment. In
the worst case this is O(|Γ|) operations for each ad-
dition/deletion of a User-Role assignment. Delet-
ing a role in the system is more expensive and is
bounded by O(|U||Γ|). Overlapping roles for any
particular role can be efficiently extracted from
the AURA graph by a simple lookup.

3.3. Session graph

While individual audit flow graphs capture the
dissemination of log information to authorized
users in an organization, users are interested in
exploring how their sensitive attributes can be ex-
posed by log correlation across these databases.
Given a set of audit flows {I1, · · · , In} , corre-

sponding to a set of transactions that user Alice
may execute, we define session graph S by con-
structing a composite graph which includes each
audit flow graph that was constructed as described
in Section 3.2. The set of vertices and edges in the
composite graph is the union of the sets of ver-
tices and edges in the original audit flow graphs.
However, we preserve the information about dis-
tinct flows in this composite graph by augmenting
edges with colors as described next.

In order to represent overlapping nodes and
edges between these graphs and identify linkabil-
ity conflicts, we introduce the mapping Color :
Ii → N, which identifies a unique natural number
with each audit flow. For simplicity, we assume
that edges ei ∈ Ei from Ii are assigned color i,
i.e., Color(Ii) = i. An edge es ∈ S may therefore
have multiple colors, reflecting which flow it be-
longs to for each color. We define the colors for a
vertex vs ∈ VS as Colors(vs) : VS → 2N, as the set
of colors of its incident edges. Figure 2 shows the
session graph with colors for each edge and vertex.

Let C ′ ⊂ VS be the set of all overlapping role
vertices in the composite session graph S with two
or more colors. We call this the set of potentially
conflicting roles. These roles may contain users
that have static read access to two or more flows.
To illustrate, R7 and R8 are potentially conflicting
roles in Figure 2, and are indicated with shaded
squares. After these potentially conflicting roles
are identified, they are further examined for link-
ability conflicts.

Consider the potentially conflicting role c′ ∈ C ′.

8

Recall that all the incident edges (r, c′) are aug-
mented with the set of common users U(r, c′) from
the AURA graph, in addition to their colors. For
a given potentially conflicting role, if the intersec-
tion of the user sets for edges of different colors is
not empty (that is if there is a user u in two edge
sets of different colors) then we identify c′ as a
conflicting role. Also, if any edge has two or more
colors, and at least one user in its user-set, then c′

is a conflicting role. Let the set of conflicting roles
be C ⊆ C ′.

In Figure 2, R8 is not a conflicting role since
there are no users in R8 that are in parent roles
R1 and R3 ,that can access flows of different colors,
viz., I1 and I2. R7 is a conflicting role because u2

appears on the edges (R1, R7) and (R3, R7), i.e.,
user u2 with role R7, also has roles R1 and R3 and
can access two flows of different colors I1 and I2.
The conflicting roles in Figure 2 are R1, R3 and
R7.

Complexity of detecting conflicting roles: Let
E be the set of incident edges on a potentially
conflicting role c′. In the worst case, each edge
e ∈ E has a different color from the other edges.
For each color i (or flow), compute the union Ui

of the edge sets U(r, c′) for all parent roles r of c′

and all edges with color i. Ui is the set of users
in c′ that can access flow Ii. Now we must check
for pairwise intersections between the Ui’s (O(n2)
intersections) to identify real conflicts. Since there
are at most |E| union operations bounded by the
number of roles |Γ|, and each such operation is
linear in |U(e)| bounded by |U| (set union using
a hash table), the worst case complexity for this
step is O(n2|U|+ |Γ||U|).

We now show how a user of the system can spec-
ify discretionary policies representing unlinkabil-
ity requirements and present an automated tech-
nique to generate constraints on the dissemination
of audit flow information. We also show how if we
can enforce these constraints appropriately, we can
prevent linkability.

3.4. Specifying Discretionary Policies

As described in Section 3.3, the PNS returns to
Alice a set of conflicting roles C in S. Alice picks

a subset of these roles CAlice as her discretionary
unlinkability requirements.

A linkability conflict occurs for users with role
c ∈ CAlice that can access a database belonging
to two or more flows. When Alice creates a new
audit record that flows to a database that can be
accessed by a user in a conflicting role, the un-
derlying access control system denies the right to
access these records to all users in these roles who
pose a linkability threat. The PNS subsequently
generates policy constraints that Alice can attach
to her audit records.

3.5. Generating and Enforcing Policy constraints

We call CAlice Alice’s deny-set. The members in
Alice’s deny-set should be prevented from linking
Alice’s flows. Note that not all users in the deny-
set are linkability threats, and hence we need to
make sure that only the users who can link Alice’s
flows must be denied access. We define the Alice’s
policy constraints for session S, PS , as the tuple
〈CAlice,R1, . . . ,Rn〉, where Ri is the set of roles
with static read permission to information flow Ii,
and are parents of some role in CAlice. This is
easily obtained from the session graph S.

Audit flow records in session S are tagged with
PS . When a user u attempts to access an au-
dit record, the database’s reference monitor first
checks to see if u has static read access for that
database. If so, it then checks the attached PS to
see if any of u’s roles are in CAlice. If so, the refer-
ence monitor checks to see if u’s role-set URA(u)
has a non-empty intersection with at least two dif-
ferent sets in {R1, . . . ,Rn}. If so, the user has
static read access to two or more flows in S, and
the user is denied access by the reference monitor.
In the worst case, for users with static read access
to the database, the reference monitor needs to
compute n + 1 intersections, where each intersec-
tion takes O(|URA(u)|+ |Γ|) operations, which is
O(|Γ|). Hence the time complexity for evaluating
PS is O(n|Γ|) if u is in Alice’s deny set. If not,
the time complexity is O(|Γ|), the cost of com-
puting the intersection URA(u) ∩ CAlice. From
Figure 2, assuming that CAlice = {R7}. We have
PS = 〈{R7}, {R1}, {R3}〉.

9

At this point, a valid question is why not gen-
erate policy constraints with user IDs. There are
three reasons for this. Firstly, if a user u was iden-
tified to be a linkability threat, then adding u to
the policy constraints will prevent u from access-
ing two or more flows. However, if u is removed
from a particular role and is no longer a linka-
bility threat, u will still be denied access. Our
scheme adds more precision to the system by al-
lowing users who are no longer linkability threats
to access audit records. Secondly, we would like
to give administrators feedback as to why their
access was denied. Our policy is able to capture
the reasons why access control decisions are made
in addition to what access control decisions are
made.. And lastly, in large systems we expect a
role based formalism to be a more compact repre-
sentation of linkability conflicts.

We now present two definitions, and prove that
our system is secure, sound, and precise under cer-
tain assumptions.

Definition 1. If the access permissions for a
database record associated with a flow for user
u includes the right to read, then we say that u
has static read access to the audit flow. These
static permissions can be overridden by policy con-
straints.

Definition 2. Strong Tranquility asserts that
the access permissions associated with the users of
the system (i.e., the URA and the PRA) do not
change by system operation.

Policy constraints are generated based on the
current protection state of the system (i.e., the
URA and the PRA.) Changes to the protection
state can result in policy constraints that are “out
of date.” We first prove that our constraints are
secure, sound, and precise under the strong tran-
quility assumption. We relax this assumption in
Section 4 and show how we can trade precision for
security when the protection state and the session
information are allowed to change. The following
theorems are easy to prove because of the strong
tranquility assumption, which makes the proper-
ties hold by construction of session graph S and
policy constraints PS .

Theorem 1. user u has static read access to two
or more audit flows in a session, then all of the
user’s roles URA(u) appear as conflicting roles in
the session graph.

(Security) Assuming strong tranquility, if a
user u with a role in Alice’s deny-set CAlice, has
static read access to two or more audit flows in
Alice’s session I1, · · · , In, the policy constraints
will prevent u from accessing these flows. Fur-
thermore, Alice was presented with all of u’s roles
as conflicting roles.

Proof. Since u has static read access to two or
more flows in I1, · · · , In and since we assume
strong tranquility, by construction all of u’s roles
will appear as conflicting roles in the session graph
S. By construction of the constraints, u will be
denied access to I1, · · · , In.

Theorem 2. (Soundness) Assuming strong
tranquility, if a user u is denied access to a flow Ii

by the policy constraints, then the user has static
read access to two or more audit flows in the ses-
sion S.

Proof. Since u was denied access by the policy
constraints, u’s role set includes a conflicting role
role c ∈ CAlice, and intersects with two or more
role sets in R1, . . . ,Rn. Since we assume strong
tranquility, this implies that u has access to two
or more flows in S.

The following theorem is simply the contrapos-
itive of Theorem 2. In the following sections we
will only refer to security and precision, since pre-
cision follows from soundness.

Theorem 3. (Precision) Assuming strong tran-
quility, if a user u has static read access to exactly
one audit flow within a session, then u is not de-
nied access by the policy constraints.

3.6. Open-ended Sessions

Our algorithm in Section 3.5 maintains secu-
rity and precision for a predefined session. Con-
sider the case when user Alice does not know all

10

her transactions a priori. Alice would like to dy-
namically generate constraints for new audit flows,
without invalidating her constraints to older audit
flows. We extend our algorithm to allow users to
add audit flows to existing sessions and generate
new constraints appropriately.

Consider the session graph S, and the new flow
In+1. Construct the session graph S′ by combining
the audit-flow graph for I ′ with S as described pre-
viously in Section 3.3, and generate the new policy
constraints for audit-flow In+1 as described in Sec-
tion 3.5. We now show how security and precision
holds for session S′. We modify the definition of
security to allow access to at most one flow, since
this does not violate unlinkability, and implies the
security property defined in Theorem 1.

Theorem 4. (Security)
Assuming strong tranquility, if a user u with a

role in Alice’s deny-set CAlice, has static read ac-
cess to two or more audit flows in Alice’s session
I1, · · · , In+1, then the policy constraints will pre-
vent u from accessing two or more of these flows.

Proof. We prove this by induction on the number
of audit flows. For the base case we consider pol-
icy constraints generated for one audit flow. The
set of constraints is empty. Since there is only
one flow, there are no linkability conflicts. Now
consider session S with audit-flows I1, . . . , In, and
assume the security property holds for policy con-
straints for flows in S. If we generate new policy
constraints for I ′ as described in Section 3.6, then
any user u that has static read access to two or
more flows in S′ is denied access to audit-flow I ′.
Users with static read access to two or more flows
in S are allowed access to at most one flow in S
(inductive hypothesis). Consider a user u that has
static read access to exactly one flow in S, and to
I ′. Policy constraints for S will still allow u to ac-
cess a single flow in S, and the new constraints for
I ′ will prevent u from accessing I ′. Hence u can ac-
cess at most one flow in S′ and security holds.

Theorem 5. (Precision)
Assuming strong tranquility, if a user u has

static read access to exactly one audit flow within

a session, then u is not denied access by the policy
constraints.

Proof. For the base case, again consider one au-
dit flow. Since there are no policy constraints,
u will not be denied access by the policy con-
straints. Assume that for a session S with audit-
flows I1, . . . , In, precision holds for the policy con-
straints. If we generate new policy constraints for
I ′ as described in Section 3.6, then any user u who
has static read access to exactly one audit-flow in
S′, will still be allowed access to I ′. Consider the
case when u tries to access a flow in S. If u has
static read access to a flow in S, then precision
holds by the inductive hypothesis. If u has static
read access to I ′, then u does not have static read
access to any flow in S and is (trivially) denied
access to a flow in S.

3.7. Mandatory Audit Flows

The PNS may consider access by certain con-
flicting roles to be mandatory. In our example
mentioned earlier, the PNS may mandate that stu-
dent administrators cannot be denied access (in
this case, Administrator is the parent role of the
overlapping role Student). Specifically, the PNS
can specify edges (r, o) that are mandatory, where
r is a role vertex, and o is an overlapping role of r.
Hence, any user with roles r and o are exempted
from the policy constraints. If there are exempted
users that can access two or more audit flows, the
user is informed of this.

Our goal is to make the privacy implications of
sensitive information explicit to the user. Users
will have complete information of who can access
the user’s information, and will proceed only if
they agree to the PNS’s mandatory policy.

In the next section, we relax the strong tranquil-
ity assumption and present a discussion of what
policies we can enforce when the permissions are
allowed to change and investigate the trade-off be-
tween security and precision.

11

4. Security under Weak Tranquility

Our strong tranquility assumption in Sec-
tion 3.5 is restrictive since the users, roles, and
permissions, which define the protection state in
any organization will change over time. Once the
protection state changes, it may not be possible
to enforce some of the unlinkability requirements.
New conflicts may emerge that may invalidate ex-
isting guarantees.

In this section, we extend our results to model
the effect of changing the protection state. Our
proposed solution uses versioning to localize the
impact of these updates. Since our policy enforce-
ment mechanisms are decentralized, i.e., records
belonging to a particular flow in a database are
tagged with access restrictions, it is important to
guarantee the security of these access restrictions
under evolving protection state.

We define the notion of weak tranquility which
captures the effect of changing permissions on the
satisfaction of unlinkability properties.

Definition 3. Weak Tranquility states that the
access permissions (i.e., the URA and the PRA)
associated with a user u of the system do not
change in such a way that it violates the security
and precision of the enforcement of discretionary
unlinkability policies for that user.

Our goal is to guarantee that changes to the
protection state can preserve the weak tranquility
property for as many users as possible during the
lifetime of the system.

When a policy is agreed upon by the user
and the PNS, the policy constraints certificate
is stamped with what we call the system ver-
sion number maintained by the PNS. When users
are added to the system, they are also stamped
with the current system version number. The
user’s version number will be updated when cer-
tain changes are made to the protection state. A
user u can access an audit record belonging to flow
I only if Version(u) ≤ Version(I). We assume
that reference monitors have access to the current
version number for a user (e.g., policy database
or a revocation-based certificate approach). We

prove Lemma 1 based on the following update
rules for a user’s version number.

Lemma 1. Consider audit flows I1, . . . , In in a
session S. After any change to URA or PRA,
if for a user u, Version(u) ≤ Version(Ii) for all
i = 1, . . . , n, then weak tranquility holds for user
u with respect to audit flows I1, . . . , In.

Proof. We prove this for each possible update to
the protection state, and hence the lemma holds
by induction on the number of updates to the pro-
tection state. For the base case, there are no
updates to the protection state, and the lemma
trivially holds by strong tranquility, which implies
weak tranquility.

New User u Created: No change to system ver-
sion number. Assign current system version num-
ber to user u. u has not been granted any new
permissions and weak tranquility holds for u.

New Role r Added: No change to system ver-
sion number. No permissions have changed in the
system, and weak tranquility holds for all users.

User-Role (u, r) Assignment Added: When a
User-Role assignment (u, r) is added, it is possible
that u now has static read access to two or more
flows in session S, but will not be denied access
to two or more flows by the policy constraints.
To maintain the security property of the policy
constraints with respect to u, the system version
number is incremented, and u is assigned the new
version number. Since the permissions of all other
users remain unchanged, security and precision of
the constraints hold for all other users, whose ver-
sion numbers remain unchanged.

User-Role Assignment (u, r) Deleted: No
change in version number. We only need to ex-
amine the case when u had static read access to
two or more flows in S before the user-role assign-
ment was deleted. If u continues to have static
read access to two or more flows in S, then u must
activate roles other than r, which must appear in
the original policy constraints. Hence u will be
prevented access by the policy constraints if u has
a role in the deny list of the constraints (secu-
rity property). If u does not have any roles on the
deny list (see discussion for privilege escalation for

12

the case when r ∈ CAlice), then u is allowed ac-
cess. If it is the case that u no longer has static
read access to two or more audit flows, then r was
necessary for access to two or more flows. Hence
r ∈ URA(u) is a necessary condition for being de-
nied access by the policy constraints. Since now
r /∈ URA(u), the policy constraints will allow u
to access flows in S (precision). Since the permis-
sions of all other users remain unchanged, security
and precision of the constraints hold for all other
users, whose version numbers remain unchanged.

User u Deleted: Version number does not
change. Equivalent to iteratively removing all
User-Role assignments for u. Delete all the User-
Role assignments.

Role r Deleted: Equivalent to iteratively remov-
ing all User-Role assignments for r followed by re-
moving all PRA(r). Note that after this operation,
the system version number remains unchanged.

Permission-Role (d, r) Assignment Added:
This means that a role r has been granted static
read access to some database d. Since this role
may not have been included in the session graph,
it is possible that some users in r can now access
two or more audit flows, and will not be denied ac-
cess by the policy constraints, violating the secu-
rity of the policy constraints, and weak tranquility
does not hold. If there are any users assigned to
role r, the system version number is incremented,
and all users in r are assigned the new version
number. Hence, if Version(u) ≤ Version(Ii) for
all i = 1, . . . , n, then u is not a member of r, and
weak tranquility holds for u.

Permission-Role (d, r) Assignment Deleted:
This means that the static read access to database
d has been removed for a role r. It is possible that
users in r are no longer a threat to linkability, but
will still be denied access by policy constraints,
violating the precision of the policy constraints.
Hence weak tranquility does not hold for users in
r. If there are any users assigned role r, the system
version number is incremented, and all users in r
are assigned the new version number. Hence, if
Version(u) ≤ Version(Ii) for all i = 1, . . . , n, then
u is not a member of r, and weak tranquility holds
for u. Note that the security of policy constraints

is not affected by adding the assignment (d, r).
However for every policy we would like to maintain
the set of users for which weak tranquility holds,
which is why we update the version numbers for
affected users.

Privilege escalation: Consider the situation
when a user has access to only one flow in a ses-
sion. After accessing this information, the user is
removed from a particular role, and then added to
a new role, giving the user access to another flow
in the session, violating the unlinkability require-
ment. However, the version number of the user
is incremented when a new user-role assignment
is added, which will prevent this kind of privi-
lege escalation. Similarly, incrementing the ver-
sion number on the addition of a new permission-
role assignment prevents privilege escalation due
to changing permission-role changes. More gener-
ally, privilege escalation is prevented by the fact
that a user’s version number is incremented when-
ever the user’s static permission set increases. It is
important to note that if a role r is removed from a
user’s role-set, it is possible that r is on the deny
list of some policy constraint, and that the user
will now be able to link flows in that session, which
was disallowed before this removal. With cooper-
ation from the security officer, a user can remove,
and subsequently add, r to his/her role-set result-
ing in one form of privilege escalation. We assume
that the security officer is trusted, and that priv-
ilege escalation from the removal of a conflicting
role is semantically correct and secure. An alter-
native approach would be to define this type of
privilege escalation as not secure, and increment
the version number when a user-role assignment is
removed.

Under versioning, the following theorems follow
from Lemma 1.

Theorem 6. (Secure) If a user u with a role
in Alice’s deny-set CAlice, has static read access
to two or more audit flows in Alice’s session
I1, · · · , In+1, then the policy constraints will pre-
vent u from accessing two or more of these flows.

Proof. If Version(u) ≤ Version(Ii) for all i =

13

1, . . . , n then the weak tranquility assumption
holds by Lemma 1, which implies security with re-
spect to user u. If Version(u) > Version(Ii) then
the user is trivially denied access, even if their ac-
cess did not cause a linkability conflict.

Theorem 7. (Precise up to Versioning) If a
user u has static read access to exactly one au-
dit flow within a session S = {I1, . . . , In}, then
u is not denied access by the policy constraints if
Version(u) ≤ Version(Ii) for all i = 1, . . . , n.

Proof. If Version(u) ≤ Version(Ii) for all i =
1, . . . , n then the weak tranquility assumption
holds by Lemma 1, and hence the constraints are
precise up to versioning. For users with higher ver-
sion numbers, precision does not hold, since they
will be denied access even if they cannot link flows
within a session.

After the policy constraints have been gener-
ated, previously deployed policy constraints grad-
ually lose precision by being overly restrictive
to users affected by evolving system permissions.
However, this is restricted only to users who gain
new permissions, and users of roles for which
database permissions change. We argue that the
latter case is rare and can be performed at pre-
defined system epochs. To cope with degrading
precision, the PNS can choose to honor the policy
constraints for a certain time-period called unlink-
ability window. This window can either be a static
parameter in the system, or can be negotiated with
the user. As mentioned earlier, changes in flow
policies are considered to be non-trivial changes.
These changes can take place in epochs that honor
the unlinkability window. When this is not possi-
ble, all data along the new flow is tagged as sensi-
tive and is only allowed access by designated ad-
ministrators. Users can be informed in general
that changes in flow policy are possible, and that
certain designated administrators will have access
to audit flows in the session.

5. Related Work

In this section, we present related research in
the context of ensuring unlinkability across differ-
ent access transactions within a session. Research
on unlinkability in the past has mostly focused on
cryptographic mechanisms for anonymous autho-
rization. We also explore the relationship between
our problem and other anonymity solutions. Fi-
nally, we examine how our problem is related to
role-engineering for enforcing Separation of Duty
(SoD) constraints.

We first examine different cryptographic tech-
niques that allow a user to disclose only those at-
tributes that are strictly necessary for a given ser-
vice access transaction. One of the first proposals
in this direction is the work by Brands [1], where
he proposes a certificate system that gives a user
control over what is known about the attributes
of his or her certificate (or authorizations), and
can prove their possession using zero-knowledge
protocols. However, with this scheme a user who
presents the same certificate twice can be linked
across his or her sessions with the same server,
even though the attributes are still hidden.

Other researchers have explored the construc-
tion of credential systems that satisfy the multi-
show property whereby the owner of a certifi-
cate can construct two or more credentials with
the same attributes that are unlinkable[19, 10].
The construction of anonymous credentials pre-
sented by Chaum in [3] relies on interaction with a
trusted third party for unlinkability. Camenisch,
Lysyanskaya et al. [2, 8] extend this unlinkabil-
ity based on computational zero-knowledge proofs,
and the credential system proposed in [10] defines
what the authors call Chameleon certificates that
provide a user complete control over the amount
of information revealed as well as computational
zero-knowledge proofs for unlinkability of creden-
tials, provided these credentials can be encoded as
linear Boolean formulas.

As discussed earlier, preserving unlinkability
across access transactions with respect to the same
server is not sufficient to ensure global unlinkabil-
ity. One of the issues with anonymous credentials
is that though the identity of a user is not revealed

14

by engaging in multiple access transactions, the
list of attributes revealed at the end of the access
negotiation can be logged by the server, along with
timing information. With respect to a door-lock
authentication server, even if a user was able to
hide all privacy sensitive attributes from the door-
lock server, a successful access transaction is suf-
ficient to expose the user’s location. Furthermore,
a system may not be able to support anonymous
access transactions if required by law.

We also observe that privacy preserving com-
munication techniques such as Crowds and
Hordes [12, 16, 15, 11] that protect the anonymity
of a sender or receiver are orthogonal to our work.
These solutions are geared towards protecting the
IP address of the end points of a communication
session. Knowledge of endpoint sender addresses
may provide enough information for a server to
link two transactions even if pseudonyms were em-
ployed to obtain access. Using a solution like
Crowds to hide a DHCP address from a server
would not really solve our unlinkability problem
as we are concerned with users being able to link
DHCP log information with server log informa-
tion. In fact, if an administrator is allowed access
to all Crowds router logs, timing analysis can ex-
pose the endpoint identity of the sender.

As explained in Section 1, our unlinkability
problem differs from the SoD problem in two im-
portant ways. The SoD problem is defined as pre-
venting a single user from performing different ac-
tions on the same object in the course of a work-
flow to protect the transactional integrity [17]. In
our problem, we want to prevent an unauthorized
user from accessing different audit records associ-
ated with different information flows initiated by
a single user.

In their discussion on different types of SoD
constraints for RBAC, Simon and Zurko [17] dis-
tinguish between three types of SoD constraints
: static, dynamic, and operational. Given a set
of static SoD constraints, policy conformance re-
duces to checking if the roles involved have disjoint
memberships so that no single person has access
to all operations in a workflow.

With respect to enforcing dynamic SoD con-
straints Sandhu’s work on Transaction Control

Expressions (TCE [13]) shows how dynamic SoD
constraints can be enforced adequately using his-
tory if the information about each transaction
is annotated with the object itself. Simon and
Zurko argue that such history is essential to en-
force general SoD constraints. Gligor et al. [5] for-
malize the relationship between SoD and RBAC
and show how RBAC is not sufficient to enforce
all types of SoD properties, especially dynamic
SoD constraints. More recently, Li et al. [7] show
how directly enforcing static SoD policies is in-
tractable, let alone dynamic SoD policies, and
show how statically mutually exclusive roles can
be engineered to enforce these constraints on a
best-effort basis. In the context of our unlinkabil-
ity problem, annotating audit records in different
databases with history information does not pro-
vide us a mechanism to enforce unlinkability as
these data objects are independent and local his-
tory cannot be used to enforce global constraints.
Instead, our proposed solution annotates different
audit records with different authorizations to en-
force unlinkability.

In terms of detecting semantic conflicts that can
be exploited by a user to correlate different types
of audit records and expose the privacy of a user,
a number of data mining techniques that explic-
itly represent knowledge can prove to be useful.
Researchers have examined how to use data min-
ing techniques to correlate logs in the context of
intrusion detection, to detect attacks [6, 18]. We
believe that some of these techniques can be ex-
tended to look for unlinkability conflicts at the
semantic level. As mentioned in Section 2, our
framework examines the unlinkability problem at
the level of authorizations to access audit flows.
As we mention earlier, analysis of the semantics
of whether two flows that can be accessed by the
same user can be leveraged to improve the preci-
sion of enforcement of unlinkability policies.

6. Conclusions

We explore the problem of user unlinkability
in the context of correlating audit data. Our
work examines how administrative users with au-
thorizations to view audit records across different

15

servers in an organization can link different access
transactions to sensitive attributes of other users
such as identity and location. We show how this
problem persists even if users employ anonymous
credentials to gain access to a service. To the best
of our knowledge, our work in this paper is the
first to discuss a policy-based approach for enforc-
ing unlinkability.

We formalize the unlinkability problem by
defining the the notion of an audit flow associated
with a user’s access transaction. Audit flows for
different access transactions can be composed to
generate a session graph that encodes the linkabil-
ity conflicts compactly and captures the scope of
the problem adequately. Using this session graph,
we show we can transform the unlinkability prob-
lem into a policy engineering problem, and present
an algorithm to generate authorization constraints
that can enforce unlinkability by restricting access
in the context of RBAC.

With appropriate tranquility assumptions on
the underlying authorizations, we prove that our
constraints can guarantee unlinkability. We for-
malize the notion of security and precision with
respect to enforcing unlinkability constraints. To
maintain the security of deployed policy con-
straints under evolving protection state, we pro-
pose a solution based on versioning that maintains
security by trading precision for evolving protec-
tion state. Using our approach, the set of users
for which policy constraints are secure and precise
can always be identified.

7 Acknowledgments

We thank Sariel Har-Peled, Mike Corn, and
Shea Nangle for their helpful comments.

References

[1] S. Brands. Rethinking Public Key Infrastructures
and Digital Certificates; Building in Privacy. MIT
Press, 2000.

[2] J. Camenisch and A. Lysyanskaya. An efficient
non-transferable anonymous multishow credential
system with optional anonymity revocation. In
EUROCRYPT, 2001.

[3] D. Chaum and J. Evertse. A secure privacy
preserving protocol for transmitting personal in-
formation between organizations. In CRYPTO,
1986.

[4] D. F. Ferraiolo and D. R. Kuhn. Role-based access
controls. In In Proceedings of the 15th NIST-NSA
National Computer Security Conference, Balti-
more, MD, Oct, 1992.

[5] V. D. Gligor, S. I. Gavrila, and D. Ferraiolo. On
the formal definition of seperation-of-duty poli-
cies and their composition. In In Proceedings of
the IEEE Symposium on Research in Security and
Privacy. (Oakland, CA.), 172–183, 1998.

[6] W. Lee and S. Stolfo. Data mining approaches
for intrusion detection. In Proceedings of the 7th
USENIX Security Symposium, San Antonio, TX,
1998.

[7] N. Li, Z. Bizri, and M. V. Tripunitara. On
mutually-exclusive roles and separation of duty.
In Proceedings of the ACM Conference on Com-
puter and Communications Security (CCS), Oc-
tober, 2004.

[8] A. Lysyanskaya, R. Rivest, A. Sahai, and S. Wolf.
Pseudonym systems. In Selected Areas of Cryp-
tography, Volume 1758 LNCS, 1999.

[9] A. Pashalidis and C. J. Mitchell. Limits to
anonymity when using credentials. In Proceed-
ings of the 12th International Workshop on Se-
curity Protocols, Springer-Verlag LNCS, Berlin,
Cambridge, UK, April 2004.

[10] P. Persiano and I. Visconti. An anonymous cre-
dential system and a privacy-aware pki. In R.
Safavi-Naini and J. Seberry, editors, Information
Security and Privacy, 8th Australasian Confer-
ence, ACISP 2003, volume 2727 of Lecture Notes
in Computer Science. Springer Verlag, 2003.

[11] M. G. Reed, P. F. Syverson, and D. M. Gold-
schlag. Anonymous connections and onion rout-
ing. IEEE Journal on Selected Areas in Commu-
nication (JSAC), Special Issue on Copyright and
Privacy Protection, 1998.

[12] M. K. Reiter and A. D. Rubin. Anonymous web
transactions with crowds. Communications of the
ACM, 42(2):32–48, 1999.

[13] R. Sandhu. Transaction control expressions for
separation of duties. In Proceedings of the 4th
Aerospace Computer Security Applications Con-
ference, 1998.

[14] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and
C. E. Youman. Role-based access control models.
IEEE Computer, 29(2):38–47, 1996.

[15] R. Sherwood, B. Bhattacharjee, and A. Srini-
vasan. P5: A protocol for scalable anonymous
communication. In Proceedings of the 2002 IEEE

16

Symposium on Security and Privacy, page 58.
IEEE Computer Society, 2002.

[16] C. Shields and B. N. Levine. A protocol for anony-
mous communication over the internet. In Pro-
ceedings of the 7th ACM conference on Computer
and communications security, pages 33–42. ACM
Press, 2000.

[17] R. T. Simon and M. E. Zurko. Separation of duty
in role-based environments. In IEEE Computer
Security Foundations Workshop, pages 183–194,
1997.

[18] J. L. Undercoffer and A. Joshi. Data Mining, Se-
mantics and Intrusion Detection: What to dig for
and Where to find it. MIT Press, December 2003.

[19] E. R. Verheul. Self-blindable credential certifi-
cates from the weil pairing. In Proceedings of the
7th International Conference on the Theory and
Application of Cryptology and Information Secu-
rity, pages 533–551. Springer-Verlag, 2001.

17

