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ABSTRACT: Here we describe real-time, in situ monitoring of
mechanochemical solid-state metathesis between silver nitrate and
the entire series of sodium halides, on the basis of tandem powder
X-ray diffraction and Raman spectroscopy monitoring. The
mechanistic monitoring reveals that reactions of AgNO3 with
NaX (X = Cl, Br, I) differ in reaction paths, with only the reaction
with NaBr providing the NaNO3 and AgX products directly. The
reaction with NaI revealed the presence of a novel, short-lived
intermediate phase, while the reaction with NaCl progressed the
slowest through the well-defined Ag2ClNO3 intermediate double
salt. While the corresponding iodide and bromide double salts
were not observed as intermediates, all three are readily prepared as pure compounds by milling equimolar mixtures of AgX and
AgNO3. The in situ observation of reactive intermediates in these simple metathesis reactions reveals a surprising resemblance of
reactions involving purely ionic components to those of molecular organic solids and cocrystals. This study demonstrates the
potential of in situ reaction monitoring for mechanochemical reactions of ionic compounds as well as completes the application of
these techniques to all major compound classes.

■ INTRODUCTION

Mechanochemistry, i.e. chemical reactions performed by
exerting mechanical force on solid reactants, has become
recognized as a viable synthetic route and an alternative to
solution-based protocols.1−6 In their application to organ-
ic,7−10 inorganic,11−14 organometallic,15−19 and coordination
and supramolecular chemistry,20−23 as well as to the
preparation of nanoparticles,14,24 metal−organic frame-
works,25−29 main-group compounds,30−33 and catalysis,34−40

mechanochemical reactions are most often performed in closed
containers, or vessels, that oscillate, rotate, or swing.24,25 Under
such conditions, obtaining information about the reaction
course has been attainable only by periodically interrupting the
milling process for sampling of the reaction mixture.41−48

However, with each opening of the reaction vessel, the
conditions inside the milling vessel are disrupted and the
reaction mixture experiences hardly reproducible temperature
variations,49 as well as exposure to atmospheric gases and
moisture. Also, if the mechanochemically induced reaction
continues to proceed after cessation of milling,50−53 sub-
sequent analysis of such samples will not accurately represent
the chemical and physical changes during milling.
It is therefore no surprise that the recent development of in

situ techniques for uninterrupted reaction monitoring has been
a breakthrough in the study and understanding of milling
processes and dynamics.54 These methods, based on powder

X-ray diffraction (PXRD),55−58 Raman spectroscopy,59−63

temperature49,64 and pressure monitoring,65−67 and their
simultaneous application,49,68−71 revealed complex milling
reaction mechanisms,72 involving new polymorphic
phases,68,73 as well as multistep mechanisms74−77 with
crystalline and amorphous intermediates.54,76,78

So far, in situ monitoring has been applied to reactions of
almost all classes of compounds, with the notable exception of
reactions of inorganic ionic compounds.11,12,79−81 Here, we
provide the first in situ real-time investigation of a purely
inorganic mechanochemical transformation, targeting an ion
metathesis reaction that is highly familiar to most chemists
when it is conducted in solution: immediate formation of an
insoluble silver halide upon mixing aqueous solutions of
AgNO3 and a sodium halide NaX (X = Cl, Br, I). In aqueous
solution, this prototypical reaction is often used as a qualitative
test for halide ions since it is dominated by the extremely low
solubility of silver halides AgCl, AgBr, and AgI. Solubility,
however, should not have a role if this reaction is conducted in
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the absence of water or another solvent, prompting the ball-
milling solid-state processes presented herein. On the basis of
standard Gibbs energies of formation of reactants and target
products, the reactions of AgNO3 and sodium halides, except
for NaF, are thermodynamically favorable and as such should
be feasible also in the solid state (Figure 1).

Mixtures of solid reactants in a 1:1 molar ratio were milled
using a vibratory ball mill to yield the expected products,
NaNO3 and AgX (X = Cl, Br or I), which was evidenced by
PXRD. Reaction paths and rates, however, varied through the
series of sodium halides. While the reaction with NaCl was the
slowest and that with NaI the fastest overall, only milling with
NaBr yielded the products directly from the reactants. We also
demonstrate that milling is efficient for the preparation of the
mixed salts Ag2ClNO3, Ag2BrNO3, and Ag2INO3. Among these
double salts, only Ag2ClNO3 was observed to form as an
intermediate during the milling of AgNO3 and NaX.

■ EXPERIMENTAL SECTION
Solution Precipitation of AgCl, AgBr, and AgI. AgNO3 and

NaX in 5 mmol amounts were dissolved separately in 20 mL of
redistilled water and slowly mixed while ensuring minimal exposure to
light. A precipitate formed immediately upon mixing; it was filtered,
washed with water, and dried in air for 3 h followed by drying in a
desiccator under a reduced pressure of argon for 3 days in the dark.
Laboratory Powder X-ray Diffraction (PXRD) Patterns. These

patterns were collected on an Aeris Panalytical diffractometer using
Ni-filtered copper radiation in the Bragg−Brentano geometry with the
sample prepared as a thin layer on a silicon zero-background holder.
Reaction Monitoring. In situ real-time reaction monitoring was

achieved by tandem PXRD and Raman spectroscopy in situ at the
ID15A beamline of the ESRF-The European Synchrotron in
Grenoble, France, as previously described,68 using a remotely
controlled IST500 (InSolido Technologies, Croatia) mixer mill
operating at 30 Hz. The X-ray beam (E = 70 keV, λ = 0.1771 nm)
was set to pass through the bottom of a poly(methyl methacrylate)
(PMMA) reaction vessel. The exposure time was set to 4 s, and a
waiting time was added to match the 5 s interval between consecutive
frames. Diffraction data were collected on a Dectris Pilatus3 X CdTe
2 M detector positioned 730 mm from the sample. We performed
radial integration of the raw diffraction images with an ESRF in-house
MATLAB script. Raman spectroscopy employed a portable Raman
system with a PD-LD (now Necsel) BlueBox laser source having an
excitation wavelength of 785 nm and an OceanOptics (now
OceanInsight) Maya2000Pro spectrometer coupled with a B&W-
Tek fiber optic BAC102 probe. The position of the probe was about
0.8 cm from the bottom of the vessel. Raman spectra were collected
every 10 s with an acquisition time of 500 ms and a sum of 20 scans
for each spectrum.
As milling vessels, 14 mL PMMA vessels with two 5 mm tungsten

carbide (WC) balls (each weighing 1.4 g) were used. The reactants
were milled in a 1:1 stoichiometric ratio, and we have kept the total
mass of the reaction mixture to 250 mg, adjusting the masses of
reactants with different molecular weights. During weighing, vessels
were wrapped with aluminum foil to minimize their exposure to light,
which was removed after the vessel was mounted onto the ball mill.
Light was switched off in the experimental hutch during milling, and
the sample may have experienced only minimal exposure to light,

except for the Raman laser beam. The ambient temperature in the
experimental hutch was 21 °C. Experiments were typically reproduced
three times.

Quantitative Rietveld Analysis. This analysis was performed in
an automated fashion in the command-line version of the program
Topas, usually starting from the same input file for each diffraction
pattern. Parameters that were refined included coefficients of the
shifted Chebyshev polynomial for background description and
parameters describing the peak shape and size: Lorentzian and
Gaussian full widths at half-maximum, zero shift, and unit cell
parameters. Crystal structure models for reactants and products were
checked against the Inorganic Crystal Structure Database (ICSD) or
the Crystallography Open Database (COD). Atomic coordinates of
the structure models were not refined. For AgNO3 the ICSD entry
1685 was used. ICSD entries 18189 and 26910 were used for NaCl
and NaBr, respectively. Crystal structure models of NaNO3
polymorphs were taken from the ICSD entry 2865 for the ordered
polymorph and from the ICSD entry 180920 for the disordered
polymorph. For AgCl, AgBr, and AgI, ICSD entries 64734, 65061 and
56552, respectively, were used.

Analysis of Raman Spectra. This analysis was performed in
MATLAB using in-house scripts. Raman spectra were truncated to the
region 1100−765 cm−1 and were baseline-corrected using the
asymmetric least-squares (ALS) algorithm.82 Data were normalized
by dividing all spectrum data points with the intensity of the peak at
812 cm−1, which belongs to the PMMA reaction vessel. To fit the
intensities of Raman peaks at 1046 and 1070 cm−1, we selected the
1085−1025 cm−1 spectral range (Figure S2) that was fitted using two
Gaussian functions of the general form

f x Ae O( ) x x c( )/0
2

= +−[ − ]

where A is the band intensity, x0 is the peak position, c is the
bandwidth, and O is the linear offset.

Density Functional Theory Calculations. These calculations
were performed with the plane-wave basis set code VASP.83,84 We
used a PBE exchange-correlation functional,85 with the energy cutoff
set to 520 eV. The core−electron interaction was approximated by
projector augmented wave (PAW) potentials.86 The Brillouin zone
was sampled with a Monkhorst−Pack mesh87 with a density of at least
4 Å. The structures were optimized until the change in the energy was
smaller than 0.0005 eV.

Residual Gas Analysis (RGA). The composition of gaseous
products was determined by a homemade RGA device with an MKS
Vac-Check LM78 quadrupole mass spectrometer. We introduced the
gaseous products of the mechanochemical reaction in the RGA
apparatus by putting the stainless steel capillary (internal diameter of
0.15 mm and length of 1 m) in the milling vessel. The total pressure
of the high-vacuum (HV) system was 2.5 × 10−6 mbar during the
measurements. An analysis of the atmosphere inside the vessel, by
measurement of the partial pressures, was conducted by following the
m/z ratios of 28 (for N2), 30 (NO), 32 (O2), 46 (NO2), 70 (35Cl2),
76 (N2O3), and 92 (N2O4).

■ RESULTS AND DISCUSSION

A consideration of thermodynamic data (Table S1) indicates
that all reactions of AgNO3 and NaX, except that involving
NaF, are thermodynamically favorable and should proceed
under standard conditions (Table 1). The standard reaction
enthalpies and standard Gibbs energies of reaction for NaX (X
= Cl, Br, I) are negative, while the standard reaction enthalpy
for the reaction with NaF is positive. Since the entropic
contribution to the Gibbs energy of ionic solids at room
temperature is generally small in comparison to enthalpy, it can
be safely assumed that, in the case of NaF, the standard Gibbs
energy of the reaction should also be positive. As expected,
PXRD analysis of the milled AgNO3 and NaF mixture revealed
no new products, even after 2 h of milling (Figure S1). As the

Figure 1. Reactions of silver(I) nitrate and sodium halides.
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reaction mixture remained a physical mixture of reactants, it
was not considered for an in situ study.
AgNO3 + NaCl. In the first set of in situ experiments we

milled AgNO3 and NaCl. Aside from the formation of AgCl
and NaNO3, in situ PXRD data revealed the appearance of an
intermediate phase (Figure 2a), which was identified as
Ag2ClNO3, on the basis of PXRD analysis. This phase was
previously prepared from an aqueous mixture of AgNO3 and

AgCl at 90 °C and from a melt.89 Attempting a Rietveld
analysis of the in situ collected PXRD patterns using the crystal
structure of NaNO3 in the R3̅c space group did not provide
satisfactory refinements of all PXRD patterns. This problem
was resolved upon recognizing that NaNO3 had crystallized in
a mixture with its other polymorph, having the R3̅m space
group.90 By including both polymorphs, we were able to obtain
satisfactory Rietveld refinements for patterns collected through
the entire milling experiment. The crystal structure of the
polymorph crystallizing in the R3̅c space group (herein
designated NaNO3-c), is ordered and stable at room
temperature, while the polymorph having the R3̅m space
group (designated NaNO3-m) is the high-temperature
polymorph exhibiting disorder of the nitrate anion.90

The Inorganic Crystal Structure Database (FIZ Karlsruhe)
lists around 40 entries for the two polymorphs of NaNO3, and
the phase transition between the two polymorphs has been the
subject of numerous studies.91−93 It is described to be second
order with the disorder of the nitrate becoming more and more
pronounced as the temperature increases up to 550 K, where
the two positions of the nitrate anion become equally
populated, the c axis is halved, and the space group changes
from R3̅c to R3̅m. In our case, the in situ formation of the R3̅m
high-temperature polymorph can be considered as surprising,
as these temperatures are never reached in the bulk of the
sample during ball milling on a vibratory mill. Its formation
may tentatively be attributed to kinetic factors and understood
as being in accordance with Ostwald’s rule of stages.94,95

The formation of the expected products AgCl and NaNO3
commenced almost immediately after the onset of milling
(Figure 2b). After about 2 min, we witnessed the appearance of
Ag2ClNO3, which continued crystallizing simultaneously with
NaNO3-c, NaNO3-m, and AgCl for the next 20 min. At that
time, Ag2ClNO3 and NaNO3-m started to be slowly depleted
until, after ∼60 min of milling, only AgCl and NaNO3-c were
detectable in the reaction mixture. The reaction profile for the
formation of AgCl seems to exhibit two different regimes
(Figure 2b). After initial growth in the first 10 min, the
formation of AgCl started to follow a sigmoidal trend,
indicating a change in the mechanism of the crystal growth
of AgCl product. At the early stages of the reaction, AgNO3
was the principal source of Ag+ ions for the formation of both
AgCl and Ag2ClNO3. As the reaction proceeded and the
amount of AgNO3 was depleted, the formation of Ag2ClNO3
slowed down and the latter eventually became the source of
Ag+ ions for the growth of AgCl. Consequently, the formation
of AgCl is the result of more than one chemical reaction. This
is further evident from the significantly different rates of
depletion of NaCl and AgNO3, as Ag2ClNO3 is also the source
of Cl− ions in the formation of AgCl.
It is worth noting that a Rietveld analysis yielded an

unrealistically high total weight fraction for NaNO3 throughout
the middle part of the reaction. We rationalize the higher than
expected weight fraction of NaNO3 by recognizing that the
nascent AgCl may be partially amorphous. The final weight
fractions of 62.7% and 37.3% for AgCl and NaNO3,
respectively, are close to the theoretically expected values on
the basis of the starting equimolar mixture of AgNO3 and
NaCl. A partially amorphous reaction mixture, even for ionic
compounds, may not be surprising, as AgCl may form as a
partially amorphous material upon fast precipitation from
solution96 and milling is a long-used approach not only for
comminution and reduction of particle sizes but also as an

Table 1. Standard Reaction Enthalpies and Gibbs Energies
for the General Reaction NaX + AgNO3 → NaNO3 + AgX
(X = Cl, Br, I)88

X ΔrH
⊖/kJ mol−1 ΔrG

⊖/kJ mol−1

F 28.5
Cl −59.3 −59.4
Br −82.8 −81.5
I −117.5 −113.7

Figure 2.Milling of AgNO3 and NaCl. (a) In situ reaction monitoring
by synchrotron PXRD. Diffraction patterns of reactants and products
are given above the 2D time-resolved spectra. (b) Weight fractions
derived from the Rietveld refinement of the above diffraction patterns.
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effective way of amorphization of organic, metal−organic, and
inorganic materials.97−101 In situ Raman spectroscopy mon-
itoring in this experiment was of no use due to strong
fluorescence which completely saturated the detector, even at a
very low laser power.
AgNO3 + NaBr. In our second set of in situ experiments, we

explored the milling reaction of AgNO3 and NaBr. Here, we
observed a direct steady transformation from reactants to AgBr
and NaNO3 without any intermediate (Figure 3a). According
to the Rietveld refinement, the transformation was complete
within 10 min of milling (Figure 3b). The formation of AgBr
and NaNO3 exhibited an first-order kinetics trend, much the
same as was observed for AgCl in the first 10 min. Such similar
kinetics could indicate the same reaction mechanism of double
ion exchange between AgNO3 and NaCl or NaBr at the onset
of milling and before a significant amount of the intermediate
Ag2ClNO3 has been formed. Here again, after 10 min of
milling, there was a steady drop of the weight fraction of
NaNO3 from 32 to 30%, which can also be contributed to

crystallization of AgBr that may have initially formed in a
partially amorphous state. Final weight fractions for NaNO3
and AgBr are in good agreement with their theoretical values of
32% and 68%, respectively (Figure 3b).
Unlike the reaction involving NaCl, the reaction of AgNO3

and NaBr exhibited significantly lower fluorescence in Raman
spectra. Nevertheless, we observed a broad fluorescence signal
in the spectral region from 1800 to 3250 cm−1 (Figure S3). As
the reaction proceeded, the fluorescence gradually diminished,
correlating with the loss of the intensity of the Raman band at
1046 cm−1 and the appearance of a new band at 1070 cm−1

(Figure 3c). Both of these bands correspond to symmetric
stretching of the NO3

− ion, the band at 1046 cm−1 to NO3
−

stretching in AgNO3 and the band at 1070 cm−1 to NO3
−

stretching in NaNO3.
102,103 The intensities of these bands can

be used to obtain a reaction profile that displays depletion of
AgNO3 and formation of NaNO3 (Figure 3d). Although the
intensities of Raman peaks are proportional to the amounts of
AgNO3 and NaNO3, careful calibration is still needed for exact

Figure 3. Milling of AgNO3 and NaBr. (a) In situ reaction monitoring by synchrotron PXRD. Diffraction patterns of reactants and products are
given above the 2D time-resolved spectra. (b) Weight fractions derived from the Rietveld refinement of the in situ PXRD patterns. (c) 2D time-
resolved Raman spectra for the Raman spectral range 1088−1030 cm−1. (d) Change in the Raman peak intensities at 1046 and 1070 cm−1 during
milling.

Figure 4.Milling of AgNO3 and NaI. (a) In situ reaction monitoring by synchrotron PXRD. Diffraction patterns of reactants and products are given
above the 2D time-resolved spectra. (b) 2D time-resolved Raman spectra for the Raman spectral range 1088−1030 cm−1. (c) Change in Raman
peak intensities at 1046 and 1070 cm−1 during milling. There was an sharp increase in the intensities of Raman band at 1070 cm−1 that is more
likely due to sticking of the reaction mixture. These changes correlated with the sharp increase in Bragg reflections in PXRD patterns, typically
observed in cases of an inhomogeneous distribution of the reaction mixture during milling.55
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quantification. Despite this, the curves in both PXRD and
Raman monitoring derived reaction profiles exhibit similar
trends. While the weight fractions of NaNO3 dropped steadily
from 32 to 30% (Figure 3b) after 10 min of milling, the
intensities of of the NaNO3 Raman band remained constant
(Figure 3d). Again, we find a likely explanation of these
observations in the crystallization of partially amorphous
nascent AgBr, which would then lower the weight fraction of
NaNO3, even if its amount and crystallinity remain steady.
AgNO3 + NaI. Before presenting the results of milling of

AgNO3 and NaI, we note that NaI which we had used
contained a small amount of one or more unidentified
impurities (Figure S5), which could have affected the reactivity
of NaI, and these observations should be considered with
caution. Milling AgNO3 and NaI resulted in a fast reaction that
was complete within 13 min, according to PXRD and Raman
spectroscopy (Figure 4). To our surprise, the PXRD data
revealed a remarkable transient intermediate phase forming
right after depletion of the reactants, the occurrence of which
was reproduced in three experiments. This transient phase was
short-lived, exhibiting low-intensity Bragg reflections, most
notably at d = 12.33 Å (corresponding to 0.82° in 2θ for
radiation wavelength λ = 0.177 Å) and 7.51 Å (1.35° in 2θ)
(Figure S6). Unfortunately, since its presence in the reaction
mixture lasted, on average, less than 60 s, we were not able to
isolate it or identify it on the basis of the in situ collected
patterns. We also could not identify this intermediate in in situ
Raman spectra. Rietveld analysis was hamstrung here not only
by the appearance of a crystallographically unidentified
intermediate but also by impurities originating from the
starting NaI. While the resulting reaction mixture was
predominately composed of AgI and NaNO3, we were unable
to assign a phase to the Bragg reflection with d = 3.97 Å (2.55°
in 2θ) (Figure 4a and Figures S7 and S8).
We were intrigued by the formation of Ag2ClNO3 as an

intermediate, since its analogues with bromide and iodide,
Ag2BrNO3 and Ag2INO3, were not observed during
mechanochemical metathesis. On consideration that milling
reactions have often been found to follow Ostwald’s rule of
stages,94,95 where intermediate phases occur starting from a
higher-energy content phase which is then transforming into
phases of increasingly lower energy content, we have assumed
that only Ag2ClNO3 would have a lower energy than the
mixture of AgX and AgNO3. Since the bromide and iodide
analogues are known in the literature, we were interested in
preparing Ag2BrNO3 and Ag2INO3 mechanochemically.
Previous reports of their preparation describe a solvent-based
synthesis at an elevated temperature.89,104,105 Here, milling of
AgX (X = Cl, Br, I) with AgNO3 at room temperature for 70
min yielded all three Ag2XNO3 pure double salts, as evidenced
by Rietveld analysis of their PXRD patterns collected ex situ
(Figures S9−S11).
Since standard enthalpies and Gibbs energies of formation of

these double salts are not known in the literature, we have
estimated them using solid-state density functional theory
(DFT) calculations (Figure 5). Assuming a reaction path with
intermediate formation of the Ag2XNO3, we find that all three
double salts should have formed, according to Ostwald’s rule of
stages. A likely reason we did not observe formation of
Ag2BrNO3 and Ag2INO3 in situ lies in kineticsAgNO3
potentially reacts more quickly with NaX than with the
nascent AgX. While the results of our calculations are in good
agreement with the experimental reaction enthalpies (Table 1),

one should bear in mind that these calculations assume a
temperature of 0 K and yield no entropy contribution and thus
cannot calculate Gibbs energies. However, the reaction rates in
the NaX series seem to correlate with reaction enthalpies.
Finally, we noticed that some samples had changed color

and became slightly purplish or grayish after milling. This was
likely due to partial silver reduction, but since we minimized
exposure to light during milling, we assumed that high-energy
ball impacts may have led to localized high temperatures,
causing a disproportionation reaction of AgCl with the
formation of elementary Ag(0) and Cl2. To test this
assumption, in a repeated experiment, the atmosphere inside
the milling vessel was analyzed by mass spectrometry after 60
min of milling to reveal a slight increase in the partial pressure
of Cl2 (Figure S12). Our mass spectrometer was limited to the
detection of ions with a relative mass below 100, and so only
the experiment with NaCl was feasible to be analyzed in this
way by mass spectrometry. It is worth noting that we did not
observe an increase in the amount of any NxOy species after
milling that could have resulted from decomposition of the
nitrate ion, indicating that the potential hot spots during
milling did not generate conditions that could lead to nitrate
decomposition. We are currently developing a setup which
would allow for an in situ measurement of gaseous products
during milling, in a manner similar to that recently
described.106

■ CONCLUSION
In situ monitoring was applied to a ball-milling metathesis
reaction between AgNO3 and NaX (X = Cl, Br, I). Reactions,
conducted by neat grinding of solids, resulted in the formation
of the expected products, AgX and NaNO3. The reaction rates
for milling of AgNO3 with NaI and NaBr were similar and were
significantly faster then the reaction rate with NaCl. A slower
reaction for NaCl was possibly a consequence of the formation
of the intermediate Ag2ClNO3, while the corresponding
intermediates did not form with NaBr and NaI. All three
double salts could have been expected as intermediates on the
basis of Ostwald’s rule of stages and, moreover, can be
efficiently prepared by milling of AgX and AgNO3. In addition,
we find it interesting that the nascent NaNO3 has crystallized
as the unstable disordered polymorph before it transformed
into the room-temperature-stable ordered polymorph, and we

Figure 5. DFT-estimated relative energies of the reaction mixture
taking the transformation path via the intermediate double salt
Ag2XNO3. Energies of the starting and final compositions need to be
divided by 2 for comparison with values in Table 1.
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intend to investigate this further. We have thus demonstrated
that a metathesis reaction between ionic compounds can be
performed efficiently under ambient conditions by ball milling
of solids and that such a reaction may exhibit reactive
intermediates, much as reactions of organic or metal−organic
systems. We also present an efficient and elegant means for the
preparation of double salts without any postsynthetic workup
required. Having successfully applied in situ reaction
monitoring to mechanochemical reactions between inorganic
ionic compounds, we have completed application of these
techniques to mechanochemical reactions of all major classes
of compounds.
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Stipe Lukin − Ruđer Bosǩovic ́ Institute, 10000 Zagreb, Croatia;

orcid.org/0000-0003-2247-6803
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We thank Dr. Krunoslav Uzǎrevic ́ and Dr. Martina Tireli for
assistance and discussion. We are grateful to the Ruđer
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(47) Tröbs, L.; Emmerling, F. Mechanochemical synthesis and
characterisation of cocrystals and metal organic compounds. Faraday
Discuss. 2014, 170, 109−119.
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(55) Frisčǐc,́ T.; Halasz, I.; Beldon, P. A.; Belenguer, A. M.; Adams,
F.; Kimber, S. A. J.; Honkimak̈i, V.; Dinnebier, R. E. Real-time and in
situ monitoring of mechanochemical milling reactions. Nat. Chem.
2013, 5, 66−73.
(56) Halasz, I.; Kimber, S. A. J.; Beldon, P. J.; Belenguer, A. M.;
Adams, F.; Honkimak̈i, V.; Nightingale, R. C.; Dinnebier, R. E.;
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