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Abstract 
Surface modifications of metallic biomaterials can in great merit, improve the 

properties of the hard-tissue implants and in that way contribute to the success of the 

surgical implantation process. Coating deposition stands out as one of the many surface-

modifying techniques that can be used to improve implant surface properties and, in turn, 

induce successful osseointegration. Deposition of the TiO2 layer on the surface of the 

metallic implants has a great potential to enhance not only their osseointegration ability 

but also their biocompatibility and corrosion resistance. In the present study, the 

possibility of successful deposition of the TiO2 layer on the surface of commercially pure 

titanium (CP-Ti), as the most commonly used metallic implant material, by spraying the 

colloidal nanoparticles aqueous solution in the electric discharge plasma at atmospheric 

pressure was investigated. To characterize the colloidal TiO2 nanoparticle solution, used 

for the coating deposition process, transmission electron microscopy (TEM) was utilized, 

while scanning electron microscopy (SEM) and optical profilometry were used to 

investigate the deposited surface layer morphology and quality. Estimation of the 

deposited film quality and texture was used to confirm that the arc plasma deposition 

technique can be successfully used as an advanced and easy-to-apply method for coating 

the metallic implant material surface with the bioactive TiO2 layer which favors the 

osseointegration process through the improvement of the implant surface properties. The 

TiO2 coating was successfully deposited using the arc plasma deposition technique and 

covered the entire surface of the CP-Ti substrate without any signs of coating cracking or 

detachment. 
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Introduction 
Metallic biomaterials are successfully used for decades in biomedicine for the 

production of hard-tissue implants designed to substitute the loss of a specific body part, 

organ, or function [1-3]. Biometallic implant materials are applied not only in orthopedic 

and dental surgery but also in cardiovascular surgery and otorhinolaryngology. Further 

development of biometallics and improvement of their properties must always be in 

accordance with the specific biomedical application requirements and imperative to 

produce the more durable implants which can withstand significant biomechanical loads, 

provide high functionality in the corrosive environment, and safe service during the 

interaction with living cells and tissues [3, 4]. Since implant damage can significantly 

deteriorate the patient's health, the research in this material science field is directed toward 

the obtainment of biometallic materials with improved biocompatible properties and new 

surface modification solutions aimed to optimize the performance of the implant in the 

demanding human body conditions [2, 3, 5]. 

Titanium-based materials are the most commonly used biometallics due to their 

exceptional biocompatibility and corrosion resistance, low cytotoxicity, and good 

mechanical properties [3, 5, 6]. However, further improvement of their properties is still 

one of the major challenges of the modern age material science engineering to obtain 

more durable implants with prolonged functionality, in the physiologically acceptable 

manner, following the principles of economically acceptable production. Namely, the 

economic aspect of high-quality implant manufacture cannot be disregarded since their 

economic production leads to the obtainment of more affordable medical devices 

attainable for a wider group of patients. Having all this in mind, the modification of 

already used biometallic materials stands out as an economically acceptable and efficient 

solution for the fabrication of durable implants with improved characteristics [7,8]. 

Application of suitable surface modification method allows the retainment of good 

mechanical properties of the implant material with simultaneous attainment of its 

improved surface characteristics, such as implant bioactivity, biocompatibility, 

osseointegration ability, and corrosion resistance, by modification of its surface chemistry 

and morphology. Different surface modification technics, such as chemical etching and 

coating, ion implantation and deposition, anodic oxidation, etc., can be used for this 

purpose [7]. However, arc plasma deposition can be singled out as an easy-to-apply 

coating deposition technique that offers the possibility to deposit different types of 

coatings on the surface of the metallic implants depending on their medical application 

requirements [7, 9, 10]. 

Commercially pure titanium (CP-Ti) is a widely used implant material, and 

modification of its surface properties is considered a simple, effective and economically 

acceptable solution for the obtainment of damage-resistant implants with enhanced 

bioactive characteristics. Bio-functionalization of the CP-Ti surface by deposition of 

bioactive surface coatings shows significant potential for the obtainment of the enhanced 

implant osseointegration properties [11]. Namely, bone ingrowth into a metallic implant 

can be favored by deposition of the diverse surface layers characterized by the specific 

morphological features which will favor live cells adhesion and proliferation [12-14]. 



V. Maksimović et al.- Arc Plasma Deposition of TiO2 Nanoparticles from Colloidal Solution 343 

 
Recent studies showed that the TiO2 coating deposition influences the enhancement of 

antimicrobial, biocompatible, and corrosion-resistant properties of the substrate [15-17]. 

Therefore, the aim of the present study was to investigate the possibility of the 

successful deposition of continuous TiO2 coating on the CP-Ti surface by easy-to-apply 

arc plasma deposition method and in that way obtain topography and texture of the 

implant material surface favorable for the bone ingrowth. 

Experimental work 
The CP-Ti grade 2 supplied by Goodfellow, Germany, in the shape of a 14-mm-

diameter bar was used in this study as a substrate material for the bioactive coating layer 

deposition. The ring-shaped work-piece, with dimensions presented in Fig. 1, was cut 

from the CP-Ti bar and subjected to the standard metallographic preparation procedure 

and cleaning in the ultrasonic bath with ethanol to obtain an uncontaminated surface 

prepared for the coating deposition.  

  

(a) (b) 

Fig. 1. The CP-Ti substrate work-piece :(a) 3D overview and (b) schematic 

representation of the work-piece dimensions. 

 

Fig. 2. TEM image of the TiO2 colloidal nanoparticles used for the coating deposition 

process. 
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As a source for the TiO2 coating layer deposition, the colloidal TiO2 nanoparticles 

aqueous solution was used. The TEM analysis revealed that the used colloidal solution 

contains TiO2 nanoparticles with a diameter ranging from 4.5 to 5 nm (see Fig. 2). 

Spraying of the colloidal solution with the concentration of 0.24 M, approximate particle 

number of 1 × 1017 particles/ml, and agglomeration number (number of TiO2 molecules 

in one particle) of 1402 was conducted using the Meinhard Type A pneumatic nebulizer 

coupled with the Scott-type cloud chamber presented in Fig. 3. The flow of supporting 

argon gas was maintained at 2 dm3/min while the aerosol yield was approximately 0.03 

ml of liquid per 1dm3 of argon. The nebulizer system generated aerosol droplets ~ 10 μm 

in size, while the spraying time was limited to 1 min. 

The illustration of the experimental set-up used in the present investigation for the 

generation of the atmospheric pressure direct current (DC) arc argon plasma equipped 

with the aerosol sample supply is given in Fig. 3a, while the illustration of the arc plasma 

deposition process can be observed in Fig. 3b. Detail description of the experimental set-

up was reported previously [18, 19], while its brief overview is presented in this study.  

 

(a) 

 

(b) 

Fig. 3. Illustration of the applied arc plasma deposition (a) set-up and (b) process. 
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Namely, the set-up consists of plate brass segments and plate copper diaphragms 

that are electrically insulated and water-cooled. The current-carrying channel, i.e. arc 

plasma, is established between the copper anode rod and the graphite cathode tube, 

mutually coaxially oriented. The atmospheric pressure plasma was generated by DC arc 

discharge. The applied current was 10 A and it resulted in the formation of the arc plasma 

column with a diameter of approximately 4 mm. The arc plasma passes through the 

circular openings of the consecutive segments and diaphragms to be constricted and 

spatially stabilized. The mid part of the arc column goes through a chamber, i.e. 

cylindrical cavity, of the central brass. The cavity has lower and upper circular openings 

to avoid excessive constriction of the plasma column and to enable aerosol contact with 

the plasma. Aerosol, formed by the pneumatic nebulizer and carried by the argon stream, 

is tangentially introduced into the cylindrical cavity forming a vortex around the high-

temperature plasma column. The temperature generated in the vortex center was 

approximately 10000 K, while at the vortex periphery, this temperature drops close to 

5000 K due to the presence of a strong temperature gradient. A ring-shaped CP-Ti work-

piece was fixed coaxially within the cavity of the central segment. In this way, it is 

enabled for the plasma column to pass through the ring-shaped work-piece and heat it. 

The aerosol evaporates and desolvates during its contact with the generated plasma, and 

as a result, the TiO2 solids, which are partially melted, evaporated and subsequently 

atomized, are formed and their deposition on the CP-Ti work-piece surface is enabled. 

Results and discussion 
Application of the arc argon plasma deposition method at the atmospheric pressure 

resulted in the formation of the TiO2 layer on the CP-Ti surface (Figs. 4-6). The SEM 

analysis of the deposited layer revealed that this layer is continuous and that it covers the 

entire surface of the CP-Ti work-piece. The presence of a strong temperature gradient in 

the vortex formed around the high-temperature plasma column resulted in the formation 

of the TiO2 layer on the CP-Ti substrate surface with different morphological features 

depending on the distance from the plasma column.  

Namely, the highest temperatures generated at the positions closest to the plasma 

column led to the formation of the surface layer composed of the partially melted and 

solidified irregularly-shaped TiO2 particles (Fig. 4a). This kind of a surface layer was 

formed close to the inner edge of the ring-shaped CP-Ti work-piece which is closest to 

the formed plasma column. The profilometric analysis of the layer deposited at the 

positions near the inner edge of the ring-shaped CP-Ti work-piece indicated that the 

average size of the deposited TiO2 particles is 1.061 μm, while the roughness of the 

deposited layer positioned near the plasma column is estimated as 0.898 μm (Fig. 4b). 
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(a) 

 

(b) 

Fig. 4. The TiO2 surface layer deposited close to the CP-Ti work-pieces inner edge: (a) 

SEM micrograph and (b) 3D profilometric analysis. 

However, as the position of the deposited TiO2 particles changes across the work-

piece diameter their size and morphological features also change (Figs. 5 and 6).  

 

(a) 

 

(b) 

Fig. 5. The TiO2 surface layer deposited in the central zone located between the outer 

and inner edge of the CP-Ti work-piece: (a) SEM micrograph and (b) 3D profilometric 

analysis. 
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(a) 

 

(b) 

Fig. 6. The TiO2 surface layer deposited close to the outer edge of the CP-Ti work-

piece: (a) SEM micrograph and (b) 3D profilometric analysis. 

Results of the SEM and profilometric analysis, presented in Fig. 5, indicated that 

in the central zone, located between the outer and inner edge of the ring-shaped CP-Ti 

work-piece, finer TiO2 particles can be distinguished than in the case of the particles 

present at the inner edge of the work-piece. The average size of the deposited TiO2 

particles in this central zone is 0.344 μm, and this part of the surface layer is characterized 

with significantly lower roughness compared with the layer at the inner edge of the CP-

Ti work-piece, since the estimated roughness in this area is 0.278 μm. Still, some 

agglomeration of the deposited TiO2 particles was observed. Close to the outer edge of 

the CP-Ti work-piece, however, slightly coarser and regularly-shaped TiO2 particles can 

be distinguished at the CP-Ti surface (Fig. 6). The average TiO2 particle size at the 

positions close to the outer CP-Ti edge is 0.366 μm, while the roughness of the deposited 

coating at this position is determined as 0.304 μm. The TiO2 particles observed close to 

the outer work-piece edge are quite uniform in size, pyramidal in shape and with distinct 

facets present, which is contrary to the TiO2 particles deposited close to the work-piece 

inner edge. 

Nevertheless, it must be emphasized that the deposited surface coating is 

continuous and that signs of coating cracking or detachment from the CP-Ti surface were 

not detected across the entire substrate surface. This indicates that the proposed arc 

plasma deposition method can be successfully used for the surface modification of the 

biometallic surfaces. 

Conclusion 
Conducted investigations confirmed that by applying the arc plasma deposition 

method at atmospheric pressure, a successful deposition of the stable bioactive TiO2 layer 

on the CP-Ti surface can be achieved. The application of this simple and cost-effective 

coating deposition technique enabled a good dispersion of the TiO2 nanoparticles onto 

the CP-Ti surface influencing in that way the formation of the continuous surface layer 

favorable for the biometallics corrosion resistance, biocompatible and osseointegration 

properties after their implantation into the human body. Having all this in mind, the results 

of the present study should be perceived as the starting point for future investigations 
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aiming to determine the influence of the deposited TiO2 surface layer morphology on the 

corrosion resistance and biocompatibility of the biometallic materials. 
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