

PHYSICAL CHEMISTRY 2012

^{11th} International Conference on Fundamental and Applied Aspects of Physical Chemistry

Under the auspices of the University of Belgrade

Proceedings

The Conference is dedicated to Professor Ivan Draganić

> September 24-28, 2012 Belgrade, Serbia

ISBN 978-86-82475-27-9 *Volume* 1 ISBN 978-86-82475-28-6 *Volume* II

Title: PHYSICAL CHEMISTRY 2012 (Proceedings)
Editors: S. Anić and Ž. Čupić
Published by: Society of Physical Chemists of Serbia, Studenski trg 12-16, 11158, Belgrade, Serbia
Publisher: Society of Physical Chemists of Serbia
For Publisher: S. Anić, President of Society of Physical Chemists of Serbia
Printed by: "Jovan" Priting and Publishing Company; 200 Copies;
Number of pages: 6+ 497; Format: B5; Printing finished in September 2012.

Text and Layout: "Jovan"

200- Coppy printing

CONTENTS

Volume 1	
Organizers	V
Committees	VI
Sponsors	VIII
Professor Ivan Draganić	IX
Plenary lectures	1
Chemical Thermodynamics	35
Spectroscopy, Molecular Structure, Physical Chemistry of Plasma	65
Kinetics, Catalysis	137
Nonlinear Dynamics	225
Electrochemistry	301
Biophysical Chemistry, Photochemistry, Radiation Chemistry	337
Radiochemistry, Nuclear Chemistry	
Material Science	415
Volume II	
Solid State Physical Chemistry	505
Macromolecular Physical Chemistry	515
Environmental Protection Forensic Sciences Pharmaceutical Physical Chemistry	557
Phase Boundaries	667
Complex Compounds	681
General Physical Chemistry	707
Geophysical Chemistry	719
Education, History	731
Food Physical Chemistry	743
Free Topic	783
Index	791

E-09-P

ELECTROCHEMICAL BEHAVIOR OF V₂O₅ XEROGEL AND V₂O₅ XEROGEL /GRAPHITE COMPOSITE IN AQUEOUS SOLUTION

M. Medić^b, I. Stojković^a, M. Vujković^a, N. Cvijetićanin^a, S. Mentus^{a,*}

^aUniversity of Belgrade, Faculty of Physical Chemistry, Studentski Trg 12-16, Belgrade, Serbia

^b Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, Belgrade, Serbia

^{*}The Serbian Academy of Science and Arts, Knez Mihajlova 35, 11158, Belgrade, Serbia

ivana@ffh.bg.ac.rs

Abstract

The V₂O₅ xerogel and V₂O₅ xerogel /graphite composite were synthesized by sol-gel method. The obtained materials were characterized by X-ray diffractometry and simultaneous thermogravimetry and differential thermal analysis. The electrochemical behaviour was investigated by galvanostatic cycling in aqueous solutions of LiNO₃. Better electrochemical performance was evidenced for composite V₂O₅ xerogel/graphite. Namely, the initial capacity of V₂O₅ xerogel/C was found to be 66 mAh g⁻¹ against 40.4 mA h g⁻¹ for V₂O₅, while capacity fade after 50 cycles was 10 % of initial capacity for V₂O₅ xerogel/ graphite, against 27% for V₂O₅.

Introduction

The rechargeable lithium-ion batteries with organic electrolytes present today the exclusively used power sources of the portable electronic devices. However, the organic electrolytes are toxic, inflammable and expensive, and there is the tendency to replace them by aqueous solutions [1]. The lithium ion batteries with aqueous solution would be more safe and cheaper. The main problem of Li-ion batteries with aqueous electrolyte is the voltage limitation arising due to the low decomposition voltage of water, and relatively poorer electrochemical characteristic of electrode materials.

In the field of lithium-ion batteries with organic and aqueous solutions, different vanadium oxides (VO₂, V₂O₅, Li_{1+x}V₃O₈) were investigated as electrode materials. Vanadium pentoxide (V₂O₅) in both crystalline and amorphous (xerogel) form was often studied. An amorphous (xerogel) form of V₂O₅ displayed higher capacity than the crystalline form in organic and aqueous electrolyte [2-4]. The performances during galvanostatic charging/discharging of xerogel V₂O₅ may be improved by some additives to the electrolyte solution, or by addition of nanodispersed carbon material during synthesis [3,4].

In this work, we synthesized two materials by a simple sol-gel method: xerogel V_2O_5 and composite material V_2O_5 xerogel/C, where C was finely dispersed Carbon. The intercalation/deintercalation of Li ions into both materials was investigated by galvanostatic cycling in a saturated aqueous solution of LiNO₃.

E-09-P

Experimental

Both the xerogel V₂O₅ and the V₂O₅ xerogel/graphite composite (V₂O₅/C) were synthesized in an almost identical way. In both case, the preliminary solution was obtained by dissolving crystalline V₂O₅ powder (p.a. Merck) in 10% solution of hydrogen peroxide H₂O₂ (p.a. Merck) in an amount which provided a 0.06 M solution. To obtain V₂O₅ xerogel /C composite, the natural graphite was added in the V₂O₅-H₂O₂ solution in an amount to provide mass ratio V₂O₅: C of 10 in solution V₂O₅-H₂O₂. The solution V₂O₅-H₂O₂ with and without added graphite were mixed by magnetic stirrer 24 h, then poured into a Petri cup and dried in air until the solvent evaporated. The obtained powders were dried at 200 °C for one hour.

The X-ray power diffraction (XRPD) data were collected using Philips PW 1050 with CuK $\alpha_{1, 2}$ radiations in 10-70° 2 θ range with 0.05° step and 2 seconds exposition time. Simultaneous TGA/DTA measurements were carried out under air flow, at a heating rate of 10 ° min⁻¹ using the device TA SDT Model 2960.

The galvanostatic charge/discharge measurements were performed in a two-

electrode arrangement, with V_2O_5 xerogel or composite V₂O₅ xerogel/C as active mass of the working electrode and LiMn₂O₄ as active component of the counter electrode, using software-controlled device Arbin BT-2042. The active material for working (or counter) electrodes was made by mixing xerogel V₂O₅ or composite V_2O_5 xerogel/C (LiMn₂O₄), carbon black and PVDF binder in a weight ratio 85:10:5 in Nmethyl 2-pyrrolidone solvent. A drop of the suspension was deposited on

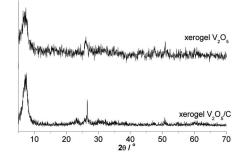


Figure 1. a) The XRD patterns of composite V_2O_5 xerogel and V_2O_5 xerogel /C composite dried at 200°C.

stainless steel (Fe-18%Ni) plates (~ 6.2 cm^2). These electrodes were dried one hour at 80 °C in air and 12 hours at 140 °C under vacuum. The filter paper soaked with saturated aqueous solution LiNO₃ separated the electrodes. The coulombic capacity during charging/ discharging process was measured within the voltage window 0.01 to 1.3V, i.e. within the voltage window of water electrochemical decomposition.

Results and Discussion

XRPD analysis of V₂O₅ xerogel and V₂O₅ xerogel /C composite after drying at 200°C evidenced amorphous structure of V₂O₅, Figure 1. The broad peak at $2\theta = 25^{\circ}$ can be observed for composite V₂O₅/C and it belongs to graphite. The both xerogels contained 0.4 mole of H₂O per mole of oxide after heating to 200 °C. The amount of carbon in the synthesized material, calculated from the mass loss caused by combustion, corresponds to the initial amount of carbon in the material.

E-09-P

Figure 2 shows the dependence of discharge capacity (left axis) and efficiency (right axis) on the cycle number of V₂O₅ xerogel and V₂O₅ xerogel/C composite in aqueous solution of LiNO₃. The coulombic efficiency of both investigated materials were similar and amounted to about 96%. The V₂O₅ xerogel displayed initial capacity of 40.4 mA h g⁻¹, but its value was only 29.5 mA h g⁻¹ after 50 cycles. The V_2O_5 xerogel/C composite displayed much better electro-chemical

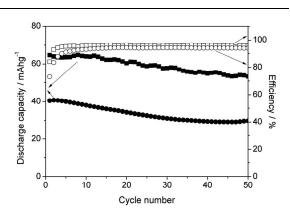


Figure 2. The discharge capacity (full symbols) and coulombic efficiency (empty symbols) of xerogel V_2O_5 (circle) and composite xerogel V_2O_5/C (square) in saturated aqueous LiNO₃ solution.

performance both before and during cycling. Its initial discharge charge capacity was 66 mAh g⁻¹ and was almost constant during the first 12 cycles. After 12 cycles there appeared slight decrease and 59 mA h g⁻¹ was registered after 50 cycles. A similar improvement of cycling performance was perceived for composite xerogel V_2O_5 if carbon black was added in the process of synthesis. Namely, the xerogel V_2O_5 composite /C where C is carbon black displayed initial capacity of 58.8 mAhg⁻¹ and after 50 cycles somewhat lower value of 43.1 mAhg⁻¹ was measured [4].

Conclusion

The V_2O_5 xerogel /C composite synthesized by dissolving crystalline V_2O_5 in diluted solution of H_2O_2 and adding graphite to the solution presents a promising electrode material for aqueous lithium ion batteries. Initial discharge capacity of this material was found to be 66 mAh g⁻¹, while the capacity after 50 cycles is about 90 % of its initial value.

Acknowledgement

This work was supported by Serbian Ministry of Science and Education, project No. III45014.

References

- N. Cvjeticanin, I. Stojkovic, M. Mitric, S. Mentus, J. Power Sources, 2007, 174, 1117-1120.
- [2] D. Imamura, M. Miyayama, M. Hibino, T. Kudo, J. Electrochem. Soc, 2003, 150, A753.
- [3] I. B. Stojković, N. D. Cvjetićanin, S. V. Mentus, Electrochem. Commun., 2010, 12, 371-373.
- [4] I. Stojkovic, N. Cvijeticanin, S. Mentus, Russ. J. Phys. Chem. A, 2011, 85, 2344-2348.

CIP Volume I

CIP - Каталогизација у публикацији Народна библиотека Србије, Београд

544(082) 621.35(082) 66.017/.018(082)

MEĐUNARODNA konferencija iz fundamentalne i primenjene fizičke hemije (11 ; 2012 ; Beograd)

Physical Chemistry 2012 : proceedings. #Vol. #1 / 11th International Conference on Fundamental and Applied Aspects of Physical Chemistry, September 24-28, 2012, Belgrade ; [editors S.[Slobodan] Anić and Ž.[Željko] Čupić ; organized by Society of Physical Chemists of Serbia ... et al.]. - Belgrade : Society of Physical Chemists of Serbia, 2012 (Belgrade : Jovan). - VI, 498 str. : ilustr. ; 24 cm

"The Conference is dedicated to Professor Ivan Draganić" --> nasl. str. - Tiraž 200. -Bibliografija uz svaki rad.

ISBN 978-86-82475-27-9 1. Društvo fizikohemičara Srbije (Beograd) а) Физичка хемија - Зборници b) Електрохемијско инжењерство - Зборници с) Наука о материјалима - Зборници COBISS.SR-ID 193432332 CIP Volime II

CIP - Каталогизација у публикацији Народна библиотека Србије, Београд

544(082) 621.35(082) 66.017/.018(082)

MEĐUNARODNA konferencija iz fundamentalne i primenjene fizičke hemije (11 ; 2012 ; Beograd)

Physical Chemistry 2012 : proceedings. #Vol. #2 / 11th International Conference on Fundamental and Applied Aspects of Physical Chemistry, September 24-28, 2012, Belgrade ; [editors S.[Slobodan] Anić and Ž.[Željko] Čupić ; organized by Society of Physical Chemists of Serbia ... et al.]. - Belgrade : Society of Physical Chemists of Serbia, 2012 (Belgrade : Jovan). - VI str., 499-782 str. : ilustr. ; 24 cm

"The Conference is dedicated to Professor Ivan Draganić" --> nasl. str. - Tiraž 200. -Bibliografija uz svaki rad. - Registar.

ISBN 978-86-82475-28-6 1. Društvo fizikohemičara Srbije (Beograd) а) Физичка хемија - Зборници b) Електрохемијско инжењерство - Зборници с) Наука о материјалима - Зборници COBISS.SR-ID 193433356