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ABSTRACT OF DISSERTATION 

 
 
 

THE DEVELOPMENT OF STRUCTURAL HOLLOW CARBON FIBERS FROM A 
MULTIFILAMENT SEGMENTED ARC SPINNERET: PRECURSORS, OXIDATION, 

AND CARBONIZATION 
 

 Carbon fiber is an ideal material for structural applications requiring high strength 
and stiffness and low weight. Yet it has seen only incremental improvements in properties 
over the last few decades. Carbon fibers remain limited in attaining their theoretical tensile 
strength and modulus, largely due to defects in their structure, some of which stem from 
the fiber production process itself. Through the mitigation of defect formation as well as 
approaches to decrease fiber linear density, it is hypothesized that carbon fiber with 
enhanced specific properties, including specific strength and modulus, could be produced 
which would significantly propel its unique capabilities.  

One approach to produce high specific property carbon fibers is the development 
of hollow carbon fibers. The development of hollow carbon fibers for use in structural 
applications has not been widely explored. The most successful methods to date rely on 
multicomponent spinning with sacrificial polymers and complex spinneret geometries. A 
more simplistic, scalable, and economical approach is the use of a segmented arc - shaped 
spinneret.  Traditionally, segmented arc spinnerets have been used for melt or dry spinning 
hollow fibers. To the author’s knowledge, only three references exist describing its use in 
a solution spinning process for the production of hollow fiber precursors from 
polyacrylonitrile (PAN). The development of structural hollow carbon fibers from such 
precursors represents a new technology requiring extensive research in the development of 
the hollow fiber precursors, as well as their subsequent oxidation and carbonization.  

In this work, a method for the multifilament spinning of hollow PAN fibers using 
a segmented arc spinneret is described. This includes the coagulation, washing, drawing, 
and spooling of PAN hollow fiber and the effect of each on hollow fiber formation, 
structure, and properties. In particular, the impact of the coagulation bath composition is 
explored. Here, the resultant hollow fibers approached the specific tensile performance of 
traditional solid precursors.  



Utilizing these continuous tows of multifilament PAN hollow fibers, oxidation 
studies were undertaken to determine the capability of the hollow filaments, aided by 
oxidation from the interior, to oxidize at an increased rate compared to traditional solid 
fibers. The impact of open interior volume as a percent of the total fiber volume on 
oxidation was studied. In addition, the mechanisms behind the development of a skin-core 
structure in the hollow fiber wall are explored and mitigation methods proposed.  

The final part of the work focuses on the carbonization of oxidized hollow fibers. 
The structural parameters of hollow carbon fibers are compared to commercially available 
solid carbon fibers, with their resulting specific tensile properties compared. A direct 
comparison is made between hollow fibers and solid fibers with similar outer diameter with 
regard to their oxidation, carbonization, and resulting morphology and tensile performance. 
Finally, recommendations are made for continued improvement of the precursor, oxidized, 
and carbonized hollow filaments to achieve smaller precursor dimensions, faster oxidation 
rates, less skin-core formation, and higher specific tensile properties. 

 
KEYWORDS: Carbon Fiber, Polyacrylonitrile, Hollow Carbon Fiber, Segmented Arc 

Spinneret, Solution Spinning  
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CHAPTER 1. INTRODUCTION 

1.1 Overview of carbon fibers 

Carbon is a unique element. When asked why she chose to study carbon, Professor 

Mildred S. Dresselhaus (lovingly dubbed the Queen of Carbon) remarked that, in the 

1960s, carbon was relatively unpopular and a difficult study. Today, carbon is anything but 

unpopular. Carbon has unique abilities to form multiple bonds, not only with itself, but 

with other atoms as well. It can form chains, branches, and rings, resulting in millions of 

complex molecular possibilities. Amorphous carbons are common (Figure 1.1b), but 

carbon is also able to form a number of distinct crystalline forms, or allotropes. More exotic 

allotropes such as fullerenes and carbon nanotubes have recently been discovered (Figure 

1.1c and d), while the more commonly known allotropes of carbon are diamond and 

graphite (Figure 1.1a and e). When oriented parallel to one another, graphitic crystallites 

form the basis for carbon fiber (CF), an extremely strong and lightweight material. Carbon 

fibers are commonly combined with resins to produce carbon fiber reinforced polymer 

(CFRP) composites and have become a highly desired material for structural applications 

requiring high strength, stiffness, and low weight. Carbon fibers are currently used in 

composites for a variety of applications in the aerospace, wind energy, automotive, and 

sporting goods industries. 
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Figure 1.1. Allotropes of carbon, including a) diamond, b) amorphous carbon which has 
nonregular recurring bonding structures of both graphite and diamond, c) fullerene, a C60 
bucky-ball, d) single walled carbon nanotube and e) graphite. Adapted from [1]. Licensed 
under CC BY-SA 4.0. 
 

1.1.1 Carbon fiber precursors 

Carbon fibers are traditionally manufactured from polyacrylonitrile (PAN), pitch or 

rayon precursor fibers.  However, PAN-based CFs dominate the market due to their 

combined strength and modulus properties [2].  The development of high tensile strength 

and modulus CF is directly dependent on the quality of the precursor fiber [3-6]. High 

quality PAN precursors are known to have fewer voids, smaller diameter (approximately 

10-12 µm), low comonomer content, >50% carbon yield, and high tensile strength and 

modulus [5, 7-9]. Research and development of PAN precursor fiber requires extensive 

experimentation to determine their process-structure-property relationships. This is not 

arbitrary and involves the cooperation of hundreds of dependent and independent variables, 

each of which impacts the resultant fiber.   

To produce high quality PAN precursors, solution spinning is the method of choice.  

Alternative production methods have been studied, such as electrospinning [10] or melt 

spinning of PAN [11], however, the resulting carbon fibers lack the properties required to 

a) diamond, b) amorphous carbon which is a polycrystal of graphite and diamond, c) fullerene, a C60 bucky-ball, 
d) single walled carbon nanotube and e) graphite

https://commons.wikimedia.org/wiki/File:Carbon_allotropes.svg
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produce CF for structural applications. As a result, solution spinning is widely used to 

produce CF precursors.  Solution spinning relies on the solubility of the PAN polymer in a 

solvent. This spinning solution, or “dope”, is then extruded through a spinneret containing 

numerous capillaries to produce a filament tow. The nascent fibers enter a coagulation bath, 

typically containing a mixture of solvent and non-solvent (often water). Coagulation of the 

forming filaments occurs due to solvent diffusing out of the polymer solution and non-

solvent diffusing into the forming fiber [3, 9, 12], leading to precipitation of the polymer 

into fibrillar form [13].  

There are generally two types of solution spinning: wet-jet and dry-jet (or air gap) 

solution spinning.  During wet-jet spinning, the spinneret is partially submerged in the 

coagulation bath, so that the exiting filaments immediately enter the coagulation bath 

liquid.  On the contrary, during air gap spinning, the filaments exit the spinneret and pass 

through an air gap measuring several millimeters before entering the coagulation bath, as 

shown in Figure 1.2. Utilizing air gap spinning allows for increased draw ratio on the 

filaments within the air gap and can result in better molecular alignment compared to wet-

jet spinning.  The air gap spun filaments traditionally have a smoother surface compared 

to wet-jet spun filaments, as a small amount of solvent evaporates from the filament surface 

as they pass through the air gap. This smoother surface has been suggested to produce 

higher tensile strength fibers [14]. In addition, air gap spinning allows for faster line speeds 

compared to wet jet spinning stemming from the drawdown filaments experience in the air 

gap. Despite these advantages, air gap spinning requires precise rheological formulation of 

the spinning solution to withstand tensile forces within the air gap and filament failure 

often results in cascading wipeout of the remaining filaments. Air gap solution spinning is 

therefore a highly desired method for the production of high-quality precursors but requires 

more precise control of spinning variables to prevent failure. 
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Figure 1.2. Multi-filament air gap (5 mm gap) solution spinning of PAN polymer solution 
into a coagulation bath at the University of Kentucky Center for Applied Energy 
Research. Reprinted with permission from [15]. Copyright 2014 American Chemical 
Society. 
 

As stated previously, coagulation of the forming filaments exiting the spinneret is 

dependent upon solvent diffusing out of the polymer solution and non-solvent diffusing in. 

Control over the rate of coagulation is vital to produce round precursor fibers. It has been 

shown that precursor fibers with non-round cross-section cannot withstand a high draw 

ratio during subsequent spinning, stabilization, and carbonization due to stress 

concentration [16]. Circular fibers, on the other hand, experience a homogeneous Poisson’s 

contraction (within the elastic strain range) when exposed to tensile forces. Control over 

the rate of coagulation is largely determined by the composition and temperature of the 

coagulation bath. When the flux of solvent outward is less than the non-solvent inward 

flux, the filament swells and a circular cross-section can be expected. This swelling occurs 

at high coagulation bath temperatures and high solvent content in the coagulating bath [17]. 

For this reason, cross sections are characteristically round at 50 °C or above. However, 

high bath temperatures have also been attributed to an increase in void content and 

subsequent decrease in fiber density, resulting in poor fiber properties [18-20] and therefore 

lower bath temperatures are preferred. In contrast, at lower solvent concentrations, the 

outward diffusion of solvent dominates, but the perimeter of the filament in contact with 

non-solvent is solidified early, resulting in a thin polymer cuticle exterior. As outward 

diffusion of solvent continues, the filament collapses, resulting in non-round (often bean-

shaped) cross-sectional shape [16, 20, 21]. As a result, higher coagulation bath 
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compositions (>70 wt.% but <80 wt.% solvent/non-solvent) and typical bath temperatures 

(~20 °C) have been found to produce fibers that are more circular in cross section, smaller 

in diameter, higher in density, higher in orientation, and higher in tensile strength and 

modulus [22]. It is also important to note that the cross sectional shape of the precursor 

fiber is fixed during coagulation [4], and therefore coagulated fibers are often carefully 

studied to ensure the target cross section is achieved prior to continuation of the spinning 

process.  

Following coagulation, PAN precursor filaments proceed through washing and 

stretching/drawing baths, with spin finishes added.  Finally, the precursor fiber experiences 

a drying, collapsing (of porosity), and heat setting process prior to final collection on a 

traversing takeup roller. Fiber washing (typically with water) following coagulation is of 

particular importance to remove residual solvent from within the fiber porosity. Residual 

solvent leads to a swelling effect during drying operations and creates voids within the 

fiber, compromising mechanical properties [23] and acts as an impurity during thermal 

treatment, contributing to discontinuity in ladder formation [24], imperfect crystalline 

structure [25], and fiber breakage. A slow washing procedure is preferred for producing 

filaments with dense structures with negligible void content [23, 26], with a target residual 

solvent content of < 0.5 wt.% [24]. 

Once the fiber has been properly washed for removal of residual solvent, the fiber is 

then stretched to increase molecular alignment and reduce fiber diameter.  The stretching 

process is vital for ordering the fiber structure and enhancing the fiber properties. To enable 

stretching, the fiber is heated above the glass transition temperature (Tg), and drawn 

between godets of varying linear speeds, often using hot water, steam, and/or oil as the 

heating medium [27]. Stretching above the Tg not only orients the fibrils in the direction of 

the fiber axis but also stretches the individual fibrils [19].  In addition, as both the 

amorphous and crystalline regions are oriented in the direction of the fiber axis, pores 

within the fiber are elongated. When high draw is applied above the glass transition 

temperature [28], molecular chains slip, resulting in desirable pore collapse [29]. As a 

result, stretching reduces the number of pores within the fiber through pore collapse, 
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increasing molecular alignment, and reduces fiber diameter, all of which are necessary to 

produce high strength, high modulus CF.  

During the drawing process, spin finishes are often applied. A primary spin finish 

can be applied either prior to or following the first drawing step. This primary finish 

typically consists of a silicone emulsion whose purpose is to decrease friction between the 

fiber strands and facilitate subsequent drawing. In addition, this finish remains on the 

precursor fiber through oxidation and aids in preventing the fusion of fiber strands while 

remaining permeable to oxygen. Following the second drawing step, a secondary spin 

finish can be applied which is typically an alkyl ester emulsion or ethylene oxide/propylene 

oxide (EO/PO) copolymer. This secondary finish imparts cohesiveness to the precursor 

fiber strands, increasing handleability. Overall, spin finishes facilitate fiber processing in 

the subsequent collapse and drying steps [30]. The fiber is finally dried and spooled for 

further thermal processing. 

1.1.2 Oxidative stabilization 

Following spinning, the precursor fiber is subjected to specific controlled 

temperature, time, and strain pathways to produce a final carbon fiber. Initial heat 

treatments are necessary to render the fiber thermally infusible, or stable, referred to as 

stabilization.  Stabilization in air, also known as oxidative stabilization or oxidation, has 

been shown to be a prerequisite for the production of high performance CF [31] and must 

be carefully controlled. Once thermally stable, the fiber is carbonized to produce the final 

carbon fiber. During stabilization, which typically occurs between 200 and 300	°C in an air 

atmosphere, three major reactions occur: cyclization, dehydrogenation, and oxidation. The 

general chemistry for PAN oxidative stabilization is presented in Figure 1.3, where 

cyclization and dehydrogenation occur, followed by a proposed oxidized PAN structure.  
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Figure 1.3. The general chemistry of PAN stabilization in air. Adapted from [32]. 
 

In general, cyclization is responsible for the conversion of the PAN chain to a ladder 

polymer during heat treatment, converting C≡N nitrile bonds to C=N bonds, and providing 

positions at which the oxidation reaction can occur [33-35]. Cyclization alone, however, 

cannot completely stabilize the filaments. Cyclized segments are not aromatic because in 

each ring several carbon remain as sp3 atoms bearing hydrogens. Thus, bond energies in 

the ring are lower and chain scission is more likely [36]. Dehydrogenation and oxidation 

must also occur to stabilize the filaments, both of which require the presence of oxygen. 

Oxygen is essential to stabilizing the structure for further thermal conversion [36-40]. In 

fact, fibers stabilized in N2 alone often do not survive the carbonization process. In the 

presence of oxygen, dehydrogenation is responsible for the elimination hydrogen from the 

ladder structure in the form of H2O. This results in the formation of C=C bonds and is a 

vital step in the creation of stabilized structures [41-44].  

Cyclization and dehydrogenation are responsible for the formation of the polycyclic 

aromatic structure shown in Figure 1.3, which again would not be possible in the absence 
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of oxygen [45]. Further oxidation results in the incorporation of oxygen into the structure.  

The chemical structure of oxidized PAN fiber has been studied for numerous years, and 

many chemical structures for oxidized PAN fiber have been suggested. However, the exact 

mechanism responsible to produce high-quality CF remains up for debate. The presence of 

oxygen in properly oxidized and stabilized PAN has been suggested to appear in the form 

of carbonyl groups [46], imine groups donating lone pair electrons to oxygen atoms [47], 

bridging ether type groups [48], or a mix of hydroxyl and carbonyl groups [32], similar to 

that shown in the last structure of Figure 1.3. Each of these structures are presented in 

Figure 1.4. 

 

Figure 1.4. Proposed structures of oxidized PAN. (a) carbonyl groups; (b) imine groups 
donating lone pair electrons to oxygen atoms; (c) bridging ether type groups; (d) a mix of 
hydroxyl and carbonyl groups. Adapted from [32] with permission from Elsevier. 

 



 

 
 

9 

Researchers have found that when oxygen in the oxidized fiber is present as hydroxyl 

and carbonyl groups, the chain chemistry of the resulting oxidized molecule consists of 

stiff, planar, cyclized rings connected by relatively mobile linear segments [36], as shown 

in Figure 1.4d. When this structure is heated during the early stages of carbonization, the 

linear segments twist to allow cyclized sequences to become planar with other neighboring 

cyclized sequences, laying the foundation for the graphitic structure of the resulting CF.  

The driving force for this alignment has been proposed to be a condensation reaction 

between the hydroxyl groups, as water has been found in gases evolved during early 

carbonization [36, 49]. This suggests an optimal oxygen content should be present in the 

stabilized fibers for these condensation reactions to occur and the graphitic structure to 

form. In fact, multiple references report the desired oxygen level in fully stabilized fiber 

ranges from 10-12 wt.% oxygen [2, 31, 50-53].   

1.1.3 Carbonization 

Carbonization of oxidized PAN fiber is typically performed under an inert 

atmosphere by heating the fiber to temperatures between 1200 and 1800 °C. The goal of 

carbonization is the removal of non-carbon elements to produce a filament containing 

>95% carbon. In industrial practice, carbonization can be completed in two steps, low 

temperature (LT) and high temperature (HT) carbonization. During LT carbonization, the 

oxidatively stabilized fiber is heated gradually through several zones to approximately 

1000 °C. Multiple gases are evolved, including HCN, CO2, H2O, CO, NH3, N2, and H2, as 

shown in Table 1.1, and crosslinking occurs. During HT carbonization, final non-carbon 

elements are removed and the final structure is set. A maximum carbonization temperature 

of 1500 °C has been found to be beneficial to produce high tensile strength and modulus 

fibers. For example, a turbostratic carbon phase is formed with temperature up to 1600 °C, 

which has been found to be responsible for high tensile strength [54]. In addition, tensile 

strength is determined by flaws in the volume and on the fiber surface up to 1500 °C and 

the relationship between Young’s modulus and tensile strength is linear up to that point 

[55], with a maximum tensile strength obtained at about 1500 °C [56-58]. For the purposes 

of this study, carbonization will take place at or below 1500 °C.  
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Table 1.1. Carbonization products of oxidized PAN fiber. Adapted with permission of 

Taylor & Francis Group LLC, from [2]; permission conveyed through Copyright Clearance 

Center, Inc. 

 

1.1.4 Mechanical properties and morphology 

Carbon fiber (CF) is a highly desired material for structural applications requiring 

high strength, stiffness, and low weight. Typical PAN precursor and PAN-derived CF 

tensile properties are shown in Table 1.2. The PAN-based CF values referenced are based 

on Toray’s T700S CF, which is a high strength, standard modulus fiber widely used in the 

CF industry due to its outstanding processability. One factor limiting the widespread use 

of CF and CF composites is the high cost associated with its production, particularly when 

compared to more traditional materials such as glass fiber and metals. However, the 

specific properties (material property per unit density) of CF are the driving force behind 

its use despite its higher initial cost. For example, the specific strengths of common metals 

(copper, 304 stainless steel, and aluminum 7075) are shown in Figure 1.5 and are well 

below 0.5 N/tex (equivalent units of GPa/g/cm3). However, the specific strengths of 

common CF types (T700S, IM7, and T1000G) are well above 2.5 N/tex. The specific 

properties for PAN precursor and PAN-based CF are listed in Table 1.3. Carbon fiber is 



 

 
 

11 

chosen to supplant aluminum and steel, particularly in weight critical applications, because 

of this high specific strength and modulus. Glass fibers are also often used in composites, 

similarly to CF, and are a cheaper alternative to CF.  However, as shown in Figure 1.5, E-

glass fiber specific strength remains much lower than T700S CF, at approximately 1.3 

N/tex. Dyneema UHMWPE is of similar specific modulus to T700S but with higher 

specific strength (3.7 N/tex). However, UHMWPE cannot be used for extended periods 

above 80-100 °C, which limits its applications in high performance composites. Also listed 

in Figure 1.5 is another CF type, Toray T1100G, which has the highest specific properties 

of any material listed. However, these impressively high specific properties come at a cost, 

with T1100G costing 10-20x as much as T700S for only a 43% and 30% increase in 

specific strength and modulus, respectively [59]. It is for this reason that T700S is the more 

commonly utilized CF. The data presented here demonstrates the incredible capabilities of 

CF in providing high performance at low weight. Further increases in CF specific 

properties would propel its unique capabilities, particularly if those improvements could 

be made without increasing the cost of production. Unfortunately, the CF industry has seen 

only incremental improvements in CF properties over the last few decades, and a major 

breakthrough is needed. 

Table 1.2. Typical tensile properties of PAN precursor and PAN-derived CF. The PAN-
based CF reference is T700S [60]. 
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Figure 1.5. Specific strength and modulus of common structural materials. 
 

Table 1.3. Specific tensile strength and tensile modulus of PAN precursor and PAN-
derived CF. The PAN-based CF reference is T700S [60]. 

 

Numerous factors must be controlled throughout the production process to produce 

CF with high specific properties such as T700S and T1100G. Careful control of the 

morphology development must be executed to prevent the introduction of defects to the 

fiber which are detrimental to CF tensile performance. In general, the fine structure of CF 

consists of basic structural units (BSU) of turbostratic (disordered) planes [61], with 

disordered regions interspersed with ordered zones [2]. While the distance between perfect 

graphite planes is 0.3345 nm (d002), the distance between turbostratic planes in CF is 

typically > 0.34 nm [62] and these planes are formed by ribbons of sp2 carbon which form 

fibrils and microfibrils oriented along the fiber axis [63]. Several models have been 

developed to illustrate the CF structure, with the microcrystalline structures incorporating 

Metals
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Carbon 
Fibers



 

 
 

13 

packing, orientation, extent of long-range order, interweaving, folding, imperfect stacking, 

voids, twisting and dislocations [63]. A few models are shown in Figure 1.6. In Figure 1.6a, 

a CF ribbon is depicted, which is believed to be a columnar arrangement of misoriented 

turbostratic graphite crystallites. There is slight misorientation between crystals along the 

fiber axis, creating voids [64]. In high modulus fibers, surface crystallites are large, well-

perfected, and templated parallel to the fiber surface, becoming more disordered to the core 

of the fiber, as shown in Figure 1.6b.  

Multiple defects are present, including pockets of short-range materials, voids, and 

cracks. In Figure 1.6c, a magnified view of the skin and core region of a CF are illustrated, 

where (A) is the skin and consists of ordered BSU aligned with the fiber axis and (B) is the 

core, consisting of disordered BSU. The model also presents other defects, including (C) 

hairpin defects and (D) wedge disclinations.  

 

Figure 1.6. Carbon fiber models. (a) Idealized structure of CF. S1, void; S2, subgrain twist 
boundary; S3, intercrystalline boundary. Lc and La are thickness and diameter of carbon 
layer stacks and D is the distance between them. Republished with permission of IOP 
Publishing, Ltd, from [64]; permission conveyed through Copyright Clearance Center, 
Inc. (b) A three dimensional model for a PAN-based CF. Reprinted from [63] with 
permission from Elsevier. (c) Microstructure schematic of PAN-based CF basic structural 
units combined into microdomains, where (A) is the skin region, (B) is the core region, 
(C) is a hairpin defect, and (D) is a wedge disclination. Reprinted from [65] by 
permission from Springer.  
 

The microcrystalline structures and defects presented previously and in Figure 1.6 

are artifacts of the CF development process, stemming from precursor spinning, oxidative 

stabilization, and/or carbonization. Defects within the structure are detrimental to both the 

a b c
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precursor and CF tensile properties. The tensile strength tends to be greatly impacted by 

flaws in the long-range order. The probability of flaw occurrence can be reduced by 

reducing the fiber diameter, which results in a corresponding increase in tensile strength 

[2]. This can be explained using the Griffith fracture theory, which states that a single 

molecular chain would possess the highest tensile strength because such a structure could 

tolerate no defects [66], ultimately resulting in fewer defects per unit length. The tensile 

elastic modulus, on the other hand, is largely dependent on the orientation of the fibrils 

with respect to the fiber axis. Given that the core of the CF consists of disordered structures, 

and these disordered structures can give rise to voids, the core of the fiber has been found 

to be detrimental to the overall properties of the CF, which will be discussed further. 

1.1.4.1 Skin-core structure 

The skin-core structure of the fiber is known to be the result of insufficient oxidative 

stabilization of the fiber core. As stated previously, oxygen incorporation into the cyclized 

PAN ladder structure is pertinent to the later formation of graphitic structures during 

carbonization [36] and an optimum oxygen content of 10-12 wt.% is desired in the oxidized 

fiber [2, 31, 50-53]. Atmospheric oxygen must diffuse from the exterior of the fiber toward 

the interior and react with the stabilizing chains for oxygen to reach the desired levels 

during oxidative stabilization.   

Warner et al. described two different limiting conditions during stabilization: 

diffusion-limited and reaction-limited [67]. In the reaction limited case, a thin stabilized 

skin forms at the fiber surface, but once oxygen permeates the skin, it is free to diffuse 

throughout the unreacted regions, resulting in a homogeneous fiber cross section.  On the 

contrary, in the diffusion-limited scenario, a two-zone morphology, or skin-core structure, 

forms due to an increasingly impermeable oxidized outer layer, which hinders further 

oxygen diffusion. Under this condition, the increase in oxygen weight percent was found 

to vary with the square root of time. The diffusion coefficient of oxygen through PAN was 

estimated to be approximately 300% higher compared to the diffusion coefficient of 

oxygen through an oxidized PAN layer [67]. An initial assumption could be made that a 

reaction-limited stabilization process, which is favored by low temperatures and tends to 

produce homogeneous CF, would be preferred. However, Yu et al. found that at low 



 

 
 

15 

stabilization temperatures (210 °C, for example), the rate of oxygen uptake is very low at 

the beginning of the heat treatment, and decreases slowly [68].  Therefore, at low 

temperatures, the rate of oxygen uptake will tend toward zero with time.  As a result, 

obtaining stabilized fibers with the recommended 10-12 wt.% oxygen content to produce 

high-quality CF is not possible. Therefore, stabilization must take place at higher 

temperatures (250 °C, for example) to achieve an initial high rate of oxygen uptake and, as 

a result, oxidation will occur via a diffusion-limited process and often results in a skin-core 

structure observed in current commercially available CF such as the T700S CF shown in 

Figure 1.7.  

 

Figure 1.7. Prominent skin-core structure of T700S CF. Reprinted with permission from 
[69].  
 

This inhomogeneous oxygen diffusion results in poor crosslinking, as would be 

expected in anaerobic stabilization, which hinders graphite sheet formation [70].  As a 

result, the core of the stabilized and resulting CF is less dense than the skin. Nunna et al. 

provided possible chemical structures highlighting the differences between the skin and 

core in oxidized PAN fiber. It is best to keep in mind, however, that numerous chemical 

structures have been hypothesized, and each is highly dependent upon starting polymer 

(particularly types and amounts of comonomers), fiber morphology and dimension, and 

time-temperature-strain pathways during oxidative stabilization. Despite these inherent 

differences, chemical structures provided by other authors, such as Nunna et al., can 
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provide some general insights into possible mechanisms responsible for structural 

differences in the fiber cross section, which ultimately impact the final CF properties [71]. 

Shown in Figure 1.8, Nunna et al. proposed that the cyclized ladder structures present 

in the fiber skin are attacked by oxygen, forming carbonyl and hydroxyl groups [72]. 

Carbonyl groups are not generated until approximately 200 °C and their concentrations 

increase gradually with temperature [40]. According to Figure 1.3, properly oxidized fiber 

contains more carbonyl groups than hydroxyl groups, however, the opposite has also been 

found, where adequately oxidized fiber possessed a small concentration of carbonyl groups 

with significant hydroxyl formation [33]. In general, however, Nunna et al. proposed that 

the presence of the carbonyl and carboxyl groups in the backbone promote cross-linking 

by elimination of H2O. This crosslinking created conjugated planar structures in the skin 

and served as the basis for the development of pseudo graphitic structures in later stages of 

the carbonization process. The amount of crosslinking occurring during oxidative 

stabilization will, again, be highly dependent on the system under study. Some authors 

have noted crosslinking does not significantly occur until 400 °C, which is beyond typical 

stabilization temperatures [2], whereas Nunna et al. are discussing crosslinking at 240 °C 

[72]. Oxygen remaining in the chemical structure may be indicative of the amount of 

crosslinking (or lack thereof) that has occurred, as the crosslinking reaction is known to 

liberate oxygen in the form of H2O. 

Nunna et al. proposed a corresponding chemical structure for the fiber core. Here, 

heat transferred from the surface of the fibers triggers partial dehydrogenation in the core 

[72]. In addition, cyclization is known to occur to a higher extent in the core of the fiber 

than the skin, attributed to heat accumulation in the core following the onset of the 

exothermic cyclization and oxidation reactions in the skin [41, 72-74]. The promotion of 

core cyclization leads to a disoriented ladder polymer structure in the core [75], as C≡N 

are converted not only to C=N bonds, but also to other chemical species without double 

bonds [41]. Chemical structures such a C− NH− C are likely candidates [76].  

  As atmospheric oxygen diffuses to the core over time, the initiation of oxidative 

dehydrogenation reactions occurs, resulting in the evolution of two possible core structures. 

Bridging oxygen atoms are proposed to occur where partial dehydrogenation is dominant. 
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In the second possible structure, carboxyl and carbonyl groups form. However, due to the 

presence of the bridging oxygen atoms, the cross linking mechanism will not be as efficient 

in the skin of the fiber [72]. Evidence for this inefficiency was supported by the presence 

of higher concentrations of  C=O, CH functional groups, and sp3 hybridized carbon atoms 

in the core [72].  

The structures presented by Nunna et al. and others describe possible mechanisms 

behind the formation of skin-core differences in oxidative PAN fiber. While the precise 

reactions are difficult to pinpoint despite extensive fiber analysis, it is well known that 

differences in oxidized PAN fiber chemical structures have significant impacts on the 

tensile properties of the resulting CF and any such differences should be minimized to 

attain maximum tensile properties [77-83].  
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Figure 1.8. Proposed changes during the thermal stabilization of PAN fibers, indicating 
differences in crosslinking and reaction mechanisms between the skin and core of the 
fibers. Reprinted with permission from the Royal Society of Chemistry, from [72]; 
permission conveyed through Copyright Clearance Center, Inc. 
 

1.1.4.2 Fiber strength impact 

The presence of a skin-core structure in CF has been shown to be non-ideal in the 

production of CF. The tensile strength of CF is known to be negatively impacted by the 

presence of flaws such as foreign particles, voids, or other imperfections (as shown in 

Figure 1.6b) [58, 84], which result in stress concentrations that ultimately lead to fiber 

failure. Interestingly, variations in stress concentration between the skin and core of a CF 

have been shown as well. Kobayashi et al. [77] utilized a synchrotron generated X-ray 

beam measuring 1 µm in diameter to determine crystalline strain via peak shift of X-ray 

diffraction profiles, as well as Raman spectroscopy, to develop stress concentration models 
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Core
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for the skin and core of a CF held under varying tensile stresses. The model indicated that 

the skin carried 10 times the stress compared to the core. Given that stress concentration 

occurs preferentially on the skin, mitigation of surface flaws has been found to be highly 

impactful for increasing fiber tensile strength [78, 79]. Reducing or eliminating the skin-

core structure, which would allow for homogeneous stress distribution along the fiber cross 

section, will lead to improved tensile properties as well [80, 81]. However, flaws alone 

may not explain CF tensile strength. Loidl et al. [85] hypothesized that it is the arrangement 

of the crystallites and their interlinking responsible for failure (as has been suggested 

previously [86]). Similarly, it has been found that for fiber carbonized above 1250 °C, 

defects other than surface flaws govern the strength, which may include shearing inside the 

crystallites causing stress concentrations [84].  Therefore, mitigation of the skin-core 

effect, fiber defects and preferential crystallite arrangement and size [87] are all pivotal for 

the production of high tensile strength CF.  

1.1.4.3 Fiber modulus impact 

The skin-core structure negatively impacts not only the tensile strength, but also the 

tensile modulus. The basal plane preferred-axial orientation in the core is known to be 

lower than the skin [81, 88]. Further, Gu et al. [82] found that the external skin of a T700 

CF was of higher storage modulus than the core, as shown in Figure 1.9a and b, by 

approximately 50%.  Additionally, Liu et al. also found the storage modulus to differ 

between the skin and core of a PAN based CF, in this case by approximately 18% using 

nanoscale dynamic mechanical analysis [83]. Additionally, Chen et al. measured the radial 

distribution of tensile modulus for several commercial CF by measuring the electrical 

conductivity following varying levels of plasma etching [14], shown in Figure 1.9c. Their 

results also indicated a drop in modulus from skin to core for T700S, as well as other 

commercially available fibers. The higher modulus skin of the CF has been attributed to an 

increased degree of graphitization on the surface of the CF compared to the core [81]. In 

order to reduce the impact of a skin-core structure, reduction in precursor fiber diameter 

(and therefore reduction in the oxygen characteristic diffusion length during oxidation) has 

been shown to reduce and even eliminate the skin-core structure [70] and to greatly increase 

the tensile Young’s modulus of the resulting carbon fiber [69].  However, Kong et al. found 
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that the skin-core structure did not disappear until a precursor diameter of 6.1 mm, which 

produced CF diameters of 4 mm [70]. Morris et al. found similar [69]. Not only are such 

small diameter filaments difficult to produce, but CF of such small diameter lie on the 

respirable limit of concern of 3 mm [89] and exhibit poor compressive properties in 

composites, being particularly prone to micro-buckling [90]. Therefore, they not 

commercially produced. However, the results presented by Kong point to the importance 

of a reduced oxygen characteristic diffusion length in mitigating the development of a skin-

core structure and encouraging the formation of homogeneous, mechanically robust fibers.  

 

Figure 1.9. (a) A storage modulus map of a T700 carbon fiber and (b) a line scan showing 
a storage modulus gradient between the skin and the core of the fiber. Reprinted from 
[82] with permission from Elsevier. (c) Radius distribution of tensile modulus for several 
commercial CF. Reprinted from [14] with permission from Elsevier. 
 

1.2 References 

1. Sivek, J. Creative commons carbon allotropes. 2015  [cited 2021; CC BY-SA 4.0]. 
Available from: https://commons.wikimedia.org/wiki/File:Carbon_allotropes.svg. 

2. Morgan, P., Carbon fibers and their composites. 2005, Boca Raton, LA: Taylor & 
Francis Group. 

3. Masson, J.C., Acrylic Fiber Technology and Applications. 1995. 
4. Gong-qiu Peng, Y.-f.W., Yong-gang Yang, and Lang Liu, A Novel Method for 

Investigating the Structural Uniformity of Polyacrylonitrile Nascent Fibers. 
International Journal of Polymer Anal. Charact., 2008. 13: p. 369-375. 

5. M.A. Rahman, A.F.I., A. Mustafa, B.C. Ng, H. Hasbullah, M.S.A. Rahaman and 
M.S. Abdullah, The Effect of Coagulation Bath Temperature on the Mechanical 
Properties of PAN-based Carbon Fiber. p. 169-179. 

6. R.B. Mathur, O.P.B., and J. Mittal, Advances in the Development of High-
Performance Carbon Fibres from PAN Precursor. Composites Science and 
Technology, 1993. 51: p. 223-230. 

7. S.J. Law, S.K.M., Investigation of Wet-Spun Acrylic Fiber Morphology by 
Membrane Technology Techniques. Journal of Applied Polymer Science, 1996. 



 

 
 

21 

8. Juan Chen, C.W., Heyi Ge, Yujun Bai, Yanxiang Wang, Effect of Coagulation 
Temperature on the Properties of Poly(acrylonitrile-itaconic acd) Fibers in Wet 
Spinning. J. Polym. Res., 2007. 14: p. 223-228. 

9. A.K. Gupta, D.K.P., Pushpa Bajaj, Acrylic Precursors for Carbon Fibers. Journal 
of Macromolecular Science, 1991. C31(1): p. 1-89. 

10. Zussman, E., X. Chen, W. Ding, L. Calabri, D.A. Dikin, J.P. Quintana, and R.S. 
Ruoff, Mechanical and structural characterization of electrospun PAN-derived 
carbon nanofibers. Carbon, 2005. 43(10): p. 2175-2185. 

11. Grove, D., P. Desai, and A.S. Abhiraman, Exploratory experiements in the 
conversion of plasticized melt spun PAN-based precursors to carbon fibers. 
Carbon, 1988. 26(3): p. 403 - 411. 

12. Lewin, M., Handbook of Fiber Chemistry. 2007. 
13. Juan Chen, C.-g.W., Xing-guang Dong, Huan-zhang  Liu, Study on the Coagulation 

Mechanism of Wet-Spinning PAN Fibers. Journal of Polymer Research, 2006. 13: 
p. 515-519. 

14. Chen, L., L. Hao, S. Liu, G. Ding, X. Sun, W. Zhang, F. Li, W. Jiao, F. Yang, Z. 
Xu, R. Wang, and X. He, Modulus distribution in polyacrylonitrile-based carbon 
fiber monofilaments. Carbon, 2020. 157: p. 47-54. 

15. Morris, E.A. and M.C. Weisenberger, Solution Spinning of PAN-Based Polymers 
for Carbon Fiber Precursors, in Polymer Precursor-Derived Carbon, A.K. Naskar 
and W.P. Hoffman, Editors. 2014, ACS Books. p. 189-213. 

16. Chen, J., C. Wang, H. Ge, Y. Bai, and Y. Wang, Effect of Coagulation Temperature 
on the Properties of Poly(acrylonitrile-itaconic acd) Fibers in Wet Spinning. 
Journal of Polymer Research, 2007. 14(3): p. 223-228. 

17. Tsai, J.-S. and W.-C. Su, Control of cross-section shape for polyacrylonitrile fibre 
during wet-spinning. Journal of Materials Science Letters, 1991. 10(21): p. 1253-
1256. 

18. Law, S.J. and S.K. Mukhopadhyay, Investigation of Wet-Spun Acrylic Fiber 
Morphology by Membrane Technology Techniques. Journal of Applied Polymer 
Science, 1996. 62: p. 32-47. 

19. Craig, J.P., J.P. Knudsen, and V.F. Holland, Characterization of Acrylic Fiber 
Structure. Textile Research Journal, 1962. 32(6): p. 435-448. 

20. Bell, J.P. and J.H. Dumbleton, Changes in the Structure of Wet-Spun Acrylic Fibers 
During Processing. Textile Research Journal, 1971. 41: p. 196-203. 

21. Knudsen, J., The Influence of Coagulation Variables on the Structure and Physical 
Properties of an Acrylic Fiber. Textile Research Journal, 1963. 33(1): p. 13-20. 

22. Morris, E.A., M.C. Weisenberger, and G.W. Rice, Properties of PAN fibers 
solution spun into a chilled coagulation bath at high solvent compositions. Fibers, 
2015. 3(4): p. 560-574. 

23. Wang, Y.X., C.G. Wang, Y.J. Bai, and Z. Bo, Effect of the Drawing Process on the 
Wet Spinning of Polyacrylonitrile Fibers in a System of Dimethyl Sulfoxide and 
Water. Journal of Applied Polymer Science, 2007. 104: p. 1026-1037. 

24. Rajalingam, P. and G. Radhakrishxan, Polyacrylonitrile Precursor for Carbon 
Fibers. Journal of Macromolecular Science, Part C: Polymer Reviews, 1991. 31(2-
3): p. 301-310. 



 

 
 

22 

25. Wang, M., Y. Xiao, W. Cao, N. Jiao, W. Chen, and L. Xu, SAXS and WAXD study 
of periodical structure for polyacrylonitrile fiber during coagulation. Polymers for 
Advanced Technologies, 2015. 26(2): p. 136-141. 

26. Wang, C.G., X.G. Dong, and Q.F. Wang, Effect of Coagulation on the Structure 
and Property of PAN Nascent Fibers during Dry Jet Wet-Spinning. Journal of 
Polymer Research, 2009. 16: p. 719-724. 

27. Masson, J.C., Acrylic Fiber Technology and Applications. 1995, New York, NY: 
Marcel Dekker, Inc. 

28. Arbab, S., P. Noorpanah, N. Mohammadi, and A. Zeinolebadi, Simultaneous 
Effects of Polymer Concentration, Jet-Stretching, and Hot-Drawing on 
Microstructural Development of Wet-Spun Poly(acrylonitrile) Fibers. Polymer 
Bulletin, 2011. 66(9): p. 1267-1280. 

29. Junjie, H., L. Chunxiang, Z. Pucha, and L. Denghua, Pore Structure Development 
of Polyacrylonitrile Nascent Fibers in Water Stretching Process. Thermochimica 
Acta, 2013. 569: p. 42-47. 

30. Postman, W., Spin Finishes Explained. Textile Research Journal, 1980. 50: p. 444-
453. 

31. Gupta, A.K., D.K. Paliwal, and P. Bajaj, Acrylic Precursors for Carbon Fibers. 
Polymer Reviews, 1991. 31(1): p. 1-89. 

32. Rahaman, M.S.A., A.F. Ismail, and A. Mustafa, A review of heat treatment on 
polyacrylonitrile fiber. Polymer Degradation and Stability, 2007. 92(8): p. 1421-
1432. 

33. Ge, Y., Z. Fu, Y. Deng, M. Zhang, and H. Zhang, The effects of chemical reaction 
on the microstructure and mechanical properties of polyacrylonitrile (PAN) 
precursor fibers. Journal of Materials Science, 2019. 54(19): p. 12592-12604. 

34. Houtz, R., "Orlon" Acrylic Fiber: Chemistry and Properties. Textile Research 
Journal, 1950. 20(11): p. 786-801. 

35. Devasia, R., C.P.R. Nair, P. Sivadasan, B.K. Katherine, and K.N. Ninan, 
Cyclization reaction in poly(acrylonitrile/itaconic acid) copolymer: An isothermal 
differential scanning calorimetry kinetic study. Journal of Applied Polymer 
Science, 2003. 88(4): p. 915-920. 

36. Clarke, A. and J. Bailey, Oxidation of acrylic fibres for carbon fibre formation. 
Nature, 1973. 243(5403): p. 146. 

37. Gupta, A. and I. Harrison, New aspects in the oxidative stabilization of PAN-based 
carbon fibers. Carbon, 1996. 34(11): p. 1427-1445. 

38. Ouyang, Q., L. Cheng, H. Wang, and K. Li, Mechanism and kinetics of the 
stabilization reactions of itaconic acid-modified polyacrylonitrile. Polymer 
Degradation and Stability, 2008. 93(8): p. 1415-1421. 

39. Wang, P., Aspects on prestretching of PAN precursor: Shrinkage and thermal 
behavior. Journal of applied polymer science, 1998. 67(7): p. 1185-1190. 

40. Xiao, S., B. Wang, C. Zhao, L. Xu, and B. Chen, Influence of oxygen on the 
stabilization reaction of polyacrylonitrile fibers. Journal of applied polymer 
science, 2013. 127(3): p. 2332-2338. 

41. Kikuma, J., T. Warwick, H.-J. Shin, J. Zhang, and B.P. Tonner, Chemical state 
analysis of heat-treated polyacrylonitrile fiber using soft X-ray spectromicroscopy. 
Journal of electron spectroscopy and related phenomena, 1998. 94(3): p. 271-278. 



 

 
 

23 

42. Nunna, S., C. Creighton, N. Hameed, M. Naebe, L.C. Henderson, M. Setty, and 
B.L. Fox, Radial structure and property relationship in the thermal stabilization of 
PAN precursor fibres. Polymer Testing, 2017. 59: p. 203-211. 

43. Sun, T., Y. Hou, and H. Wang, Mass DSC/TG and IR ascertained structure and 
color change of polyacrylonitrile fibers in air/nitrogen during thermal 
stabilization. Journal of Applied Polymer Science, 2010. 118(1): p. 462-468. 

44. Arbab, S. and A. Zeinolebadi, A procedure for precise determination of thermal 
stabilization reactions in carbon fiber precursors. Polymer Degradation and 
Stability, 2013. 98(12): p. 2537-2545. 

45. Choi, J., S.-S. Kim, Y.-S. Chung, and S. Lee, Evolution of structural inhomogeneity 
in polyacrylonitrile fibers by oxidative stabilization. Carbon, 2020. 

46. Watt, W., Pyrolysis of polyacrylonitrile. Nature, 1969. 222(5190): p. 265-266. 
47. Friedlander, H.N., L.H. Peebles, J. Brandrup, and J.R. Kirby, On the Chromophore 

of Polyacrylonitrile. VI. Mechanism of Color Formation in Polyacrylonitrile. 
Macromolecules, 1968. 1(1): p. 79-86. 

48. Standage, A.E. and R. Prescott, High Elastic Modulus Carbon Fibre. Nature, 1966. 
211(5045): p. 169-169. 

49. Bailey, J. and A. Clarke, Carbon fibre formation—the oxidation treatment. Nature, 
1971. 234(5331): p. 529-531. 

50. Ogawa, H. and K. Saito, Oxidation behavior of polyacrylonitrile fibers evaluated 
by new stabilization index. Carbon, 1995. 33(6): p. 783-788. 

51. Jain, M.K. and A.S. Abhiraman, Conversion of acrylonitrile-based precursor fibres 
to carbon fibres. Journal of Materials Science, 1987. 22(1): p. 278-300. 

52. Damodaran, S., P. Desai, and A.S. Abhiraman, Chemical and physical aspects of 
the formation of carbon fibres from PAN-based precursors. The Journal of The 
Textile Institute, 2008. 81(4): p. 384-420. 

53. Lv, M.-Y., H.-Y. Ge, and J. Chen, Study on the chemical structure and skin-core 
structure of polyacrylonitrile-based fibers during stabilization. Journal of Polymer 
Research, 2008. 16(5): p. 513-517. 

54. Bhat, G., Structure and properties of high-performance fibers. 2016: Woodhead 
Publishing. 

55. Jones, W. and J. Johnson, Intrinsic strength and non-Hookean behaviour of carbon 
fibres. Carbon, 1971. 9(5): p. 645-655. 

56. Minus, M. and S. Kumar, The processing, properties, and structure of carbon 
fibers. Jom, 2005. 57(2): p. 52-58. 

57. Sauder, C., J. Lamon, and R. Pailler, Thermomechanical properties of carbon fibres 
at high temperatures (up to 2000 C). Composites Science and Technology, 2002. 
62(4): p. 499-504. 

58. Moreton, R., W. Watt, and W. Johnson, Carbon fibres of high strength and high 
breaking strain. Nature, 1967. 213(5077): p. 690-691. 

59. Confidential carbon fiber consultant, Personal Communication. 2021. 
60. Toray Composite Materials America Inc. T700S standard modulus carbon fiber. 

2020  [cited 2020 November 19]; Available from: https://www.toraycma.com/wp-
content/uploads/T700S-Technical-Data-Sheet-1.pdf.pdf. 

61. Kim, P., L. Shi, A. Majumdar, and P.L. McEuen, Thermal transport measurements 
of individual multiwalled nanotubes. Phys Rev Lett, 2001. 87(21): p. 215502. 



 

 
 

24 

62. Hoffman, W., W. Hurley, P. Liu, and T. Owens, The surface topography of non-
shear treated pitch and PAN carbon fibers as viewed by the STM. Journal of 
materials research, 1991. 6(8): p. 1685-1694. 

63. Barnet, F.R. and M.K. Norr, A three-dimensional structural model for a high 
modulus pan-based carbon fibre. Composites, 1976. 7(2): p. 93-99. 

64. Johnson, D. and C. Tyson, The fine structure of graphitized fibres. Journal of 
Physics D: Applied Physics, 1969. 2(6): p. 787. 

65. Bennett, S.C., D.J. Johnson, and W. Johnson, Strength-structure relationships in 
PAN-based carbon fibres. Journal of Materials Science, 1983. 18(11): p. 3337-
3347. 

66. Griffith, A.A., The Phenomena of Rupture and Flow in Solids. Philosophical 
Transactions of the Royal Society of London, Series A, 1921. 221: p. 163-198. 

67. Warner, S.B., L.H. Peebles, and D.R. Uhlmann, Oxidative stabilization of acrylic 
fibres. Journal of Materials Science, 1979. 14(3): p. 556-564. 

68. Yu, M.-J., C.-G. Wang, Y.-J. Bai, Y. Xu, and B. Zhu, Effect of oxygen uptake and 
aromatization on the skin–core morphology during the oxidative stabilization of 
polyacrylonitrile fibers. Journal of Applied Polymer Science, 2008. 107(3): p. 
1939-1945. 

69. Morris, E.A., M.C. Weisenberger, M.G. Abdallah, F. Vautard, H. Grappe, S. 
Ozcan, F.L. Paulauskas, C. Eberle, D. Jackson, S.J. Mecham, and A.K. Naskar, 
High performance carbon fibers from very high molecular weight polyacrylonitrile 
precursors. Carbon, 2016. 101: p. 245-252. 

70. Kong, L., H. Liu, W. Cao, and L. Xu, PAN fiber diameter effect on the structure of 
PAN-based carbon fibers. Fibers and Polymers, 2015. 15(12): p. 2480-2488. 

71. Sun, L., M. Li, L. Shang, L. Xiao, Y. Liu, M. Zhang, and Y. Ao, The influence of 
oxygen on skin-core structure of polyacrylonitrile-based precursor fibers. Polymer, 
2020: p. 122516. 

72. Nunna, S., C. Creighton, B.L. Fox, M. Naebe, M. Maghe, M.J. Tobin, K. Bambery, 
J. Vongsvivut, and N. Hameed, The effect of thermally induced chemical 
transformations on the structure and properties of carbon fibre precursors. Journal 
of materials chemistry A, 2017. 5(16): p. 7372-7382. 

73. Layden, G., Retrograde core formation during oxidation of polyacrylonitrile 
filaments. Carbon, 1972. 10(1): p. 59-63. 

74. Kikuma, J., T. Konishi, and T. Sekine, Polymer analysis by Auger electron 
spectroscopy using sectioning and cryogenic cooling. Journal of electron 
spectroscopy and related phenomena, 1994. 69(2): p. 141-147. 

75. Karacan, I. and G. Erdoğan, A study on structural characterization of thermal 
stabilization stage of polyacrylonitrile fibers prior to carbonization. Fibers and 
Polymers, 2012. 13(3): p. 329-338. 

76. Morita, K., Y. Murata, A. Ishitani, K. Murayama, T. Ono, and A. Nakajima, 
Characterization of commercially available PAN (polyacrylonitri1e)-based carbon 
fibers. Pure and Applied Chemistry, 1986. 58(3): p. 455-468. 

77. Kobayashi, T., K. Sumiya, Y. Fujii, M. Fujie, T. Takahagi, and K. Tashiro, Stress 
concentration in carbon fiber revealed by the quantitative analysis of X-ray 
crystallite modulus and Raman peak shift evaluated for the variously-treated 
monofilaments under constant tensile forces. Carbon, 2013. 53: p. 29-37. 



 

 
 

25 

78. Johnson, J.W. and D.J. Thorne, Effect of internal polymer flaws on strength of 
carbon fibres prepared from an acrylic precursor. Carbon, 1969. 7(6): p. 659-661. 

79. Nunna, S., M. Setty, and M. Naebe, Formation of skin-core in carbon fibre 
processing: A defect or an effect? Express Polymer Letters, 2019. 13(2): p. 146-
158. 

80. Liu, J., Z. Yue, and H. Fong, Continuous nanoscale carbon fibers with superior 
mechanical strength. Small, 2009. 5(5): p. 536-42. 

81. Liu, F., H. Wang, L. Xue, L. Fan, and Z. Zhu, Effect of microstructure on the 
mechanical properties of PAN-based carbon fibers during high-temperature 
graphitization. Journal of Materials Science, 2008. 43(12): p. 4316-4322. 

82. Gu, Y., M. Li, J. Wang, and Z. Zhang, Characterization of the interphase in carbon 
fiber/polymer composites using a nanoscale dynamic mechanical imaging 
technique. Carbon, 2010. 48(11): p. 3229-3235. 

83. Liu, X., C. Zhu, J. Guo, Q. Liu, H. Dong, Y. Gu, R. Liu, N. Zhao, Z. Zhang, and J. 
Xu, Nanoscale dynamic mechanical imaging of the skin–core difference: From 
PAN precursors to carbon fibers. Materials Letters, 2014. 128: p. 417-420. 

84. Cooper, G.A. and R.M. Mayer, The strength of carbon fibres. Journal of Materials 
Science, 1971. 6(1): p. 60-67. 

85. Loidl, D., O. Paris, H. Rennhofer, M. Müller, and H. Peterlik, Skin-core structure 
and bimodal Weibull distribution of the strength of carbon fibers. Carbon, 2007. 
45(14): p. 2801-2805. 

86. Reynolds, W.N. and J.V. Sharp, Crystal shear limit to carbon fibre strength. 
Carbon, 1974. 12(2): p. 103-110. 

87. Xue, Y., J. Liu, F. Lian, and J. Liang, Effect of the oxygen-induced modification of 
polyacrylonitrile fibers during thermal-oxidative stabilization on the radial 
microcrystalline structure of the resulting carbon fibers. Polymer Degradation and 
Stability, 2013. 98(11): p. 2259-2267. 

88. Guo, X., Y. Cheng, Z. Fan, Z. Feng, L. He, R. Liu, and J. Xu, New insights into 
orientation distribution of high strength polyacrylonitrile-based carbon fibers with 
skin-core structure. Carbon, 2016. 109: p. 444-452. 

89. Gandhi, S. and R.E. Lyon, Health hazards of combustion products from aircraft 
composite materials. 1998, Federal Aviation Administration Technical Center: 
Atlantic City, NJ. p. 1-29. 

90. Kumar, S., D.P. Anderson, and A.S. Crasto, Carbon fibre compressive strength and 
its dependence on structure and morphology. Journal of Materials Science, 1993. 
28(2): p. 423-439. 

 



 26 

CHAPTER 2. THE HOLLOW FIBER APPROACH 

2.1 Overview of hollow fibers 

As discussed previously, traditional CF require lengthy and costly oxidation 

processing, and often possess an undesirable skin-core structure. The above reports suggest 

that the core of CF does relatively little to contribute to the overall tensile properties of the 

fiber. One potential solution which reduces the characteristic diffusion length, mitigating 

skin-core structure development and increasing specific tensile properties, is the 

development of hollow carbon fibers by intentionally spinning precursor PAN hollow fiber 

(HF) and converting them into hollow carbon fiber (HCF). The proposed HCF have the 

potential to improve on traditional solid CF properties by effectively reducing fiber density 

(resulting in higher specific strength and modulus) which can lead to lighter weight parts. 

As CF strength has been found to be largely governed by surface flaws [1], the omission 

of the fiber core is hypothesized to have minimal impact on tensile strength, and therefore 

the production of a HF has the potential to conserve the tensile strength of a traditional 

solid fiber. In fact, conservation of tensile strength has been previously shown for hollow 

glass fiber, compared to a solid fiber [2].  

In addition to the hypothesis of preservation of tensile strength, it is hypothesized 

that the oxidation of a hollow PAN-based precursor fiber will allow oxygen diffusion to 

proceed in two directions, from the outside, as per conventional solid fiber oxidation, but 

also from the inner lumen (hollow portion). This would significantly reduce the 

characteristic diffusion length when compared to a traditional solid fiber, as seen in Figure 

2.1. For this diffusion-limited process, taking the ratio of dimensionless Fourier mass 

transfer numbers, 𝑁!", for both the solid (𝑁!"# ) and hollow (𝑁!"$ ) filaments (as shown in 

Figure 2.1) allows the effect of diffusion length on process time to be calculated and 

compared using Eqn. 2.1. The diffusivity of O2 in PAN, 𝐷, is assumed equivalent for both 

hollow and solid fibers. The characteristic timescales are represented for solid (𝑡%)  and 

hollow (𝑡$) fibers. Assuming a 14 µm outer diameter (OD) and 9.3 µm inner diameter 

(ID) precursor hollow fiber, the diffusion distance is half the wall thickness, as oxidation 

proceeds in both directions. Therefore, the diffusion distance for the HF, 𝑙$, is 1.175	mm.  
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For a conventional precursor fiber 14 µm in diameter, where oxidation proceeds from the 

outside only, the diffusion distance for the solid fiber, 𝑙#, is	7.0	mm. Assuming the ratio of 

Fourier mass transfer numbers is unity, the oxidation of a hollow fiber would be expected 

to require 35x less time than that of conventional solid fiber (𝑡%/𝑡$). And all else equal, 

the HF would not develop the skin-core structure of the solid fiber. 

 
𝑁!"#

𝑁!"$
=

𝐷𝑡%
𝑙%&
𝐷𝑡$
𝑙$&

 Eqn. 2.1 

 

If this hypothesis is correct, this increase in oxidation speed could result in a 

significant reduction in CF cost [3], as oxidation is known to be the rate limiting step in the 

production of carbon fiber [4]. Typical oxidation process line speeds are 10-30 m/min, 

while typical spinning speeds are an order of magnitude faster. Aside from improving line 

speed, the reduction in characteristic diffusion length during oxidation is hypothesized to 

lead to a more homogeneous morphology, negating any skin-core effect that may be 

present in traditional solid fibers.  

 

 

Figure 2.1. Comparison of characteristic diffusion length for a conventional solid (𝑙#) 
versus a hollow (𝑙$) fiber. 

 

The development of HCF is not a new idea.  In fact, various approaches and materials 

have been utilized in an attempt to produce consistently high-quality, structural HCF.  

Some of the first hollow carbon fibers were actually produced by accident following 

incomplete stabilization of PAN precursor fiber.  Upon carbonization, it was found that the 

Conventional precursor 
fiber (14 micron diameter)

Hollow precursor fiber (14 
um OD, 9.3 um ID)

!" !#

!# = 1.175 um !" = 7 um 
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severely under-stabilized core had vaporized, producing a “hollow fiber”, albeit with poor 

morphology and properties [5, 6]. The following section will introduce a few of the 

methods used in attempts to produce HCF, as well as the relative successes and failures of 

those methods, including electrospinning, melt spinning, and solution (wet) spinning. 

2.2 Previous research 

Before delving into previous research into HCF development, it is important to 

describe the methods by which HF and HCF properties are calculated, as they will be 

discussed here as well as throughout the remained of this work. There are two primary 

methods for determining HF cross sectional area which are illustrated in Figure 2.2. True 

area is calculated based on the solid cross-sectional area. True area, in the case of a HF, is 

the annulus area. Effective area is calculated as the area within the HF outer diameter and 

contains both the area of the HF annulus and lumen. Effective area is always greater than 

true area for a HF. True area and effective area are equivalent for a solid fiber. Tensile 

stress calculated as force per true area will be greater than that based on effective area. 

However, from the viewpoint of a CF composite material, the effective measurements are 

of primary importance. 

 

Figure 2.2. Schematic showing area determination for a hollow fiber, where true area is 
defined as the area of the solid and effective area is the area contained within the outer 
diameter of the filament. 

 

2.2.1 Electrospinning 

Electrospinning relies on a high voltage electric field to accelerate electrically 

charged jets from polymer solutions or melts, which solidify by means of solvent 
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evaporation or melt cooling. The highly charged fibers are directed toward a rotating drum 

or collector plate that is either grounded or of the opposite charge, where they are most 

commonly collected as a non-woven mat [7]. Resulting fiber diameters vary but are 

typically on the nanometer scale. Coaxial electrospinning (needle within needle) has been 

used to produce HCF measuring 100s of nanometers in outer diameter, but some versions 

have relied on the use of a sacrificial core, which is burned or dissolved out after the 

spinning process. While a sacrificial core provides support during spinning for the future 

HCF, its complete removal can be difficult, and difficult removal may be detrimental to 

the resulting CF properties.  While electrospinning can be cost effective to produce 

nanoscale HCF, the filaments produced are not intended for structural applications, but 

rather for use in solar cells, lithium-ion rechargeable batteries, super capacitors, or as 

catalysts [8]. Additionally, the non-woven mats traditionally produced during 

electrospinning cannot be held under proper tension during the thermal conversion process, 

resulting in CF with tensile properties inferior to those of CF derived from a continuous 

solution spun process [9].  As a result, electrospinning of HCF is not ideal for producing 

CF for high-performance structural applications.  

2.2.2 Melt spinning 

Melt spinning entails heating a polymer above its melting or softening point and 

extruding through a spinneret.  The filaments solidify in air as they move from the heated 

spinneret to the take-up spool. Melt spinning is a commonly used process to produce 

continuous fibers from a variety of polymer sources, including polyester, nylon, and 

polypropylene, for example. Hollow filaments are routinely spun from a melt spinning 

process utilizing C-shaped or segmented arc spinnerets (2C, 3C, or 4C) [10, 11], as shown 

in Figure 2.3. When utilizing, for example, the C-shaped spinneret, the molten material 

exits the C-shaped capillary and air is allowed to enter the open fissure in the forming fiber.  

However, as the fiber moves ever farther from the spinneret, the fissure begins to heal as 

the molten material coalesces and cools.  Finally, the fissure is fully healed and cooled, 

resulting in a hollow filament.  The air drawn in through the fissure before the fiber heals 

aids in preventing the collapse of the fiber walls. An illustration of this phenomenon is 

presented in Figure 2.4 for the melt spinning of polypropylene hollow filaments [11-13]. 



 

 
 

30 

The fissure length has been found to be greatly impacted by the polymer die swell [11]. 

This same principle of fissure healing also applies to segmented arc spinnerets (2C, 3C, 

and 4C). 

 

Figure 2.3. Common segmented arc spinneret capillary designs used during the melt 
spinning of hollow filaments.  
 
 

 
 
Figure 2.4. Formation of a hollow polypropylene filament during melt spinning, 
illustrating healing of the fissure in the air gap to form a hollow filament. Reprinted from 
[11] with permission © 2001 John Wiley & Sons, Inc.  
 

Pitch is a commonly melt spun material, often used as a precursor for high modulus, 

high thermal conductivity (but low strain-to-failure) CF. Studies exist comparing 

traditional solid, C-shaped, and hollow isotropic pitch-derived CF and their composites 

[14]. Shim et al. developed pitch-derived C-shaped and hollow CF [14]. The calculated 

effective tensile properties of the solid (R-CF) and hollow isotropic pitch-derived CF (H-

CF) are shown in Table 2.1. The H-CF showed a lower effective tensile strength, but a 

higher effective modulus compared to their traditional solid fiber counterparts. The 

effective tensile strength difference was likely impacted by the larger outer diameter of the 

C-shaped 2C 3C 4C
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H-CF compared to the solid CF (34 µm compared to 22 µm). While isotropic pitch-derived 

CF are useful in some applications, their use in structural applications is limited. 

Table 2.1. Comparison of isotropic pitch-derived carbon fiber properties of 
round/traditional solid (R-CF) and hollow (H-CF), calculated based on effective cross-
sectional areas. Adapted from [14].  

 

An alternative to melt spinning of pitch would seem to be the melt spinning of PAN. 

However, PAN is known to degrade prior to melting [15]. It is for this reason that it is spun 

utilizing a solution spinning process.  However, there have been attempts to melt spin PAN, 

but thus far none have been found to be commercially viable [16-18].  In fact, there exists 

a BASF patent application (which has since been withdrawn) for the melt spinning of PAN-

based HCF with a C-shape. The outer diameters indicated were 5 to 20 µm, with fiber wall 

thicknesses ranging from 0.5 to 5 µm. However, no images or fiber properties were given 

[19].   

2.2.3 Solution spinning 

As described earlier, solution spinning relies on a dual diffusion process of 

nonsolvent in and solvent out of the forming fiber to begin solidification. The control of 

this diffusion process is vital to controlling the morphology of the resulting filaments and, 

as a result, the final fiber properties [20]. Solution spun hollow PAN fibers have been 

produced, although primarily for application as asymmetric gas separation membranes. In 

this application, PAN hollow fiber are large in diameter (0.5 to 1 mm) and consist of a 

spongy sub-structure through much of the hollow fiber wall, which supports a very thin, 

dense fiber skin. These fibers are not designed to be precursors for CF or to possess high 

tensile properties and are produced utilizing a bore-fluid approach (to be described). Some 

researchers have attempted to use such an approach in the production of PAN HF 

precursors. In addition to a bore-fluid approach, other approaches used to solution spin 

PAN HF precursors include bicomponent spinning and the use of segmented arc spinnerets 
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(similar to those used in melt spinning). Previous work toward the production of PAN HF 

precursors utilizing these methods will be discussed.  

2.2.3.1 Bore fluid approach 

Commonly used to produce HF membranes, a bore fluid approach relies on an 

internal fluid (gas or liquid) which is fed through a needle to form and maintain the hollow 

filament. In some instances, the bore fluid, in addition to holding the wall of the forming 

fiber open, contains the chemistry necessary to help form the porous substrate which 

supports the separating layer. A needle supplying this lumen fluid must be placed 

concentrically within the spinneret capillary, around which the dope flows. Due to 

manufacturing limitations, the minimum needle diameter available is larger than desired 

for producing PAN HF precursors. In addition, HF membranes are not commonly spun in 

a multifilament tow, as each capillary must be assured of concentric placement of its 

individual bore fluid needle. On the contrary, traditional solid PAN precursors are spun in 

thousands of filaments per tow. Despite these bore-fluid limitations, attempts have been 

made to utilize this approach for the production of PAN hollow filaments as precursors for 

carbon fiber [21]. For example, Thewlis utilized a single-filament bore-fluid approach to 

spin PAN, using a spinneret orifice diameter of 600 µm and a needle OD of 330 µm. Fibers 

were drawn to achieve small diameters [22].  Images of the resulting fibers are shown in 

Figure 2.5. PAN HF measuring 28 µm in OD were produced, with an effective density of 

0.84 g/cc.  The effective density (𝜌'(() was calculated according to Eqn. 2.2, 

 𝜌!"" = 1.18 &1 − (
∅#$
∅%$

*
&

+ Eqn. 2.2 

where ∅)* is the inner diameter, ∅+* is the outer diameter, and 1.18 refers to the typical 

density of PAN (1.18 g/cc).  These PAN HF precursors had a maximum effective tensile 

strength and elastic modulus of 227 MPa and 4.9 GPa, respectively [22]. The filaments 

lacked concentricity (as shown in Figure 2.5a, b, and c) and appeared to suffer from 

variations in wall thickness along the fiber length, as shown in Figure 2.5d, all of which 

would be detrimental to the final carbon fiber tensile properties.  
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Figure 2.5. Cross-sectional images (a, b, and c) of hollow precursor filaments spun from 
PAN using a single-filament bore-fluid approach, where (d) shows a side view of fiber 
(b). Reprinted with permission from the author [22]. 

 

Other attempts to utilize a bore-fluid have been undertaken. Similar to Thewlis, 

Ferguson [23] filed a patent reporting bore-fluid solution spinning of PAN HF.  Properties 

of the resulting fibers are shown in Table 2.2, adapted from [23]. The highest effective 

tensile strength achieved was 261 MPa, with 4.1 GPa effective elastic modulus for a 57 µm 

OD HF.  Again, these tensile properties are encouraging but fall short of those typically 

found in traditional solid fiber PAN precursors (see Table 1.2).  Ferguson also did not detail 

the morphology of the resulting filaments. 

Table 2.2. Properties of hollow PAN precursor filaments spun by Ferguson using a 
multifilament bore-fluid approach.  Adapted from [23].   

 

 The literature presented above by Thewlis and Ferguson represent the few attempts 

made to utilize a bore-fluid approach to produce PAN HF as precursors for structural HCF.  

While interesting, the bore-fluid approach remains limited in its ability to co-spin 

thousands of filaments and has been unable to achieve the outer diameters of traditional 

solid precursors (10-12 µm), which is important for efficient thermal conversion 

processing, and therefore investigation of alternative approaches continues. 

2.2.3.2 Bicomponent Spinning Approach 

(

d) 
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Some researchers have considered the use of a sacrificial polymer to form the hollow 

portion of the fiber to produce smaller diameter HF with thinner walls, improved 

concentricity, and reduced variation. In this case, fibers are typically spun as biocomponent 

fibers, with the sheath consisting of PAN and lumen filled with PMMA, PVA, or similar 

sacrificial polymer. This lumen filling is then removed via dissolution during fiber washing 

or via vaporization during thermal conversion, leaving behind a PAN HF.  For example, 

Yaodong et al. utilized a bicomponent method to produce PAN-based HCF using PMMA 

as a sacrificial core [24], as shown in Figure 2.6. The precursor PMMA filled PAN fiber is 

shown in Figure 2.6a. The PMMA was removed during oxidative stabilization (Figure 

2.6b), although the process by which the thermal degradation products exit the fiber 

remains unclear. However, tensile results for the resulting HCF were presented (evaluated 

at a 6 mm gauge length and 0.36 mm/min crosshead speed). The calculated effective tensile 

properties of the HCF were 2280 MPa tensile strength and 198 GPa modulus, as shown in 

Table 2.3. The resulting HCF cross-sections are shown in Figure 2.6c, and at the time 

(2015), Yaodong claimed the highest reported values for HCF [24].  

 

Figure 2.6. (a) Precursor PAN/PMMA fiber; (b) Stabilized PAN/PMMA fiber; (c) PAN 
based HCF produced utilizing a sacrificial PMMA core. Reprinted from [24] by 
permission from Springer Nature.  

 

 Following Yaodong, Gulgunje et al. [25] utilized the bicomponent spinning method 

to produce PAN/PMMA “honeycomb” fibers. Here again, the PMMA was removed during 

thermal conversion. Resulting tensile properties are shown in Table 2.3.  The “honeycomb” 

HCF, when measured at a gauge length of 12.7 mm and strain rate of 0.1 %/s, resulted in 

an effective break strength of 1750 MPa and effective modulus of 268 GPa. Cross-sectional 

images of the precursor and resulting CF are shown in Figure 2.7a and b, respectively. 

(a) (b) (c)
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Table 2.3. Effective tensile properties of hollow PAN precursor and CF spun using a 
bicomponent spinning method. PAN/PMMA HF precursor and resulting PAN HCF 
adapted from [24]. Honeycomb precursor and resulting CF adapted from [25]. 

 

 

Figure 2.7. (a) As-spun honeycomb PAN precursor fiber with PMMA islands. (b) 
Honeycomb carbon fiber cross section. Reprinted from [25] with permission from 
Elsevier.  
 

 The results produced thus far utilizing bicomponent spinning have shown promise, 

however, the sacrificial polymer approach suffers from drawbacks similar to the bore-fluid 

approach, wherein a specialized spinneret and second pump and filtration system is 

required to allow for bi-component spinning.  Significant modification to capital spinning 

plants would be needed for commercial scale manufacturing of these filaments from a 

bicomponent spinning process. Additionally, questions remain surrounding the thermal 

degradation of PMMA in the fiber and its impact on not only the fiber but the oxidation 

and carbonization ovens.   

2.2.3.3 Segmented arc spinneret approach 

The use of a segmented arc spinneret could serve as a drop-in replacement for 

commercial solid fiber spinnerets for air gap spinning. While these spinnerets have been 

traditionally used for the production of melt spun hollow filaments [10, 11], they have yet 

to be used extensively for solution spinning. The methods previously described to produce 
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HF (bore-fluid and bicomponent spinning approaches) rely on the presence of a solid or 

liquid material in the fiber lumen to keep the fiber open and hollow during extrusion and 

fiber solidification. When using a segmented arc spinneret, the lumen is supported by a gas 

(typically air), which enters through the fiber fissure (shown in Figure 2.3).  Unlike melt 

spinning, wherein the molten segments can heal and begin to solidify through cooling 

immediately upon exiting the spinneret, during air gap spinning the spinning solution does 

not begin to solidify until it enters the coagulation bath.  Therefore, time spent in the air 

gap is pivotal to HF formation.  For example, too little time and the HF may not form, but 

only produce solid segments.  Too much time and the segments heal but then coalesce to 

form a solid fiber. This is just one example of a multitude of variables that must be carefully 

controlled to produce a HF when air gap solution spinning with a segmented arc spinneret 

(other variables include, but are not limited to, spinning solution temperature, jet draw, 

coagulation bath composition and temperature, etc.).  

Due to its complexity, solution spinning with segmented arc spinnerets is currently 

uncommon, although they have been utilized for the dry spinning of hollow cellulose 

acetate fibers. In dry spinning, solvent evaporation rather than coagulation in a nonsolvent, 

solidifies the fibers [26]. For solution spinning PAN HF, few reports have been published.  

Zhang et al. appear to have been most successful solution-spinning PAN HF from a 2C 

segmented arc spinneret.  They found that the length of the air gap impacted the resulting 

fiber shape and had to be carefully controlled to produce HF [27].  At a 6.1 mm air gap, 

fibers were circular and well-formed, as shown in Figure 2.8c.  However, the resulting 

precursor HF measured ~190 µm OD, much larger than conventional solid commercial 

precursor fibers (10-12 µm). Additionally, a patent awarded to Hyundai Motor Company 

claimed the production of HCF from a 2C spinneret with 4.5 GPa effective tensile strength 

and 235 GPa effective modulus.  Little information is given regarding the fiber, aside from 

Hyundai noting that oxidative stabilization time was indeed 45 min. shorter than for 

traditional solid fiber [28]. To the author’s knowledge this process is not practiced/licensed, 

nor is the Hyundai Motor Company currently active in carbon fiber industry.  None of the 

claimed properties have been published in peer reviewed articles. Finally, a paper 

published in the China Synthetic Fiber Industry journal by Longming et al. [29] shows the 

impact of coagulation bath concentration on PAN HF formation from a C-shaped 
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segmented arc spinneret. The few reports available describing solution spinning of PAN 

utilizing a segmented arc spinneret indicate that the area requires further research to 

successfully produce HCF for structural applications.  

 

Figure 2.8. Impact of air gap distance on HF formation for a 2C spinneret: (a) 2.5 mm, 
(b) 4 mm, (c) 6.1 mm, (d) 10 mm. Reprinted from [27] with permission from Taylor & 
Francis. 

 
2.3 Objectives 

The literature review presented here contains an extensive analysis of previous work 

completed toward the production of HCF for structural applications.  Electrospinning can 

be cost effective, however the filaments produced are not intended nor suited for structural 

applications, are often produced in non-woven mats, and require the use of a sacrificial 

core. Melt spinning of PAN remains an experimental endeavor and has not matured to the 

level required for production of structural fibers, and a bore-fluid spinning approach is not 

amenable to scale up to the tens of thousands of filaments typically co-spun in traditional 

solid CF processes. The bicomponent spinning approach has produced HCF with adequate 

tensile properties, however, commercial adoption of such a process would require 

expensive capital investments and retooling as well as the use of a sacrificial polymer, 

further increasing manufacturing costs. Finally, efforts toward solution spinning PAN HF 

with segmented arc spinnerets are rare, with only three references located after extensive 

literature review. If the advantages of a segmented arc spinneret can be realized, its use 

removes the need for a sacrificial polymer or bore fluid and is inherently scalable to 1000s 
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of filaments.  Additionally, a segmented arc spinneret can serve as a drop-in replacement 

for traditional air gap spinnerets in large-scale manufacturing lines, requiring minimal 

additional capital investments. Considering these possibilities, the research presented 

herein is focused upon the use of a segmented arc spinneret to develop high tensile property 

HCF and to understand the process-structure-property development throughout the 

spinning, oxidative stabilization, and carbonization processes. The objectives of this 

research are presented here. 

To the author’s knowledge, only two references exist describing the impact of 

spinning variables on HF formation from a segmented arc spinneret. Zhang et al. 

investigated the impact of air gap distance on HF formation [27] while Longming et al. 

investigated the impact of coagulation bath composition [29]. Resulting filaments were 

very large or improperly formed. The initial objective of this research focuses upon the 

development of multifilament PAN HF precursor from the segmented arc spinneret. It is 

hypothesized that a segmented arc spinneret can be used to produce HF precursors 

with dimensions and morphology appropriate to the production of high tensile 

property HCF. Within this study, objectives include the contribution of knowledge to the 

understanding of the HF filament formation in the air gap and coagulation bath, with a 

focus on controlling the morphology development to minimize void formation and 

dimension control. Additionally, observations regarding the relationships between the 

coagulation bath, fiber washing and drawing, and thermal conversion is explored. Finally, 

tensile analysis of the PAN HF precursors is completed and their trends analyzed toward 

the production of high tensile property HCF, particularly with regard to comparison with 

traditional solid precursors.  

Next, a particular hypothesized advantage of HF is the potential for faster oxidation. 

Here, it is hypothesized that with reduced wall thickness, one can arrive at an 

optimally oxidized fiber faster than traditional solid fiber via oxidation from the 

exterior and interior of the filament. As wall thickness decreases, the oxygen 

characteristic diffusion length decreases, compared to a solid fiber of the same OD, as 

shown in Figure 2.1. Spun HF precursors of varying OD and ID are oxidized and their 

stabilized fiber densities utilized as a proxy for oxygen uptake [30] to determine rate of 
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oxidation. These results are compared to solid fibers of similar OD. Knowledge related to 

the mechanisms behind HF oxidative stabilization are investigated and contributed.  

Finally, one of the overarching goals of this research is to understand the resulting 

HCF properties. Two primary hypotheses regarding HCF properties have been developed. 

First, it is hypothesized that the resulting effective tensile strength of the HCF can 

conserve the tensile strength of a similar OD solid CF.  This is hypothesized based on 

findings from other researchers previously discussed in section 1.1.4.2, who found that 

surface flaws are a major limiting factor in CF tensile strength [6, 31], as the skin carries 

up to 10 times the stress compared to the core [32] and that reducing or eliminating the 

skin-core structure would allow for homogeneous stress distribution along the fiber cross 

section, leading to improved tensile properties [6, 31]. Second, it is hypothesized that the 

true elastic modulus of the HCF will increase as a function of increasing percent open 

area (for a fixed outer diameter) due to the reduction in skin-core structure in the 

HCF. As described previously, the literature indicates that the majority of commercially 

available CF possess a skin-core structure, which results in the highly oriented, high 

modulus skin carrying much of the load [33, 34]. This suggests that the formation of a HCF 

would more efficiently exploit the oriented portion of the fiber. Considering the effective 

density of a HCF would be lower than a solid CF (of same the OD), and considering the 

arguments above, the specific tensile properties of HCF could be significantly superior to 

solid carbon fiber.  After all, as mentioned in section 1.1.4, the specific tensile properties 

of carbon fiber underpin its utility in an array of structural applications. 

The objectives and hypotheses discussed above are pertinent in the development of 

PAN HF precursor and PAN-derived HCF. To date, these questions have not been 

adequately addressed in the literature.  Those who have attempted to develop and study 

HCF have conducted relatively little analyses of the fibers. Addressing these hypotheses 

would lead to a deeper understanding of the fundamentals governing PAN HF and HCF 

development and would represent a significant advancement in the field, which has, for the 

most part, been incrementally advancing over the past 30 years. If successful, the 

production of HCF has the potential to disrupt the entire carbon fiber market, which as of 

2018, was estimated to be valued at $3-4B worldwide [35]. The questions addressed in the 
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work are relevant for technology advancement to produce hollow carbon fiber at lower cost 

and higher throughput (due to a potential increased oxidation rate), and to potentially 

significantly increase HCF specific strength and modulus the central basis of carbon fiber.  
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CHAPTER 3. EXPERIMENTAL METHODS AND CHARACTERIZATION 

TECHNIQUES 

This chapter provides a detailed description of the experimental methods and 

techniques that are used repeatedly throughout the following chapters. Experimental 

methods specific to a given chapter will be described in the experimental section of that 

chapter. 

3.1 Lyophilization (freeze drying) 

Coagulated fibers were generally collected by allowing fibers to “spool” on godet 

rollers directly following the coagulation bath. The fibers were then carefully removed 

from the roller and excess external liquid removed utilizing lint-free wipes (Kimwipes). To 

avoid fiber porosity collapse due to air drying, the fibers were placed in bottles of deionized 

water until ready for lyophilization. Freeze drying was completed utilizing a Labconco 

FreeZone 1-Liter Benchtop Freeze Dry System. Samples were removed from deionized 

water, excess external liquid again removed with lint-free wipes, and the samples frozen in 

liquid nitrogen prior to addition to the system’s freeze drying flasks. The flasks containing 

the frozen samples were attached to the FreeZone system, which was maintained at 0.050 

mbar and -50 °C. Samples were allowed to lyophilize for several hours until all frost 

disappeared from the outer surface of the sample container, indicating the sample was dry 

and ready for further analysis. 

3.2 Fiber sectioning 

Following freeze drying to preserve the coagulated fiber structure, fibers were 

sectioned using a Leica CM1100 portable benchtop cryostat. The cryostat was utilized to 

section not only freeze dried coagulated fibers, but also fibers collected at other positions 

in the spinning process, including after washing, drying, and final spooling. The cryostat 

was necessary for sectioning the polymer (precursor) fibers to prevent deforming the fiber 

during sectioning. During preparation for sectioning, approximately 1 cm of fiber tow was 

bundled using Cu tape and then placed in a mold filled with Tissue-Tek O.C.T compound. 

This mold was then placed under moderate vacuum for approximately 10 minutes when 

studying hollow fiber (HF) to aid the O.C.T. compound in filling the hollow lumen. Molds 
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were then placed inside the cryostat, which was maintained at -30 °C for freezing of the 

sample and compound. Once frozen, the embedded sample was removed from the mold 

and attached to the cryostat specimen holder, perpendicular to the stationary cutting blade. 

The sample was trimmed using the cutting blade and then removed from the specimen 

holder and washed in deionized water for several hours to fully remove any O.C.T. residue.  

3.3 Optical microscopy 

Cross sections of precursor, stabilized, and carbonized HF were observed under 

optical microscopy. Fibers were held vertical in uncured epoxy and placed under vacuum 

to encourage filling the HF lumen. The epoxy was then allowed to cure overnight at room 

temperature or in an hour at 50 °C and polished perpendicular to the fiber axis for imaging. 

Fiber cross sections were imaged at 500x magnification under reflected light. Under 

reflected light, the skin-core structure of the oxidized fibers was visible, with the skin 

appearing lighter in color than the core. Diameters and other measurements were obtained 

using Adobe Photoshop 2021. In Photoshop, the measurement scale is set and the magnetic 

lasso tool used to trace the region of interest, allowing measurements such as area and 

perimeter, for example, to be collected. The average value of measurements was calculated, 

and error bars represented the standard deviation for the sample. 

3.4 Scanning electron microscope (SEM) 

Imaging of the fibers was performed on a Hitachi S-4800 field emission SEM. 

Precursor and stabilized fibers were sputter coated with Au prior to imaging generally at 5 

kV accelerating voltage and 10 µA beam current. Carbon fibers did not require sputter 

coating and were generally imaged at 15 kV accelerating voltage and 15 µA beam current. 

Fibers were bundled and sandwiched between Cu tape and cut, either using the Leica 

CM1100 cryostat (coagulated and precursor fibers) or a razor (carbon fibers) for viewing 

the fiber cross section. Samples for fiber surface imaging were prepared by laying fibers 

across conductive carbon tape. Diameters and other measurements were obtained using 

Adobe Photoshop 2021 to analyze the resulting micrographs. The average value of 

measurements was calculated, and error bars represented the standard deviation for the 

sample.  
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3.5 Focused ion beam 

Prior to elemental composition analysis by energy dispersive X-ray spectroscopy 

(EDX), the fibers were cross-sectioned in a dual beam system: focused ion beam / scanning 

electron microscope (FIB/SEM, Helios Nanolab 660/G3, ThermoFisher Scientific, 

formerly FEI, Hillsboro, OR). Fibers were attached onto a 45° pre-tilted SEM sample 

holder using carbon and copper conductive tapes and further immobilized by conductive 

graphite paint (Ted Pella, Inc.) to limit drift. Based on the dual beam geometry (52° 

between the electron and ion beam), the stage was tilted to 7° during ion milling so that the 

ion beam was normal - and the created cross-section face perpendicular - to the long axis 

of the fibers. Milling was conducted using gallium ions accelerated to an energy of 30 keV, 

until the end of the fibers were cut, revealing a fresh cross-section face. After completion 

of the milling process, the stage was tilted to 45° to position this face normal to the electron 

beam for imaging and energy-dispersive X-ray spectroscopy (EDX) analysis.  

3.6 Energy-dispersive X-ray spectroscopy (EDX) 

Elemental analysis by EDX (X-MaxN 80 mm2 detector, Oxford Instruments, 

Abingdon, United Kingdom) was conducted in the same dual beam system immediately 

after completion of the cross-sectioning step. The freshly exposed cross-section surface 

was therefore not exposed to air prior to analysis, as it remained in the high vacuum of the 

system’s chamber (pressure typically lower than 10-6 mbar). Incident electrons with 10 keV 

energy were used to perform the EDX analysis, sufficiently energetic to fully excite the 

characteristic X-rays of the elements present in the sample. A total of 10 million EDX 

spectra were collected to create the EDX maps (2048 channels over 10 keV energy range, 

i.e. resolution of 4.88 eV per channel). The proprietary software from Oxford Instruments 

(AZtec) performed background fitting and peak deconvolution to properly identify and 

display the presence of specific elements in the map. 

3.7 Density measurements 

Precursor and stabilized fiber densities were analyzed using a Testing Machines Inc. 

Model 21-25 Auto Density Gradient Column. Glass beads with densities calibrated to four 

decimal places were placed in the column to form a calibration curve. Fibers were washed 



 

 
 

46 

overnight in methanol and vacuum dried before placing into a column of carbon 

tetrachloride and n-heptane. Fibers were allowed to equilibrate for at least 24 hours and 

three specimen per sample were analyzed.  

Carbon fiber density was determined on chopped fiber using a Micromeritics 

Accupyc II 1340, equipped with a 0.1 cc cell. To avoid water uptake by CF during density 

measurements, the Accupyc II system was located in a dry room, which was maintained at 

0.03% humidity and fibers were dried prior to measurement. Dry nitrogen was used as the 

gas and 10 measurements per sample were obtained.  

Both the density gradient column and the gas pycnometer provided “true” (or 

skeletal) densities (𝜌true). These measurements were then used to calculate the effective 

densities (𝜌eff), according to Eqn. 3.1, where 𝐴true and 𝐴eff are the true and effective cross 

sectional areas of the fiber, as defined in Figure 2.2.  

 
𝜌eff = 𝜌true

𝐴true
𝐴eff

 Eqn. 3.1 

 
The percent density increase from the precursor was calculated for all oxidized 

samples using Eqn. 3.2, 

 6𝜌1 − 𝜌27
𝜌2

× 100 
Eqn. 3.2 

where 𝜌2 is the true density of the precursor fiber and 𝜌1 is the density of the oxidized fiber, 

where 𝑖 refers to after the ith heating stage of oxidation (𝑖 = 1st, 2nd, 3rd, 4th). 

3.8 Mechanical characterization 

Tensile testing of precursor fibers was done using a Textechno 

FAVIMAT+ROBOT2(AI) automatic single fiber test system. Tests were performed at a 

gauge length of 25.4 mm, pretension of 0.5 cN/tex, and test speed of 5 mm/min. The 

average of at least 10 tests are reported for each fiber sample and error bars represent the 

standard deviation.  

To avoid damage to the HCF by the FAVIMAT+ grips, single filament HCF were 

mounted on aperture cards using epoxy and tested using an MTS QTest10 testing machine, 
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equipped with a 250 g load cell. Single filaments were evaluated at a 10 mm gauge length 

with a test speed of 0.1 mm/min. At least 12 filaments were analyzed for each sample and 

effective tensile properties reported. No compliance correction for modulus or strain was 

performed. 

The true and effective tensile properties of the precursor fibers were calculated based 

on the true and effective areas of the hollow fibers (see Figure 2.2). In addition, when 

determining specific properties, the effective fiber densities were always used in order to 

observe the impact of cross-sectional area on specific properties. For example, Eqn. 3.3 

shows the equation for determining specific effective tensile strength, where F is the fiber 

break force, 𝐴eff is the fiber effective area, and 𝜌eff is the effective density. Similarly, in 

Eqn. 3.4, the specific true tensile strength is calculated, where 𝐴3rue is the fiber true area, 

again defined as shown in Figure 2.2. Specific effective and true modulus were calculated 

in a similar fashion, as shown in Eqn. 3.5 and Eqn. 3.6, where 𝜀 is the fiber strain under the 

applied force, 𝐹.  

 

specific effective tensile strength =
𝐹
𝑨eff>
𝜌eff

 Eqn. 3.3 

 
 

specific true tensile strength =
𝐹
𝑨𝒕rue>
𝜌eff

 Eqn. 3.4 

 

 
specific effective elastic	modulus =

𝐹
𝑨eff>

𝜀𝜌eff
 Eqn. 3.5 

 

 
specific true elastic	modulus =

𝐹
𝑨true>
𝜀𝜌eff

 Eqn. 3.6 
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3.9 Wide angle x-ray scattering (WAXS) 

The precursor HF and HCF were analyzed using a XENOCS Xeuss 2.0 

SAXS/WAXS system in transmission mode to determine structural parameters and 

orientation. The source was GeniX3DCu ULD 8 keV with wavelength of 0.154 nm. Several 

fibers were aligned into a bundle and fixed across an aperture card. The aperture card with 

the aligned fiber bundle was then transferred to the WAXS sample holder which was placed 

at 106 mm from the 2D detector (Dectris Pilatus 200 K) following LaB6 calibration. 

Exposure time was 600 s. 

For precursor PAN fiber, the diffraction pattern of the equatorial scan contains PAN 

fiber peaks at 2𝜃	= ~16.5° and 29.5°, which represent the Bragg angles associated with the 

(100) and (110) planes.  These planes correspond to a nearly perfect hexagonal spacing of 

6.0 Å [1], represented by the lattice parameters 𝑎 = 𝑐 = 6.17	Å [2] which define the cell 

dimensions. For the CF, the resulting crystal structure is shown by the peaks at Bragg 

angles 2𝜃 = 25° and 42°, representing the (002) and (100) planes. 

Data processing to obtain the integrated diffracted intensity versus 2θ and azimuthal 

angle, Ψ, was performed using the software Foxtrot provided by XENOCS. Structural 

parameters were determined by peak fitting of the Foxtrot data using Rigaku PDXL 2.0 

software. For both precursor and CF, the degree of crystallinity was calculated as the ratio 

of the integral intensity contained within the crystalline peaks to the integral intensity of 

the entire sample [3]. Crystallite size 𝐿5(77&)	and 𝐿9(:77) were calculated using the Scherrer 

equation found in Eqn. 3.7 and the interlayer spacing, 𝑑(77&), was calculated using Bragg’s 

Law using Eqn. 3.8, respectively, 

 
𝐿 =

𝑘𝜆
𝛽cos𝜃 Eqn. 3.7 

 
 

𝑑 = !
"sin&

                                                      Eqn. 3.8 

 

where 𝜆 is the x-ray wavelength 0.154 nm, 𝜃 is the Bragg angle, 𝛽 is the full width 

at half maximum (FWHM) of the diffraction peak with respect to 2𝜃, and the 𝑘 value is a 
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constant of 0.9 for 𝐿5(77&)	and 1.84 for 𝐿9(:77) [4]. To quantify the degree of orientation of 

the fibers, the Herman’s orientation factor, 𝑓(77&), was calculated from the WAXS data 

using   

 
 

〈cos&𝛹(77&),<〉 =
∫ 𝐼(Ψ)cos&ΨsinΨdΨ=/&
7

∫ 𝐼(Ψ)sinΨdΨ=/&
7

 Eqn. 3.9 

and 
 
 

𝑓(77&) =
3〈cos&𝛹(77&),<〉 − 1

2              Eqn. 3.10 

 
In Eqn. 3.9 and Eqn. 3.10, Ψ is the azimuthal angle,  𝐼(Ψ) represents the azimuthal 

intensities, and 〈cos&𝛹(77&),<〉 is the average cosine square of the angle that the (002) plane 

made with the draw direction, z. As a result,  𝑓(77&) = 1 for perfectly oriented crystal planes 

parallel to the draw direction and 𝑓(77&) = −0.5 when the orientation of the crystal planes 

is perpendicular to the draw direction, and 𝑓(77&) = 0 for an isotropic material with no 

preferred orientation [5]. Finally, a T700S carbon fiber sample was also analyzed as a 

benchmark.  
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CHAPTER 4. PROCESSING AND PROPERTIES OF HOLLOW PAN FIBER 
PRECURSORS FROM A SEGMENTED ARC SPINNERET 

4.1 Introduction 

Polyacrylonitrile precursors for the production of high tensile property CF typically 

have few (if any) voids, small diameter (approximately 10-12 µm), low comonomer 

content, >50% carbon yield in the resulting CF, and high tensile strength and modulus [1-

4]. The utilization of PAN hollow fiber (HF) to produce structural hollow carbon fiber 

(HCF) has not been widely explored. As discussed in section 2.2, electrospinning [5] and 

melt spinning [6] methods have been explored to produce precursors for HCF, but have 

produced inferior products.  

The approaches demonstrating the most promise in the production of precursors for 

HCF are based on a solution spinning method, and include bore-fluid [7-9], bicomponent 

[10, 11], and segmented arc spinneret approaches [12-14]. Unfortunately, the bore-fluid 

approach relies on concentric placement of the needle supplying the lumen fluid within the 

spinneret capillary. Due to manufacturing limitations, the minimum needle diameter 

available is larger than desired for producing PAN HF precursors. In addition, the bore-

fluid approach is primarily suited to single filament spinning and is not appropriate for 

spinning thousands of filaments per tow, as is common for PAN precursors.  

The bicomponent approach has shown promise in producing HF and HCF with 

adequate tensile properties, but the use of a sacrificial polymer to form the hollow portion 

of the filament increases production costs through the addition of secondary pumping 

systems and complicated spinneret geometries. The vaporization of the sacrificial polymer 

during thermal conversion also has questionable effects on the fiber and the ovens used 

during thermal treatment.  

Finally, the use of a segmented arc spinneret shows the most promise in terms of ease 

of conversion from traditional solid precursor spinning to HF spinning, as the segmented 

arc spinneret can serve as a direct drop-in replacement for traditional solid fiber, air-gap 

spinnerets. Unfortunately, little research has been completed on the use of segmented arc 

spinnerets for solution spinning. Solution spinning with a segmented arc spinneret relies 
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on healing of the segments in the air gap prior to entering the coagulation bath (similar to 

the healing shown in Figure 2.4) and little is understood regarding the process-structure-

property relationships in the development of HF PAN precursors. A schematic of a 2C 

segmented arc spinneret capillary being used for solution spinning is shown in Figure 4.1. 

It was hypothesized that a segmented arc spinneret could be used to produce HF 

precursors with dimensions and morphology appropriate to the production of high 

tensile property HCF. This chapter reports on the investigation of this hypothesis, 

including the spinning process and the resulting HF precursors and includes observations 

regarding coagulation, fiber drawing, and the resulting HF precursor tensile properties.  

 

Figure 4.1. Schematic describing the use of a segmented arc spinneret capillary for the 
production of hollow filaments from a solution spinning method. The spinning solution 
exiting the 2C segments of the capillary heal to produce a hollow filament. Air is drawn 
in between the healing segments to maintain the hollow structure. 

 

4.2 Experimental 

4.2.1 Materials 

Two types of polyacrylonitrile terpolymers were utilized during the course of this 

research. Both polymers contained 97 mol% acrylonitrile, 2 mol% methyl acrylate, and 1 
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mol% methacrylic acid and were obtained from Technorbital Advanced Materials Pvt. Ltd. 

(Kanpur, India). The first of the polymers, TechPAN1 (TP1), had a weight average 

molecular weight (Mw) of 300,000 g/mol (via GPC). The second polymer, TechPAN2 

(TP2), was of lower molecular weight, estimated to be approximately 150,000 g/mol.  

Dimethylsulfoxide (DMSO), 99.9%, was purchased from VWR and used as received. 

4.2.2 Dope preparation 

Spinning solutions were prepared using an 8 CV Helicone Reactor/Mixer (Design 

Integrated Technology Inc., Warrenton, VA). The TechPAN polymer was added, along 

with DMSO, to the 50 °C preheated mixer and mixed at 15 RPM utilizing the intersecting 

dual heliconical blades over 12 hours at 50 °C to produce a homogeneous spinning solution. 

The solution was degassed under vacuum in the mixer and finally extracted using 2 psi N2 

overpressure into a 1 L syringe pump (Teledyne ISCO 1000D, Lincoln, NE).  

4.2.3 Spinneret design 

Multiple spinneret configurations were designed and utilized for this study (Table 

4.1), to discern the best dimensional configuration for producing the smallest dimension 

filaments. All spinnerets were configured to produce 25 hollow filaments using 2C 

segmented arc capillary designs. Schematics of the spinneret and capillary are shown in 

Figure 4.2.  

 

Figure 4.2. Schematics of the 25 filament 2C segmented arc spinneret with a close up of 
the 2C capillary. 

 

Close up of 2C capillary

Web width

Arc width

Inner diameter
Outer diameter

25 filament 2C spinneret
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HF-A was the first and primary spinneret utilized for this research. Attempts with 

HF-B were made, which was designed with significantly reduced OD and ID, however, 

machining limits meant that the arc and web width could go no smaller than 71 and 51 µm, 

respectively. As a result of the relatively large arc and web widths compared to the OD and 

ID, HF was not well formed. A third iteration, HF-C, reduced the OD and ID, but 

maintained the arc and web width from HF-A. HF-C was successful in producing HF, albeit 

with large wall thickness to OD ratios compared to fibers produced with HF-A, as will be 

discussed. 

Table 4.1. 2C segmented arc spinnerets designed and utilized for this research, including 
inner and outer capillary diameters, as well as arc and web width. 

 

4.2.4 Solution spinning apparatus 

The solution spinning line used for this research is located at the University of 

Kentucky Center for Applied Energy Research. A schematic of the spinning line is shown 

in Figure 4.3. The line begins with a 1 L Teledyne ISCO pump which contains the 

deaerated, fully dissolved spinning solution. The ISCO uses positive displacement to 

control the volumetric flow rate of dope fed through a 3 µm microglass filter element, 

through a breaker plate, and into the spinneret. The 2C jets exit the spinneret and pass 

through an air gap (5-15 mm) before entering the coagulation bath. The coagulation bath 

is typically a mixture of solvent and non-solvent, from 0 to 80 wt.% solvent/non-solvent. 

For this study, the solvent is dimethylsulfoxide (DMSO) and the non-solvent is water. The 

remainder of the spinning line consists of godet stands typically configured with four 

rollers as well as baths for washing and drawing (or stretching) of the filaments. The godet 

stands are controlled for linear speed to apply the desired draw ratio to the fiber in each 

bath, as shown in Eqn. 4.1, where 𝑣?! is the velocity of first godet (y0, y1, y2, etc.) and 

𝑣?(!#$) is the velocity of the next godet (y1, y2, y3, etc.). The ratio of the velocities is the 

draw down ratio (DDR), or stretch, applied to the fiber between the two godets. 
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 DDR	=
𝑣?(!#$)
𝑣?!

 Eqn. 4.1 

 
Following coagulation, the godets move the fiber tow through a series of water wash 

baths (T ~20 °C) for removal of fiber residual solvent. Upon reaching godet y3, the 

following three baths are heated water. The first two warm water baths (T ~50 °C) aid in 

further washing of the fiber, while in the third hot water bath (T ~90 °C) the first major 

draw of the fiber occurs. Following this first major draw, the fibers make multiple passes 

around the godet rollers on y6, which is a heated godet (T ~60 °C). This is necessary to dry 

and remove water prior to entering the hot glycerol stretching bath (T ~160 °C). The use 

of hot glycerol enables the application of high draw ratios to the fiber tow by heating the 

fiber significantly above its glass transition (Tg) and serves as an excellent heat transfer 

medium. After drawing through hot glycerol, it is necessary to again wash the fiber in hot 

water (T ~90 °C) to remove glycerol from the fiber. This is completed using two baths. 

Finally, a dilute aqueous silicone emulsion spin finish is added to the fiber for handleability 

and to aid with subsequent thermal conversion, and the fiber tow is finally dried over 

another larger heated godet (T ~60 °C) and spooled using a traversing winder. Spools were 

labeled with a run number as well as a letter (A, B, C, etc.) to designate that differing 

conditions were utilized during the same spinning run to collect the respective spool. 
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Figure 4.3. Schematic of the solution spinning line at the UK Center for Applied Energy 
Research utilized for the hollow fiber research. 

 

4.2.5 Rheological analysis 

Shear rheology studies were conducted on both TechPAN1 and TechPAN2 polymer 

solutions using a TA Instruments AR-G2 parallel plate rheometer. Polymer solutions were 

placed between the Peltier temperature controlled bottom plate, held fixed, and the top 

rotating 40 mm diameter parallel plate tool. The gap between the Peltier and the tool was 

maintained at 500 µm. Experiments were conducted by ramping the applied shear rate from 

0.1 to 10 s-1 while measuring shear viscosity (Pa-s). Additional experiments were 

conducted by holding the shear rate constant at 1 s-1 and ramping the temperature from 25 

to 80 ºC while measuring the viscosity (Pa-s).  

4.2.6 Thermogravimetric analysis (TGA) 

A TA Instruments Discovery Thermogravimetric Analyzer (TGA 5500) was utilized 

to determine the residual liquid content present in precursor HF by evaporation. The 

residual liquid is likely comprised of a mix of water and DMSO. Prior to analysis, 10 to 15 

mg of precursor fiber sample were chopped into ~1 mm lengths and added to a tared 250 

µL alumina crucible. The samples were analyzed by ramping from room temperature to 
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400 °C at 20 °C/min in flowing N2 (25 mL/min). Residual liquid content was determined 

by the weight percent change from room temperature to 275 °C.  

4.2.7 Differential scanning calorimetry (DSC)  

A TA Instruments Discovery Differential Scanning Calorimeter (DSC 2500) was 

utilized to examine exothermic events. For exotherm observation, polymer powders were 

dried under vacuum to remove adsorbed water and 4-6 mg of sample was added to a Tzero 

DSC pan, which was then fitted with a Tzero lid. Samples were heated under 50 mL/min 

of N2 from room temperature to 450 °C at 10 °C/min.  

4.3 Results and discussion 

4.3.1 Initial coagulation trials 

Initial work on the spinning of hollow filaments began with the use of TechPAN1 

polymer, which had previously been proven in-house to produce high-quality solid 

precursor fibers and CF with tensile properties similar to T700S (Table 1.1 and Table 1.2). 

Having extensively studied the formation of solid PAN precursor fibers, particularly in the 

coagulation bath, it was known that high solvent content in the coagulation bath (>70 wt.%, 

but <80 wt.%, solvent/non-solvent) produces precursor fibers with circular cross section, 

smaller diameters, higher density, higher molecular orientation, and higher tensile 

properties [15].  

Utilizing this knowledge, initial spinning trials with the HF-A 2C segmented arc 

spinneret to develop hollow fibers focused on the use of a high solvent content coagulation 

bath, with the goal being to produce round, dense, concentric hollow PAN precursor fibers. 

Contrary to expectations, fibers spun into a 78 wt.% DMSO/water bath attained none of 

the desired characteristics. In Figure 4.4, a resulting coagulated fiber cross section is 

shown, displaying macrovoids on the order of 10s of microns in diameter positioned around 

the fiber circumference. It was hypothesized that the high solvent content coagulation bath, 

which is preferred for the formation of solid fibers due to the slow coagulation, allowed for 

the collapse of the 2C segments and the formation of a relatively solid, macrovoid-filled 

fiber. To prevent this collapse, a potential solution was the removal of solvent from the 
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bath and the use of a 100% non-solvent (water) bath. Spinning into 100% non-solvent leads 

to the rapid outward diffusion of non-solvent, resulting in the instantaneous precipitation 

of the polymer [16]. This rapid precipitation leads to a dense cuticle formation on the 

surface of the fiber, which in the context of the HF spinning reported here, was 

hypothesized to aid in preserving the lumen of the nascent, healed 2C segments during 

fiber formation, resulting in a concentric HF.  

 

Figure 4.4. Resulting coagulated fiber cross section from initial 2C segmented arc 
spinneret spinning trials, which were spun into a 78 wt.% DMSO/water coagulation bath.  

 

To test this hypothesis, numerous spinning runs utilizing a 100% water coagulation 

bath and the HF-A spinneret were completed. Initial spinning experiments were somewhat 

Edisonian in nature as attempts were made to determine which of the numerous spinning 

variables (outside of coagulation bath composition) were most impactful on initial HF 

filament formation. Important variables under observation during the formation of hollow 

filaments were air gap distance, dope flow rate, and draw down ratio, to name a few. The 

concentration of TechPAN1 in DMSO to produce the spinning solution varied between 14 

and 16 wt.%. Higher solids content (polymer) in the spinning solution was preferred as it 

is known to produce a slightly more homogeneous structure formation [17, 18]. However, 

higher solids content also increases solution viscosity, which can lead to difficulties 

properly degassing the solution to remove entrained gasses and the high viscosity can 

render spinning difficult. Issues with void formation in the spun fibers would lead to the 

use of a 14 wt.% TechPAN1/DMSO solution in some instances, as this solution was easier 

to degas compared to the 16 wt.% solution. However, the presence of macrovoids in the 
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HF being related to entrained gasses in the spinning solution was eventually debunked, as 

will be discussed.  

Examples of coagulated fiber cross sections from early experiments are shown in 

Figure 4.5. Figure 4.5a, b, c, d, e, and f show cross sections from spinning runs 419, 420, 

423, 476, 478, and 480, respectively. Table 4.2 includes the air gaps, flow rates, and draw 

down ratios (DDR) used to produce these fibers. For the fiber sections shown here, air gaps 

varied from 6 to 10 mm, flow rates from 4 to 8 mL/min, and draw down ratios (DDR) from 

0.8 to 5, where DDR through the coagulation bath is calculated according to Eqn. 4.2. In 

Eqn. 4.2, it is shown that flow rate and DDR are dependent on one another, where 𝑣?&is the 

linear velocity of the godet rollers at the coagulation bath exit (𝑦7), 𝐴 is the total area of 

the spinneret capillaries, and 𝑄 is the volumetric flow rate controlled by the positive-

displacement pump through the spinneret capillaries. 
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Figure 4.5. Examples of coagulated fiber cross sections from early HF spinning 
experiments. (a) run 419; (b) run 420; (c) run 423; (d) run 476; (e) run 478; (f) run 480. 
White calibration bars are 250 µm.  
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Table 4.2. The air gaps, flow rates, and draw down ratios (DDR) used in early attempts to 
produce HF.  

 

 
 

DDR = 	
𝑣?&𝐴
𝑄  Eqn. 4.2 

 

Various fiber cross sectional shapes are shown in Figure 4.5. Figure 4.5a shows 

polymer “ribbons”. These were attributed to the inability of the 2Cs of the segmented arc 

spinneret capillaries to heal, in the air gap, prior to entering the coagulation bath. The use 

of a high draw ratio (5x) in this case was hypothesized to hinder adequate time in the air 

gap for this healing to occur. Fibers shown in Figure 4.5b were spun using a 0.8x DDR and 

the resulting filaments varied greatly in cross sectional shape. Increasing draw ratio again 

to 3.5x, along with the air gap and flow rate, resulted in the production of lobed cross 

sections (Figure 4.5c). Figure 4.5d contained hollow filaments of somewhat regular cross 

section, however, they were non-circular and the “healing” line between the 2Cs was 

evident. Reducing the flow rate from 8 mL/min to 4 mL/min in Figure 4.5e and f allowed 

more time in the air gap for the healing of the 2Cs and resulted in mostly round, concentric 

HF.  

Again, the fibers presented in Figure 4.5 represent a very small portion of the fibers 

initially spun and studied. In general, it was found that fibers spun using an 8 mm air gap, 

4 mL/min flow rate, and approximately 1.8x DDR tended to produce round, concentric HF 

from the HF-A segmented arc spinneret. These HF spinning parameters served as a starting 

point for the experiments and results discussed in this chapter, which were completed in an 

effort to gain further insight into the HF development process.  
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4.3.2 Hollow fiber drawing process 

Upon determining some initial parameters capable of producing hollow filaments, 

research focused on extending the spinning process beyond the coagulation bath, to include 

washing, stretching, drying, and take-up of the hollow filaments on a spool. Several 

spinning runs were completed, with samples taken at varying points in the spinning 

process. A 16 wt.% TechPAN1/DMSO dope was used, at a flow rate of 4 mL/min for all 

runs. Fiber outer diameter (OD) and inner diameter (ID) were measured and plotted in 

Figure 4.6 as a function of cumulative draw. The cumulative draw increases as fiber 

progresses down the spinning line through washing, stretching, drying, and final take-up 

on the spool. Solid symbols indicate measured OD, while open symbols indicate measured 

ID. Both ID and OD are shown to decrease with increasing cumulative draw, as expected. 

Fibers measuring 426 µm OD and 246 µm ID out of the coagulation bath were reduced to 

158 µm OD and 108 µm ID at the spool after a cumulative draw of 7, a reduction of 63% 

and 56%, respectively. The smallest spooled fibers measured 73 µm OD and 43 µm ID 

after a cumulative draw of 30. In addition to the measured data, theoretical ID and OD 

prediction lines were developed based on an assumed constant fiber density, a constant 1.8 

OD/ID ratio, and Eqn. 4.3, where ∅OD: is the initial outer diameter and ∅OD& is the outer 

diameter resulting after the application of a known cumulative draw. 
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Figure 4.6. Hollow fiber inner and outer diameter for multiple similar spinning runs 
plotted as a function of cumulative draw attained along the spinning line. Theoretical 
predictions for outer diameter and inner diameter trends are indicated. 

 

 
∅OD& =

∅OD:
√Cumulative	Draw

 Eqn. 4.3 

 

 The theoretical predictions for ID and OD hold well until reaching cumulative 

draws ≥ 7, at which point it appears that the assumed OD/ID ratio of 1.8 no longer holds 

and that some wall thinning occurs at high cumulative draws. This wall thinning was 

attributed to pore collapse within the polymer network, and therefore an increasing fiber 

density along the fiber spinning line. The cross section of spooled HF resulting from a 

cumulative draw of 30 are shown in Figure 4.7. It was particularly encouraging to observe 

that the filaments retained their hollow structure despite the rigors of the spinning process. 
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During the washing, and particularly during the stretching process for example, tension on 

the fiber tow can reach 100s of grams force. This was not, however, enough to collapse the 

fibers as they were wound on a core, and the fibers retained their hollow structure. 

 

Figure 4.7. Cross section of spooled HF following cumulative draw down ratio of 30.  
 

4.3.3 Hollow fiber morphology 

While the initial parameters used to produce HF were adequate, undesirable fiber 

morphologies were observed. In Figure 4.8a, HF cross sections are shown which contain 

triangular or “heart-shaped” macrovoids (circled in red). These macrovoids are undesirable 

for producing high strength CF [19-21]. In addition, obvious inter-filament fusion is 

observed (circled in yellow). The results of this inter-filament fusion are shown in Figure 

4.8b, where two previously fused filaments have begun to pull apart, resulting in damage 

to the surface of both fibers. This surface damage, in addition to the macrovoid presence, 

greatly reduces the tensile strength of fibers [19]. In Figure 4.8c, a close-up of a fiber cross 

section with a triangular macrovoid is shown, with some evidence in the fiber lumen of the 

fiber “wrinkling” or buckling around the macrovoid. When examining the lumen further 

(Figure 4.8d), more wrinkling was observed in isolated locations, suggesting pockets or 

macrovoids were lurking beneath the surface.  

100 μm
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Initially, macrovoid formation was hypothesized to stem from the “healing” of the 

2C segments. However, further investigation revealed that their location about the fiber 

cross section was random, rather than being located on opposite sides of the fiber, and that 

their number varied, with cross sections sometimes containing one, two, three, or more 

macrovoids. The second hypothesis was that these macrovoids were formed due to the use 

of a 100% water coagulation bath. When utilizing a 100% non-solvent bath (water, in this 

case), the polymer dope experiences an instantaneous phase change upon contact with the 

bath, forming a solid cuticle about the external surface of the fiber. Given the high density 

of this polymer cuticle, it can hinder further diffusion of non-solvent in and solvent out of 

the forming fiber. In addition, as this dual diffusion process is occurring, voids can be 

formed due to a rupture of this cuticle under pressure of the inward non-solvent diffusion 

[22]. Microscopic surface faults, such as those caused by spinneret imperfections, can make 

such rupture more likely [23]. Interestingly, Takahashi et al. found similar void structures 

formed when spinning solid filaments into a 100% water coagulation bath [24]. They 

observed voids to significantly decrease with increasing solvent content in the coagulation 

bath.  



 

 
 

65 

 

 

Figure 4.8.  Fully drawn and spooled HF. (a) HF cross sections are shown which contain 
triangular or “heart-shaped” macrovoids (circled in red) and inter-filament fusion is 
observed (circled in yellow). (b) Two previously fused filaments have begun to pull 
apart, resulting in damage to the surface of both fibers. (c) A close-up of a fiber cross 
section with a triangular macrovoid. (d) Wrinkling was observed in the fiber lumen in 
isolated locations (indicated by white arrows), suggesting pockets or macrovoids were 
lurking beneath the surface.  
 

4.3.4 Rheological and thermal analysis 

One potential method available to hinder macrovoid formation is to increase the 

polymer solids content in the spinning dope. Increasing the solids content slows 

coagulation by hindering the dual diffusion process and allows for slightly more 

homogeneous structure formation [17, 18]. Initial spinning trials were completed using 

TechPAN1 polymer, with a Mw of 300,000 g/mol. Based on this Mw, spinning runs were 

completed with a 14-16 wt.% TechPAN1/DMSO polymer dope. TechPAN2, with similar 

comonomer content but a lower Mw was received later in the project and comparisons 

between the two polymers were completed. 
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 Figure 4.9a shows the shear viscosity results at room temperature for 16 to 24 wt.% 

TechPAN2 (TP2) solutions in DMSO, compared to the incumbent 16 wt.% TechPAN1 

(TP1)/DMSO solution which had been reliably used during initial spinning trials. The shear 

viscosity of the new TechPAN2 dope at 20 wt.% TP2/DMSO concentration was found to 

overlap very well with the 16 wt.% TP1/DMSO dope. The use of TechPAN2 enabled the 

production of higher solids content dopes due to its lower molecular weight compared to 

TechPAN1, while retaining the same spinnable shear viscosity.  

Shear viscosity measurements were completed as a function of dope temperature, 

maintaining the shear rate at 1 s-1. As shown in Figure 4.9b, the viscosities of the 20 wt.% 

TP2/DMSO and 16 wt.% TP1/DMSO solutions were quite similar, particularly at the 

typical 50 °C spinning dope temperature. Finally, differential scanning calorimetry (DSC) 

analysis of both neat polymers was completed. Differences in their exothermic reactions 

with temperature were not expected due to the similarities in the comonomer contents and, 

indeed, the results in Figure 4.9c indicate nearly overlapping exothermic reactions. From 

the results gathered and shown in Figure 4.9, it was found that a 20 wt.% 

TechPAN2/DMSO dope could offer a path toward reduced macrovoid content when 

compared to the previously spun 14 or 16 wt.% TechPAN1/DMSO dopes, while retaining 

spinnability. 
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Figure 4.9. (a) Shear viscosity measurements at room temperature for 16 to 24 wt.% 
TechPAN2 (TP2) solutions in DMSO, compared to the incumbent 16 wt.% TechPAN1 
(TP1)/DMSO. (b) Shear viscosity measurements as a function of dope temperature, 
maintaining the shear rate at 1 s-1, again compared to the incumbent 16 wt.% TechPAN1 
(TP1)/DMSO. (c) Differential scanning calorimetry (DSC) of neat TechPAN1 and 
TechPAN2 polymers. 

 

To test the hypothesis that an increased dope polymer content would aid in the 

prevention of macrovoid formation, a 14 wt.% TechPAN1/DMSO and 20 wt.% 

TechPAN2/DMSO dope were each spun under the same conditions and their resulting HF 

compared. Samples were collected out of the coagulation bath, spun using the following 

conditions: 50 °C dope temperature, 8 mm air gap, 4 mL/min dope flow rate, and 100% 

water coagulation bath. The HF dimensions, including outer diameter, inner diameter, wall 

thickness, and percent open area are shown in Table 4.3. The fiber spun from the 20 wt.% 
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TechPAN2/DMSO solution had a slightly smaller OD and slightly larger ID, resulting in a 

thinner wall (48 µm) and larger percent open area (30.4%) compared to the TechPAN1 

derived HF.  

Table 4.3. Coagulated HF dimensions comparing HF spun from 14 wt.% 
TechPAN1/DMSO and 20 wt.% TechPAN2/DMSO solutions. 

 

 In a further comparison of the two fibers, scanning electron micrographs were 

collected of the fiber cross sections. In Figure 4.10a, the cross sections of HF derived from 

TechPAN1 can be found to contain a high number of macrovoids. On the contrary, in 

Figure 4.10b, the HF stemming from the TechPAN2 solution displayed a dramatically 

reduced macrovoid content. This is in agreement with the dimensional analysis as well, as 

the wall thickness was thinner for TechPAN2 derived fibers and the percent open area 

greater. Overall, these results indicate that the use of a 20 wt.% TechPAN2/DMSO dope 

produced fibers which had significantly reduced macrovoid content, smaller wall thickness 

(suggesting denser fiber structure), and greater percent open area over a 14 wt.% 

TechPAN1/DMSO. Therefore, the use of higher solid content in the spinning dope, with 

TechPAN2, presented a path forward for improving HF morphology by reducing the 

occurrence of macrovoids. 

 

Figure 4.10. Scanning electron micrographs of coagulated HF cross sections, derived 
from: (a) 14 wt.% TechPAN1/DMSO and (b) 20 wt.% TechPAN2/DMSO dopes.  

 

100 μm 100 μm

a b
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4.3.5 Wall thickness and characteristic time-scale in the air gap 

With the ability to produce both coagulated and fully washed, stretched, and dried 

spooled hollow fiber established, it was decided to revisit the initial spinning parameters 

to better understand their dependencies and impact on the fiber morphology to make 

desired changes (reduced diameter, wall thickness, etc.). Utilizing spinneret HF-C, with 

smaller outer and inner capillary diameters, a 20 wt.% TechPAN2/DMSO dope was spun 

at 50 ºC with a DDR of 3 through the coagulation bath. To vary the time of a nascent fiber 

fluid packet in the air gap, the dope flow rate and the y0 speed (see Figure 4.3) were 

increased while maintaining a DDR of 3 in the air gap. These parameters are shown in 

Table 4.4. Two runs were completed, one with a 6.5 mm air gap (run 520) and one with an 

8 mm air gap (run 518). The fiber cross sections were measured and wall thickness 

determined for samples collected as time in air gap was varied. The results are plotted in 

Figure 4.12. Time in the air gap was calculated assuming constant acceleration in the air 

gap per Eqn. 4.4. In Eqn. 4.4, t is the time in the air gap, s is the air gap distance, u is the 

dope jet velocity exiting the spinneret and v is the y0 godet speed, estimated as the final 

filament velocity upon entering the bath.  

 𝑡 =
𝑠

0.5(𝑢 + 𝑣) 
Eqn. 4.4 

 
The HF-C spinneret possessed smaller outer and inner capillary diameters compared 

to HF-A but the same arc width (Table 4.1). As a result, the fibers produced using HF-C 

tended to have thicker walls compared to those produced from HF-A (fibers produced from 

HF-A are shown in Figure 4.7, for example). Interestingly, when analyzing results from 

spinning runs 520 and 518, which were spun using different air gaps, there was a local 

minima for both with regard to wall thickness, with the minimum wall thickness occurring 

with 0.33 s residence time in the air gap. It was hypothesized that when the dope flow rate 

and y0 linear speeds were high, the dope would be quick to exit the capillaries, but the high 

flow rate through the capillary would result in higher shear rates and less time within the 

capillary, extending and aligning the polymer chains. As the dope exited the capillary, this 

stored elastic energy would be recovered and the exiting polymer solution would swell. 

Despite the high linear speed of the godet which would attempt to counter the viscoelastic 
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die swell, this may result in coalescence of the 2C segments with a thicker than desired 

wall thickness. Formation of a working hypothesis explaining what happened at low dope 

flow rates and low y0 linear speeds to generate large wall thickness was more difficult. It 

is possible that the relatively large residence time in the air gap (0.42 s, for example) 

permitted the 2Cs to coalesce to produce a thicker than desired wall, as demonstrated in 

Figure 4.11. Further investigation is necessary to determine the cause for this local minima. 

If possible, die swell measurements may be helpful.  

 

Figure 4.11. Hypothesized coalescence of the 2Cs during large residence times in the air 
gap, leading to a thicker than desired hollow fiber wall.  
 

Despite not yet having a concrete causality behind the phenomenon, the results 

presented here indicated that it was possible to determine an appropriate balance between 

dope flow rate and godet linear speed to minimize the wall thickness by managing 

coalescence of the 2C segments, with results in this case indicating 0.33 s in the air gap to 

be appropriate for minimizing wall thickness, independent of air gap distance. 
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Table 4.4. Parameters utilized in the collection of coagulated fibers from runs 518 and 
520, including methods for varying flow rate and y0 linear speed to maintain a constant 
draw ratio (DDR) of 3.  

 

 

 

Figure 4.12. Wall thicknesses for HF spun with varying time in the air gap, with a draw 
ratio of 3 kept constant by increasing dope flow rate and increasing y0 godet speed out of 
the coagulation bath.  
 

4.3.6 Residual liquid content 

Thus far, the use of a higher solids content dope (20 wt.% TechPAN2/DMSO) aided 

in the reduction of macrovoid formation, which was hypothesized to stem from the use of 

a 100% water coagulation bath (as found by other researchers [24]). While a reduction in 

macrovoid frequency was observed, issues with a 100% water coagulation bath remained. 
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As stated previously, the formation of a polymer cuticle due to instantaneous coagulation 

in the 100% non-solvent bath hinders the dual diffusion process, and the effects of this 

were observed in the resulting fibers. Interestingly, when observing the HF with optical 

microscopy, liquid was found to exist in the lumen of the dried and spooled fiber, as shown 

in Figure 4.13, indicated by the menisci (solid bands). This liquid was observed to move 

within the fiber as the fiber was repositioned under the microscope. This result indicated 

that the HF was not sufficiently dried despite drying prior to take-up. Difficulties with the 

removal of trapped liquid from the fiber interior during washing and drying were 

hypothesized to stem from hindered diffusion caused the dense external cuticle layer. 

 

Figure 4.13. Optical micrograph of a hollow filament showing trapped liquid within the 
fiber. 

 

To determine the amount of liquid persisting in the spooled fiber, thermogravimetric 

analysis (TGA) was completed. It was hypothesized that the liquid consisted of a mixture 

of solvent and non-solvent, or DMSO and water in this case. Benchmark mixtures were 

prepared in addition to neat DMSO and water to observe their weight change as a function 

of temperature. The resulting curves are shown in Figure 4.14a. Despite a 100 °C boiling 

point for water and a 189 °C boiling point for DMSO, the TGA curves of their mixtures 

smoothly decreased with temperature. There were no clear changes in the rate of weight 

loss with temperature for water, DMSO, or their mixtures (6.1, 50, and 94.4 wt.% 

DMSO/water), likely due to the hydrogen bonding which occurs between the two. Based 
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on the results, the liquid would need to be treated as some unknown concentration of 

DMSO/water during TGA analysis.  

Several spooled hollow fibers, as well as a commercially produced precursor (as a 

benchmark) were analyzed and their resulting curves are shown in Figure 4.14b, with their 

corresponding weight losses shown in Table 4.5. Interestingly, all hollow fibers show a 

two-step weight loss up to 275 °C. It was hypothesized that the initial weight loss was 

attributed to free liquid within the fiber, such as liquid stored in the fiber lumen, which 

would behave similarly to the liquids in Figure 4.14a. The second weight loss was 

attributed to liquid interacting with the polymer network, which would therefore take more 

energy to liberate compared to the free liquid. Therefore, total liquid content was 

determined by measuring the weight change from 35 to 275 °C. While the benchmark 

commercial precursor contained 0.8 wt.% residual liquid, HF residual liquid content varied 

from 6.8 wt.% up to 25.8 wt.%. Variations in the HF residual liquid content were 

hypothesized to be related to differences in their spinning conditions, which will be 

discussed later. Wei et al. found that when spinning into a ~ 50 wt.% DMSO/water bath, 

solid fibers analyzed via TGA contained > 20 wt.% residual DMSO, albeit without the 

rigorous in-line washing used in this study [16]. Similarly, this was attributed to the quick 

formation of polymer cuticle which limited the outward diffusion of DMSO. Removal of 

residual liquid (and in particular residual solvent) is vital to the production of high tensile 

property CF as residual solvent acts as an impurity during thermal treatment and 

contributes to discontinuities in ladder polymer formation [25], imperfect crystalline 

structure [26], and fiber breakage. Therefore, residual solvent in the spun fiber should be 

< 0.5 wt.% [25].  

Given the rather high residual liquid contents shown in Figure 4.14b, further 

experimentation was completed in an attempt to remove the residual liquid. In Figure 

4.14c, a 30 cm continuous length of 497D HF tow was sampled from the fiber spool and 

washed for one hour while stirring in water. Following washing, TGA was completed and 

the total residual liquid content reduced from 25.8 to 15.0 wt.%. For comparison, spooled 

497D fiber was chopped into ~ 1 mm length pieces and similarly washed in water for one 
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hour. As a result, residual liquid content was drastically reduced from 25.8 to 0.8 wt.%. 

Table 4.6 shows the weight losses for the washed fibers relative to the spooled fiber.  

The drastic drop in residual liquid content following chopping of the fiber compared 

to washing a continuous length indicated that chopping provided more surface area on 

which washing and extraction of residual liquid could occur, and that this extraction was 

hindered in the continuous length by the presence of the dense cuticle, similar to what other 

researchers have found. This finding suggests that washing alone during spinning will not 

be adequate for the removal of this amount of residual liquid, as even the best washing 

procedures have a residence time on the order of minutes, not hours. Therefore, changes to 

the spinning method must be considered which can prevent the formation of the dense 

cuticle in order to allow dual diffusion and appropriate washing to residual solvent content 

to < 0.5 wt.%.  
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Figure 4.14. (a) TGA analyses of DMSO/water benchmark mixtures. (b) TGA analyses 
of various spooled HF to determine residual liquid contents, compared to a benchmark 
commercial solid precursor fiber. (c) TGA analyses of 497D HF off the spool for residual 
liquid content compared to 497D fiber after a 1 hr. water wash of a continuous 30 cm 
length and 1 mm chopped fibers. 

 

Table 4.5. Weight loss attributed to residual liquid content within the HF for several HF 
and a commercial solid precursor fiber benchmark. 
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Table 4.6. Weight loss attributed to residual liquid content within the HF from run 497D, 
including weight losses for 497D spooled fiber, 497D fiber after washing a continuous 
length in water, and 497D fiber after chopping and washing in water.   

 

4.3.7 Solvent-assisted coagulation 

Armed with an improved understanding of the critical HF formation variables (for 

example, air gap, dope flow rate, dope polymer content, and time in the air gap) and the 

knowledge that a 100% water coagulation bath remained detrimental to HF formation, it 

was decided to revisit the coagulation bath composition. Here, the goal was to determine 

if more gradual changes to the coagulation bath composition could be made to prevent the 

quick formation of the polymer cuticle during rapid coagulation, which had thus far been 

found to encourage macrovoid formation and trap residual liquid within the HF. Spinning 

experiments were completed utilizing a 10, 20, and 30 wt.% DMSO/water coagulation bath 

(corresponding to runs 571A, 574, and 575, respectively). All runs utilized a 20 wt.% 

TechPAN2/DMSO dope (which had been previously shown to reduce macrovoid 

formation relative to 14 wt.% TechPAN1/DMSO), 75 °C dope temperature, 4 mL/min flow 

rate, 8 mm air gap, and a total draw ratio of 30 from spinneret to spool. The resulting 

spooled HF from all three runs were concentric and hollow. An example of the HF 

produced from run 575 (30 wt.% DMSO/water coagulation bath) is shown in Figure 4.15.  
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Figure 4.15. Optical micrographs of cross sections of HF spun into 30 wt.% DMSO/water 
coagulation bath (run 575), captured at 500x (reflected light in oil).  

 

In addition to successfully retaining their hollow structure when spun into a bath 

containing a low amount of solvent (10 to 30 wt.% DMSO/water), recall from Figure 4.14b 

that several spooled HF contained decreasing amounts of residual liquid when compared 

to 497D HF, which was spun into a 100% water coagulation bath and contained 25.8% 

residual liquid (Table 4.5). Runs 571A, 574, and 575 were included in that TGA analysis 

(spun using 10, 20, and 30 wt.% DMSO/water coagulation baths, respectively) and 

contained 19.7, 10.8, and 10.3% residual liquid, respectively. Here, increasing the 

coagulation bath solvent content aided in the reduction of residual liquid content in the 

final fiber. Although far from the target of < 0.5 wt.% residual solvent content, the results 

indicated that the HF spinning process was moving in the right direction and further 

increases to the coagulation bath solvent composition concentration should be attempted. 

4.3.8 Tensile properties 

Tensile analysis of HF precursors was completed for spooled HF of varying outer 

diameter (497A, 497B, 497C, and 497D) which represented spooled fiber of increasing 

draw ratios from run 497 (spun using 16 wt.% TechPAN1/DMSO and a 100% water 

coagulation bath). A spool of 25 filament HF precursor tow, with inset scanning electron 

micrograph of a representative HF precursor cross section is shown in Figure 4.16. Their 

respective draw ratios, inner and outer diameters, and effective densities (Eqn. 3.1) are 

shown in Table 4.7. The effective tensile properties are shown in Figure 4.17a and b and 

20 μm 20 μm
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contain the effective tensile strengths and effective elastic moduli for the 497A, 497B, 

497C, and 497D samples (navy open circles), as well as the specific effective properties 

(specific effective strength and specific effective modulus in the green open circles). The 

solid circles in Figure 4.17a and b represent tensile properties and diameters of solid 

precursor PAN fiber spun in-house from the same polymer (10.5 µm diameter, 600 MPa 

tensile strength, 14 GPa modulus, and 1.18 g/cc density).  

In the HF, both effective tensile strength and modulus increase with decreasing fiber 

outer diameter, and trend toward the properties of the baseline solid fiber. Reductions in 

precursor fiber dimensions facilitate improved tensile strength due in part to a reduction in 

the volume per unit length in which voids or other defects can exist. Increases in fiber 

modulus in this case are attributed to the increased draw ratios utilized to produce the 

precursor filaments, which imparts higher molecular orientation to the fibers. Overall, this 

data suggested that further decreasing in HF precursor diameters would result in the 

achievement of solid precursor properties, but with a lower effective density. This is, of 

course, the ultimate goal in the resulting HCF. 

 
Figure 4.16. A spool of 25 filament HF precursor tow, with inset scanning electron 
micrograph of a representative HF precursor cross section. 

 

10 um



 

 
 

79 

Table 4.7. Draw ratios used to produce the precursor HF during run 497, as well as the 
resulting precursor HF dimensions and effective densities. 

 

 

 

Figure 4.17. Hollow precursor fibers 497A, B, C, and D a) effective tensile strength and 
specific effective tensile strength as a function of outer diameter and b) effective elastic 
modulus and specific effective modulus as a function of the fiber outer diameter, 
compared to a solid precursor fiber. From the author’s original work [27], reprinted with 
permission. 

 

4.4 Conclusions 

Prior to this study, little research had been completed on the use of multifilament 

segmented arc spinnerets for solution spinning PAN precursors.  

It was hypothesized that a segmented arc spinneret could be used to produce HF 

precursors with dimensions and morphology appropriate to the production of high 

tensile property HCF. This chapter reported on investigations of the spinning process and 

the resulting HF precursors and included observations regarding coagulation, fiber 

drawing, and tensile properties. Several significant findings were gathered. First, contrary 

to traditional solid precursor spinning, a high solvent content coagulation bath was initially 

HF pRecursor tensile vs Diameter-15Sept2020
In hollow fiber manuscript folder

a) b)
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detrimental to HF formation. It was hypothesized that the high solvent content coagulation 

bath and resulting slow coagulation allowed for the collapse of the 2C segments and the 

formation of a relatively solid, macrovoid-filled fiber. To prevent this collapse, a 100% 

non-solvent (water) bath was utilized which led to the rapid outward diffusion of non-

solvent, resulting in the instantaneous precipitation of the polymer. This rapid precipitation 

led to a dense cuticle formation on the surface of the fiber, which was hypothesized to aid 

in preserving the lumen of the nascent, healed 2C segments during fiber formation, 

resulting in a concentric HF. The use of a 100% water coagulation bath allowed for the 

preliminary study of other vital spinning parameters, including air gap, dope flow rate, and 

time in the air gap.  

However, while valuable in helping to establish initial HF spinning parameters, the 

use of a 100% water coagulation bath was ultimately found to be detrimental to HF 

formation for a few reasons. First, fibers spun into a 100% water coagulation bath 

contained high amounts of residual liquid, known to be detrimental to CF development. 

This was attributed to the fast coagulation that occurred in the water bath, which created a 

thin polymer cuticle on the exterior of the fiber, hindering the dual diffusion process and 

resulting in high residual liquid contents in the fiber. Second, fibers spun into a 100% water 

coagulation bath contained macrovoids. It was hypothesized that macrovoid formation 

occurred due to breaks in the cuticle during coagulation which allowed a rapid influx of 

fluid.  

While the use of a 100% water coagulation bath was found to not be ideal, it 

permitted the study of other spinning variables while producing HF. For example, it was 

found that by increasing the polymer content in the spinning dope, macrovoid formation 

could be drastically reduced. Upon developing a better understanding of the interactions 

between spinning variables which resulted in improved HF spinning process stability, 

slight increases to the coagulation bath solvent content were completed, and resulted in the 

formation of HF with little to no macrovoids and a notable decrease in residual liquid 

content. Of utmost importance in this study was the ability of the HF to retain their hollow 

structure despite the rigors of the spinning, washing, stretching, and drying processes. The 

tensile properties of PAN HF precursors produced in this study indicated a steady trend 
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toward traditional solid fiber properties as HF dimensions are reduced, and are expected to 

exceed those of traditional solid fibers particularly in terms of specific effective properties 

owing to the reduced effective density of the HF. Achieving this in the resultant HCF 

centrally motivated this work. Overall, these findings illustrate the significant feasibility of 

producing multifilament PAN HF from a segmented arc spinneret toward the production 

of hollow carbon fibers for structural applications. 

4.5 Future Work 

This work has opened the door to study of HF development from a segmented arc 

spinneret and there remains much to be examined. For example, increases to the 

coagulation bath composition ended with a maximum bath composition of 30 wt.% 

DMSO/water. Given the improved control and understanding of other important spinning 

variables developed in this study, can the coagulation bath solvent concentration be 

increased further and what are the impacts of this increase on HF formation? How can 

residual liquid within the HF fiber be minimized, targeting < 0.5 wt.%? Will future 

spinneret designs with smaller inner/outer diameters and arc slip thicknesses enable the 

production of HF with reduced OD and wall thickness? Is it possible to achieve and exceed 

the specific effective tensile properties of traditional solid precursors using this HF 

technology? These are a just a few of the questions that remain surrounding this new 

frontier in PAN fiber development.  
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CHAPTER 5. THE OXIDATION OF HOLLOW PAN PRECURSOR FIBERS 

5.1 Introduction 

As described earlier, three primary reactions occur during oxidative stabilization: 

cyclization, dehydrogenation, and oxidation. These result in the widely accepted chemical 

structure for fully oxidatively stabilized PAN, generally depicted in Figure 5.1 [1]. It is 

known, however, that these reactions occur to varying extents in the core of the fiber. To 

produce homogeneous oxidized cross section, an oxygen characteristic diffusion length 

exists, along which oxygen must diffuse to reach the fiber core and completely oxidize the 

fiber. For a solid fiber, the oxygen characteristic diffusion length is equal to the fiber radius 

(see Figure 2.1). However, oxygen diffusion to the fiber core is hindered by the continual 

formation of oxidized material near the fiber surface, which functions as a strong barrier to 

O2 diffusion [2]. This results in the formation of the skin-core morphology, which is carried 

over into the final CF.  

 

Figure 5.1. General chemical structure for fully oxidatively stabilized PAN. Adapted 
from [1] with permission from Elsevier.  
 

The production of HF for structural HCF applications is largely unexplored and as a 

result the chemical and structural characterization of oxidized HF has also remained largely 

unstudied. However, several characterization techniques have been applied to solid 

oxidized PAN fiber, including EDX [3], X-ray spectroscopy [4], and Raman spectroscopy 

[5], to name a few. Differences between the chemical and structural features of the oxidized 

solid fiber skin and core have also been observed using optical microscopy. When imaged 

using optical microscopy, the skin appears brighter or of higher reflectance compared to 

the darker core [6]. This has been attributed to the formation of polycyclic aromatic 
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structures in the skin, which are known to exhibit higher reflectance [7]. The use of this 

technique may be useful for discerning the skin and core regions in an oxidized HF. 

Characterization of the chemical structures in the oxidized PAN fibers is vital to the 

development of high tensile property CF because the chemical structures are responsible 

for differences in fiber morphology and therefore fiber properties. For example, density is 

closely associated with the chemical transformations from linear to ladder polymer by 

cyclization and with crosslinking by oxidation [5], all of which contribute to the 

development of compact structures [6, 8]. In fact, fiber density has been shown to track 

linearly with oxygen content, as oxygen diffuses in and is chemically incorporated into the 

stabilized PAN fiber [5, 6]. Both density and oxygen content targets exist for the production 

of stabilized fibers. These targets have been primarily established through empirical data, 

in which oxidized fibers of varying density and oxygen content were carbonized. The 

density and oxygen contents of the oxidized fibers which produced the highest tensile 

property CF were recommended as targets. Stabilized fiber oxygen contents ranging from 

10-12 wt.% have been suggested for the production of high-quality CF [9-14]. The 

corresponding desired density range for stabilized fibers is generally 1.34 to 1.39 g/cc [15].  

Attaining the desired density requires stabilization in an oxygen containing 

atmosphere. When fiber is stabilized in the absence of oxygen, fiber density increases at a 

slower, non-linear rate compared to fiber stabilized in an oxygen containing atmosphere 

and does not attain the targeted final density [5, 16]. Given that the stabilized fiber core is 

often oxygen “starved” compared to the skin, the density of the oxidized fiber skin is known 

to be higher than the core [17, 18]. Overall, due to its correlation with oxygen content and 

relative ease of measurement, density has been found to be a good indicator of the extent 

of stabilization for oxidized fibers [19, 20]. 

In Chapter 4, a process was described to obtain multi-filament hollow PAN precursor 

tow with round filaments, concentric lumens, and wall thicknesses. As discussed 

previously, traditional solid CF require lengthy and costly oxidation processing, and often 

possess an undesirable skin-core structure as a result of insufficient oxygen diffusion along 

the characteristic diffusion length to the fiber core. Reducing or eliminating the skin-core 

structure has been shown to allow for homogeneous stress distribution along the fiber cross 
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section, leading to improved tensile properties [21, 22]. Additionally, a reduction in 

precursor fiber diameter (and therefore a reduction in the oxygen characteristic diffusion 

length during oxidation) has been shown to reduce and even eliminate the skin-core 

structure [18] and to greatly increase the tensile Young’s modulus of the resulting carbon 

fiber [23]. With this in mind, it was hypothesized that with reduced wall thickness, one 

could arrive at an optimally oxidized fiber faster than traditional solid fiber via 

simultaneous oxidation from the exterior and interior of the filament. Oxidation from 

the interior and exterior naturally reduces the oxygen characteristic diffusion length, 

potentially enabling the avoidance of a skin-core structure. This would allow the resulting 

HCF to more efficiently utilize the oriented carbon composing the fiber, increasing fiber 

tensile performance. The development of oxidized HF will be explored in this chapter. 

5.2 Experimental 

5.2.1 Materials 

During HF precursor development, spooled HF precursors were generated and were 

available for subsequent thermal analysis and study. These are listed in Table 5.1. The 

spinneret, run number, TechPAN polymer, and coagulation bath composition used during 

the spinning process are listed, as are the resulting average inner and outer diameters, wall 

thicknesses, and percent open area for the resulting spooled precursor hollow fibers. The 

table is divided into HF spun utilizing TP1 and TP2 polymer.  
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Table 5.1. Spooled hollow fiber precursors available for thermal analysis and study. The 
spinneret, run number, TechPAN polymer, and coagulation bath composition used during 
the spinning process are listed, as are the resulting average inner and outer diameters, 
wall thicknesses, and percent open area for the resulting spooled precursor hollow fibers. 

 

5.2.2 Thermal treatment 

Hollow PAN fibers were stabilized on a batch scale using a static, constant length 

method. While static conversion is simplest, it does not produce the highest quality fibers 

compared to continuous, variable strain stabilization. Specific strain pathways are required 

in addition to specific temperature/time pathways to achieve the highest possible tensile 

properties, further complicating the fiber stabilization process. Figure 5.2 presents the time-

temperature pathway utilized in this study for batch oxidative stabilization. In Figure 5.2, 

the fiber was heated in air to 227, 235, 248, and 258 °C with a 20 min isotherm at each 

temperature, similar to the process described in [8]. Fiber tow was wrapped around the 

graphite rack and quickly placed into the 227 °C preheated oven (Thermo Scientific 

Heratherm Advanced Protocol convection oven) and held isothermal for 20 min. The 

atmosphere was air. The graphite rack was then removed from the oven and the temperature 

set to 235 °C. The oven was allowed to equilibrate for 5 min before placing the graphite 

rack back into the oven for another 20 min isotherm. This process was repeated for the 248 

and 258 °C isotherms. Occasionally, to examine the effect of higher and lower temperature 
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isotherms on the HF oxidation, the process was extended to include 20 min. isotherms at 

217 and 268 °C. If these extended temperatures are used, this will be noted in the study. 

 

 

Figure 5.2. Schematic of the oxidation process showing 20 min. isotherms at 227, 235, 
248, and 258 °C.  
 

5.2.3 Raman spectroscopy 

An oxidized HF sample was prepared and sent to Renishaw for analysis on their 

InVia Qontor Raman microscope. The precursor HF from run 516 was oxidized according 

to the stabilization process outlined in Figure 5.2, embedded in epoxy, and polished 

according to the method in section 3.3. The Raman spectrometer was equipped with an 

argon ion laser of 457 nm wavelength. The objective lens with magnification of 150x was 

used and the focused range of the laser beam was 0.2 µm in the x,y directions for collection 

of the spatial resolution map. The mapping measurement of the spectral window was 

centered at 1500 cm-1 and a laser power of 1% was used.  

227

235

248

258
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5.3 Results and discussion 

5.3.1 Optical imaging analysis of evolution of skin-core contrast  

Batch oxidative stabilization of run 490A precursor HF was completed using the 

time-temperature pathway shown in Figure 5.2. Figure 5.3 shows various images of the 

resulting stabilized fibers. In Figure 5.3a, the oxidatively stabilized 490A HF cross section 

was sectioned using FIB (see section 3.5) and analyzed using EDX mapping for oxygen 

content (see section 3.6), where oxygen is shown in blue. Higher oxygen levels were 

observed near the outer and inner surfaces in similar thickness bands. Higher oxygen levels 

in the outer band (or skin) has been similarly found by other authors for solid fibers [5, 14, 

24]. This result suggests that the oxidatively stabilized HF developed a skin-core structure, 

similar to that seen in commercial fibers, but contained within the wall of the HF.  

In this case, oxygen diffusion was observed to occur from both the exterior and 

interior of the HF, but, similar to traditional fibers, was hindered from reaching the 

midpoint of the HF wall thickness due to the continual formation of oxidized material near 

the fiber surface. As noted previously, the oxygen diffusion coefficient through PAN is 

300% higher than through an oxidized PAN layer [2]. The average thickness of the 490A 

precursor HF wall was 12 µm and most precursors for commercial CF which possess a 

skin-core structure measure 12-14 µm in diameter (see Table 1.2). Therefore, it is not 

surprising that the oxidatively stabilized HF also showed a skin-core structure, as the 

characteristic oxygen diffusion distances were similar. This skin-core structure (albeit in 

the fiber wall) will remain detrimental to the final HCF properties, as it is well known that 

the structure of CF is inherited from the stabilized fibers [25, 26]. 

While a skin-core structure persisted for this fiber sample, the EDX data presented 

here supported the hypothesis that HF could oxidize simultaneously from both the interior 

and the exterior, at least when short fiber lengths were stabilized in a batch process. And, 

in this case, the resulting oxidized fiber contained equivalent thickness skin on the exterior 

and interior. Another interesting observation from the EDX data was the behavior of the 

skin around the HF macrovoid shown in Figure 5.3a. As discussed previously, HF spun 

into a 100% water coagulation bath tended to contain macrovoids due to rupture of the 
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rapidly formed polymer cuticle under pressure of the inward non-solvent diffusion [27]. 

Here, a macrovoid is present on the interior wall of the HF and the formation of the oxidized 

fiber skin follows the perimeter of the HF, including around the macrovoid itself. It is 

hypothesized that the macrovoid communicated to the fiber surface, allowing air (oxygen) 

to reach the interior of the macrovoid wall and oxidation proceeded. Yu et al. similarly 

found that skin formation followed the perimeter shape of the fiber (for bean-shaped fiber) 

[28].  

Optical microscopy was investigated as a method for quickly observing and 

analyzing the skin-core structure of the stabilized HF. Figure 5.3b shows an optical 

micrograph of the 490A HF which was stabilized similarly to the sample in Figure 5.3a but 

in a nitrogen atmosphere. Negligible optical contrast through the wall was observed. Recall 

that in the absence of oxygen, the formation of an infusible polycyclic aromatic structure 

is not possible [5]. Similar homogeneous solid fiber cross sections have been observed 

when stabilized in N2  [5].  

Fibers shown in Figure 5.3c, d, and e were stabilized in air using the same process as 

that of Figure 5.3a. The solid oxidized fibers in Figure 5.3c had a precursor diameter of 12 

µm (spun in-house from the same polymer as 490A HF and under similar processing 

condition, but with a higher solvent concentration coagulation bath, as is typical for 

producing solid round fibers). These were utilized as a benchmark solid fiber, as their solid 

fiber diameter was similar to the wall thickness of the 490A HF (12 µm) in Figure 5.3d 

(and Figure 5.3a). When observing the optical micrographs in Figure 5.3c, d, and e (where 

Figure 5.3e is a magnified view of Figure 5.3d), a clear skin-core structure was observed, 

with the skin appearing bright gray and the core a darker gray, as has been found by other 

researchers utilizing optical microscopy [18, 28]. This darker gray core region is the result 

of insufficient oxygen diffusion to the core [14, 29]. These results are similar to those found 

by EDX in Figure 5.3a, consistent with the skin observed in the optical microscopy images 

containing a higher oxygen content compared to the core. These relatively brighter regions 

of increased reflectance in the skin have been associated with the formation of the 

polycyclic aromatic structure via oxidative dehydrogenation and appear brighter under 

optical microscopy due to their increased reflectance of incident light [7].  
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 When observing Figure 5.3e, the thickness of the interior and exterior skin, as well 

as the core of the wall, each measured approximately 4 µm, similar to the skin thickness of 

the solid fibers in Figure 5.3c. It is not surprising that the solid and HF possessed similar 

skin thicknesses, given that the characteristic oxygen diffusion distances were similar. In 

fact, several authors have found the thickness of the skin for solid fibers to be limited to 3-

5 µm, irrespective of fiber diameter [28, 30].  And, once formed, the thickness of the skin 

does not change with degree of heat treatment [4]. All of this suggests that the rate at which 

oxygen atoms react with the fiber is greater than the diffusion rate of oxygen from the 

surface towards the center of the HF wall (or center of the fiber, in the case of the solid 

fiber), resulting in a relatively fixed skin-core structure [2, 3, 14]. Sun et al. did find the 

skin-core to decrease with increasing oxygen content in the atmosphere, with negligible 

skin-core formation in a 100% oxygen atmosphere. This was attributed to the higher 

diffusion rate enabled by the higher oxygen content [29]. However, operation of oxidation 

ovens in a 100% oxygen atmosphere is not practical (or safe), and therefore oxidative 

stabilization of the HF remains diffusion limited. However, despite being diffusion limited, 

the results presented here in Figure 5.3 suggest that the formation of the skin-core structure 

in the HF could be avoided if HF precursor with a wall thickness of ≤ 8 µm could be 

produced.  
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Figure 5.3. EDX and optical microscopy (OM) images of stabilized HF and solid fiber. 
(a) EDX of oxidized 490A HF for oxygen content (oxygen shown in blue); (b) OM image 
of nitrogen stabilized 490A HF showing no skin-core structure due to the absence of 
oxygen during heat treatment; (c) OM images of oxidized solid fiber with diameter 
similar to the wall thickness of the oxidized 490A HF found in (d). (d) OM image of 
oxidatively stabilized 490A HF. (e) OM image of oxidized 490A HF wall demonstrating 
skin-core structure. White scale bars are 10 µm. From the author’s original work [31], 
reprinted with permission. 
 

5.3.2 Spectroscopy 

To further probe the differences between the skin and core of the oxidized HF, with 

a particular focus on understanding the chemical structure differences formed in the HF, 

several spectroscopic characterization methods were explored.  

To complement the EDX data collected, energy-dispersive X-ray spectroscopy 

(EELS) was envisioned to provide spatial resolution of chemical bonding states. Of 

particular interest were the C=C C-O, and C=O bonds in the stabilized HF cross section. 

Upon sectioning via FIB and performing TEM-EELS of multiple stabilized fibers, the 

results for oxygen content were inconclusive. It is hypothesized that the 200 keV electron 

beam degraded the stabilized fiber samples, resulting in damage and loss of oxygen.  
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Another alternative for spatial resolution of chemical bonding was the use of X-ray 

photoelectron spectroscopy (XPS). It was hoped that the XPS could be used to etch and 

analyze the HF cross section to provide spatial mapping. However, the etching rate was 

approximately 0.034 nm/sec, equivalent to requiring 500 min. to etch 1 micron in depth. 

While it may have been possible to utilize the FIB sectioned fibers for XPS analysis, the 

XPS spot size was > 30 µm, far too large to spatially resolve bonding differences in the 12 

µm wall of the HF. For this type of analysis, a synchrotron XPS system would be required 

(≤ 200 nm possible resolution), which was not available at the time of this study.  

Finally, Raman spectroscopy was explored. A sample was submitted to Renishaw 

for analysis on their Raman spectroscopy system. The results for oxidized HF from run 

516 are shown in Figure 5.4. Although more commonly used for analysis of carbonized 

materials, the occurrence of cyclization, dehydrogenation, and oxidation during oxidative 

stabilization result in changes in the hybridization of carbon atoms, making Raman a useful 

tool for monitoring the evolution of polycyclic aromatic structures in stabilized PAN [32]. 

In Raman spectroscopy, the G band corresponds to sp2 hybridized carbons, while the D 

band corresponds to sp3 hybridized carbons. For example, single-layered graphene 

consisting of pure sp2 hybridized carbon exhibits a strong scattering peak at ~1590 cm-1. 

When defects are present in the graphene layer, the D peak (indicating sp3 hybridized 

carbon atoms) appears at ~1373 cm-1 [5]. The ratio of their intensities (ID/IG) is often used 

to quantify the disorder present in the material, with higher ID/IG ratios corresponding to 

higher degrees of disorder and can be used to monitor the evolution of polycyclic aromatic 

structures in stabilized PAN [5].  

In Figure 5.4a, an optical micrograph of the oxidized 516 HF under study shows the 

bright skins and darker core present in the wall of the HF. The corresponding spatially 

resolved ID/IG ratios from the Raman analysis are shown in Figure 5.4b. The color bar on 

the right of Figure 5.4b indicates the ID/IG ratio and its corresponding color, with red 

indicating the highest ID/IG ratio and dark blue indicating the lowest ID/IG ratio. As shown 

in the spatial image, there is a clear difference between the structural disorder in the skin 

and core of the oxidized HF, which overlay nicely with the skin-core observed under 

optical microscopy (Figure 5.4a) and are similar to the results found using EDX (Figure 
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5.3). The skin region is shown by the Raman method to contain lower levels of disorder 

compared to the core. This is in agreement with the chemical structures presented in Figure 

1.8, where the skin is shown to possess more sp2 hybridized carbon compared to the core, 

and with the findings of other authors [5, 33].  

Another interesting observation regarding Figure 5.4a and b is the disappearance of 

the outer skin at the fusion point of the fibers. This resulted in the cores merging. 

Meanwhile, the inner skin is unaffected.  This is consistent with oxygen diffusion from the 

air clearly causing skin development.  Interestingly, there appears to be little gradient 

between skin and core, which is consistent with the oxidized skin functioning as a barrier 

to oxygen permeation. In all, Figure 5.4b seems to confirm the role of oxygen in the 

formation of polycyclic aromatic structures in the structure. 

 
Figure 5.4. Raman spectroscopy analysis of run 516 oxidized HF. (a) Optical micrograph 
of oxidized HF showing bright skin and darker core region within the HF wall. (b) Spatial 
resolution of ID/IG ratio. 

 

Figure 5.5 displays the intensity of the D and G peaks for both the skin and core. 

Both the D and G peaks present higher intensity in the skin, with the core showing a very 

small D peak and negligible G peak. The lower signal intensity presented by the core 

relative to the skin could be explained by the core being lower density due to less 

crosslinking [34] and/or a lower degree of dehydrogenation [35]. The stronger signal 

generated by skin has been attributed to the formation of polycyclic aromatic structures 

[5]. Overall, the spatially resolved Raman spectral analysis supports the previously 
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presented data, in that the skin and core of the oxidized HF are chemically and structurally 

different. These differences are the result of the diffusion limited oxidation process, where 

oxygen is largely responsible for the formation of conjugated and aromatic structures in 

the skin [36-40] which possess higher degrees of order and density. The results support the 

use of optical microscopy as a simple and efficient method for distinguishing differences 

between the skin and core in the oxidized HF. 

 

 

Figure 5.5. Raman peak intensities for D and G for both skin and core of the oxidized HF 
from run 516. 

 

5.3.3 Percent open area and internal oxidation 

It is clear from the previously presented data that oxidized HF presents a similar skin-

core structure to traditional solid fibers (albeit in the fiber wall) when HF precursor wall 

thicknesses are > 8 µm, as is the case for all HF produced under this study. While the scope 

of this study was limited in its ability to further reduce the HF wall thickness, it was 

possible to produce HF with varying percent open area, primarily through variation in draw 

ratio, where percent open area is defined as in Eqn. 5.1, 
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k

ID
ODl

&

× 100 = %OA Eqn. 5.1 

where ID is the inner diameter of the fiber, OD is the outer diameter, and %OA is 

the percent open area. Whereas the exterior of the HF has access to a, generally speaking, 

unlimited amount of oxygen (air) from the atmosphere, the closed nature of the HF means 

that the interior may see limited oxygen availability proportional to the air contained within 

the volume (or area) of the lumen. However, there was also the potential that air could be 

drawn into the HF lumen during the stabilization process, thereby providing a rather 

“continuous” oxygen supply. There were doubts as to whether this was possible, 

particularly for long lengths of continuous fiber (≥ 1 m), as the oxidized fiber lengths 

studied thus far were much shorter.  

To understand the impact of percent open area on the internal oxidation, as well as 

to determine the ability of HF to draw air into the lumen, an experiment was designed 

utilizing two identical sets of HF with varying percent open area. HF tows from runs 516, 

506, 497C, 490B, and 526A with 11, 20, 33, 39, and 44% open area, respectively, were 

selected and fed through a Heratherm oven via ports machined into the sides of the oven, 

as shown in Figure 5.6. Fiber tows were 1 m in length with 0.4 m of length located in the 

hot zone. One set of fibers had their ends embedded and cured in epoxy in order to “close” 

the HF ends to the atmosphere. The duplicate set had their ends left open to the atmosphere. 

Both sets were oxidized simultaneously in an air atmosphere under the oxidation conditions 

outlined in Figure 5.2a, up to a 250 °C final oxidation temperature. Fiber tow samples were 

collected at the end of each isotherm.  
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Figure 5.6. Experimental setup for evaluating the impact of HF percent open area and the 
impact of open versus closed HF ends on internal and external HF oxidation. 
 

Following sample collection, specimens were collected from the middle of the fiber 

length (i.e. the center of the oxidation furnace). Following embedding in epoxy and 

polishing as in section 3.3, Adobe Photoshop was used to perform measurements, as shown 

in Figure 5.7. In Figure 5.7a, the as-captured optical micrograph for run 526A oxidized HF 

(44% OA) is shown. The corresponding image in Figure 5.7b shows the four measurements 

taken in Adobe Photoshop. Measurements were taken to calculate the thickness, perimeter, 

and area of the inner and outer skins of the hollow fibers, as well as the core, shown in red, 

green, blue, and yellow. Similarly, Figure 5.7c shows run 516 oxidized HF (11% OA) and 

its corresponding measurements in Figure 5.7d. 

“Closed” HF set
Ends embedded in 
cure epoxy

“Open” HF set
Ends open to 
atmosphere
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Figure 5.7. Optical micrographs of oxidized HF indicating measurements made. (a) 
Optical micrograph of run 526A oxidized HF (44% OA) and (b) the red, green, blue, and 
yellow lines indicating example measurements taken on the fiber. Similarly, (c) is an 
optical micrograph of run 516 oxidized HF (11% OA), also with (d) red, green, blue, and 
yellow lines indicating examples of measurements taken on the fiber. 

 

In Figure 5.8, the ratio of interior skin thickness to half of the wall thickness 

(x/(0.5t))	is plotted versus percent open area for the HF sets with open and closed 

(embedded in epoxy) ends. If the oxygen available within the fiber lumen was sufficient to 

completely oxidize the interior skin of the lumen to the midpoint of the fiber wall, x/(0.5t) 

would be equal to 1.  

The results in Figure 5.8 indicated that the interior skin thickness increased as percent 

open area increased. In addition, no difference was observed between data points gathered 

from HF oxidized with open versus closed ends. This suggests that air is not drawn into 

the HF lumen during the oxidation process, and rather that the formation of the interior 

skin thickness is limited by the volume of air contained within the lumen at the start. Less 
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percent open area for a given HF will result in an oxidized HF with a thinner interior skin, 

which is observed in Figure 5.7c and d.   

 

Figure 5.8. The ratio of inner skin thickness (𝑥) to the midpoint of the oxidized HF wall 
thickness as a function of percent open area for two sets of HF, one with ends open to the 
atmosphere and one with ends closed (embedded in epoxy).  

 

Data from Figure 5.8 was plotted again, but with inner and outer diameter skin 

thickness as a function of percent open area. The results are shown in Figure 5.9. A linear 

fit (shown by the dashed lines) was applied to both inner and outer diameter skin thickness 

data sets. Observation of the outer diameter skin thickness showed the skin thickness to be 

quite constant, and independent of the percent open area of the lumen. The outer layer 

thickness averaged 4.18 ± 0.35 µm (N = 89). This layer thickness is consistent with that 

seen in the literature for solid fibers, independent of fiber diameter [28, 30]. The inner layer 

thickness, on the contrary, increased with increasing percent open area. While there is 

scatter in the data, the linear fit suggested that in order to achieve the average layer 

thickness of the outer layer (~4 µm), the HF should approach 50% open area. Based on this 

data, as well as observations made from the optical microscopy analysis, it can be 



 

 
 

100 

hypothesized that the HF wall thickness should be ≤ 8 µm with ≥ 50% open area in order 

to produce an oxidized HF with homogeneous cross section (non-skin core).  

 

Figure 5.9. The outer and inner layer thicknesses for oxidized HF as a function of percent 
open area.  
 

5.3.4 Oxidized HF density 

The data presented earlier in this chapter support the hypothesis that hollow fiber is 

able to oxidize not only from the exterior but from the interior as well. Given this enhanced 

oxidation capability, it was further hypothesized that the hollow fiber would oxidize at an 

increased rate compared to a solid fiber of similar outer diameter. Oxidized fiber density 

has been used extensively to quantify the extent of oxidation [19, 20]. In fact, a linear 

correlation has been found between fiber density and the IR absorbance ratio between the 

pendant nitrile, 𝜈BCD ≈ 2195 cm-1, and the cyclic nitrile, 𝜈BCD ≈ 2240 cm-1, for oxidized 

fibers where pendant nitrile groups are converted into a cyclic structural arrangement [41]. 

Further, several authors have indicated that the ideal oxidized fiber density for the 

production of high tensile strength CF is 1.34 to 1.39 g/cc [15].  
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Ideally, to test this hypothesis, precursor fibers would be spun under the same 

conditions with the same outer diameter and varying percent open area (for example, 0 

(solid), 10, 20, 30, 40, and 50% open area). It is hypothesized that when holding outer 

diameter constant and varying percent open area during oxidation, the HF with 50% open 

area would oxidize much faster than the solid, for example, due to the reduced 

characteristic oxygen diffusion length as well as the increased volume of air available in 

the lumen compared to HF with smaller percent open areas (10%, for example), resulting 

in a thicker inner skin and reduced skin-core structure, as was seen in Figure 5.8 and Figure 

5.9.  

Evaluating the precursor fibers available in this study (Table 5.1), several HF were 

chosen with outer diameter ~ 80 µm (shown in Table 5.2). Run 567B, 571A, and 526B had 

44, 46, and 55% open area. These were the best precursors available at the time to test the 

hypothesis. For comparison, a 78 µm diameter solid fiber was spun from TP2 using a 78 

wt.% DMSO/water bath (run 549A), as is common for the production of round solid 

precursor filaments (also listed in Table 5.2). Fibers were oxidatively stabilized according 

to Figure 5.2, with an added 20 min. isotherm at 217 °C. They were sampled after each 

oxidation stage for density analysis according to section 3.7. Density results are shown in 

Figure 5.10. 

Table 5.2. Precursor hollow fibers selected for oxidation study versus a similar outer 
diameter solid fiber. 

 

 Figure 5.10 shows the density values from precursor through the 258 °C oxidation 

temperature. It is clear that the solid precursor fiber (549A) had a much lower precursor 

density of 1.1299 ± 0.0025 g/cc compared to the three HF under study (567B, 571A, and 

526B), whose precursor densities averaged 1.1781 g/cc, which is much closer to the known 

density of PAN polymer (1.18 g/cc) [9, 42, 43]. This low starting density likely stemmed 

from internal voids and persisted through the oxidation process, with the final oxidized 
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fiber, following 258 °C heat treatment, attaining an oxidized density of 1.2534 ± 0.0013 

g/cc. On the contrary, the HF under study reached an average oxidized density of 1.3224 

g/cc.  

 

Figure 5.10. Oxidized fiber densities as a function of heat treatment temperature. 
 

 To determine the rate of oxidation, the percent increase in density from the 

precursor was calculated according to Eqn. 5.2, where 𝜌7 is the precursor density and 𝜌1 is 

the oxidized fiber density following heat treatment at temperature 𝑖 (𝑖 =

217, 227, 237, 248, 258 °C). Results are plotted in Figure 5.11 as a function of 

temperature. A linear fit was applied to each data set and the slope of the fit used to 

determine the rate of densification, with results shown in Table 5.3.  
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Figure 5.11. Percent increase in density from the precursor for solid and hollow fiber 
plotted as a function of heat treatment temperature. 

 

 (𝜌1 − 𝜌7)
𝜌7

× 100 Eqn. 5.2 

 

Table 5.3. Comparison of densification rate for oxidized HF compared to oxidized solid 
fibers with similar outer diameter.  

 

 In Table 5.3, the increase in densification rate for several oxidized HF are shown, 

compared to a solid fiber of similar outer diameter. The results show what can be 

interpreted as no change in densification rate for the 567B HF, which had 45% open area. 

A slight increase of 2.3% in rate was observed for the 571A HF, with a 47% open area. 
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The largest increase in densification rate was 12.7% which was achieved by 526B HF with 

a 55% open area. 

 It is interesting that 567B HF with 45% open area and the ability to oxidize from the 

interior and exterior showed no advantage in increasing densification rate over the oxidized 

solid fiber derived from run 549A. The skin of oxidized PAN fiber is higher density than 

the core [17, 18], but the magnitude of difference between skin and core material skeletal 

density has not been directly measured. One potential method to determine the density of 

the skin and core material is to evaluate fiber densities resulting from both oxidatively 

stabilized fibers and fibers heated treated in N2. In the absence of oxygen (under an N2 

atmosphere), the skin-core structure does not form, as shown previously in Figure 5.3b.  

During oxidative stabilization, the skin-core forms with the core resulting from oxygen 

starvation, as discussed at length previously. Therefore, it may be assumed that the density 

of material resulting from N2 heat treatment represents the density of the core material of 

the oxidized fiber. Given that the overall oxidized fiber density contains the density of the 

skin and core, then using the rule of mixtures, it may be possible to calculate the density of 

the skin of the oxidized fiber.  

Calculation of the oxidized fiber skin density was attempted utilizing the 549A solid 

fiber, whose densities were determined after N2 heat treatment and after oxidative 

stabilization. The density results are shown in Table 5.4, along with the skin and core area 

fractions of the oxidized fiber, as measured using Adobe Photoshop, and the resulting 

calculated skin density using the rule of mixtures according to Eqn. 5.3. In Eqn. 5.3, 𝑥 and 

𝑦 represent the core and skin area fractions, respectively, and 𝜌D', 𝜌%E1F, and 𝜌"G represent 

the N2 heat treated (assumed to represent the core density in the oxidized fiber), skin, and 

overall oxidized fiber densities, respectively. Solving for the skin density yielded an 

average skin density of 1.2953 g/cc. The maximum density of the core (N2 heat treated 

fiber density) was 1.2494 g/cc. Therefore, while the skin was denser than the core, it was 

only 3.5% denser than the core.  
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Table 5.4. Comparison of measured densities for 549A solid fiber heat treated in N2 and 
oxidatively stabilized, where skin and core area fractions were measured and oxidized 
fiber skin density was calculated by rule of mixtures assuming the N2 treated fiber 
densities represent the densities of the core material.  

 

 𝑥𝜌D' + 𝑦𝜌%E1F = 𝜌"G Eqn. 5.3 

In addition to the experimental results provided above, interpretation of results 

presented in the literature may provide added insight. For example, further analysis of the 

results presented by Kong et al. [18], including the use of Adobe Photoshop to determine 

the area fractions of the skin and core of their stabilized fibers (shown in Figure 5.12), were 

correlated to their measured stabilized fiber densities and the results shown in Table 5.5. 

An oxidatively stabilized fiber with 17% core area (A1) had a measured density of 1.3591 

g/cc. In comparison, the A3 oxidized fiber contained no skin-core structure and the density 

was increased to 1.3614 g/cc. Interpretation of these results indicated that the core was of 

lower density than the skin. However, a reduction in the skin-core structure by 17% (the 

core area of A1) resulted in a corresponding density increase of only 0.2%.  

Table 5.5. Analysis of the results presented by Kong et al. for their stabilized PAN fibers 
with differing skin and core area fractions, compared to their resulting measured 
densities. Adapted from [18]. 
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Figure 5.12. Optical microscopy images of oxidized PAN fibers with different diameters 
after stabilization. Adapted by permission from [18], © 2015. 
 
 The experimental and literature results presented above support the findings of 

other authors that the density of the skin is higher than the core in an oxidized PAN fiber 

[17, 18], but further show that the magnitude in difference is quite small, and therefore 

reductions in the skin-core structure elicit only minute changes in the resulting oxidized 

fiber densities.  

Another potential caveat to the data presented here regards the solid fiber used for 

comparison and calculation. As the HF precursors produced in this study were larger in 

diameter than traditional precursors, relatively large diameter solid fiber had to be spun in 

order to compare hollow and solid with similar outer diameter. In the process of spinning 

large diameter solid fiber, minimal draw was applied to the fiber in order to keep the 

diameter large. Under these conditions, molecular alignment is limited and pore collapse 

less likely to occur. The resulting large diameter solid fiber contains macrovoids as a result. 

The presence of significant void structure is supported by the lower density of the precursor 

fibers, at 1.1299 g/cc, as well as the optical micrographs presented in Figure 5.13. Figure 

5.13 contains a selection of optical micrographs of 549A solid fiber following oxidation at 

227 and 258 °C. When oxidized at 227 °C (Figure 5.13a), the resulting fibers consisted of 

a ~ 4 µm thick skin (blue in color) and an orange tinted core. Observation of the core 

revealed the presence of voids, which are shown as bright yellow shapes situated about the 

perimeter of the fibers. As oxidation proceeded and reached 258 °C (Figure 5.13b), the 

fibers show significant skin thickening, particularly where voids are present about the 

perimeter. It is hypothesized that these voids contain air or communicate with the outer 

diameter which contribute oxygen to the oxidation process which would otherwise not exist 

A1 A2 A3
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in a dense fiber. The skin of the fiber can be seen to thicken in areas about the fiber 

circumference where voids are prevalent. It is hypothesized that, were it possible to spin 

large diameter precursors with appropriate density (~1.18 g/cc) and negligible macrovoid 

structure, the rate of densification of the solid fiber would be much lower than that 

presented in Figure 5.10. As a result, the increase in densification for the HF compared to 

the solid fiber would be higher than that presented in Table 5.3.  

 

Figure 5.13. Optical micrographs of 549A solid fiber (78 µm diameter) sampled after 
oxidative stabilization at (a) 227 and (b) 258 °C. White calibration bars are 20 µm. 
 

5.4 Conclusions 

Utilizing the HF precursors discussed in Chapter 4, oxidation studies were 

completed. It was hypothesized that with reduced wall thickness, one could arrive at 

an optimally oxidized fiber much faster than traditional solid fiber via simultaneous 

oxidation from the exterior and interior of the filament. In the process of investigating 

this hypothesis, it was discovered that oxidation of the HF precursors produced in this study 

led to the development of a skin-core structure within the wall of the resulting HF due to 

the large dimensions of the HF. For a wall thickness of 12 µm, an interior and exterior skin 

of 4 µm was observed. The skin was found to contain higher levels of oxygen via EDX. 
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Optical microscopy and spatially resolved Raman spectroscopy overlaid well, indicating 

that the skin of the oxidized HF contains oxygen and sp2 hybridized carbons and can be 

easily observed using optical microscopy. The EDX, optical microscopy, and Raman 

results support the hypothesis that a homogeneous cross section could be produced if the 

HF wall thickness were ≤ 8 µm.  

Further, a study evaluating the effect of percent open area of the HF on skin-core 

development was completed. It was found that air was not pulled into the fibers through 

the lumen during oxidation, but rather that the oxygen available to the HF lumen was 

determined by the initial volume of air contained within the lumen. As a result, the 

thickness of the interior skin was dependent on the percent open area of the HF. Further, 

the outer skin thickness averaged 4.18 µm, independent of fiber dimension. Based on the 

data, it was determined that in order to obtain a similar thickness interior skin layer, the HF 

should possess ≥ 50 % open area. This data sharpened the hypothesis that, if a ≥ 50 % open 

area HF could be produced, a ≤ 8 µm wall thickness would lead to an oxidized HF with a 

homogeneous (non-skin-core) morphology.  

Finally, the core hypothesis was examined, to determine if with reduced wall 

thickness, one could arrive at an optimally oxidized fiber much faster than traditional 

solid fiber via simultaneous oxidation from the exterior and interior of the filament. 

HF with varying percent open area and similar outer diameters were oxidized alongside an 

in-house spun solid fiber with similar diameter. When compared to the solid fiber, the HF 

with 45% open area (567B) demonstrated a negligible difference in rate of densification, 

while HF with 55% open area (526B) demonstrated a 12.7% increase in rate of 

densification over the solid fiber. It was interesting to find no difference in rate of 

densification for the HF with 45% open area compared to a solid fiber, but this was 

attributed to difficulty performing a direct comparison between the HF and solid due to 

differences in their precursor morphology. The solid precursor used in the study contained 

a large portion of macrovoids, which reduced the solid precursor density to 1.1299 g/cc, 

much lower than the HF precursors of ~1.18 g/cc. In addition, these macrovoids contained 

air, which likely enhanced the oxidation of the solid precursor fiber. As a result, it is 

hypothesized that the solid fiber with macrovoids oxidized at a faster rate compared to a 
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solid precursor fiber of that diameter with an appropriate density (~1.18 g/cc). Therefore, 

when comparing the HF and solid fiber under study, the rate of densification of the HF 

over solid was only 12.7% higher. Nonetheless the HF did densify faster than the solid, 

baseline fiber. 

5.5 Future work 

Future oxidation studies should be prefaced by the development of HF precursors 

with targeted dimensions. Of particular interest would be HF with ≤ 8 µm wall thickness 

and ≥ 50 % open area. Here it was hypothesized that such filaments could be oxidized and 

a skin-core structure avoided. The production of precursor filaments with these dimensions 

would allow direct testing of that hypothesis. Spinning such fibers remains difficult, but 

not impossible. 

Finally, if precursor HF could be produced with reduced outer diameter approaching 

the 10-14 µm diameter seen in traditional solid PAN precursors, the HF and a solid fiber 

of comparable precursor density could be oxidized and compared more accurately for 

evaluation of rate of oxidation. Taken further, the use of multiple spinnerets of varying 

dimensions could allow for the production of HF with more ideal varying percent open 

area (for example, 10%, 20%, 30%, etc.) with the same outer diameter under the same draw 

conditions. Again, this would allow more direct comparison of oxidation rate without the 

current confounding variables of draw, etc. but would require immense process control.  
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CHAPTER 6. THE CARBONIZATION OF HOLLOW PAN-DERIVED FIBERS AND 
THEIR COMPARISON WITH SOLID CARBON FIBERS 

6.1 Introduction 

Hollow carbon fibers (HCF) have the potential to improve on traditional solid CF 

properties by effectively reducing fiber density (resulting in higher specific strength and 

modulus) which can lead to lighter weight parts. In Chapter One, it was shown that high 

specific strength and modulus is a central driver of carbon fiber adoption over cheaper 

materials.  HCF success is dependent on their ability to attain or exceed the specific 

effective tensile properties of the incumbent commercially available solid CF. In HCF it is 

the effective tensile properties (stress, modulus and density measurements that include the 

lumen area or volume) that contribute to the properties of the resulting composite structures 

into which they are incorporated. As reported previously, efforts toward the production of 

HCF utilizing PAN HF precursors solution spun with a segmented arc spinneret are few, 

with only three references located after extensive literature review. Of those three, only 

one produced HCF from the HF precursors, but as it is a patent, no characterization details 

regarding the process-property-structure relationships, or their development, is given. A 

better understanding of these relationships and their development is important to realize 

high tensile property HCF, particularly as they relate to the incumbent traditional solid CF. 

The tensile properties of CF in general are highly influenced by defects. These 

defects can include misalignments in the crystalline structure, which tend to affect fiber 

modulus, or voids, inclusions, surface imperfections, and chemical structure defects, which 

are more likely to impact the tensile strength. The skin-core structure is found in most 

commercial CFs and is detrimental to both the CF tensile strength [1, 2] and modulus [3, 

4]. It is hypothesized that the development of HCF, which includes their ability to oxidize 

from both the interior and exterior, will help to mitigate skin-core formation and will result 

in improved CF properties. Given that the core of CF is lower modulus than the skin, 

removing it is hypothesized to result in a true modulus higher than that of the baseline skin-

core CF to which it is compared.  The lower modulus core is simply increasingly removed 

with decreasing wall thickness. Here, it is hypothesized that the true elastic modulus of 

the HCF will increase as a function of increasing percent open area (for a fixed outer 
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diameter) due to the reduction in skin-core structure in the HCF. As described 

previously, the literature indicates that the majority of commercially available CF contain 

a skin-core structure, which results in the highly oriented, high modulus skin carrying much 

of the load [5, 6]. This suggests that the formation of a HCF would more efficiently exploit 

the oriented portion of the fiber. 

In addition, one of the overarching goals of this research is to develop an 

understanding of how HCF properties compared to those of solid CF. It is hypothesized 

that a HCF can conserve the tensile strength of a similar OD solid CF.  This is 

hypothesized based on findings from other researchers previously discussed in section 

1.1.4.2, who found that surface flaws are a major limiting factor in CF tensile strength [1, 

2], as the skin carries up to 10 times the stress compared to the core [7] and that reducing 

or eliminating the skin-core structure would allow for homogeneous stress distribution 

along the fiber cross section, leading to improved tensile properties [1, 2]. In addition, 

conservation of tensile strength for hollow glass fibers has already been demonstrated [8]. 

An investigation of these hypotheses, along with a comparison of the initially 

developed HCF in this work to literature and benchmark fibers was undertaken in this 

chapter, to better understand the HCF process-property-structure relationships. 

6.2 Experimental 

6.2.1 Materials 

For the development of HCF, hollow PAN fiber precursors were selected from Table 

5.1. For comparison, a high strength, standard modulus (solid) T700S CF (Toray Carbon 

Fibers America, Inc.) was utilized as a benchmark for several analyses [9].  

6.2.2 Oxidation 

The oxidation methods used in this chapter are described in section 5.2.2 and are 

referenced as needed.  
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6.2.3 Carbonization 

For carbonization, a Thermal Technologies graphitization furnace (Thermal 

Technology LLC, Santa Rosa, CA) was used, capable of ambient to 2800 °C temperature 

profiles under an inert atmosphere. The graphite rack was designed to have one end fixed, 

while the other floating end was capable of sliding along graphite rods. A schematic of the 

carbonization system is shown in Figure 6.1. Six hoops (three on each side) of oxidized 

fiber were placed on this graphite rack, which was then placed within graphitization oven. 

The floating end of the graphite rack was attached via wire to a 100 g mass to apply strain 

to the fiber during carbonization. The wire passed through a septum in order to maintain 

separation of the inert atmosphere within the furnace and the lab atmosphere. A schematic 

of the carbonization system is shown in Figure 6.1. Fibers were heated in nitrogen from 

room temperature to 1300 °C at 5 °C/min and held isothermal at 1300 °C for 10 min., 

similar to [10].  

 

Figure 6.1. A schematic of the carbonization system used during the study, where 
oxidized fiber was placed on a graphite rack and subjected to a 100 g hanging mass 
during thermal conversion in an inert atmosphere. 
 

100 g

Graphite rack holding 6 
hoops of oxidized fiber 

(3 on each side)

100 g hanging 
mass

Septum

From “497 HF OXCarb”



 

 
 

116 

6.3 Results and discussion 

6.3.1 Initial analyses of hollow carbon fibers 

An analysis of HCF was undertaken to examine their cross section structure, as well 

as their structural parameters, crystalline orientation, and tensile properties. 

6.3.1.1 Morphology and dimensions 

An initial analysis of HCF morphology was completed by carbonizing HF from run 

497A, B, C, and D precursors, which were produced from the same spinning run with 

varying total draw ratios of 5x, 12x, 27x, and 32x, respectively. Following oxidation and 

carbonization, the resulting HCF did not collapse and remained hollow, as shown in Figure 

6.2 below. The resulting outer diameters, inner diameters, and effective fiber densities are 

shown in Table 6.1.  

The smallest HCF produced, 497D HCF, measured 35 µm outer diameter and 22 µm 

inner diameter (6.5 µm wall thickness), with an effective fiber density of 1.1 g/cc, as shown 

in Table 6.1. Reduced effective density (below the typical 1.8 g/cc for traditional solid CF) 

is beneficial for increasing the specific tensile properties of the HCF and could result in 

superior specific tensile properties of the HCF relative to solid CF.  
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Figure 6.2. SEM micrographs of hollow carbon fiber (HCF) cross sections stemming 
from run 497 precursors. (a) 497A derived HCF; (b) 497B derived HCF; (c) 497C 
derived HCF; (d) 497D derived HCF. From the author’s original work [11], reprinted 
with permission. 
 

Table 6.1. Dimensions and effective densities of the HCF samples derived from 497A, B, 
C, and D precursors. 

 

6.3.1.2 Structural parameters and crystalline orientation 

The resulting HCF structural parameters and crystalline orientation are shown in 

Table 6.2 and are compared to benchmark T700S carbon fiber properties. The carbonized 

fibers have two distinct peaks at 2𝜃 ~26° and ~43°, corresponding to the (002) and (100) 

planes of the graphitic carbon structure, respectively. The results in Table 6.2 show that 

the average crystallite length La(:77) and crystallite thickness Lc(77&) both increased with 

increasing precursor draw ratio and decreasing HCF diameters. In addition, the d-spacing, 

d(77&), was also found, in general, to decrease and the Herman’s orientation factor, 𝑓(77&) 

to increase with increasing precursor draw ratio. Each of these structural parameter trends 
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has been related to an increase in the tensile modulus of the resulting CF, where larger 

crystallites separated by a shorter distance between two successive layers (d(77&)) have 

been shown to contribute to higher modulus in the resulting CF. The increasing Herman’s 

orientation factor signals a more pronounced orientation in the fiber axis direction [12]. 

These results indicate an increasing degree of anisotropy in the HCF with increasing 

precursor draw ratio. The 497D HCF crystallite sizes, d-spacing, and Herman’s orientation 

factor were all higher compared to the T700S benchmark CF. Large, densely packed 

crystallites have been correlated to high tensile modulus and lower tensile strength [13, 

14]. T700S CF is known to be a standard modulus, high strength CF and therefore the 

results presented here for the HCF may point toward the HCF prioritizing higher modulus 

over tensile strength. The tensile properties of the HCF are discussed in the following 

section.  

Table 6.2. XRD structural parameters and crystalline orientation of 497A, B, C, and D 
hollow carbon fiber compared to T700S carbon fiber. 

 

6.3.1.3 Tensile properties 

The specific effective tensile properties for the HCF samples are shown in Figure 

6.3 and Figure 6.4. (Note that effective tensile properties (non-specific) can be found in 

Table A - 1 in the Appendix). These HCF tensile properties were compared to large 

diameter solid carbon fibers found in the literature as well as to a commercial baseline of 

T700S CF [9]. Ideally, comparisons of tensile properties are completed on fibers with 

similar OD. With decreases in fiber diameter, there has been shown to be a corresponding 

increase in tensile strength [15]. A larger diameter filament allows more volume in which 

strength limiting defects can occur. The HCF here range from 110 to 35 µm OD, while 

traditional solid CF such as T700S have diameters of 7 µm. It is difficult to find references 

for large diameter solid CF in the literature, particularly for comparison with these large 
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diameter HCF. Large diameter CF are not commonly produced due to the inherent 

difficulty in their production as well as the difficulty in producing high tensile properties 

from large diameter fibers. However, references to two such fibers were found, with 

diameters of 16 µm (by Mitsubishi [16]) and 12 µm (by Chae et al. [17]). Still, these CF 

diameters are much smaller than the smallest HCF here, which had an outer diameter of 35 

µm (497D HCF).  

The specific effective tensile strength of the HCF increases with decreasing OD 

and ID, ultimately reaching an average specific effective strength of 0.54 N/tex (497D 

HCF). This specific strength remains lower than the 16 µm diameter CF by Mitsubishi (2.0 

N/tex) and the 12 µm diameter CF by Chae (1.1 N/tex) and is significantly lower than the 

2.7 N/tex for T700S CF, which measures 7 µm in diameter. As stated previously, with 

decreases in fiber diameter, there has been shown to be a corresponding increase in tensile 

strength [15], similar to what is observed here. A smaller diameter allows for less room for 

defects and the tensile strength of CF increases with decreasing diameter. The tensile 

strength of CF is known to be negatively impacted by the presence of defects and flaws, 

including foreign particles, voids, or other imperfections [18, 19]. This has been explained 

using the Griffith fracture theory where flaw density on/in the fiber gauge length decreases 

as the filament is drawn to a finer diameter.  Therefore strength goes up. Here, drawn to its 

theoretical maximum, a single molecular chain would possess the highest strength because 

such a structure could tolerate no defects [20]. Highly drawn, finer filaments ultimately 

results in fewer defects per unit length.  
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Figure 6.3. Specific effective tensile strength for HCF samples compared to large 
diameter carbon fibers and T700S carbon fiber. From the author’s original work [11], 
reprinted with permission. 

 

It is important to recall as well that macrovoid defects measuring 5-7 µm in 

diameter appeared occasionally in the walls of the HF precursors (see Figure 4.8c), which 

were hypothesized to stem from instantaneous de-mixing in the 100% water coagulation 

process. These defects greatly reduce the fiber tensile strength. On the contrary, the 

significantly higher strength T700S CF has been found to contain only very small 1-4 nm 

pores [4]. Also, recall from Figure 4.14 that run 497D precursor fiber contained 25.8 wt.% 

residual liquid content and that removal of residual liquid (and in particular residual 

solvent) is vital to the production of high tensile property CF as residual solvent acts as an 

impurity during thermal treatment and contributes to discontinuities in ladder formation 

[21], imperfect crystalline structure [22], and fiber breakage. The high residual liquid 

content in run 497D precursor (and assumed 497A, B, and C precursors as well) may have 

also had a detrimental impact during thermal treatment. Therefore, in addition to 

attenuation in diameter to reduce the available volume of material in which defects and 

voids can exist, significant reductions in void size are necessary in order to produce HCF 
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with tensile strength approaching or exceeding T700S properties, as is a reduction in 

residual solvent within the precursor,  

Unlike tensile strength, the elastic modulus of CF is not as sensitive to void content 

but depends more upon the crystallographic orientation within the fiber. Orientation of CF 

crystallites is influenced by the molecular orientation of the precursor fibers (achieved by 

drawing) as well as strain experienced during the thermal conversion process. The resulting 

specific effective elastic modulus results for the HCF are shown in Figure 6.4. Recall that 

the draw ratios for the 497A, B, C, and D precursors were 5x, 12x, 27x, and 32x, 

respectively. In this case, the HCF modulus is observed to increase as the precursor draw 

ratio increases. The draw ratios for the 497C and 497D precursors were similar enough 

(27x and 32x) that the elastic moduli of the resulting HCF were also similar, although the 

497C HCF specific effective elastic modulus was slightly higher, at 125 N/tex, compared 

to 120 N/tex for 497D HCF. Comparatively, the specific effective elastic moduli for the 

CF of Chae, Mitsubishi, and T700S were 147 N/tex, 129 N/tex, and 136 N/tex, 

respectively. 
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Figure 6.4. Specific effective elastic modulus for HCF samples compared to large 
diameter carbon fibers and T700S carbon fiber. From the author’s original work [11], 
reprinted with permission. 

 

These results indicate that the specific effective elastic modulus of the HCF is 

currently only 8% lower than that of T700S. In addition, it is important to remember that 

the HCF produced here utilized a batch thermal conversion method as opposed to the 

superior continuous oxidation and carbonization methods used to produce commercial CF 

such as T700S. The use of a continuous thermal process is important for applying varying 

degrees of strain which further enhance the crystalline alignment and positively impact the 

resulting modulus. Therefore, it is possible that the use of a continuous thermal conversion 

method in developing the HCF could result in HCF with specific effective elastic modulus 

much greater than T700S. However, as it stands, the current data supports the conservation 

of specific effective elastic modulus properties of commercial CF utilizing a HCF. 

6.3.2 Impact of percent open area on HCF true elastic modulus 

In section 5.3.3, it was found that the skin-core structure in the oxidized HF was 

generally reduced in fibers with higher percent open area of the HF. A higher percent open 



 

 
 

123 

area of the HF meant a larger lumen volume in which air was contained and therefore a 

corresponding large volume of oxygen available for oxidation from the interior of the HF. 

Improved oxidation from the interior of the HF resulted in a reduction in the skin-core 

structure within the oxidized HF wall. The reduction in skin-core structure, and in 

particular the core structure, is preferred, as it is known that the skin of PAN-based CF has 

been found to be higher modulus than the core [6, 23]. Therefore, removal of core material 

may result in increases in elastic modulus for the fiber. This leads to one of the overarching 

hypotheses of this work, which is that the true elastic modulus of the HCF will increase 

as a function of increasing percent open area (for a fixed outer diameter) due to the 

reduction in skin-core structure in the HCF. In this section, examination of the true 

elastic modulus of the HCF will be explored. 

6.3.2.1 Fiber processing 

To study the impact of increasing percent open area on the true elastic modulus in 

the resulting HCF, precursor HF with appropriate dimensions were selected from in-house 

spun HF. These are listed in Table 5.1. (Arbitrary OD/ID combinations were not possible 

given the spinning processing and current limitations thereof.) In an ideal case, HF with 

the same outer diameter and varying percent open area would be selected. However, due 

to the limited number of HF available for study, fibers with similar wall thickness and 

varying percent open area were chosen and are shown in Table 6.3. The fibers chosen, 506, 

497C, and 490B had average open areas of 20, 33, and 39%, respectively, with wall 

thicknesses ranging from 12.1 to 12.7 µm. Scanning electron micrographs of the precursor 

cross sections are shown in Figure 6.5. As all these fibers under study were spun with TP1 

into a 100% water bath, the fibers all contained some fraction of macrovoids. Fibers also 

show some evidence of fiber fusion. Following oxidation and carbonization, the resulting 

HCF tensile properties were analyzed.  
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Table 6.3. Precursor HF with varying percent open area and similar wall thickness 
selected for conversion to HCF for study of true elastic modulus. (N ≥ 7 for each fiber) 

 

 
Figure 6.5. Scanning electron micrographs of precursor cross sections. (a) 506; (b) 490B; 
(c) 497C.  

 

6.3.2.2 Hollow carbon fiber tensile properties 

The resulting HCF tensile properties are shown in Table 6.4. The HF experienced a 

reduction in inner and outer diameter during thermal treatment, resulting in an increase in 

the average percent open area in the resulting HCF. Following carbonization, the resulting 

497C and 490B HCF had similar dimensions, each being reduced to a 38 µm outer diameter 

and a 25 µm inner diameter, resulting in 42 and 43% open area, respectively. The 497C 

HCF and 490B HCF true elastic moduli were 89 and 91 GPa, respectively. Comparatively, 

the 506 HCF open area was 31% with a 113 GPa true elastic modulus. This result is 

contrary to the proposed hypothesis, which postulated that true modulus would increase 

with increasing percent open area. 

Table 6.4. Tensile properties of selected hollow carbon fibers. 
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6.3.2.3 Evaluation of experimental parameters 

While contrary to the proposed hypothesis, several factors should be considered 

when interpreting the above results. First, the hypothesis under examination postulated an 

increase in true elastic modulus with increasing percent open area for a fixed outer 

diameter. Currently, the spinning process is not yet matured to the point that it is possible 

to spin a HF with a targeted OD, much less a targeted OD and targeted percent open area. 

Therefore, selection of fibers for evaluation of the hypothesis relied on the HF listed in 

Table 5.1. It was difficult to find fiber combinations with the same outer diameter and 

significantly different percent open areas and therefore fibers with similar wall thicknesses 

and varying percent open area were chosen (490B, 497C, and 506 HF). For a set wall 

thickness (in this case 12.1 to 12.7 µm), it was hypothesized that the skin-core structure in 

the fiber wall would decrease from 506 HF to 497C HF to 490B HF as their respective 

percent open areas increased from 20 to 33 to 39%. In fact, this was previously found to be 

true for 506, 497C, and 490B HF in section 5.3.3, where the skin-core structure was 

reduced by improved oxidation from the interior of the HF with greater percent open area 

(see Figure 5.8 and Figure 5.9). The result of this decrease in skin-core structure was 

hypothesized to be evident in the elastic modulus of the resulting HCF. 

A second complicating factor in the interpretation of the above results, and perhaps 

most importantly, is that the elastic modulus of precursor and CF is highly impacted by the 

draw the fibers experiences during spinning and thermal processing, as this impacts the 

alignment of the molecular and crystalline structures [24]. Looking back at the fiber 

spinning conditions for the precursors listed in Table 6.4, all were spun from the same HF-

A spinneret but with varying draw ratios. Therefore, the modulus of the precursor fibers 

would be expected to be different based on draw ratio alone, which is then carried over to 

the resulting HCF.  

In conclusion, optimal experimental design was hindered given the limitations of the 

current spinning process and the limited HF dimensions available, which complicated the 

ability to accurately test the hypothesis. To better evaluate the hypothesis, it is important 

to spin HF precursors utilizing the same draw ratios. And, in order to vary the percent open 

area while maintaining draw ratio and outer diameter, multiple spinnerets with varying 
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percent open area would need to be designed and machined. The generation of precursor 

fibers with the same outer diameter, draw ratio, and varying percent open area is in no way 

trivial and would require extensive development. If successful in their production, the HF 

precursors could then be thermally converted to HCF under the same conditions and their 

tensile properties analyzed. This would provide the most accurate test of the true elastic 

modulus vs percent open area hypothesis. Despite not having a clear answer with respect 

to the original hypothesis, it should be noted that HCF generated from this experiment had 

the highest tensile properties of any produced so far this study. The 506 HCF measured 29 

µm outer diameter and 16 µm inner diameter, with a 31% open area and had an effective 

tensile strength of 755 MPa and an effective elastic modulus of 78 GPa. The previously 

produced HCF with the highest tensile properties was 497D HCF, with a 568 MPa effective 

tensile strength and 132 GPa effective elastic modulus (Table A - 1). 

6.3.3 Comparison of hollow and solid carbon fibers 

As part of the previous experiment, the tensile properties of the HCF generated from 

run 497 precursors were compared to “large” diameter solid carbon fibers found in the 

literature. The solid CF of Chae et al. measured 12 µm [17] and the solid CF by Mitsubishi 

measured 16 µm [16]. It is difficult to draw direct comparisons between these fibers and 

the HCF generated here when the smallest HCF produced from run 497D measured 35 µm 

in outer diameter, particularly knowing that fiber diameter has a significant impact on 

tensile strength [18, 19]. A more accurate comparison can be made between fibers of 

similar diameter which have undergone similar processing steps. In this section, the 

development of a HCF is compared to the development of a solid carbon fiber with similar 

diameter which has been exposed to similar processing steps.  

6.3.3.1 Precursors 

For this study, precursors from run 571A (hollow) and run 549A (solid) were utilized. 

Their dimensions are listed in Table 5.2. The outer diameters of both fibers were 78 µm. 

Scanning electron micrographs of the fibers are shown in Figure 6.6. The HF precursors 

from run 571A in Figure 6.6a are split along the fiber axis and some of the lumen are filled 

with residual matrix compound. Both are artifacts of the fiber sectioning process for fiber 
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imaging (see section 3.2) and are not found in the resulting oxidized or carbonized fibers. 

The HF macrovoid content may be slightly reduced as the fiber was spun into a 10 wt.% 

DMSO/water bath compared to the 100% water bath utilized for other HF. However, the 

void content was difficult to quantify, but negligible macrovoids were observed in the HF 

cross sections in Figure 6.6a. 

The solid precursor fibers from run 549A are shown in Figure 6.6b and contained  

voids of varying dimension preferentially concentrated just inside the fiber perimeter. The 

true densities of the hollow and solid precursor fibers were measured to be 1.18 g/cc and 

1.13 g/cc, respectively. This result indicated that the solid 549A precursor fibers contained 

a higher void content than did the 571A HF precursors.  

 

Figure 6.6. Scanning electron micrographs showing cross sections of 78 µm diameter 
hollow and solid precursor fibers. (a) Run 571A hollow precursors. (b) Run 549A solid 
precursors. 

 

6.3.3.2 Oxidation 

The hollow and solid precursors were oxidized and the resulting fibers embedded in 

epoxy and viewed using a 50x oil objective (500x magnification) in reflected white light. 

The optical micrographs are shown in Figure 6.7. In Figure 6.7a, the oxidized HF derived 

from run 571A are shown. The light blue skin regions were seen on both the interior and 

exterior, with a darker blue core seen in the center of the fiber wall. In some cases, the wall 

cores reflected a bright orange color. The oxidized solid fibers shown in Figure 6.7b also 

had a light blue skin about the fiber circumference but a very large portion of the cross 

100 μm 100 μm

a b
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section was bright orange and/or darker blue. In addition, the oxidized fiber skin was not a 

consistent thickness about the cross section, as it was with the HF, but rather tended to 

increase in thickness as it followed the void structure of the fiber. It is hypothesized that 

the voids in this case contained air, which contributed to the oxidation of the solid fiber (as 

discussed previously in section 5.3.4). Magnified views of optical micrographs of oxidized 

549A solid fiber in Figure 6.8 show isolated pores (white arrows) with an oxidized 

perimeter (shown in light blue) as a result of air trapped within the void, supporting this 

hypothesis. 

Observation of the oxidized fiber surfaces using SEM revealed significant 

differences in morphology, as shown in Figure 6.9. The surfaces of the oxidized HF were 

smooth (Figure 6.9a) while the oxidized solid fibers were much more fibrillar in nature and 

showed some depressions on the surface, likely due to the high void content of the fiber. 

 

Figure 6.7. Optical micrographs (50x oil objective, 500x magnification) showing cross 
sections of oxidatively stabilized hollow and solid precursor fibers. (a) Run 571A hollow 
precursors. (b) Run 549A solid precursors. 
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Figure 6.8. Optical micrographs of oxidized 549A solid cross sections showing magnified 
views of isolated pores (white arrows) with an oxidized perimeter (shown in light blue) as 
a result of air trapped within the void. 

 

 

Figure 6.9. Scanning electron micrographs of the oxidatively stabilized hollow and solid 
precursor fiber surfaces. (a) Run 571A hollow precursors. (b) Run 549A solid precursors. 
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6.3.3.3 Carbonization 

Following oxidation, carbonization of the fibers was attempted. However, the 549A 

solid fibers could not survive the carbonization process when subjected to the 100 g 

hanging mass typically used (see Figure 6.1). As a result, both the oxidized 571A HF and 

549A solid fibers were cut from the graphite rack following oxidation, wrapped in graphite 

foil, and carbonized without tension. The resulting carbon fiber tensile properties are 

shown in Table 6.5. The effective tensile strength of the 571A HCF was 8x higher than the 

549A solid CF, with an effective tensile strength of 532.9 ± 197.4 MPa. The effective 

elastic modulus and break strain were 2x and 4x higher for the 571A HCF, respectively. In 

general, the HCF greatly outperformed the solid fibers when their starting precursors were 

of the same outer diameter and subsequent thermal treatments were carried out 

simultaneously.  

Table 6.5. Tensile properties of the carbonized 571A HCF and 549A solid CF. 

 

Of interest, however, were the observations made regarding the morphology of the 

carbonized filaments. Examples of 571A HCF cross sections are shown in Figure 6.10. The 

HCF were quite circular with consistent wall thickness. Examination of the cross sections 

of the solid CF derived from run 549A in Figure 6.11 revealed a significant increase in 

macrovoid size and concentration. The oxidized solid fibers shown in Figure 6.7b 

contained voids, but those void diameters are on the 100s of nanometers scale, with perhaps 

a few on the 1s of micron scale. They were also concentrated heavily around the periphery 

of the fiber diameter. However, following carbonization, the carbonized solid fibers in 

Figure 6.11 contained macrovoids on the order of 10s of microns in diameter, with many 

of the largest voids reaching the fiber center.  
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Figure 6.10. Scanning electron micrographs of HCF cross sections derived from run 
571A HF.  

 

 

Figure 6.11. Scanning electron micrographs of solid CF cross sections derived from run 
549A solid fiber.  
 

Further observation of the solid carbon fiber surfaces in Figure 6.12 revealed the 

startling realization that significant damage to the fibers had occurred. The solid carbon 

fibers shown in Figure 6.12 were missing large portions of material, so much so that the 
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core of the fiber was visible in some instances. Based on this observation, it was 

hypothesized that during carbonization, the core material was vaporized, resulting in 

violent bursting of the fiber skin as the volatized material attempted to escape the fiber. 

Core vaporization has been shown to occur for fibers with highly under-oxidized cores [1, 

25]. This resulted in the damage seen in Figure 6.12. It is clear that this type of extensive 

damage would significantly reduce the tensile properties of the resulting CF, as has been 

shown in Table 6.5.  

 

Figure 6.12. Scanning electron micrographs of solid CF surfaces derived from run 549A 
solid fiber. 

 

In summary, the comparison of HF and solid fiber of the same outer diameter yielded 

interesting results. First, the difficulty in spinning a large diameter solid precursor fiber (78 

µm) was noted. The resulting solid fiber was of lower true density (1.13 g/cc) compared to 

the HF precursor true density (1.18 g/cc). The difference in densities was attributed to the 

presence of voids concentrated around the fiber perimeter. These voids were the result of 

inadequate drawing and void collapse, which was avoided during spinning to keep the fiber 

large. Second, when oxidized, the HF oxidized from both the interior and exterior, resulting 

in a slight skin-core structure within the wall. However, the solid fiber displayed a 

significant skin-core structure with what was later found to be a highly under-oxidized 
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core. The large diameter of the solid fiber likely hindered the ability of oxygen to diffuse 

to the fiber core. Third, the resulting solid CF experienced significant damage during 

carbonization. Here, vaporization of the under-oxidized core burst through the fiber walls 

in sections. Meanwhile, the resulting HCF had concentric, round annular cross sections 

with comparatively fewer visible flaws. As a result, the HCF effective tensile strength and 

effective tensile modulus were 8x and 2x higher than the solid CF. In this case, the HF 

demonstrated significant advantages over the solid, primarily due to its ability to oxidize 

from both the interior and exterior.  

It is hypothesized that the magnitude of difference between tensile properties may 

decrease with decreasing fiber outer diameter. In other words, as the solid fiber diameter 

decreases, the solid fiber skin-core structure will be reduced and vaporization of the interior 

core material less likely to occur. With vaporization less likely to occur, or not occurring, 

as in the case of more traditional solid precursor diameters (12-14 µm), tensile properties 

of the resulting solid CF will increase. Therefore, the difference in magnitude between 

tensile properties of the solid CF and HCF will be commensurately reduced. However, to 

what extent remains to be seen.  

Additionally, the current effective tensile properties of the HCF are low relative to 

traditional solid CF, however, the large diameters of the HCF renders comparison between 

the two non-optimal. As HCF outer diameters and wall thicknesses are reduced in future 

work, the effective tensile properties are hypothesized to increase, similar to trends seen in 

the precursor HF (Figure 4.17). However, true evaluation of these hypotheses will require 

the production of smaller diameter HF precursors (and their corresponding solid 

counterparts), which will be the subject of future work.  

6.4 Conclusions 

Utilizing the precursors developed in Chapter 4 and the oxidation knowledge 

discussed in Chapter 5, HCF were produced and studied. Initial carbonization results 

revealed that the fiber retained their hollow structure following carbonization. The HCF 

possessed a larger crystallite length and thickness compared to T700S, with a slightly 

higher Herman’s orientation factor and d-spacing. The impact of these structural and 

orientational parameters was seen in the resulting HCF specific effective elastic modulus 
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of 125 N/tex, which was similar to that of T700S at 136 N/tex. Tensile strength, however, 

was limited by the large fiber diameters and macrovoid content.  

Further work was conducted in an attempt to determine if the true elastic modulus of 

the HCF would increase as a function of increasing percent open area (for a fixed outer 

diameter) due to the reduction in skin-core structure in the HCF. Unfortunately, limitations 

in the availability of precursor fibers with appropriate outer diameter, percent open area, 

and draw ratios hindered the ability to accurately test the hypothesis. However, the best 

HCF produced (506 HCF) measured 29 µm OD and 16 µm ID, with 755 MPa effective 

tensile strength and an effective elastic modulus of 78 GPa and represented the best HCF 

produced in the study. 

Finally, it was found that when HF was thermally processed with a similar large 

diameter solid fiber, the HF was able to oxidize from both the interior and exterior, 

resulting in a slight skin-core structure within the fiber wall. However, the core of the large 

diameter solid fiber was quite large. This resulted in vaporization of material during 

carbonization and drastically reduced the tensile properties of the solid CF. The HCF, on 

the contrary, was 8x higher in effective tensile strength and 2x higher in effective elastic 

modulus due to its ability to oxidize from both the interior and exterior. This result indicates 

that HF outperforms solid fiber when compared at the same outer diameter for relatively 

large outer diameters, potentially paving the way toward HCF with large OD over 

traditional solid fiber.  

6.5 Future work 

Improvement of the HCF effective tensile strength will encourage their widespread 

application. Their effective tensile strength should meet or exceed that of incumbent solid 

CF such as T700S to warrant its replacement in high performance composite structures. 

Currently, the effective elastic modulus is on par with T700S. But again, the real challenge 

is tensile strength. Tensile strength is known to increase with a decrease in fiber diameter 

as well as reductions in void and flaw content within the fiber. To date, the best HCF 

strength produced by these methods represents just 15% of the strength of T700S.  
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To further improve the resulting HCF properties, significant reductions in precursor 

HF outer diameter and wall thickness must be made. This could be achieved through 

improved drawing, but most likely will require spinneret redesigns to reduce the spinneret 

capillary dimensions (within machinable limits). Reduced wall thickness will result in a 

reduced skin-core structure, which will improve tensile properties. Work should also focus 

on modifying the coagulation process to mitigate the formation of macrovoids and reduce 

the amount of residual liquid (including residual solvent) within the precursor fiber. In 

general, judicious and tedious process engineering will be required to reduce flaw 

populations and severity in and on the fibers to achieve high tensile strength. In all, the 

above mentioned suggestions should result in significant increases in the tensile strengths 

of the HCF.  
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CHAPTER 7. CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions 

In this dissertation, the development of HCF from precursor spun from a segmented 

arc spinneret was explored. This comprehensive study delved into the rationale behind the 

approach, including a thorough review of the literature and the potential advantages 

provided by HCF over traditional solid CF. Multiple hypotheses were formed as a result, 

which served as a guide for the research. The bulk of the dissertation focused upon the 

development of the precursor, oxidized, and carbonized HF. Several key process-structure-

property relationships were investigated and the results of this research are summarized 

here. 

In the beginning of the dissertation, an overview of CF was given, highlighting their 

unique utility in lightweight, high strength and modulus composite structures. The high 

specific tensile properties of CF over other traditional materials is key. Further advances 

in specific properties would herald in new capabilities in lightweight structures. The HCF 

concept would allow for more efficient utilization of the oriented carbon by avoiding the 

development of the skin-core structure commonly seen in commercial CF. Previous 

investigations into the development of HCF for structural applications were found to be 

few in number. Of the limited studies conducted on the development of structural HCF, 

their approaches relied on complex spinneret geometries, sacrificial polymers, or other 

technologies that would be inherently difficult to scale to the thousands of filaments scale 

needed for commercial production. Thus entered the proposed segmented arc spinneret 

approach, an inherently scalable technology. Traditionally used for melt or dry spinning, 

segmented arc spinnerets had, to the author’s knowledge, only been investigated by three 

authors for the air-gap solution spinning of PAN HF. Of those three authors, only one (a 

patent) described the formation of HCF from the segmented arc spinneret. Therefore, not 

only did the use of a segmented arc spinneret in solution spinning PAN warrant further 

research, but the development of structural HCF from such a technology represented a 

vastly unexplored research area with great potential for advancing the field of carbon fiber. 
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Several overarching hypotheses were formed to guide the research presented in this 

dissertation. First, it was hypothesized that a segmented arc spinneret could be used to 

produce HF precursors with dimensions and morphology appropriate to the 

production of high tensile property HCF. In studying the development of HF PAN 

precursors from a segmented arc spinneret, many conclusions related to this hypothesis 

were made. A primary, and important finding in support of the HCF concept, was the ability 

to spin multifilament, hollow PAN precursors from the segmented arc spinneret. The 

resulting HF precursors were relatively small in outer diameter, with concentric inner 

diameters, and round cross sections, representing some of the best hollow PAN precursors 

ever produced. They retained their hollow structure through the spinning and later thermal 

processing steps.  

Another important related finding was that hollow fibers spun into a 100% water 

coagulation bath unfortunately contained a high number of macrovoids. Macrovoids were 

reduced by utilizing a lower molecular weight polymer (TechPAN2) which enabled a 

higher solids content in the spinning solution compared to the higher molecular weight 

TechPAN1 polymer. Fibers spun utilizing a 20 wt.% TechPAN2/DMSO spinning solution 

had significantly reduced macrovoid content, smaller wall thicknesses (suggesting a denser 

structure), and greater percent open area. Additionally, it was found that a characteristic 

time-scale in the air gap existed which would produce a minimum fiber wall thickness. By 

increasing the initial godet speed and dope flow rate to keep a constant draw ratio, fibers 

were collected after varying residence times in the air gap, and results indicated that the 

healing of the 2Cs to produce a minimum wall thickness occurred at 0.33 s, independent 

of air gap (where a 6.5 and 8 mm air gap were studied).  

As well as containing a high number of macrovoids, fibers spun into a 100% water 

coagulation bath were found to contain a high amount of residual liquid, most likely 

composed of the spinning solvent and non-solvent, DMSO and water. Liquid was visible 

in the HF precursors when viewed under optical microscopy. The amount of residual liquid 

within the fiber was found to decrease when the DMSO concentration in the coagulation 

bath increased, from a 100% water bath (0% DMSO/water) up to a 30 wt.% DMSO/water 

bath. It is hypothesized that further increases in coagulation bath solvent content would 
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decrease the amount of residual liquid in the fiber, but this has yet to be studied. 

Additionally, the removal of residual liquid from the fiber via water washing was not 

possible under washing times typical to fiber spinning (minutes), and residual liquid was 

only found to be removed when fiber was chopped into small ~ 1 mm lengths. This result 

suggested that the exchange of liquid was hindered by a rapidly formed cuticle on the HF 

spun into 100% water.  

Finally, with regard to HF precursor development, it was found that both effective 

tensile strength and effective elastic modulus increased as a function of decreasing fiber 

outer diameter. The effective tensile properties trended toward those of a traditional solid 

precursor fiber, suggesting that with further reduction in precursor outer diameters, it is 

possible to meet or exceed the tensile properties of a corresponding solid fiber. This would 

be amplified when comparing fibers on a specific tensile property basis. Overall, the 

findings presented in this dissertation, including the formation of multifilament HF 

precursors with effective tensile properties approaching those of traditional solid 

precursors, support the hypothesis that a segmented arc spinneret could be used to produce 

HF precursors with dimensions and morphology appropriate to the production of high 

tensile property HCF.  

As the study moved beyond HF precursor development and into oxidation studies, it 

was hypothesized that with reduced wall thickness, one could arrive at an optimally 

oxidized fiber faster than traditional solid fiber via simultaneous oxidation from the 

exterior and interior of the HF. In evaluating the oxidized HF, it was found that HF 

precursors were able to oxidize from the interior and exterior. The interior oxidized skin 

thickness of the oxidized HF increased with the fiber’s percent open area (or lumen area). 

Results indicated that the ability to oxidize from the interior was limited to the amount of 

air (oxygen) contained within the lumen at the start of the oxidation process. The outer skin 

layer was found to consistently measure ~ 4 µm in thickness, while a percent open area of 

~ 50 % or more was found to achieve a similar 4 µm interior oxidized skin thickness. It 

was hypothesized that the oxidation of a HF with a ≤ 8 µm wall thickness would produce 

a homogeneous (non-skin-core) cross section.  
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EDX analysis of an oxidized HF fiber cross section was completed and revealed both 

the interior and exterior oxidized skin of the fiber to contain a higher concentration of 

oxygen compared to the core. Interesting behavior was observed around the macrovoid 

present in the oxidized HF subjected to EDX in that the skin of the fiber followed the 

perimeter of the macrovoid. This suggested that the macrovoid contained air (oxygen) 

which allowed oxidation to proceed about the macrovoid. Complementing the EDX 

analysis, spatially mapped ID/IG ratios in the Raman analysis of the oxidized HF cross 

section revealed the skin was more highly ordered and contained more sp2 hybridized 

carbon than the core structure. The skin persisted about the perimeter of fused filaments 

where direct air access occurred. Raman results were found to overlay with the optical 

image of the same fiber nearly perfectly. In all, the Raman data appeared to confirm the 

role of oxygen in the formation of polycyclic aromatic structures.  

Finally, density analyses of HF precursors with similar OD and varying percent open 

area were compared to that of a similar OD solid fiber. It was found that the HF with 55% 

open area densified at a rate 12.7% faster compared to the baseline solid fiber during 

oxidation processing. This increase in densification rate was attributed to the ability of the 

HF to oxidize from both the interior and exterior simultaneously. In addition, the HF 

densification rate was likely an underestimation given the entrainment of air in the porous 

baseline solid fiber which is hypothesized to have accelerated its densification rate. These 

results supported the hypothesis that with reduced wall thickness, here achieved by holding 

OD constant and increasing percent open area, one could arrive at an optimally oxidized 

fiber faster than traditional solid fiber via simultaneous oxidation from the exterior and 

interior of the HF. This represented a significant finding and suggested that with reduced 

wall thickness (shorter diffusion lengths), this could significantly reduce the time necessary 

for fiber oxidation – a current bottleneck in CF manufacture. 

The final sections of the dissertation focused on the development of HCF. An initial 

significant finding was that carbonization of oxidized HF resulted in HCF with small 

diameter, round cross section, and concentric wall thickness. No fiber collapse was 

observed. Effective densities for the resulting HCF were on the order of 1.1 g/cc, compared 

to 1.8 g/cc for traditional solid CF, nearly a 40% reduction. There were two primary 
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hypotheses guiding the HCF study, the first of which hypothesized that the true elastic 

modulus of the HCF would increase as a function of increasing percent open area (for 

a fixed outer diameter) due to the reduction in skin-core structure in the HCF. It was 

found that the spinning process had not yet matured to the point that it was possible to spin 

a HF with a targeted OD, much less a targeted OD and targeted percent open area. As a 

result, the next best option was to evaluate fibers with similar wall thicknesses and varying 

percent open area. It was shown earlier in the dissertation that skin-core structure was 

reduced with increasing percent open area. However, measurement of the true elastic 

modulus was complicated by differences in the draw ratios used to produce the HF 

precursors of varying dimensions. The draw the fiber experiences during spinning and 

thermal processing is highly impactful on the alignment of the molecular and crystalline 

structures, resulting in changes to elastic modulus in the precursor and resulting CF. 

Therefore, it was concluded that an optimal experimental design to test the hypothesis 

would require spinning HF precursors utilizing the same draw ratios, with the same 

targeted OD and varying percent open areas. It should be noted that separating fiber draw 

from final fiber dimensions is not trivial, as the two are largely interdependent. Increasing 

fiber draw leads to reduced fiber dimensions (diameters and/or percent open area) and vice 

versa. It is likely that multiple spinnerets with varying percent open area would need to be 

designed and machined and then extensive experimentation and process control developed 

to achieve HF precursors with same draw ratios, the same targeted OD and varying percent 

open areas. Evaluation of this hypothesis will become more possible as the spinning 

process continues to develop. 

While it was difficult to determine the effect of reduced skin-core structure on true 

elastic modulus of the HCF, comparison of the HCF with solid CF was completed. It was 

hypothesized that the resulting effective tensile strength of the HCF could conserve 

the tensile strength of a similar OD solid CF. To accurately compare the tensile 

performance of HCF with solid CF, a solid precursor fiber was spun with the same diameter 

as that of the HF precursor (~ 80 µm). After oxidation, the HF possessed a much smaller 

ratio of skin to core structure compared to the solid fiber. Following carbonization, the 

tensile properties of the HCF were vastly superior to those of the solid CF. The effective 

tensile strength, effective elastic modulus, and break strain of the HCF were 8x, 2x, and 4x 
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higher, respectively, than the solid CF. Further examination of the solid CF cross-sections 

revealed a significant increase in macrovoid size and concentration over those of the 

precursor. When observing the solid CF surfaces, large portions of material were missing 

from the fibers. It was hypothesized that the large, likely highly under-oxidized, core of 

the solid fiber excessively vaporized during carbonization, resulting in significant damage 

to the solid CF surfaces and internal structure which significantly reduced the tensile 

properties. In this case, the HF demonstrated significant advantages over the solid fiber, 

primarily due to its ability to oxidize from both the interior and exterior. This result 

supported the hypothesis that HCF could conserve (and in this case, exceed) the tensile 

strength of a similar OD solid CF.  

In conclusion, this dissertation has presented findings new to the field of carbon fiber. 

Multifilament PAN HF precursors were solution spun from a segmented arc spinneret. 

Fibers were round with concentric inner diameters. The effective tensile properties trended 

toward those of a traditional solid precursor fiber, suggesting that with further reduction in 

precursor outer diameters, it is possible to meet or exceed the tensile properties of a 

corresponding solid fiber. Oxidation of the HF precursors revealed their ability to oxidize 

from the interior and exterior. This increased oxidation ability allowed the HF to densify 

faster than a similar OD solid fiber. The data collected also supported the hypothesis that 

a ≥ 50 % open area HF with a ≤ 8 µm wall thickness would lead to an oxidized HF with a 

homogeneous (non-skin-core) morphology. Finally, a comparison of the HCF with a solid 

CF of the same outer diameter revealed the effective tensile strength, effective elastic 

modulus, and break strain of the HCF were 8x, 2x, and 4x higher, respectively, than the 

solid CF. In addition, the effective density of the HCF was 40% less than that of the solid 

CF. As a result, the specific effective properties of the HCF vastly outperformed those of 

the solid CF with the same outer diameter. In all, the hollow fibers produced in this study 

show great promise toward the improvement of carbon fiber specific tensile properties, and 

with further development could represent a new technological advancement in the carbon 

fiber field.  
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7.2 Future work 

A central challenge to HCF progress is the reduction of fiber dimensions. As 

described previously, reduction in HF precursor OD and wall thickness are hypothesized 

to permit fast, homogeneous oxidation of the HF wall and to improve the effective tensile 

properties of the resulting HCF. While there may be room to further increase fiber draw to 

reduce dimensions, significant reductions are likely to come from the use of a 2C spinneret 

with reduced capillary dimensions (within machinable limits). Design and machining of 

spinnerets with reduced 2C dimensions is not trivial and may require several iterations.  

Secondary to a reduction in fiber dimensions is the exploration of coagulation baths 

containing > 30 wt.% DMSO/water. It is hypothesized that increasing the solvent content 

in the coagulation bath toward a typical 70-80 wt.% DMSO/water concentration will 

reduce macrovoid formation and residual liquid content, which as a result, will improve 

tensile properties of the resulting HCF. Exploration of this hypothesis is more 

straightforward than the aforementioned dimension reduction as it can be performed 

utilizing existing spinnerets and requires only changing of the coagulation bath 

concentration. However, ensuring the formation of hollow filaments without collapse at 

high solvent bath concentrations may become more challenging as solvent contents 

increase.  

Last but not least, the HF precursor, oxidation, and carbonization processes all 

require further investigation and optimization. The work performed in this study could 

serve a basis for further exploration. For example, the oxidation and carbonization 

processes have only been performed on a static basis, without optimization of the time-

temperature-strain pathways. Significant advancements in flaw and defect mitigation and 

reduction must be undertaken to improve the HCF tensile properties. These are just a few 

examples of many, many experiments that may be undertaken to optimize the HCF 

concept.  

In conclusion, this dissertation opens the door on the spinning, oxidation, and 

carbonization of multifilament PAN hollow fibers derived from a segmented arc spinneret. 

This work has sought to answer several fundamental questions regarding the ability of HCF 

to advance the field of CF and, in the process, has uncovered new questions primed for 
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exploration. As Helen Keller once wrote, “A well-educated mind will always have more 

questions than answers”.  
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APPENDIX 

Table A - 1. Effective tensile strength, elastic modulus, and density for the HCF samples 
derived from 497A, B, C, and D, compared to literature values for large diameter CF 
from Chae et al., Mitsubishi, and standard diameter T700S CF. 

 

 

 

 

 

 

 

 

 

 

 



 146 

BIBLIOGRAPHY 

Arbab, S. and A. Zeinolebadi, A procedure for precise determination of thermal 
stabilization reactions in carbon fiber precursors. Polymer Degradation and Stability, 2013. 
98(12): p. 2537-2545. 
 
Bailey, J. and A. Clarke, Carbon fibre formation—the oxidation treatment. Nature, 1971. 
234(5331): p. 529-531. 
 
Balasubramanian, M., M.K. Jain, and A.S. Abhiraman, Evolution of structure and 
properties in contrinuous carbon fiber formation, in Biennial Conference on Carbon. 1985: 
England. p. 312-313. 
 
Barnet, F.R. and M.K. Norr, A three-dimensional structural model for a high modulus pan-
based carbon fibre. Composites, 1976. 7(2): p. 93-99. 
 
Bennett, S.C., D.J. Johnson, and W. Johnson, Strength-structure relationships in PAN-
based carbon fibres. Journal of Materials Science, 1983. 18(11): p. 3337-3347. 
 
Bhat, G., Structure and properties of high-performance fibers. 2016: Woodhead 
Publishing. 
 
Blanco, C., S. Lu, S. Appleyard, and B. Rand, The stabilisation of carbon fibres studied by 
micro-thermal analysis. Carbon, 2003. 41(1): p. 165-171. 
 
Chae, H.G., M.L. Minus, A. Rasheed, and S. Kumar, Stabilization and carbonization of gel 
spun polyacrylonitrile/single wall carbon nanotube composite fibers. Polymer, 2007. 
48(13): p. 3781-3789. 
 
Chen, L., L. Hao, S. Liu, G. Ding, X. Sun, W. Zhang, F. Li, W. Jiao, F. Yang, Z. Xu, R. 
Wang, and X. He, Modulus distribution in polyacrylonitrile-based carbon fiber 
monofilaments. Carbon, 2020. 157: p. 47-54. 
 
Choi, J., S.-S. Kim, Y.-S. Chung, and S. Lee, Evolution of structural inhomogeneity in 
polyacrylonitrile fibers by oxidative stabilization. Carbon, 2020. 
 
Choi, Y.H., S. Han, and C.H. Choi, Preparation method for hollow carbon fiber. U.S. Patent 
9,109,305. August 18, 2015. 
 
Chuah, H.H. and B.T.A. Chang, Crystal orientation function of poly(trimethylene 
terephthalate) by wide-angle x-ray diffraction. Polymer Bulletin, 2001. 46(4): p. 307-313. 
 
Clarke, A. and J. Bailey, Oxidation of acrylic fibres for carbon fibre formation. Nature, 
1973. 243(5403): p. 146. 
 



 

 
 

147 

Colvin, B.G. and P. Storr, The crystal structure of polyacrylonitrile. European Polymer 
Journal, 1974. 10(4): p. 337-340. 
 
Confidential carbon fiber consultant, Personal Communication. 2021. 
 
Cooper, G.A. and R.M. Mayer, The strength of carbon fibres. Journal of Materials Science, 
1971. 6(1): p. 60-67. 
 
Craig, J.P., J.P. Knudsen, and V.F. Holland, Characterization of acrylic fiber structure. 
Textile Research Journal, 1962. 32(6): p. 435-448. 
 
Damodaran, S., P. Desai, and A.S. Abhiraman, Chemical and physical aspects of the 
formation of carbon fibres from PAN-based precursors. The Journal of The Textile 
Institute, 2008. 81(4): p. 384-420. 
 
Das, S., J. Warren, D. West, and S.M. Schexnayder, Global carbon fiber composites supply 
chain competitiveness analysis. 2016, Oak Ridge National Laboratory; The University of 
Tennessee, Knoxville. 
 
De Rovere, A., B.P. Grady, and R.L. Shambaugh, The influence of processing parameters 
on the properties of melt-spun polypropylene hollow fibers. Journal of Applied Polymer 
Science, 2002. 83(8): p. 1759-1772. 
 
Devasia, R., C.P.R. Nair, P. Sivadasan, B.K. Katherine, and K.N. Ninan, Cyclization 
reaction in poly(acrylonitrile/itaconic acid) copolymer: An isothermal differential scanning 
calorimetry kinetic study. Journal of Applied Polymer Science, 2003. 88(4): p. 915-920. 
 
Edrington, S., The Limits & Effects of Draw on Properties and Morphology of Pan-Based 
Precursor and the Resultant Carbon Fibers. 2017. 
 
Ferguson, J., Apparatus and method for spinning hollow polymeric fibres. U.S. Patent 
6,143,411. November 7, 2000. 
 
Fitzer, E. and W. Metzler, Hollow carbon fibres. 1990. 
 
Frank, E., L.M. Steudle, D. Ingildeev, J.M. Spörl, and M.R. Buchmeiser, Carbon fibers: 
precursor systems, processing, structure, and properties. Angewandte Chemie International 
Edition, 2014. 53(21): p. 5262-5298. 
 
Friedlander, H.N., L.H. Peebles, J. Brandrup, and J.R. Kirby, On the Chromophore of 
Polyacrylonitrile. VI. Mechanism of Color Formation in Polyacrylonitrile. 
Macromolecules, 1968. 1(1): p. 79-86. 
 
Gandhi, S. and R.E. Lyon, Health hazards of combustion products from aircraft composite 
materials. 1998, Federal Aviation Administration Technical Center: Atlantic City, NJ. p. 
1-29. 



 

 
 

148 

 
Ge, Y., Z. Fu, Y. Deng, M. Zhang, and H. Zhang, The effects of chemical reaction on the 
microstructure and mechanical properties of polyacrylonitrile (PAN) precursor fibers. 
Journal of Materials Science, 2019. 54(19): p. 12592-12604. 
 
Griffith, A.A., The Phenomena of Rupture and Flow in Solids. Philosophical Transactions 
of the Royal Society of London, Series A: Physical Sciences and Engineering, 1921. 221: 
p. 163 - 198. 
 
Grobe, V. and K. Meyer, Faserforschung und Textiltechnik, 1959. 10: p. 214-224. 
 
Grove, D., P. Desai, and A.S. Abhiraman, Exploratory experiements in the conversion of 
plasticized melt spun PAN-based precursors to carbon fibers. Carbon, 1988. 26(3): p. 403 
- 411. 
 
Gu, Y., M. Li, J. Wang, and Z. Zhang, Characterization of the interphase in carbon 
fiber/polymer composites using a nanoscale dynamic mechanical imaging technique. 
Carbon, 2010. 48(11): p. 3229-3235. 
 
Gulgunje, P.V., B.A. Newcomb, K. Gupta, H.G. Chae, T.K. Tsotsis, and S. Kumar, Low-
density and high-modulus carbon fibers from polyacrylonitrile with honeycomb structure. 
Carbon, 2015. 95: p. 710-714. 
 
Guo, X., Y. Cheng, Z. Fan, Z. Feng, L. He, R. Liu, and J. Xu, New insights into orientation 
distribution of high strength polyacrylonitrile-based carbon fibers with skin-core structure. 
Carbon, 2016. 109: p. 444-452. 
 
Gupta, A. and I. Harrison, New aspects in the oxidative stabilization of PAN-based carbon 
fibers. Carbon, 1996. 34(11): p. 1427-1445. 
 
Gupta, A.K., D.K. Paliwal, and P. Bajaj, Acrylic Precursors for Carbon Fibers. Polymer 
Reviews, 1991. 31(1): p. 1-89. 
 
Hao, J.H., H. Dai, P. Yang, and Z. Wang, Spinning of cellulose acetate hollow fiber by 
dry-wet technique of 3C-shaped spinneret. Journal of Applied Polymer Science, 1996. 
62(1): p. 129-133. 
 
Hoffman, W., W. Hurley, P. Liu, and T. Owens, The surface topography of non-shear 
treated pitch and PAN carbon fibers as viewed by the STM. Journal of materials research, 
1991. 6(8): p. 1685-1694. 
 
Houtz, R., "Orlon" Acrylic Fiber: Chemistry and Properties. Textile Research Journal, 
1950. 20(11): p. 786-801. 
 
Huang, Y. and R.J. Young, Effect of Fibre Microstructure Upon the Modulus of PAN- and 
Pitch-Based Carbon Fibres. Carbon, 1995. 33(2): p. 91-107. 



 

 
 

149 

 
Jagtoyen, M., F. Derbyshire, S. Rimmer, and R. Rathbone, Relationship between 
reflectance and structure of high surface area carbons. Fuel, 1995. 74(4): p. 610-614. 
 
Jain, M.K. and A.S. Abhiraman, Conversion of acrylonitrile-based precursor fibres to 
carbon fibres. Journal of Materials Science, 1987. 22(1): p. 278-300. 
 
Jang, D., M.E. Lee, J. Choi, S.Y. Cho, and S. Lee, Strategies for the production of PAN-
Based carbon fibers with high tensile strength. Carbon, 2021. 
 
Johnson, D. and C. Tyson, The fine structure of graphitized fibres. Journal of Physics D: 
Applied Physics, 1969. 2(6): p. 787. 
 
Johnson, J.W. and D.J. Thorne, Effect of internal polymer flaws on strength of carbon 
fibres prepared from an acrylic precursor. Carbon, 1969. 7(6): p. 659-661. 
 
Jones, W. and J. Johnson, Intrinsic strength and non-Hookean behaviour of carbon fibres. 
Carbon, 1971. 9(5): p. 645-655. 
 
Ju, A., S. Hou, Y. Pan, Y. Wang, Y. Zhu, and H. Chen, Preparation of hollow carbon 
submicro-fibers with controllable wall thicknesses from acrylonitrile copolymer. Textile 
Research Journal, 2017. 88(16): p. 1893-1901. 
 
Karacan, I. and G. Erdoğan, A study on structural characterization of thermal stabilization 
stage of polyacrylonitrile fibers prior to carbonization. Fibers and Polymers, 2012. 13(3): 
p. 329-338. 
 
Kaur, J., K. Millington, and S. Smith, Producing high-quality precursor polymer and fibers 
to achieve theoretical strength in carbon fibers: A review. Journal of Applied Polymer 
Science, 2016. 133(38). 
 
Kikuma, J., T. Konishi, and T. Sekine, Polymer analysis by Auger electron spectroscopy 
using sectioning and cryogenic cooling. Journal of electron spectroscopy and related 
phenomena, 1994. 69(2): p. 141-147. 
 
Kikuma, J., T. Warwick, H.-J. Shin, J. Zhang, and B.P. Tonner, Chemical state analysis of 
heat-treated polyacrylonitrile fiber using soft X-ray spectromicroscopy. Journal of electron 
spectroscopy and related phenomena, 1998. 94(3): p. 271-278. 
 
Kim, P., L. Shi, A. Majumdar, and P.L. McEuen, Thermal transport measurements of 
individual multiwalled nanotubes. Phys Rev Lett, 2001. 87(21): p. 215502. 
 
Kling, S. and T. Czigany, A comparative analysis of hollow and solid glass fibers. Textile 
Research Journal, 2013. 83(16): p. 1764-1772. 
 



 

 
 

150 

Knudsen, J.P., The influence of coagulation variables on the structure and physical 
properties of an acrylic fiber. Textile Research Journal, 1963. 33: p. 13. 
 
Kobayashi, T., K. Sumiya, Y. Fujii, M. Fujie, T. Takahagi, and K. Tashiro, Stress 
concentration in carbon fiber revealed by the quantitative analysis of X-ray crystallite 
modulus and Raman peak shift evaluated for the variously-treated monofilaments under 
constant tensile forces. Carbon, 2013. 53: p. 29-37. 
 
Kong, L., H. Liu, W. Cao, and L. Xu, PAN fiber diameter effect on the structure of PAN-
based carbon fibers. Fibers and Polymers, 2015. 15(12): p. 2480-2488. 
 
Kumar, S., D.P. Anderson, and A.S. Crasto, Carbon fibre compressive strength and its 
dependence on structure and morphology. Journal of Materials Science, 1993. 28(2): p. 
423-439. 
 
Law, S.J. and S.K. Mukhopadhyay, Investigation of Wet-Spun Acrylic Fiber Morphology 
by Membrane Technology Techniques. Journal of Applied Polymer Science, 1996. 62: p. 
32-47. 
 
Layden, G., Retrograde core formation during oxidation of polyacrylonitrile filaments. 
Carbon, 1972. 10(1): p. 59-63. 
 
Lee, J.H., J.-U. Jin, S. Park, D. Choi, N.-H. You, Y. Chung, B.-C. Ku, and H. Yeo, Melt 
processable polyacrylonitrile copolymer precursors for carbon fibers: Rheological, 
thermal, and mechanical properties. Journal of Industrial and Engineering Chemistry, 
2019. 71: p. 112-118. 
 
Lee, M.S., T.H. Oh, S.Y. Kim, and H.J. Shim, Deformation kinetics of polypropylene 
hollow fibers in a continuous drawing process. Journal of Applied Polymer Science, 1999. 
74(7): p. 1836-1845. 
 
Liu, F., H. Wang, L. Xue, L. Fan, and Z. Zhu, Effect of microstructure on the mechanical 
properties of PAN-based carbon fibers during high-temperature graphitization. Journal of 
Materials Science, 2008. 43(12): p. 4316-4322. 
 
Liu, J., Z. Yue, and H. Fong, Continuous nanoscale carbon fibers with superior mechanical 
strength. Small, 2009. 5(5): p. 536-42. 
 
Liu, S., K. Han, L. Chen, Y. Zheng, and M. Yu, Structure and properties of partially 
cyclized polyacrylonitrile-based carbon fiber-precursor fiber prepared by melt-spun with 
ionic liquid as the medium of processing. Polymer Engineering & Science, 2015. 55(12): 
p. 2722-2728. 
 
Liu, X., C. Zhu, J. Guo, Q. Liu, H. Dong, Y. Gu, R. Liu, N. Zhao, Z. Zhang, and J. Xu, 
Nanoscale dynamic mechanical imaging of the skin–core difference: From PAN precursors 
to carbon fibers. Materials Letters, 2014. 128: p. 417-420. 



 

 
 

151 

 
Liu, Y., H.G. Chae, Y.H. Choi, and S. Kumar, Preparation of low density hollow carbon 
fibers by bi-component gel-spinning method. Journal of Materials Science, 2015. 50(10): 
p. 3614-3621. 
 
Loidl, D., O. Paris, H. Rennhofer, M. Müller, and H. Peterlik, Skin-core structure and 
bimodal Weibull distribution of the strength of carbon fibers. Carbon, 2007. 45(14): p. 
2801-2805. 
 
Longming, W., Y. Yang, and X. Lianghua, Formation mechanism of PAN hollow fiber 
prepared by wet spinning process. China Synthetic Fiber Industry, 2012. 35(1): p. 26-30. 
 
Lu, J., W. Li, H. Kang, L. Feng, J. Xu, and R. Liu, Microstructure and properties of 
polyacrylonitrile based carbon fibers. Polymer Testing, 2020. 81: p. 106267. 
 
Lv, M.-Y., H.-Y. Ge, and J. Chen, Study on the chemical structure and skin-core structure 
of polyacrylonitrile-based fibers during stabilization. Journal of Polymer Research, 2008. 
16(5): p. 513-517. 
 
Mahmood, S.F., B.L. Batchelor, M. Jung, K. Park, W.E. Voit, B.M. Novak, and D. Yang, 
Study of a melt processable polymer precursor for carbon fiber. Carbon Letters, 2019. 
29(6): p. 605-612. 
 
Masson, J., Acrylic fiber technology and applications. 1995: CRC Press. 
 
Mikolajczyk, T., S. Rabiej, G. Szparaga, M. Boguń, A. Fraczek-Szczypta, and S. 
Błażewicz, Strength properties of polyacrylonitrile (PAN) fibres modified with carbon 
nanotubes with respect to their porous and supramolecular structure. Fibres & Textiles in 
Eastern Europe, 2009. 17(6): p. 13-20. 
 
Minus, M. and S. Kumar, The processing, properties, and structure of carbon fibers. Jom, 
2005. 57(2): p. 52-58. 
 
Moreton, R., W. Watt, and W. Johnson, Carbon fibres of high strength and high breaking 
strain. Nature, 1967. 213(5077): p. 690-691. 
 
Morgan, P., Carbon fibers and their composites. 2005, Boca Raton, LA: Taylor & Francis 
Group. 
 
Morita, K., Y. Murata, A. Ishitani, K. Murayama, T. Ono, and A. Nakajima, 
Characterization of commercially available PAN (polyacrylonitri1e)-based carbon fibers. 
Pure and Applied Chemistry, 1986. 58(3): p. 455-468. 
 
Morris, E.A., R. Sarabia-Riquelme, N. Hochstrasser, J. Burgess, A.E. Oberlink, D.L. 
Eaton, and M.C. Weisenberger, Early development of multifilament polyacrylonitrile-



 

 
 

152 

derived structural hollow carbon fibers from a segmented arc spinneret. Carbon, 2021. 178: 
p. 223-232. 
 
Morris, E.A. and M.C. Weisenberger, Solution Spinning of PAN-Based Polymers for 
Carbon Fiber Precursors, in Polymer Precursor-Derived Carbon, A.K. Naskar and W.P. 
Hoffman, Editors. 2014, ACS Books. p. 189-213. 
 
Morris, E.A., M.C. Weisenberger, M.G. Abdallah, F. Vautard, H. Grappe, S. Ozcan, F.L. 
Paulauskas, C. Eberle, D. Jackson, S.J. Mecham, and A.K. Naskar, High performance 
carbon fibers from very high molecular weight polyacrylonitrile precursors. Carbon, 2016. 
101: p. 245-252. 
 
Morris, E.A., M.C. Weisenberger, and G.W. Rice, Properties of PAN fibers solution spun 
into a chilled coagulation bath at high solvent compositions. Fibers, 2015. 3(4): p. 560-
574. 
 
Noland, R.L. and T.D. O'Brien, Hollow carbon fibers. U.S. Patent 5,338,605. August 16, 
1994. 
 
Nunna, S., C. Creighton, B.L. Fox, M. Naebe, M. Maghe, M.J. Tobin, K. Bambery, J. 
Vongsvivut, and N. Hameed, The effect of thermally induced chemical transformations on 
the structure and properties of carbon fibre precursors. Journal of materials chemistry A, 
2017. 5(16): p. 7372-7382. 
 
Nunna, S., C. Creighton, N. Hameed, M. Naebe, L.C. Henderson, M. Setty, and B.L. Fox, 
Radial structure and property relationship in the thermal stabilization of PAN precursor 
fibres. Polymer Testing, 2017. 59: p. 203-211. 
 
Nunna, S., M. Setty, and M. Naebe, Formation of skin-core in carbon fibre processing: A 
defect or an effect? Express Polymer Letters, 2019. 13(2): p. 146-158. 
 
Ogawa, H. and K. Saito, Oxidation behavior of polyacrylonitrile fibers evaluated by new 
stabilization index. Carbon, 1995. 33(6): p. 783-788. 
 
Ouyang, Q., L. Cheng, H. Wang, and K. Li, Mechanism and kinetics of the stabilization 
reactions of itaconic acid-modified polyacrylonitrile. Polymer Degradation and Stability, 
2008. 93(8): p. 1415-1421. 
 
Pandey, G.C. and A. Kumar, Determination of density of oxidized fiber by IR 
spectroscopy. Polymer testing, 2002. 21(4): p. 397-401. 
 
Rahaman, M.S.A., A.F. Ismail, and A. Mustafa, A review of heat treatment on 
polyacrylonitrile fiber. Polymer Degradation and Stability, 2007. 92(8): p. 1421-1432. 
 
Rajalingam, P. and G. Radhakrishxan, Polyacrylonitrile Precursor for Carbon Fibers. 
Journal of Macromolecular Science, Part C: Polymer Reviews, 1991. 31(2-3): p. 301-310. 



 

 
 

153 

 
Reynolds, W.N. and J.V. Sharp, Crystal shear limit to carbon fibre strength. Carbon, 1974. 
12(2): p. 103-110. 
 
Rizzo, P., F. Auriemma, G. Guerra, V. Petraccone, and P. Corradini, Conformational 
disorder in the pseudohexagonal form of atactic polyacrylonitrile. Macromolecules, 1996. 
29(27): p. 8852-8861. 
 
Rwei, S.-P., Formation of hollow fibers in the melt-spinning process. Journal of Applied 
Polymer Science, 2001. 82(12): p. 2896-2902. 
 
Sauder, C., J. Lamon, and R. Pailler, Thermomechanical properties of carbon fibres at high 
temperatures (up to 2000 C). Composites Science and Technology, 2002. 62(4): p. 499-
504. 
 
Sauder, C., J. Lamon, and R. Pailler, The tensile behavior of carbon fibers at high 
temperatures up to 2400 C. Carbon, 2004. 42(4): p. 715-725. 
 
Sha, Y., W. Liu, Y. Li, and W. Cao, Formation Mechanism of Skin-Core Chemical 
Structure within Stabilized Polyacrylonitrile Monofilaments. Nanoscale Res Lett, 2019. 
14(1): p. 93. 
 
Shim, H.B., J.I. Lee, H.S. Kim, Y.J. Choe, and B.S. Rhee. On hollow and C-type carbon 
fiber reinforced composite materials. in International Conference on Advanced Composite 
Materials (ICACM). 1993. 
 
Shinmen, Y., N. Hirota, and T. Nii, Carbon-fiber-precursor fiber bundle, carbon fiber 
bundle, and uses thereof. U.S. Patent 10,233,569. March 19, 2019. 
 
Sivek, J. Creative commons carbon allotropes. 2015  [cited 2021; CC BY-SA 4.0]. 
Available from: https://commons.wikimedia.org/wiki/File:Carbon_allotropes.svg. 
 
Standage, A.E. and R. Prescott, High Elastic Modulus Carbon Fibre. Nature, 1966. 
211(5045): p. 169-169. 
 
Stoyanov, A., Influence of the content of polymer with different molecular weights in 
spinning solutions on properties of acrylic fibers. Journal of Applied Polymer Science, 
1982. 27(1): p. 235-238. 
 
Subbiah, T., G.S. Bhat, R.W. Tock, S. Parameswaran, and S.S. Ramkumar, 
Electrospinning of nanofibers. Journal of Applied Polymer Science, 2005. 96(2): p. 557-
569. 
 
Sui, X., Z. Xu, C. Hu, L. Chen, L. Liu, L. Kuang, M. Ma, L. Zhao, J. Li, and H. Deng, 
Microstructure evolution in γ-irradiated carbon fibers revealed by a hierarchical model and 



 

 
 

154 

Raman spectra from fiber section. Composites Science and Technology, 2016. 130: p. 46-
52. 
 
Sun, L., M. Li, L. Shang, L. Xiao, Y. Liu, M. Zhang, and Y. Ao, The influence of oxygen 
on skin-core structure of polyacrylonitrile-based precursor fibers. Polymer, 2020: p. 
122516. 
 
Sun, T., Y. Hou, and H. Wang, Effect of atmospheres on stabilization of polyacrylonitrile 
fibers. Journal of Macromolecular Science, Part A, 2009. 46(8): p. 807-815. 
 
Sun, T., Y. Hou, and H. Wang, Mass DSC/TG and IR ascertained structure and color 
change of polyacrylonitrile fibers in air/nitrogen during thermal stabilization. Journal of 
Applied Polymer Science, 2010. 118(1): p. 462-468. 
 
Takahashi, M., Y. Nukushina, and S. Kosugi, Effect of fiber-forming conditions on the 
microstructure of acrylic fiber. Textile research journal, 1964. 34(2): p. 87-97. 
 
Takaku, A., T. Hashimoto, and T. Miyoshi, Tensile properties of carbon fibers from acrylic 
fibers stabilized under isothermal conditions. Journal of Applied Polymer Science, 1985. 
30(4): p. 1565-1571. 
 
Thewlis, R., The spinning of hollow polyacrylonitrile fibres as a precursor for the 
formation of hollow carbon fibres. 1998, University of Strathclyde. 
 
Thorne, D. and J. Marjoram, Optical properties and orientation of thermally treated acrylic 
fibers. Journal of Applied Polymer Science, 1972. 16(6): p. 1357-1366. 
 
Toray Composite Materials America Inc. T700S standard modulus carbon fiber. 2020  
[cited 2020 November 19]; Available from: https://www.toraycma.com/wp-
content/uploads/T700S-Technical-Data-Sheet-1.pdf.pdf. 
 
Tsai, J.-S. and W.-C. Su, Control of cross-section shape for polyacrylonitrile fibre during 
wet-spinning. Journal of Materials Science Letters, 1991. 10(21): p. 1253-1256. 
 
Turner, W. and F. Johnson, The pyrolysis of acrylic fiber in inert atmosphere. I. Reactions 
up to 400° C. Journal of Applied Polymer Science, 1969. 13(10): p. 2073-2084. 
 
Wang, C.Y., M.W. Li, Y.L. Wu, and C.T. Guo, Preparation and microstructure of hollow 
mesophase pitch-based carbon fibers. Carbon, 1998. 36(12): p. 1749-1754. 
 
Wang, M., Y. Xiao, W. Cao, N. Jiao, W. Chen, and L. Xu, SAXS and WAXD study of 
periodical structure for polyacrylonitrile fiber during coagulation. Polymers for Advanced 
Technologies, 2015. 26(2): p. 136-141. 
 
Wang, P., Aspects on prestretching of PAN precursor: Shrinkage and thermal behavior. 
Journal of applied polymer science, 1998. 67(7): p. 1185-1190. 



 

 
 

155 

 
Warner, S.B., L.H. Peebles, and D.R. Uhlmann, Oxidative stabilization of acrylic fibres. 
Journal of Materials Science, 1979. 14(3): p. 556-564. 
 
Watt, W., Pyrolysis of polyacrylonitrile. Nature, 1969. 222(5190): p. 265-266. 
 
Watt, W. and W. Johnson, Mechanism of oxidisation of polyacrylonitrile fibres. Nature, 
1975. 257(5523): p. 210-212. 
 
Wei, H.Q., X.D. Suo, C.X. Lu, and Y.D. Liu, A comparison of coagulation and gelation 
on the structures and stabilization behaviors of polyacrylonitrile fibers. Journal of Applied 
Polymer Science, 2020. 137(19): p. 48671. 
 
Weisenberger, M. and A. Morris. Precursor processing development for low cost, high 
strength carbon fiber for composite overwrapped pressure vessel applications. US 
Department of Energy 2018; Available from: 
https://www.hydrogen.energy.gov/pdfs/review18/st146_weisenberger_2018_p.pdf. 
 
Xiao, S., B. Wang, C. Zhao, L. Xu, and B. Chen, Influence of oxygen on the stabilization 
reaction of polyacrylonitrile fibers. Journal of applied polymer science, 2013. 127(3): p. 
2332-2338. 
 
Xue, Y., J. Liu, F. Lian, and J. Liang, Effect of the oxygen-induced modification of 
polyacrylonitrile fibers during thermal-oxidative stabilization on the radial 
microcrystalline structure of the resulting carbon fibers. Polymer Degradation and 
Stability, 2013. 98(11): p. 2259-2267. 
 
Yang, F., W. Liu, M. Yi, L. Ran, Y. Ge, and K. Peng, Effect of high temperature treatment 
on the microstructure and elastoplastic properties of polyacrylonitrile-based carbon fibers. 
Carbon, 2020. 158: p. 783-794. 
 
Yu, M.-J., C.-G. Wang, Y.-J. Bai, M.-X. Ji, and Y. Xu, SEM and OM study on the 
microstructure of oxidative stabilized polyacrylonitrile fibers. Polymer Bulletin, 2007. 
58(5-6): p. 933-940. 
 
Yu, M.-J., C.-G. Wang, Y.-J. Bai, Y. Xu, and B. Zhu, Effect of oxygen uptake and 
aromatization on the skin–core morphology during the oxidative stabilization of 
polyacrylonitrile fibers. Journal of Applied Polymer Science, 2008. 107(3): p. 1939-1945. 
 
Zhang, X., Y. Wen, Y. Yang, and L. Liu, Effect of air-gap distance on the formation and 
characterization of hollow polyacrylonitrile (PAN) nascent fibers. Journal of 
Macromolecular Science, Part B, 2008. 47(6): p. 1039-1049. 
 
Zussman, E., X. Chen, W. Ding, L. Calabri, D.A. Dikin, J.P. Quintana, and R.S. Ruoff, 
Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers. 
Carbon, 2005. 43(10): p. 2175-2185. 



 156 

VITA 
Elizabeth Ashley Morris 

 
EDUCATION  
M.Sc., Mechanical Engineering, University of Kentucky, Lexington, Kentucky, 2011. 
Thesis: “Bench-Scale, Multifilament Spinning Conditions Effect on the Structure and 
Properties of Polyacrylonitrile Precursor Fiber”, Advisor: Dr. Rodney Andrews. 
  
B.Sc., Mechanical Engineering, University of Kentucky, Lexington, Kentucky, 2009. 
 
SCHOLASTIC HONORS 
University of Kentucky Presidential Scholarship (four years full tuition) awarded in 2004 
University of Kentucky Graduate Research Assistantship (full tuition plus stipend) from 
2009-2011 
 
PROFFESSIONAL POSITIONS 
2019-present Secretary-Treasurer, American Carbon Society 
 
2016-present Principal Research Engineer, Center for Applied Energy Research, 

University of Kentucky 
 
2015-2015 Interim Director of Fiber Development, Bolt Threads, Inc., Emeryville, CA 
 
2014-2016  Senior Research Engineer, Center for Applied Energy Research, University 

of Kentucky       
 
2011-2014 Engineer Associate II, Center for Applied Energy Research, University of 

Kentucky 
 
PUBLICATIONS 
1. Morris, E.A., R. Sarabia-Riquelme, N. Hochstrasser, J. Burgess, A.E. Oberlink, D.L. 

Eaton, and M.C. Weisenberger, Early development of multifilament polyacrylonitrile-
derived structural hollow carbon fibers from a segmented arc spinneret. Carbon, 2021. 
178: p. 223-232. 

2. Salim, N.V., S.E. Edrington, E.A. Morris, and M.C. Weisenberger, Analyses of closed 
porosity of carbon fiber precursors using a robust thermoporosimetric method. 
Polymer Testing, 2018. 67: p. 151-158. 

3. Sarabia-Riquelme, R., J. Craddock, E.A. Morris, D. Eaton, R. Andrews, J. Anthony, 
and M.C. Weisenberger, Simple, low-cost, water-processable n -type thermoelectric 
composite films from multiwall carbon nanotubes in polyvinylpyrrolidone. Synthetic 
Metals, 2017. 225: p. 86-92. 

4. Morris, E.A., M.C. Weisenberger, M.G. Abdallah, F. Vautard, H. Grappe, S. Ozcan, 
F.L. Paulauskas, C. Eberle, D. Jackson, S.J. Mecham, and A.K. Naskar, High 
performance carbon fibers from very high molecular weight polyacrylonitrile 
precursors. Carbon, 2016. 101: p. 245-252.   



 

 
 

157 

5. Morris, E.A., M.C. Weisenberger, and G.W. Rice, Properties of PAN fibers solution 
spun into a chilled coagulation bath at high solvent compositions. Fibers, 2015. 3(4): 
p. 560-574. 

6. Morris, E.A., M.C. Weisenberger, S.B. Bradley, M.G. Abdallah, S.J. Mecham, P. 
Pisipati, and J.E. McGrath, Synthesis, spinning, and properties of very high molecular 
weight poly(acrylonitrile-co-methyl acrylate) for high performance precursors for 
carbon fiber. Polymer, 2014. 55(25): p. 6471-6482.    

 
BOOK CHAPTERS 

1. Morris, E.A. and M.C. Weisenberger, Solution Spinning of PAN-Based Polymers 
for Carbon Fiber Precursors, in Polymer Precursor-Derived Carbon, A.K. Naskar 
and W.P. Hoffman, Editors. 2014, ACS Books. p. 189-213. 

 
PATENT APPLICATIONS 

1. Morris, E.A., Weisenberger, M.C., Rantell, T., Abdallah, M. Method for Hybrid 
Dry-Jet Gel Spinning and Fiber Produced by that Method. US Patent Application 
No. 13/653877 filed on Oct. 17, 2012. 

 


	The Development of Structural Hollow Carbon Fibers from a Multifilament Segmented Arc Spinneret: Precursors, Oxidation, and Carbonization
	Recommended Citation

	TITLE PAGE
	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1. INTRODUCTION
	1.1 Overview of carbon fibers
	1.1.1 Carbon fiber precursors
	1.1.2 Oxidative stabilization
	1.1.3 Carbonization
	1.1.4 Mechanical properties and morphology
	1.1.4.1 Skin-core structure
	1.1.4.2 Fiber strength impact
	1.1.4.3 Fiber modulus impact


	1.2 References

	CHAPTER 2. THE HOLLOW FIBER APPROACH
	2.1 Overview of hollow fibers
	2.2 Previous research
	2.2.1 Electrospinning
	2.2.2 Melt spinning
	2.2.3 Solution spinning
	2.2.3.1 Bore fluid approach
	2.2.3.2 Bicomponent spinning approach
	2.2.3.3 Segmented arc spinneret approach


	2.3 Objectives
	2.4 References

	CHAPTER 3. EXPERIMENTAL METHODS AND CHARACTERIZATION TECHNIQUES
	3.1 Lyophilization (freeze drying)
	3.2 Fiber sectioning
	3.3 Optical microscopy
	3.4 Scanning electron microscope (SEM)
	3.5 Focused ion beam
	3.6 Energy-dispersive X-ray spectroscopy (EDX)
	3.7 Density measurements
	3.8 Mechanical characterization
	3.9 Wide angle X-ray scattering (WAXS)
	3.10 References

	CHAPTER 4. PROCESSING AND PROPERTIES OF HOLLOW PAN FIBER PRECURSORS FROM A SEGMENTED ARC SPINNERET
	4.1 Introduction
	4.2 Experimental
	4.2.1 Materials
	4.2.2 Dope preparation
	4.2.3 Spinneret design
	4.2.4 Solution spinning apparatus
	4.2.5 Rheological analysis
	4.2.6 Thermogravimetric analysis (TGA)
	4.2.7 Differential scanning calorimetry (DSC)

	4.3 Results and discussion
	4.3.1 Initial coagulation trials
	4.3.2 Hollow fiber drawing process
	4.3.3 Hollow fiber morphology
	4.3.4 Rheological and thermal analysis
	4.3.5 Wall thickness and characteristic time-scale in the air gap
	4.3.6 Residual liquid content
	4.3.7 Solvent-assisted coagulation
	4.3.8 Tensile properties

	4.4 Conclusions
	4.5 Future work
	4.6 References

	CHAPTER 5. THE OXIDATION OF HOLLOW PAN PRECURSOR FIBERS
	5.1 Introduction
	5.2 Experimental
	5.2.1 Materials
	5.2.2 Thermal treatment
	5.2.3 Raman spectroscopy

	5.3 Results and discussion
	5.3.1 Optical imaging analysis of evolution of skin-core contrast
	5.3.2 Spectroscopy
	5.3.3 Percent open area and internal oxidation
	5.3.4 Oxidized HF density

	5.4 Conclusions
	5.5 Future work
	5.6 References

	CHAPTER 6. THE CARBONIZATION OF HOLLOW PAN-DERIVED FIBERS AND THEIR COMPARISON WITH SOLID CARBON FIBERS
	6.1 Introduction
	6.2 Experimental
	6.2.1 Materials
	6.2.2 Oxidation
	6.2.3 Carbonization

	6.3 Results and discussion
	6.3.1 Initial analyses of hollow carbon fibers
	6.3.1.1 Morphology and dimensions
	6.3.1.2 Structural parameters and crystalline orientation
	6.3.1.3 Tensile properties

	6.3.2 Impact of percent open area on HCF true elastic modulus
	6.3.2.1 Fiber processing
	6.3.2.2 Hollow carbon fiber tensile properties
	6.3.2.3 Evaluation of experimental parameters

	6.3.3 Comparison of hollow and solid carbon fibers
	6.3.3.1 Precursors
	6.3.3.2 Oxidation
	6.3.3.3 Carbonization


	6.4 Conclusions
	6.5 Future work
	6.6 References

	CHAPTER 7. CONCLUSIONS AND FUTURE WORK
	7.1 Conclusions
	7.2 Future work

	APPENDIX
	BIBLIOGRAPHY
	VITA

