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THE ROLE OF FORAGES IN SUSTAINABLE CROPPING SYSTEMS OF
SOUTHERN AUSTRALIA

W. D. Bellotti
Department of Agronomy and Farming Systems Adelaide University

Roseworthy  SA  5371 Australia

Abstract

The historical context, recent trends, and possible future role of forages in
cropping systems are reviewed.  Three recent themes will be developed: 1) The
successful exploitation of genetic diversity resulting in commercial development of
new legume species as pasture cultivars with specific traits better suited to the needs
of current farming systems.  2) Improved understanding of key soil processes under
grazed pastures, particularly soil water and soil nitrogen, and how these processes
impact on indicators of sustainability like deep drainage and nitrate leaching.  3) An
emerging capacity for predicting the effect of pasture-crop sequences on soil
processes, crop growth and grain yield.

In response to changing economic pressures and threats to sustainability, new
farming systems involving forages are continually evolving.  Increasing cropping
intensity has placed pressure on pasture-crop systems that rely on self-regeneration of
annual legumes following crops.  One response has been the emergence of phase
cropping systems, where a sequence of pasture years is followed by a sequence of
cropping years.  Another response has been an expansion in the area of lucerne grown
in rotation with crops.

In the future, forages in cropping systems will continue to fulfil the traditional
roles of diversifying farm income through livestock production and supporting the
cropping enterprise through maintenance of soil fertility.  But increasingly, forages
will be utilised to maintain the sustainability of agricultural production systems.
Examples include competitive forages as a component of integrated weed
management and high water use forages for reducing recharge and the associated
spread of dryland salinity.

Keywords: legumes, cropping systems, simulation, deep drainage, dryland salinity,
sustainability

Introduction

Southern Australia has a unique place in the history of the development of ley
farming systems.  Subterranean clover and annual medics were first commercially
developed here, and ley farming systems, involving the rotation of self-regenerating
annual legumes with cereal crops were well developed by the 1960’s.  The ley
farming system had many benefits over the fallow – wheat rotation it replaced.

In recent times, the profitability and sustainability of traditional ley farming
systems has been seriously challenged.  Market forces, threats to sustainability, and
rapid developments in cropping technology have combined to deliver profound
change to southern Australian cropping systems.  Some of these changes are detailed
in the paper.
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Pasture species improvement programs have responded to these challenges by
redirecting resources away from the traditional species (with the exception of lucerne)
and into a diverse array of new, largely non-domesticated species.  These changes are
outlined in the paper.

The threat of dryland salinity over much of the southern Australian cropping
zone has forced a new hydrological imperative to reduce deep drainage from
agricultural landscapes.  The implications of this new imperative for pasture plant
improvement and pasture – crop rotations are discussed.

The complex task of optimising pasture – crop rotations, and assessing the
potential of new pasture species, demands a systems approach.  Simulation modelling
of agricultural production systems has developed to a stage where the impacts of
pasture – crop sequences on whole rotation profits and some indicators of
sustainability can be predicted.  These recent developments are described.

Finally, a positive future role for pastures in cropping systems is predicted.
This future will involve new pasture species, new pasture – crop sequences, and new
tools for analysing and managing pastures in cropping systems.

Current status of pastures in cropping systems

Pastures remain an important component of cropping systems in many regions
of southern Australia.  The traditional role for pastures in cropping systems has been
reviewed by Puckridge and French (1983) and Robson (1990) and includes; income
diversification through livestock products, maintenance of soil fertility, and sustaining
crop production by providing options for disease and weed control, and increasing soil
nitrogen through biological nitrogen fixation.  This traditional role has been
challenged in recent years by a number of developments.  Firstly, and most
significantly, low livestock commodity prices, particularly wool, relative to crop
commodities, has encouraged many farmers to intensify cropping at the expense of
pastures in order to remain profitable.  Secondly, the traditional role of pastures as a
cereal root disease break has been questioned, for example, important cereal root
diseases (bare patch, Rhizoctonia solani and root lesion nematode, Pratylenchus
neglectus) may actually increase following annual medic (Medicago spp.) pastures
(Bellotti et al., 2001).   These developments have led to a reduction in the area of
pastures in some areas. Other developments may lead to the area of pastures in
cropping systems increasing.  Firstly, the development of herbicide resistant weeds
has increased interest in pastures as a component of integrated weed management.
Secondly, the need to reduce deep drainage from cropping landscapes has renewed
interest in lucerne as a pasture phase between a series of crop years (see section below
for more detail).

Given low wool prices during the past decade, the area of pastures in cropping
areas could be expected to fall.  A recent study (M. Unkovich, pers. comm.) reveals
that although the area of total crop has increased in the past fourteen years, the
corresponding fall in total pasture area has been surprisingly small (Table 1).  Table 1
should be interpreted with caution as the areas are state based and therefore include
large non-cropping (permanent pasture) areas.  Also, the area of pasture has been
derived as the total area of agricultural holdings (excludes forestry, national parks,
roads, dams, etc.) minus the total area of crop.  As such, the area of ‘pasture’ in Table
1 includes sown pasture, native grasslands, non-arable country, and fallow.  This
calculation was necessary, as unfortunately there are no consistent statistics recorded
for the area of pastures in Australia.  The area of pasture far exceeds the area of crop
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in all states.  In the past fourteen years, South Australia recorded the largest increase
in crop area (14.5%) and the largest decrease in pasture area (-3.7%).

Changes in area of crops and pastures for three South Australian cropping
regions provide a more detailed picture (Figure 1).  The three regions represent
contrasting environments and show different trends.  The Upper Eyre Peninsula is an
area of low rainfall (250 – 350 mm, average annual rainfall, aar) and infertile soils.  In
this region there has been a decline in total crop area, and pasture area has increased
slightly. In the Murray Mallee, rainfall is also low (250 – 350 mm aar) but soil
fertility is slightly better than Upper Eyre Peninsula.  The area of cropping has risen
recently and pasture has slightly declined.  The Mid North area receives higher
rainfall (400 – 600 mm aar) and the soils are more fertile.  The total area of crop has
steadily risen and there has been a corresponding decline in the area of pasture.  The
different trends in area of crops and pasture reflect the availability of alternative break
crops that can be substituted for annual pastures in rotation sequences.  In the Mid
North, available crops include canola, field peas, and faba bean, while in the low
rainfall regions, these crops are poorly adapted, and yield and profits are unreliable.
Even with available alternative crops, the total area of pasture exceeds the total area of
crops in the Mid North region.

Confirmation of the continued importance of pastures in cropping systems
comes from a recent survey commissioned by the Grains Research and Development
Corporation.  The average area (hectares) of crop and pasture on mixed livestock-
crops farms was 605 and 1,894 in Western Australia, 365 and 864 in South Australia,
240 and 429 in Victoria, and 337 and 985 in New South Wales (ABARE, 1999).  It is
clear from the above figures that, despite low wool prices, pastures remain an
important component of cropping systems throughout southern Australia.

Despite low wool prices, pastures can still contribute to profitable rotations
through their beneficial impact on the grain yield of subsequent cereals.  Whole farm
profit modelling of the economics of pasture improvement have concluded that every
$1/ha spent on pasture can return between $0.87 and $2.67 in whole rotation profit
depending on pasture quality and rotation sequence (Krause, 1995).  Investment in
improved pastures (seed, fertiliser, herbicide) on the Upper Eyre Peninsula of South
Australia of up to $57/ha was profitable in some circumstances (Krause, 1997).
Despite these findings, actual expenditure on pastures in the cereal-livestock zone is a
very low $4.30 - 6.50/ha (ABARE, 1999), reflecting lack of farmer confidence in the
profitability of investment in pastures.

Increasing genetic diversity of pasture legumes for ley farming systems

Traditionally, ley pastures in southern Australia have been based on just a few
sown species, subterranean clover (Trifolium subterraneum), and annual medics
(Medicago truncatula and M. littoralis).  The ecology and management of these
pastures has been described by Rossiter (1966) and Carter (1987).  These species
have, in general, been very successful, and continue to provide the basis for the
majority of ley pastures in southern Australia.  Despite their success, concern over the
narrow genetic base of southern Australian pastures has grown.  An extreme example
is provided by the Upper Eyre Peninsula, where until recently, a single cultivar of
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strand medic (Medicago littoralis cv. Harbinger) was the only pasture cultivar
available for an area of over 600,000 ha.

The narrow focus of pasture improvement programs on the traditional species
is apparent in the list of new pasture legume cultivars registered since 1990 (Table 2).
Sixteen of the twenty-one registered cultivars were either subterranean clover, annual
medics, or lucerne.  In addition to registered cultivars, a number of new species have
recently been commercialised without registration.  These include arrowleaf clover
(Trifolium vesiculosum cv. Cefalu and Zulu), crimson clover (Trifolium incarnatum
cv. Caprera and Blaza), yellow serradella (Ornithopus compressus cv. Charano),
French serradella (Ornithopus sativus cv. Cadiz), and biserrula (Biserrula pelecinus
cv. Casbah) (Anon, 1998; Dear and Sandral, 2000).

The past focus of pasture improvement programs is also revealed by the traits
incorporated into new cultivars (Table 2).  The major focus has been to develop new
cultivars with improved tolerance to pests such as aphids (blue green aphid
Acyrthosiphon kondoi, spotted alfalfa aphid Therioaphis trifolii) and diseases such as
clover scorch (Kabatiella caulivora) and root rots (eg. Phytophthora clandestina).  A
second major focus has been to extend the range of existing commercially available
species by selecting earlier and later flowering genotypes.  Other traits included
harder or softer levels of hardseed, and the general aim of improved persistence and
productivity.

In recent years the philosophy of pasture plant breeding in southern Australia
has shifted from a focus on continual improvement of the traditional species to a focus
on developing new species for problem environments and changed farming systems.
This change in philosophy has been based on greatly improved knowledge and
understanding of species ecology in the countries of origin (Ehrman and Cocks, 1990;
Cocks, 1993) and of species diversity and evolution of naturalised pasture legumes in
Australia (Cocks, 1992; Fortune et al., 1995).  Driving this change has been the need
to address pressing threats to the sustainability of cropping systems such as rising
groundwater and intractable weed populations, and the opportunity presented by
major changes in the way pastures are rotated with crops.  In addition to the largely
introduced legume species, some native grasses (eg. Danthonia spp., Microlaena spp.)
and saltbushes (Atriplex spp.) have also been recently domesticated and the use of
native species in agriculture will increase in importance in the future.

Pastures will continue to fulfil traditional roles such as providing the feed base
for livestock enterprises, but their major future role in cropping landscapes will be
closely tied to improving the sustainability of these systems (Table 3).  Dryland
salinity is widely regarded as the most serious threat to the sustainability of cropping
systems throughout much of southern Australia (see next section).  One of the most
promising solutions to this threat is the use of perennial forages to reduce deep
drainage below the root zone of annual crops.  For this reason, perennial plants with
deep roots and summer active growth patterns are needed.  Lucerne is currently the
preferred species for this role, but other species are needed for areas where lucerne is
poorly adapted (eg. acid soils, waterlogged and saline conditions).  Of particular
importance for plants aimed at reducing deep drainage, is root adaptation to harsh
subsoil conditions such as transient soil salinity, sodicity, toxic levels of boron, high
soil pH, and high soil strength (Figure 2).  Unless plant roots are adapted to these
conditions they will not be able to perform the function of de-watering deep subsoil.
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Other important roles include the use of pastures in integrated weed
management for control of herbicide resistant weeds.  Pastures are particularly
attractive for this role as they allow the use of non-chemical techniques such as
grazing and hay making, as well as non-selective herbicide options such as spray-
topping and winter cleaning (Powles and Bowran, 2000).  Pastures have traditionally
been used to provide a disease break for following cereals, but some pasture legumes
(eg. Medicago spp.) can allow some cereal root diseases to build up in the pasture
phase (Bellotti et al., 2001).  It is therefore important for future pasture legumes to
have resistance to important cereal root diseases so that these diseases are kept at low
levels during the pasture phase, as well as tolerance so that the pasture species
themselves are not effected.  Soil organic carbon inputs are usually higher under
pasture compared to pulse crops (Crawford et al. 1997) and soil microbial biomass is
usually higher following rotations including pastures compared to continuous
cropping rotations (Ladd et al., 1994).  A possible association between increased
microbial biomass and suppression of cereal root diseases has been reported (Roget,
1995).  It is therefore important that the performance of new species in terms of total
soil carbon input and influence on microbial biomass is not overlooked.  Finally, so
called ‘phase farming’, describing several consecutive years of pasture (annual or
perennial species), followed by several consecutive years of crops, is seen by many as
offering advantages over traditional ley farming systems involving tight rotations of
one or two pasture years followed by one or two crop years.  Phase farming places
different requirements on pasture legume species compared to those required for
traditional ley farming systems (Howieson et al., 2000).

Pasture improvement programs in Australia have been quick to respond to the
new challenges and opportunities (Table 4).  Many of the traditional selection criteria
are still in place, but these have been augmented with new objectives.  It is interesting
to note that the observation by Hutchinson and Clements (1987) that improving
pasture nutritive value was not an objective in most Australian pasture improvement
programs still applies today.  Also apparent is the great increase in species diversity
included in current programs.  Not all of the species listed will make it through to
become commercial cultivars, but there are certain to be several new species added to
the list of commercialised species in the near future.  In the rush to develop new
species it is important that the agronomy, feeding value, and management systems are
not overlooked.  The Register of Australian Herbage Plants (Oram, 1990) is an
interesting compilation of ‘new’ species that have had little commercial impact.

Reducing deep drainage from cropping landscapes

In many regions of southern Australia, the most serious threat to land and
water resources is dryland salinity (Murray Darling Basin Commission, 1999).  The
cause of dryland salinity is the hydrological imbalance that has followed the
replacement of native vegetation communities with shallow rooted annual crops and
pastures.  The resulting increase in deep drainage below the root zone of annual
species has increased recharge to groundwater, causing groundwater levels to rise,
eventually reaching the soil surface in low lying areas (Figure 2).  An important
feature of Figure 2 is the delineation between recharge and discharge zones in the
landscape.  Secondary salinity occurs when saline groundwater approaches the soil
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surface causing salinity and waterlogging in the root zone of discharge areas.  The
cause of rising groundwater is the increase in deep drainage in the recharge zones and
it is therefore imperative that deep drainage from these areas is reduced to levels
approaching those of the native vegetation communities.

Deep drainage under annual crops and pastures can reach amounts equivalent
to 40-50% of the rainfall received, representing a lost opportunity for plant growth as
well as contributing to dryland salinity.  In addition to contributing to rising
groundwater, deep drainage results in nitrate leaching and soil acidification (Ridley et
al., 1999).  In studies across southern Australia, covering a wide range of soils and
climates, lucerne has been effective in reducing deep drainage from the high levels
found under annual crops and pastures, to levels approaching those found under the
native vegetation (Table 5).  Typically, deep drainage under annual crops and pastures
is around two orders of magnitude greater than that under the native vegetation.  Even
in low rainfall (300 – 350 mm average annual rainfall) cropping country, such as
around Euston and Balranald, deep drainage has significantly increased under annual
crops, causing groundwater to rise, and threatening soil and water quality. Lucerne
provides an agronomic solution to deep drainage where soil conditions are favourable
for its growth.  The profitability of lucerne, relative to alternative options, will largely
determine the level of adoption by farmers.

The differences in cumulative evapotranspiration under annual pastures,
lucerne, and native vegetation, may result in dramatic differences in the pattern of
daily recharge (Figure 3).  In this simulation example, recharge under annual pastures
occurs from day 100 (early autumn) when annual pastures germinate and young
seedlings are unable to utilise stored soil moisture and rainfall.  Recharge under
annual pastures reaches a peak during winter before reducing in late spring and early
summer. In contrast to the annual pasture, there is no recharge under lucerne in
autumn and winter, with only a small amount in spring.  The key to the success of
lucerne for reducing recharge is its ability to dry out deep subsoils (Lolicato, 2000;
Pitman et al. 2001).  Rotating several years of lucerne followed by several years of
annual crop may minimise deep drainage by exploiting the ability of lucerne to de-
water subsoils.  During the lucerne phase, deep subsoil moisture is utilised by the
lucerne, creating a buffer of dry soil for storage of the expected drainage from the
next cropping phase.  While this rotation holds some promise, simulation studies
caution that results are strongly dependent on soil type, rainfall record (particularly
episodic high rainfall events), and rooting depth, and conclude that more experimental
research and simulation studies are needed (Dunin et al., 1999).

The key to minimising the spread of dryland salinity is greater use of perennial
plants with deep root systems that can dry deep subsoils and thus reduce deep
drainage. This requirement raises the issue of plant root adaptation to subsoil
constraints. Figure 2 highlights surface and subsoil constraints that impair the function
of plants growing in recharge areas. Throughout much of southern Australia, subsoil
constraints are common.  For example, subsoil transient salinity (Figure 2), not to be
confused with secondary salinity, occurs in about 30% of wheat growing soils in
South Australia (Fitzpatrick et al., 2000).  Subsoil transient salinity (ECse > 4 dS/m),
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along with other common constraints such as high exchangeable sodium percentage
(sodicity, ESP >20%), high soil pH (pH > 9.5), toxic levels of boron (B > 15 mg/kg),
and high bulk density, may all limit root function in subsoils and thus limit the ability
of plants to de-water subsoils.  Little is known about the adaptation of lucerne or other
potentially useful perennial forage legumes (see Table 4), to these subsoil constraints,
and research in this complex area is urgently needed.

Simulation of pasture – crop sequences

The prediction of crop grain yield response to preceding pastures is a function
of both soil conditions present at the time of crop sowing and conditions during the
crop growing season.  A pasture – wheat rotation experiment at Roseworthy, South
Australia, illustrates this point.  Although inorganic soil nitrogen at crop sowing was
higher following legume- compared to grass-dominant pastures, wheat grain yield did
not increase in response to the extra nitrogen, as crop growth was limited by low
growing season rainfall (Baldock et al., 1997; Yunusa et al., 1998).  The complexity
of soil water and soil nitrogen dynamics in pasture - crop rotations, and the strong
influence of highly variable rainfall on both phases of the rotation, has led some
researchers to consider simulation modelling as a tool for both research and
management.

The Agricultural Production Systems Simulator (APSIM) was developed to:
1. Predict crop grain yield in response to environmental (soil, climate, management)

inputs.
2. Predict trends in soil fertility (soil water, soil nitrogen, soil organic carbon) in

response to management, including fertiliser, tillage, residue management,
intercropping and rotation sequences.

3. Provide a flexible system for simulating a wide range of applications, an open
process for testing and incorporating new modules, and an efficient way to
integrate fragmented research efforts (McCown et al., 1996).

A key feature of the APSIM approach is that the soil resource is central to the
simulation, responding to climate variability, management, and crop sequence (Figure
4).  This feature provides APSIM with the required framework for simulating pasture
– crop sequences.  Figure 4 depicts the flow of water and nitrogen in a crop – fallow –
crop sequence.  Beginning at the left, soil water is reduced by crop transpiration.  Soil
water is also lost by evaporation from the soil surface, but is modified by surface crop
residues.  Rainfall is stored as soil water during the fallow period, and excess rainfall
is lost as runoff.  A second crop depletes soil water, but crop water use does not
prevent some deep drainage occurring during early crop growth.  In this way, the
water balance is maintained on a daily basis over the period of interest.

The focus of APSIM has been on soil factors and crop production, although
lucerne has been included in the growing list of crops simulated (Robertson et al.,
2001).  A separate modelling group has developed GrassGro, a system for simulating
temperate pasture growth, pasture dry matter digestibility, animal diet selection,
animal feed intake, and grazing animal production (Moore et al., 1997).  Linking
GrassGro into APSIM will allow simulation of pasture – crop sequences and this
work is in progress (Bellotti, 2000).  The modules required to simulate an annual
medic pasture – wheat – barley rotation are listed in Table 6.  APSIM provides the
overall modelling framework, with individual modules, and the GrassGro model,
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communicating to each other via the central APSIM ‘engine’.  Note that APSIM does
not currently attempt to model some important growth factors such as root diseases or
competition from weed populations.

An example of model performance for a lucerne – wheat rotation experiment
located near Toowoomba, Queensland, Australia is given in Figure 5.  In this
example, lucerne was undersown with wheat in 1988, allowed to grow for four years
(1989-1992), removed at the end of 1992, and followed by four consecutive wheat
crops (1993-1996).  Overall, APSIM predicts the observed lucerne dry matter and
wheat grain yield data very well.  In addition, data not shown, APSIM accurately
predicts the drying out of the soil profile under lucerne and the wetting and drying
cycles of soil water under wheat.  Soil nitrate is also predicted well, closely matching
the observed data showing low amounts of soil nitrate under growing lucerne
followed by a large release of nitrate (140 kg/ha nitrate-N) due to mineralisation of
organic nitrogen after the lucerne was ploughed out (Probert and McCown, 2000).

Using these simulation tools it is possible to quantify the impact of climate
variability within pasture – crop sequences on a wide range of productivity and
sustainability variables.  For example, the effect of preceding rotation (eg. medic
pasture or faba bean crop) on wheat grain yield and protein can be compared over the
historical climate record for a range of locations.  Another example would be to
predict the amount of deep drainage and nitrate leaching occurring over the same
scenarios.  While these simulation models have important research applications, they
are increasingly finding applications as tools for facilitating in depth communication
between researchers and farmers about the management of farming systems (McCown
et al., 1998).

What is the future role for pastures in cropping systems?

The past 10 to 20 years have witnessed perhaps unprecedented change in
southern Australian farming systems.  Market forces, such as the fall in wool prices,
have driven the trend towards more intensive cropping in some regions.  Threats to
sustainability, such as dryland salinity and herbicide resistant weeds, are renewing
interest in special purpose pastures designed to deliver specific benefits to following
crops.  Despite the continuing pace of change, and perhaps on the surface somewhat
surprisingly, pastures remain an important component of farming systems in many
regions.

However, the role of pastures in cropping systems has changed, and will
continue to change to suit the requirements of contemporary farming.  In the past, the
focus for pasture research was on livestock and crop productivity.  In the future,
whole rotation profits and landscape sustainability will increasingly be the focus of
pasture research.  Along with this change in role, the characteristics of pasture
cultivars used in cropping systems will also need to change.  Attributes associated
with self-regeneration of annual legumes from soil seed banks, such as high seed
numbers and high hard seed percentages, will become less important, or not needed,
in rotations involving phases of continuous pasture.  On the other hand, attributes
associated with sustainability, such as the ability to de-water subsoils, will become
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more important.  Previously wild species will be domesticated as new pasture
cultivars to fulfil some of these new roles.

Along with this shift in focus from production alone, to production and
sustainability, research into pasture – crop systems has become increasingly complex.
On-farm productivity remains essential, but the environmental imperatives of
maintaining soil and water quality are assuming equal, if not greater, importance.
This increasing complexity is reflected in the requirement for detailed consideration
of longer time frames, and larger spatial scales, all against a background of highly
variable climate.  This is the research scenario in which simulation modelling
becomes an essential tool for analysing and interpreting complex interactions and
long-term trends.

Increasingly, simulation modelling is becoming accepted as an integral
component of research on issues of crop and pasture productivity and hydrologic
balance of pasture - crop systems.  Recent examples demonstrate the utility of
simulation modelling for understanding the dynamics of water and nitrogen in pasture
– crop systems.  But much more work is needed to expand the geographic coverage of
existing models, to include locally relevant crop and pasture modules, and to verify
model performance in farmers’ fields.  In the longer term, inclusion of additional
processes such as subsoil constraints will enhance predictive ability.

Pastures will continue to play an important role in the cropping systems of
southern Australia.  New pasture legume species will be added to the list of traditional
species that have served cropping systems so well in the past.  New roles for pastures
in cropping systems will emerge to complement traditional roles.  Simulation
modelling will provide new ways of assessing the impact of pastures on whole
rotation profitability and environmental sustainability.  The next ten years will
provide many challenging opportunities for research on pastures in cropping systems.

References

ABARE (1999). Australian Grains Industry: Performance by GRDC Agroecological
Zones.  Australian Bureau of Agricultural and Resource Economics Report prepared
for the Grains Research and Development Corporation. Canberra, Australia.

ANON (1998). CLIMA’s pasture releases.  Newsletter for the Centre for Legumes in
Mediterranean Agriculture, Number 12, December 1998.

Asseng, S., Fillery I.R.P., Anderson G.C., Dolling P.J., Dunin F.X. and Keating
B.A. (1998). Use of the APSIM wheat model to predict yield, drainage and NO3
leaching for a deep sand.  Australian Journal of Agricultural Research, 49: 363-378.

Baldock, J.A., Moore A.D., Bellotti W.D. and Yunusa I.A.M.  (1998).  Influence of
grazing on nitrogen and water dynamics in cereal-pasture rotation. Proceedings 9th

Australian Agronomy Conference  Wagga Wagga.  pp. 859-860

Bellotti, W.D. (2000). Soil processes under grazed pastures: Their impact on crop
production.  Final Report to the Grains Research and Development Corporation,
Canberra, Australia.



10

Bellotti, W.D. et al. (2001). Response of annual medic pastures to improved soil
fertility and reduced root diseases. Australian Journal of Experimental Agriculture. In
preparation.

Carter, E.D. (1987). Establishment and natural regeneration of annual pastures. In:
Temperate Pastures: Their Production, Use and Management, Eds: J.L. Wheeler, C.J.
Pearson, G.E. Robards.  Pp 35-51. AWC/CSIRO. Australia.

Cocks, P.S. (1992). Evolution in sown populations of subterranean clover (Trifolium
subterraneum L.) in South Australia.  Australian Journal of Agricultural Research,
43: 1583-1595.

Cocks, P.S. (1993). Legumes from the Mediterranean basin: a continuing source of
agricultural wealth for southern Australia. Centre for Legumes in Mediterranean
Agriculture Technical Paper No. 1., Perth, Australia.

Crawford, M.C., Grace P.R., Bellotti W.D. and Oades J.M. (1997).  Root
production of a barrel medic (Medicago truncatula) pasture, a barley grass (Hordeum
leporinum) pasture and a faba bean (Vicia faba) crop in southern Australia.
Australian Journal of Agricultural Research, 48: 1139-1150.

Dear, B and Sandral G. (2000). Characteristics of some annual legume pasture
species. Pasture Notes, 5 (3).  New South Wales Agriculture.  February 2000.

Dunin, F.X., Williams J., Verburg K. and Keating B.A.  (1999)  Can agricultural
management emulate natural ecosystems in recharge control in south eastern
Australia?  In: Agriculture as a Mimic of Natural Ecosystems.  Eds: E.C. Lefroy, R.J.
Hobbs, M.H. O’Connor and J.S. Pate.  Kluwer Academic Publishers.  pp. 399-420.

Ehrman, T. and Cocks P.S. (1990). Ecogeography of annual legumes in Syria:
distribution patterns. Journal of Applied Ecology, 27: 578-591.

Fitzpatrick R.W., Rengasamy P., Merry R.H. and Cox J.H. (2000). Assessing if
salinisation of soils can be reversed. In: Salinity – Options and Answers. Symposium
of Australian Institute of Agricultural Science and Technology. Adelaide, South
Australia, November 2000.

Fortune, J.A., Cocks P.S., MacFarlane C.K. and Smith F.P. (1995). Distribution
and abundance of annual legume seeds in the wheatbelt of Western Australia.
Australian Journal of Experimental Agriculture, 35: 189-197.

Hammer, G.L. (2000). A general systems approach to applying seasonal climate
forecasting. In: Hammer, G.L., Nicholls, N., Mitchell C. (eds.) Applications of
seasonal climate forecasting in agriculture and natural ecosystems: The Australian
experience. Kluwer,  p 51-66.

Hatton, T.J. and Nulsen R.A. (1999). Towards achieving functional ecosystem
mimicry with respect to water cycling in southern Australian agriculture. In:
Agriculture as a Mimic of Natural Ecosystems.  Eds: E.C. Lefroy, R.J. Hobbs, M.H.
O’Connor and J.S. Pate.  Kluwer Academic Publishers.  pp. 259-270.



11

Howieson, J.G., O’hara G.W. and Carr S.J. (2000). Changing roles of legumes in
Mediterranean agriculture: developments from an Australian perspective.  Field
Crops Research, 65: 107-122.

Hutchinson, K.J. and Clements R.J. (1987) Breeding and selecting temperate
pasture plants for animal requirements. In: Temperate Pastures: Their Production, Use
and Management, Eds: J.L. Wheeler, C.J. Pearson, G.E. Robards.  pp. 293-305.
AWC/CSIRO. Australia.

Kennett-Smith, A., Cook P.G. and Walker G.R. (1994). Factors affecting
groundwater recharge following clearing in the south western Murray Basin.  Journal
of Hydrology, 154: 85-105.

Krause, M. (1995). Effect of investment in pastures on a mixed cereal-livestock farm
in South Australia on whole farm profit.  Report to Grains Research and Development
Corporation.

Krause, M. (1997). Model for an Integrated Dryland Agricultural System on Upper
Eyre Peninsula, South Australia.  Report to Grains Research and Development
Corporation.

Ladd, J.N., Amato M., Zhou L.K. and Schultz J.E. (1994). Differential effects of
rotation, plant residue and nitrogen fertilizer on microbial biomass and organic matter
in an Australian alfisol.  Soil Biology and Biochemistry, 26: 821-831.

Lolicato, S.J. (2000) Soil water dynamics and growth of perennial pasture species for
dryland salinity control.  Australian Journal of Experimental Agriculture, 40: 37-45.

Mccown, R.L., Hammer G.L., Hargreaves J.N.G, Holzworth D.P. and Freebairn
D.M. (1996)  APSIM: a novel software system for model development, model testing
and simulation in agricultural systems research.  Agricultural Systems, 50: 255-271.

Mccown, Rl, Carberry P.S., Foale M.A., Hochman Z., Coutts J.A. and Dalgliesh
N.P.  (1998)  The FARMSCAPE approach to farming systems research.  Proceedings
of the 9th Australian Agronomy Conference, pp. 633-636.

Moore, A.D., Donnelly J.R. and Freer M.  (1997) GRAZPLAN: Descision support
systems for Australian grazing enterprises. III. Pasture growth and soil moisture
submodels, and the GrassGro DSS.  Agricultural Systems, 55: 535-582.

Murray Darling Basin Commission (1999). The Salinity Audit. A 100 Year
Perspective.  MDBC, Australian Government.

Oram, R.N. (1990). Register of Australian herbage Plant Cultivars.  CSIRO.
Australia.

Pitman, A., Cox J.W. and Bellotti W.D. (2001) Water use, root growth and dry
matter production of perennials grown on sloping duplex soils.  (In preparation).



12

Powles, S.B. and Bowran D.G. (2000). Crop weed management systems. In:
Australian Weed Management Systems, Ed: B.M. Sindel. Cooperative Research
Centre for Weed Management Systems, Adelaide. Australia. pp 287-306.

Probert, M.E., Keating B.A., Thompson J.P. and Parton W.J. (1995). Modelling
water, nitrogen and crop yield for a long-term fallow management experiment.
Australian Journal of Experimental Agriculture, 35: 941-950.

Probert, M.E., Dimes J.P., Keating B.A., Dalal R.C. and Strong W.M. (1998)
APSIM’s water and nitrogen modules and simulation of the dynamics of water and
nitrogen in fallow systems.  Agricultural Systems, 56: 1-28.

Probert, M.E. and McCown R.L. (2000). Evaluation of legume-based strategies for
profitable and sustainable grain-grazing systems using simulation modelling.  Final
Report to the Grains Research and Development Corporation.

Puckridge, D.W. and French R.J. (1983). The annual legume pasture in cereal – ley
farming systems of southern Australia: a review.  Agriculture, Ecosystems and
Environment, 9: 229-267.

Ridley, A.M., Simpson R.J. and White R.E. (1999). Nitrate leaching under phalaris,
cocksfoot and annual ryegrass pastures and implications for soil acidification.
Australian Journal of Agricultural Research, 50: 55-63.

Robertson, M.J., Carberry P.S., Huth N.I., Turpin J.E., Probert M.E., Poulton
P.L., Bell M. and Wright G.C. (2001). Simulation of growth and development of
diverse legume species in APSIM. 1. Model description and parameter derivation.
Field Crops Research, (in press).

Robson, A.D. (1990). The role of self-regenerating pasture in rotation with cereals in
Mediterranean areas. In: The Role of Legumes in the Farming Systems of the
Mediterranean Areas.  Eds: A.E. Osman, M.H. Ibrahim, M.A. Jones.  Kluwer. pp.
217-236.

Roget, D.K. (1995). Decline in root rot (Rhizoctonia solani AG-8) in wheat in a
tillage and rotation experiment at Avon, South Australia.  Australian Journal of
Experimental Agriculture, 35: 1009-1013.

Rossinter, R.C. (1966). Ecology of the Mediterranean annual-type pasture.  Advances
in Agronomy, 18: 1-56.

Smettem, K.R.J. (1998). Deep drainage and nitrate losses under native vegetation
and agricultural systems in the Mediterranean climate region of Australia.  Land and
Water Resources Research and Development Corporation.  RAPPS02/98.

Walker, G.R., Blom R.M. and Kennett-Smith A. (1992) Preliminary results of
recharge investigations in the Upper South East region of South Australia.  Centre for
Groundwater Studies Report No. 48.



13

Yunusa, I.A.M, Bellotti W.D., Moore A.D., Baldock J.A. and Penfold C.M.
(1998). Response of wheat yield to preceding crop and fertiliser nitrogen. Proceedings
9th Australian Agronomy Conference  Wagga. Wagga.  pp. 861-862.



14

Table 1

State
Average for
1983-1984

Average for
1996-1997

%change
in crop

area

% change in
pasture area

crop pasture crop pasture
NSW 5,520 49,790 5,070 50,240 -8.1 0.9
Vic 741 3,186 768 3,159 3.7 -0.8
SA 2,223 8,596 2,545 8,274 14.5 -3.7
WA 6,190 19,977 6,662 19,506 7.6 -2.4
Tas 63 1,233 45 1,251 -28.9 1.5
Southern
Australia 14,737 82,782 15,089 82,429 2.4 -0.4

*Area of pasture = total area of agricultural holdings – total crop area.
Area of agricultural holdings excludes forestry, national parks, roads, etc.
Area of pasture therefore includes sown pasture, native grasslands, non arable
country, fallow, etc.

Table 1 - Change in area (,000 ha) of crop and pasture* from 1983 - 1984 to 1996 -
1997 in southern Australia (data from M. Unkovich, pers. comm.).
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Table 2.

Scientific name Common
name

Cultivar
name

Agronomic traits Year
registered

Trifolium
subterraneum var.
brachycalycinum

Subterranean
clover

Nuba Replacement for cv.
Clare, more productive

1990

Trifolium
subterraneum var.
subterraneum

Subterranean
clover

Goulburn Disease tolerant
replacement for cv.
Woogenellup

1991

Subterranean
clover

Leura Disease tolerant
replacement for cv.
Karridale

1991

Subterranean
clover

York Productive and
persistent replacement
for cv. Seaton Park

1995

Trifolium
subterraneum var.
yanninicum

Subterranean
clover

Gosse Disease tolerant
replacement for cvs.
Larisa and Meteora

1991

Subterranean
clover

Riverina Productive and
persistent replacement
for cv. Trikkala

1996

Trifolium
michelianum

Balansa
clover

Bolta Later maturing
alternative to cv.
Paradana

1998

Trifolium
resupinatum var.
resupinatum

Persian
clover

Nitro Plus Early maturing, hard
seeded alternative to cv.
Kyambro

1998

Persian
clover

Prolific Early maturing
alternative to cv.
Kyambro

1998

Trifolium
resupinatum var.
majus

Persian
clover

Morbulk Earlier maturing and
more productive
replacement for cv.
Maral

1999

Medicago
truncatula

Barrel medic Caliph Aphid resistant
replacement for cv.
Cyprus

1993

Barrel medic Mogul Aphid resistant
replacement for cv.
Borung

1993

Medicago littoralis Strand medic Herald Aphid resistant
replacement for cvs.
Harbinger and
Harbinger AR

1997

Medicago tornata Disc medic Rivoli Soft seeded alternative
to cv. Tornafield

1990

Ornithopus
compressus

Yellow
serradella

Paros Early maturing, hard
seeded alternative to
cvs. Madiera and

1990
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Eneabba
Medicago sativa Lucerne Quadrella Disease resistant

alternative to cv.
Trifecta

1991

Lucerne Aquarius Resistance to
phytopthora root rot

1992

Lucerne Alfanafa Salt tolerant alternative
to cv. Siriver

1993

Lucerne Genesis Disease and pest
resistant alternative to
cvs. Aurora and
Trifecta

1995

Lucerne Sequel HR Resistance to
anthracnose,
replacement for cv.
Sequel

1998

Lucerne Hallmark Disease resistant
alternative to cv.
Trifecta

1999

*Australian pasture varieties formally submitted to the “Register of Australian
Herbage Plant Cultivars”, details published occasionally in the Australian Journal of
Experimental Agriculture.

Table 2 - Pasture legume cultivars registered* since 1990 for use in cropping systems.
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Table 3.

Potential role Associated traits Included in current pasture
improvement programs?

1. Reduce recharge 1. Perennial
2. Deep roots
3. Summer growth
4. Plant root adaptation to

potential subsoil
constraints

Recent awareness of
importance.  Single
species (lucerne) focus.
Specific selection criteria
not defined.

2. Reduce weed
populations prior to
crop phase

1. Competitive
2. Herbicide tolerant
3. Component of IWM

Some recent progress.
Competitive ability
screened, herbicide
tolerance screened.

3. Break life cycle of
crop diseases

1. Resistance to important
crop diseases

2. Tolerance to crop diseases

Recent addition in some
programs.  Past focus on
pasture diseases rather
than susceptibility for
hosting crop diseases.

4. Biological nitrogen
fixation

1. Symbiotic competence
2. N fixation in presence of

inorganic N
3. Ability to recover deep

inorganic N

Symbiotic competence
included in all programs.
No detailed screening of N
fixing performance.

5. Maintain soil organic
carbon

1. Root:shoot ratio
2. C:N ratio of roots

Not currently included.

6. Compatible with
current and new
farming systems

1. Ease of seed harvesting
2. Relatively soft seeded
3. Ease of removal prior to

crop phase

Several programs
including these traits

Table 3 - Role of pastures in current and future cropping systems and possible useful
traits associated with new pasture legume cultivars.
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Table 4.

Trait Species under evaluation*

Ease of seed harvest, erect flower head, non
shattering, readily threshed

Trifolium resupinatum
Trifolium michelianum
Trifolium glanduliferum
Trigonella balansae

Resistance to redlegged earth mite Biserrula pelecinus
Trigonella balansae
Trifolium glanduliferum

Annual species with deep rooting habit and suitability
for dual purpose grazing and forage conservation

Trifolium vesiculosum
Trifolium incarnutum
Trifolium purpureum
Ononis aleopecuriodes
Medicago polymorpha

Tolerance to saline and waterlogged soils Trifolium tomentosum

Trifolium resupinatum
Trifolium ornithopodioides
Melilotus albus

Acid soil tolerance Ornithopus compressus
Ornithopus sativus
Biserrula pelecinus

Adaptation to low rainfall, alkaline, calcareous soils Trigonella balansae
Lotus ornithopodiodies
Trifolium purpureum
Astragalus hamosus

Specific adaptations for persistence under grazing Trifolium glomeratum
Vicia sativa ssp. amphicarpa

Perennials for subsoil dewatering Medicago sativa
Medicago arborea
Onobrychis vicifolia
Hedysarum coronarium
Dorycnium rectum
Cytisus proliferus

* Collated from several sources including; Cooperative Research Centre for Legumes in
Mediterranean Agriculture, National Annual Pasture Legume Improvement Program,
Grains Research and Development Corporation, and personal communications.

Table 4 - Selection traits currently in use in pasture legume improvement programs and
example candidate species under advanced agronomic evaluation.
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Table 5.

Location Deep drainage
(mm y-1)

Reference

Annual
crops

Lucerne Native
vegetation

Wagga Wagga
(NSW duplex)

101-185 2-25 n.e.* Dunin, et al., 1999

Wagga Wagga
(NSW duplex)

135 3 0 Hatton and Nulsen, 1999

Euston - Balranald
(NSW Mallee)

6-23 1 1 Kennet-Smith et al., 1994

Upper South East
(SA dune system)

50-70 <5 <1 Walker et al., 1992

Moora
(WA sandplain)

141a n.e. 15-85b a. Asseng et al., 1998
b. Smettem, 1998

* not estimated

Table 5 - Comparison of average annual deep drainage (mm y-1) under annual crops,
lucerne, and native vegetation (trees and understorey) in southern Australia.
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Table 6.

Model /
Module name

Processes simulated Reference

APSIM Software for simulating agricultural
production systems

McCown et al., 1996

SoilWat Soil water balance, evaporation,
infiltration, runoff, redistribution in soil,
availability of soil water to plants, drainage

Probert et al., 1998

SoilN Soil nitrogen dynamics, organic N inputs,
microbial biomass, mineralisation,
denitrification, nitrate leaching

Probert et al., 1998

Residue Inputs of above- and below-ground crop or
pasture residues, amount, distribution, C:N
ratio

Probert et al., 1998

NWheat Wheat growth, water use and N uptake,
biomass accumulation, biomass
partitioning, grain yield, and yield
components

Probert et al., 1995

Legume Legume crops and lucerne growth, water
and N uptake, biomass accumulation and
partitioning, grain yield

Robertson et al., 2001

GrassGro Pasture growth, pasture quality, diet
selection, animal production

Moore et al., 1997

Table 6 - Software available for simulating soil water, soil nitrogen, and crop and pasture
growth in pasture – crop rotations.
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Figure 1 - Changes in area of total crop (a) and total pasture (b) between 1983 and 1997
for selected cropping regions in South Australia.  (Upper Eyre Peninsula, Murray Mallee,
Mid North).
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Figure 2 - Schematic diagram of different forms of salinity present in cropping
landscapes of southern Australia.  Soil salinity is measured as ECse, that is soil saturation
extract electrical conductivity measured in deciseimens per metre, dS/m.  See text for
explanation of terms (Fitzpatrick et al., 2000).
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Figure 3 - Simulated cumulative evapotranspiration and daily recharge under annual
pasture, lucerne, and native eucalypt forest near Wagga Wagga, New South Wales.
(Hatton and Nulsen, 1999).
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Figure 4 - Schematic diagram of some of the soil and plant processes simulated in the
Agricultural Production System SIMulator (APSIM) (Hammer, 2000).
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Figure 5 - Simulation of wheat grain yield and lucerne dry matter production in a lucerne
(1989-1992) – wheat (1993-1996) sequence.  The symbols represent measured data from
a rotation experiment near Toowoomba, Queensland, Australia and the lines represent
APSIM output.  The units for the y-axis are dry matter of lucerne and wheat grain (kg/ha)
(Probert and McCown, 2000).
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