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Optical sensors have grown in popularity for estimating plant health, and they form the basis of midseason yield estimations and
nitrogen (N) fertilizer recommendations, such as the Oklahoma State University (OSU) nitrogen fertilization optimization
algorithm (NFOA). *at algorithm uses measurements of normalized difference vegetative index (NDVI), yet not all producers
have access to the sensors required to make these measurements. In contrast, most producers have access to smartphones, which
can measure fractional green canopy cover (FGCC) using the Canopeo app, but the usefulness of these measurements for
midseason yield estimations remains untested. Our objectives were to (1) quantify the relationship between NDVI and FGCC, (2)
assess the potential for using FGCC values in place of NDVI values in the current OSU Yield Prediction Model, and (3) compare
the performance of NDVI and FGCC-based yield prediction models from the collected dataset. *is project, implemented on 13
winter wheat sites over the 2019-2020 growing season, used a range of nitrogen (N) rates (0, 34, 67, 101, and 134 kgNha−1) to
provide different levels of yield. Our results indicated that while NDVI and FGCC are highly correlated (r2 � 0.76), FGCC is not
suitable for direct insertion into the current yield prediction model. However, a yield prediction model derived from FGCC
provided similar estimates of yield compared to NDVI (Nash Sutcliffe Efficiency� −3.3). *is new FGCC-based model will give
more producers access to sensor-based yield prediction and N rate recommendations.

1. Introduction

Sensor-based yield prediction technology can be an im-
portant decision support tool for producers across the
United States, with the resulting near real time yield esti-
mates allowing farmers to optimize fertilizer application
rates. Yield predictions, and associated fertilizer recom-
mendations, can be made using normalized difference
vegetation index (NDVI) measurements collected using
instruments mounted to farm equipment or handheld
sensors. While such sensors provide valuable information,
the costs and availability of NDVI sensors can deter pro-
ducers from adopting them [1]. On the other hand, fertilizer
recommendations based on fractional canopy cover (FGCC)
rather than NDVI may be a more cost-effective option, and
the Canopeo smartphone application [2] enables FGCC
measurements and requires only a smartphone camera.

Increasing eutrophication in coastal waters and in-
creasing nitrate levels in drinking water motivate steps to
reduce nutrient losses from agriculture. One avenue ex-
plored is using optical sensors to assess plant health and for
nutrient recommendations [3]. Lukina et al. [4] noted that
NDVI measurements could be useful for in-season yield
estimates, which could in turn be used to develop N rate
recommendations through the nitrogen fertilization opti-
mization algorithm (NFOA). Since the inception of the
NFOA, NDVI has become one of the most often used
measures of plant health [5]. NDVI is based on reflectance of
near infrared light (NIR) and red light, ranging from 0 to 1,
with higher values coming from healthier (i.e., greener)
plants [6]:

NDVI �
NIR-Red
NIR + Red

. (1)
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NDVI can be measured in a variety of ways, such as
handheld sensors (Greenseeker, Trimble Agriculture; Crop
Circle, Holland Scientific), sensors mounted to farm
equipment, drones with cameras (Sentera, DJI, Micasense),
and satellites [7]. However, NDVI is not the only option for
measuring plant health. Canopeo, a free smartphone ap-
plication developed by Oklahoma State University, is a tool
that measures fractional green canopy cover (FGCC) using
downward facing digital images [2]. Rather than quanti-
fying the level of greenness, as is the case with NDVI,
Canopeo is designed to measure canopy cover as the
presence or absence of green vegetation above the soil
surface. In this way, FGCC offers an assessment of crop
health in terms of fractional canopy cover, with values
ranging from 0 (no cover) to 1 (full cover), while different
measurements, NDVI (greenness), and FGCC (canopy
cover) are inherently linked [8, 9].

While FGCC has been used to estimate yields of forage
crops [10] and above ground biomass of row crops [11], few
studies have quantified relationships between FGCC values
and winter wheat grain yields. Goodwin et al. [12] predicted
winter wheat grain yields using both NDVI and FGCC values,
and they found relatively poor yield relationships for NDVI
(r2 � 0.28 to 0.49) and FGCC (r2� 0.14 to 0.45) using direct
comparisons between sensor readings and yield. In that study,
NDVI and FGCC were positively correlated with correlation
coefficients of 0.87 at Feekes 5 and 0.73 at Feekes 6.

However, current yield prediction models used by
Oklahoma State University do not directly correlate NDVI
and grain yield. Instead, the in-season yield estimation tool
(INSEY; Raun et al. [13]) estimates yield based on the ratio of
NDVI and the number of growing days (denoted as
GDD> 0) since planting (i.e., NDVI per day of growth):

INSEY �
NDVI

GDD> 0
. (2)

Here, GDD> 0 refers to the number of days with average
air temperature above 4.4 °C. *is value is a threshold set for
small grain crops (including wheat) where growth occurs
[13]. *e INSEYmodel is based on over 30 site-years of data,
and the yield estimates using INSEY are stronger (r2 � 0.54,
[13]) than estimates based directly on NDVI (r2 � 0.28 to
0.49, [12]).

While the correlation of NDVI and FGCC suggests that
FGCCmay have value for calculating INSEY, this has yet to
be determined. *erefore, our objectives were to (1)
quantify the relationship between NDVI and FGCC, (2)
assess the potential for using FGCC values in place of
NDVI values in the current OSU Yield Prediction Model,
and (3) compare the performance of NDVI and FGCC-
based yield prediction models from the collected dataset.
We collected sensor values from one year across 13 loca-
tions from winter wheat N rate trials across the state of
Oklahoma at recommended sensor timing dates for opti-
mum yield prediction [14, 15]. *is work was done to lay a
framework by which FGCC can become a viable tool for
grain producers to predict yield and make subsequent N
management decisions.

2. Materials and Methods

2.1. Study Area. *is trial was conducted over 13 sites (6 at
research stations, 7 on-farm locations) during the 2019-2020
growing season that spanned the wheat producing regions of
Oklahoma (Figure 1, Table 1). *e climate of Oklahoma is
diverse, ranging from humid subtropical climate in the
southeast to semiarid climate classification in the north-west
and panhandle region. [16]. *ese sites have annual rainfall
totals ranging from 478 to 932mm and mean annual
temperature ranging from 13.7 to 16.4 °C [17].

*is trial was a randomized complete block design with a
5N rate treatment structure (0 kgNha−1, 34 kgNha−1,
67 kgNha−1, 101 kgNha−1, and 134 kgNha−1), applied by
surface broadcast preplant as ammonium nitrate (34-0-0),
replicated 4 times.

2.2. Vegetation Image Data Collection and Analysis.
Vegetative sensing measurements of each plot were collected
within 80–110 accumulated growing degree days of wheat
growth (GDD> 0), which ranged from February 27 to
March 29, 2020. *is time, frame was chosen as it is where
yield prediction has been found to be the most accurate for
NDsVI [14, 15]. *e NDVI measurements were collected
using a GreenSeeker (Trimble Agriculture, Westminster,
CO, USA) approximately 0.6m above the crop canopy
surface. Digital images capturing an area of approximately
1.2×1.5m were collected using a Samsung Galaxy S9
smartphone (Samsung Group, Seoul, South Korea). Nadir
images were collected by holding the phone out at a 90° angle
directly in front of the researcher at arm’s length approxi-
mately 1.4m off the ground for each plot. *e image was
then analyzed using the Canopeo tool in MatLab 2020b [18].
*is tool estimates canopy coverage by classifying each pixel
from an RGB image based on its color values. NDVI values
in this experiment ranged from 0.24 to 0.77, and FGCC
values ranged from 0.04 to 0.80, which spans nearly the
range of possible ground cover values (0 to 1).

2.3. Grain Yield Sampling. At physiological maturity, whole
plant samples were collected from a 0.9m× 0.9m area in each
plot via sickles. Samples were placed in forced air oven at 43 °C
for at least 24 hours, threshed using a small plot thresher to
remove the wheat berry from chaff, and then weighed.

2.4. Yield Prediction Model. *e yield prediction model
portion of the nitrogen fertilizer optimization algorithm,
developed by Raun et al. [13], is derived from six equations.
*e first is for INSEY, or in-season estimate of yield (see (2)).
*e INSEY provides a value of growth as a rate, as NDVI
value per GDD> 0, signifying increase in NDVI per day of
growth under current growing conditions. INSEY is to be
taken from the farmer practice strip (FPS), or area to which
N will be applied to reach yield potential. *is value is then
input into the yield prediction model:

YP0 � 1711 × eINSEY×137.2
. (3)
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*e YP0 reflects the yield potential of the crop assuming
no factors are changed (i.e., no other nutrients added, no
drought stresses). *is model also includes a standard de-
viation shift in the positive direction, to reflect yield po-
tential. It is important to note that grain yield limiting factors
occurring after sensing can cause differences between pre-
dicted and measured grain yields at harvest. Yield prediction
provides a snapshot in time of that crop and does not take
into account any postsensing stressors.

To predict yield, assuming an application of N occurs
after sensing, at least two NDVI readings are required.*ese
come from areas where high rates of N are applied (N-Rich
Strip) and another area outside the N-Rich Strip, where N is
to be applied based off yield prediction model from the FPS.
*e ratio of the response index (RI) values (RIN-Rich: RIFPS)
reflects the relationship expected of both sensor values and
yield. However, over time, data collection has shown the
need to adjust that ratio [19] to reflect the difference in
RISensor and RIYield. *e calculation for RINDVI and RIAdjust is
shown as follows:

RINDVI �
NDVINRich
NDVIFPS

,

RIAdjust � 1.69 × RINDVI( 􏼁 − 0.70.

(4)

Yield (YPN) is then predicted using

YPN � YP0 × RIAdjust, (5)

where YPN is the yield prediction after N application.
Fertilizer recommendations can then be calculated based
upon the difference of YPN and YP0, seen in the following.
While the N rate is a product of the NFOA, evaluating the
accuracy of N rates derived from the NFOA is beyond the
scope of this manuscript:

NRate �
YPN − YP0( 􏼁 × GrainN(%)

NUE
. (6)

2.5. Statistical Analysis. Statistical modeling was conducted
using trend analysis software in Microsoft Excel. Linear
regression modeling was used to explore relationships of
FGCC and NDVI, RISensor and RIYield, and predicted and

0 100 200 km

Figure 1: Map of all locations. Each point denotes location, in total 13. Inset shows the location of Oklahoma inside the contiguous United
States.

Table 1: Site name, cultivar, planting date, and soil type of each
location of the study.

Site Cultivar Planting date Soil type

Ballagh SY monument2 10/18/2019 Agra foraker
complex

Byron DoubleStop
CL+1 10/15/2019 Dale silt loam

Carmen Gallagher1 10/12/2019 Grant silt loam
Chickasha Smith’s gold1 10/01/2019 Dale silt loam
Dove Smith’s gold1 10/17/2019 Port silt loam
El reno Smith’s gold1 10/02/2019 Kirkland silt loam

Elmwood — 10/14/2019 Darrouzett clay
loam

Granite Gore3 10/08/2019 Roark loam

Hobart Gore3 10/22/2019 Hollister silty clay
loam

Lahoma DoubleStop
CL+1 10/15/2019 Grant silt loam

LCB Smith’s gold1 10/17/2019 Pulaski fine sandy
loam

Tipton 1 Smith’s gold1 11/04/2019 Tipton loam
Tipton 2 Smith’s gold1 11/04/2019 Tipton loam
1Oklahoma Genetics Inc. 2Syngenta Seeds, Inc. 3UGA Ag. Experiment
station. Superscript attached to cultivar denotes cultivar developer. ’-’
denotes missing information.
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measured yield. Exponential regression was used to build the
yield prediction models from both FGCC and NDVI.
Nash–Sutcliffe Efficiency (NSE) was used to assess yield
prediction models compared to the achieved yield of the
study [20].*e NSE has been used to compare field observed
data to predicted values in other studies evaluating hy-
drologic [21, 22] and forage yield models [23], but we will
use this value to assess grain yield prediction models. *e
NSE values range from −∞ to 1, with a value of 1 indicating
a perfectly fittedmodel, a value of 0 indicating that themodel
performs only as well as a model that uses mean observed
values as the predicted model output, and a negative value
indicating the model performs worse than the observed
mean. Figures were produced using package ggplot2 in R
[24, 25].

3. Results

3.1. Relating Canopeo to NDVI. Wheat producers often rely
on optical sensors to gauge the N needs of their crop, but
sensors that measure NDVI require special equipment that
could be less accessible to many producers. On the other
hand, smartphone-based technologies such as Canopeo that
measure fractional green canopy cover (FGCC) are acces-
sible to nearly all producers, but the effectiveness of using
this technology for yield prediction is largely unknown.
While NDVI and FGCC are grounded on inherently dif-
ferent technologies, we found that these measurements are
strongly correlated (r2 � 0.76, Figure 2).

3.2. RI Comparison and Adjustment. A primary component
of the NFOA is the response index (RI) of both yield and
sensor values and the subsequent adjustment. *e RISensor is
the ratio of the sensor value from the N-Rich Strip and the
sensor value from the farmer practice strip (FPS).*e RIYield
refers to the ratio of the yield from the N-Rich Strip and the
yield from the FPS. Due to the discrepancy between RIYield
and RISensor, an adjustment is necessary to accurately predict
yield from sensor values.*is adjustment, RIAdj, is described
by the linear models portrayed in Figure 3 for both sensor
types, as well as the current RIAdj used. *e linear regression
model derived from both the FGCC and NDVI data had
coefficients of determination of 0.76 and 0.27, respectively.
*e slope of the FGCC derived model was less than 1 (0.55).
*e opposite was true for NDVI derived model, which had a
slope of 2.49.

3.3. Yield Predictions withNDVI and FGCC. For both sensor
types, yield was predicted using the current NFOA and
displayed in Figures 4(a)–4(d). Figure 4 displays the pre-
dicted yields from the current yield prediction model using
FGCC data (a), FGCC data without the RI adjustment (b),
FGCC data with new RI adjustment found with RIFGCC
comparison (c), and the NDVI from the same dataset (d). It
is important to keep in mind that predicted yield is expected
to be higher than the actual yield (represented by being
below the 1 :1 line), as yield prediction represents a snapshot
in time and assumes no yield limiting factors occur after

sensing. *at is, yield predictions represent the upper limit
of potential yields. *e strength of the predicted-achieved
yield relationship was low (r2 � 0.34, NSE� −35.5) when
yield prediction was made by inputting FGCC into the
current NFOA (Figure 4(a)). *is caused increases in yield
prediction that were not only not reflected by achieved yield,
but also in some cases not possible to reach in Oklahoma
environment (e.g., predicted: 21578 kg ha−1, achieved:
2737 kg ha−1). Removing the RIAdjust led to increased ac-
curacy (Figure 4(b), r2 � 0.33, NSE� −11.4), but it was still
inaccurate. Adjusting the RISensor using the RI adjustment
for FGCC from Figure 3 increased accuracy even more,
providing predictions closer to the achieved yield
(Figure 4(c), r2 � 0.26, NSE� −3.3). Comparing the two
sensor types, FGCC with new RIAdjust was more accurate at

y = 1.27x-0.18 
R2= 0.76

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1

FG
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NDVI

Figure 2: Regression relationship between fractional green canopy
cover (FGCC) values and NDVI (normalized difference vegetative
index) for 13 sites in Oklahoma in the 2019-2020 growing season.
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Figure 3: Relationship between RI (response index) of each sensor
(NDVI or FGCC) and yield. RI refers to the ratio between the value
(either yield or sensor value) from the N-Rich Strip and the farmer
practice (FP). *e x-axis refers to the RISensor, and the y-axis refers
to the RIYield.*e gray dashed line represents the 1 :1 line, or where
the RISensor �RIYield. *e thick black line describes the current RI
adjustment equation utilized by Oklahoma State University. To
develop a prediction model, RISensor undergoes a transformation in
order to make the relationship of RIYield:RISensor closer to 1 :1.
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predicting yield than the NDVI data (Figure 4(d), r2 � 0.12,
NSE� −4.3).

A yield prediction model was built from FGCC data
using the same methods used to build the original NFOA
model (Figure 5). For this dataset, the FGCC built yield
prediction model provided similar correlation (r2 � 0.47) as
the NDVI model (r2 � 0.53).

4. Discussion

While FGCC derived from Canopeo is useful for estimating
biomass yield [10, 11], very few have used FGCC to develop
yield prediction for grain crops, rather than just measuring
biomass. Goodwin et al. [12] investigated using both NDVI
and FGCC to estimate grain yield in winter wheat in Ohio at
different growth stages and found that these values could
account for the most variability in yield, as long as sensor
readings were taken at or prior to Feekes 5 growth stage.
While our trial used different methods of developing yield
prediction models than Goodwin et al. [12], our results
support their findings.

Our results found that there was a significant relation-
ship between FGCC and NDVI. As these sensors measure

two distinctly different variables (NDVI-greenness, FGCC-
canopy cover), it is not expected to be a 1 :1 relationship.*e
deviation from the 1 :1 line indicates that FGCC should not
be directly inserted in the NFOA in place of NDVI and doing
so could skew yield predictions. Yet the relationship is
strong, supporting the opportunity that FGCC could be
utilized similarly to NDVI.

*e deviation between FGCC and NDVI values becomes
apparent when investigating the RIAdj portion of NFOA. In
Figure 3, we can see that the slopes of both NDVI and FGCC
RI lines are much different. *e NDVI RI adjustment line
shows that the RINDVI must be increased to reach the RIYield,
whereas RIFGCC would need to be reduced to reach RIYield
(Figure 3). *e RINDVI values from this trial produce an
adjustment that is closer to what OSU currently utilizes in its
NFOA than RIFGCC, as to be expected, as the OSU RIAdj is
derived from NDVI values.*e RINDVI has outliers that veer
from the regression line. *ese points come from locations
in which there was marginal difference in sensor values at
sensing, yet provided very high response to the addition of
N. *e RIFGCC had a much stronger coefficient of deter-
mination (r2 � 0.76) with RIYield, which suggests that FGCC
was more sensitive to differences between plots receiving N
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(a)

0
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Figure 4: Model depicting the predicted yields using sensor readings plotted against actual yield. *ese points were developed from the
FGCC readings (a), FGCC yield prediction without the RI adjustment (b), and FGCC with the new RI adjustment (c), and the NDVI from
the same dataset (d). As expected, RISensor caused inaccuracies with yield prediction. Removing the RI adjustment pulled those values closer
to 1 :1 but was still not enough to be considered accurate. Adjusting RISensor with the new RI adjustment caused those values to become
similar in accuracy as the NDVI derived yield prediction, with a couple of outliers, coming from locations with very high RISensor values.

International Journal of Agronomy 5



and those not. While the high r2 value supports the op-
portunity that FGCC could be utilized in yield prediction
models, due to the differences between FGCC and NDVI,
directly using FGCC in the current NFOA would not
produce accurate prediction values. As the YPN (see (5)) is
calculated by multiplying YP0 by RIAdjust, the drastic dif-
ferences between the RINDVI and RIFGCC would impact the
yield predictions and most likely overestimate the yield
response if using FGCC.

*is can be seen as when using FGCC to predict yield,
which was highly inaccurate. Using FGCC and the new
RIAdjust in the current NFOA provided the most accurate
yield prediction compared to the achieved yield (Figure 4(c),
NSE� −3.3, r2 � 0.26). Using NDVI provided less accuracy
to predict yield (Figure 4(d), NSE� −4.3, r2 � 0.12). Yet,
there were some outliers present in the data. *is can occur
when there are great differences between the sensor readings
coming from the N Rich Strip and the FPS. Each of these
locations had low NO3-N levels from the soil test analysis,
which allows for greater response to preplant N.

Yet, there are still opportunities in which yield predic-
tions could provide higher accuracy. *is is by developing
the yield prediction model from the dataset (Figure 5), using
the samemethods used to build the original NFOA [13].*is
was attained by plotting INSEY (sensor value divided by
GDD> 0, growth rate) against actual yield. Figure 5 displays
a very similar model as the original NFOA models were
built. *e model has a good coefficient of determination
(r2 � 0.47), but not as high as the model derived from the
NDVI data (r2 � 0.53).

While the coefficient of determination values across the
two models does not depict a very accurate model, this is to
be expected, considering the wide range of locales and
environments this study was executed in. Yield prediction
models offer a snapshot in time of the highest level of yield

attainable with current conditions. Any extraneous cir-
cumstances that occur after sensing can occur and decrease
the yield ceiling. Dhillon et al. [14] reported high coefficient
of determination values when investigating optimum
sensing timings for yield prediction in Oklahoma but were
on a subset of data that spanned 4 site-years, including the
same trials that were used to develop the currently used
NFOA. *e dataset from our study spans 13 sites, 300 km,
and 478–932mm rainfall over one growing season [17].
Drought stress, freeze damage, weed pressure, and other
circumstances could have decreased yield potential after
sensing, but due to the amount of locations and their relative
distance to each other, researchers were not capable of re-
cording each event. *is must be taken into account when
creating a NFOA to serve large/variable areas. Previous work
has shown that NDVI can be used to estimate winter wheat
yield but requires regional data/equations to provide most
accurate estimations [5, 26]. Future works may consider
creating multiple NFOA to better serve the area, which can
increase region specific accuracy.

It is important to note the magnitude of response re-
ported in this study, where RIYield reached 10.1, or a 10-fold
increase in yield from the 0N check to full fertilized plots.
Many nitrogen response studies have been conducted in
Oklahoma over the past two decades and report an average
“high” response of 2.0 [27–30]. While the exceptional high
achieved yield response could be an artifact of varying locale
or environment in one growing season, it is certainly un-
common and creates challenges when comparing the results
to existing literature.

All FGCC readings were conducted using the same
camera, by the same researcher, at the same height and
orientation for every plot. In using current NFOA with
NDVI, producers use handheld sensors that naturally, when
held, are level with the ground, and the producer adjusts the
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Figure 5:*emodel built from both sensor types and their subsequent yields. INSEY (In-Season Estimate of Yield) is derived from dividing
sensor values (in this case) by GDD> 0, which creates a unit of growth per day, in order to estimate yield. *e dotted line and coefficient of
determination (r2) represents the model that is built from the dataset, and the solid line, as well as the equation, represents that same model
translated up one standard deviation. *is translation is done to represent reaching for the maximum potential yield for a location. While
NDVI derived equation provides higher r2 value, the models are similar in shape, supporting the use of FGCC as a yield predictor.
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height with the height of the crop. Implement mounted
sensors are also mounted in level orientation, and also are
adjustable to the height of the crop. If collecting FGCC using
a smartphone, further work would need to quantify errors
associated with handheld use, as well as across multiple
setups (smartphone, implement mounted camera, drone
imagery, video implementation, etc.).

While this model is derived from only one growing
season, it is compiled from 13 sites and multiple blocks per
location. Across the dataset, the yields ranged from 324 to
5884 kg ha−1, across many different soil types, wheat vari-
eties, and ranging environmental pressures. *is shows that
FGCC values have the opportunity to be just as effective as
NDVI in predicting yield. While this dataset is limited in
time, it is not limited by space across the state. We ac-
knowledge while this model is not robust enough to fit
growing seasons drastically different from the 2019-2020
growing season, it does provide an avenue for future
refinement.

5. Conclusion

Sensor-based nutrient recommendations have become
popular in the past couple of decades, but instruments
capable of capturing normalized difference vegetation index
(NDVI) can be costly. Canopeo, a tool developed in Matlab
and available for free as an app for most smartphones,
provides estimates of fractional green canopy cover (FGCC).
We found that FGCC was correlated with NDVI, suggesting
that it could provide an alternative to NDVI for in-season
yield estimates in winter wheat. When using in the Okla-
homa nitrogen fertilization optimization algorithm (NFOA)
in place of NDVI [4], we found that yield predictions based
on FGCC (NSE� −3.3 , r2 � 0.26) were nearly as accurate as
those based on NDVI (NSE� −4.3, r2 � 0.12). A model de-
veloped using the same methods used to develop the first
NFOAwas also found to be similar to a model built using the
NDVI from this project. *is model sets the framework for
utilizing FGCC to build N rate recommendations for the
future, not just for Oklahoma, but for other areas as well.
With cost being a significant barrier of current yield pre-
diction method adoptions (NDVI sensors), a NFOA model
built to utilize FGCC allows more producers in the state to
have affordable access to precision N management tech-
nologies and use them in their production practices.

Data Availability

*e data are available in the dissertation of Dr. Vaughn Reed
and can be found at https://shareok.org/discover.
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