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ABSTRACT OF THESIS

Integrated Geophysical Investigation of Near-Surface Faults - Sassafras Ridge, New
Madrid Seismic Zone, USA

The New Madrid Seismic Zone (NMSZ) is a large source of seismic hazard within
the central and eastern United States. Seismogenic source parameters such as ac-
tive fault location, slip rate, total displacement, and strain accommodation is poorly
constrained due to the masking effect of the Mississippi Embayment sediment and
agricultural practices on structures and surface expressions. Consequently, noninva-
sive geologic and geophysical investigation of the subsurface is needed to characterize
seismogenic sources. Recent investigation of the Reelfoot Fault found that there is a
strain accommodation enigma between the dextral offset at seismogenic depth ver-
sus the surface expression, Reelfoot Scarp. This strain imbalance was suggested to
be due to a dextral shear zone from a splayed portion of the Axial Fault continu-
ing through Reelfoot Fault to the northeast. Seismic reflection surveys collected at
Sassafras Ridge, 12 km to the northeast of Reelfoot Fault, found a dextral trans-
pressional structure in Paleozoic to Eocene horizons. This structure was suggested
to be an extension of the shear zone to the northeast of Reelfoot Fault but could
not satisfy temporal boundary conditions due to the lack of resolution in the upper
50 m. New, near-surface seismic reflection surveys were collected at Sassafras Ridge,
targeting the basal Quaternary gravel and intra-Quaternary sediments. The resul-
tant images showed steeply dipping northeast striking faults with vertically offset and
arched Quaternary reflectors, extending within 5 m of the surface. There are five im-
aged transpressional faults within two zones of deformation, forming an ∼600 m wide
flower structure, with vertical displacements of 9 m and 4 m at the top of the Qua-
ternary basal gravel, and top of the intra-Quaternary coarse sands, respectively. The
seismic images were correlated with LiDAR digital terrain analysis and an electrical
resistivity survey to characterize the near-surface extent of these faults. The results
suggest that the transpressional flower structure imaged across Paleozoic to Quater-
nary reflectors extends to the surface and is expressed as a lineament spanning the
length of Sassafras Ridge observed in LiDAR slope and roughness maps. These re-
sults provide further evidence for the hypothesized shear accommodation fault across
the Reelfoot Fault, as well as identifying a previously unknown Quaternary-active
fault in westernmost Kentucky, northeast of the most active parts of the NMSZ.
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Chapter 1 Introduction

1.1 Problem

The New Madrid Seismic Zone (NMSZ) is generally described as consisting of three

main fault segments; two northeast striking dextral fault segments, the Axial (AF)

and New Madrid North (NMNF) faults, and a northwest striking central step-over

reverse/thrust fault, called the Reelfoot Fault (RF). Previous studies have shown the

RF exhibits approximately 12 km of dextral offset at seismogenic depth, but only

about 6 km of dextral offset across its surface expression, the Reelfoot Scarp (Pratt

et al., 2013). This difference represents a significant strain imbalance for this part of

the NMSZ system (Pratt et al., 2013). Pratt et al. (2013) suggested the AF, or part

of the AF, may act as a through-going transpressional fault zone cross-cutting the

RF as a potential solution for the kinematic discrepancy. (Woolery and Almayahi,

2014) and Greenwood et al. (2016) subsequently found evidence supporting this idea.

As part of a general site characterization study at the Central United States Seismic

Observatory (CUSSO) located at Sassafras Ridge, Kentucky; Woolery and Almayahi

(2014) performed a series of seismic reflection surveys that discovered a zone of trans-

pressional style faults. The location of these subsurface findings is approximately 12

km to the northeast of RF and along the northwest boundary of the Pratt et al.

(2013) hypothesized through-going shear zone. Woolery and Almayahi (2014) thus

suggested the spatial and architectural consistency of these faults were in agreement

with the Pratt (2012) hypothesized through-going shear zone. Additional support

for a shear zone piercing point located along RF northwest of Reelfoot Lake was sug-

gested by Greenwood et al. (2016). They searched for right-lateral offset across RF

acting as a potential shear-zone piercing, south of Reelfoot Lake at RF’s intersection

with the AF’s Cottonwood Grove (CGF) and Ridgely Ridge (RRF) fault strands.
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Pratt (2012) and Greenwood et al. (2016) originally thought this location was the

most likely piercing point; however, the Greenwood et al. (2016) results showed no

right-lateral strike-slip movement of the RF across the CGF and RRF, thus suggest-

ing that any piercing point was likely further to the northwest along the strike of RF,

northwest of Reelfoot Lake (Odum et al., 1998; Pratt et al., 2013; Woolery and Al-

mayahi, 2014). Rosandich (2019) subsequently completed seismic reflection surveys

located northwest of Reelfoot Lake, along the northwestern limits of the hypothesized

shear zone (Pratt et al., 2013), near the community of Proctor City, TN. Their re-

sults showed near-vertical, transpressional styled faults offsetting Paleozoic through

Quaternary horizons, leading to interpretations that were similar to those made by

Woolery and Almayahi (2014), but clearly indicated fault displacement into the late

Quaternary. This was interpreted as a primary candidate for the piercing point of the

shear zone, which is important because it would define where a transpressional shear

zone splay of the AF cross cuts the RF. The Woolery and Almayahi (2014) findings

were along the projected strike of the Rosandich (2019) structures; however fault

displacement was confined along the base of the Quaternary horizon, making late-

Quaternary activity equivocal. The acquisition array aperture, which was desgined

for depths between 0.1 and 0.6 km, prevented their P-wave surveys from imaging

the upper 50 m of the subsurface. To determine if the faults imaged at Sassafras

Ridge are a continuation of the transpressional faults imaged across the RF, late-

Quaternary displacement must be demonstrated to satisfy the temporal boundary

conditions. Consequently, this thesis investigates spatial and temporal character-

istics of the near-surface (<50 m) using SH-wave mode seismic reflection methods

to target potential fault deformation within the intra-Quaternary sediments. The

SH-wave reflection data were collected coincident with structure anomalies found in

the Woolery and Almayahi (2014) P-wave surveys UK-1 and UK-1a. A previously

collected and collocated electrical resistivity (ER) profile used for assessing the site

2



Figure 1.1: Location of New Madrid Seismic Zone. Earthquake epicentral pattern is
depicted by the dark grey zone. The southwestern arm is representing Axial Fault,
while the central, northwestern oriented segment is the RF. The gray dashed box
depicts the region shown in Figure 1.3, while the red box shows the approximate
region shown in Figure 3.7 and 3.6. From Csontos and Van Arsdale (2008), modified
from Woolery and Almayahi (2014).

hydrostratigraphy was also incorporated into the fault assessment (Cooper, 2016).

Additionally, high-resolution digital terrain analysis with Light Detection and Rang-

ing (LiDAR) datasets were utilized to evaluate the site geomorphology and potential

surface manifestation of faults imaged at depth by Woolery and Almayahi (2014).
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1.2 Hypothesis

The northeast-striking transpressional faults imaged byWoolery and Almayahi (2014)

are hypothesized to be Quaternary active and a part of a suggested northeast oriented

shear zone accommodating a strain imbalance across a piercing point with the RF,

located approximately 12 km to the southwest. The extension of deformation into

the Quaternary is a required, but still unproven, temporal boundary condition for

the kinematic strain-accommodation structure associated with a northeast projected

AF shear zone. Without an older, but still active dextral fault, an accommodating

through-going shear is not possible. Understanding if near-surface deformation ex-

tends into the late-Quaternary sediments will satisfy the temporal element for the

Sassafras Ridge faults as a viable northeastern extension of the dextral strike-slip

fault zone (AF).

1.3 Objectives and Significance

The NMSZ largely controls the seismic hazards in the central U.S.A. (Frankel, 1995).

The NMSZ experienced a series of at least three large earthquakes between Decem-

ber, 1811 and February, 1812. These earthquakes were estimated to range between

7.6 and 8.0 moment magnitude (Nuttli, 1973; Johnston and Schweig, 1996). The

resultant earthquake groundmotions from the 1811-1812 sequence were described

to have an ”unusually large felt area” (Nuttli, 1973). Nuttli (1973) and Johnston

and Schweig (1996) noted that ground-shaking and felt effects from the main-shock

events, based the Modified Mercalli Intensity scale, reached as far as the Atlantic

Coast, with intensities of a V. While the NMSZ serves as a significant area for central

U.S.A seismic hazards (Frankel, 1995), certain mechanisms such as slip rate, total

displacement, strain accommodation, and Quaternary-active fault locations are still

ambiguous across certain parts of the NMSZ system (Pratt, 1994; Schweig and Ellis,
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1994; Johnston and Schweig, 1996; Newman et al., 1999; Cox et al., 2000; Van Ar-

sdale, 2000; Tuttle et al., 2002; Calais et al., 2005; Smalley et al., 2005; Calais and

Stein, 2009; Calais et al., 2010; Pratt, 2012; Pryne et al., 2013).

Traditionally, invasive drilling and non-invasive geophysical imaging methods have

been required to provide better subsurface definition within the NMSZ system. Re-

cent introduction of LiDAR digital terrain analysis provides additional landscape

detail. Due to fewer numbers of subsurface investigations in the area, and lack of

availability of LiDAR until recently, hazard parameters northeast of the NMSZ’s

highly active RF are presently even less constrained. Woolery and Almayahi (2014)

collected near-surface P-wave seismic reflection profiles (UK 1 and UK 1a; Figure 1.2)

approximately 12 km northeast of the RF step-over and in-strike with the AF and

within the boundaries of the hypothesized through-going shear zone (Pratt, 2012).

Their results imaged near-vertical, N30E striking faults showing uplifted and arched

post-Paleozoic sediments, consistent with transpressional, dextral faulting. More sig-

nificantly, the new 12 km inclusion is geographically and kinematically coincident

with the proposed northeast continuation of the NMSZ’s southern Axial shear zone

across the RF, providing an accommodation solution for differential strain on RF

(Odum et al., 1998; Pratt, 2012; Pryne et al., 2013). Consequently, this study is

coincident with the UK 1a P-wave survey (Woolery and Almayahi, 2014) and targets

the potential extension of the Sassafras Ridge faults into the Quaternary sediments.

We used the UK-1a survey to target structures for the SH-wave seismic reflection

survey and surficial LiDAR analysis to better constrain the fault style, near-surface

extent, and possible surface exposure of the hypothesized shear zone extension.

Confirmation of the project hypothesis will provide additional evidence for resolving

the long-standing strain accommodation enigma associated with the RF, and a con-

5



Figure 1.2: P-wave seismic reflection profiles collected by Woolery and Almayahi
(2014) at Sassafras Ridge. Figure shows the spatial relationship between two P-wave
surveys collected. Line UK-1a (B) was collected with a smaller array spacing to target
the white dashed box depicted in UK-1 (A). Interpretations present were made by
Woolery and Almayahi (2014).
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ceptual leap in our understanding of the seismotectonic kinematics for the intraplate,

transpressional seismic zone in general. Positive hypothesis results will also reduce

the uncertainty in seismic hazard assessment in the central U.S.A by identifying un-

known Quaternary active faults and the spatial extension of a larger through-going

fault zone. This work will also correlate near-surface seismic reflection (SH-wave) with

newer digital terrain analysis methods across the Sassafras Ridge. Additionally, previ-

ously collected P-wave reflection surveys will be correlated with near-surface profiles,

completing the characterization of the fault mechanisms for Paleozoic stratigraphy

to the surface or near surface. This project will assess the potential for unidentified

Quaternary-active faults in the central U.S.A, as well as provide spatial and temporal

parameters for future fault modeling. Specific tasks to achieve thesis objective are

included:

1. Collection, processing, and interpretations of 0.6 km of high-resolution, near-

surface SH-wave seismic reflection data coincident with the P-wave survey col-

lected by Woolery and Almayahi (2014). These data are used to constrain

attitude, deformation style, spatial and temporal characteristics of near-surface

structure associated with the Sassafras Ridge faults.

2. Completion of terrain analysis using LiDAR datasets to relate geomorphic sur-

face anomalies to subsurface fault structure, thus providing a relative time con-

straint.

3. Correlation of new seismic reflection data with previously collected near-surface

electrical resistivity (ER) data (Cooper, 2016) and LiDAR analysis to evaluate

temporal extent of fault deformation. As well as to investigate near-surface

deformation within the Quaternary to determine active faulting within the hy-

pothesized through-going shear zone.
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1.4 Tectonic Setting

The NMSZ is an intraplate seismic setting located in the northern Mississippi Embay-

ment. The extent of the NMSZ spans across multiple states (i.e. Kentucky, Tennessee,

Missouri, Arkansas). The seismic zone is historically known for a series of 7+ mag-

nitude earthquakes in the winter of 1811-1812 (Nuttli, 1973; Herrmann and Canas,

1978; Johnston and Schweig, 1996). The main sequence of shocks lasted 8 weeks

and at least three major earthquakes have been estimated to be approximately 7.5

in moment magnitude (Johnston and Schweig, 1996). The NMSZ contains multiple

tectonic structures that have been investigated by geologists and geophysicists, such

as Reelfoot Rift, Byltheville Arch, and the Tiptonville Dome (Ervin and McGinnis,

1975; Crone, 1998; Parrish and Van Arsdale, 2004; Greenwood et al., 2016). The host

structure of the seismic zone is the Reelfoot Rift and formed in late Proterozoic to

early Cambrian times. The Reelfoot Rift is expressed as a 300-km-long, 70-km-wide

graben formed as a failed rift, or an aulacogen, off the margin of the opening Iape-

tus Ocean (Ervin and McGinnis, 1975; Crone, 1998). Common with mid-continental

rifting, there is evidence of magmatic intrusion along the axis of the Reelfoot Rift.

The axial magmatic intrusions were interpreted by Rhea and Wheeler (1994), as

well as Langenheim (1995) through aeromagnetic data (Rhea and Wheeler, 1994;

Langenheim, 1995). The largest intrusion is the Bloomfield Pluton (BP) along the

northwest rift margin of the Reelfoot Rift. BP is situated at the northwest end of the

RF stepover and the southwest end of the New Madrid North Fault. BP is associated

with a halo of seismicity where these faults intersect and seismic epicentral locations

patterns shows seismicity occurring along the southeastern boundary of the pluton.

These magmatic intrusions utilize weak areas in the rock medium, typically using ex-

isting fault structures, and are thought to influence subsequent faulting in the region

(Langenheim, 1995; Johnston and Schweig, 1996). Another key feature in the seismic

zone is the Blytheville Arch, first identified in seismic reflection data by Howe and
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Thompson (1984) (Howe and Thompson, 1984; Crone et al., 1985). This structure is

defined by a 10-15 km wide zone of up warping Paleozoic reflectors and is centered

along the axis of the Reelfoot Rift. Flat-lying continuous strata, Late Cretaceous in

age, are positioned on top of the upwarp (Johnston and Schweig, 1996; Crone, 1998).

The mechanism for the upwarp is still debated, however, positive flower structures

are one mechanism that can produce long, linear upwarping of strata and have been

imaged within the region. A positive flower structure indicates strike-slip faulting

with a component of compression across the fault (Harding, 1985). Consequently,

Blytheville Arch formed during a period of transpressional strike-slip faulting along

preexisting, reactivated axial faults (Johnston and Schweig, 1996).

The seismically active portion of the NMSZ is composed of three major fault seg-

ments; two northeast-oriented dextral strike-slip fault zones (AF and NMNF) con-

nected by a northwest striking central step-over (RF) (Figure 1.1) (Chiu and John-

ston, 1992; Pratt, 1994; Pratt et al., 2013; Woolery and Almayahi, 2014). The RF has

been defined as a reverse/thrust fault accommodating deformation from the bound-

ing dextral fault planes, resulting in major topographic uplift in areas such as the

Tiptonville Dome (Pratt, 1994). The strike of the RF changes direction around the

intersection with the AF zone, which Chiu and Johnston (1992) described as seg-

menting the Reelfoot Scarp into two planes; the Reelfoot North and Reelfoot South

(Chiu and Johnston, 1992). The assumption of a simple three-armed fault zone has

been utilized in prior work, however the spatial and physical characteristics that drive

seismicity and influence slip rate, displacement, and strain accommodation are still

quite ambiguous (Pratt, 1994; Schweig and Ellis, 1994; Johnston and Schweig, 1996;

Newman et al., 1999; Cox et al., 2000; Van Arsdale, 2000; Tuttle et al., 2002; Calais

et al., 2005; Smalley et al., 2005; Calais and Stein, 2009; Calais et al., 2010; Pratt,

2012; Pryne et al., 2013). This is in large part due to the masking effect of the Mis-
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sissippi Embayment sediments on seismogenic exposure. Additionally, this location

has a significant amount of agriculture, reworking the surface and removing any seis-

mogenic surface expressions that may have existed. A certain enigma in the NMSZ

system is the RF, which has been observed to have approximately 11 km of offset at

seismogenic depth, compared to the 5.5 km of topographic offset across the Reelfoot

Scarp (Figure 1.3). This difference in offsets presents a strain imbalance across the

RF and AF intersection. Several studies suggest a northeastern extension of the AF

shear zone through RF exists, accommodating a significant amount of strain (Pratt,

1994; Pratt et al., 2013; Woolery and Almayahi, 2014; Greenwood et al., 2016), but

lack substantial field evidence due to a lack of geomorphic and geophysical mapping

in the area northeast of the RF.

Pratt (2012) published an investigation of RF employing computational models to

show the RF is a restraining stepover fault structure. These models attempt to pre-

dict modern seismicity in the NMSZ from comparison with analogous sandbox model

simulations. These models suggested that the accommodation of modern seismicity

only occurs on a subset of faults, where the trends of younger faults seem to match

with the direction of shearing, supporting the idea for a possible shear zone. Ad-

ditional support came from Odum et al. (1998) published study that interpreted a

subset of parallel northeast-trending tear faults that seem to partition the hanging

wall of the RF thrust into subparallel blocks (Figure 1.4). Their study presented

atleast 5 faults (F1-F5) that interact with the RF step-over, each one seemingly coin-

cident with a bend in the fault plane. These faults were determined through a variety

of geophysical investigations; F1 was originally identified by Hamilton et al. (1982).

F2-F5 were delineated by Odum et al. (1998) through a variety of seismic reflection

methods. Odum et al.’s findings suggested the faults are deep rooted and could be

structurally related to the seismicity patterns observed throughout the NMSZ sys-
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Figure 1.3: Map of the Central NMSZ, modified from Pratt et al. (2012), showing
the hypothesized shear zone extension northeast of the RF. Red stars depict locations
of previous studies investigating the shear zone extension piercing point (Rosandich,
2019). Black star shows the location of the Central United Stated Seismic Observatory
(CUSSO) borehole, as well as the location of a previous study (Woolery and Almayahi,
2014), as well as the location of this study. Wolf Island identifies the location of a
large scale industry seismic profile collected by DOW Chemical. The Reelfoot Scarp
(solid black line) shows approxiamately half the dextral offset than that present as
seismogenic depth (lower right-hand box). Pratt (2012) and Woolery and Almayahi
(2014) suggest the hypothesized shear zone continues northeast, likely between the
heavy black dashed lines.
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tem. The CGF and RRF, towards the southern extent of RF, was speculated to

be a possible site of strike-slip faults cross-cutting the RF. Greenwood et al. (2016)

investigated the CGF and RRF for a piercing point of AF through RF. If found, they

hypothesized that dextral faults could balance the strain discrepancy seen across the

RF. However, their results showed that there was no right-lateral displacement of the

RF across the CG and RR faults, thus suggesting any piercing point was further to

the northwest, along strike of the RF, possibly at the intersection of a splayed part of

the AF and RF which had been proposed by other studies (Odum et al., 1998; Cson-

tos and Van Arsdale, 2008; Csontos et al., 2008; Pratt, 2012; Woolery and Almayahi,

2014).

Rosandich (2019) hypothesized the piercing point for the shear zone through RF

was at the small community of Proctor City, TN, to the northwest of Reelfoot Lake,

based on anomalous surficial offset in the Reelfoot Scarp. This location is coincident

with the strike of the AF, and the segmentation of the RF into the RF North and RF

South (Chiu and Johnston, 1992). Rosandich (2019) presented results that indicate

a Quaternary-active, transpressional fault zone of the AF across RF. This piercing of

the AF through RF is a 500-m-wide zone of transpressional faults displacing intra-

Quaternary sediment, imaged with both P-wave and SH-wave reflection surveys. The

results also showed faults that displaced the basal Quaternary by 5-7 m. Addition-

ally, the faults imaged depicted warped and offset reflectors across the Eocene and

Quaternary horizons, as well as antiforms between faults due to the transpressional

strain. The structure of the faults and associated deformation is consistent with a

transpressional flower structure. Results from Rosandich (2019) provided a possible

solution to the strain imbalance seen across RF, and indicated that the AF has con-

tinuously accommodated right-lateral displacement through time; with only a small

portion of the motion being represented by vertical displacement of the RF (Pratt,
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et al. (1998).
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2012; Rosandich, 2019). Rosandich et al.’s (2019) Proctor City, TN and Phillipy,

KY fault interpretation projects along strike with the Woolery and Almayahi (2014)

transpressional structures at Sassafras Ridge, 12 km northeast of the central step-

over; extending the Axial shear zone to the northeast 12 km. (Woolery and Almayahi,

2014; Rosandich, 2019). Woolery and Almayahi (2014) completed their study utilizing

near-surface P-wave reflection methods and correlated with local large-scale, industry

seismic reflection profiles at Wolf Island, MO. Correlation with the industry profile

suggests the possibility of a further extension of this transpressional structure 34 km

further to the northeast, however without evidence that satisfies the late-Quaternary

temporal boundary condition, this is equivocal. Woolery and Almayahi’s results pre-

sented near-vertical, transpressional faults and (lines UK-1 and UK-1a)(Figure 1.2)

warped and offset reflectors from the Paleozoic to basal Quaternary horizons. While

Woolery and Almayahi’s (2014) results were along the projected strike of Rosandich

et al. (2019) structures, fault displacement was confined to the basal Quaternary

horizon, making late-Quaternary interpretations equivocal. It has been noted that

evidence for dextral faults, striking approximately N30E, displacing Quaternary sed-

iments would provide more support for a possible solution to the strain imbalance

problem across NMSZ (Pratt et al., 2013); where strain is accommodated through a

series of step-over strike-slip faults. The accommodation of strain across a series of

faults rather than a single fault (RF) would result in the differential offset seen at

seismogenic depth versus the surface expression.

1.5 Stratigraphy of the New Madrid Seismic Zone

The stratigraphy of the northeastern Mississippi Embayment is constrained by bore-

holes. The Central United States Seismic Observatory borehole (CUSSO), which

penetrates 587 m to the bedrock, is located adjacent to the UK-1b line presented

here, and is used as a control for both velocity analysis and interpretations of stratig-
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raphy (Figure 1.5, Table 1.1)(Woolery et al., 2016). The bedrock in the NMSZ is the

Ordovician Knox super-group carbonate and the contact meets the Late Cretaceous

McNairy sands, at 585 meters depth (Van Arsdale and TenBrink, 2000). This uncon-

formity appears as a strong reflection in seismic data (Woolery and Almayahi, 2014).

The McNairy sands and clay is a formation 85 meters thick and appears at a depth of

500 meters. Another unconformity, moving up the section, lies between the McNairy

Sands and the Paleocene Porter’s Creek Clay formation (Van Arsdale and TenBrink,

2000; Rosandich, 2019). The Porter’s Creek Clay formation is ∼100 meters thick,

depending on the locale, with the top of the clay formation reaching ∼400 meters in

depth. The Eocene Wilcox Group, which consists of sands, silts, and clays, overlays

the Paleocene formation and is ∼150 meters thick. The Claiborne Group (Eocene)

sits atop the Wilcox Group and consists of groups of sands, silts, and clay sediments.

The Claiborne Group is approximately 150 meters thick and encounters the Eocene

Jackson formation at ∼130 meters depth. The Eocene Jackson formation contains

alternating layers of sands, silts, and clays, up to ∼50 meters depth. The top of

the ∼90-meter-thick Jackson formation meets the Quaternary Mississippi River Al-

luvium and marks another unconformity (Van Arsdale and TenBrink, 2000). The

Quaternary Alluvium can be differentiated by its gravelly base and varying grain size

sands, silts, and clays reaching all the way to surface (Woolery et al., 2016). The

Quaternary Alluvium is ∼50 meters thick and is the target formation for the seismic

reflection data presented herein.

The Quaternary Alluvium consists of a large grain gravelly base, which is an-

other strong reflector for regional seismic reflection surveys (Woolery et al., 1993;

Harris, 1996; Woolery et al., 1996; Van Arsdale and TenBrink, 2000; Woolery and

Almayahi, 2014). Within the Quaternary sediments the layers can be broken down

further depending on the grain size of the gravel and sands present. The Quaternary
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Figure 1.5: Stratigraphic and geophysical well-log interpretations from the CUSSO
borehole are shown on the left side of the figure. Self-potential resistivity (SPR),
natural gamma (NGAM), and borehole velocity measurements were made. From
Woolery and Almayahi (2014).
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Table 1.1: General stratigraphy of the northeast New Madrid Seismic Zone, modified
from Van Arsdale and TenBrink (2000)(Van Arsdale and TenBrink, 2000; Woolery
et al., 2016; Wang and Carpenter, 2019).

Formation Name Age Thickness (m) Depth to top(m)

Unit 3 - Fine brown sand Quaternary 10 -
Unit 2 - Coarse red and blue sand Quaternary 20-25 10

Unit 1 - Coarse sand and large gravel Quaternary 10-15 35
Jackson Formation Eocene 90 50
Claiborne Group Eocene 150 140
Wilcox Formation Eocene 110 290
Porter’s Creek Clay Paleocene 100 400

Clayton-McNairy Formations Cretaceous 85 500
Knox Supergroup/Bedrock Ordovician - 585

stratigraphy is presented in Table 1.1 and is used as a control for the seismic inter-

pretations. The first distinction made within the Quaternary is classified as Unit 1

and consists of primarily coarse sand and large gravel, is 10-15 m thick, and likely

represents the basal gravel of the Quaternary Alluvium. Unit 1 contains diffraction

patterns in the seismic data, possibly originating from the large gravel lenses. Unit 2

is a ∼20 meters thick layer of coarse-grain red and blue sands (Wang and Carpenter,

2019). This layer of sands reaches to roughly 10 meters depth. Unit 3 is the fine-

grained sand and topsoil, and is approximately 10 meters thick depending on locale

(Woolery et al., 2016).

Copyright© Cooper S. Cearley, 2021.
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Chapter 2 Methods

2.1 Reflection Seismology

Reflection seismology utilizes elastic waves generated from a input of energy (e.g.,

dynamite, shotgun blast, Vibroseis, Thumper, hammer impact) into the ground to

create a profile of the subsurface. Sources vary from controlled frequency sources

which input energy over a range of frequency (i.e. Vibroseis, Sosie), to impact sources

(i.e. hammer, dynamite, shotgun) that releases energy as an impulse. The source

generates a wave front that propagates radially outward in the form of seismic waves.

Wave attributes such as frequency, amplitude and travel time are recorded by an ar-

ray of geophones placed at known distances from the source. With known distances

and travel times, the velocity of the waves can be determined as they propagate

through a geologic medium. The information contained in the waveform can inform

the observer of the presence and magnitude of elastic contrasts. When seismic waves

traveling through the subsurface encounter a formation of rock or sediment with a

different acoustic impedance, energy of the wave-front may be lost, or attenuated

through geometric spreading, scattering, partitioning, or absorption (Sheriff and Gel-

dart, 1995; Lillie, 1999; Burger et al., 2006). Energy of a wave-front can also be

diffracted when encountering an impedance contrast that is discontinuous (i.e. faults

or non-planar horizons).

Seismic waves consist of body waves (P-waves and S-waves) and several types

of surface waves. S-waves are transverse waves, propagating with particle motion

perpendicular to the direction of the wavefront (Figure 2.1). S-waves can be broken

down into key directional components whenever they are polarized in a certain direc-

tion, either vertical (SV) or horizontal (SH) polarization (Sheriff and Geldart, 1995).
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Figure 2.1: Diagram showing different propagation of particles for (A) P-waves and
(B) S-waves. Modified from earthquake.usgs.gov.

SH-waves specifically, hold a large advantage when used in near-surface geotechni-

cal applications due to the fact they are ”framework waves”, propagating through

geologic mediums sampling the lithology in water saturated environments (Woolery

et al., 1993, 1996; Harris, 1996). SH-waves also have a larger optimum window due

to the slower propagation velocities, which allows for easier identification of different

events in the recordings (Woolery et al., 1993). The slower velocity of an SH-wave

coupled with a smaller wavelength allows for higher resolution data to be acquired

when considering resolvable limit and vertical resolution. SH-wave methods offer

resolution in water saturated sediments of up to 2-3 times that of P-wave methods

(Woolery and Street, 2002). This increased resolution in shallow, water-saturated

subsurface in the NMSZ is advantageous due to the small offsets of faults in the near-
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surface (Woolery et al., 1993, 1996; Harris, 1996). However, this higher resolution

comes at the sacrifice of penetration depth of the signal. SH-waves travel with a

higher frequency, but because subsurface material acts as a high-cut filter, SH-wave

energy is heavily attenuated and absorbed the further it travels into the subsurface.

Resolution refers to the minimum distance in space or time to distinguish two different

features (Sheriff and Geldart, 1995). The vertical resolution is determined through

Rayleigh’s quarter-wavelength criteria (λ/4), where features in the subsurface must

be separated by atleast a quarter of the dominant wavelength to be resolvable as

two features rather than one (Widess, 1973). Single features smaller than the resolv-

able limit are still detectable due to the threshold of detection being λ/20 to λ/30,

however, thin features, while they may show up on the seismogram, have an inde-

terminable thickness (Widess, 1973). Due to the vertical resolution being a factor of

wavelength, which is determined through a function of velocity divided by frequency,

higher frequency data will typically yield higher resolution data. While P-waves can

have high frequencies, they also travel at much higher velocities compared to S-waves.

Whereas, SH-waves travel with a slower velocity and may have a wavelength of one

half or one third that of P-waves (Sheriff and Geldart, 1995; Yilmaz, 2001), resulting

in a much higher vertical resolution.

The most common type of reflection survey conducted is known as the common

midpoint method (CMP), also referred to as the common depth point (CDP) (Lillie,

1999; Sheriff and Geldart, 1995). The CMP method allows for sampling redundancy,

also known as ”fold”, by collecting traces of reflecting signals gathered from the same

subsurface points along various source-to-receiver paths. The compilation of corre-

sponding traces for each point in the subsurface are known as a CMP gather (Lillie,

1999; Baker, 1999). Fold is the amount of times a single subsurface point is sampled

and can be expressed by the following relationship:
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Figure 2.2: Diagram showing the CMP method of a reflection survey. A) is field
acquisition of CMP data. B) shows the CMP gather. C) shows NMO corrected
gather and then a stacked trace of all the NMO corrected traces. Modified from
Burger et al. (2006).

Fold =
ReceiverSpacing ∗NumberofReceivers

2 ∗ shotspacing
(2.1)

This redundancy of information, when combined into a stacked profile, promotes con-

structive combination of reflections and the elimination of the stochastic, unwanted

signal or noise (Burger et al., 2006; Lillie, 1999). The various paths will have vary-

ing two-way travel times which must be corrected to a zero-offset time or vertical

incidence time. This correction utilizes the normal-moveout (NMO) time shift deter-
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mined from a function of the velocity model and source-to-receiver offset. The various

ray paths from multiple shot points, corresponding to the same subsurface point, are

all recorded at different travel times. When plotted on a graph of trace vs. travel

time, a single reflection boundary resembles a hyperbola, with travel time increasing

with trace number. This variance in travel time across the reflector is referred to as

the normal move-out (NMO) and must be corrected before the traces can be stacked

together (Burger et al., 2006; Lillie, 1999; Sheriff and Geldart, 1995). This correc-

tion involves bringing all the traces from their position in the NMO hyperbola, to a

position of vertical incidence (Baker, 1999); bringing the curved hyperbolic reflection

up to zero-offset time (vertical incidence). This correction is done by utilizing the

source-receiver offset and the equation for NMO time. A collection of NMO corrected

traces is combined to create a stacked profile, showing a 2D cross-sectional view of

the subsurface.

2.1.2 Optimal Window

For the most success when collecting near-surface SH-wave reflection data, recording

the reflection within the optimum window is required (Hunter et al., 1984). To ac-

quire data within the optimum window, this requires the array of geophones to be

place at a distance from the receiver so that key reflections are observed with min-

imum coherent noise or interference from other arrivals (Hunter et al., 1984). With

reflection surveys, near vertical offset is ideal due to the degradation of signal-to-noise

ratio through phase reversals, lowering of frequency content, and amplitude anoma-

lies that occurs with wide-angle reflections (Harris, 1996).

SH-wave surveys of unlithified sediments have the optimum window typically come

in below the Love wave arrival and at near source-to-receiver offsets (Woolery et al.,

1996; Harris, 1996). In order to avoid the negative effects such as wavelet phase,
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Figure 2.3: Field gather showing the optimal window for near-offset seismic reflection.
The optimal window used for these data was targeting basal Quaternary reflection.

frequency, and amplitude changes that are caused by wide-angle reflections and the

interaction with the free surface, SH-wave surveys must also consider the shear wave

window (Harris, 1996). The optimum window should be selected so the recorded

reflections are observed over the largest distance-time window possible (Hunter et al.,

1984). The SH-wave surveys presented here were recorded at near-offsets of 1 m in

order to target shallow intra-Quaternary reflections over the maximum distance-time

window (Figure 2.3). This near-offset also limits the negative effects that are possible

when recording reflections at wide-angle.

2.2 Seismic Reflection Data Acquisition

The reflection data for this work was collected on Chesshire Ln., approximately 6

km north of the Tennessee border on the active Mississippi River floodplain, in far
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southwestern KY. The investigation site was selected from previous work (Woolery

and Almayahi, 2014) and chosen to be coincident with the P-wave seismic lines (UK

1 and UK 1a) published by Woolery and Almayahi (2014) (Figure 1.2). This work

targets the transpressional structure imaged in deeper stratigraphy by Woolery and

Almayahi (2014) but investigates their potential near-surface extension within Qua-

ternary sediments.

Our survey started 100.5 m from KY-94, with 48, Mark Products 30-Hz, geophones

oriented for SH-wave collection, spaced apart at 1 m. Each of the 48 geophones were

connected to a Geometrics engineering seismograph through 2, 24 takeout cables with

ruggedized Mueller clips. The survey was conducted in an end-on, roll-along fash-

ion, shooting 1 m off the first geophone, moving through 24 active geophones and

then “rolling along” onto the next 24 geophones. The energy source used for all seis-

mic data was a 1.4 kg sledgehammer, striking the flanges of an orthogonally placed

steel H-pile (SH-mode). There were a series of 2 hammer strikes that were vertically

stacked in reverse polarities (striking south and north) at every shot point. In order

to ensure the reflection events in the recordings are SH-wave and not P- or SV- events,

polarity reversals for each shot were completed and stacked in field recordings. This

effectively removes non-SH-wave reflections that may interfere or bias interpretations

(Woolery et al., 1993, 1996). A total of 336 total shot points were collected through-

out the survey. Acquisition parameters such as recording window, sample length, etc.

are included in Table 2.2.
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Table 2.1: Acquisition parameters for raw field data collection.

Survey UK-1b
Source 1.4kg hammer
Mode SH-wave
Record Length 1.024 seconds
Sample Interval 0.125 seconds
Geophone Spacing 1 meter
Shot Spacing 1 meter
Near-offset 1 meter
Fold 6
Shots per Station ±2

2.2.2 Seismograph and Geophones

These data were collected with a Geometrics Stratavisor NZ-series, 24-bit seismo-

graph. SH-waves were recorded with Mark Prodcuts 30 Hz horizontally-oriented

geophones. 48 geophones were connected to the seismograph through 2, 24-channel

takeout cables with a spacing between each geophone of 1 m. The geophones were

arranged in an end-on array with 24 out of the 48 active at a time. Each geophone

was coupled to the ground with a three-inch spike and leveled with a bubble level on

the top of each phone. Temporal record length for each sample was 1.024 seconds

and the sampling rate used was 0.125 seconds (Table 2.2).

2.3 Seismic Reflection Data Processing

After raw data were collected in the field (Figure 2.4), processing algorithms were

applied to maximize the signal-to-noise ratio (Baker, 1999). These data were pro-

cessed on an AMD Ryzen Threadripper 2950x 16-core CPU home-workstation, using

Schlumberger’s commercial seismic-processing software, VISTA 2016.

The first step taken in processing these data was to reformat the data sets from

the internal seismograph format, SEG-2, into VISTA’s internal SEG-Y file format.
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Figure 2.4: Raw field gathers from the UK-1b SH-wave survey.

The data must be reformatted before the field geometry can be written to the header

files. Field geometry information defines crucial source, receiver, and surface informa-

tion regarding the survey array setup. After geometry was written to the file headers,

noisy traces were then deleted and coherent top muting was applied to target arrivals

such as refracted waves and ground roll (i.e., Love wave for SH-mode).

The data were then scaled using a variety of scaling algorithms to continue im-

proving the signal-to-noise ratio. Signal scaling is important because the amplitude

of the signal decreases significantly with distance from the source (inversely propor-

tionate) and higher frequencies get attenuated by subsurface material faster through

attenuation and absorption of energy. Reflection signal routinely has a higher fre-

quency content and a much lower recorded amplitude than coherent noise (Baker,

1999; Yilmaz, 2001). First a Time Variant scale was applied, which works to scale

the data with the mean amplitude calculated within a defined data window (start

time and end time). The value of the scalar quantity determined by: ScaleFactor
MeanAmplitude

, is

then posted at an “apply time”. The defined time windows are outlined in Table 2.10.
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This scaling algorithm finishes by multiplying each individual sample by the scalar

quantity, within the data window at the given apply times. A mean scale was also

applied initially to the data, which calculates a defined scale function (mean scale)

and multiplies the entire trace and every sample by: Scale
Average

.

Frequency bandpass filtering is a key component of seismic processing and works

to increase the signal-to-noise ratio by passing the desired frequency content and re-

jecting signal outside of the selected bandpass (Baker, 1999; Yilmaz, 2001). In order

to determine an optimal bandpass frequency range, the dominant frequencies were

determined for each reflecting horizon from frequency spectrums. The dominant fre-

quencies were determined to be 46 Hz, 51 Hz, and 54 Hz for the Quaternary gravel,

coarse sands, and fine sands, respectively. A band-pass filter was then applied to the

data set, with the selected filter of 20-30-70-80 Hz.

An Automatic Gain Control (AGC) was optimized and applied to the data prior to

velocity analysis. AGC is a useful scaling tool when working with seismic reflection

data since coherent noise arrives at different time windows compared to the optimal

window for reflections (Baker, 1999). This allows for the noise to be isolated within

one AGC window. AGC works by calculating an average absolute amplitude for all

trace samples and then scales each time window to a normalized amplitude for all

traces within that window. The integral parameter within the AGC command is the

moving time window. An optimized AGC window length will increase amplitudes for

low-amplitude, high frequency arrivals, while minimizing the amplitude for arrivals

that have lower frequencies and high amplitudes (Yilmaz, 2001). The optimal AGC

window was determined to be ∼150 ms. The scaled and edited data was then input

into a velocity analysis flow to create three data sets for interactive velocity picking:

surface velocity semblance, common velocity stacks (CVS), and offset sorts (Figure
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Figure 2.5: Prestacked data from UK-1b SH-wave survey. The data has noisy traces
killed, a top mute applied, signal scaling and bandpass filtering.

2.6). These data sets are then synchronized within VISTA16’s interactive velocity

picker in order to develop a velocity model (Figure 2.7).

Normal Move Out (NMO) corrections were the next step taken in the process-

ing routine and is required for the development of a stacked seismic image. NMO

corrections work to determine the difference between a zero offset arrival and an ar-

rival recorded as a function of shot-to-receiver distance and vertical distance from the

reflection horizon (Baker, 1999; Yilmaz, 2001; Rosandich, 2019). NMO corrections

are determined from the velocity model, which utilizes hand picked velocities from

VISTA 2016’s interactive velocity analysis (Figure 2.7). Any variance of the velocity

model from the true seismic velocity of the subsurface will result in morphing of flat

reflectors; either arcing the reflectors up if selected velocities are too high, ultimately

correcting the NMO too much; or leaving reflections in their parabolic shape if the
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Figure 2.6: Flow used in VISTA2016 to create three data sets for interactive velocity
picking. Flow generates three outputs: common velocity stacks, surface velocity
semblance, and offset sorts.

correction was not enough. A NMO stretch mute was applied to the data through the

velocity command through the selection of a percentage and sample range to move

signal that has a velocity different from those picked, up to the picked velocity (Table

2.3). This gets rid of a significant amount of noise between strong reflectors and pre-

vents arrivals that have been extremely distorted by the NMO corrections from being

stacked (Baker, 1999). The stretch mute length utilized on these data was ∼25%

with an 8-sample range. The velocity model was then output from the interactive

velocity selection process and smoothed to avoid any stretching of the signal due to

sharp variance in velocity (Yilmaz, 2001). The scaled and edited data had NMO

corrections applied and produced NMO’ed records which display flat reflections, as if
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Figure 2.7: Example velocity analysis panel from VISTA16 for UK-1b SH-wave data
set. A)semblance velocity B)offset gather C)common velocity stacks (CVS).

recorded using zero-offset time (Figure 2.8).

Residual statics was applied to the data prior to stacking, utilizing a power stack

command. Residual statics is useful because it corrects any differentiation of travel

time arrival for traces within a singular reflection, moving the reflection signal trace

by trace according to a user-defined amount of time. Ultimately, residual statics

improves coherency of the reflectors which increases the signal-to-noise ratio further.

Elevation statics was not applied to this data as it was deemed unnecessary due to

the topography change across the survey being <1 m. After the velocity model was

determined and statics was applied, these data were stacked using a common mid-

point (CMP) stacking method. Within the VISTA 2016 flow to stack, an output of

NMO’ed records occurred right before the CMP stack command (Figure 2.9), which

allowed for the NMO’ed records to be qualitatively inspected alongside a brute stack.

Qualitative inspection of the NMO corrected data is a useful way to check correctness

in the velocity model. These data had some additional trace balancing and filtering
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Figure 2.8: Example of NMO-corrected data from UK-1b SH-wave data. Coherent
reflections have been flattened to a zero-offset time based on the velocity model
produced from VISTA16’s interactive velocity analysis.

applied to ensure only the desired signal was being stacked.

A FK filter was applied to the data post-stack to further reduce noise and improve

coherency across reflectors. The FK filter works be transforming the data into a

frequency and wavenumber domain and allows coherent noise to be rejected, thus im-

proving the overall coherency of signal. A broad rejection filter, symmetrical about

the zeroth wavenumber (Baker, 1999), was designed to target consistent diffraction
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Figure 2.9: Flow executed in VISTA2016 to create a time stacked profile of the
Chesshire Lane SH-wave data.

patterns that consumed the data (Figure 2.10). A variety of FK filter shapes were

tested, and the selected filter was a large polygon shape (Figure 2.10). This filter

did the best job of ridding the data of diffraction artifacts that contained frequency

content similar to the reflection events.

After the stack flow was executed, the NMO corrected data and a stacked time sec-

tion were qualitatively analyzed for high signal-to-noise ratio. This time stack was

input to a flow that executed a time-to-depth conversion based on the velocity model.
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Figure 2.10: Example of the F-K filter applied to the data after the stacking process.
The black dashed polygon contains the core reflection for the data set.

The depth conversion allows for stratigraphic correlation and was compared with the

near-field borehole logs (CUSSO) to confirm accuracy of reflection events.

2.4 LiDAR Analysis

LiDAR analysis was conducted on the Kentucky Commonwealth database of statewide

LiDAR data, in the Digital Earth Analysis Lab (DEAL) at the Kentucky Geological

Survey (KGS). LiDAR point data is collected by sending hundreds of thousands of

laser impulses per second from an aircraft with known altitude, GPS location and

pulse orientation. The impulse returns are recorded as a point-cloud, and the position
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Table 2.2: Processing sequence and parameters for UK-1b SH-wave dataset.

Processing Step Processing Parameters
Reformat SEG-2 to SEG-Y format

Geometry
Geometry definition to
headers

Trace Kill Noisy traces killed
Trace Mute Top mute

Tapered by 4 samples
Time-Variant Scaling Start:End:Apply

0:100:50
50:150:100
100:300:200
200:400:300
300:500:400

Data Scaling Mean scale
Scale factor: 1

Ormsby Bandpass Filter 20/30/70/80 Hz
Domain: Frequency
Restore Mutes after Filter-
ing

AGC 150 ms window
Skip initial hard-zero

NMO Correction Velocity Model File
Percent Velocity: 100%
Stretch Mute: 25%
Mute taper: 8 samples
Scan from top for stretch
mute

Stack
Stack: No Normalization
Stack
Common Mid-point Stack

F-K filter F-K designed filter file
Power amplitude: 1
Smooth traces: 7
Smooth frequency: 5
F-K operation: Reject

Depth Conversion
Time to depth conversion
from input velocity file
Increment: 0.1
End: 250
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of the surface is calculated from the two-way travel time of each returning laser pulse

and their phase differences. This point cloud is then classified manually to identify a

ground surface, which is interpolated into a digital elevation model (DEM) available

from KGS.

To create a series of roughness maps mean, maximum and minimum DEMs were

generated at a variety of smoothing window sizes (Table 2.3). Rectangular smooth-

ing windows create significant artifacts as artificial boundaries from raster data and

tiles are typically enhanced. Thus, a circular smoothing window was used as it pro-

duced the fewest artifacts. Smoothing window sizes varied from small cell radii (n

= 10 meter or 7 cell diameter) to large radii (n = 901 meter or 601 cell diameter)

to ensure different size surface features, specifically those across Sassafras Ridge, are

adequately captured. Raster calculator was used to generate a roughness map for

each window size. The overall process follows equation 2.2:

Roughness =
Ws(mean(DEM))−Ws(min(DEM))

Ws(max(DEM))−Ws(min(DEM))
(2.2)

where Ws is window size and DEM is a smoothed 10ft digital elevation model. Sur-

face roughness is an important land-surface parameter used to identify individual

landforms and the processes acting upon them (Frankel and Dolan, 2007; Grohmann

et al., 2010). Each of the roughness maps were then converted to ASCII files and

imported into MATLAB for analysis using a hyperscale script written by Dr. Jason

Dortch of the KGS. The hyperscale script vertically stacks roughness maps, layering

them on top of each other, and undertakes vertical column analysis through all win-

dow sizes to generate two maps. The first map generated is a maximum value map

(Figure 2.11), which records the maximum roughness value for each column of pixels

across all smoothing window sizes. This shows how well each column within the map
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was captured by our selected window sizes. Topography that resonates perfectly with

a given wavelength or window size will return a value of one, while topographic raster

cells that are not captured by a given wavelength (i.e. flat) will return a zero value.

The goal of the max value map is to ensure that the stacked smoothing window sizes

adequately capture surface features. We defined adequately as the majority of the

surface displaying values of > 0.5. The second map generated from the MATLAB

script is an index map of maximum roughness values (Figure 2.12, which shows the

layer corresponding to the maximum value stacked roughness maps. This index or

hyperscale map shows which swaths of landscape are best represented by a particular

window size. Thus, interrogating a land form on a hyperscale map will identify which

scale(s) best isolate features of interest. Hyperscale analysis of roughness maps have

proven useful in distinguishing boundaries between geomorphic landforms (Lindsay

and Newman, 2018).

The smoothing window sizes ranged from a 3-300 cells (radius) across 14 different

window sizes with 35-150 cell radius highlighting most area corresponding to surface

feature along Sassafras Ridge (Figure 3.6). The 35-cell radius window size was se-

lected for mapping due to the least presence of artifacts and ringing from man-made

structures in the area, such as roads and train tracks. Both the 35-cell roughness

map and a hill shade of the roughness map was used for mapping terrace sequences

in the greater Sassafras Ridge area (Figure 3.7).

Copyright© Cooper S. Cearley, 2021.
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Figure 2.11: Maximum value hyperscale map generated from Dr. Jason Dorth’s
hyperscale script. Depicts the highest roughness value for each column of pixels
across all smoothing window sizes. Adequately captured topographic detail should
return a maximum value of > 0.5.
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Figure 2.12: Index map generated from the hyperscale script. Each color corre-
sponds to the stacked layer that returned the highest maximum value. There were
14 smoothing window sizes used and are outlined in Table 2.3.
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Table 2.3: Smoothing window size parameters utilized in the hyperscale roughness
map. The bolded window sizes show corresponding wavelength with the most area
of Sassafras Ridge (35-150).

Radius (cells) Diameter (cells) Diameter (meters)

3 7 10
7 15 22.5
10 21 31.5
15 31 46.5
20 41 61.5
25 51 76.5
35 71 106.5
50 101 151.5
75 151 226.5
100 201 301.5
150 301 451.5
200 401 601.5
250 501 751.5
300 601 901.5
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Chapter 3 Results

3.1 UK-1b SH-wave Seismic Line

The UK-1b line is a 6-fold, 682 trace profile, which represents approximately 340

meters of total subsurface coverage (Figure 3.4). These data were acquired 12 km

northeast of the Reelfoot scarp, coincident with traces 175 to 325 of the P-wave

data in Woolery and Almayahi (2014) (Figure 1.2). The profile focuses on shallow

subsurface coverage, <50m, across the main transpressional feature interpreted from

Woolery and Almayahi (2014) profile UK-1a. The data quality of UK-1b is good, but

has numerous diffraction patterns associated with the boundary discontinuities; a

common artifact associated with faulted zones. Although migration and other means

of mitigating diffractions were not applied, the correlation between the diffraction

patterns and the interpreted deformation suggests the diffractions are related to the

deformed sediments within the fault zone. A significant percentage of the diffraction

patterns were successfully filtered with a post-stack FK filter but some remain due to

discontinuities and degree of faulting that occurs within the near-surface (Figure 3.1).

Stratigraphic correlation was done on the high-quality data using the adjacent

CUSSO borehole logs as a control. We observe large amplitude and coherent reflec-

tion events that occur between 250 – 330ms, 150-200ms, and 80-110ms (Figure 3.2).

These reflectors were interpreted to be the top of the basal Quaternary gravel (Unit

1), the top of the red/blue coarse sand (Unit 2), and the top of the fine brown sand

(Unit 3), respectively (Table 1.1). There are defined areas where the reflectors lose

coherency, commonly due to transpressional faulting causing through deformation

degradation of the sharp impedance contrast (Dix, 1955). Interpretations of faulting

are based on abrupt dip changes, vertical offset between reflectors, and coherency loss
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Figure 3.1: Results of the FK-filter. A) shows a time profile for the UK-1b SH-wave
data set prior to FK-filter application. B) shows the same time profile with the
designed rejection FK-filter from Figure 2.10 applied post-stack.

Table 3.1: Vertical resolution and detectable limit for the UK-1b SH-wave data set.

Reflection Event
Dominant
Frequency

(Hz)

Dominant
Wavelength

λ (m)

Vertical
Resolution

(m)

Detectable
Resolution

(m)
Top of Fine Sands 54 2.6 0.65 0.3
Top of Coarse Sands 51 3.2 0.8 0.4

Top of Quaternary Gravel 49 4.3 1.1 0.6

of reflection events in the profile. We calculated both the vertical resolution (λ/4)

and the Widess resolution (λ/8) Widess (1973) at each reflector; with calculated res-

olutions determined to be 1.1 m at the top of the Quaternary gravel, 0.8 m at the top

of the coarse red and blue sands, and 0.65 m at the top of the fine brown sand (Table

3.1) (Widess, 1973; Yilmaz, 2001). The vertical resolution limit determined for each

reflection horizon is smaller than the vertical offset observed across each reflector,

supporting the interpretations that the measured vertical offset is real.
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Offset and warped reflectors, areas of varying coherency, dip change across re-

flectors, and extensive diffraction patterns are observed throughout the record and

as shallow as the array aperture was able to image (<10m). The largest area of

deformation lies between CMPs 140-240; a 100m wide area of coherency loss and

diffraction patterns bounded on both edges by coherent but offset reflectors (Figure

3.4). The total displacement for each reflecting horizon was determined by taking

depth measurements from the undisturbed reflectors adjacent to the deformed zone.

This zone of deformation has vertical displacement of at least 9m at the top of the

Quaternary gravel accommodated by transpressional faulting. There is additionally

at least 4m of offset across the unit 2-3 interface, indicating vertical displacement

resulting from faulting within 10m of the surface. There are three interpreted faults

within the eastern deformation zone (A, B, and C), with each fault cross-cutting the

basal Quaternary reflector and continuing into the late-Quaternary sediments (Figure

3.4). Between the individual faults reflectors have been disrupted and warped, form-

ing anticlines between each fault (e.g. traces 50-250). The faults interpreted within

this zone of deformation are near vertical and correlates with the “flower structure”

in the deeper strata interpretations of Woolery and Almayahi (2014) (Figure 1.2).

The spatial and architectural style of these faults are also consistent with the Pratt

(2012) hypothesized through-going shear zone, showing N30E strike and dextral off-

set. The fault zone is within the northwestern margin of the hypothesized shear zone

by Pratt (2012) and shares consistencies with the transpressional structure presented

by Rosandich (2019), also within the bounds of the hypothesized shear zone, 12 km

to the southwest.

Fault A is located at trace 50 and defines the eastern margin of the largest zone of de-

formation. This fault was interpreted based upon reflection coherency loss across the

three unit horizons and dip changes across the reflectors. Diffraction patterns assisted
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with the placement of the fault in the profile, as they are characteristic of discontinu-

ities (i.e. a fault plane). Fault A is near-vertical representing part of the near-surface

expression of the transpressional structure imaged in deeper stratigraphy by Woolery

and Almayahi (2014). Fault C is located at trace 250 and defines the western mar-

gin of the eastern zone of deformation (Figure 3.4). This fault was also interpreted

based on reflector coherency loss and horizon dip reversal moving through the zone of

deformation. Fault C is also a near-surface expression of the deeper transpressional

structure, extending to less than 10 m of the surface. Fault C is near vertical, forming

a graben structure with fault A. C also shows west-side displacement of the Quater-

nary Gravel and late-Quaternary sediments. Fault B is a fault interpreted in the

middle of the eastern zone of deformation, showing near-vertical trend, dip changes,

and offset across reflectors. Antiformal features are observed between this fault and

faults A and C. The antiforms vary in structural amplitude and qualitatively appear

to have varying offset across the width of the deformation zone.

There is a second zone of deformation at the western end of UK-1b, between CMPs

560 and 660, recognized as a 50 m wide area of amplitude changes, coherency loss,

anticlines and strong diffraction patterns (Figure 3.4). This area is bounded by co-

herent, strong reflectors to the east and warped and offset reflectors to the west.

Amplitude change, coherency loss, and vertical displacement is observed across each

reflector, as shallow as 5 m. The vertical displacement is approximately 4 m across

unit 1-2 and unit 2-3 interface, measured across the coherent reflectors on each edge

of the deformed zone. Two faults are interpreted in this area (faults D and E) and

are near vertical faults defining the margins of this deformation area. Faults D and

E form a smaller graben similar to faults A and C, characteristic of transpressional

”flower structures”. Fault D marks the eastern margin of the zone and extends to ∼8

m below ground surface. This fault offsets the western edge of a paleochannel feature
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Figure 3.2: Un-interpreted UK-1b SH-wave stacked time profile. Reflections occur at
250-330ms, 150-200ms, 80-110ms and are interpreted to be the top of the Quaternary
basal gravel, the top of the Quaternary red, blue coarse sands and the top of the
Quaternary fine brown sand units, respectively.

located at the top of unit 3. Fault E marks the western margin of the smaller zone of

deformation and offsets unit 2-3 interface approximately 4 m, but seems to terminate

before reaching the top of unit 3, at ∼10m depth. There is another possible fault

within the zone but was not clearly defined due to degree of deformation.

There is a noticeable “hinge” feature along the top of the basal Quaternary gravel

(Unit 1), where the reflector changes from westerly dipping to easterly dipping around

CMP 500. A possible fault has been interpreted here but does not affect the unit

2-3 interface, so it is likely that the fault terminates within unit 2. Unit 2 exhibits

sediment thickening towards the west, characteristic of syndepositional faulting and

reactivation during Quaternary deposition (Figure 3.4).

3.2 LiDAR

Spatial and relative temporal characteristics of the surficial features around Sassafras

Ridge were defined using a LiDAR derived DEM, slope angle map, and roughness

maps (Figure 3.5, 3.6 and 3.7). The terrain ranges in elevation from undisturbed
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UK-1b Stacked Depth Section

Figure 3.3: Un-interpreted UK-1b SH-wave stacked depth profile. Reflections are
based on their depth at CMP 301 due to the vertical offset across the profile. Re-
flections occur at 35m, 15m, and 7m and are interpreted to be the Quaternary basal
gravel, the top of the Quaternary red, blue coarse sands and the top of the Quaternary
fine brown sand units, respectively.

Figure 3.4: Interpreted UK-1b SH-wave stacked depth profile. Reflections are based
on their depth at CMP 301 due to the vertical offset within the profile. Reflections
occur at 35m, 15m, and 7m and are interpreted to be the Quaternary basal gravel,
the top of the Quaternary red, blue coarse sands and the top of the Quaternary fine
brown sand units, respectively. Channel feature identified between CMPs 380-580 in
the upper 8m of the subsurface. Areas of fault deformation are marked between the
black brackets.
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dendritic drainage, to a series of arcuit surface features interpreted as atleast eleven

(A-K) flights of terrace packages, down to contemporary Mississippi River, which sets

base level (Figure 3.7). The terrace packages were differentiated from tectonic surface

expressions due to the arcuit nature of each terrace, compared to a linear tectonic

expression. Cross-cutting relationships show that each terrace package comprises in-

dividual terraces with a unique orientation and curvature we hence forth refer to as

terrace grain. Initial mapping of the terrace packages in the greater Sassafras Ridge

area allows us to determine a relative sense of timing between each package, as well as

as cross-cutting linear tectonic expressions. Mapping differential terrace grain helped

further to differentiate terrace packages and determine a timing of deposition versus

tectonic deformation across the Sassafras Ridge lineament.

Interrogation of the 35 cell roughness map (Figure 3.6) revealed a 100m wide zone of

strike-slip deformation on the eastern side of the UK-1b line that is coincident with

the lineament feature, confined by roughness hill shade (Figure 3.7). The nose-shaped

steep slopes bounding Sassafras Ridge clearly demarcated in Figure 3.5, conclusively

outlines terrace package boundaries where paleochannel erosion and deposition direc-

tion dramatically changed. Thus, the possibility of the entire Sassafras Ridge being a

pressure ridge is precluded. In contrast, the lineament, and subtle pressure ridges on

both sides, clearly cross the terrace grain (Figure 3.7) demonstrating that deforma-

tion is post-Sassafras terrace deposition and younger than terrace package C (Figure

3.5 and 3.7). It is likely that with the degree of deformation imaged in the subsurface

and the spatial location that the lineament is an expression of surface exposure of

the strike-slip faults.

We assume that all terrace packages were developed within the Quaternary and are

related to meandering of the Mississippi River after the destruction of the Teys and
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Figure 3.5: Slope map of southwest Kentucky, with the black dashed box outlining
the greater Sassafras Ridge area, with a 35-cell smoothing window applied. The solid
black line defines the lineament under investigation. Labels C, D2, E1, and F shows
spatial locations of differing terrace packages bounding the lineament.

development of the Ohio tributary. Thus, surface lineament features occurred after

the deposition of terrace package C and can be categorized within the Quaternary

time. Terrace package D2 is the next deposit temporally to come through the area

and bounds the western edge of package C. Terrace package E1 bounds package D2

to the west and shows an alluvial fan style deposit. The southern boundary of these

terrace packages (C, D2, and E1), as well as the lineament under investigation get

truncated by what appears to be a paleoriver channel that fed into the Mississippi

(terrace package F) (Figure 3.7).
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Figure 3.6: Roughness map with a 35-cell smoothing window with the area outlined
by the black box showing the area of interest: Sassafras Ridge. A) shows 35-cell
smoothing window. B) is 50-cell smoothing window. C) is 75-cell smoothing window.
D) is 100-cell smoothing window. E) is 150-cell smoothing window. These window
sizes were determined from the hyperscale maps (Figure 2.11 and 2.12) as highlighting
the most area along Sassafras Ridge.
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Figure 3.7: Maps showing the area northeast of the Reelfoot Fault of NMSZ, pre-
viously depicted by the red box in Figure 1.1. Map A shows the area represented
by a multi-dimensional hillshade. The black dashed line shows a railroad track that
cuts through the area. Map B shows the same area but represented by the roughness
calculation, with a window radius of 35 cells. The light purple lines map the existing
river terraces of the nearby Mississippi River. Map C shows the roughness map B
with a hillshade added to it. This map highlights the natural grain of sediments
within each terrace with thin black lines. Map D is a generic cartoon made to show
the difference of sediment grain within each terrace deposit.

Copyright© Cooper S. Cearley, 2021.
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Chapter 4 Discussion

Previous studies have shown that the RF exhibits approximately 12 km of dextral

offset at seismogenic depth, but only about 6 km of dextral offset across the surface

expression, Reelfoot Scarp (Figure 1.3) (Pratt et al., 2013). This differential offset

presents a large strain imbalance across the NMSZ system. Pratt (2012) hypothe-

sized that part of the AF may continue past the intersection with RF further to the

northeast, accommodating through-going transpressional strain. Evidence for trans-

pressional faulting cross-cutting the RF could be a potential solution for the kinematic

discrepancy. Woolery and Almayahi (2014) and Greenwood et al. (2016) subsequently

found evidence supporting the idea of a through-going shear zone. Woolery and Al-

mayahi (2014) completed a site characterization study at the CUSSO borehole and

found near-vertical, transpressional style faulting in Paleozoic to basal Quaternary

formations 12 km northeast of RF (Figure 1.2). The array aperture of the P-waves

surveys was designed to image the Paleozoic bedrock (585 m) and consequently, could

not resolve the upper 50 m of the surface. These transpressional faults are within

the northwestern margin of Pratt et al.’s projected area for through-going shear and

share spatial and architectural style consistent with the hypothesis. Woolery and

Almayahi (2014) correlated the deformation and scale of fault with a lower-resolution

industry seismic line 22 km to the northeast at Wolf Island, MO. This correlation

suggests that the shear zone could potentially continue past Sassafras Ridge 22 km

further to the northeast. Late-Quaternary displacement along the faults imaged at

depth would need evidence or this interpretation is equivocal. A study completed by

Greenwood et al. (2016) searched for the piercing point of the through-going shear

zone of the AF with the RF. They imaged faults using seismic reflection, along the

intersection of RF with CGF and RRF. One profile from this study revealed a near-
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vertical, southwest dipping thrust fault which displaced Paleozoic-Eocene horizons.

Another profile from Greenwood et al. (2016) imaged a north-dipping reverse fault

which was defined as the southern margin of the Tiptonville dome. However, fault

strike trends show that there is no apparent right-lateral offset of the RF and its

hanging-wall (Tiptonville Dome) across CG and RR faults. Therefore, the piercing

point is not at this structural intersection.

Rosandich (2019) investigated another potential piercing point of the AF through RF

near Proctor City, TN with seismic reflection. The results showed steeply dipping,

northeast-oriented, transpressional faults that uplifted and arched post-Paleozoic re-

flectors, extending into intra-Quaternary sediments. The faults imaged showed ver-

tical displacement of 50 m, 16 m, and 5 m at the top of the Paleozoic, the top of

the Eocene, the basal Quaternary gravel, respectively. Through back azimuth pro-

jection of the fault strikes at Proctor City, TN, Rosandich (2019) determined the

faults are along strike with those imaged to the northeast by Woolery and Almayahi

(2014). Rosandich (2019) concluded that this site is a likely piercing point for the

through-going shear zone of the AF through RF, showing transpressional fault defor-

mation into Quaternary sediments. This potential piercing point is located adjacent

to where Chiu and Johnston (1992) defined the topographic segmentation of the RF

into Reelfoot North and Reelfoot South, showing 5.5 km of lateral offset. In order

to suggest the faults imaged at Sassafras Ridge by Woolery and Almayahi (2014) are

a continuation of the transpressional structure imaged across RF (Rosandich, 2019)

late-Quaternary displacement must be shown to satisfy the temporal boundary con-

ditions. Correlation of Quaternary-active faults at Proctor City and Phillipy road

with Quaternary-active faults at Sassafras Ridge is necessary for Pratt et al.’s (2012)

hypothesis of a through going shear zone across the RF to remain valid. Correlation

of the two fault zone would also suggest that the faults at Sassafras Ridge are a 12
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km extension of the shear zone, accommodating motion of the RF throughout Qua-

ternary time. The UK-1b seismic line was compared with Woolery and Almayahi’s

(2014) UK-1a line to show the spatial relationship of the transpressional faults im-

aged in deeper stratigraphy with their near-surface extension (Figure 4.1).

Our seismic reflection work confirms the faults imaged in deeper stratigraphy by

Woolery and Almayahi (2014) show displacement across late-Quaternary sediments,

representing transpressional deformation that reaches within 5 meters of the surface.

The faults imaged show deformation within the Quaternary sediments and through

surface terrain LiDAR analysis are thought to be expressed as a lineament along Sas-

safras Ridge. There is a set of atleast five transpressional faults in two zones of de-

formation that present vertical offset across late-Quaternary sediment horizons. The

vertical displacement is approximately 10 m at the basal gravel to approximately 5 m

at the boundary between coarse and fine sands (∼ 10 m depth). We also were able to

resolve a fault reaching within 5 m of the surface, offsetting the western boundary of a

channel feature. Cooper (2016) collected an ER survey coincident with UK-1 investi-

gating the Claiborne aquifer system in the upper part of the Mississippi Embayment.

Cooper (2016) utilized surface ER with seismic walkaways to better understand the

hydrostatic units of the shallow subsurface (Cooper, 2016). We were able to correlate

the deformation we saw in the seismic profile UK-1b with deformation within the ER

survey collected by Cooper (2016), suggesting that the deformation we see at depth

extends to less than 5 m from the surface (Cooper, 2016). The ER survey provides

imaging ability between 5 m depth and the surface, where our seismic survey was

unable to image. Correlation of the seismic data with roughness maps shows that the

100 m area of fault deformation is coincident with the lineament imaged in a slope

map of a roughness map (35-cell smoothing window)(Figure 3.7). These data provide

evidence for right-lateral strike-slip faults that have continued 12 km northeast from

52



Figure 4.1: The spatial relationship between UK-1 (A) and UK-1a (B) Woolery and
Almayahi (2014) with the UK-1b SH-wave data (C). UK-1b’s array aperture was
designed to target intra-Quaternary sediments within the unresolved depths of UK-
1a (<50m). UK-1b was collected coincident with UK-1a, using a shorter array spacing
to better image shallow Quaternary sediments and structure within the zone defined
by the white dashed rectangle in B).
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Figure 4.2: Electrical Resitivity survey collected by Cooper (2016). This survey shows
that deformation is continuous within the upper 5 meters of the subsurface, between
380-480 feet along the survey.

the piercing point of the AF with the RF step-over, and based on digital terrain Li-

DAR analysis have surface expression representing a lineament that runs the length

of Sassafras Ridge. The correlation of the SH-wave seismic data and relative temporal

characteristics of surface features derived from LiDAR analysis present evidence that

the interpreted faults are Quaternary-active and reach the surface within assumed

Quaternary-aged, Mississippi River floodplain sediments.

Our findings support the hypothesis of right-lateral strike-slip faults that are ac-

commodating displacement across the RF, allowing for movement to be continued

across RF (Pratt, 2012). The interpretations also identify a new seismic hazard in

the central U.S.A., presenting a previously unknown late-Quaternary-active fault sys-

tem. This identification of these late-Quaternary faults provide a reduction for the

seismic hazard uncertainty within the central U.S.A., through identifying a 12 km

extension of the AF. Data from this work, correlated with P-wave seismic data pre-

sented by Woolery and Almayahi (2014) complete the characterization of faulting

scale and mechanisms for the Sassafras Ridge faults, from Paleozoic horizons to the

surface.
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Figure 4.3: Spatial relationship between UK-1b seismic line and the ER surevy from
Cooper (2016). Red dashed line shows the top of Unit 1 and the dark blue dashed
line shows the top of Unit 2 in the ER.

Additional investigation of Wolf Island with near-surface SH-wave seismic surveys,

showing transpressional displacement across Quaternary sediments would further sup-

port the hypothesis of the through-going shear zone (Woolery and Almayahi, 2014).

Late-Quaternary evidence of fault displacement at Wolf Island would lengthen the

extension of the fault zone to approximately 46 km. More so, this work could be

furthered through acquisition of absolute age dates of each reflecting horizon imaged

in UK-1b. Acquiring absolute age dates would allow for calculation of key seismic

characteristics such as slip rate and provide a more constrained temporal scale of

the mechanisms within the fault zone. Acquiring absolute age dates on the sediment

within the adjacent terrace deposits (Figure 3.5; Terraces C, F, D2, and E1) would

further constrain the temporal scale for the manifestation of the surface expression

of these faults. The collection of Ground-Penetrating Radar (GPR) could prove ben-

eficial across Sassafras Ridge and allow for geophysical imaging in the upper 5 m

of the subsurface with amendable conditions. GPR has the ability to provide more
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resolution of the upper 5 m where SH-wave seismic imaging was unable to resolve.

Furthermore, trenching and sediment mapping within the trench would add informa-

tion to further characterize and constrain the transpressional faults imaged all the

way to the surface.

Copyright© Cooper S. Cearley, 2021.
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Chapter 5 Conclusions

Two transpressional fault zones 12 km to the northeast of Reelfoot Scarp and above

previously identified deformation (Figure 3.4) were imaged with SH-wave seismic re-

flection, and supported by digital terrain LiDAR analysis, are Quaternary active. The

largest of these deformation zones is ∼100 m wide and contains atleast three inter-

preted, near-vertical, dextral strike-slip faults, showing transpressional displacement.

Discontinuous reflectors, antiforms, and diffraction patterns indicate deformation as-

sociated with these faults reaches within 5 m of the surface. The basal Quaternary

gravel layer is vertically offset by these faults by atleast 9 m. Shallower at 11 m depth,

intra-Quaternary sediment horizons show atleast 4 m of vertical offset. Faults C and

D in UK-1b are the near-surface extent of faults A and C in UK-1a, respectively.

These faults are imaged reaching to 5 m depth. Faults A and C form a graben defin-

ing the boundaries of the 100 m fault zone; structurally consistent with near-surface

flower structures and Pratt et al.’s hypothesis of the shear zone (Pratt, 2012). The

faults imaged within the deep stratigraphy profiles (UK-1 and UK-1a)(Woolery and

Almayahi, 2014) continue into Quaternary sediments and show displacement of intra-

Quaternary sediments. There is a second, slightly smaller zone of deformation (∼50m

wide) in the western margin of line UK-1b, showing two near-vertical, transpressional

faults (D and E). These faults show similar characteristics to the fault strands imaged

at depth (Woolery and Almayahi, 2014) and displace intra-Quaternary sediments as

well. These faults also define the margins of a small graben while offsetting the basal

Quaternary gravel by ∼5 m. The vertical displacement of shallower Quaternary sedi-

ments shows ∼4 m. Vertical offset across the western margin of the channel feature is

∼3 m at 8 m depth. The intra-Quaternary coarse sands unit (Unit 2) shows sediment

thickening to the west and indicates syndepositional faulting within the Quaternary
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time. Surficial terrain LiDAR analysis supports the conclusion that the 100m wide

deformation zone is coincident with the subtle pressure ridges of Sassafras Ridge.

Sassafras Ridge’s western margin is consistent with fluvial terrace deposits of the

Mississippi River showing a steep, arcuit, ”nose-shaped” slope. The sediment grain

within the deposit is cross-cut by a lineament with subtle pressure ridges bounding

each side. The lineament and associated pressure ridge are aligned with the largest

area of near-surface fault deformation and is likely a surficial expression of the faults

imaged at depth.

The displacement of late-Quaternary sediments by transpressional faulting indicates

an approximately 12-km-long Quaternary-active northeastern extension of a through-

going shear zone of the AF across and northeast of the RF. Fault trends at Sassafras

Ridge are in line with transpressional faults imaged at the structural intersection of

the AF with RF (Rosandich, 2019). The transpressional faults at Sassafras Ridge

are a continuation of the Quaternary-active structure imaged at Proctor City, TN

(Rosandich, 2019). Temporal correlation with the similar, deeper structure imaged

at Wolf Island, MO (Woolery and Almayahi, 2014) could indicate the shear zone could

extend as far as 46 km to the northeast of RF. The extension to Sassafras Ridge is an

∼300-m-wide zone of fault strands characterized as an transpressional flower structure

bounded by near-vertical, compressional and dextral faults in the shallow subsurface.

The structure is consisted with findings of previous studies (Woolery and Almayahi,

2014; Rosandich, 2019) as well as analogous kinematic models of deformation above

strike-slip faults (Pratt, 2012). The faults at Sassfras Ridge provide a possible solu-

tion to the strain imbalance seen across RF, and demonstrate that the AF extension

continues to accommodate right-lateral motion continuously through time with only

a percentage of motion being expressed as vertical or horizontal displacement of the

RF (Pratt, 2012).
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The findings of this study offer further clarity on seismic hazard sources for the NMSZ

through identification of Quaternary-active faulting that was not previously discov-

ered. The uncertainty in seismic hazard assessment in the area is reduced through

characterization of the degree of faulting and defining an extension of a large and his-

torically active fault segment. These results further the neotectonic characterization

of the area northeast of RF and can provide information for future fault modeling.

Integration of near-surface seismic imaging with digital terrain LiDAR analysis pro-

vides an advantageous way to define near-surface faults and their relationship with

surficial features.

Copyright© Cooper S. Cearley, 2021.
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