

# University of Kentucky UKnowledge

International Grassland Congress Proceedings

XIX International Grassland Congress

# Identification and Quantification of n-Alkanes in Three Tropical Grasses

T. C. M. Genro Universidade Federal de Santa Maria, Brazil

Ê. R. Prates Universidade Federal do Rio Grande do Sul, Brazil

L. R. L. de S. Thiago EMBRAPA, Brazil

M. Herrero University of Edinburgh, UK

V. Sabatel EMBRAPA, Brazil

Follow this and additional works at: https://uknowledge.uky.edu/igc

Part of the Plant Sciences Commons, and the Soil Science Commons

This document is available at https://uknowledge.uky.edu/igc/19/9/33

This collection is currently under construction.

The XIX International Grassland Congress took place in São Pedro, São Paulo, Brazil from February 11 through February 21, 2001.

Proceedings published by Fundacao de Estudos Agrarios Luiz de Queiroz

This Event is brought to you for free and open access by the Plant and Soil Sciences at UKnowledge. It has been accepted for inclusion in International Grassland Congress Proceedings by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

# IDENTIFICATION AND QUANTIFICATION OF N-ALKANES IN THREE TROPICAL GRASSES

T. C. M. Genro<sup>1</sup>, Ê. R. Prates<sup>2</sup>, L. R. L. de S. Thiago<sup>3</sup>, M. Herrero<sup>4</sup> and V. Sabatel<sup>3</sup>

<sup>1</sup> Departamento de Zootecnia – Universidade Federal de Santa Maria – Santa Maria, RS, Brasil.
 <sup>2</sup> Departamento de Zootecnia – Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul.

<sup>3</sup> EMBRAPA/ Centro Nacional de Gado de Corte (CNPGC).

<sup>4</sup> University of Edinburgh, Scotland.

## Abstract

The main goal of this paper was to quantify the profile of n-alkanes in three tropical grasses. Hand plucking samples to simulate grazing were taking from *Brachiaria brizantha* cv. Marandu, *Panicum maximum* cv. Mombaça and *Pennisetum purpureum* cv. Cameroon. These samples were collected from an experiment established to assess intensive beef production from grasses throughout the year, under rotational grazing. Rotation order through the paddocks remained constant, with 30 days of rest after each grazing bout (16 paddocks, 2 days of grazing). Profiles of n-alkanes were analysed in three separate periods of the year: in the middle of the dry season (August 98; PERIOD 1), at the beginning of the wet season (November 97; PERIOD 2) and at the end of the wet season (April 98; PERIOD 3). Chain length was measured from  $C_{27}$  to  $C_{35}$ . The concentration of odd n-alkanes, mainly  $C_{35}$ ,  $C_{33}$ ,  $C_{31}$  and  $C_{29}$ , showed a wide variation between species and some variation between sampling periods. The most frequent alkanes in the Cameroon cultivar were  $C_{33}$ ,  $C_{31}$  and  $C_{29}$ , and in the cv. Marandu and Mombaça were  $C_{33}$  and

C<sub>31</sub>.

Keywords: N-alkanes, rotational grazing, tropical grasses

## Introduction

The use of n-alkanes as markers is seen as something unique since it allows the use of dosed and herbage alkanes as a means of estimating pasture intake by ruminants (Mayes et al., 1986). Chibnall et al. (1934) was the first to show the presence of n-alkanes in plant cuticular wax. The interest for the chemical composition of the cuticular wax increased as the analytical techniques, chiefly the chromatography both gaseous and liquid, became more accurate. According to Dove & Mayes (1991), the n-alkanes of herbages species are predominantly odd-chain in the range  $C_{21}$  to  $C_{37}$ , and that  $C_{31}$  is the most abundant, followed by the  $C_{29}$ . These authors have emphasised that each plant species own a particular profile of n-alkanes. Therefore, the knowledge of n-alkane profiles in the whole plant or anatomical components of these plants (leaves and stems) can be a useful tool for the identification of the diet chosen by grazing ruminants, mainly on pasture with more than one specie (Dove & Mayes, 1996). The aim of this experiment was to identify and quantify n-alkane profiles in three tropical grasses under rotational grazing.

### **Material and Methods**

This experiment has been carried out at EMBRAPA/CNPGC, in Campo Grande, MS. The herbage samples for n-alkanes analysis were collected from pasture of *Brachiaria brizantha* cv. Marandu, *Panicum maximum* cv. Mombaça, and *Pennisetum purpureum* cv. Cameroon, under

rotational grazing.

These pastures where part of a research project design to compare the potential of tropical grasses for intensive beef production throughout the year. The steers were rotated on a predetermined schedule of 2 days of grazing per rotational paddock. Rotation order through the paddocks remained constant, with 30 days after each grazing bout.

For each grass specie, samples for n-alkane analysis were colleted simulating grazing (hand-plucking sample) in three different periods of the year: in the middle of the dry season (August 97; PERIOD 1), at the beginning of the wet season (November 97, PERIOD 2), and in the end of the wet season (April 98, PERIOD 3). The determination of n-alkanes, within the range of C-chain between 27 and 35, followed the methodology proposed by Mayes et al. (1986).

### **Results and Discussion**

Table 1 shows the n-alkane contents (mg/kg MS) of the cultivars Marandu, Mombaça and Cameroon. The length of C-chain measured ranged from  $C_{27}$  to  $C_{35}$ . The concentrations of odd nalkanes, mainly  $C_{35}$ ,  $C_{33}$ ,  $C_{31}$  and  $C_{29}$  showed a large variation between species and some variation between sampling periods.  $C_{33}$  and  $C_{31}$  were the most abundant alkane in the three species.  $C_{35}$  was at an intermediate level in the cultivar Marandu for the three sampling periods and  $C_{29}$  showed a high participation in the C-chain alkanes for cv. Cameroon. According to Casson et al. (1990), cited by Laredo et al. (1991), the low content of  $C_{35}$  found in the cultivar Mombaça and Cameroon at all sampling periods and Marandu at the middle of the dry season, disqualify this alkane to be used in the double-alkane technique. Their suggestion was that oddchain alkanes could be used as an internal marker when they exceed 50 mg/kg of DM, although this critical concentration depends on the sensibility of the analysis as well as the accuracy required for the estimates of intake. Our results showed that at least for the cv. Cameroon, when sampled at period 3,  $C_{35}$  contents were high enough to allow its use as an internal marker, however, for the cultivar Mombaça, this would not be possible at any sampling period.

Even-chain alkanes, as compared with odd-chain alkanes, showed only a small participation of the total  $C_{27}$ - $C_{35}$  alkanes for all grasses studied, which is in agreement with the results of Dove & Mayes (1991). These authors found that  $C_{29}$  (nonacosane),  $C_{31}$  (hentriacontane) e  $C_{33}$  (triacontane) were the most abundant in the range  $C_{25}$ - $C_{35}$  but a large difference in levels and patterns may be found due to the forage species or anatomical components of the plant (Dove & Mayes, 1991). Oliveira et al. (1997) found a reduction of  $C_{33}$  and  $C_{35}$  n-alkanes in napier grass hay with aging. Similarly, Laredo et al. (1991) found a reduction in n-alkanes contents in leaves of *Pennisetum glaucum* and *Sorghum sp*, as the plant mature. We found reduction, due to aging, in  $C_{35}$ ,  $C_{33}$ , and  $C_{31}$  n-alkanes contents only for the cultivar Mombaça. The cv. Cameroon also showed reduction due to aging, in C29. The cv. Marandu did not show any reduction (Table 1). However differences were found among cultivars, being the most abundant for cv. Cameroon  $C_{35}$ ,  $C_{33}$ , and  $C_{31}$ , for cv. Marandu  $C_{33}$ ,  $C_{31}$ , and  $C_{29}$  and for cv. Mombaça  $C_{33}$  and  $C_{31}$ .

#### References

**Chibnall, A.C., Piper S.H., Pollard A., Williams E.F. and Sahai P.N**. (1934). The constitution of the primary alcohols, fatty acids and paraffins present in plant and insect waxes. Biochemistry Journal, **28**: 2189-2208.

Dove, H. and Mayes R.W. (1991). The use of plant wax alkanes as marker substances in studies of the nutrition of herbivores: a review. Australian Journal of Agricultural Research, 42: 913-952.
Dove, H. and Mayes R.W. (1996). Plant wax components: a new approach to estimating intake and diet composition in herbivores. Journal of Nutrition, 126: 13-26.

Laredo, M.A., Simpson G.D., Minson D.J. and Orpin C.G. (1991). The potential for using nalkanes in tropical forages as a marker for the determinations of dry matter intake by grazing ruminants. Journal of Agricultural Science, **117**: 355-361.

Mayes, R.W., Lamb C.S. and Colgrove P.M. (1986). The use of dosed and herbage n-alkanes as marker for the determination of herbage intake. Journal of Agricultural Science, **107**: 161-170.

Oliveira, D.E., Prates E.R. and Peralba M.C.R. (1997). Identificação e quantificação de nalcanos presentes nas ceras de plantas forrageiras. Revista da Sociedade Brasileira de Zootecnia, 26: 881-886.

| Cultivars | n-alkane contents (mg/kg DM) |                 |                 |                 |                 |                 |                 |                 |
|-----------|------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| MARANDU   | C <sub>27</sub>              | C <sub>28</sub> | C <sub>29</sub> | C <sub>30</sub> | C <sub>31</sub> | C <sub>32</sub> | C <sub>33</sub> | C <sub>35</sub> |
| Period 1  | 9.308                        | 5.827           | 38.963          | 8.322           | 114.949         | 7.719           | 104.839         | 38.108          |
| Period 2  | 8.846                        | 3.830           | 34.062          | 8.876           | 122.634         | 9.060           | 152.819         | 63.029          |
| Period 3  | 16.105                       | 9.474           | 39.397          | 7.946           | 111.827         | 8.354           | 136.880         | 56.229          |
| MOMBAÇA   |                              |                 |                 |                 |                 |                 |                 |                 |
| Period 1  | 12.335                       | 10.028          | 45.717          | 15.176          | 189.634         | 10.005          | 120.853         | 18.829          |
| Period 2  | 12.242                       | 8.976           | 41.685          | 13.602          | 172.145         | 9.125           | 102.639         | 14.112          |
| Period 3  | 15.557                       | 10.092          | 40.428          | 10.888          | 133.224         | 7.755           | 91.248          | 19.166          |
| CAMEROON  |                              |                 |                 |                 |                 |                 |                 |                 |
| Period 1  | 62.095                       | 20.011          | 172.999         | 7.615           | 113.725         | 0.000           | 78.168          | 30.748          |
| Period 2  | 30.262                       | 13.893          | 114.316         | 7.406           | 123.454         | 0.000           | 108.277         | 46.882          |
| Period 3  | 31.558                       | 16.235          | 110.758         | 8.757           | 124.830         | 6.086           | 117.170         | 48.498          |

**Table 1** - N-alkane  $(C_{27} - C_{35})$  contents in hand puckling samples of cultivars Marandu, Mombaça, and Cameroon (mg/kg DM) collected at the middle of the dry season (Period 1), at the beginning of the wet season (Period 2), and at the end of the wet season (Period 3).