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ABSTRACT   

Manganese (Mn) is a required co-factor for many ubiquitous enzymes; however, 

chronic manganese overexposure can cause manganism, a parkinsonian-like 

syndrome. Previous studies showed manganese influx into brain is carrier-mediated, 

though the putative carrier(s) were not established. Studies conducted with cultured 

bovine brain microvascular endothelial cells (bBMECs), which comprise the blood-

brain barrier, revealed 54Mn (II) uptake positively correlated with pH, was 

temperature-dependent, and was sodium- and energy-independent. Brain 54Mn 

uptake correlated inversely with calcium (Ca) concentration, but 45Ca uptake was 

unaltered by high Mn concentration. Lanthanum (La), a non-selective inhibitor of 

several Ca channel types, as well as verapamil and amiloride, inhibitors of voltage-

operated Ca channels, failed to inhibit Mn uptake into cells. Nickel (Ni), another non-

selective inhibitor of several Ca channel types, inhibited Mn and Ca uptake into cells 

by 88 and 85 %, respectively. Cyclopiazonic acid (CPA) and thapsigargin, which 

activate store-operated calcium channels (SOCCs), increased 54Mn and 45Ca uptake 

into cultured bBMECs. In situ brain perfusion studies were conducted in adult, male 

Sprague-Dawley rats to verify the cell culture results. Both nickel and verapamil 

produced a non-significant decrease in Mn and Ca influx. Lanthanum significantly 

increased Mn influx to 675 and 450 % of control in parietal cortex and caudate, 

respectively, while producing no significant effect on Ca influx. Vanadate, which 

inhibits Ca-ATPase, inhibited Mne uptake into cultured blood-brain barrier cells, but 

not into perfused rat brain. Overall these results suggest that both Ca-dependent 

and Ca-independent mechanisms play a role in brain Mn influx. This work provides 
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evidence that store-operated Ca channels, as well as another blood-brain barrier 

transporter, are likely to mediate carrier-mediated Mn influx into the brain. 

 

Running title:  Mn brain influx at the BBB through SOCs 

 

Key words/phrases: manganese, blood-brain barrier, influx, store-operated calcium 

channel 
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INTRODUCTION 

The trace element manganese (Mn) is essential for normal brain development and 

function throughout the life span of all mammals (Keen et al., 2000). Mn is a co-

factor for many enzymes, including the brain-specific enzyme glutamine synthetase 

(Wedler and Denman, 1984) and ubiquitously expressed enzymes including 

superoxide dismutase 2 and pyruvate carboxylase (Keen, et al., 2000). While Mn is 

essential for normal brain function, excess brain Mn is neurotoxic and can produce 

manganism, a parkinsonian-like syndrome (Hudnell, 1999; Iregren, 1999). 

Neurotoxicity due to excess Mn has been reported following occupational inhalation 

exposure to Mn in mining operations (Couper, 1837), in dry-cell battery production 

(Keen and Lönnerdal, 1995), in ferromanganese smelting (Huang et al., 1989) and 

during Mn welding operations (Chandra et al., 1981; Ono et al., 2002); following non-

occupational exposure to inhaled Mn (Hudnell, 1999) and following intestinal 

exposure of Mn in drinking water. There is currently significant concern about airborne 

Mn exposure from the fuel additive methylcyclopentadienyl manganese tricarbonyl 

(MMT) (Hudnell, 1999). Current treatments for patients with manganism may 

postpone the progression of symptoms, but have not been able to cure the disease 

(reviewed in (Lee, 2000). 

 

As the general public’s Mn exposure increases with increased MMT use, the 

mechanisms of Mn homeostasis become more important in understanding and 

assessing the risk of neurotoxicity. Mn brain entry from blood can occur through the 

capillary endothelial cells of the blood-brain barrier (BBB) and through the choroid 
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plexuses. Several studies suggested that Mn ion brain influx at the BBB is carrier-

mediated (Aschner and Aschner, 1990; Murphy et al., 1991; Rabin et al., 1993; 

Aschner and Gannon, 1994; Crossgrove et al., 2003). Similarly, Mn appears to be 

actively transported into bile, achieving a concentration gradient as high as 100-fold 

(Klaassen, 1974). The identity of the Mn carrier(s) is unknown. Mn efflux across the 

BBB does not appear to occur through a carrier but rather by diffusion (Yokel et al., 

2003). Several studies suggested that the divalent metal transporter-1 (DMT-1) may 

be responsible for Mn ion influx into brain (Goddard et al., 1997; Gunshin et al., 

1997; Conrad et al., 2000), but a recent report suggests that the lack of functional 

DMT-1 in rats has no effect on brain influx of the Mn ion or the Mn-transferrin 

complex (Crossgrove and Yokel, 2004). 

 

The current work examined whether brain Mn influx at the BBB is mediated by one 

or more calcium (Ca) transport pathways. Ca inhibited Mn entry into Hep-G2 cells 

(Finley, 1998). Cell Mn entry across cell membranes was decreased by Ca inhibitors 

(Mason et al., 1993) and increased by activators of Ca influx (Kerper and Hinkle, 

1997a). Mn entry through store-operated Ca channels (SOCs) has been 

demonstrated in rat mast and osteoblast-like cells and human platelets (Fasolato et 

al., 1993; Dobrydneva and Blackmore, 2001; Baldi et al., 2002). Others have 

reported evidence of SOCs on brain endothelial cells (Kerper and Hinkle, 1997b; 

Kim et al., 2004). In this work, we examined the mechanism(s) of Mn brain entry 

across the BBB. We first examined general characteristics of Mn uptake at the BBB 
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and then tested the hypothesis that Mn influx at the BBB occurs through one or more 

Ca influx processes.   

 

MATERIALS AND METHODS 

Materials 

54MnCl2 (specific activity 107 or 38 nCi/ng; total Mn 184 or 477 nM) in 0.5 M HCl was 

purchased from Perkin-Elmer/NEN (Boston, MA). 45CaCl2 (5.87 nCi/ng) in water was 

purchased from Perkin-Elmer/NEN. [14C]sucrose was purchased dry from Perkin-

Elmer/NEN (3.6 nCi/nmol) and in 2% ethanol from Moravek (Brea, CA; 495 

nCi/nmol) or American Radiolabeled Chemicals, Inc. (620 nCi/nmol). All other 

chemicals were purchased from Sigma (St. Louis, MO) unless otherwise noted. 

Sprague-Dawley rats (225-300 g) were purchased from Harlan (Indianapolis, IN).  

Verapamil was solubilized in methanol, diluted and delivered in 0.2% methanol.  

Thapsigargin was solubilized by DMSO and cyclopiazonic acid by methanol and 

delivered in 0.1% DMSO or methanol. Vehicle controls contained equimolar solvent. 

All animal research was conducted under the guidelines of the Guide for the Care 

and Use of Laboratory Animals and with the approval of the University of Kentucky 

Institutional Animal Care and Use Committee. 

 

Isolation of bovine brain microvascular endothelial cells (bBMECs) 

The bBMECs were isolated from fresh bovine brains, as described (Bowman et al., 

1983; Audus et al., 1996). Cells were grown in 35 mm plastic dishes at 37°C in 5% 

CO2 with nutrient media containing 10% horse serum in 50% MEM and 50% Ham’s 
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F-12 supplemented with NaHCO3 (13 mM), HEPES (10 mM) penicillin G (100 U/mL) 

and streptomycin (100 µg/ml). Cell identity was verified by the presence of the 

following characteristics of bBMECs. 1.) They were positive for γ-

glutamyltransferase and alkaline phosphatase activity. 2.) They did not have the 

processes or shapes of neurons or glial cells according to morphologic analysis of 

TEM images. 3.) They took up histidine (Yamakami et al., 1998).   

 

Studies of 54Mn uptake conducted in bBMECs  

54Mn uptake was determined in 85-90% confluent cell cultures following procedures 

established for another BBB cell line (Yokel et al., 2002). In summary, each cell-

containing culture dish was rinsed three times with a wash solution containing (in 

mM): Na+ 122, K+ 4.2, Ca2+ 1.5, Mg2+ 0.9, Cl- 131, HEPES 10, and D-glucose 10 at 

pH 7.4 and at the temperature of the uptake experiment. The last wash remained in 

the dish at least 10 minutes to bring the cells to the temperature of the uptake 

experiment. The cells were incubated with 0.75 mL uptake solution consisting of 

wash solution containing 54Mn2+ (~1 µCi/mL) and [14C]-sucrose (1 µCi/mL; 0.2 µM) in 

the presence or absence of treatment. After 10 to 120 minutes the uptake solution 

was removed and the cells rapidly washed 5 times with ice-cold wash solution. Cells 

were solubilized in 1 M sodium hydroxide for 15 min at room temperature then 

neutralized with equimolar HCl. Aliquots of cell lysates were collected for analysis of 

radioactivity and total protein content.   
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Cell viability was measured in parallel dishes of cultured bBMECs exposed to the 

same treatments in the absence of the radionuclides. Cell membrane integrity was 

measured by determining the activity of the cytosolic enzyme lactate dehydrogenase 

(LDH) released into the uptake media. LDH activity was measured with an assay kit 

(Sigma). Cell redox potential, an indicator of cell health, was measured by 

methylthiazoletetrazolium (MTT) conversion to its formazan product. When MTT 

conversion was less than 80% of control the cells were considered to have 

drastically changed. Data from these cells were not used (except in studies of 

metabolic inhibitors and low temperature). 

 

bBMECs were selected as a model of the BBB to screen characteristics of Mn uptake, 

with the intent of following significant findings in the intact rat. Initially, Mn uptake into 

bBMECs was measured from 10-120 minutes at pH 6.4 and 7.4 to determine 

whether it was linear, as several pHs were used in subsequent studies. 54Mn2+ 

uptake over 30 minutes was measured in media buffered to pH 5.4, 6.4, 6.9, 7.4 and 

7.9 by 10 mM potassium hydrogen phthalate (pH 5.4), PIPES (pH 6.4), MOPS (pH 

6.9), or HEPES (pH 7.4 and 7.9). Mn uptake was also measured during a 30 minute 

incubation at 4 (on ice), 8, 21, 30 and 37°C; at 37°C in the presence of a metabolic 

inhibitor, 2,4-dinitrophenol (0.25 mM) or azide (10 mM); and with the replacement of 

glucose (10 mM) by 2-deoxyglucose (10 mM). The role of sodium in Mn uptake was 

measured by replacing 50 or 100% of the sodium in the uptake media with choline or 

lithium or by the addition of ouabain (0.1 mM). The role of Ca transporters in Mn 

uptake was examined by changing Ca concentration from 0 to 1.5 mM; by addition 
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of Ca transporter inhibitors including vanadate (0, 0.003, or 1 mM), lanthanum (La3+; 

0.050 mM as La(NO3)3), nickel (Ni; 1 mM as NiCl2) or verapamil (0.3 mM); or by 

addition of the Ca transporter activators cyclopiazonic acid (CPA; 0.01 mM) and 

thapsigargin (0.001 mM). 

 

In situ brain perfusion studies 

Rats were prepared and perfused as described previously (Crossgrove, et al., 2003). 

Briefly, a cannula containing heparinized saline was inserted into the right common 

carotid artery. The open end was transferred to a syringe containing a perfusate with 

the treatment and/or radioisotope tracers. Perfusate delivery was regulated by a 

syringe pump. Immediately before brain perfusion began, the rat’s cardiac ventricles 

were severed to avoid mixing of blood with perfusate. The perfusion (45, 90 or 180 

s) was terminated by decapitation. The brain was extracted and the ipsilateral 

parietal cortex, caudate and lateral ventricular choroid plexus removed, weighed and 

assayed for radioactivity. In some experiments, the cerebrum was homogenized 

according to the capillary depletion method as described (Crossgrove, et al., 2003). 

 

The perfusate contained 1 to 2 µCi 54Mn2+/ml and a marker for vascular and 

extracellular space, 14C-sucrose (1 µCi/ml), in a solution containing (in mM): Na+ 

122, K+ 4.2, Ca2+ 1.5, Mg2+ 0.9, Cl- 131, glucose 10, and HEPES 10. To test the 

hypothesis that Mn and Ca share one or more transporters, rats were treated with 

perfusates containing 54Mn2+ and 0 added, 1.5 (control) or 9 mM Ca or 45Ca and Mn 

(0 or 15 mM). Other experiments included the Ca transporter inhibitors sodium 
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vanadate (1 or 10 mM), p-hydroxyhippuric acid (0.4 mM), verapamil (0.3 mM) or 

amiloride (0.84 mM) to determine whether Ca transporters play a role in rat brain Mn 

influx. 

 

Radioactivity and total protein determination 

Radioactivity of 54Mn and 14C were determined in aliquots of cell lysate or in digested 

tissue as described (Crossgrove, et al., 2003). Radioactivity from 45Ca was counted 

from 156-257 keV by a liquid scintillation counter, with appropriate corrections for 

crossover, quench and decreased efficiency due to the narrowed counting window. 

Protein concentration in cell lysates was measured via the bicinchoninic acid method 

with a kit (Sigma). 

 

Data and statistical analysis 

In bBMEC experiments, 54Mn, 45Ca and 14C activities (dpm/dish) and total protein 

(mg/dish) were calculated. 54Mn, 45Ca and [14C]-sucrose uptake values were 

converted to dpm/mg protein. Non-specific binding to cell and collagen surfaces was 

determined by apparent uptake in 15 s on ice. Collagen was found to sequester Mn, 

but not 14C or 45Ca, during the time course of these experiments.  Estimated 

confluence was used to predict the surface area of the collagen-coated dish that was 

exposed to 54Mn uptake media. Uptake into collagen was determined as: 

 

Mn uptake into collagen = (100%-confluence%)*(uptake into collagen-only dish)   
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Nonspecific Mn adsorption to the dish was also determined several times. It was 

negligible. Non-specific binding and estimated binding to collagen were subtracted 

from total uptake to obtain corrected values for 54Mn, 45Ca, and 14C uptake into cells. 

These corrected values (dpm/mg protein) were divided by the activity of the uptake 

solution (dpm/ml) to obtain a volume of distribution of uptake (ml/mg protein) from 

uptake media.     

 

The [14C]-sucrose volume represents diffusional and pinocytotic uptake processes. 

This value was subtracted from the 54Mn and 45Ca volumes of distribution to 

generate a term expressing Mn or Ca uptake into the cells via carrier(s). Mn uptake 

(ml/mg protein) was converted to pmol Mn/mg protein by multiplying by total Mn 

concentration. Intracellular Mn concentration was then estimated from the 

relationship of 2 µl intracellular space per mg total protein (Edlund and Halestrap, 

1988; Poole et al., 1989).   

 

In perfusion experiments, radioactivity (dpm/g tissue) was divided by perfusate 

activity (dpm/ml) to calculate the volume of distribution (ml/g). This was divided by 

the perfusion duration (45 to 90 s) to obtain the influx transfer coefficient (Kin), as 

described in detail (Crossgrove, et al., 2003). All bBMEC experiments were 

completed with at least three replicates per experiment, each conducted in duplicate 

or triplicate. Results of the time course of Mn uptake at pH 6.4 and 7.4 were 

analyzed by regression analysis using GraphPad Prism to determine if uptake was 

best fit by a first or second order relationship. Uptake in the presence of treatments 
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was converted to a percent of control uptake for each experiment. The mean and 

relative standard deviation were calculated.  For cell and perfusion experiments, t-

tests or one-way ANOVAs were conducted using GraphPad Prism to test for 

treatment differences. When treatment differences were found, post-hoc 

comparisons by Dunnett’s or Bonferroni’s tests were conducted after the ANOVAs to 

determine significant differences among treatment groups.   

 

For all studies, p < 0.05 was accepted as statistically significant. 

 

RESULTS 

54Mn uptake into bBMECs was initially studied up to 120 minutes to assess linearity 

during that time (Figure 1 Inset). Regression analysis showed Mn uptake results 

obtained at pH 7.4 and 6.4 were better fit by linear than non-linear regression. The 

95% confidence intervals for the slopes excluded one another. Mn2+ uptake at pH 

6.4 was significantly less than at 7.4. For the remaining studies, 30-minute uptake 

was used as representative. 

  

At the 120 minute time point, the intracellular Mn concentration (overall means of 

10.6 and 3.4 µM for pH 7.4 and 6.4, respectively), exceeded the media Mn 

concentration (184 nM) by at least 10 fold. In later experiments using 54Mn at a lower 

specific activity and higher total Mn (477 vs. 184 nM), the intracellular concentration 

at 30 minutes was at least 3-fold, and usually 10-fold, greater than the extracellular 
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concentration. Intracellular Mn concentration was higher than extracellular Mn 

concentration in all experiments under control conditions.  

 

Mn uptake was inversely related to proton concentration. This was noted in the time 

course of Mn uptake conducted at pH 6.4 and 7.4 as well as the uptake study 

conducted at pH 5.4, 6.4, 6.9, 7.4 and 7.9 (Figure 1). The results from cells treated 

at pH 5.4 for 30 minutes are not shown because they produced only 6% of the 

formazan product/mg protein that was found in control (pH 7.4) cells, indicating 

severe cell toxicity.   

 

Temperature-dependence of uptake 

Mn uptake into bBMECs was measured at five temperatures. The data were 

graphed as an Arrhenius plot of natural log of the uptake rate versus inverse of 

absolute temperature (Figure 2). The plot appears to have a change in slope (a 

breakpoint); however, the data are not significantly non-linear. Rearrangement of the 

Arrhenius equation, as follows, generated the activation energy (Ea). 

 

  Ea = -R * (d ln k)/d (1/T) 

 

where R is the ideal gas constant, k is the uptake rate and d(ln k)/d(1/T) is the slope 

of Figure 2. Ea was determined to be 27 kJ/mol.   
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Sodium- and energy-independence of uptake 

Mn uptake into bBMECs was not inhibited by replacement of the sodium in the 

uptake medium (Table 1). Sodium replacement by choline resulted in a significant 

increase of Mn uptake into bBMECs. Energy production inhibitors reduced MTT 

conversion to formazan by ~ 40% (results not shown) but did not significantly affect 

Mn uptake into bBMECs (Table 1).  

 

Calcium-dependence of bBMEC uptake and brain influx   

There was an inverse relationship between Ca concentration and brain Mn influx 

(Figure 3) as well as Mn uptake and Ca concentration in bBMECs (Table 2). 

However, Mn did not inhibit brain Ca influx (Figure 3).   

 

La3+ increased brain Mn influx (Figure 4), and Ni did not decrease Mn influx into rat 

brain (Figure 5).  Verapamil did not significantly inhibit Mn influx compared to control.   

Mean Mn influx values ± SEM (n=5-6) for control versus verapamil were 20.6 ± 2.7 

vs. 14.9 ± 1.6; 12.4 ± 2.5 vs. 6.6 ± 0.4; and 1218 ± 108 vs. 863 ± 62 x 10-5 ml/s/g for 

parietal cortex, caudate or choroid plexus, respectively. Another voltage-gated Ca 

channel inhibitor, amiloride, did not inhibit brain Mn influx (Ca was not tested). Mn 

influx values for control versus amiloride-treated brains were 6.2 ± 2.2 vs. 11.3 ± 5.7; 

6.7 ± 0.7 vs. 4.7 ± 1.6; 2197 ± 421 vs. 1756 ± 178 x 10-5 ml/s/g for the parietal 

cortex, caudate or choroid plexus, respectively (mean ± SEM of 4 control and 3 

treated brains). 
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Brain Ca influx was measured concurrently with Mn influx for control perfusates and 

those with La, Ni or verapamil.  Control Ca influx values (mean ± SEM, n=5-6) were 

85.1 ± 15.7, 61.4 ± 11 and 873 ± 177 x 10-5 ml/s/g for parietal cortex, caudate and 

choroid plexus, respectively. Ca influxes with La were 75 ± 22.9, 55.1 ± 27.2 and 

672 ± 145 x 10-5 ml/s/g.  Ca influx with Ni were 62.1 ± 18.5; 39.6 ± 10; and 1058 ± 

497 x 10-5 ml/s/g for parietal cortex, caudate and choroid plexus, respectively; with 

verapamil, 80.4 ± 10.5; 54.7 ± 7.5; and 922 ± 182 x 10-5 ml/s/g.  Brain Ca influx was 

not significantly affected by any of these treatments within this short time course. 

 

La3+ decreased Ca uptake into bBMECs without having a significant effect on Mn 

uptake (Table 2).  Ni significantly inhibited Ca and Mn uptake into bBMECs (Table 

2).  In addition to its effect on brain influx, verapamil also produced parallel, non-

significant decreases of Mn and Ca uptake into bBMECs (Table 2).  

 

Vanadate (1 mM) did not significantly inhibit Mn influx into the tested brain regions or 

the choroid plexus following its co-perfusion with 54Mn2+ for 90 seconds. Mean 

values ± SEM (4 rats per group) were 49.2 ± 21.1 vs. 51.2 ± 23.8, 7.4 ± 2.8 vs. 17.0 

± 10.5 and 759 ± 347 vs. 450 ± 190 x 10-5 ml/s/g for control vs. vanadate-treated 

parietal cortex, caudate and choroid plexus tissues. When the brain was perfused 

with 1 mM vanadate for 90 s and then immediately switched to a co-perfusion of 

vanadate with 54Mn2+, Mn influx was not inhibited by the vanadate pre-wash 

exposure. The control and vanadate-treated brain Mn influx values were 4.4 ± 0.9 
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vs. 16.4 ± 7.7, 2.6 ± 0.7 vs. 4.0 ± 0.7 and 247 ± 35 vs. 746 ± 53 x 10-5 ml/s/g for the 

parietal cortex, caudate and choroid plexus regions of the brain, respectively (mean 

± SEM for 6 rats per group). A higher concentration of vanadate (10 mM) also failed 

to inhibit brain Mn influx. The parietal cortex, caudate and choroid plexus Mn influx 

values were 13.4 ± 4.4 vs. 21.5 ± 6.6, 7.4 ± 1.6 vs. 11.4 ± 4.1 and 1063 ± 294 vs. 

1376 ± 318 x 10-5 ml/s/g brain for control vs. vanadate-treated brain, respectively 

(mean ± SEM for 5 rats per group). Vanadate did not change the distribution of Mn 

in the endothelial cells or the brain parenchyma. Endothelial cells retained 10 and 

13% of the total Mn entering brain following perfusion with Mn or Mn with vanadate 

(10 mM; data not shown). Therefore, brain parenchyma contained 90 and 87% of 

the Mn that had crossed the BBB.   

 

Contrary to in situ perfusion results, addition of 3 µM or 1 mM vanadate inhibited Mn 

uptake into bBMECs (Table 2). Furthermore, this effect persisted after vanadate was 

washed out. Cells treated 30 minutes with 1 mM vanadate, washed twice and 

incubated with vanadate-free uptake media had only 39% of control Mn uptake 

(Table 2).   

 

Addition of p-hydroxyhippuric acid (0.4 mM) to the brain perfusate did not inhibit 

brain Mn influx (Ca influx was not tested). The control and experimental brain Mn 

influx values were 7.4 ± 0.6 vs. 12.7 ± 1.8, 8.6 ± 1.4 vs. 6.7 ± 0.6 and 1375 ± 100 vs. 

1310 ± 122 x 10-5 ml/s/g for the parietal cortex, caudate and choroid plexus, 

respectively (mean ± SEM for 6 control and 7 treated rats). In the cerebellum only, 
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there was a non-significant trend for a p-hydroxyhippuric acid-induced decrease of 

Mn influx (11.0 ± 1.9 vs. 5.7 ± 0.6 x 10-5 ml/s/g for control vs. p-hydroxyhippurate).   

 
Studies with modulators of store-operated Ca channels 

CPA significantly increased Mn and Ca uptake when studied concurrently (Table 2). 

Ca uptake following thapsigargin treatment was not significantly greater than control 

(P=0.07), although Ca uptake in thapsigargin-treated cells was 1.4-10 fold greater 

than in control cells in each experimental replicate. Mn uptake was significantly 

greater in thapsigargin-treated than in control cells (Table 2).   

 

DISCUSSION 

This research examined the mechanism of carrier-mediated Mn entry into the rat 

brain across the BBB. The first objective was to determine general characteristics of 

carrier-mediated Mn uptake. The second objective tested the hypothesis that brain 

Mn entry was mediated by one or more Ca transporters. The results suggest that 

brain Mn influx occurs through at least one pathway which is not Ca-mediated as 

well as one or more pathways involving SOCs. 

 

Our results are consistent with previous reports of carrier-mediated Mn uptake at the 

BBB (Aschner and Aschner, 1990; Murphy, et al., 1991; Rabin, et al., 1993; Aschner 

and Gannon, 1994; Crossgrove, et al., 2003). Here, we report concentrative Mn 

uptake, providing evidence of a carrier-mediated process. The temperature-

dependence study suggests that the activation energy of this process is 27 kJ/mol, 

consistent with values reported for ion channels (18-34 kJ/mol) by 
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electrophysiological techniques (Liu et al, 1996). This supports the suggestion that 

brain Mn uptake occurs through one or more carrier-mediated processes. Finally, 

the negative correlation between proton concentration and Mn uptake into bBMECs 

agrees with our report that Mn uptake is not likely to occur through the divalent metal 

transporter-1, which co-transports a proton with a divalent metal ion (Crossgrove 

and Yokel, 2004).  

 

Brain Mn uptake was not inhibited by 2,4-dinitrophenol, azide or 2-deoxyglucose, 

suggesting it is not directly dependent on an energy source mediated by ATP 

hydrolysis. Nor was brain Mn uptake inhibited by ouabain, showing it to be 

independent of Na+/K+-ATPase. While these studies did not provide evidence for 

energy dependence, the concentrative uptake seen in the bBMEC studies must rely 

on an energy source or electron transfer. The conversion of MTT to formazan in 

treated cells was ~60% of control cells, suggesting reduction, but not elimination, of 

cell redox potential when ATP-inhibitors were present. Therefore, the lack of effect 

by metabolic inhibitors may be due either to the lack of an ATP-dependent Mn 

transporter or to the ability of the ATP-dependent Mn transporter(s) to continue at 

their normal rate when ATP is reduced to 60%. Alternatively, the pH dependence 

suggests that there might be an electromotive driving force maintaining Mn uptake. 

However, the positive correlation between Mn uptake and pH suggest that it is not 

an inward proton or cation electromotive force. This suggests that the Mn transporter 

may be a proton or cation antiporter.   
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Brain Mn uptake was sodium-independent, suggesting the uptake carrier(s) do not 

utilize a sodium gradient as a driving force. Replacing sodium with choline increased 

brain Mn uptake. One report provides evidence that Mn inhibits choline uptake at the 

BBB (Lockman et al., 2001). The authors suggested that the choline transporter may 

be involved in brain Mn uptake, though they did not test the effect of choline on Mn 

uptake. Choline uptake into rat brain, like Mn uptake, has been described to be 

sodium-independent (Allen and Smith, 2001). Mn and choline may share one or 

more transport process(es). On the other hand, choline increased Mn uptake, which 

would not be expected if they were competing for an uptake process. While the 

basis of any interaction between Mn and choline is unclear, it is clear that Mn uptake 

at the BBB is sodium independent.  

 

Ca appears to play a significant role in Mn influx at the BBB. When Ca was not 

added to the perfusate, Mn influx was significantly greater than in the presence of 

normal (1.5 mM) Ca. Brain Mn influx was slightly, but not significantly, less in the 

presence of 9 mM Ca. Ca has been shown to inhibit Mn uptake into astrocytes in 

competitive and non-competitive manners (Aschner et al., 1992). Mn uptake into 

bBMECs also increased in the absence of added Ca compared to uptake media with 

normal (1.5 mM) Ca. Overall, Ca concentration correlates negatively with Mn influx. 

This concentration-dependent effect does not distinguish whether Ca and Mn 

directly compete for the same carrier or whether Ca indirectly modulates Mn uptake. 

On the other hand, added Mn did not inhibit 45Ca influx into rat brain compared to 

control (no added Mn) perfusate (Figure 3), suggesting Mn and Ca do not compete 
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for the same carrier, or that the capacity of any common carrier(s) is very large. 

Depending on the affinity of the Ca carrier for Mn, the 10-fold greater concentration 

of Mn above that of Ca used in the present studies may not be sufficient to inhibit 

brain Ca influx. A 6-fold increase in Ca failed to significantly inhibit Mn influx, which 

suggests either that they have separate carriers or that their shared pathway(s) has 

a great substrate capacity.   

 

Mn uptake into bBMECs was inhibited by Ni, consistent with a role for Ca channels 

in Mn uptake. Ni has been shown to inhibit receptor-operated Ca channels and 

store-operated channels (Cui and Dannies, 1992; Kukkonen et al., 2001). Ni is 

thought to be a rather specific inhibitor of Ca channels, as it did not appear to be a 

substrate for the channels it blocks (Shibuya and Douglas, 1992; Jones and Sharpe, 

1994). In the current study, Ni blocked Mn uptake (to 12% control) in bBMECs in a 

manner parallel to its effect on Ca uptake (15% control), providing strong evidence 

that Mn uptake may occur through Ca uptake pathways. An alternative explanation 

is that Ni blocks equally two or more separate pathways for Mn and Ca uptake, 

rather than our suggestion of a common pathway. In perfusion studies, Ni failed to 

block Mn and Ca brain influx. The difference between the animal and bBMEC 

studies may be due to the shorter experimental duration of in situ brain perfusion (90 

s) than bBMEC studies (30 min). The lack of brain Mn influx inhibition by Ni may be 

due to Ni’s inability to block Ca influx. The animal data, therefore, do not reveal any 

information whether Mn and Ca share the same BBB carrier(s) that are inhibited by 

Ni.   
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Ni significantly inhibited choroid plexus Mn influx; however, it did not inhibit Ca influx 

into the choroid plexus. This suggests that Mn and Ca may have separate uptake 

mechanisms at this blood-cerebrospinal fluid interface. The choroid plexus is 

believed to be the main site of Ca influx into brain. If the choroid plexus is vital in 

maintaining Ca homeostasis as implicated (Murphy et al., 1989; Keep et al., 1999), 

then perhaps the carriers expressed at the choroid plexus have a stronger affinity for 

Ca, rendering the Ni treatment an ineffective inhibitor of Ca influx. Alternatively, Ni 

may not have had sufficient time to inhibit Ca transporters, or the inhibition of Mn 

uptake into choroid plexus is independent of Ca transporters.        

 

The results with the Ca transporter blocker, La3+, suggest that a non-Ca pathway 

also mediates brain Mn influx. La3+ inhibition of Ca uptake has been shown in 

voltage-gated Ca channels, receptor-operated Ca channels and store-operated Ca 

channels (Cui and Dannies, 1992; Davidson and Guo, 2000; Liu and Ambudkar, 

2001; Wu et al., 2001). In perfusion studies, La3+ significantly increased Mn influx 

more than 4-fold. A literature search did not reveal any other reports of La3+ 

increasing transporter or carrier activity. There was no effect on brain Ca influx in the 

present studies, suggesting La3+ did not block Ca influx. Furthermore, the results 

suggest that the La3+ effect on Mn influx at the BBB is independent of Ca. In bBMEC 

studies, La3+ did not significantly affect Mn or Ca uptake. While rat studies indicated 

that La3+ increases Mn, but not brain Ca influx, bBMEC studies suggested a non-

significant decrease in Mn and Ca uptake. The results suggest that Mn uptake at the 
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BBB also occurs through one or more Ca-independent processes, since La3+ 

increases Mn uptake without affecting Ca. 

 

Another explanation for the unexpected increase in Mn uptake by La3+ is trans-

stimulation of the endothelial cells. This process occurs when a substrate on one 

side of the cell membrane increases substrate transfer from the other side. trans-

Stimulation has been shown to play a role in the uptake of glucose into bovine 

mammary epithelial cells (Xiao and Cant, 2003), agmatine through the human 

extraneuronal monoamine transporter (Grundemann et al., 2003) and sorbitol into a 

renal medullary cell line (Schuttert et al., 2002). 54Mn efflux from astrocytes was 

trans-stimulated by 55Mn in the media (Aschner, et al., 1992). La3+ may enter cells 

rapidly and then cause greater Mn influx through trans-stimulation. 

 

In bBMEC studies, Mn entry was inhibited by vanadate (0.003 and 1 mM). Despite 

indications in bBMECs, addition of 1 or 10 mM vanadate to 54Mn in the in situ brain 

perfusate did not decrease brain Mn influx. Ca-ATPases are found on both the 

luminal and abluminal surface of brain endothelial cells, which may confound our 

interpretation of the results (Manoonkitiwongsa et al., 2000). Mn distribution into 

endothelial and brain cell plus extracellular fluid fractions, as measured with the 

capillary depletion method, was unaltered by vanadate, suggesting neither brain Mn 

influx nor efflux are mediated by Ca-ATPase. Although vanadate inhibited Mn uptake 

into bBMECs, it did not inhibit Mn influx across the BBB.  p-Hydroxyhippuric acid, a 
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relatively selective Ca-ATPase inhibitor, also did not inhibit brain Mn influx, providing 

further evidence against a role for Ca-ATPase.  

 

Studies with inhibitors of voltage-gated Ca channels also failed to implicate these 

channels in brain Mn uptake. This is not surprising, as endothelial cells are not 

considered excitable and would not be expected to use voltage-gated channels. On 

the other hand, it was recently determined that brain endothelial cells do express L-

type Ca channels (Bossu et al., 1992). Verapamil did not significantly decrease Mn 

or Ca influx. In a similar study in the absence of 45Ca, verapamil and amiloride failed 

to alter brain 54Mn influx.  These results suggest brain Mn entry is not likely to occur 

through voltage-gated Ca channels under physiological conditions.   

 

Thapsigargin and CPA significantly increased Mn uptake, 2.5- and 2.6-fold, 

respectively, consistent with the hypothesis that SOCs play a role. Thapsigargin did 

not significantly increase Ca uptake (P=0.07) despite the 1.4-10-fold increase in Ca 

uptake. Earlier reports implicated SOCs in the influx of metals across the BBB. Lead 

uptake into bBMECs was increased by 1.7- and 2.1-fold following treatment with 

CPA or thapsigargin, respectively (Kerper and Hinkle, 1997b). The pH dependence 

of Mn uptake is also consistent with a role for SOCs in Mn influx at the BBB. Store-

operated Ca influx was inhibited by low extracellular pH in human microglia (Khoo et 

al., 2001). These results suggest that brain Mn uptake occurs through the SOCs. 
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In summary, there are at least two transporters for brain Mn influx. Mn entry into 

brain occurs through at least one pathway that does not have a high affinity for Ca, 

as evidenced with the La3+ data. Mn influx also is likely to occur through a Ni-

blocked, CPA-induced Ca pathway, which is consistent with store-operated Ca 

channels.  
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  Table 1. Characteristics of 54Mn2+ uptake into bBMECs  

Treatment 
Mn uptake 

(% control ± SEM) n 
Control (122 mM Na+) 100 ± 7  6 
  61 mM Na+, 61 mM  choline 97 ± 18  3 
  122 mM% Choline (no Na+) 160 ± 6*  5 
  122 mM Li+ (no Na+) 90 ± 9  4 
    
Control (vehicle) 100 ± 10  3 
   Ouabain 129 ± 15  3 
    
Control (vehicle) 100 ± 6  8 
  2,4-Dinitrophenol 102 ± 5  6 
  Azide 124 ± 4  3 
  2-Deoxyglucose 84 ± 8  4 

   * = significantly different from control. 
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Table 2. Mn and Ca uptake into bBMECs in the presence of Ca transporter        
inhibitors   

Treatment 
Ca uptake 

(% control ± SEM) 
Mn uptake 

(% control ± SEM) N 
Control  100 ± 18 5 
   No Ca2+  170 ± 29* 4 
    
Control  100 ± 5 4 
   Vanadate (0.003 µM) 64 ± 3* 3 
   Vanadate (1 mM) 53 ± 4* 3 
   Vanadate pretreatment (1 mM) 39 ± 4* 3 
    
Control 100 ± 17 100 ± 8 4 
   La3+ 58 ± 25* 64 ± 24 4 
   Ni2+ 15 ± 15* 12 ± 3* 3 
   Verapamil 54 ± 3 81 ± 2 3 
    
Control (vehicle) 100 ± 30 100 ± 13 3 
   CPA 418 ± 98* 265 ± 48* 4 
   Thapsigargin 415 ± 212 252 ± 23* 4 

   * =significantly different from control. 
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Figure 1. Mn uptake into bBMECs correlates inversely with proton concentration.  

Values are mean percent of control (pH 7.4) uptake ± SEM for 3-6 experiments, 

following 30 minute incubation. Inset: Time dependent uptake of Mn at pH 6.4 

versus 7.4 is shown. * denotes a significant difference from control 

 

Figure 2. The Arrhenius plot shows temperature-dependent Mn uptake into 

bBMECs. Values shown are the natural log of the mean ± SEM of uptake (pmol/30 

min/mg). 

 

Figure 3. Mn influx correlates negatively with Ca concentration following in situ 

perfusion, but Mn concentration has no effect on Ca influx. A) Mn and B) Ca influx 

values into brain are shown (mean ± SEM of 4-5 animals).   

 

Figure 4. La increased Mn influx into rat brain. Values shown are mean ± SEM 

(n=5). The Y-axis in panel A is different from previous Mn influx graphs.  

 

Figure 5. Ni did not decrease Mn (A) influx into rat brain across the BBB. Values 

shown are mean ± SEM (n=5). * significantly different from control 
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