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Abstract  

The objectives were to test the null hypotheses that (1) citrate, maltolate, and 

fluoride do not significantly influence oral Al bioavailability, Cmax or Tmax at an Al 

dose relevant to drinking water exposure; and (2) Al citrate and maltolate are 

absorbed intact from the gastrointestinal tract. Male Fisher rats were given 1 ml of 

solution intra-gastrically containing 1 nCi 26Al (65 nmol total Al) as the Al3+ ion, or 

as complexes with 14C-citrate, 14C–maltolate or fluoride, during concurrent 27Al iv 

infusion. Blood was repeatedly collected for serum 26Al, total Al and 14C 

quantification. Absorption parameters were estimated using WinNonlin. Al 

bioavailability, Cmax and Tmax from the ion, citrate, maltolate, and fluoride were 0.29 

± 0.11, 0.61 ± 0.31, 0.50 ± 0.25, and 0.35 ± 0.10%; 659 ± 195, 1073 ± 250, 881 ± 

356, and 880 ± 295 fg/ml; and 1.2 ± 0.9, 1.0 ± 1.1, 1.3 ± 1.0, and 1.0 ± 0.9 h (X ± 

SD) respectively. Serum 14C was ~100 times higher than 26Al. The results suggest 

a non-significant enhancement of oral Al bioavailability by citrate and maltolate, 

some Al complex dissociation in the GI tract, and less absorption of Al than citrate 

or maltolate. The presence of citrate, maltolate and fluoride, at a similar molar 

concentration to Al, would not be expected to greatly influence Al absorption from 

drinking water. 

 

Keywords: Accelerator mass spectrometry, aluminum bioavailability, 26Al, 14C, 

chemical species   

 

Abbreviations: 

Al  aluminum  

AMS  accelerator mass spectrometry 

Cmax  maximum blood concentration 
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cta   citrate 

ETAAS electrothermal atomic absorption spectrometry  

malt  maltolate 

Tmax  time after dosing of Cmax  
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Introduction  

 Aluminum (Al) has no demonstrated essential function in mammals. It is a 

neurotoxicant. It has been suggested that Al is associated with Alzheimer’s disease, 

although this is controversial [1]. In patients receiving renal dialysis, Al can cause 

dialysis encephalopathy, renal osteodystrophy and a hypochromic microcytic 

anemia [2]. Experiments with rats and mice demonstrated embryo/fetal toxicity 

after oral administration of a variety of Al salts [3, 4]. 

 Various Al compounds have been used to study Al toxicity, including Al 

chloride and nitrate salts, and Al complexes with citrate, fluoride, lactate, and 

maltolate [5]. Little attention was paid to Al speciation in most studies. There is 

evidence that some Al species are more toxic than others. Citric acid has been 

used in drinking water treatment as a membrane cleanser and as a pile/well 

cleaning aid, and is present in many dietary sources such as fruit juices and soft 

drinks. Al forms relatively strong complexes with citrate by binding through its 

carboxyate and -hydroxyl groups [6, 7] . It has been suggested that citrate is a 

major factor in the toxicity of orally administrated Al [8, 9]. Maltol (3-hydroxy-2-

methyl-4H-pyran-4-one), a natural product and an approved food additive in the US 

and Australia, is used as a flavor enhancer in beverages like coffee and chocolate 

milk and as a favoring agent in breads and cakes. At neutral pH and mM Al 

concentrations, Al(maltolate)3 is soluble and stable to hydrolysis [10]. Al maltolate 

was more toxic to animals and neuronal and glial cells than Al lactate or Al chloride 

[10, 11]. Oral administration of Al maltolate resulted in increased brain Al [12, 13].  

Fluoride is commonly present in drinking water. Al and fluoride can form stable 

complexes [14].  By mimicking phosphate AlF3 and AlF4- can inhibit GTPase activity 

and affect the activity of a variety of phosphoryl transfer enzymes which are 

important in cell signal transduction or energy metabolism [15]. The addition of 
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fluoride to i.p. injections of Al increased Al-induced behavioral toxicity [16]. 

Consumption of Al fluoride in drinking water by rats for 1 year resulted in increased 

neuronal abnormalities [17].  These studies raised concern about the concurrent 

presence of fluoride and Al in drinking water.  

Major sources of Al intake include drinking water, food and medications [18]. 

Oral Al bioavailability from drinking water was estimated in several studies in rats 

to be 0.05 to 0.36%, based on urinary Al output or Al in urine plus Al retained in 

bone, liver and brain [19-21]. Oral Al bioavailability was estimated to be 0.25 to 

0.4% from a comparison of areas under the curve (AUC) of serum Al concentration 

versus time when Al was given po and iv [22]. Several studies showed that a high 

dose of citrate enhanced Al absorption from both pharmacological and 

physiological Al exposures, and at various pHs [19, 20, 23, 24]. However, none of 

the previous studies determined the Al species at the exposure conditions.  

Plasma citrate and Al concentrations were measured in 3 humans after oral 

administration of 280 mg Al and 3.2 gm citrate [25]. The authors concluded it was 

unlikely that Al was absorbed as Al citrate because plasma citrate concentrations 

had returned to baseline values before the Al absorption peak occurred. However a 

similar study at an Al dose relevant to drinking water has not been reported.  

The only reported study that estimated oral Al bioavailability from Al 

maltolate found it to be ~ 0.1% [21]. However the authors did not report the Al 

species, or Al:maltolate molar ratio under the conditions studied, preventing 

calculation of the Al species.  

The interaction between fluoride and Al relevant to their oral absorption has 

been investigated in rats and mice [26]. Co-administration of fluoride or citrate with 

Al increased plasma Al levels, whereas Al decreased fluoride absorption. However 

Glynn et al. concluded that fluoride (50 mg/L) did not change Al absorption, based 
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on right femur Al concentration after 6 week oral exposure to 100 mg/L Al [23]. The 

bioavailability of Al in the presence of fluoride at a drinking water-relevant level has 

not been reported. 

Accelerator mass spectrometry (AMS) is an ultra-sensitive analytical 

technique that has been applied to the measurement of rare nuclides such as 26Al 

and 14C, as in this study, enabling their use as tracers. AMS does not measure 

radionuclide decay. It counts individual isotope atoms, making it a very efficient 

technique to measure radioisotopes with long half-lives [27, 28]. It is the only 

method currently available to study Al absorption and kinetics at physiological 

concentrations. However, the high cost of 26Al and 14C analysis by AMS limits the 

use of this experimental method. 

The U.S. Environmental Protection Agency currently recommends Al in 

drinking water be < 0.2 mg/L for aesthetic purposes 

(http://www.epa.gov/safewater/mcl.html). Additional research on the 

pharmacokinetics and toxicity of Al species in drinking water (e.g. Al fluoride) was 

needed as part of the consideration for development of drinking water regulations 

and guidance [29, 30]. The primary objective of the current study was to test the 

hypothesis that the absolute oral bioavailability of Al in rats is the same when 

dosed as the Al3+ ion in the absence of added ligands or in the presence of citrate, 

maltolate, or fluoride at a dose relevant to daily consumption of Al in drinking water 

by humans. 26Al and AMS were used to address this objective. Al bioavailability, 

Cmax and Tmax in the absence or presence of ligands were also compared to test the 

null hypothesis that these ligands do not have an effect on Al absorption. By 

quantifying serum 14C by AMS following oral administration of 26Al 14C-citrate and 

26Al 14C-maltolate, the hypothesis that Al does not dissociate from citrate and 

maltolate in the GI tract and is absorbed as Al complexes was also tested. The Al 

http://www.epa.gov/safewater/mcl.html
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species of the administered solutions were predicted by computer modeling based 

on known Al-ligand binding constants, Al hydrolysis constants, Al and ligand 

concentrations, and pH. Citrate, maltolate and fluoride were selected for study as 

Al ligands in the current work because of their presence in the diet and/or drinking 

water and the concern that they increase Al toxicity.  
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Materials and Methods 

Materials 

 26Al (0.5 Ci/mole, 26Al:27Al ratio = 1:34) in 0.1 N HCl was obtained from 

the Purdue Rare Isotope Measurement Lab (PRIME Lab). 14C-citric acid (109 

mCi/mmol) was purchased from Amersham Biosciences. 14C-maltol (50.9 

mCi/mmol) was custom synthesized for this project by PerkinElmer. Sodium 

fluoride, sodium hydroxide and all other chemicals were obtained from Sigma. 

The solutions for oral dosing were prepared the day of their administration by 

combining the Al and ligand, from stock solutions, and incubating the resulting 

dosing solution for 1 h at room temperature. The pH was adjusted by addition of 

dilute NaOH with stirring. The Al solution for iv infusion was prepared by 

dissolving AlK(SO4)2 in saline. It was sterilized by filtration through a 0.22 µm 

filter. 

 

Animals 

The subjects were 23 male Fisher 344 rats, weighing 270 ± 18 gm (X ± 

SD). Animal work was approved by the University of Kentucky Institutional 

Animal Care and Use Committee. The research was conducted in accordance 

with the Guiding Principles in the Use of Animals in Toxicology.  

 

Experimental procedures 

All rats were implanted with two femoral venous cannulae 1 day prior to 

oral dosing. This enabled iv administration through one cannula and blood 

withdrawal from another. The withdrawal cannula terminated upstream of the Al 

administration cannula to enable more accurate determination of the serum Al 

concentration. Oral Al absorption was determined in the un-anesthetized rat. 
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Systemic Al clearance was estimated in a pilot study following an iv bolus Al 

injection [22]. Oral Al bioavailability was calculated by comparison of the areas 

under the plasma Al concentration curves following concurrent oral and iv Al 

doses, where the tracer 26Al was used in the oral dose and 27Al as the iv infusion 

dose. We did not give the iv 27Al as a large bolus dose because it would produce 

plasma Al concentrations in excess of the capacity of transferrin to bind Al, 

resulting in Al citrate species that would probably be eliminated at a different rate 

than Al transferrin. This would not model the normal species of Al in plasma, 

which is > 90% Al transferrin [7]. Rather, we infused 27Al at a rate selected to 

maintain a plasma Al concentration of ~ 500 ng/ml, as described [22].  

Twenty-two rats received an iv infusion of 27Al at 100 µg Al/kg/h as 

AlK(SO4)2 in saline from 14 h prior to 24 h after oral dosing. One rat was 

randomly assigned to receive an iv infusion of saline to measure the endogenous 

serum Al concentration. The 22 subjects were randomly assigned to receive 1 ml 

of MilliQ-purified water or 1 ml of a solution containing 26Al (52 ng [1 nCi] 26Al and 

~1700 ng 27Al, total 65 nmol Al, therefore 65 μM) by gastric administration. This 

was given in the absence of ligands or in the presence of citrate, maltolate or 

fluoride. The MilliQ water-dosed group had 2 rats to monitor 26Al and 14C 

contamination of samples. Each Al treatment group had 5 rats. The ratio of total 

Al to ligand was 1:1 for citrate (containing 30 nmol [5764 ng; 3270 nCi] 14C-citric 

acid), 1:3 for maltolate (containing 30 nmol [3784 ng; 1530 nCi] of 14C-maltol) 

and 1:4 for fluoride. The pH of the administered solution was adjusted to ~ 5 for 

the free Al3+ ion, ~ 7 for Al in the presence of citrate or maltolate, and ~ 4 for Al in 

the presence of fluoride. To assess if there was significant loss of Al due to 

adsorption to the syringe or gastric feeding needle used to deliver the oral Al 

solution, the oral delivery procedure was simulated by delivery of identical Al 
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solutions into a plastic tube. The delivered Al concentration was compared to the 

solution for delivery. The delivered solutions of the Al ion, citrate, maltolate and 

fluoride, contained 104, 92, 97 and 107% of the Al concentration of the original 

solution, showing no significant adsorption loss of Al to the syringe or feeding 

needle. 

Al speciation in the solutions prepared for gastric administration was 

calculated from pH 2 to 8 using the computer modeling program SPECIES 

(Academic Software, Trimble, Otley, UK).  Values for the aluminum hydrolysis 

constants were taken from [31], the solubility constant for freshly prepared 

Al(OH)3 from [32], Al citrate binding constants from [7],  Al maltolate binding 

constants from [33], and the Al fluoride constants from [34]. The presence of 

insoluble Al, presumably amorphous Al(OH)3, was determined by Al analysis in  

dosing solutions (without 26Al addition) before and after passage though a 0.22 

μm filter.  The unfiltered and filtered solutions, and the concentrated Al stock 

solution from which they were prepared, were analyzed by electrothermal atomic 

absorption spectrometry (ETAAS) to determine their Al concentration.     

Blood was withdrawn 1 h prior to, and 0.25, 0.5, 0.75, 1, 1.25, 1.5, 2, 4, 8 

and 24 h after oral dosing. The blood withdrawn, 0.4 ml in the first 9 samples, 

then 0.6 and 2.2 ml in the 8 and 24 h samples, respectively, was replaced by an 

equal volume of injected saline. Serum was obtained for quantification of total Al, 

26Al, and 14C. Blood urea nitrogen (BUN) and creatinine were determined in the 

24 h sample to assess renal function. When the BUN or creatinine was above the 

normal limit (30 mg/dl or 1 mg/dl, respectively), the rat was replaced with another 

rat. 

The absence of food in the stomach was produced by limiting food 

access to a 10% protein diet that was designed to minimize gastric food retention 
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(Harlan Teklad 95215). This diet was available from 08:00 to 18:00 h daily for 7 

days prior to gastric 26Al dosing. Food and water were removed 14 h before to 4 

h after dosing and a fecal collection cup, modified from [35], was installed to 

prevent fecal recycling. In a pilot study, six rats had access to this diet for 10 h 

daily for 7 days. Fourteen h after diet removal, no food or feces were found in 

their stomachs [22]. 

 

Analysis of total Al by electrothermal atomic absorption spectrometry (ETAAS) 

Al was quantified by ETAAS, using a Perkin–Elmer 4100 ZL spectrometer. 

Serum samples were diluted ten-fold with 0.2% HNO3 containing 2.5 mM Mg as a 

matrix modifier, and compared to Al aqueous standards in the same matrix. All 

serum samples were repeatedly analyzed until their determined total Al 

concentration RSD was <10%.  

 

Analysis of 26Al and 14C by accelerator mass spectrometry (AMS) 

Quality control serum samples containing 26Al were prepared by po 

administration of Al (52 ng 26Al and 1700 ng 27Al, total 65 nmol Al) to 2 rats. Blood 

was collected at 4 h. Quality control serum samples containing 14C were 

prepared by po administration of citric acid containing 30 nmol 14C-citrate given 

with equimolar 27Al. Blood was collected at 2 h.  

Samples were prepared for AMS of 26Al as described [22]. Four  mg 27Al 

(ICP/DCP standard, Aldrich) was added to a 100 μl aliquot of each serum sample 

(except 200 μl for 8 h and 1000 μl for 24 h sample) to enable determination of the 

26Al:27Al ratio by AMS and quantification of serum 26Al by its comparison to the 

known (4 mg added) 27Al concentration. The sample was dried overnight at 80° C, 

digested in 2 ml of a 70:30 mixture of HNO3 and H2O2, heated at 80 °C to 
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evaporate the liquid, which was trapped, the residue dissolved in 0.5 ml 35% 

nitric acid and transferred to a porcelain crucible, dried overnight and ashed at 

1000 °C for 2 hr. The radionuclide (26Al) to stable nuclide (27Al) ratio was 

determined by the PRIME Lab [36].  

For 14C sample processing and analysis, 50 µl serum samples frozen in 

micro-centrifuge tubes were sent to the PRIME Lab. The production of graphite 

for 14C analysis included lyophilization, combustion and graphitization [37].  

One quality control sample containing 26Al or 14C was processed with 

each batch of serum samples to assess the accuracy and precision of the 

analysis. Five 26Al replicate quality control serum samples had a RSD of 3.8%. 

Five 14C replicate quality control serum samples had a RSD of 4.9%. Samples 

analyzed for 26Al or 14C with a normalized radionuclide/stable nuclide percent 

error > 10% or 20%, respectively, were not included in the data analysis. 

 

Data analysis 

Pharmacokinetic analysis of the 26Al serum results was conducted using 

WinNonlin. One and two compartment models were used to best fit the 26Al data 

to estimate AUC, Cmax and Tmax. The mean total Al serum concentration was 

calculated from the AUC of total Al divided by the time period -1 h to 24 h. Oral 

26Al bioavailability was calculated from the following: 

 

         AUC for 26Al × 27Al infusion rate 

Mean total Al serum concentration × 26Al dose 
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Statistical analysis 

The results were tested for normality of distribution using the Kolmogorov-

Smirnov test and for equal variances using Bartlett’s test for the 26Al results (four 

treatments) and F test for 14C results (two treatments).  A one-way ANOVA was 

conducted to test for significant treatment differences of absolute Al 

bioavailability, Cmax, and Tmax among the 4 Al species. The square root 

transforms of the 26Al bioavailability results were similarly compared.   Results 

are expressed as X ± SD. Significance was accepted at P < 0.05. 
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Results 

The Al species in the freshly prepared solutions for intragastric 

administration, predicted by calculations, are shown in Figure 1.  The dotted lines 

in Figure 1 denote solutions that would be supersaturated with respect to the 

precipitation of amorphous Al(OH)3, based on the solubility product of freshly 

prepared aluminum hydroxide [32]. 

In the absence of added ligands, the speciation of the Al3+ ion is 

dominated by hydrolysis reactions.  A 65 µM solution of Al at pH 5 consists of 

comparable amounts of Al3+ and Al(OH)2+, with a smaller concentration of 

Al(OH)2+.  A neutral solution of a 1:1 mixture of Al and citrate consists primarily of 

the trimer Al3(H-1cta)3(OH)4- and ~ 20% of the Al(H-1cta)- monomer.  In these 

formulas, cta3- refers to the citrate anion in which all three carboxylate groups are 

deprotonated, and H-1cta4- refers to a coordinated ligand in which the α-hydroxyl 

group has also been deprotonated as a result of metal binding.  The Al fluoride 

solution at pH 4 consists of ~ 55% AlF2+, 40% AlF3, 4% AlF2+, and 1.7% AlF4-. 

The speciation calculations indicate that the Al would be fully soluble in the Al ion, 

Al citrate and Al fluoride administered solutions. 

The speciation results for the administered Al maltol solution show a 

mixture at pH 7 of 64% Al(mal)3, 25% Al(OH)3, ~ 5% Al(OH)4- and ~ 5% Al(mal)2+.  

Although the calculated Al(OH)3 concentration exceeds the solubility of freshly 

prepared Al(OH)3, no visible precipitate was observed.  It appears that in these 

dilute solutions, either the formation of insoluble Al(OH)3 is too slow to be 

observed during the one hour incubation time between their preparation and 

delivery, or the total mass of the precipitate is too small to be detected visually.  

Neutralization of a 10 mM Al3+ solution to pH 7 led to the formation of colloidal 

particles of Al(OH)3 with a diameter of ~ 400 nm, which resulted in only a faint 
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opalescence, rather than an obvious precipitate [32].  Such colloids remain labile 

and reactive for at least 30 min following neutralization [38].  True equilibration of 

Al solutions with the less soluble, crystalline form of Al(OH)3 (gibbsite) takes 

months [39]. Thus any Al present in the dosage solutions as the nominally 

insoluble Al(OH)3 remained dispersed in solution as a labile, colloidal suspension. 

The Al in such colloids, if not absorbed directly, would remain bioavailable to 

some degree due to the ability of the colloid to equilibrate with chelating agents 

as the solution conditions change. 

The Al concentration determined by ETAAS in the unfiltered and filtered 

Al citrate (pH 7), Al maltolate (pH 7) and Al fluoride (pH 4) solutions at 20, 65, 

and 200 µM and 2 mM Al was not greatly different from that expected, based on 

the Al concentration in the solution from which these simulated dosing solutions 

were prepared. At 65 µM Al, the Al concentration in the unfiltered Al citrate, 

maltolate and fluoride solutions was 105, 86 and 96%; and in the filtered 

solutions 91, 86 and 92% of expected, respectively.  For citrate and fluoride, the 

similarity between the results for filtered and unfiltered solutions is consistent with 

the speciation calculations that indicate that the free Al concentration is below the 

solubility limit for amorphous Al(OH)3 formation.  In the case of maltol, the 

similarity between the filtered and unfiltered samples shows that any colloidal 

Al(OH)3 has a small particle size, which supports the hypothesis that the Al within 

these colloids is capable of equilibrating relatively quickly with the solution as 

conditions change. 

At pH 7, in the absence of ligand, the Al concentration in the 20, 65, and 

200 µM and 2 mM Al conditions was 11, 13, 51 and 52% in the unfiltered and 10, 

4, 1.5 and 1.5% in the filtered solutions, as expected if significant Al hydroxide is 

present, as predicted by the results shown in Figure 1, Panel A. For 65 µM Al at 
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pH 5, only 50% of Al passed through the 0.22 µM filter, even though the 

speciation results do not predict a significant amount of precipitation at this pH.  

This discrepancy could reflect some error in the experimental KSP for freshly 

precipitated Al(OH)3.  

The BUN and serum creatinine values of the rats ranged from 3.9 to 17.8 

mg/dl and 0.2 to 0.5 mg/dl, respectively, and were within normal limits. Therefore 

data from all subjects were used in the analysis. 

26Al in all serum samples was determined by AMS with an analytical error 

of ≤ 10%.  There were 7 14C serum samples with an analytical error > 20%; they 

were not included in the data analysis. Since these samples were from 7 different 

rats, this did not greatly influence the data analysis. All results had a normal 

distribution with the exception of the Tmax values for 26Al. The variances did not 

differ among/between treatment groups with the exception of the Cmax values for 

14C (p = 0.028). 

The average 26Al concentration in the serum samples obtained from all 

rats prior to 26Al dosing was 0.71 ± 0.76 fg/ml (X ± SD, range = 0 to 3.27 fg/ml). 

The 26Al concentration in serum samples from non-26Al treated rats was 1.07 ± 

1.16 fg/ml (range = 0 to 4.64 fg/ml). The peak serum 26Al concentration after oral 

26Al dosing was ≥ 70 times the 26Al concentration in serum from non-26Al-dosed 

rats. For both 14C-citrate and 14C-maltol, the peak 14C concentration after the oral 

14C dose was ≥ 30 times that seen in non-14C-dosed rats. The total serum Al 

concentration in the rat that did not receive the 27Al infusion was ~ 50 ng/ml. The 

mean total serum Al concentration in the rats that did receive the 27Al infusion 

was 639 ± 168 ng/ml. The time courses of serum 26Al concentration following oral 

26Al dosing are shown in Figure 2. Absolute bioavailability, Cmax and Tmax values 

for 26Al are shown in Table 1. Although the mean oral bioavailability and Cmax of 
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Al as the citrate, maltolate and fluoride was 2.1, 1.7 and 1.2 and 1.6, 1.3 and 1.3 

times higher than in the absence of ligands, respectively, no statistically 

significant differences were observed among these 4 Al species. The time 

courses of serum 26Al and 14C after Al citrate and Al maltolate administration, as 

a percentage of the administered dose per ml serum, are shown in Figure 3. The 

shapes of the serum 14C and 26Al concentration versus time curves for individual 

rats were similar, although serum 14C was ~100-fold higher than serum 26Al. 26Al 

and 14C concentrations returned close to the baseline by 24 h.  
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Discussion  

The current study tested the following null hypotheses: 1) citrate, maltolate, 

and fluoride do not influence Al bioavailability, Cmax or Tmax at an Al dose relevant to 

human consumption of Al in drinking water; 2) Al citrate and maltolate complexes 

do not dissociate in the GI tract and are absorbed intact.  

The Al dose given in this study was similar to the daily oral Al intake from 

water by humans. Humans consume an average of 1.4 L per day of drinking 

water [40] containing 50 to 100 µg (1.85 to 3.7 mol) Al/L [41]. This yields a 

typical daily oral Al intake of ~ 0.14 mg, (2 µg/kg for a 70 kg human). The rats (~ 

300 g) were dosed with 1 ml of 65 µM Al (5.85 µg/kg b.w.). Given the rat surface 

area of ~ 425 cm2 and human surface area of ~18,000 cm2, the dosage of Al to 

the rats was ~ 0.0041 µg/cm2, about 1/2 of the human daily Al exposure from 

drinking water (~ 0.0078 µg/cm2).  

The molar ratio of Al to ligands was as employed in Al transport and 

uptake studies in Caco-2 cells [42]. Species calculations show that at pH 7 nearly 

all of the citrate and ~ 70% of the maltolate should be bound to Al in the prepared 

dose solutions. In the rat stomach pH (~ 3.2) [43] there would be significant 

dissociation of Al maltol and Al citrate to produce mixtures containing higher 

concentrations of the free ligand and unchelated Al3+ ion.  As the pH increases 

from the stomach to the rat jejunum (~ 7) [44] Al complexes with citrate and 

maltol would form again.  The Al-F complexes remain largely intact at the pH of 

the stomach, but would be expected to convert to Al-hydroxo complexes at the 

neutral pH of the jejunum. The absence of food and feces in the stomach, and 

probably upper intestine, at the time of dosing enabled us to test the hypothesis 

that Al maltol and Al citrate were absorbed intact. If the Al citrate complex was 

absorbed intact, the time course and extent of absorption of 26Al and 14C-citrate 
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should be comparable.  Our results suggested considerable dissociation of the Al 

citrate complex in the GI tract. 

The average fluoride concentration in drinking water, obtained from 

surface water, was 0.1-0.3 mg/L (5.5-15.8 µM) 

(http://sfwater.org/detail.cfm/MC_ID/13/MSC_ID/166/MTO_ID/299/C_ID/1456/Lis

tID/1). Fluoride is often added to the “optimal’ level of ~ 0.7 mg/L (36.8 µM) to 

prevent tooth decay (http://www.fluoridation.com/enviro.htm). We studied an Al:F 

ratio = 4 because 1) almost all Al binds to F- under this condition and 2) the ratio 

is close to the Al:F ratio in non-fluoridated drinking water.  

The administration of two isotopes of Al (26Al and 27Al) and the much 

greater iv administration of 27Al made it possible to concurrently determine the 

AUCs of oral and iv Al administration in the same subject. This approach reduced 

inter-subject variability when calculating absolute bioavailability. It is possible that 

the elevated concentration of Al in the blood from the iv infusion could influence GI 

tract Al absorption, but there are no reports suggesting this. Recent literature 

relevant to the mechanism(s) of Al absorption from the GI tract suggests roles for 

passive paracellular diffusion between cells and active transport. As the Al 

concentration in the delivered oral solution (~ 1755 ng/ml) exceeded the plasma Al 

concentration, the elevated blood Al would not be expected to significantly inhibit 

paracellular diffusion of Al. The transferrin metal binding capacity for Al was not 

saturated under this condition, suggesting elevated blood Al would not affect 

speciation of the absorbed 26Al.   

A disadvantage of the use of 26Al as a tracer is the high cost of its 

analysis by AMS, which limits the experimental design to a small number of 

samples. For substances that have very low oral bioavailability, such as Al, it is 

difficult to detect small differences in the percentage absorbed without a fairly 

http://sfwater.org/detail.cfm/MC_ID/13/MSC_ID/166/MTO_ID/299/C_ID/1456/ListID/1
http://sfwater.org/detail.cfm/MC_ID/13/MSC_ID/166/MTO_ID/299/C_ID/1456/ListID/1
http://www.fluoridation.com/enviro.htm
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large number of subjects, especially in the presence of considerable variability. In 

the current study, although the mean Al bioavailability in the presence of citrate 

was 2-fold of that in the absence of ligands, these differences were not 

statistically significant. Based on the results of the mean and SD of Al 

bioavailability, the power of these results is 0.42, 0.30 and 0.12 for the Al ion 

group compared to the Al citrate, Al maltolate and Al fluoride groups, respectively, 

at a significance level of 0.05, using (http://calculators.stat.ucla.edu/powercalc/). 

To increase the power to 0.9 to see a significant difference between these 2 

groups, at least 6 and 16 rats, 11 and 23 rats, and 69 and 63 rats would be 

required for the Al ion and Al citrate groups, Al ion and Al maltolate groups, and 

Al ion and Al fluoride groups, respectively. Even though the bioavailabilities for 

these Al complexes were not statistically significantly different, their differences 

might be relevant. Bioequivalence is a term in pharmacokinetics generally used 

to assess the expected in vivo biological equivalence of two proprietary 

preparations of a drug (http://en.wikipedia.org/wiki/Bioequivalence). If two 

products are said to be bioequivalent it means that they have the same 

bioavailability and potency, assuming equal doses. In the United States, FDA 

considers two products bioequivalent if the 90% confidence interval of relative 

bioavailability (rate and extent of availability, e.g. Cmax and AUC) of the test to 

reference lie within an acceptable range (80%-125%). In the current study, the 

mean Al oral bioavailability and Cmax in the presence of citrate, maltolate and 

fluoride (as test product) versus the absence of ligands (as reference) were 210, 

170 and 120% and 160, 130 and 130%, respectively. The relative bioavailability 

and Cmax were above the upper limit 125%. Therefore, Al in the presence of 

ligands failed to demonstrate bioequivalence to Al in the absence of ligands. 

http://en.wikipedia.org/wiki/Pharmacokinetics
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The bioavailability of Al when introduced as the ion in the current study 

was 0.28%, consistent with results using the same experimental methods [22].  A 

2-fold increase of the mean absorption of Al in the presence of citrate was seen 

compared to Al alone. Enhanced Al absorption in the presence of citrate has 

been repeatedly reported from studies that used 27Al  [45]. There are several 

reported studies, conducted under conditions that model drinking water Al 

concentration, which used 26Al to investigate the effect of citrate on Al absorption. 

It was reported that the oral administration of 200 μL citrate (62 g/L) enhanced 

26Al absorption 5- to 10-fold [19]. The 26Al was given as 3.8 ng 26Al and 63 ng 27Al 

(2.5 nmol total Al) at pH 1.6 to 2 and an Al to citrate molar ratio of 1:25,000. 

Concomitant intake of 1 mmol of citrate (molar Al to citrate ratio = 1:40,000; 3.8 

ng of 26Al and 63 ng of 27Al, 2.5 nmol total Al) increased median Al absorption by 

about 2- to 5-fold [20]. However in another study conducted under the same 

conditions, no significant enhancement by citrate was seen [46]. In these 3 

studies, where a high citrate to Al ratio (Al:citrate = 1:25,000 or 1:40,000) was 

used, Al absorption increased 2- to 10-fold. In the current study, a much lower 

citrate dose (65 nmol) and Al:citrate ratio (1:1) were used. The effect of citrate on 

Al absorption was not statistically significant.  Increasing the citrate to Al ratio 

would favor formation of a smaller 1:2 Al:citrate complex (Al(H-1cta)(cta)4-), which 

might more easily diffuse through the paracellular pathway than the Al3(H-

1cta)3(OH)4- trimer formed at lower citrate:Al ratios.  The absorption of Al, when 

administered as the citrate (5 ng of 26Al and 80 ng of 27Al, 3.1 nmol total Al, pH 

6.2, citrate dose not reported), was greater than when Al hydroxide was given 

(2.7 ng of 26Al and 43.2 ng 27Al, 1.7 nmol total Al, pH 7), 0.7 versus 0.1% [21]. 

When 1 mmol/kg sodium citrate was added to 12.1 ng of 26Al as Al citrate at pH = 

8.3 (Al:citrate 1:40,000), Al absorption increased to 5%. Based on the speciation 
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model used to prepare Figure 1, we would predict that such a large excess of 

citrate would completely suppress the formation of the Al-citrate trimer and that 

essentially 100% of the Al would be the 1:2 Al(H-1cta)(cta)4- complex.  

The overall results of the previous studies and current study suggest the 

effect of citrate on Al absorption might be citrate dose dependent. This is 

consistent with results using Caco-2 cells where citrate had a different effect on the 

flux of 2 μM versus 8 mM Al-citrate. 2 μM citrate did not have a significant effect on 

Al flux whereas at 8 mM Al-citrate, the citrate affected tight junction integrity to 

influence Al flux [42].  In previous rat studies, the high dose of citrate (65 to 100 

μmol in most 26Al rat studies) may have interacted with the GI tract to facilitate Al 

absorption by the paracellular pathway while the much lower dose (65 nmol in the 

current study) had a less obvious effect. Exposure to Al citrate resulted in markedly 

enhanced transmural Al transport in vitro in duodenal and jejunal everted gut 

preparations compared to Al chloride [47]. This was associated with increased 

deposits in intercellular spaces of ruthenium red (a marker used to evaluate tight 

junction structural integrity) and a prolonged significant reduction in transmural 

resistance. Similarly, permeability of Al in the Caco-2 cell study was low, 

suggesting poor oral absorbance, independent of the absence or presence of 

ligands, as long as the integrity of the cell monolayer was maintained [42]. 

However, when tight junction permeability increased, Al flux similarly increased. 

This is in agreement with the results of the current study where Al absorption was 

< 1% at 65 nmol, and citrate, maltolate, and fluoride had no significant effect on Al 

bioavailability, Cmax and Tmax. Administration of much larger doses of Al and citrate 

has a much greater potential to change the GI milieu and produce non-

physiological absorption results. This adds to the difficulty of comparing the results 

among these studies.   
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The absorption of Al when administered as the maltolate approximated that 

of Al hydroxide (~ 0.1%) [21]. The Al was given as 5 ng 26Al and 80 ng 27Al, 3.1 

nmol total Al, pH = 6, in 2 ml water (1.55 μm). The Al to maltolate molar ratio was 

not reported.  Al is present primarily as a Al(maltolate)3 complex at 65 μM Al and 

195 μM maltolate at pH = 7, as in the present study, whereas at 1.55 μM Al and 

4.65 μM maltolate at pH 6 virtually all the Al would be a mixture of Al(OH)2+ and 

Al(OH)3. Therefore, the predominant Al species in this study might have been Al 

hydroxide. In the present study, the bioavailability of Al, introduced as the maltolate, 

was 0.51%. The presence of maltolate did not significantly change the 

bioavailability, Cmax or Tmax of Al compared to the absence of ligands. 

This is the first study to investigate the effect of fluoride on Al absorption at 

a physiologically-relevant Al concentration using 26Al. Since fluoride was also 

studied at a physiologically-relevant concentration, the expected increase of 

fluoride in rat serum was not predicted to be discernable from endogenous fluoride. 

As there is no appropriate fluoride tracer that could have been used in this study 

only serum Al was measured in rats that received Al fluoride. The presence of 

fluoride did not significantly change the bioavailability, Cmax or Tmax of Al.  

The present study was the first to use 26Al and 14C to address the null 

hypothesis that Al citrate and Al maltolate do not dissociate in the GI tract, resulting 

in their absorption intact. The serum 14C concentration from oral administration of 

26Al 14C-citrate or 26Al 14C-maltolate was ~100 times higher than expected if the 14C 

was absorbed as an Al-ligand complex. One interpretation is that there was 

considerable dissociation of Al citrate and Al maltolate in the GI tract. As ~ 80% of 

the citrate in the Al citrate dosing solution was associated with Al (Figure 1, Panel 

B) the free citrate does not account for the ~ 60% absorption of 14C from 14C-citrate, 

as Al bioavailability was ~ 0.6% and citrate ~ 100-fold greater. For Al maltolate, 
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speciation calculations predict that ~ 35% of the Al would not be associated with 

maltolate, leaving sufficient non-Al associated maltolate to account for the 

absorption of 14C from 14C-maltolate. At the lower pH of the rat stomach even 

though a higher percentage of Al would be associated with maltol, there would still 

be sufficient free maltol to account for the observed uptake of 14C.  Serum 14C 

approached zero by 24 h, suggesting no free citrate or maltol remained in the 

intestine available for absorption.  

Serum citrate peaked after 32 min and returned to baseline by 90 min, 

whereas blood Al peaked after 87 ± 19 min, then decreased slowly over 24 h in 3 

humans who drank a solution containing 280 mg (10.37 mmol) 27Al, as the 

hydroxide, and 3.2 g citrate (15.45 mmol) at pH = 4.5 [25].  There was 100-fold 

greater citrate than Al absorption.  Based on these results the authors concluded 

that it was unlikely that Al was absorbed as Al citrate.  The administered solutions 

in this study were very concentrated; 0.1 M Al3+ and 0.17 M citrate.  The authors 

attempted to assess the speciation of the aluminum in the discussion of their 

results.  However, the model that they used included only mononuclear complexes.  

Speciation calculations for these conditions using the model from the present study 

indicate that about 60% of the Al would have been the trimer and about 40% 

Al(cta)23-.  At the more alkaline pH of the intestine, the percentage of trimer would 

have increased to almost 90%.  Owing to the use of 26Al and the exquisite 

sensitivity of AMS, the Al dose in the present study was 0.0006% of this previous 

study. In the present study, the serum 14C and 26Al peaks occurred at a similar time.  

Considering that the magnitude of citrate absorption was 100 times that of Al 

absorption, it is very possible that a small fraction of the absorbed citrate was as Al 

citrate, e.g., the Al was absorbed as the Al citrate complex.  
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The pH increase from the stomach to duodenum to jejunum is due to 

carbonate and bicarbonate secretion. Although the interactions between Al and 

carbonate or bicarbonate ions are so weak that they can be neglected [48], the 

results of the present study suggest considerable Al dissociates from citrate. The 

Tmax of Al in the present study was approximately 1 h and that of citrate ~ 2 h, 

consistent with their absorption from the proximal small intestine. The non-

absorbed Al in the intestine that was freed from the ligand may have formed Al 

hydroxide or associated with mucus on the wall of the GI tract to be taken up into 

epithelial cells and sequestered in the cell nuclei, or excreted into feces.  

In summary, the results of the current work advanced the understanding of 

the importance of the chemical species of Al on its absorption from the GI tract and 

the risk assessment of Al toxicity, when administered as the Al3+ ion, or as Al 

citrate, maltolate or fluoride in drinking water. Generally, these results did not reject 

the null hypothesis that citrate, maltolate and fluoride have no significant effect on 

Al absorption (bioavailability, Cmax, and Tmax) under the studied conditions. At an Al 

dose relevant to that consumed by the human in drinking water the absolute 

bioavailability of Al was < 1%. Citrate and maltolate absorption were much greater 

than Al. Although Al bioavailability didn’t significantly increase after a single oral 

dose in the presence of citrate, maltolate or fluoride compared to the Al ion under 

the conditions studied, the absorption of Al when given as the ion, citrate, maltolate 

and fluoride failed to demonstrate bioequivalence. Furthermore, this study only 

addressed oral bioavailability. The distribution of Al to target organs, such as the 

brain, and the resulting effects, as well as the rate of clearance by the kidney 

and/or the liver may not be equivalent for these Al species. Further study of the 

effect of ligands on Al absorption, distribution and elimination under conditions that 
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model Al consumption in drinking water during long term exposure is needed for a 

more informed risk assessment of Al.  
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 Figure legends 
 

Figure 1.  Results of Al speciation calculations at a total of 65 μM Al in the 

absence of ligands (Panel A); and in the presence of citrate (cit) (65 μM) (Panel 

B), maltolate (mal) (195 μM) (Panel C), and fluoride (F) (260 μM) (Panel D) in the 

pH range 2 to 8.  The dotted lines indicate solutions which exceed the solubility 

product of freshly prepared Al(OH)3, i.e. the pH range in which the calculated 

concentration of Al(OH)3 exceeds its solubility.  

 

Figure 2. Time courses of serum 26Al concentrations following oral administration 

of 52 ng 26Al in the absence of ligands or in the presence of citrate, maltolate or 

fluoride. Values are mean ± SD from the 5 rats of each Al treatment group. The X 

axis is shown in three segments to expand the results from the early time points.   

 

Figure 3. Serum 26Al and 14C in each of the five rats after oral administration of 

26Al-14C-citrate (upper five panels) and 26Al-14C-maltolate (lower five panels), 

shown as a percentage of the administered dose/ml serum.  Serum 26Al shown 

as squares and dashed line with the scale on the left axis.  Serum 14C shown as 

triangles and solid line with the scale on the right axis.  Each panel shows results 

from one rat with a connecting line among the points. Note the 100-fold 

difference in the Y scales on all graphs.   
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Table 1. The absolute oral bioavailability (non-transformed and square root 

transformed), Cmax, and Tmax of 26Al administered in the absence of ligands (ion) or 

in the presence of citrate, maltolate or fluoride, and Cmax, and Tmax of 14C from 

citrate and maltolate.  

 

 

 

 

 

 

  

 

Ion 

 

Citrate 

 

Maltolate 

 

Fluoride 

ANOVA or 

t-test 

result  

  26Al oral bioavailability (%) 0.29 ± 0.11 0.61 ± 0.31 0.50 ± 0.25 0.35 ± 0.10 p = 0.11 

  26Al oral bioavailability (%) (square root transform) p = 0.14 

  26Al Cmax (fg/ml) 659 ± 195 1073 ± 250 881 ± 356 880 ± 295 p = 0.18 

  26Al Tmax (h) 1.2 ± 0.9 1.0 ± 1.1 1.3 ± 1.0 1.0 ± 0.9 p = 0.90 

  14C Cmax (ng/ml)  1.8 ± 0.7 0.6 ± 0.2  p = 0.0059 

   14C Tmax (h)  2.9 ± 2.2 1.2 ± 1.1  p = 0.15 
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Figure 1.  
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Panel C 
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Figure 2. 
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Figure 3. 
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