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Abstract: Lung cancer remains the leading cause of cancer death worldwide and non-small cell lung
carcinoma (NSCLC) represents 85% of newly diagnosed lung cancers. In this study, we utilized
our untargeted assignment tool Small Molecule Isotope Resolved Formula Enumerator (SMIRFE)
and ultra-high-resolution Fourier transform mass spectrometry to examine lipid profile differences
between paired cancerous and non-cancerous lung tissue samples from 86 patients with suspected
stage I or IIA primary NSCLC. Correlation and co-occurrence analysis revealed significant lipid
profile differences between cancer and non-cancer samples. Further analysis of machine-learned
lipid categories for the differentially abundant molecular formulas identified a high abundance sterol,
high abundance and high m/z sphingolipid, and low abundance glycerophospholipid metabolic
phenotype across the NSCLC samples. At the class level, high abundances of sterol esters and
cardiolipins were observed suggesting altered stearoyl-CoA desaturase 1 (SCD1) or acetyl-CoA
acetyltransferase (ACAT1) activity and altered human cardiolipin synthase 1 or lysocardiolipin
acyltransferase activity respectively, the latter of which is known to confer apoptotic resistance. The
presence of a shared metabolic phenotype across a variety of genetically distinct NSCLC subtypes
suggests that this phenotype is necessary for NSCLC development and may result from multiple
distinct genetic lesions. Thus, targeting the shared affected pathways may be beneficial for a variety
of genetically distinct NSCLC subtypes.

Keywords: non-small cell lung carcinoma; lipidomics; Fourier-transform mass spectrometry; SMIRFE

1. Introduction

Lung cancer remains the most common cause of cancer death worldwide [1] with
approximately 85% of newly diagnosed lung cancers belonging to the non-small cell lung
carcinoma subtype (NSCLC) [2]. The high mortality of lung cancer, NSCLC included, is
partially explained by the insidious and silent nature of the progression of early-stage
disease, but also the lack of effective therapeutic options for advanced disease. Although
improvements have been made in the fields of NSCLC treatment, especially for adeno-
carcinomas with actionable mutations such as epidermal growth factor receptor (EGFR),
anaplastic lymphoma kinase (ALK), certain Kirsten rat sarcoma virus (K-RAS) variants,
and more recently with checkpoint inhibitors [3], resistance often sets in [4–6]; and the
overall 5-year survival rate remains low (<30%) [7].

Treatment options for NSCLC vary with disease stage as well as a genetic subtype.
For low-stage disease, surgery remains the most common and most effective treatment
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option [8], especially when combined with adjuvant chemotherapeutic drugs [9]. For ad-
vanced disease, chemotherapy and/or radiotherapy [10–13] are the primary first-line treat-
ment option. Therapeutics targeting the epidermal growth factor receptor (EGFR) [14,15],
which is often mutated in NSCLC tumors in patients of East-Asian origin [16] and female
never smokers, vascular endothelial growth factor (VEGF) [17–20], anaplastic lymphoma
kinase (ALK), and the programmed death protein 1 and programmed death ligand-protein
1 (PD-1/PD-L1) immune checkpoint [21] have increased the number of therapeutic options
available for patients with advanced disease. However, while offering different side-effect
profiles than traditional chemotherapy [22], overall survival of advanced NSCLC remains
poor [23] and many patients fail to express these particular biomarkers and are unsuitable
for these therapies.

Finding drug targets for every genetic subtype of NSCLC would be very challenging
and time-consuming. Alternatively, it is well known that cancer metabolism differs substan-
tially from non-cancer metabolism due to metabolic reprogramming, a phenomenon that is
essential to cancer development [24]. As multiple genetic mutations may result in the same
metabolic phenotypes, drugs targeting these metabolic processes may be efficacious for
multiple genetic subtypes of NSCLC.

There are many examples of metabolic reprogramming in NSCLC [25–27]. In par-
ticular, stable isotope labeling studies in vivo have shown that both glycolysis and the
tricarboxylic acid (TCA) cycle are highly active in many NSCLC tumors, resulting in higher
rates of glucose oxidation in NSCLC compared to surrounding non-NSCLC tissue [25]. In-
creased TCA activity provides the precursors needed for several anabolic processes needed
for cell proliferation, but this requires concomitant increased anapleurosis, such as en-
hanced pyruvate carboxylation [27], to maintain TCA cycling. Additionally, many NSCLC
tumors oxidize several other substrates with a preference for non-glucose substrates such as
lactate [28] and glutamine [29–31] from the tumor microenvironment, especially at higher
perfusion rates [25].

Lipid metabolism is also commonly altered in NSCLC. Key enzymes for lipid metabolism
such as ATP citrate lyase (ACLY) [32], fatty acid synthase (FASN) [33], and stearoyl-CoA desat-
urase 1 (SCD1) [34] can be differentially expressed in NSCLC compared to non-cancer tissue.
Overexpression of these genes enables enhanced production of many lipid classes and is also
correlated with poorer clinical outcomes and tumor aggressiveness [34–38]. Additionally,
previous studies have demonstrated an association between serum cholesterol and survival
in patients with resectable NSCLC [39] (as well as other forms of cancer [40,41]) and an associ-
ation between membrane cholesterol content and EGFR signaling activity [42]. Collectively,
these findings suggest that altered lipid production plays a key role in the development and
progression of NSCLC and that enzymes in these pathways are promising drug targets.

An alternative to the costly de novo development of novel therapeutics is the repurpos-
ing of existing pharmaceuticals for new indications. For example, previous observational
studies have suggested that patients prescribed statins, inhibitors of 3-hydroxy-3-methyl-
glutaryl-CoA reductase in the mevalonate pathway, have better overall survival rates for a
variety of cancers including NSCLC [43], even at late stages [44], and in patients under-
going EGFR inhibitor therapy [45]. The difference in survival benefit between NSCLC
stages and treatments combined with the observation that randomized controlled trials
have had limited success replicating the survival benefit [45] seen in retrospective studies
suggests that only some subtypes of NSCLC may be statin responsive. If patients with
statin-responsive molecular subtypes of NSCLC can be identified, statins could play a sup-
porting role in the treatment of NSCLC. Additionally, it remains unclear how statins result
in a survival benefit mechanistically. Statins have multiple known off-target effects besides
inhibition of sterol biosynthesis including anti-inflammation [46], immunomodulation [47],
and angiogenesis inhibition [48], all of which may contribute to this possible survival bene-
fit. However, if this effect could be attributed to inhibition of endogenous sterol production,
other inhibitors of the mevalonate pathway such as nitrogenous bisphosphonates [49]
could have a role in the treatment of NSCLC.
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As these examples illustrate, an improved understanding of the metabolic differences
between NSCLC and non-cancerous lung tissue represents a major first step in constructing
more complete models of NSCLC progression and ultimately the development of more
effective therapeutics. Advances in ultra-high resolution mass spectrometry, particularly
Fourier-transform mass spectrometry (FT-MS), provide significant analytical improvements,
including the ability to resolve distinct isotopologues, and the detection of lower abundance
metabolites. These capabilities combined with our in-house data processing pipeline,
artifact mitigation [50], and untargeted assignment method called Small Molecule Isotope
Resolved Formula Enumeration (SMIRFE) [51,52] enables the assignment of molecular
formulas to spectral features observed in NSCLC-derived lipid extracts without bias due
to the incompleteness of existing metabolic databases [53,54]. These assignments can
be classified into lipid category and class using our machine learning methods [55] to
investigate changes that occur in lipid profiles at the lipid category level.

2. Results
2.1. Mass Spectrometry Data Processing, Assignment Ambiguity and Quality Control of Samples

Ambiguous assignments and high data sparsity are largely unavoidable due to the
exponential growth of molecular formula search space at higher m/z [51], biological
and analytical variance between biological units, sample preparation, and limitations in
dynamic range. Elemental molecular formula (EMF) voting identified consistently assigned
(i.e., corresponded) peaks and filtered these features to those present in at least 25% of
samples for a given sample class to reduce data sparsity which in turn allows for the
meaningful use of more traditional statistical approaches such as principal component
analysis (PCA) that do not handle high data sparsity well. Even so, the high data sparsity
present in the dataset significantly contributes to the low percent variance observed in the
top principal components.

Additionally, our quality control measures allow us to detect outlier spectra that
could represent failed sample preparation, poor injection, or non-primary or non-NSCLC
tumors. Initially, 179 patient samples were included in the analysis. After the removal of
22 samples from unrelated secondary metastatic tumors and benign granulomatous tissue
and of 12 outlier samples based on quality control, 145 samples remained for differential
abundance analysis.

2.2. PCA and Sample Correlation Heatmap Shows Separation of Cancer and Non-Cancer Samples

PCA performed using the normalized intensity of the corresponded peaks present in at
least 25% of a sample class mostly separates cancer and non-cancer samples along principal
components (PC) two and three (Figure 1A,B). Although imperfect, the presence of this
decision boundary implies that these principal components reflect biological variance
between disease classes. There is also a partial separation along PC1 that reflects if the
spectrum was acquired on Fusion 1 or Fusion 2 (Supplemental Figure S1). This potential
issue is mitigated by the fact that the cancer and non-cancer samples are very evenly split
between instruments and the difference in variance between PC1 and PC2 is only 6%.

The observed correlation patterns among samples further support the presence of
significant biological variance (Figure 2). Non-cancer samples correlate strongly with one
another and are well differentiated from the cancer samples. Although cancer samples
do cluster together, correlation within the cancer samples was weaker as compared to the
non-cancer samples. Further investigation of the correlation among the cancer samples
reveals two groups of cancer samples.
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2.3. Differential Abundance of Lipid Categories between Cancer and Non-Cancer Lung Tissue

Lipids from five lipid categories were observed: Fatty Acyls [FA], Glycerophospholipids
[GP], Prenol Lipids [PR], Sphingolipids [SP], and Sterols [ST] across all samples. In addition,
we created two new categories for Sphingolipids based on m/z low m/z (<700) and high m/z
(>=700, see Figure 3), for a total of seven categories. Of these seven categories, only fatty acyls
and prenols had no differentially abundant assignments. Additionally, few assignments were
made to the fatty acyl or prenol categories. This may reflect the abundance of these lipids in
our samples or their poor ionization in positive mode. The sterols and high m/z sphingolipids
were significantly more abundant at the category level, whereas glycerophospholipids were
significantly less abundant at the category level (Table 1).
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Figure 3. Log2 fold change by category and m/z. The Log2 fold-change (Log2FC) of corresponded
peaks assigned to one lipid category are shown in panel (A) with respect to m/z and by class in panel
(B). The extremely high fold-changes observed for some members of the sphingolipid and sterol lipid
categories are due, in part, to imputed values. Most of the differentially abundant lipids occur in the
600 to 1000 m/z range; however, this region also has the highest density of assignments. Although
no lipid category is exclusively more abundant, sterols are predominantly more abundant while
substantial numbers of both sphingolipids and glycerophospholipids are more and less abundant.
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Table 1. Differential abundance analysis results at the lipid category level.

Category Total
More Abundant Features Less Abundant Features

Expected Observed p-Adjust Expected Observed p-Adjust

Fatty Acyls [FA] 12 2.989 2 1 3.947 0 1

Glycerophospholipids [GP] 205 51.055 37 1 67.424 88 0.00503

Prenol Lipids [PR] 5 1.245 0 1 1.644 0 1

Sphingolipids [SP] 281 69.983 79 0.09861 92.420 81 1

Sphingolipids [SP]–Low m/z 33 8.219 3 1 10.854 16 0.141

Sphingolipids [SP]–High m/z 248 61.764 76 0.00967 81.567 65 1

Sterol Lipids [ST] 23 5.728 13 0.00643 7.084 3 1

For each category of lipids, the number of observed more and less abundant features was recorded and compared to the number of expected
more and less abundant features to statistically evaluate the differential abundance of that specific lipid category. The p-values were
calculated using a hypergeometric test and adjusted for multiple testing using the Benjamini–Hochberg technique [56]. This revealed two
statistically significant, more abundant lipid categories and one statistically significant, less abundant lipid category in cancer compared to
non-cancer, which are bolded.

Extremely high and extremely low log2 fold changes result from the imputation
of missing values which occurs when an isotope-resolved molecular formula (IMF) is
observed in one sample class but not the other. The relationship between log2 fold changes
and m/z is shown in Figure 3. In the case of sphingolipids, more and less abundant
sub-populations appear to correlate with m/z, with cancer having higher concentrations
of higher m/z sphingolipids on average. Most of the sphingolipids past 700 m/z are
of the phosphosphingolipid [SP03], a class that includes sphingomyelins, while before
700 m/z there is a mixture of both phosphosphingolipids [SP03] and ceramides [SP02].
Sterols and glycerophospholipids show no such pattern with respect to m/z. Querying the
top 5 most abundant unique EMFs of the more abundant sterol IMFs against PubChem
returned matches to known sterol esters. Additionally, 12 of the 13 sterol EMFs assigned in
our study were classified into the ST01 class of sterols from LipidMaps, which includes
sterol esters. The majority of the glycerophospholipids could not be classified uniquely
into a single class; however, the majority of the glcyerophospholipids that were uniquely
classified (19 of 32) were classified into the Glycerophosphoglycerophosphoglycerol [GP12]
class that includes cardiolipin derivatives.

2.4. Lipid Category Correlation and Co-Occurrence Heatmaps

Kendall-tau correlation values between features were calculated using samples with
non-zero corresponded peak normalized intensities for both features (Figure 4). Multi-
classified features were dropped prior to analysis. At the lipid category level, we see distinct
groups of correlated lipids within each category and in general, intra-category correlation
is stronger than inter-category correlation. This observation suggests possible regulation of
these lipids at a category level and implies that the majority of the corresponded peaks are
consistently assigned to the correct lipid category.

Of the three differentially abundant categories of lipids, the glycerophospholipids
collectively show the strongest intra-category correlations and some subgroups of glyc-
erophospholipids are correlated with subgroups of sphingolipids and sterols. Within the
sphingolipid category, there are distinct sub-populations of sphingolipids with differing
amounts of intra-group correlation. Interestingly, the groups of sphingolipids that correlate
well with sterols do not correlate strongly with other groups of sphingolipids. Finally,
the sterols show the weakest intra-category correlation of the three categories, but there
are two distinct subgroups of sterols correlated with one another, suggesting possible
coregulatory mechanisms between these groups of lipids.
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Figure 4. Peak correlation and peak co-occurrence combined heatmap. The upper-right corner shows the Kendall-tau
correlation among consistently assigned lipid features. Strong intra-category correlation is observed for some lipids
which possibly results from co-regulation. Shown in the bottom-left is the co-occurrence of consistently assigned lipid
features. There are two sub-populations of sterols: one that co-occurs with a sub-population of sphingolipids and another
that co-occurs with a sub-population of glycerophospholipids. The biological relevance of this co-occurrence is unclear.
Alternatively, this co-occurrence may simply be artifactual, if these lipids were generally of lower relative abundance.

The lipid co-occurrence analysis revealed patterns that were not obvious from cor-
relation alone. Mirroring the correlation analysis, there are two sets of co-occurring sph-
ingolipids. The sterols co-occur with one sub-population of sphingolipids; however, it is
not the sub-population of sphingolipids that were correlated with the sterols. By consid-
ering only the sterol features when calculating sample-sample correlations, two distinct
subgroups of cancer samples with similar patterns of sterol abundances were observed
(Figure 5).
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sample-sample correlation; however, these groups do not correspond to a histological subtype of NSCLC. As indicated in
Figure 4, there also appear to be two main groups of sterol peaks in (B).
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Although prescription data was not available for all the patients in our study, a sizeable
fraction of the study participants attested to taking statins (20 of 60) that could explain
the lipid profile subgroups we observed. However, the composition of the patients with
respect to statin-use between the two sterol subgroups, evaluated using a chi-squared test,
was not significant (p-value = 0.952). Furthermore, there was no clear correlation between
statin use and the abundances of consistently assigned lipid categories in either cancer or
non-cancer samples (Supplemental Figure S2). Thus, we hypothesize that these patterns
of correlation and co-occurrence between lipid category subgroups are not iatrogenic but
instead suggest the presence of two or more groups of cancer samples with different lipid
metabolic patterns and regulation.

3. Discussion
3.1. Sample Correlation Analysis Shows Evidence of Metabolic Reprogramming in NSCLC

Metabolic reprogramming is ubiquitous in cancer and the number of distinct pro-
cancer metabolic dysregulations within a cohort of patients with the same type of cancer is
likely vast. Thus, we hypothesize that the lipid profiles of cancer samples are expected to be
less similar to one another than the lipid profiles of the non-cancer samples from the same
patients. This hypothesis is analogous to previously observed high inter-tumor variance in
gene expression [57], RNA editing [58], DNA methylation [59], and mitochondrial DNA
content [60].

The correlation patterns observed in Figure 2 supports this hypothesis. Although some
lipid profile differences may be attributed to patient genetic, metabolic or environmental
variance, this would not account for the strong correlation patterns observed among
samples of the non-cancer class. Correlation among the cancer samples was weaker as
compared to non-cancer, consistent with our hypothesis, with several distinct clusters of
correlation observed. Further analysis of these clusters did not show a correlation with
NSCLC subtype. The limited amount of correlation observed between cancer and non-
cancer samples is explained by the sizable effect of metabolic reprogramming on some
components of cellular metabolism. Additionally, there were fewer common corresponded
peaks in cancer than in non-cancer samples, suggesting more diverse lipid profiles among
the cancer samples.

Furthermore, these correlation patterns demonstrate that our assignment methods and
data analysis pipeline, including our quality control measures, are successfully reducing
assignment ambiguity and providing consistent assignments across samples as well as
instrument and clinical environment. Random incorrect molecular formula assignment
or lipid classification would not produce the observed correlation patterns within disease
classes or the stronger correlations observed among peaks classified to the same lipid
category respectively.

3.2. Regulatory Interpretation of Lipid Category Correlation and Co-Occurrence

In addition to the differences in abundance at a lipid category level, our study also
examined the correlation of normalized lipid intensity across samples as well as the co-
occurrence of those features across samples. We observed a strong intra-category correla-
tion among most glycerophospholipids, among several sub-populations of sphingolipids
and weak intra-category correlation with the sterols but two distinct sub-populations.
Additionally, we observed inter-category correlation among some glycerophospholipids,
sphingolipids, and one sub-population of sterols.

After concluding that the observed lipid profile subgroups did not correspond to the
use of statin medications, we hypothesize that these patterns are the result of co-regulation
across lipid categories possibly in combination with regulation at a lipid category level.
One possible candidate for this co-regulation is steroid response element-binding pro-
teins (SREBPs) that regulate both sterol and glycerolipid biosynthetic pathways [61]. Both
SREBP-1 and SREBP-2 contribute to the regulation of lipid biosynthesis [62] and SREBP-1
signaling due to B7-H3 overexpression has been correlated with increased glycerolipid pro-
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duction and aggressive NSCLC [63]. Weaker correlation patterns, such as those observed
within sphingolipids and glycerophospholipids, could represent more complex regulatory
mechanisms or a mixture of scavenging, de novo synthesis, and remodeling. Additionally,
some correlation could be the result of multiple lipid categories sharing various precursor
metabolites. Alternatively, these weaker correlation patterns could imply more incorrect
assignments for those lipid categories, especially sphingolipids, which our lipid category
classifier model tends to overpredict [55].

The co-occurrence analysis demonstrates that correlation paints an insightful but also
incomplete picture. Many members of a given lipid category correlate strongly with other
members belonging to the same category or class; however, not all members of the same
class co-occur with one another. This is most evident within the sterols where there are two
distinct co-occurring subpopulations of sterols (Figure 4) each of which also co-occurs with
lipids of other categories effectively constituting two distinct sterol lipid profiles across
the samples (Figure 5). These lipid profiles did not correspond to histological subtypes of
NSCLC and their origin remains unclear.

3.3. Potential Clinical Implications

Our differential abundance analysis identified significant differences in the relative
abundances of lipids between NSCLC tissue and non-cancerous tissue samples derived
from the same patients. Notably, a subset of sterols (Figure 4) were significantly and consis-
tently more abundant in the cancer samples compared to non-cancer. Sterol metabolism is
unique among the various metabolic pathways implicated by these findings in that sterol
metabolism is easily targetable with statins, a commonly prescribed class of pharmaceuti-
cals. However, as discussed earlier, increased sterol production is observed across multiple
cancers and as such, this finding is not unexpected. The mechanism by which statins confer
a survival benefit in some NSCLC patients remains nebulous; however, increased sterol
production is a prerequisite if statins exert this effect through inhibition of endogenous
sterol production. Our results indirectly support this hypothesis; however, future studies
are needed to test this hypothesis more conclusively. The data analysis pipeline used for
this study could easily be adapted for the untargeted and comprehensive analysis of the
effects of statins on lipid profiles.

Additionally, future studies are needed to investigate the mechanisms resulting in the
lipid profile changes observed in our study. Substantial lipid profile changes involving
multiple lipid categories could result from altered ACLY, an essential enzyme for general
lipid biosynthesis [64], or SREBPs that regulate multiple lipid biosynthesis pathways [61,63]
High sterol concentrations may result from mechanisms including EGFR activation (direct or
indirect) which promotes sterol biosynthesis [65,66], while high sterol ester concentrations
suggest SCD1 [67] or acetyl-CoA acetyltransferase (ACAT1) activity. If the presence of high
sterol ester subtype of NSCLC can be confirmed, ACAT1 becomes a promising therapeutic
target given that inhibition of ACAT1 has been shown to cause apoptosis in pancreatic cancer
via a buildup of intracellular cholesterol and increased endoplasmic reticulum stress [68]. A
similar mechanism may be useful in the treatment of NSCLC.

Lower cardiolipin concentrations may result from altered human cardiolipin synthase
1 [69], lysocardiolipin acyltransferase [70], or protein-tyrosine phosphatase mitochondrial
1 [71] expression. These enzymes are involved in cardiolipin biosynthesis and remodeling
and have been observed to be differentially expressed in some NSCLC subtypes [72].
Altered cardiolipin metabolism may confer resistance to apoptosis in some subtypes of
NSCLC given the key role of cardiolipins in apoptotic pathways [73]. The trend towards
higher abundance high m/z phosphosphingolipids could indicate an increased production
of specific sphingomyelins or decreased catabolism of those sphingomyelins. Given the
various and opposing roles of sphingolipids in the development of cancer [74], further
characterization of these differentially abundant lipids is necessary to understand their
mechanistic role in NSCLC.
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Therefore, multiple distinct mechanisms may result in the acquisition of a high con-
centration sterol, low glycerophospholipid, high m/z sphingolipid metabolic phenotype.
This metabolic phenotype may be necessary for the development of NSCLC or simply a by-
product of other disease processes. In the case of the former, pharmaceutical interventions
targeting the metabolic phenotype directly may be useful for many genetically distinct
NSCLC subtypes. Regardless, components of this metabolic phenotype may have utility as
biomarkers for genetic subtypes of NSCLC.

4. Materials and Methods
4.1. Description of Paired Human NSCLC Cancer Samples and Mass Spectrometry Analysis

The collection, preparation, and mass spectrometry analysis of the paired cancer and
non-cancer samples has been previously described (Sellers et al., 2015) [55]. In summary,
cancer and non-cancer samples were obtained from eighty-six non-diabetic patients with
suspected resectable stage I or IIA NSCLC. Written informed consent was collected from all
subjects prior to inclusion and all samples were collected under a University of Louisville or
University of Kentucky IRB protocol. Lipid extracts were prepared using a modified Folch
extraction and reconstituted for direct infusion ultra-high resolution mass spectrometry on
a pair of Thermo Tribrid Fusion Orbitrap instruments (FSN10115 and FSN10352, referred
to as Fusion 1 and Fusion 2 respectively) coupled to an Advion nanoelectrospray system.
53 patients (102 spectra total) were acquired from Fusion 1 and 40 patients (77 spectra
total) were acquired from Fusion 2. Fusion 1 samples were exclusively from the University
of Louisville while Fusion 2 was a mix. Three of the patients had only a cancer or non-
cancer sample acquired. De-identified patient and tumor demographics are described in
Supplemental Table S1.

4.2. Molecular Formula Assignment and Lipid Characterization of Assigned Formulas

Our previously described SMIRFE algorithm [51] was used to assign molecular for-
mulas to spectrally characterized peaks in an untargeted manner. The initial EMF database
was generated using an m/z limit of 1605 m/z, and maximum numbers for each element
were set to C: 130, N: 7, O: 28, P: 3, H: 230. Assigned formulas were allowed to have K, Na,
H, and NH4 adducts (only positive mode samples were assigned). Assigned molecular
formulas were then classified into one or more lipid categories using our lipid classifier
tool [55]. Lipid classes that were previously observed to be overclassified by our models
(neutral and acidic glycosphingolipids) were excluded.

4.3. Consistently Assigned Spectral Feature (Corresponded Peak) Generation and Peak
Intensity Normalization

Our SMIRFE assignment method assigns isotope-resolved molecular formulas (IMFs)
to characterized peaks in each spectrum. Each IMF represents an isotopologue of a given
elemental molecular formula (EMF) (e.g., 13C1

12C5
1H12

16O6 is an IMF representing the
m+13C1 isotopologue of the EMF C6H12O6). Consistently assigned (i.e., corresponded
peaks) are identified using an in-house method we have named EMF voting which is
described in Appendix A. EMF voting identified 3485 total corresponded peaks across all
157 spectra with 855 corresponded peaks present in 25% or more of either the cancer or
non-cancer group of samples.

To minimize false assignments and their effects, “not lipid” and multiply classified
lipids were not considered in downstream analyses. All lipid isotopologue intensities
were normalized by dividing the isotopologue intensity by the median intensity of all the
peaks in the sample. For differential abundance analysis, missing values were replaced
with a threshold value that is 1

2 of the lower confidence interval of the distribution of all
log-transformed intensities from that tissue.
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4.4. Quality Control of Patient Samples

Sample-sample correlations were calculated using an information-content-informed
(ICI) Kendall-tau correlation that considers missing values in the calculation of concordance
and discordance of pairs [75]. To determine possible outlier samples, each sample’s median
ICI-Kendall-tau correlation to other samples with the same disease label, as well as the
fraction of lipids that could be considered as a possible outlier were calculated for each
sample [76]. Samples with low median correlation outlier values (lower than the lower
limit minus the 1.5 times the interquartile range, as defined in the boxplot.stats R function)
and high outlier lipid fraction (higher than the higher limit plus 1.5 times the interquartile
range, as defined in the boxplot.stats R function) were removed from further analysis.

4.5. Differential Abundance Analysis

To minimize the effects of misassignment, only corresponded peaks are used in
differential abundance analysis. Differential abundance analysis was performed using
both Linear Models for Microarray Data (LIMMA) [77,78] and Semi-parametric Differential
Abundance/Expression Analysis for Metabolomics (SDAMS) [79,80] on the normalized
features (see above). No pairing of samples was considered for the differential analysis,
given the large size of the dataset and the desire to detect differences that are distinct
even across patient biological variance. For LIMMA, the linear model included both the
disease status and instrument the sample was collected on, and then the contrast for disease
status was extracted. This helps to control for the effect of the instrument, which is known
to be larger than the effect of cancer status based on principal component analysis (see
Figure 1 and Supplemental Figure S1). An adjusted p-value cutoff of 0.01 was used to
determine metabolite significance. All lipid IMFs identified by either LIMMA or SDAMS
were considered in this analysis. P-values were adjusted using the Benjamini–Hochberg
multiple testing adjustment [81]. Cancer samples were clustered via hierarchical clustering
on the sample-to-sample distances calculated as one minus the ICI-Kendall-tau correlation.
Cluster leaves were ordered using the dendsort package [82]. All data manipulations and
statistical testing were carried out in R v 4.1.0. [83].

LIMMA identified 356 differentially abundant corresponded peaks while SDAMS
identified 481 abundant corresponded peaks. Together LIMMA and SDAMS identified
491 total unique differentially abundant corresponded peaks with 346 corresponded peaks
identified by both methods. Of the 491 total unique differentially abundant corresponded
peaks, 304 of them were assigned to one lipid category and the rest either had multiple
lipid categories, were classified as “not lipid”, or a classification was not generated by
the software. Only the 304 with a single lipid category were analyzed further. The log2
fold changes for each categorized corresponded peak between cancer and non-cancer was
then calculated.

4.6. Lipid Category Enrichment of Statistically Significant Peaks

Using all of the peaks with a single assigned lipid category, hypergeometric enrichment
of the significant peaks in each category was tested. This used the assigned lipid category
as an annotation of the peak, and all of the singly categorized lipids as the peak universe
(526 peaks). In addition to the lipid category, two more annotations were created for
the sphingolipid [SP] category based on whether the lipid formula had an m/z less than
or greater than/equal to 700 m/z. The statistically significantly more abundant and
less abundant features (based on log2 fold-changes of cancer/non-cancer) were tested
independently (more abundant, 131; less abundant, 173). Hypergeometric enrichment was
performed using the categoryCompare2 R package (v 0.99.158) [84].

5. Conclusions

The combination of SMIRFE, EMF voting, and machine learning enable comprehensive
lipid profiling in human-derived samples. The stronger within-patient correlation and
within-lipid category and class correlations observed in our study confirm the accuracy of
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the molecular formula assignments and their predicted lipid classifications. Differential
abundance analysis of the consistently assigned and classified lipid features identified a
consistent metabolic profile difference between cancer samples and non-cancer controls.
Cancer lipid profiles had consistently higher sterol and high-m/z sphingolipid relative
concentrations and lower cardiolipin relative concentrations compared to neighboring
non-cancer tissue. These profile differences can be partially explained by known examples
of genetic lesions prevalent in NSCLC and common metabolic alterations observed in
cancer metabolic reprogramming.

Furthermore, we hypothesize that the observed trend towards a high-sterol phenotype,
combined with previous observations that statins and mevalonate pathway-altering drugs
improve outcomes in some NSCLC patients, suggests that these drugs may be altering lipid
profiles as part of their mechanism of action. Future experiments could test this hypothesis
by utilizing our data analysis pipeline to detect and quantify the impact of pharmacological
interventions on NSCLC lipid profiles. Additionally, genomic and transcriptomic studies
on the same cohort of patients could identify genetic markers suggestive of this metabolic
phenotype. In the case that multiple distinct genetic lesions converge to the same or
similar metabolic phenotypes, therapies targeting the mevalonate pathway may have a
role, either directly chemotherapeutic or adjuvant, in the treatment of many genetically
distinct subtypes of NSCLC.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo11110740/s1, Figure S1: PCA of Consistently Assigned Spectral Features by Instrument,
Figure S2: Abundance heatmap of consistently assigned lipids in non-cancer and cancer samples,
with statin use indicated, Table S1: Demographic Information NSCLC.
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Appendix A

EMF Voting description and IMF-level data extraction.
Elemental molecular formula (EMF) voting was used to match peaks across samples

and determine the most likely assignments from SMIRFE. First, for each sample, the
assignments are extracted, filtered, and scored. Those assignments containing sulfur
are removed, and any assignments that contain only peaks that were marked as being
questionable removed. Scores are calculated as 1–E-value, and EMFs that were classified as
lipids had their score multiplied by 2.

For each sample, peaks were grouped to a sample specific EMF by determining the
list of shared EMFs across a group of peaks (grouped_EMF). Scores for each formula in the
grouped_EMF in the sample were taken as the best score for that formula from available
scores in the group. After all sample grouped_EMFs are generated, additional scores for
a formula are considered in actual voting by looking for the same unadducted base EMF
with different adducts and adding these scores into the final total score.

The pseudo_EMFs are collections of grouped_EMFs across samples. They are generated
across samples by iteratively merging grouped_EMFs with shared formulas, creating a new
list of formulas in an EMF, and merging any pseudo_EMFs that have shared formulas again.

For each pseudo_EMFs, the most likely formulas are determined by voting. Voting
uses the sum of EMF scores across samples, including those from the same formula with a
different adduct. Those formulas with a total score in the top 90% of all total scores were
considered “winning” formulas and kept as the “voted formula” set. Any peaks that did
not originally have a “voted formula” were then checked to see if the peak location was
within previously defined tolerance, and if the ordered peak intensities for the set of peaks
from a sample are in the same order as the natural abundance probabilities of IMFs for the
voted EMF. If so, then the peaks are kept as having the “voted formula” set.

After voting, all of the peaks are checked to make sure that the peak locations are
within previously defined m/z specific cutoffs. Any peak outside of its specific cutoff
is removed.

Finally, those pseudo_EMFs that share greater than 50% of their peaks are merged
together, and voting on the EMFs is performed again.

Peak locations from our custom data processing pipeline are reported both in m/z
and frequency, which are derived from the m/z values. The frequency values are more
reliable (i.e., more consistent with less variance), but differ between instruments. Therefore,
for each set of samples from a particular instrument, we use high confidence assignments
(e-value <= 0.1, m/z <= 600) to derive a frequency cutoff using the mode of the distribution
of frequency standard deviations across both groups of samples. This frequency cutoff is
used to do EMF voting within an instrument. The m/z standard deviations of the voted
peaks are then fit to m/z using a generalized additive model, and the standard deviation
of the predicted m/z values are multiplied by 2 to derive an m/z cutoff so that voting can
be performed across the instruments.
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