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Abstract:  

Understanding the long-term effects and possible toxicity of nanoceria, a widely utilized commercial metal oxide, is 

of particular importance as it is poised for development as a therapeutic agent based on its auto-catalytic redox 

behavior. We show here evidence of acute and subacute adverse hepatic responses, after a single infusion of an 

aqueous dispersion of 85 mg/kg, 30 nm nanoceria into Sprague Dawley rats. Light and electron microscopic 

evidence of avid uptake of nanoceria by Kupffer cells was detected in the liver as early as 1 h after infusion. 

Biopersistent nanoceria stimulated CD3+ lymphocyte proliferation that intermingled with nanoceria-containing 

Kupffer cells to form granulomata that were observed between days 30 and 90. Ultrastructural tracking of ceria 

nanoparticles revealed [aggregated  nanoceria in phagolysosomes. An increased formation of small nanoceria over 

time observed in the latter suggests possible dissolution and precipitation of nanoceria. However, the pathway for 

nanoceria metabolism/secretion remains unclear.  Although frank hepatic necrosis was not observed, the retention of 

nanoceria increased hepatic apoptosis acutely, which persisted to day 90. These findings, together with our earlier 

reports of 5 nm ceria-induced liver toxicity, provide additional guidance for nanoceria development as a therapeutic 

agent, and for its risk assessment.  

 
Keywords:  Electron microscopy, Immunohistochemistry, Histopathology, Liver, Risk identification 
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1. Introduction:  

 
Nanoscale materials are increasingly used in diagnostic imaging, for drug delivery, and in cosmetic 

formulations, but their toxic potential needs to be better understood. In vitro systems can inform, but do not 

substitute for whole animal studies. Concerns about potential toxicity from the use of nanomaterials have been 

expressed (Nel et al. 2006), and unusual rapid lung injury and extra-pulmonary toxicity among workers exposed to 

silica nanoparticles have been reported (Song and Tang 2011). Nanoceria, a widely used commercial metal oxide, is 

currently used as a fuel additive. This raises public concerns for potential, large-scale health impact. Cassee et al. 

(2011) recently reported ongoing exposure of a large human population to a new diesel emission containing ceria 

nanoparticles with an as yet unknown influence on public health. This report advocated more in vivo toxicological 

evaluation of characterized ceria nanoparticles to assess possible negative health impact. Towards that end, a recent 

study suggested dose-dependent hepatic toxicity after intratracheal instillation of nanoceria in the rat, and found that 

nanoceria translocated with ease from the lung to other organs. The liver is a major organ for biotransformation and 

a major site for nanomaterial clearance from blood and sequestration; and was the only organ that showed signs of 

injury (Nalabotu et al. 2011).  

Nanoparticle size may also be an important determinant of potential toxicity. Nishimori et al. (2009) tested 

nano- and micro-sized silica particles (70, 300, and 1000 nm) as potential toxicants in mice, and reported that 

hepatic injury was only associated with 70 nm silica. Another study (Lankveld  et al. 2010) indicated organ-specific 

and size-dependent accumulation of silver nanoparticles after intravenous (iv) administration in rats. Among the 

silver nanoparticles tested (20, 80, and 110 nm), 20 nm particles exhibited higher affinity for the liver compared to 

larger silver particles.  Using the same size titanium dioxide particles, Xie et al. (2011) also reported liver and spleen 

accumulation that persisted in the rodent for up to 30 days.  

Our group has been working to define potential toxic effects of nanoceria. We developed a single large-

dose vascular infusion model in rats and first reported acute systemic accumulation of nanoparticles with a relative 

lack of tissue injury using a commercially-prepared 30 nm ceria (Yokel  et al. 2009).  Subsequently, in-house 

synthesized extensively characterized nanoceria were used to examine acute and long-term responses to its infusion 

(Dan et al. 2012;   Yokel  et al. 2012). Focusing on liver, we reported biopersistence and hepatotoxicity 30 days after 

infusion of a 5 nm ceria in rats (Tseng  et al. 2012). The same study revealed that nanoceria retention elicited 

systemic activation of T-cells, some of which intermingled with Kupffer cells in the liver sinusoid to form 
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granulomata, a typical sign of chronic inflammatory response to materials that cannot be removed or cleared from 

cells and tissues.  

Vascular clearance of polymeric nanosized particles can be influenced by tunable factors such as size, 

composition, and surface modification (Alexis et al. 2008). However, cellular uptake of metal and metal oxide 

nanoparticles does not ensure excretion Yang et al. 2007;Cho  et al. 2009; Schipper  et al. 2009).  In the present 

study we aimed to further explore size-dependent nanoceria-induced biological effects in rodents using nanoceria 

cubes with an average particle size of 30 nm. Our results showed a sustained increase in apoptotic cell number in the 

liver, and formation of liver granulomata 30 days after nanoceria infusion that persisted to 90 days. Ultrastructural 

analysis revealed nanoceria accumulations in Kupffer cells, stellate cells, and hepatocytes. The internalized 

nanoceria are mainly found in large phagolysosomes and in smaller lysosomes distributed near the cell perimeter. 

They did not penetrate organelles such as mitochondria and the nucleus. These findings, combined with our earlier 

reported results (Tseng et al. 2012; Yokel  et al. 2009; Yokel et al. 2012), indicate that a single large vascular 

nanoceria infusion can result in prolonged systemic retention with hepatic injury.  

 
2 Methods:  
 
2.1 Nanoceria synthesis and characterization:  

 The approximately 30 nm-sized ceria particles were synthesized under hydrothermal conditions (Mai et 

al. 2005) and prepared as an approximately 5% aqueous citrate-stabilized ceria dispersion. The cerium content of the 

dispersion was determined by ICP-MS to accurately determine the nanoceria dose. Citrate coating (capping) was 

used to minimize agglomeration otherwise seen with uncoated ceria introduced into high ionic strength solutions, 

such as blood (Xia et al. 2008). A 20 ml aqueous mixture of 1 mmol cerium nitrate and 105 mmol sodium hydroxide 

was stirred for 0.5 h. The resulting  milky suspension  was heated at 180°C for 24 h in a Teflon-lined stainless steel 

bomb. After washing with deionized water and ethanol the precipitate was dispersed in 0.05 M citric acid aqueous 

solution with stirring overnight, followed by washing with water 5 times (Yokel  et al. 2012). The resultant solution 

(pH = 3.9) was sterilized before being infused into the rat.    

 A field emission analytical transmission electron microscope operated at 200-keV [JEOL JEM-2010F; 

Tokyo, Japan] was used for high resolution TEM (HRTEM). X-ray diffraction analysis (Siemens 5000 

diffractometer) was used to determine crystallinity of the nanoceria. Particle size distribution was determined using 

dynamic light scattering (90Plus Nanoparticle Size Distribution Analyzer; Brookhaven Instruments Corp., 
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Holtsville, NY). BET (Brunauer, Emmett, and Teller) analysis was used to measure the surface area of the dried 

ceria powder (Tristar 3000; Micromeritics Instrument Corp., Norcross, GA). Zeta potential, a measure of stability of 

the ceria dispersion, was determined in a Zetasizer ZS (Malvern Instruments, Worcestershire, U.K).  Electron energy 

loss spectroscopy (EELS) which determines the relative ratio of Ce (III)/Ce (IV) by analyzing the M5/M4 ionization 

edges was performed with a JEOL 2010F electron microscope. Images were acquired using the high resolution (0.2 

nm) probe. EELS spectra containing absorption edges specific to ceria were recorded using an alpha of 30 mrad, and 

a beta of 6 mrad.  To minimize any possible electron beam interaction that could reduce cerium (IV) ions to the Ce 

(III) state, a less focused beam was used during the EELS analysis (Winterstein et al. 2008). The in situ 

bioaccumulated nanoceria was also characterized in Kupffer cells and hepatocytes by HRTEM as described in 

section 2.7. For the in situ nanoceria size distribution, nanoceria particles were measured from randomly chosen, 

digitized phagolysosome images taken from all study groups using NIS Elements software (BR 3.01, Nikon 

Instrument, Melville, NY).  

 

2.2 Animal care:  

Sixty adult male Sprague Dawley rats [weighing 316 ± 27g (mean ± SD)] were housed individually in the 

University of Kentucky Division of Laboratory Animal Resources facility under a 12:12 h light: dark cycle at 70 ± 

8˚C and 30 to 70% humidity. All rats had ad libitum access to 2018 Harlan diet and reverse osmosis water. Animal 

work was approved by the University of Kentucky Institutional Animal Care and Use Committee. The research was 

conducted in accordance with the Guiding Principles in the Use of Animals in Toxicology. 

 

2.3 Nanoscale ceria infusion:  

A cannula was surgically inserted, under sterile conditions, into each of the femoral veins and extended into 

the vena cava.  The following day, un-anesthetized rats were iv infused via the shorter cannula with a ceria 

dispersion (85 mg ceria/kg), or water (controls) adjusted to pH 3.9 with citric acid, concurrently with an equal 

volume and rate of 1.8% saline infused into the second cannula to achieve net infusion of iso-isomotic solution. This 

approach was taken to avoid the extensive nanoceria agglomeration that results when it is dispersed in 0.9% sodium 

chloride or 10% sucrose (Yokel et al. 2009).  Each fluid was iv infused  at rates of 2 ml/kg/h over a duration of 1 h. 

Ceria iv-infused rats were terminated at 1 h [n=5], 20 h [n=5], 30 days [n=14], or 90 days [n=7]. The number of 

http://en.wikipedia.org/w/index.php?title=Stephen_Brunauer&action=edit&redlink=1
http://en.wikipedia.org/wiki/Paul_H._Emmett
http://en.wikipedia.org/wiki/Edward_Teller
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control rats was 5, 8, 10, and 6 respectively. The cannulae were surgically removed from the 30 and 90 day rats 

several days after the ceria or vehicle infusion. Respiratory, neurological, ophthalmic, gastrointestinal and other 

physiological statuses of the control and treated rats held for 30 and 90 days were assessed by daily cage-side 

observations. Rats assigned to day 30 and 90 groups were housed in metabolic cages from day 1 to day 14 after 

infusion to allow collection of urine and feces. 

 

2.4 Animal termination, tissue processing, and histopathology analysis:  

After termination of ketamine/xylazine-anesthetized rats, blood was obtained from which serum was 

collected, aliquoted, and stored frozen. Nine organs were excised and weighed. Tissues were harvested from the 

liver (tip of the right middle lobe), lung, kidney, spleen, heart, thymus, and brain and were fixed in 10% neutral 

buffered formalin and processed for histopathology analysis. Sections (5 µm), stained with hematoxylin and eosin 

were examined for qualitative and quantitative changes. Nanoceria-containing Kupffer cells were detected by their 

enlarged size and sinusoidal location; their density determined and expressed as number per mm2. Hepatic 

granulomata were digitally recorded and their size measured with Neurolucida software (MBF Bioscience, 

Williston, VT) in a Nikon Eclipse E-800 microscope, to tabulate their density. The lesions were assessed on coded 

slides by an observer unaware of the experimental setting.  

 

2.5 Immunohistochemistry (IHC):  

The presence of T-cells in liver parenchyma was determined by IHC using anti-CD3 rabbit monoclonal 

antibody (clone SP7, Spring Bioscience, Pleasanton, CA). Briefly, 5 µm sections were deparaffinized, boiled in hot 

citrate buffer for antigen retrieval, and incubated with anti-CD3 antibody [1:100] for 60 min at room temperature. 

Immunoreactive complexes were detected using the avidin–biotin affinity system (Dako North America, 

Carpinteria, CA), and visualized with 3, 3’-diaminobenzidine tetrahydrochloride (Zymed Laboratories, San 

Francisco, CA) as a substrate. The sections were counterstained with Mayer’s hematoxylin and mounted with a 

cover slip. Controls included substitution of primary antibody with phosphate buffered saline and human thymus 

tissue as a positive tissue control.     

Nanoceria-induced cellular degeneration and proliferation in liver tissue were determined by TUNEL and 

proliferating cell nuclear antigen (PCNA) immunostaining, respectively. Deparaffinized slides were prepared for 
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TUNEL assay according to the protocol supplied with the ApopTag Plus Peroxidase In Situ Apoptosis Detection Kit 

(S7101) (Millipore, Billerica, MA) with positive reaction control using DNase treatment, negative reaction control 

created by deleting the TdT enzyme, and positive tissue control with active apoptotic components as supplied by the 

manufacturer. Additionally apoptosis was evaluated by immunofluorescence labeling of caspase 3. Deparaffinized 

liver sections were hydrated and blocked for 60 min at 25°C with 5% BSA in PBS, and incubated overnight at 4°C 

with anti-caspase 3 antibody (1:100, Oncogene research products) in PBS. Primary antibody was detected with 

Alexa Fluor 488 conjugated goat anti-mouse IgG (1:600, Invitrogen Life Sciences). Tissues were counterstained 

with DAPI and images were captured on a Zeiss LSM 510 confocal microscope equipped with a digital image 

analysis system (Pixera).  

PCNA immunohistochemistry, which detects nuclear antigen synthesized in early G1 and S phases of the 

cell cycle, was used to assay for possible nanoceria-induced cellular proliferation. After antigen retrieval, 

endogenous peroxidase activity was quenched with a 3% hydrogen peroxide solution, and nonspecific binding 

blocked with IgG-free bovine serum albumin (Jackson ImmunoResearch Laboratories, West Grove, PA), before 

staining overnight at 4º C using a monoclonal anti-PCNA antibody (SC-56, Millipore, Billerica, MA) at a dilution of 

1:300. Subsequently, the signal was visualized using a secondary anti-mouse antibody at 1:500 dilution (#AP308P, 

Millipore, Billerica, MA) and the ImmPACT DAB kit (SK-4105, Vector Labs, Burlingame, CA). Controls included 

substitution of primary antibody with phosphate buffered saline and human melanoma tissue as a positive tissue 

control.  

 

2.6 Serum Biochemistry:  

To assess possible hepatotoxicity serum alanine aminotransferase (ALT) was measured using a commercial 

spectrophotometric diagnostic kit (Thermo Scientific). Briefly, blood samples were centrifuged at 1,000×g for 10 

min within 1 h after collection to generate serum which was stored at −80°C. Serum ALT was measured using a 

kinetic UV method based on the oxidation of NADH to NAD and corresponding decrease in OD at a wavelength of 

340 nm read in a Biotek Synergy HT Plate reader (MTX Lab Systems, Inc., Vienna, Virginia,), and the results 

expressed as U/L.  Reagents for ALT were purchased from Thermo Scientific  

.  
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2.7 Electron microscopy of ceria in liver:  

Immediately after excision, thin strips of liver samples were cut and immersion fixed in 10% neutral 

buffered formalin for 24 h before dissection into 3 mm3 pieces, post fixed in 2% aqueous osmium tetraoxide, 

dehydrated in ascending concentrations of ethanol, and embedded in Araldite 502. One micron thick sections were 

made, stained with toluidine blue for light microscopy observation and screening. Selected blocks were sectioned at 

800 Å, mounted on 200-mesh copper grids, and examined in a Phillips CM-10 electron microscope equipped with 

LaB6 cathode (Phillips Electronic Instruments Co. Eindhoven, The Netherlands) operated at 80 kV.  For high 

resolution microscopy, sections were collected on Formvar/carbon coated copper grids (200-mesh, Ted Pella Inc. 

Redding, CA), without staining, for TEM/STEM/EELS analysis (JEOL 2010f operated at 200 kV).  

 

2.8 Data analysis and statistics:      

For cell proliferation, degeneration analysis, and CD3+ IHC results were statistically analyzed using Student’s t-test. 

Comparison between groups was analyzed by the one-tailed Student’s t-test (SPSS, Chicago, Ill, USA). Differences 

were considered to be statistically significant when the P values were less than 0.05. 

 
3. Results: 

3.1 General observations of the ceria-infused rats: 

No mortality was observed after nanoceria infusion over the duration of the experiment. The treated rats 

showed a reduced body weight gain compared with controls during the first week after ceria infusion.  

Splenomegaly was consistently observed in ceria-infused rats at necropsy, with no gross abnormality in major 

organs including liver and lung.  

3.2 Characterization of the nanoceria:  

 The as-synthesized ceria nanoparticles (Figure 1a) were well-crystallized cubes with defined crystal faces 

(100). Only a few crystals exhibited (111) faces. The particle size range, as determined by HR-TEM,  was 

approximately 5 – 100 nm with the majority between 20 and 50 nm (Figure 1b).   

In situ localization of nanoceria showed a preponderance of nanoparticle accumulation in phagolysosomes 

(Figure 1c). A highly disperse size distribution was observed in phagolysosomes of Kupffer cells.  A total of 19,229 

nanoceria particles from 55 phagolysosomes were measured and used to calculate a monomodal continuous 

distribution at each time point studied. The in situ nanoceria cubes show a shift towards smaller-sized particles over 
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the 90 day period.  While nearly 50% of all the particles sized were less than 30 nm in the as-synthesized ceria, the 

size distribution shifted toward a decreased particle size with less than ≈ 10 nm particles accounting for nearly 50% 

of the particles counted (Figure 1d).  

3.3 Ceria-induced histological changes in the liver:  

The general histological features of the hepatocellular cords in the liver were not altered by nanoceria 

administration at all time points measured. As early as 1 h post infusion, ceria internalization in Kupffer cells was 

observed. The captured ceria caused cellular enlargement and bulging of the Kupffer cell surface, observable in H & 

E stained sections. Toluidine blue-stained 1 µm plastic sections offered exceptionally detailed views of the Kupffer 

cells punctuated with brownish ceria aggregates, as shown in Figure 2. The adjacent hepatocytes appeared normal 

and contained a full complement of cytoplasmic organelles (Figure 2A-2D). Granulomata were observed in the 30 

and 90 day nanoceria-treated rats (Figure 2C, 2D) and appeared to co-exist with the hepatocytes without imparting 

hepatocyte injury. The number of nanoceria-containing Kupffer cells dispersed throughout the liver parenchyma 

rose quickly in the first hour after ceria infusion from 0 in control rats to 30.8 ± 2.5 cells/mm2, but declined by 20 h 

(11.8 ± 1.2 cells/mm2) and remained steady at 30 days (14.0 ± 3.0 cells/mm2), before increasing again at 90 days 

(36.5 ± 5.7 cells/mm2). Statistical difference was found between all paired groups, except for between 20 h and 30 

day rats. Adjacent to the sinusoidal space, occasional hepatic stellate cells exhibiting hyperchromatic nuclei with 

occasional lipid inclusions were observed. The hepatocellular cords surrounding the sinusoidal space showed only 

occasional and low level nanoceria storage 1 or 20 h post infusion. Over time, the nanoceria-laden Kupffer cells 

intermingled with mononucleated cells in the sinusoids to form granulomata. This was a distinct feature of the 

hepatic tissue 30 and 90 days after only the single nanoceria treatment. The observed granulomata were of non-

necrotizing type with nanoceria accumulation in the phagocytes. The average size of the granulomata measured 

1,206 ± 374 and 1,654 ± 835 μm2 for days 30 and 90, respectively. In spite of the slight increase in granuloma size, 

their number expressed per 100 mm2 remained stable (1.42 ± 1.16 and 1.42 ± 0.75/mm2).  

Immunohistochemistry revealed the presence of CD3+ T-cells in the granulomata (Figure 3A). In addition, 

collagen fiber bundles stained by Masson Trichrome were observed in the periphery of granulomata and in 

perivascular spaces (Figure 3B) without signs of generalized, diffuse fibrosis. The average number of CD3+ labeled 

cells per granuloma for 30 and 90 day rats was 2.4 ± 1.6 and 3.9 ± 1.7, respectively. The numbers of CD3+ cells in 
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liver tissue parenchyma of nanoceria-infused rats increased from 4.6 ± 1.8 cells/mm2 at 1 h, to 32.8 ± 18.9 cells/mm2 

by day 90 (Figure 4). 

 

3.4 Ceria-induced hepatic ultrastructure changes:  

Hepatic ultrastructural changes were examined in detail using electron microscopy. Nanoceria particles 

were only occasionally observed in the sinusoidal lumen at the time points measured. The majority of the electron-

dense nanoceria continued to appear in Kupffer cell cytoplasm throughout the time points studied. The internalized 

nanoceria appeared as aggregatesof varying dimensions and were mostly enclosed by the cell membrane (Figure 

5A). The size of the nanoparticles ranged from a few nanometers, to cubes exceeding 200 nm (Figure 5B, 5C). Once 

internalized, ceria aggregates underwent fusion with lysosomes to form phagolysosomes.  Against the amorphous 

matrix background, a range of spherical to oblong shaped proteinaceous inclusions and membrane fragments also 

appeared in the phagolysosomes (Figure 5D). While many of these large spherical cytoplasmic inclusions were 

situated near the cell surface, direct fusion with the plasma membrane leading to nanoceria discharge was not 

observed. Nanoceria penetration into organelles including the nucleus was not observed.  

Within the hepatocellular cords the lining endothelial cells and perivascular stellate cells showed occasional 

ceria uptake (Figure 6A, 6B). Stellate cells with their fusiform shape, smaller cell volume, and occasional lipid 

droplets can be distinguished from other cellular components. Figures 6B illustrate these features in stellate cells 

taken on days 30 and 90. Little nanoceria uptake and retention was observed in hepatocytes. However, occasional 

solitary ceria inclusions, containing highly compacted crystalline particles, reaching 5 μm in diameter, were 

observed in hepatocytes (Figure 6C). The surrounding endoplasmic reticulum arrays, mitochondria, and the cell 

nucleus of these hepatocytes appeared normal and unaffected. Toward the cell periphery, many hepatocytes 

displayed numerous spherical lysosomal bodies. The interior of these bodies contained spherical electron-opaque 

droplets with occasional cube-like materials. However, active discharge of electron-dense material into the bile 

canaliculi was not observed, and the bile duct lining cells in the periportal region were devoid of ceria-like inclusion 

(Figure 6D).  

Granulomata found at days 30 and 90 were formed by a mixture of ceria-laden Kupffer cells and a few non-

ceria accumulating mononuclear cells (Figure 7A, 7B). Phagocytic cells in the granuloma enclosed an array of 

different nanoceria crystal sizes as illustrated by TEM and STEM images (Figure 7C, 7C1). Numerous EELS 
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analyses performed on the these nanoparticles demonstrated that the nanoceria crystal’s outer surface, or face, stays 

(from freshly made to 90 days) always enriched in Ce (III) as compared with the bulk (core) of the nanoparticles 

which are stoichiometric CeO2  with an approximately equal amount of Ce (III) and Ce (IV). Figure 7D shows the 

enrichment of Ce (III) at the outermost surface of an internalized nanoceria particle which was demonstrated by the 

ratios of the M4 and M5 peak intensities for Ce in the corresponding EELS spectrum.   

 

3.5. Ceria-induced hepatic cell turnover: 

Acute presence of nanoceria caused a statistically significant increase in the number of apoptotic cells by 

20 h that was sustained to 30 and 90 days after infusion (Figure 8A). The sustained increase of apoptotic cell in the 

subacute groups was confirmed by caspase 3 immunohistochemistry (Figure 9). Concurrently, cell proliferation 

analysis as indicated by PCNA staining showed a similar trend, although the number of G1/S phase positively 

stained cells was not statistically significantly different from controls until 90 days, when there was a robust and 

statistically significant elevation in proliferating cells (Figure 8B). 

3.6. Ceria-induced alteration in serum biochemical profile:  

Hepatic ALT level was assayed as an index of hepatic injury in response to 30 nm ceria infusion. 

Consistent with the histological data, serum ALT levels were mildly elevated, reaching a peak of 30.33 ±16.08 U/L 

by 20 h (control level was 20.71 ± 15.39 U/L) and subsequently declined over time reaching a nadir on day 90 in 

ceria-infused rats (Figure 10). Although ALT levels in the nanoceria-treated animals were consistently higher than 

in controls, the differences were not statistically significant. 

    

4. Discussion: 

In-depth morphological probing showed that rats tolerated a single large dose nanoceria infusion without 

mortality, as previously reported (Tseng et al. 2012; Yokel et al. 2012). The small decrease of cerium in the sampled 

sites to 90 days is consistent with the less than 1% nanoceria excretion in urine and feces in the first 2 weeks after 

nanoceria infusion (Yokel et al. 2012) and lack of nanoceria in the bile ducts (Figure 6). Avid Kupffer cell uptake of 

nanoceria was observable as early as 1 h by light microscopy. Such uptake is similar to that reported after 

fluorescently-labeled mesoporous silica in mice (Cheng et al. 2012). Persistent particles and non-degradable 

antigens are known to induce a T-cell-mediated delayed hypersensitivity reaction leading to granuloma formation 
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(Kumar et al. 2007). Similar to our previous report with 5 nm ceria, the hepatic granulomata were a consistent 

hepatic cytological feature on days 30 and 90 after a single infusion of nanoceria.  

 

Although the size of the ceria-induced granulomata were small, and were of non-necrotizing type, the basic 

component of Kupffer cell aggregate surrounded by T-lymphocytes as reported in other granulomata was preserved 

(Ulrichs and Kaufmann  2006). Single and repeated iv infusion of 20-80 mg/kg hollow silica nanoparticles in mice 

produced similar findings of lymphocytic infiltration, hepatocyte microgranulation, as well as the accumulation of 

nanoparticles in the macrophage (Liu et al. 2011). Intraperitoneal injection of the same silica nanoparticle also 

produced hepatic granulomata (Liu  et al. 2012). A study in bacillus Calmette-Guerin (BCG)-infected mice 

reported CD11c+ inflammatory dendritic cells migrated in and out of the granulomata to prime T-cells (Schreiber 

et al. 2011). Akin to the bacteria-induced granuloma where persistent residual bacterial presence provides the 

immune stimulant, it is possible that persistent nanoceria causes similar shuffling of dendritic cells to induce the 

observed T-cell activation. Glucan-induced granuloma formation in mice showed self-renewing Kupffer cells 

contributed to the observed pathology (Yamada  et al. 1990; Co et al. 2004). Nanoceria-induced T-cell migration in 

this and other nanoparticle models suggests a trend of induced host immunological responses to internalized 

nanoparticles. A knowledge of pathways involved in metabolism or excretion of nanoparticles is central to our 

understanding of nanoceria retention. How the body resolves granulomata and inflammatory responses induced by 

nanoceria retention needs to be understood before nanoceria can be deployed as a therapeutic agent.  

  

 Our nanoceria in spite of its multivalent state, continued to retain a surface-to-core valence gradient, with 

an enrichment of Ce (III) at the surface, in ceria retained cells over the 90 day observation period. A recent study 

indicated crystalline defects may be associated with increased silver ion release and higher toxicity in a rainbow 

trout gill epithelial cell line, RT-W1 (George et al. 2012).   Exposing cells from the human monomyelocytic 

leukemia cell line, THP-1, to high aspect ratio ceria nanorods caused cytotoxicity and increased IL-1β production (Ji 

et al. 2012). shorter internalized ceria nanorods were clustered in phagolysosomes whereas the longer self-adhering 

CeO2 nanowires, at times, pierced the cell membrane resulting in nanoceria release. Although some phagolysosomes 

were found near the cell membrane, piercing of the plasmalemma with concomitant discharge of ceria nanocubes 

was not observed in our study, consistent with prolonged nanoceria processing within phagolysosomes. Perhaps 
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nanoceria in the presence of highly acidic lysosomal fluid is digested, releasing the metal ion to form new ultrafine 

nanoceria as well as the larger crystal by the Oswald ripening effect. The appearance of very fine and larger 

nanocrystals suggests a critical role of the phagolysosome in the metabolism of nanoceria. While the mechanisms 

remain to be elucidated, the clinical presentation of metal fume fever appeared to be associated with lysosomal 

dissolution/releasing of ZnO nanoparticles (Kuschner  et al. 1995; [not a relevant reference. Not about Zn or metal 

fune fever] Taira et al. 2010),  localized release of Ni from a presumed insoluble compound playing a role in tumor 

formation (Pott et al. 1992), and lysosomal-induced release of nickel ions with nuclear translocation in respiratory 

epithelial cells, all point to the pivotal role of the phagolysosome in nanoparticle metabolism and elimination 

(Goodman  et al. 2011).   Other reports on lysosomal instability, phagolysosomal membrane breakage, and 

appearance of finer nanoparticles (Cho et al. 2011; Miyawaki et al. 2009; Rossi et al. 2009; Taira et al. 2010; Tsai et 

al. 2012) further indicate that the stability of the nanoparticle after phagolysosome enclosure is a major determinant 

of cellular toxicity.  

 

Absence of necrotic areas and a lack of fibrosis in the liver suggest that the continuous presence of 

nanoceria may be tolerated by the host. The rapid elevation in ALT is consistent with an initial acute, although 

mild, liver injury. The slow return of ALT to the baseline by day 90 suggests a functional stabilization of injury in 

the liver after nanoceria infusion.  In addition to the capacity to take up nanoparticles, Kupffer cells (Lenaerts  et al. 

1984, Sadauskas  et al. 2007) may have a dual role secreting hepatoprotective interleukin-6, as well as TNF-α (Gao 

2012). Granulomatous formation is known to be associated with chronic inflammation, thus, the source of sub-

acute or chronic inflammatory stimulation needs to be ascertained. Against the trend of functional stabilization over 

time including a lack of frank necrosis or diffuse fibrosis, hepatocellular turnover, as revealed by TUNEL assay, 

caspase 3 IHC, and PCNA staining, raises some concern.  Increased cellular proliferation in parallel with increased 

apoptosis raises the possibility that nanoceria could alter the liver cytoarchitecture over longer survival time.  

We have shown a time-dependent increase in CD3+ T-lymphocyte populations (Figure 4) and like other 

macrophages, Kupffer cells can be replenished under stress conditions through local proliferation as well as by a 

blood-borne pathway from the bone marrow (Wisse 1974; Bouwens et al. 1984;  Naito et al. 1997). Besides the 

high content of ceria in liver, it is important to note that other tissues including the bone marrow retained 

considerable ceria (Yokel et al. 2012). The population kinetics of Kupffer cells and T cells may be central to the 
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understanding of nanoceria biopersistence in liver; other tissue with large ceria retention including the bone 

marrow will be included in future investigations.  

 

5. Conclusion: 

 The current study investigated the effect of a single infusion of nanoceria cubes both acutely and over a 

longer observation period, to further test our hypothesis that nanoceria imparts a relatively mild but persistent 

hepatic inflammatory response. The rapid capturing of larger nanoceria cubes by Kupffer cells and its ease of 

tracking by light microscopy should allow for easier evaluation of this cell subpopulation for future studies using 

cubic shaped metal oxide nanoparticle. At the ultrastructural level, our data indicate that internalized nanoceria 

particles were associated with phagolysosomes without organelle penetration including mitochondria and the 

nucleus, and those nanoparticles were not discharged into the biliary system. Further, Kupffer cells laden with 

nanoceria may play a pivotal role in the stimulation of other immune cells, such as T-cells, causing increased cell 

turnover (i.e. increased apoptosis), and the formation of granulomata. Greater understanding of the role of the 

Kupffer cell in metabolic processing, inflammatory modulation, and immunological responses toward this rare-

earth nanoparticle is needed. Knowledge gained should influence the design of nanotechnology-based therapeutic 

delivery systems to treat a variety of diseases, including those of the liver.  
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Figure legends 

Figure 1: High-resolution transmission electron microscopy image of as-synthesized nanoceria cubes with well-
defined faces (A) and size distribution (B). The in situ retention of nanoceria in a phagolysosome (C) and an in situ 
cumulative particle distribution curve is plotted from particle sizes grouped from 0 to 10 nm, 25 to 35 nm, 50 to 60 
nm, 75 to 85 nm, and 100+ nm (D). 
 
Figure 2: Time-dependent histological features of nanoceria infusion in liver parenchyma. Toluidine blue stained 
sections of liver from nanoceria-infused rats after 1 h (A), 20 h (B), 30 days (C), and 90 days (D). Arrows point to 
ceria-laden Kupffer cells in earlier time points and inside of granulomata formation at later time points.  
 
Figure 3:  (A) Immunohistochemical staining of CD3+ cells (arrow) in liver 30 days after ceria infusion. In this 
granuloma a Kupffer cell is indicated by an asterisk. (B) Masson Trichrome staining indicating collagen fiber bundles 
(arrow) formed at the periphery of a granuloma and in the liver parenchyma.  
 
Figure 4: Increased CD3+ T-cell number in hepatic parenchyma of nanoceria-infused rats over time. Number of CD3+ 
T-cells per mm2 of liver tissue as imaged by light microscopy of immunohistochemical-stained liver tissue from 1 h 
to 90 days after either control or nanoceria infusion. Statistical difference by two-tailed T test between treated and 
control pair is indicated by an asterisk. 
 
Figure 5: Transmission electron microscopy images of Kupffer cells in liver sections from rats at 1 h (A), 20 h (B), 
30 days (C) and 90 days (D) after nanoceria infusion. Arrows indicate electron dense nanoceria particles of varying-
sized aggregates. Details of a phagolysosome with fluid interior, membrane fragments (small arrow), proteinaceous 
inclusions (circle), and dotting nanoceria particles are shown (D). N = nucleus.  
 
Figure 6: Transmission electron microscopy images of non-Kupffer cells in liver sections from rats 1 h to 90 day after 
nanoceria infusion. Arrow points to nanoceria agglomerations in an endothelial cell at 1 h (A), hepatic stellate cells 
from day 90 (B) [and B1. Maybe these should be B1 and B2] , and a hepatocyte (C). (D) Illustrates the absence of 
nanoceria in the bile duct (labeled as B) in the periportal region of a liver section taken 90 days after infusion. A 
nearby Kupffer cell is identified by an arrow. N = nucleus, E = endothelial cell, S = stellate cell.  
 
Figure 7: Transmission electron microscopy images of granulomata in liver from nanoceria-infused rats 30 days (A) 
and 90 days (B) after infusion with ceria-containing Kupffer cells (arrows). (C) Detailed image of nanoceria aggregates 
showing heterogeneity in size and shape of the nanoceria particles; HRTEM/STEM image showing heterogeneity of 
ceria crystals in a 90-day infused sample (C1). (D) Nanoceria retained their cubic shape on day 90 as viewed in STEM 
mode (upper). The red line points to the surface and the blue line points to the core or the bulk of ceria crystals. EELS 
spectrum data showing surface-to-core difference in the M5/M4 peak intensity of the ceria crystal (lower part of the 
frame). EELS = electron energy loss spectroscopy; HRTEM = high-resolution transmission electron microscopy; 
STEM = scanning transmission electron microscope. 
 
Figure 8: Nanoceria induced cell kinetic changes. Increased liver cell apoptosis and liver cell proliferation after 
nanoceria infusion is illustrated by TUNEL reaction (A) and PCNA assay (B). Asterisk indicates statistical difference 
between treated and control groups.  
 
Figure 9: Nanoceria-induced apoptosis in the subacute groups is illustrated. The caspase-3-positive cells are indicated 
by the green-colored stain in nanoceria-infused rats (B, day 30 and D, day 90), which contrast sharply with the controls 
(A, day 30 and C, day 90). All nuclei are stained blue with diamidino-2-phenylindole. Magnification is 400 x. 
 
Figure 10: Nanoceria induced changes in serum ALT level. An acute elevation after nanoceria infusion subsided in 
the subacute group. The difference between nanoceria treated and control rats was not statistically different.  
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Figure 10. 
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