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Abstract—The widespread uses of large-scale distributed sys-
tems, e.g., Grid networks and distributed storage systems, raise
the possibilities of large-scale attacks on such systems. Although
current technology for detecting worms and viruses in the Inter-
net can be applied, few existing systems support fast propagation
of alerts during the attack itself. This paper proposes and studies
a new system towards this problem. The system, called “Contag-
Alert”, uses contagion spreading behavior, somewhat like the
spread of fads in society, in order to spread alerts. ContagAlert
is able to propagate an alert while the attack is in progress,
while at the same time suppressing disruptive signals generated
by adversaries or false positives. The core contagion protocols in
the system are completely localized, involving simple threshold
checks at each node, but resulting in desired emergent threshold
behavior at the network scale. Signals with too few sources
fail to spread, and signals exceeding the threshold propagate
across the entire network. Contagion protocols can be analyzed
using bootstrap percolation models. We also present experimental
results from contagion protocols running in a wide variety of
topologies. Finally, we present experiments based on two real-
life applications: Internet worm attacks and DoS attacks on p2p
systems.

I. INTRODUCTION

In recent years, there has been a substantial increase in the
deployment of large-scale distributed systems such as Grid
networks [12], federated testbeds such as PlanetLab [5], and
storage networks such as HP’s Federated Array of Bricks
(FAB) [15] and IBM’s Collective Intelligent Bricks (CIB) [20].
However, this increase in the availability of such valuable
computing resources has led to a rise in the occurrence of
large-scale attacks on these systems. These attacks may come
in the form of worms like Code Red [30] or Sapphire [10],
or as explicit hacking, such as the recent Cisco attacks [6] or
intrusions of TeraGrid systems [27].
Today’s technology handles such attacks in a mostly human-

oriented manner which is both slow and error-prone. Intrusions
are detected by human observation of symptoms. Once the
diagnosis is made, intrusion data is manually spread among
system administrators, who repair the damage and patch the
vulnerability by hand.
Even when single-host and cooperative automatic intrusion

detection systems [11], [14], [39], [41] are deployed, the
distribution of alert data is typically regarded as secondary
to detection capabilities. This allows adversaries to interfere
with the proper functioning of the system by exploiting vul-

nerabilities in the alert distribution mechanism, and presents
weaknesses in the filtering of false positives.
This paper proposes new techniques for automatic alert

propagation. Unlike prior techniques, however, we focus not
only on quickly propagating alerts, but also on suppressing the
false positives and messages of malicious intent even when
these disruptive messages cannot be explicitly identified. This
recognition of messages as legitimate or disruptive is per-
formed implicitly by leveraging ideas from contagion theory.
Since disruptive messages are not explicitly identified by are
prevented from interfering with the system, the protocol is
tolerant of such messages.
Contagion theory studies the spread of influences, such

as social fads, power grid failures, political movements, or
biological epidemics, across interconnected populations. These
populations are modeled as a graph, describing the relation-
ships (edges) between individuals (vertices) in the population.
The influence originates in some number of seed individuals
in the graph, and spreads across the graph using a threshold-
based activation rule [40]. Individuals which have adopted an
influence are said to be infected1. A contagion has occurred
if all nodes eventually become infected.
Both in this model and in the real world, a few carefully

placed seeds can result in a cascade effect as the idea infects
the rest of the population [16]. These cascades are more likely
to occur as the number of seeds increases. Contagion theory
shows that the probability of such cascades quickly moves
from very low to very high as the number of seeds passes
a threshold. Our protocol exploits this cascade behavior by
adjusting the infection threshold on nodes in order to control
the network threshold at which cascades occur.
Standard contagion theory employs a fractional threshold

model, where a node becomes infected after a certain fraction
of its neighbors are infected. We use a variation on this model
in which a node becomes infected after some fixed number
of its neighbors are infected. This modification simplifies
the implementation of the protocol by reducing the number
of messages that must be sent and the bookkeeping that is
required, while also enabling the protocol behavior to be
analyzed by comparing it with bootstrap percolation [4].

1Later on, we use “alerted” instead of “infected” to refer to a node that has
adopted an alerted state. We reserve the term “infected” to refer to a node
under the influence of a worm or other attack.
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II. RELATED WORK

The goal of our work is to provide a protocol that pre-
vents malicious messages and false positives from interfering
with the well-behaved nodes in the network. Most systems
accomplish this by attempting to keep malicious nodes out of
a system entirely using a trust mechanism. There are two basic
approaches to instituting trust relationships in a network.
The first approach introduces a central certificate authority

that validates each node as legitimate and trustworthy. Since
the legitimacy of each node is established through an out-of-
band operation, all nodes can be assumed to be trustworthy.
In the event that a node changes its behavior from benign
to malicious, message signatures allow harmful signals to be
traced back to their source such that the sender can be held
accountable for its actions [19], [34].
Central certificate authorities, like any centralized technol-

ogy, have difficulties with scalability. As the user population
expands, it becomes more difficult to verify the credibility of
each individual user and credibility of the authority decreases.
There exist several projects which implementing distributed
certificate authorities which avoids this issue [9], [43].
The second approach is a distributed system which con-

structs a “web of trust” among peers. Although there are a
variety of variations on this approach, they all share the same
basic premise. Each node trusts certain other nodes in the
system based on a system-specific trust metric. Regardless
of the basis of the trust, these immediate relationships are
treated as somewhat transitive as a function of the distance to
the stranger peer and the trust levels of the intervening nodes.
When a signal is received, a node can weight the message
based on the level of trust and act accordingly [1], [21], [28],
[37].
In both the centralized and decentralized approaches, trust-

based systems have problems if a malicious agent is able
to attain a trusted status. This could occur through several
means. For example, one user could feign good behavior until
a trusted status is built up, at which point he attempts to subvert
the normal behavior of the network, or an adversary could
compromise the system of a legitimate user, thus hijacking the
user’s trusted status. The fundamental problem is that trust is
a complex commodity to manage. Once given, it is difficult
to revoke, and once attained, it is easily misused.
The ContagAlert protocol avoids these issues by doing away

with the idea of trust entirely, and instead relying on the
premise that legitimate messages will be generated by a larger
fraction of the network than an adversary would be able to
subvert to his own uses. However, this does limit the class of
applications for which the ContagAlert protocol is suited to
those that have a high redundancy in the generation of signals.
On the other hand, the ContagAlert protocol is effective at
suppressing false positives that are accidentally generated by
well-meaning peers in the system.
The work of Nojiri, et al [33] bears a similarity to the

ContagAlert protocol. As in the ContagAlert protocol, each
node has some number of neighboring peers, and if the

number of alerted neighbors exceeds a certain threshold, the
node becomes alerted itself and notifies its neighbors of the
new alert. The threshold setting is fixed, and the number of
neighbors is treated as an input parameter that can be modified
rather than as a fixed aspect of the network.
The ContagAlert protocol has some important differences,

however. The threshold setting is adaptively set to adjust to a
desired tolerance for false signals, and the number of neighbors
is treated as a parameter over which we have no control. This
allows the ContagAlert protocol to operate in a wider variety
of network conditions, and allows the threshold separating
legitimate messages and disruptive messages to be specified.

III. NETWORK TOPOLOGIES

We explored the behavior of the ContagAlert protocol on
a variety of network topologies. Some of the topologies
resemble those used in common peer-to-peer overlays, while
others are more abstract in nature. Six network topologies
were studied: random, circle, semi-circle, affinity groups,
exponential, and power law.
Figure 13 depicts an example of each topology on a 16-

node network. In these diagrams, the black segments on the
gray edge lines indicate the node that “possesses” the directed
edge. A large number of black segments on a node indicates
that the node knows of many neighbors.
A random network has fully randomized connectivity. When

a network with n nodes and average degree k is initialized,
n×k directed edges with random end points are created. The
exact degree of connectivity varies according to a binomial
distribution.
The exponential topology closely resembles any of several

peer-to-peer overlay networks such as Pastry [36], Chord [38],
or Tapestry [42], that use O(log n) storage at each node and
O(log n) messages to reach an arbitrary destination. In a
network of size k with nodes of degree d, a node n shares
data with all nodes n + ki/d < k : i ∈ Z*. For example, in
a network of size 16 with nodes of degree 4, node 0 would
have neighbors 1, 2, 4, and 8.
In a network with a circle topology and nodes of degree k,

each node communicates with its k/2 immediate neighbors.
For example, in a circular network with nodes of degree 4,
node 8 would have links to 6, 7, 9, and 10.
The semi-circle topology is a hybrid of the circle topology

and the random topology. When constructing this topology, it
is initially identical to the circle topology, with each node fully
connected to its k/2 neighbors to either side. However, for
each edge there is a probability p that the neighbor is chosen
at random from all nodes instead of being deterministically set
to one of the k neighbors. This generates a structure in which
there is a high degree of local clustering, but the random edges
reduce the average path length to nodes that would be distant
in a normal circle topology. In our simulations, p was set to
.25.
The affinity group network topology is designed to approx-

imate the connectivity used by the Kelips [17] peer-to-peer
overlay. In this design, a network of size n is subdivided into
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Fig. 1. Threshold-based Activation

groups of size
√

n. Nodes in each affinity group are fully
connected within their group. Additionally, each node has k
directed links to a random node in each other affinity group.
In our model, k was set equal to 1.
The power law topology uses the commonly occurring

power law distribution [29] to describe how many nodes a
given node knows about. In such a network, a relatively small
number of nodes maintain a relatively high fraction of all the
edges in the graph, but there is a heavy tail of nodes with a
small number of links. More specifically, the probability that a
given node will have degree x is proportional to x−k, for some
constant k. The links are directed, so if node A has a link to
node B, B may not have a link to A. When constructing power
law networks, we use .55 <= k <= .65, based on the size
of the network being constructed. The value of k is chosen to
keep the average degree of nodes similar to the average node
degree for other topologies of the same size.
Whenever any network was generated for any simulation

presented here, it was tested to determine if there were any
disconnected components. If there were, the network was
discarded and a new one was generated. This guarantees that
all graphs that were studied had only a single component. This
more closely represents the real world, where it makes little
sense to consider how two disconnected peer-to-peer networks
might spread information between each other.

IV. PROTOCOL DESIGN

The purpose of the ContagAlert protocol is to distribute
legitimate messages across a peer-to-peer network, while sup-
pressing malicious messages and false positives. We refer to
such messages as disruptive.
The protocol is intended to be used in applications where

legitimate signals have a high degree of redundancy. There
must exist a threshold, stated as a fraction of the number of
peers in the system, which separates the legitimate signals
from disruptive signals based on the number of sources of the
signal. In other words, disruptive nodes cannot compose an
arbitrarily large fraction of the network.
We make two additional assumptions about the network

environment. First, all network connections are reliable. There
are no dropped messages, unexpected message delays, or failed
network links. Secondly, neighbor relationships need not be
reflexive. It is allowable, but not required, for node B to be
in the neighbor list of node A, but for node A to be unknown
to B.
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Fig. 2. Comparison of Contagion Threshold for Different Node Activation
Thresholds – Random Topology, 4096 Nodes with Average Degree 64

A. Basic Protocol

The basic approach of the ContagAlert protocol is very
simple. Peers in the cooperative network each have a small
list of neighbors whose network locations are known. At
various times, certain peers will observe an attempted intru-
sion or attack and will generate an alert which is sent to
its neighbors to provide them with advance warning. The
neighbors each independently decide whether to act on the
alert, taking defensive measures and forwarding the alert to
their respective neighbors. This decision procedure is the core
of the ContagAlert protocol.
Each peer in the system has its own, independent threshold

to determine whether or not it will forward a message to all of
its neighbors. This threshold is expressed as a constant number
of messages. For example, if a node has a threshold of 3, it
will forward a message to all of its neighbors if it first receives
a copy of the message from at least three different nodes. This
behavior is illustrated in Figure 1. We refer to this piece of
the protocol as the basic ContagAlert protocol.
This type of decision procedure results in very clear thresh-

old behavior emerging from the network as a whole, as shown
in Figure 2. This figure shows the probability of a contagion
occurring given the fraction of nodes seeding the alert. A 4096-
node network with a random topology and an average of 64
directed edges per node was used for these trials. The X-axis
represents the number of instances of a simulated alert that
were used to seed the propagation. The Y-axis represents the
fraction of the network that accepted the alert as legitimate and
forwarded the data to neighboring nodes. Thirty trials were run
for each seed value. Four of the trend lines in the graph show
the average value of all thirty trials for each seed point. The
fifth point set (filled squares) in the graph shows the results
of each individual trial in the data for the threshold of 8.
The frequency of contagion is 0% at the left of the graph and

100% at the right. In the middle is a region where, for certain
numbers of seeds, a contagion may or may not occur. The
single-trial data show that there is never a “half-contagion”
where a cascade spreads to a large number of non-seed nodes
but does not complete the contagion. This observation allows
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gies – 4096 Nodes with Average Degree 64, Activation Threshold 16

the average line (X symbols in the figure) to be interpreted
as the probability that a contagion will occur, given a certain
number of seeds. We call the steeply sloped region of the line
the threshold region.
It is a crucial to observation: given just a single trial, it is

impossible to assess where the trial lies with regard to the
threshold region because the result indicates only whether or
not a contagion occurred.
This type of threshold behavior occurs regardless of the

network size, topology, and average node degree. However,
these characteristics will cause the network’s threshold region
to shift to the left or right, or to stretch wider or narrower. As
an example, Figure 3 shows the effects of network topology
on the network’s threshold behavior. All other factors are held
constant. It can be seen that using the Semicircle topology
results in a left shift, while the Exponential topology results
in a right shift. The Random topology produces a narrower
threshold region, showing that the network’s behavior tran-
sitions from no-contagion to contagion very quickly as the
number of seeds is increased.
In order to shift the threshold region to a specified point,

the activation thresholds on individual nodes must be adjusted
to account for changes in these traits. Since these traits are
difficult to ascertain for a decentralized, peer-to-peer system,
and since they can change over time, the protocol parameters
cannot be specified ahead of time or computed offline. Instead,
the protocol must adaptively set the threshold setting for each
node in the system at runtime.

B. Adaptive Protocol

The goal of the ContagAlert protocol as a whole is to
generate a network-level threshold behavior, with the threshold
region centered on the fraction of nodes that must be seeded
for a contagion to be possible. We call this number the target
tolerance, because it describes the approximate number of
messages that can be tolerated by the protocol before the
message is propagated throughout the rest of the network.
Signals with too few seeds are assumed to be disruptive and
will not spread, while signals with enough seeds are assumed
to be legitimate and will result in contagion.
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Fig. 4. Adaptive Procedure

The principal difficulty in constructing such a system is the
adjustment of the contagion threshold to the target tolerance.
Even with an omniscient, centralized controller it is not clear
how this would be accomplished. It is difficult to assess how
the many network parameters will affect the threshold region,
and it is not possible to estimate the current position of the
threshold region with a single evaluation of the network.
The difficulty is compounded when each node in the system

is responsible for adjusting its own threshold based on its
limited, local view. Additionally, a node has control only over
itself. If it should decide that another node should adjust
its threshold in a certain way, it has no way to force that
node to listen. Finally, although a node n possesses a list of
neighboring nodes, these are not necessarily the nodes that are
sending alerts to n. A node has no direct means of knowing
how many other nodes it should expect to hear from or what
local conditions exist for those nodes.
The ContagAlert protocol addresses these difficulties with a

second piece of the protocol. This piece runs in parallel to the
basic piece of the protocol, and adjusts the threshold of nodes
based on their number of incoming edges in the connectivity
graph, despite the fact that it is unknown exactly how many
such edges there are.
To accomplish this adaptivity, the network periodically

executes “practice” runs of the basic ContagAlert protocol to
allow nodes to experiment with different threshold settings.
Nodes in the network periodically generate synthetic test
messages and attempt to spread these messages as though they
were real. Messages are generated at the target tolerance level
of the protocol. Each node adjusts its threshold such that the
contagion result appears one-half of the time, resulting in a
shift of the threshold point to the target tolerance fraction at
the network-wide level. This behavior is illustrated in Figure 4,
and is additional detail below.
More specifically, each node periodically generates a test



message with probability p, where p is the target tolerance
fraction for the network, used to differentiate between legiti-
mate and malicious nodes. This inserts approximately p × n
signals into the system. Ideally, the sloped region of the
network threshold graph should be centered over this point.
With this number of seeds, sometimes a contagion will occur
and sometimes it will not. Node thresholds are configured
perfectly and the contagion threshold is positioned perfectly
when, on sequential test rounds, the network alternates be-
tween contagion and no-contagion. Attaining this alternating
behavior is the goal of the adaptive part of the ContagAlert
protocol.
After deciding whether to generate a message, each node

adheres to the basic ContagAlert protocol, forwarding the
practice messages (or not) according to their own threshold
T . This continues for a period of time, until no messages are
received for a timeout period and it can be assumed that the
contagion would have completed if a contagion were going to
occur. Each node decides on its own when to time out and
end the practice round for itself.
After the time period expires, each node assesses whether

or not a contagion has occurred in the network. If it decides
a contagion has occurred, it assumes (perhaps incorrectly)
that the network as a whole is somewhere to the right of
the threshold region of the graph. Otherwise it assumes the
network is left of the threshold region. The node then adjusts
its personal threshold to inhibit or facilitate future contagions
based on its assumption history.
After each round, each node adjusts its threshold in an at-

tempt to more closely achieve its desired alternating behavior.
The node examines its behavior history for the previous two
rounds to attempt to determine if it is presently alternating, if
its threshold is too high, or if its threshold is too low. This
two-round time window allows the node to classify itself into
one of three categories:
1) Both of the last two rounds resulted in alerts. This
suggests that the node’s threshold is set too low and that
the node is becoming alerted too easily. In this case, the
node responds by increasing its threshold by 1.

2) Both of the last two rounds resulted in no alert. This
suggests that the node’s threshold is set too high and
that the node is having too much difficulty becoming
alerted. In this case, the threshold is reduced by 1.

3) The last two rounds have produced differing alert results.
This indicates that the node has attained the desired
alternating behavior. No changes are necessary.

Each node adjusts its threshold as dictated by its self-
assessed categorization. Over many test rounds, its threshold
approaches the point where, when considered with all other
nodes in the network, the network’s tolerance threshold for
malicious nodes is shifted to the specified level. Signals with
a number of sources below the threshold will be suppressed,
while signals exceeding the threshold will be distributed
throughout the network.
If a node acts as a spontaneously activated seed for a prac-

tice round, it does not update its history or adjust its threshold
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at the end of the round. The spontaneous activation probability
has no bearing on the accuracy of the current threshold value,
and making adjustments based on the spontaneous activation
prevents the node from converging to the appropriate value.

C. Churn

Churn is an ever-present condition in any distributed system.
The ContagAlert protocol has churn resistance built-in through
the adaptive aspect of the protocol. Provided that the rate of
churn is sufficiently low, the adaptation will adjust the thresh-
old on each node to accommodate changes in membership in
the network or changes in connectivity between nodes.
During periods of dramatic network change and the follow-

ing period during which the adaptive protocol re-stabilizes,
the performance of the protocol is unpredictable. After the
protocol has time to re-adjust the node thresholds, behavior
returns to normal. Therefore, if the rate of churn is too high,
the adaptation will not have time to converge before more
changes occur in the network structure. Higher churn rates
can be handled by increasing the frequency of the adaptation
periods if necessary.
Churn reduces the precision of the network level threshold

adjustment to a degree proportional to the severity of the
churn. More severe churn will result in more severe, longer
duration disruption to the ability of the protocol to adhere to
the target tolerance. If churn is minor but continuous, or if
churn is severe but widely spaced in time, the ContagAlert
protocol will attain more accurate performance.

V. PROTOCOL SIMULATION RESULTS

We implemented a custom simulator to examine the adap-
tivity performance of the protocol. The simulator generates a
network graph of a specified size, topology class, and degree.
The adaptive protocol is executed for a large number of rounds
with a specified target tolerance to allow the node thresholds
to stabilize.
Once the adaptive phase is completed, the simulator runs a

large number of trials to assess the behavior of the network
when subjected to “real” signals with various numbers of
starting seeds. The simulation for each seed value was repeated
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Fig. 6. Adaptive Performance of ContagAlert Protocol on Various Network
Topologies – 1024 Nodes of Average Degree 32, Target Tolerance 0.15

30 times in order to assess the probability that a contagion
would occur for any given number of seeds. The large number
of different seed values, combined with the large number of
repetitions for each seed value, allows the probability curve
of the network’s behavior to be closely estimated.
The simulation proceeds in rounds. On each round, each

node counts the number of alerts it has received from any
neighbors. If this number exceeds its threshold, the node
becomes alerted and broadcasts the alert to all of its neighbors.
This round procedure repeats until the network state achieves
a stable, unchanging state.
Figure 5 shows the behavior of simulated networks after

the adaptive period has completed. Each trend line represents
a different target tolerance. This data indicates that the adap-
tation and various target tolerance settings definitely have an
effect on the network behavior. Although the adaptation is not
exactly perfect, each trend line is appears in the correct region
of the plot. The ordering of the lines is correct, indicating that
setting a higher target tolerance for the protocol will result in
a higher contagion threshold for the network.
Figure 6 shows the effects of network topology on the adap-

tive performance of the ContagAlert protocol. Note that four
of the topologies have a 50% probability of contagion when
almost exactly 0.15 of the nodes are seeds. This is precisely
the behavior desired from the protocol. In the Affinity and
Semicircle topologies, the adaptation was less effective.

VI. PROTOCOL ANALYSIS

The ContagAlert protocol views a peer-to-peer network as
being akin to a cellular automaton on an irregular topology.
In particular, the basic form of the protocol bears at close
resemblance to bootstrap percolation, a family of deterministic
cellular automata using a class of activation rules on an n-
dimensional lattice.
Although ContagAlert is inspired by and draws ideas from

contagion theory, due to the modification of the decision
procedure on a node to use a constant threshold instead of a
fractional one, it is more straightforward to analyze the system
from the angle of bootstrap percolation. Bootstrap percolation

ContagAlert Nodes
 in a Grid Topology

2-Dimensional Grid of the 
Bootstrap Percolation 

Cellular Automata

Active/Infected/Alerted Imminent Activation

Fig. 7. Mapping of ContagAlert onto Bootstrap Percolation

describes a specific deterministic cellular automaton rule on a
two-dimensional lattice of cells. Each cell is activated with
probability p at time T = 0. On each subsequent time
step, inactive cells become active if at least two of their
neighbors are active. Cells never deactivate. More general,
but less common models of bootstrap percolation allow for
d dimensional lattices, and cells activate when l neighbors are
active.
The study of bootstrap percolation focuses on determining

the probability that the entire lattice will become activated,
given the fraction of lattice nodes that are active at the begin-
ning of the process. It has been shown that this probability
shows a sharp threshold behavior. The probability shifts from
nearly 0 to nearly 1 over a very small increase in the fraction of
seed nodes. The ContagAlert protocol leverages this threshold
effect to suppress malicious signals and false positives, while
allowing legitimate signals to spread normally.
The basic aspect of the ContagAlert protocol maps closely

onto this definition of the bootstrap percolation scenario, as
illustrated in Figure 7. Each peer participating in the protocol
corresponds to a cell in bootstrap percolation. The neighbors of
the peer correspond to the neighboring cells in the lattice. The
threshold number of alert messages that a peer must receive be-
fore becoming alerted corresponds to l, the threshold number
of activated neighbors required to cause a bootstrap percolation
cell to become activated. The fraction of peers acting as the
source of an alert or other signal corresponds to the activation
probability p. The only difference between the two systems
is in the topology of the neighbor relationships. While the
ContagAlert protocol can function on any network topology,
bootstrap percolation is limited to only d-dimensional lattices.
In both bootstrap percolation and the ContagAlert protocol,

it is easy to see that if p is too small, few or no nodes will be
initially activated. Any spreading of the activation state will
stall very quickly, and most of the lattice will remain inactive.
Inversely, if p is high, most of the nodes will be initially
activated, and the remaining inactive nodes will activate very
quickly as time progresses.
The probability of the active state completely filling the

network (a contagion) can be considered as a function of p.
Although one might expect this probability to begin at 0 when
p is small and gradually increase to 1 as p nears 1, this is not
actually the case. In fact, this probability remains close to
0 up to some threshold fraction p, at which point it rapidly
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increases to 1 as p increases just a small amount. When p
exceeds this threshold point, the lattice is almost guaranteed
to achieve 100% activation.
It is exactly this threshold behavior in bootstrap percolation

systems that the ContagAlert protocol exploits. The nature of
this threshold point is the common topic of research regarding
bootstrap percolation. If it is assumed that the ContagAlert
protocol is running on a d-dimensional lattice topology, the
results of bootstrap percolation research can be directly applied
to this work.

A. Lattice Network Topology (Bootstrap Percolation)

In bootstrap percolation, it has been proven that for an L×
L lattice, as L becomes large, the probability that the entire
lattice becomes alerted approaches 1 if the fraction of seed
nodes is greater than (π2/18)/ ln(L), and it approaches 0 if the
fraction of seed nodes is less than this value [18]. Therefore,
for a 4096 node network with a 2-dimensional lattice topology
and an activation threshold of 2 on every node, we expect
the contagion threshold to occur at (π2/18)/ ln(

√
(4096)) =

0.1318, or 540 seed nodes. Although the degree 4 trend line
in Figure 8 shows that this is not actually the case, this can
be attributed to the fact that the convergence to this threshold
is extremely slow [2].
A similar result has been proven for n-dimensional boot-

strap percolation for n > 2 dimensions with arbitrary activa-
tion threshold l [3]. In this case, however, the result is more
complex and less precise.
For 2 < l ≤ d, there exist two constants, α−(d, l) and

α+(d, l), such that

0 < α−(d, l) ≤ α+(d, l) < ∞
independent of p, such that if

L±(d, l, p) := exp◦(l−1)(α±p−
1

d−l+1 )

then

P (contagion) → 1 if (p, L) → (0,∞) with L ≥ L+(d, l, p)

P (contagion) → 1 if (p, L) → (0,∞) with L ≤ L−(d, l, p)

This result is proven by induction, showing how scenarios
with arbitrarily large d and l can be reduced down to the 2-
dimensional, threshold 2 case, one step at a time. However,
they are unable exactly to specify the threshold. Instead, they
are able to prove that the threshold exists, and they are able
to reduce the uncertainty to the values α+ and α−, which are
functions of only d and l.
The results presented above correspond only to n-

dimensional lattices. Obviously, very few peer-to-peer overlays
will have this type of topology. As topologies become more
irregular, these thresholds will vary in a manner that may be
impossible to quantify. The theoretical results above are largely
based on the predictable way in which an activation state will
propagate across the lattice. This predictability is not shared
by networks with any kind of random component, and it can
be hard to see even in topologies with regular structures.
However, we can qualitatively consider the behavior we

would expect to observe from these more common topologies.
We approach the problem by considering the clustering coeffi-
cient of each structure. If nodes A and B are neighbors, and if
nodes B and C are neighbors, the clustering coefficient of the
topology is the probability that node A and C are neighbors.
A high clustering coefficient suggests that large cascades are
easier to trigger, because if any one node in a cluster becomes
activated it is likely that the others in the cluster will follow.
The lattice topology has a clustering coefficient of 0, since
there exist no triangular loops of edges in this type of topology.
Note that the following analyses apply only when all nodes

use the same activation threshold. When activation thresholds
are allowed to vary from one another, as in the ContagAlert
protocol when the adaptive procedure is applied, even this type
of qualitative analysis is intractable.

B. Circle Topology

The circle topology has a completely regular structure,
the highest possible clustering coefficient without being fully
connected, and clear activation behavior. Due to the high
clustering coefficient, once the threshold of any single node
is exceeded and the node becomes alerted, the activation will
cascade to eventually encompass the entire ring. As a result,
the probability of the entire network becoming active is equal
to the probability of the first node becoming active, which is
equal to the probability of the number of seed nodes appearing
within range of a single inactive node exceeding the threshold
of that node.

C. Random, Semicircle, and Affinity Topologies

Although the clustering coefficient of these topologies is
not as high as the circle topology, it is higher than the
lattice, exponential, or power law topologies. According to
the clustering coefficient hypothesis, this suggests that the
threshold region of these topologies should lie somewhere



right of the circle, but left of the exponential and power law
topologies. However, the power law topology is a special case,
as described below.

D. Exponential Topology

Although the exponential topology is very regular, its di-
rected edges only look in one direction around the ring. This
results in a very low clustering coefficient, and therefore makes
it difficult to generate cascading activations. As a result, we
expect the threshold point for this topology to occur at a higher
number of seeds than for other topologies.

E. Power Law Topology

On a network possessing a power law topology, an activa-
tion state propagates extremely easily when using the same
fixed threshold level for all nodes. Due to their large number
of neighbors, the few highly connected nodes are likely to
reach the requisite number of active neighbors in order to trip
their thresholds. The large number of poorly connected nodes
are likely to have one or more of these highly connected,
now active nodes as neighbors. As a result, the few highly
connected nodes are able to rapidly activate most of the poorly
connected nodes, and those that are left out quickly activate
once the majority of the poorly connected nodes are activated.
This easy propagation when using a fixed threshold for all
nodes forces the power law network to employ the adaptive
protocol in practice in order to ensure that the highly connected
nodes do not activate too easily. This behavior can be seen in
Figure 3, where the trend line for the power law topology
appears on the far left of the plot.

VII. APPLICATION DATA

We studied the behavior of the protocol in two applications
to assess its effectiveness outside of an entirely abstract
environment. The first application is an extension of the earlier
simulation, and it models the spread of an Internet worm, such
as Code Red, while the ContagAlert protocol disseminates
warnings of the attack. The second application, called DoS-
Alert, is built on top of the Pastry peer-to-peer object location
service [36]. This application uses the ContagAlert protocol to
inform peers of the identities of denial-of-service attackers so
that requests from those malicious nodes can be suppressed.

A. Defending Against an Internet Worm Attack

Internet worms represent a significant threat to online re-
sources in the present Internet environment. Not only do they
harm individual systems, but they also overload the Internet
infrastructure as they spread at an exponentially increasing
rate. If a few nodes are able to detect the worm early on,
they can spread alerts to other nodes about the imminent
attack in order to protect those nodes, slow the spread of the
worm, and reduce the impact on the Internet infrastructure.
Due to the wide-ranging attack pattern of Internet worms,
the number of worm observations should easily exceed the
contagion threshold for the ContagAlert protocol.
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We modified our existing simulator by replacing the fixed
number of seeds with an increasing number of seeds modeling
the spreading behavior of a worm.
The spreading behavior of the worm is based on the model

presented by Kephart in [25]. This model is an example of
a Susceptible-Infected-Removed infection model [26], [32].
By default, nodes are considered Susceptible to infection. On
each time step, each infected node selects another node in the
network at random to infect. If the target node is Susceptible, it
becomes Infected with probability p, and it becomes Removed
with probability 1− p. If the node is already infected, there is
no effect. If the target node is already Removed, it is immune
to the infection. On each time step, infected nodes have a
probability c of becoming Removed as administrators repair
the infected systems and patch the vulnerability.
In our variant on this model, nodes become alerted to the

attack when they are Removed by any means – either by
successfully resisting infection, or by being repaired by an
administrator. Alerted nodes spread warning information to
other nodes using the ContagAlert protocol in an attempt to in-
hibit the further spread of the worm. Susceptible nodes which
become alerted by ContagAlert become Removed. Infected
nodes do not participate in the protocol.
This model allows the infected population to at most double

on each step, if no infected or immune nodes are targeted and
if all susceptible nodes become infected. When the simulation
begins, the rate of spreading will increase for a certain period
as more nodes become infected. However, at a certain point
most of the network will be infected, reducing the number of
susceptible nodes, and the rate of spreading will begin to slow.
The speed of the spread of an alert across the network is

primarily dependent on the target tolerance of the network.
If the tolerance is set higher, more seeds are required to tip
the network past the contagion threshold and the propagation
of warnings will be delayed. This allows the worm to attain a
stronger foothold in the network before defensive measures are
raised. If the target tolerance is set lower, the opposite behavior
will occur, but it may open the possibility for disruptive
messages to spread.



The simulator generated a network of a specified topology,
size, and average degree. As with the earlier simulations,
the network was adapted to a specific target tolerance with
interference before testing its performance. After the adaptive
period was completed, a simulated worm was released on the
network. The initial infection was seeded at a single, randomly
selected node. After the initial infection, we used an infection
probability of p = .5 and a cure rate of c = .01. A trace of the
network state was collected, recording how many nodes were
in an infected state and how many nodes were in an alerted
state at each time step.
Figure 9 depicts the number of infected nodes (dashed lines)

and the number of alerted nodes (dotted lines) in the network
at each time step (X axis) for a typical simulation run. Both
the infected count and the immune count start at 0 at time
T = 0. As time progresses in the simulation, both the infected
and immune counts rise due to the probabilistic nature of the
infections. As the immune count passes the target tolerance
of the network, the ContagAlert protocol goes into action
and the alert rate of nodes increases dramatically. However,
if the target tolerance is too high, the worm is able to attain a
solid foothold and the ContagAlert protocol cannot catch up.
Eventually, all nodes become alerted as administrators repair
the infected nodes.
The solid lines in the figure indicate the infected and

immune counts in networks where worm alerts are not shared
using a protocol like ContagAlert. Although nodes can still
become alerted when an infection attempt fails or when
repaired by an administrator, this information is not used to
protect other nodes.
The figure shows that a low target tolerance of between

.05 and .15 results in a dramatic reduction in the number
of nodes that become infected by the worm. If the target
tolerance is much higher, however, it is of limited effectiveness
when trying to compete against a rapidly spreading signal
like a worm. It is important to note, however, that the worm
simulated in this scenario represents an extremely high-speed
attack, and ContagAlert will be even more effective against
slower attacks.
For some target tolerances, the sharp rise in infections

occurs later than for other target tolerances. This is a side effect
of the probabilistic infection model. If the earliest infection
attempts by the worm fail, it can significantly delay when the
worm attains its maximum infection rate.

B. Defending a P2P Network Against a DoS Attack

The ContagAlert protocol is also suitable for suppressing re-
quests from malicious nodes during a denial-of-service (DoS)
attack on a peer-to-peer (P2P) network. In such an attack,
malicious nodes will attempt to overwhelm victim nodes by
exhausting their resources with useless requests. Most research
on DoS attacks has been at the network layer on how to
prevent networks from being flooded with useless network-
layer packets, rather than preventing P2P applications from
being flooded with useless application-layer requests [22],
[23], [31], [35]. However, Daswani et al. identified availability

in P2P systems as one of the major open problems in P2P
systems research [8].
We implemented a P2P application, called DoSAlert, as a

testbed for the ContagAlert protocol. The goal of DoSAlert
is for benign nodes to collectively suppress requests from an
attacker once they have identified that attacker. Once a benign
node becomes aware of an attacker, that node should inform its
neighbors of the attacker’s identity. However, DoSAlert must
also avoid the situation where attackers collude to cause benign
nodes to mistakenly suppress legitimate requests due to false
accusations.
The DoSAlert application presented in this section is a

distributed approach to minimizing the number of malicious
requests processed during a DoS attack on a P2P system.
Each peer monitors for attack patterns in the traffic passing
through its node. If such an attack is detected, the node begins
suppressing messages and propagates an alarm identifying the
attacker to other nodes in the system.
If a node detects that a target destination is being over-

whelmed by a particular source, then that node will start
suppressing messages from that source and will propagate
an alarm signal to other nodes identifying that source as an
attacker. Also, if a node receives enough distinct alarm signals
identifying a particular source as an attacker, then that node
will begin suppressing messages from that attacker and will
propagate the alarm to all of its neighboring nodes.
It is observed in [24] that attackers have constant per-client

request rates during a DoS attack while legitimate clients have
per-client request rates that tend to get lower during a flash
event. This difference between legitimate and malicious clients
allows us to distinguish between high levels of traffic due
to legitimate events (e.g., flash crowds) and malicious events
(e.g., DoS attacks). This observed legitimate client behavior
during a flash event is possibly due to increased server
processing time and transmission delay caused by network
congestion. Legitimate clients will be responsive to congestion
and slow down their requests, while malicious clients will
continue to inject requests at a regular rate because their goal
is to overwhelm the target.
DoSAlert leverages this observation to distinguish be-

tween legitimate requests and malicious attacks. Benign nodes
enforce exponentially increasing inter-arrival request times
between each source-destination pair whose messages pass
through that node.
We evaluated the effectiveness of the ContagAlert protocol

in this environment with a trace-based simulation. Using
the FreePastry API, we implemented DoSAlert on top of
the Pastry P2P routing substrate [13], [36]. The application
underlying the DoS detection in the simulation was a peer-to-
peer cooperative Web caching scheme where each peer stores
and requests Web objects.
Each benign node makes requests based on a randomly

chosen trace for a single machine from the BU Web Client
Traces [7]. For each request appearing in the trace, the
request object identifier used in the simulation is obtained by
computing a hash of the URL appearing in the request.
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Malicious nodes randomly choose twenty different targets
and bombard them with useless requests at a constant rate.
Malicious nodes also generate and inject false alarm signals
identifying benign nodes as attackers into the system. More
specifically, the malicious nodes collude to select a set of
benign nodes and inject false alarm signals identifying each
node in this set as malicious. The number of benign nodes
in this set is equal to the number of malicious nodes in that
particular simulation run.
In the simulation, each attacker sent 10 requests that are

spaced 200 milliseconds apart to each one of its twenty
targets. The minimum initial wait time enforced at benign
nodes that monitor traffic between source-destination pairs is
1000 milliseconds. Every time a request arrives before its wait
time, a violation occurs and the wait time is doubled. If three
violations occur for a source-destination pair, then the source
is considered an attacker and the detecting node sends an alarm
identifying the attacker.
There are two important metrics to consider when evaluating

the ContagAlert protocol in this scenario: the number of
false positive alerts, and the number of false negative alerts.
False positives can be measured as the effect of the target
tolerance level on the percentage of legitimate messages that
are delivered. False negatives can be measured as the effect
of the target tolerance level on the percentage of malicious
messages that are delivered.
Ideally, the delivery rate of legitimate messages should be

high, while the delivery rate of malicious messages should
be low. Legitimate messages might be blocked if malicious
nodes are successfully able to spread misinformation about
the intention of nodes that are actually benign. Malicious
messages might be allowed through if benign nodes fail to
heed legitimate alert messages generated by other nodes. It
should be noted that a small number of malicious messages are
guaranteed to be successfully delivered, since several messages
must be observed before a message source is identified as
malicious.
Figure 10 shows that lower tolerance levels often lead to

malicious requests being suppressed more aggressively. This
desirable behavior is a result of the lower threshold required
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for benign nodes to become aware of attackers and start
suppressing attacker requests. However, these lower thresholds
also make it easier for attackers to inject false alarm signals
into the system that identify benign nodes as attackers. This is
an undesirable behavior and causes some legitimate messages
to be suppressed in the above table. However, in the above
results, when the percentage of malicious nodes is less than
or equal to the tolerance level, no legitimate messages are
dropped (i.e., false alarms from attackers are completely inef-
fective) and over 60% of the attackers’ requests are suppressed.

C. Malicious Interference

Although the ContagAlert protocol is effective under normal
operating conditions, it is important to consider the impact
on performance of malicious nodes that refuse to adhere
to the rules of the protocol. These malicious nodes might
attempt to disrupt normal operation in order to facilitate the
easier propagation of maliciously generated alerts, or they
might attempt to suppress the spread of legitimate alerts. To
accomplish these goals, nodes can interfere with the basic
aspect or the adaptive aspect of the protocol.
One example of a possible attack is as follows: Malicious

nodes attempt to drive up the activation thresholds of benign
nodes during the adaptive rounds. A malicious node can ac-
complish this by generating a practice alert on every adaptive
round with a 100% probability, instead of using probability
equal to the target tolerance of the network. The higher than
expected fraction of seed signals will result in the network
adapting to a higher contagion threshold than it intends. Then,
in the basic aspect of the protocol, the malicious nodes refuse
to relay real alert signals. This results in a lower propagation
rate of the real alerts, driving the effective contagion threshold
of the network even higher. The end result is that real attacks
will be allowed to proceed for a longer period of time before
the network becomes alerted to its presence, increasing the
amount of damage that it will be able to inflict.
The opposite attack could also be executed. Malicious

nodes drive down the activation thresholds of benign nodes
during adaptive rounds by refusing to send any practice alert
messages. After the network stabilizes at an abnormally low
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contagion threshold, malicious nodes collude to generate false
alerts in an attempt to cause benign nodes to take misguided
defensive measures. If the adaptive phase of the attack is
sufficiently effective, the small population of malicious nodes
might be effective at causing the false alerts to propagate.
This attack could be countered if benign nodes record

the sources from which they receive practice messages. This
serves as an indication of which nodes are participating fully in
both aspects of the protocol. Then, during the propagation of
real alerts, alert messages are only heeded if they are received
from one of these fully participating nodes. With this defense
in place, malicious nodes cannot abstain from the practice
rounds entirely. In the test simulation modeling this attack,
malicious nodes participated in each practice round with a
probability of .1
Figures 11 and 12 present data showing the behavior of the

ContagAlert protocol when it is subjected to these two attacks.
The target tolerance in these simulations was set to 0.15 on a
network of 4096 nodes with a random topology. In both cases,
the adaptive aspect of the protocol was able to closely match
this target when no malicious nodes were present. As the
fraction of malicious nodes increases, the contagion threshold
diverges further from the target, as is expected given the nature
of the attacks. However, even when 10% of the nodes are
actively working to interfere with the protocol, the contagion
threshold of the network is deflected by by no more than
.07 from the target tolerance for the first type of attack, or
by .05 for the second type of attack. Although this shift is
noticeable, it is relatively small given the amount of resources
an adversary would need to organize in order to launch these
types of attack.
A variety of other methods might also be used to subvert

the functioning of the protocol. A comprehensive study of
these attacks, there effects on the ContagAlert protocol, and
possible defenses that could be used to block them is beyond
the scope of this paper. However, the following list enumerates
several possible approaches that might be used to generate
interference.

• Malicious nodes do not follow the basic aspect of the

(a) Random (b) Exponential

(e) Circle (d) Semicircle

(e) Affinity (f) Powerlaw

Fig. 13. Example Network Topologies – 16 Nodes with Average Degree 4

protocol. Alerts may be blocked, always forwarded, or
forwarded at random with some probability.

• Malicious nodes do not adhere to the adaptive aspect of
the protocol. Practice messages may be blocked, always
forwarded, or forwarded at random with some probability.

• Malicious nodes do not obey to the network topology.
Messages are broadcast to a wider population of nodes
than they should normally be able to reach.

• Malicious nodes choose their position in the network
topology to maximize their influence over the network
or to reduce the influence of benign nodes.

VIII. CONCLUSIONS AND FUTURE WORK

We introduced the ContagAlert protocol, a new protocol
oriented towards disseminating messages across a peer-to-peer
network. The protocol leverages the threshold behavior studied
in contagion theory to suppress messages of malicious intent
while causing legitimate messages to spread. The protocol is
able to adaptively set the contagion threshold of the network



to specify a target tolerance level for malicious messages.
This is accomplished by adjusting the activation threshold of
individual nodes using an adaptive distributed algorithm.
We showed that the protocol disseminates information suf-

ficiently quickly that it is useful when attempting to thwart
rapidly spreading Internet worms. Additionally, we demon-
strated that the protocol is able to distinguish between legiti-
mate and false alerts in a P2P DoS detection application.
We believe that communicating alerts in Grid computing

environments may be an ideal application for the ContagAlert
protocol. Grid resources are typically high-value, and are
therefore tempting targets for adversaries and in need of pro-
tection. Additionally, the low churn rate of Grid environments
would be easily accommodated by the adaptive aspect of the
protocol, allowing ContagAlert to operate at the target target
tolerance level without interference. Finally, the reputable
nature of Grid resources would reduce the probability that
nodes in the network would attempt to subvert the proper
functioning of the protocol in ways that will significantly
undermine its performance.
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