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Abstract 
Dry season plant biomass is critical for livestock production and hence livelihoods in rangeland communities. 
We have developed a cloud-based application that employs remote sensing data to provide weekly spatially 
explicit information on plant vegetation cover in West Africa during the dry season (typically October-June). 
In this paper, we discuss the data analysis steps and results that drive the application. Linear spectral mixture 
analysis is used to derive endmember samples of basic landcover primitives (active/green vegetation, non-
active vegetation, and bare soil) from very high-resolution imagery that spans the spatiotemporal spectrum 
from wet/peak-green to dry/dormant conditions in Senegal. These samples are used to train and evaluate 
ensemble tree models for predicting proportional cover of the same land cover primitives at 500m scale, using 
MODIS derived NDVI, shortwave infra-red bands 3 and 2 (SWIR3 and SWIR2), and total 15-day antecedent 
precipitation as predictors. Our trained models can predict the fractional cover of green vegetation, non-green 
vegetation and bare soil across space and time with cross-validation root-mean square errors of 12%, 15% and 
9% respectively. With a weekly cadence and low latency (~2-3 weeks), the tool can also provide timely 
information to support local decision making in the management of critical rangeland resources. 

Introduction 
Drylands (including rangelands and other savannas) are drought prone seasonal landscapes, with low average 
and unpredictable annual rainfall, and a combination of woody and herbaceous vegetation systems that provide 
distinct ecological functions (Bond & Midgley, 2000; Nicholson & Webster, 2007). Rangelands are also the 
domain of most agropastoral activity worldwide which places them firm firmly at the heart of the food and 
water security narrative.   

Most of rangeland vegetation productivity occurs within a relatively short growing season (e.g. ~3 months in 
the West African Sahel) (Hiernaux et al., 2009). This can be reliably proxied  using greenness indices such as 
NDVI (Tucker, 1979). The dry season period is however the most critical bottleneck for the survivability of 
rangeland livestock that rely on natural vegetation (woody or herbaceous) for forage. Tracking 
senescent/dormant vegetation conditions during the dry season requires narrow band reflectance in the short-
wave infra-red (SWIR) part of the spectrum, where lignin/cellulose (normally present in greater amounts in 
non-active vegetation) have a higher absorption feature (Nagler et al., 2003; Serbin et al., 2013). These narrow 
band indices can be directly derived using hyperspectral remote sensing data, which is however not readily 
available on an operational scale. As such,  scientists studying Australian savannas have shown that empirical 
relationships are needed between more commonly used multispectral reflectance (such as from MODIS) and 
these hyperspectral derived indices, to allow for operational mapping of dry vegetation conditions 
(Guerschman et al., 2009; Hill et al., 2017). 

Building largely on the framework developed by Guerschman and Colleagues1 for mapping fractional 
vegetation cover, but fine-tuned with local calibration/validation data and machine learning, we present a 
Google Earth Engine application2 tailored specifically for monitoring of dry season vegetation in the West 
African arid and semi-arid lands. Our tool outputs weekly fractional cover estimates of active and non-active 
vegetation cover, and incorporates ancillary data (woody canopy cover, fire activity) for a more contextual 
assessment of dry season vegetation conditions, with a broader mandate to facilitate decision making in the 
management of rangeland forage resources. The rest of this paper discusses the data, methods and results that 
drive the application. 

 
1 https://data.csiro.au/collections/collection/CI42018 
2 https://savannalabnmsu.users.earthengine.app/view/forage-monitor 
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Methods and Study Site 
We use Senegal, in West Africa, as the test case area for the development and implementation of the dry season 
rangeland vegetation monitoring application (Figure 1).  Senegal extends from the very dry Sahel in the north, 
through a gradient of savanna/shrubland mosaics to the humid savanna/forest mosaics in the south. Most rural 
inhabitants in the country practice agropastoralism as the primary economic activity.  

 
Figure 1 Senegal in West Africa used as test case area for dry season vegetation/forage monitoring application. Coloured rectangles 

are footprints of sampled Maxar's worldview 2 and worldview 3 imagery labelled by acquisition date. Worldview imagery is 
obtained courtesy of the NASA NextView License. 

The following multi-source/multi-scale remote sensing data are used for mapping dry season fractional 
vegetation cover in Senegal: i) Daily MODIS Nadir Bi-directional Reflectance Distribution Function (BRDF) 
Adjusted Reflectance (NBAR, MCD43A4 Collection 6, 500m) (Schaaf & Wang, 2015);  ii) Maxar’s 
Worldview 2 and 3 (WV-2 and WV-3) imagery sampled across multiple locations and dates in the study area 
(Figure 1);  and iii) Climate Hazards Infra-red Precipitation with Station (CHIRPS) data (Funk et al., 2015). 
The application also employs independent woody canopy cover maps for Senegal (Anchang et al., 2020), and 
Daily MODIS Thermal Anomalies and Fire (MOAD14A1, Collection 6, 1km) (Giglio & Justice, 2015), for 
end-use case purposes (see application demo).  

Very high resolution (VHR) multispectral WV-2 and WV-3 image strips are sampled spanning the north-south 
gradient in Senegal, and with dates spanning the complete dry season cycle (September to June, Figure 1, 
Figure 2A). Linear spectral mixture analysis (SMA) is performed on VHR imagery to extract more accurate 
fractions of green vegetation, non-green vegetation and bare soil. SMA is preferred over pixel-based 
classification because of its greater efficiency for processing large volumes of VHR imagery; and the belief 
that, even at such high spatial resolution (~1.8m, non-sharpened bands), there is considerable spectral mixing 
among rangeland landcover types particularly in the dry season (e.g., likely mixtures between thin herbaceous 
vegetation and bare soil). Unmixed samples of VHR imagery are then aggregated to 500m as the main 
calibration/validation data source for predicting fractional cover. 

MODIS NBAR reflectance is processed to derive 2 spectral indices: NDVI (near infrared – red / near infrared 
+ red) and SWIR32 (ratio of SWIR bands 3/ SWIR band 2). These provide the 2-D spectral space for 
discriminating dry season fractional cover (Figure 2). The greenest (maximum NDVI) composite is obtained 
for the weeks corresponding to the exact date of worldview image acquisitions and combined with worldview 
derived fractional estimates (Figures 2B – 2C). For the same dates and locations, the sum of 15-day antecedent 
precipitation is derived from 0.05-degree CHIRPS data as a proxy for soil moisture conditions and to control 
models for reflectance (NDVI) differences imposed by vegetation canopy wetness. 

The combined Worldview-MODIS sample data is used to train and evaluate independent gradient boosted 
regression tree models (Friedman, 2001) for predicting the fractional cover of green vegetation, non-green 
vegetation and bare cover. Model parameters (e.g., number of decision trees) are determined by simple trial 
and error. While the pre-existing framework for mapping vegetation fractional cover relies mostly on mixture 
models and linear regression (Guerschman et al., 2009; Hill et al., 2017), we choose  the machine learning 
approach for 2 reasons: i) compared to traditional linear models, ensemble tree models have proven out-of-
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the-box performance at approximating linear and nonlinear functions and can better handle variable 
interactions, ii) it is challenging to obtain pure endmembers of landcover types of interest at MODIS scale 
(500m) for a coarse level SMA. Hence, we use SMA only on the very high-resolution imagery to derive 
accurate samples for calibration and validation. 

 
Figure 2 Theoretical framework for discriminating dry season vegetation fractional cover using a reduced 2-D spectral space that is 
controlled by dry season date (A) and correlates with the proportions of relevant land cover types derived from very high resolution 

imagery (B, C and D). Samples from the peak season (September-October) will generally have higher NDVI/higher fraction of green 
vegetation. As the dry season progresses, NDVI values will drop while SWIR32 (SWIR band 3/ SWIR band 2 ratio) values will 

steadily increase to reflect increasing non-active (dry or non-leaf) vegetation and bare soil conditions. 

Results 
Sample predictions of dry season fractional cover using gradient boosted regression tree models 

 
Figure 3 Model evaluations for predicting, A) green vegetation cover, B) non-green/non-active vegetation cover, C) bare soil cover, 

from MODIS NDVI , MODIS SWIR band ratio, and 15-day antecedent rainfall. Evaluation makes use of the k-fold validation 
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technique (k = 5) where 1/k of sample observations are sequentially withdrawn without replacement and used solely for test sample 
predictions and error estimates, while (k-1)/k of samples are used for training. The reported root mean square errors (RMSE) are 
pooled from out of sample predictions only. Most accurate predictions are obtained for bare soil cover which occupies the low 

extremes of NDVI and high extremes of SWIR32 (also see Figure 2).  Meanwhile vegetation (especially non-green) cover suffers 
from less accurate predictions due to being less spectrally distinct. 

 Google Earth Engine Application 

 
Figure 4 A demo of our Google Earth Engine application (https://savannalabnmsu.users.earthengine.app/view/forage-monitor) driven 
by the previously discussed analysis and models. The application outputs the most recent (A), 6 months (B), and 10-year anomalies 

(C), of weekly estimates of active (green) and non-active (non-green) vegetation and bare soil fractions for a selected location (period 
of September 2020 – March 2021 shown above). It also computes an arbitrarily weighted forage index (D) which assigns varying 
weights to areas based on the estimated fractional cover (green = most desirable, non-green = less desirable, and bare soil = non-

desirable). The forage index also penalises areas that combine both higher fractions of non-green vegetation and woody canopy cover 
(not shown), as this may suggest a higher amount of non-leaf woody materials that are not very useful for foraging. Lastly, recent fire 
activity (yellow mask) is provided for more context as this may influence satellite reflectance (hence fractional estimates) as well as 

the practical interpretation of forage conditions. 

Discussion, Conclusions and Implications 
The framework for mapping of dry season fractional vegetation cover has long been established (Guerschman 
et al., 2009). However, it is challenged by the considerable differences in regional edaphic and bio-climatic 
conditions even within the broader context of rangeland and savannas. Our application builds on a solid 
concept and fine-tunes it to work for rangeland monitoring in the specific context of the West African savannas.  

Our ensemble tree-based models trained locally can predict fractional cover in Senegal a with reasonably high 
accuracy. The relatively lower accuracy reported for non-active vegetation (~15% RMSE) is understandable 
and consistent with past studies (Hill et al., 2016). In our case, model calibration samples are obtained from 
VHR satellite imagery, and non-photosynthetically active vegetation is not a very spectrally distinct land cover 
type (as compared to low albedo green canopies and high albedo dry bare soil surfaces). Our end-user 
application heuristically compensates for this by subtracting the combined (and likely more accurate) estimates 
of green cover and bare soil from 1 (100%) to obtain non-green vegetation cover.  

It is also important to note that the estimated non-green vegetation is not entirely dry/senescent plant material, 
which is relevant for foraging, but may also include non-forage materials such as woody plant tissue and burn 
scar/residue. We therefore include independent stable woody vegetation maps and recent fire activity as post-
processing steps to enhance the interpretation of prevailing dry season forage conditions.  

https://savannalabnmsu.users.earthengine.app/view/forage-monitor
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