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Abstract. Although the effects of nanosized titania (nTiO2) on hatching events (change in 24 

hatching time and total hatching) in zebrafish have been reported, additional consequences of 25 

nTiO2 exposure, i.e. the effects of nTiO2-induced changes in hatching events and morphometric 26 

parameters on embryo-larvae development and survivability have not been reported. To address 27 

this knowledge gap, embryos 4 h post-fertilization were exposed to nTiO2 (0, 0.01, 10, and 1000 28 

µg/mL) for 220 h. Hatching rate (HR; 58, 82, and 106 hours postexposure [hpe]), survival rate 29 

(SR; 8 times from 34 to 202 hpe), and 21 morphometric characteristics (MCs; 8 times from 34 to 30 

202 hpe) were recorded. Total hatching (HR at 106 hpe) was significantly and positively 31 

correlated to SR, but there was no direct association between nTiO2-induced change in hatching 32 

time (HR at 58 and 82 hpe) and SR. MCs were significantly correlated to HR at 58, 82, and 106 33 

hpe, suggesting the nTiO2-induced change in hatching time can affect larval development. The 34 

MCs that were associated with change in hatching time were also significantly correlated to SR, 35 

suggesting an indirect significant influence of the nTiO2-induced change in hatching time on 36 

survivability. These results show a significant influence of nTiO2-induced change in hatching 37 

events on zebrafish embryo-larvae development and survivability. They also show that 38 

morphometric maldevelopments can predict later-in-life consequences (survivability) of an 39 

embryonic exposure to nTiO2. This suggests that zebrafish can be sensitive biological predictors 40 

of nTiO2 acute toxicity. 41 

 42 

Keywords: Hatchability, Morphometric characteristics, NM-105, Survivability, Zebrafish 43 

embryo-larvae 44 

 45 

1. Introduction 46 
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Metal oxide nanoparticles (MNP), similar to other particles at the nanoscale (1-100 nm 47 

[Colvin 2003]), have unique physicochemical properties compared to parent metals that can 48 

induce adverse and unique effects in aquatic organisms (Lovern and Klaper 2006; Moore 2006; 49 

Griffitt et al. 2009). MNPs are considered to be an emerging class of environmental pollutants 50 

(Service 2004). MNPs possess multiple mechanisms of toxicity that can affect multiple levels of 51 

biological organization (Metcalfe et al. 2009).  52 

Nano-TiO2 (nTiO2) is a MNP that has frequent use and widespread industrial applications 53 

(Jovanović et al. 2011b). As such, there is the potential for environmental contamination and 54 

exposure to nTiO2 (Hall et al. 2009). nTiO2 is a suspected group 2B human carcinogen 55 

(Jovanović et al. 2011b). In response to the concerns mentioned above, many studies have 56 

investigated the adverse effects of nTiO2 aqueous suspensions on the environment, wildlife, and 57 

human health (Menard et al. 2011). 58 

The impact of nTiO2 exposure on zebrafish hatching events has been investigated and 59 

reported as premature (Kovrižnych et al. 2013; Ma and Diamond 2013; Fouqueray et al. 2013; 60 

Samaee et al. 2015) or delayed hatching (Yeo and Jo 2007; Xu et al. 2012). There are also other 61 

studies (e.g. Jovanović et al. 2015; Clemente et al. 2014; Wang et al. 2014; Yan et al. 2014) in 62 

which viability parameters (e.g. hatching events and/or survivability) have been considered to 63 

characterize nTiO2-induced toxicity. These reports warrant further study to identify aspects of 64 

nTiO2-induced changes in hatching events in relation to zebrafish embryo-larvae development 65 

and survivability.   66 

Phenotypic characteristics are not only the most common, applicable and robust 67 

responses assessed in zebrafish embryo and larvae toxicology (e.g. see Bar-Ilan et al. 2009) but 68 

phenotypic characterization is also very amenable to automation and high throughput (Vogt et al. 69 

https://www.sciencedirect.com/science/article/pii/S026974911500192X#!
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2009; Liu et al. 2012).  In previous studies, the phenotypic analyses of nTiO2-induced defects 70 

have been performed based upon morphological characteristics (qualitative signs that include 71 

dorsal curvature, kinked tail, edema, elongated heart, and others) (Yeo and Kang 2009; Bar-Ilan 72 

et al. 2009; Yeo and Kim 2010; He et al. 2014; Wang et al. 2014; Yan et al. 2014). However, 73 

generating quantitative data from morphometric characteristics (MC) has been largely ignored or 74 

under-used in toxicology assays.  75 

The current study objectives were: 1) to test the hypothesis whether the viability 76 

parameters such as hatching events and survivability, as well as morphometric characteristics can 77 

characterize the nTiO2-induced toxicity in zebrafish embryo-larvae, 2) to evaluate if nTiO2-78 

induced changes in hatching events (as sub-lethal endpoints) are significantly correlated to 79 

embryo-larvae morphometric alterations (as another sub-lethal endpoint that is also accounted 80 

for as a criterion for larval development) and survivability (as an acute endpoint), both during 81 

nTiO2 exposure and after nTiO2 depuration, and 3) to test the hypothesis that nTiO2-induced 82 

changes in sub-lethal endpoints (i.e. hatching events and MCs) can predict later-in-life 83 

consequences of zebrafish embryonic/larval exposure. 84 

 85 

2. Materials and methods 86 

2.1. Zebrafish source and housing 87 

Wild-type zebrafish were purchased from a local supplier in the North of Iran (local 88 

suppliers are the only source of wild-type zebrafish here), and maintained in a semi-static 89 

system. They were housed in covered glass tanks (50 cm L × 30 cm W × 30 cm H). The tanks 90 

were aerated and equipped with a sponge filtration unit, a 150 W submersible heater (Atman®, 91 

China), and a 6 W white light (DGL-1540 S-M, Bohem Ltd. Co., China) located on the lid of the 92 
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tank. Municipal (tap) water was dechlorinated and adjusted to 28 ºC after filtration through an 93 

active carbon filter (a fully submersible sponge filter [WP, 1150F, Sobo®, China] in which its 94 

sponge was replaced with activated carbon [C-300, Aleas®, China]). After filtration, water was 95 

conditioned with 240 mg/L rock salt + 60 mg/L sea salt (Westerfield 2000). 96 

 97 

2.2. Zebrafish maintenance 98 

After determination of sex (Braunbeck and Lammer 2006), males and females were 99 

segregated and housed on a 14:10 h light:dark cycle (9:00 a.m. on, 11:00 p.m. off) (Westerfield 100 

2000). Adult zebrafish were fed a combination of several types of food depending on their 101 

development stage and age (flake food Vitakraft® and TetraMin®, Germany; and BioMar and 102 

live food - brine shrimp Nauplii) to satiation twice a day (Lawrence 2007). Zebrafish larvae from 103 

day 2 (34 hours postexposure [hpe]) to 6 (130 hpe) grew on yolk nutrients and were not fed, 104 

while from day 6 to day 9 (202 hpe) larvae were fed Paramecium spp. twice daily as described 105 

by Varga (2011). 106 

 107 

2.3. Zebrafish spawning and embryo collection  108 

 Healthy males and females (6–18 months old) were segregated one week before 109 

breeding. Two males and 3 females were transferred to mating tanks (FH-101, Guangdong boyu 110 

aquarium industries Co., Ltd, China) late in the afternoon the day before spawning. Males and 111 

females were housed in different chambers, separated by a transparent plastic divider in the 112 

mating cage. At 9:00 h the divider was removed and the zebrafish mated and spawned. Embryos 113 

were siphoned from the bottom of the spawning tank into a Petri dish containing conditioned 114 

system water (see section 2.1). Methylene blue (0.5 mg/L) was added to the embryo rearing 115 
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medium to prevent fungi growth. Live embryos were collected at ~ 2 hours post-fertilization 116 

(hpf; blastula stage) (Fouqueray et al. 2013).  117 

 118 

2.4. The nTiO2 nanopowder 119 

Degussa P-25 titanium dioxide nanopowder (NM-105) was obtained from Evonik 120 

Industries (Frankfurt am Main, Germany). It is a mixture of ~80% anatase and ~20% rutile 121 

crystals with an average primary particle size of 21 nm (Ohno et al. 2001; Evonik Industries 122 

2007). NM-105 is a standard nTiO2 reference material deposited in the European Commission 123 

Joint Research Centre (Rasmussen et al., 2014).  124 

 125 

2.5. P-25 nTiO2 suspension preparation 126 

A known mass of P-25 was added to a known volume of dispersant (autoclaved [Paterson 127 

et al. 2011] egg water: distilled water containing sea salt [60 mg/L], pH 7.2 [Westerfield 2000]) 128 

to produce a 1000 μg/mL stock suspension. The suspension was agitated using a probe sonicator 129 

(Hielscher UP400S, Germany) at 320 W (0.5 cycle, amplitude 85%) in an ice bath for at least 30 130 

min followed by bath sonication (Elmasonic S100H, Germany) for 15 min. The suspension was 131 

used immediately after preparation. Working solutions of other concentrations were prepared by 132 

stepwise dilution of stock suspension with egg water. The Ti4+ (ionic portion of nTiO2), was also 133 

quantified based on Samaee et al. (2015). 134 

 135 

2.6. nTiO2 characterization  136 

The characterization was made at two times: 1) immediately after preparation of the 137 

nTiO2 suspension (before waterborne exposure) and 2) 24 h after preparation of the nTiO2 138 
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suspension (after waterborne exposure) (Kim et al. 2014). Suspension samples at both time 139 

points were collected from the center of the water column (Clemente et al. 2014) and the 140 

undisturbed top layer (Dalai et al. 2012). Samples were analyzed, as described below, at room 141 

temperature. Experiments were carried out in triplicate to calculate the standard deviation (Dalai 142 

et al., 2012). 143 

nTiO2 morphology (Zhu et al., 2008) and primary particle diameter were determined by 144 

transmission electron microscopy (TEM). Twenty µL of nTiO2 (100 ppm) was pipetted onto 145 

carbon-coated copper grids (Formvar carbon coated grid Cu Mesh 300, EMS, USA) then dried in 146 

a laminar flow hood for 24 h. The microscope (Zeiss EM10C, USA) was operated in bright field 147 

mode. Specimens were observed with a Bosch camera (Germany) at an accelerating voltage of 148 

100 kV. Particle size distribution (PSD) was statistically computed from 107 particles viewed in 149 

a series of images using ImageJ software 1.48 (Wayne Rasband, National Institutes of Health, 150 

USA [http://imagej.nih.gov/ij]) (Kim et al. 2014; He et al. 2014). The PSD, average 151 

hydrodynamic diameter, polydispersity index (PDI), and surface charge (zeta potential) were 152 

characterized by dynamic light scattering (DLS) (Zetasizer Nano ZS instrument [Malvern 153 

Instruments, Zen 3600, UK]). One mL of 1 µg/mL nTiO2 suspension was analyzed using a 154 

refractive index of nR=2.5 (https://refractiveindex.info/?shelf=main&book=Ti&page=Johnson) 155 

at 25 °C. Egg water without particles was the control. Three independent measurements were 156 

taken with 3 readings per time point (at 0 and 24 h post suspension preparation), each reading 157 

consisting of six runs of 10 s duration (Faria et al. 2014). 158 

The concentration (colloidal stabilities) of the 0.01, 10, and 1000 µg/mL suspensions 159 

were estimated by visible spectroscopy using a UV/Vis/Nir Spectrophotometer (lambda 950, 160 

PerkinElmer Inc., USA) (Paterson et al. 2011). In brief, nTiO2 standards were prepared as 10, 20, 161 

https://refractiveindex.info/?shelf=main&book=Ti&page=Johnson
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33, 50, and 100-fold dilutions of the stock suspension in egg water and re-sonicated for 10 s. The 162 

standards were used to generate a linear concentration curve at the wavelength of maximum 163 

absorbance (321 nm) for the Degussa P-25 material suspended in egg water. Sample absorbance 164 

was used to estimate its concentration from the standard curve.  165 

Attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) 166 

characterization of nTiO2 was carried out in the 650–4000 cm-1 range, with a resolution of 4 cm-1 167 

at room temperature using a Nexus 470 FTIR spectrometer (Thermo-Nicolet, USA).  168 

 169 

2.7. Exposure procedure (or protocol) 170 

A static renewal fish embryo toxicity test was performed with three nTiO2 concentrations 171 

(0.01, 10, and 1000 μg/mL), Ti4+ (0.0001 μg/mL), and a negative control (egg water). This 172 

concentration range includes 1) the LC50 for 96 h acute fish toxicity and the EC50 in the fish 173 

embryo test for 73 chemicals (Lammer et al. 2009), 2) the predicted realistic and high emission 174 

environmental concentrations for nano-nTiO2 in water (0.0007 and 0.016 μg/mL, respectively) 175 

(Mueller and Nowack 2008), and 3) extends both below and above the concentration range of 176 

prior studies of zebrafish exposed to water-borne nTiO2 (Clemente et al. 2014; Wang et al. 2014; 177 

Yan et al. 2014). Exposure procedure of embryo-larvae was carried out based on Samaee et al. 178 

(2015).  179 

Embryo-larvae were exposed to nTiO2  from day 0 (at 4 hpf [the sphere stage of the 180 

blastula stage – Yan et al. 2014]) to day 6 (incomplete yolk resorption). This time period 181 

normally spans from egg fertilization to the time of hatch and then to yolk resorption of the sac 182 

fry following a well characterized set of developmental stages. The embryo-larvae grew on yolk 183 

nutrients, and were not fed.  184 



9 
 

On day 6 (130 hpe) the exposure solution (egg water containing Ti4+ or nTiO2) was 185 

replaced with egg water for a depuration period of 4 days (see studies of Paterson et al. [2011] on 186 

Japanese medaka). From day 6 to day 9 (202 hpe) larvae were fed Paramecium spp. twice daily 187 

(Varga 2011). On day 5 to 6 the digestive tract opens and digestive enzymes are secreted, 188 

suggesting the larval fish can begin exogenous feeding even though the yolk sac is not yet 189 

completely depleted (Holmberg et al. 2004). Culture medium was completely changed after each 190 

feeding.  191 

Plates were examined at 34, 58, 82, 106, 130, 154, 178, and 202 hpe. These times 192 

correspond with known developmental stages: 34 hpe (embryonic stage); 58 hpe (hatching); 82 193 

hpe (yolk sac larva/eleutheroembryos [stage between hatching and start of external feed intake] 194 

[Oliver et al. 2015]); 106 hpe (gas bladder inflation [Goolish and Okutake 1999], 4 mm free 195 

swimming larva [Chen et al. 2011], and opening of gut end to end [Wilson 2012]); 130 hpe 196 

(initiation of exogenous feeding while yolk sac is not yet completely depleted [Holmberg et al. 197 

2004]); and 157 hpe (complete depletion of yolk sac [Jardine and Litvak 2003; Wilson 2012]) 198 

(Figure 1). 199 

At each time point, the following were recorded: i) HR, ii) mortality rate (dead embryo-200 

larvae were removed), and iii) morphometries of four embryo-larvae specimen (for embryo-201 

larvae biometry). The exposure solution was completely changed at each time point (Kim et al. 202 

2014). 203 

 204 

2.8. Recording of endpoints 205 

2.8.1. Morphometric characteristics (MCs) 206 
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Four embryo-larvae specimens were randomly taken at each sampling time from each 207 

treatment. They were fixed in 10% neutral buffered formalin for 24 h (Vicario-Parés et al. 2014).  208 

Photomicrographs were taken of the fixed specimens (Figure 2) using a stereomicroscope 209 

(Zeiss) equipped with a digital camera (Carl Zeiss Inc.). Digital images were processed with 210 

Image J 1.48 to quantify embryo-larvae morphometric characteristics (Figure 3).  211 

 212 

2.8.2. Calculation of embryo-larvae viability parameters 213 

Viability calculations included the following: 1) Hatching rate, HR=(Hatched embryos 214 

/Total number of cultured embryos)×100) at 58, 82, and 106 hpe; and 2) survival rate, SR=(Alive 215 

larvae/Total number of cultured embryo-larvae)×100) at 34, 58, 82, 106, 130, 154, 178, and 202 216 

hpe. HR and SR descriptive statistics (mean, standard deviation [SD], and coefficient of variation 217 

[CV]) were calculated. LC50 values and their 95% confidence intervals for nTiO2 exposure\were 218 

assessed by Probit analysis using SPSS IBM (version 20; SPSS Inc., Chicago, IL, USA). 219 

 220 

2.9. Statistical analysis 221 

Data normality was tested by the Anderson-Darling method. Univariate analysis of 222 

variance (ANOVA; followed by Duncan’s multiple range post hoc test) and cluster analysis 223 

(followed by multivariate analysis of variance [MANOVA]) were used to test for differences 224 

among treatment groups for HR, SR, and MCs. A p-value of 0.05 was accepted for statistical 225 

significance. Simple regression models were formulated to characterize MCs and the endpoints 226 

that are correlated to HR and SR. A p-value of <0.002 was accepted for determining the level of 227 

significance for the regression analysis; considered to be the statistical significance threshold 228 

after applying the Bonferroni's adjustment for the critical value of p<0.05 to minimize the chance 229 
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of type I statistical error. All statistical analyses were performed using IBM SPSS (version 20; 230 

SPSS Inc., Chicago, IL, USA), and Excel 2010 (Microsoft Corporation, Redmond, WA, USA). 231 

 232 

3. Results  233 

3.1. nTiO2 characteristics 234 

TEM images of nTiO2 are shown in Figure 4a and f. The nTiO2 particles were 235 

approximately polyhedral with rounded borders with relatively uniform size distribution. Their 236 

diameter (mean [SD] = 22 [5] nm), was consistent with the manufacturer-reported value (21 nm; 237 

see section 2.4). 238 

The intensity-averaged hydrodynamic diameter distribution of nTiO2 dispersed in egg 239 

water is shown in panels b and g of Figure 4. The average particle diameter (Z-average) and PDI 240 

of the nTiO2 immediately after preparation of the nTiO2 suspension (Figure 4b), were 197 [1] nm 241 

and 0.16 [0.01] (mean [SD]) (less than 0.25, indicating that the suspension was monodispersed 242 

without significant aggregation [Li et al. 2013]). The parameters 24 h after preparation were 192 243 

[6] nm and 0.15 [0.02] (mean [SD]) (Figure 4g).   244 

Zeta potential was 34 [1] (mean [SD]) mV (Figure 4e), immediately after preparation of 245 

the nTiO2 suspension and 16[0] (mean [SD]) mV (Figure 4j), 24 h after its preparation. The zeta 246 

potential was quite high immediately after nTiO2 suspension preparation (Figure 4e) what 247 

indicates a low tendency to agglomeration. The decrease of this value 24 h later (Figure 4j) 248 

indicates an increased tendency to agglomerate.  249 

Visible spectrophotometry indicated a significant decrease in the concentration of 250 

dispersed nTiO2 from 0 to 24 h after its preparation; the nTiO2 concentration of 500 µg/mL 251 

immediately after suspension preparation decreased to 4 0 µg/mL after 24 h. This is not 252 
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surprising, because in suspension, nTiO2 tends to form large particles and most of the 253 

agglomerates settle out (Adams et al. 2006). Dr. José M. Navas (Department for the 254 

Environment, INIA, Spain) suggested that this does not indicate a change in the nTiO2 255 

concentration in the entire nTiO2 dispersion, but that nTiO2 is not present in the water column 256 

(personal communication 2017). Chen et al. (2011) suggest that although sedimentation occurs, 257 

the embryo-larvae are constantly exposed to the nTiO2 aggregates during the bioassay because 258 

the embryo-larvae are mostly located on the bottom of microplates before they can freely swim. 259 

The FTIR spectra of nTiO2 (Figure 4k-m) clearly shows two bands. The first, observed at 260 

3250 cm-1, corresponds to the stretching vibration of the hydroxyl group (O-H) of the nTiO2. The 261 

second around 1630 cm-1 corresponds to bending modes of water Ti-OH (Nadica et al. 2006; 262 

Mugundan et al. 2015; León et al. 2017). The FTIR spectra at 0 (Figure 4k), 12 (Figure 4l), and 263 

24 h (Figure 4m) after nTiO2 suspension preparation are the same, suggesting no modification of 264 

the NP surface chemistry in these 24 h. For the results of titanium analysis, see Samaee et al. 265 

(2015). 266 

 267 

3.2. Effect of Ti+4 on HR, SR, and MCs  268 

To determine if there was any contribution of the soluble fraction to the nTiO2 response, 269 

embryos-larvae were exposed to the 0.0001 μg/mL Ti+4, the concentration of the soluble fraction 270 

of nTiO2. No significant difference of HR, SR, and MC (>0.05) was detected when comparing 271 

embryo-larvae exposed to Ti+4 to controls (Table 1).  272 

 273 

3.3. Differences among treatments concerning HR 274 
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nTiO2 had a significant effect on HR at 58 hpe (Figure 5a), but not 82 hpe (Figure 5b), or 275 

106 hpe (Figure 5c). Cluster analysis, based on descriptive statistics (mean, SD, and CV) of HR 276 

(Figure 5j), categorized the four treatments (0, 0.01, 10, and 1000 μg/mL nTiO2) into separate 277 

statistical groups. The validity of the statistical groups was verified by MANOVA. There are 9 278 

distinct statistical groups in the HR dendrogram (Figure 5j, Roman numerals). Although in some 279 

cases there are individuals from the same treatment within different clusters, the majority of the 280 

clusters were based on the same treatment and there was clear separation of the endpoints related 281 

to the exposure concentration.  282 

 283 

3.4. Differences among treatments concerning SR 284 

The mortality rate was between 12.3 [6.8]% and 7.8 [4.8]% (mean [SD]) in the nTiO2-285 

exposed embryo-larva and controls, respectively. There was a significant variation among 286 

treatments concerning SR at 58 hpe (Figure 5d), 82 hpe (Figure 5e), 106 hpe (Figure 5f), 130–287 

154 hpe (Figure 5g), 178 hpe (Figure 5h), and 202 hpe (Figure 5i).  Cluster analysis of SR 288 

(Figure 5k) categorized the four nTiO2 treatments into 8 statistically distinct groups in the 289 

dendrogram (Figure 5k Roman numerals). We were unable to determine a LC50 for nTiO2. 290 

 291 

3.5. Relationship between HR and SR 292 

The SR at 106, 130–154, 178, and 202 hpe was significantly correlated (Figure 5 m-p) to 293 

HR at 106 hpe (the time to hatch of all live embryos [total hatching]). But there was no 294 

significant relationship between SR and HR at 34 (the day of onset of hatching only in 1000 295 

µg/mL nTiO2-exposed embryo groups), 58 (the day of onset of hatching in 0, 0.01, and 10 296 

µg/mL nTiO2-exposed embryo groups), and 82 (time to 60% hatch) hpe. 297 
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 298 

3.6. nTiO2-induced morphological responses 299 

We detected a concentration-dependent precipitation of nTiO2 on embryos within 34 h of 300 

exposure (Figure 2, panels a-h) and nTiO2 precipitation on larvae at 58 hpe (Figure 2, panels m-301 

r). Embryos exposed to nTiO2 showed an accelerated (premature) hatching Figure 5 (a). We also 302 

observed that early hatched embryos had a significantly (ANOVA; p<0.001) smaller size (mean 303 

[SD] = 2.12 [0.24] mm) and larger yolk sac relative to body size (i.e. a lower TBL to BD-II ratio; 304 

mean [SD] = 2.83 [0.40]) at 34 hpe (Figure 2, panels i-l) compared to control (mean [SD] = 2.87 305 

[0.11] mm and mean [SD] = 4.28[0.29], respectively) (Figure 2, at 58 hpe: panel m). Some of the 306 

nTiO2-exposed animals (mean [SD] = 8.0 [3.1]%) also had a bent trunk at 58 hpe (Figure 2, 307 

panels n, p-r).  308 

Figure 2 illustrates a concentration-dependent depletion of the yolk sac at 82 (panels s-v) 309 

and 106 hpe (panels w-z) and nTiO2 precipitation on larvae at 82 (panel v), 106 (panel z), and 310 

130 hpe (panel ad). A clear morphological difference among nTiO2 treatment groups was not 311 

found at 130, 154, 178, and 202 hpe. 312 

 313 

3.7. Variation among treatments concerning MCs 314 

The nTiO2-exposed groups significantly differed from controls for the changes in MCs at 315 

82 hpe (for BL-82, PoPB-82, BL/APB-82, BL/BD2-82, BL/HL-82, APB/PoPB-82, PoPB/BD1-316 

82, and PoPB/BD2-82 [Table 1, rows 13-14, 16, 18-20, 22-23]). Significant differences were 317 

also seen at 106 hpe (for APB-106, BD1-106, BD2-106, BL/PoPB-106, BL/BD1-106, BL/BD2-318 

106, APB/PoPB-106, PoPB/BD1-106, PoPB/BD2-106, and BD1/HL-106 [Table 1, rows 25-27, 319 

29-31, 33, 36-38]), 130 hpe (for APB/BD1-130 [Table 1, row 41]), 178 hpe (for PoPB-178, 320 
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BL/BD2-178, PoPB/BD2-178, and BD1/BD2-178 [Table 1, rows 50-51,  54-54]), and 202 hpe 321 

(for BL-202, PoPB-202, BL/BD1-202, BL/BD2-202, PoPB/BD1-202, and PoPB/BD2-202 322 

[Table 1, rows 55-60]).  323 

Embryo-larva exposed to 0.01, 10, and 1000 μg/mL significantly differed from each other 324 

based on 9 MCs (BD1 at 106 hpe [denoted as BD1-106], BD2-106, BL/APB-106, APB/HL-106, 325 

APB-154, HL-154, APB/BD1-178, BD1/HL-202, and BD2/HL-202 [Table 1, rows 26-28, 35, 326 

42-43, 52, 61-62]), 9 (BD2-106, BL/APB-106, BL/HL-106, APB-130, HL-130, APB/BD1-154, 327 

BL-178, APB-178, and BD1/BD2-178 [Table 1, rows 27-28, 32, 39-40, 45, 48-49, 54]), and 13 328 

(for BD1-82, BL/PoPB-82, BL/BD2-82, APB/BD1-82, PoPB/BD1-82, PoPB/HL-82, BD2-106, 329 

BL/PoPB-106, APB/PoPB-106, APB/BD2-106, BL/BD2-154, PoPB/BD2-154, and BD1/BD2-330 

154 [Table 1, rows 15, 17-18, 21-22, 24, 27, 29, 33-34, 44, 46-47]), respectively. 331 

Cluster analysis was performed on MCs (Figure 5l) that categorized the four nTiO2 332 

treatments into separate statistical groups, to create a dendrogram that allows visual examination 333 

of the distribution of the four treatment groups. There was a significant separation based on the 334 

concentration of nTiO2. There were 9 (Figure 5l, the Roman numerals) distinct groups in the 335 

dendrograms. Although in some cases there are individuals from the same treatment group 336 

within different clusters, the majority of the clusters were based on the same treatment and there 337 

was clear separation of the endpoints that were related to the exposure concentration.  338 

 339 

3.8. Relationship of MCs with HR and SR 340 

The MCs (as dependent variables) significantly (either negatively [boldface] or 341 

positively) correlated to HR (as the independent variable) at 58 (Table 2, rows 1-17), 82 (Table 342 

2, rows 18-25), and 106 (Table 2, rows 26-32) hpe by 32 simple regression models. SR and its 343 
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standard deviation (SRSD) (Table 3) at 106 (row 1), 130 (rows 2-12), 178 (rows 13-29), and 202 344 

(rows 30-55) hpe were significantly negatively (Table 3, boldface) or positively correlated to 345 

MCs (or their ratios) at 82 (Table 3, rows 1, 2, 4, 5, 13, 20, 21, 34, 35, 36-41), 106 (Table 2, rows 346 

3, 14, 42-46), 130 (Table 3, rows 6-12, 22-28), 154 (Table 3, rows 30, 47-51), 178 (Table 3, rows 347 

15-19, 29, 31-33, 52, and 53), and 220 (Table 3, rows 54 and 55) hpe by 55 simple regression 348 

models.  349 

 350 

4. Discussion  351 

Embryo-larvae viability parameters (such as “hatching events” and “survivability” at 352 

different embryo/larvae stages) are important endpoints that have been  used as criteria (1) to 353 

characterize nTiO2-induced general responses in zebrafish (Yeo and Jo,2007; Xu et al. 2012; 354 

Kovrižnych et al., 2013; Wang et al., 2014), (2) to evaluate the effects of exposure to nTiO2 on 355 

survivability in a disease outbreak (Jovanovic et al., 2015), (3) to characterize toxicity of 356 

different nTiO2 formulations (Clemente et al., 2014), (4) to assess effect of light on nTiO2 357 

toxicity (Ma et al., 2013; Clemente et al., 2014), (5) to survey nTiO2 toxicity combined with 358 

other chemicals (Yan et al.,2014), (6) to discriminate the toxicity of different forms of nTiO2 359 

(ion, particle, and bulk) (Vicario-Parés et al., 2014), and (7) to follow nTiO2 toxicity in offspring 360 

(Fouqueray et al., 2013). Embryo-larvae phenotypic characteristics are other most common 361 

endpoints that are considered to characterize nTiO2 toxicity in zebrafish embryo-larvae.  362 

In the studies mentioned in the previous paragraph embryo-larvae viability parameters 363 

such as “hatchability” and “survivability” (in most studies at a single embryonic/larval stage) and 364 

phenotypic responses were considered as independent endpoints to characterize nTiO2-induced 365 

toxicity. None of the studies evaluated relationships either among viability parameters (e.g. 366 
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between hatching events and survivability) or between viability parameters and other endpoints 367 

(e.g. between phenotypic alterations and hatching events or survivability). The experimental 368 

design of the above mentioned studies did not enable them to explore such relationships. 369 

Evaluation of such relationships needs more endpoints, i.e. a big data set while prior studies used 370 

limited endpoints to address their hypotheses. In the earlier studies the phenotypic analyses of 371 

nTiO2-induced defects was performed based upon morphological characteristics. Generating 372 

quantitative data from morphometric characteristics (MC) has been largely ignored or under-373 

used. 374 

In the current study “hatchability”, “survivability”, and 21 morphometric characteristics 375 

(each at multiple times, both during nTiO2 exposure and a depuration period) were determined to 376 

characterize nTiO2-induced toxicity in zebrafish embryo-larvae. In fact, 171 sub-lethal (i.e. 377 

hatchability at 3 times and 21 morphometric characteristics at 8 time points) and survivability at 378 

8 times were used to address the hypotheses of this study. The values of the 179 endpoints 379 

provided with enough data to define relationships between sub-lethal endpoints (e.g. between 380 

hatching events and morphometric alterations) and between sub-lethal and acute endpoints (e.g. 381 

between survivability and hatching event or morphometric alterations). To our knowledge the 382 

current study is the first in which morphometric alterations have comprehensively been 383 

considered to characterize nTiO2-induced toxicity. 384 

 385 

4.1. Ti+4 concentration  386 

In the current study, Ti+4 accounted for less than 0.00001% of the total titanium content 387 

in the nTiO2. This is consistent with reports where the titanium was cited as a low concentration 388 

element in aquatic ecosystems (Orians et al. 1990; Croot 2011), artificial solutions (Kumazawa 389 
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et al. 2002; Yamamoto et al. 2004; Zhu et al. 2008; Johnston et al. 2010; Vicario-Parés et al. 390 

2014; He et al. 2014), and in the aqueous environment of cells (Kumazawa et al. 2002). 391 

 392 

4.2. Comparison of Ti+4-treated groups with control  393 

There were no significant differences between Ti+4-treated groups and controls 394 

concerning HR, SR, and MC, i.e. 0.0001 μg/mL Ti+4 did not have any effect on embryo-larvae 395 

morphometrics and viability (Table 1). This is hypothesized to be attributed to the fact that 396 

0.0001 μg/mL is a relatively low exposure concentration of Ti+4 (Monteith et al. 1993; Liao et al. 397 

1999; Cadosch et al. 2009). 398 

 399 

4.3. nTiO2-induced variation in SR and HR  400 

Statistical analyses based on SR descriptive statistics at 58, 82-154, 178, and 202 hpe 401 

revealed significant variability among nTiO2-exposed and unexposed embryo-larvae, even at 402 

environmentally-relevant concentrations (0.01 µg/mL [Mueller and Nowack 2008]) but also 403 

among the nTiO2-exposed groups. The findings contradict some early studies in which zebrafish 404 

embryo-larvae (Zhu et al. 2008; Xu et al. 2012; Kovrižnych et al. 2013; Vicario-Parés et al. 405 

2014), medaka (Paterson et al. 2011), and fathead minnow (Jovanović et al. 2011a) have been 406 

cited as low sensitive models to nTiO2 acute toxicity. 407 

By day 4 (106 hpe), all individuals had hatched. There was no statistically significant 408 

difference between treatment groups concerning HR (Figure 5c). This is contrary to the study of 409 

Yan et al. (2014) in which the exposure of embryos to 40 mg/L of nTiO2 led to a significantly 410 

decreased HR compared to lower concentrations and controls. The different biological responses 411 

to nTiO2 exposure observed among studies might be attributed to characteristics of the 412 
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nanoparticles (size [Lovern and Klaper 2006], crystal form [Zhu et al. 2009], morphology, 413 

chemical composition [Wiesner et al. 2006]), dispersant (e.g., pH [Pettibone et al. 2008; French 414 

et al. 2009], ionic strength [Truong et al. 2012]), as well as the exposure protocol (e.g. duration 415 

of exposure [Federici et al. 2007]).   416 

Hatching began on day 2 (34 hpe). Early hatching (2% at 34 hpe) was only observed in 417 

1000 µg/mL nTiO2-exposed embryos. There was a significant concentration-dependent HR 418 

difference among nTiO2-exposed and unexposed groups at 58 hpe (Figure 5a). At 82 hpe > 50% 419 

of embryos hatched (Figure 5b) with a concentration-dependent difference among the four 420 

treatment groups. The data show a concentration-dependent acceleration in hatching in nTiO2-421 

exposed treatment groups (0.01, 10, and 1000 µg/mL) compared to control. 422 

nTiO2-induced changes in hatching time have also been observed in other studies, e.g. in 423 

the studies of Kovrižnych et al. (2013), Ma and Diamond (2013), Fouqueray et al. (2013), and 424 

Samaee et al. (2015) the effects of nTiO2 on hatching time were reported as accelerated 425 

(premature) hatching while in the study of Xu et al. (2012), the effects were reported as delayed 426 

hatching.  427 

The above results show a lack of significant difference among treatment groups 428 

concerning total hatching while there was significantly variability concerning hatching time. This 429 

illustrates that the hatching time is a more sensitive endpoint to characterize nTiO2-induced 430 

responses compared to total hatching, consistent with Barton (2002) who suggested the change in 431 

hatching time as an important stress response of fish larvae. 432 

 433 

4.4. Relationship of SR with hatching events 434 
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Many available nanomaterials (e.g. nTiO2) do not exhibit a difference in LC50 values 435 

between the egg and larvae stage (Kovrižnych et al. 2013), or cause lethal effects unless the 436 

concentrations are grossly exaggerated. Thus, the possibility to evaluate hatching events such as 437 

hatching time and calculate a concentration that can induce premature or delayed hatching is 438 

important (Kovrižnych et al. 2013). Despite the reported effects of nTiO2 on hatching time both 439 

in the current study and earlier studies (Xu et al. 2012; Kovrižnych et al. 2013, Ma and Diamond 440 

2013, Fouqueray et al. 2013, and Samaee et al. 2015), the relationship of the nTiO2-induced 441 

change in hatching time and total hatching to embryo-larvae development and survivability in 442 

zebrafish has yet to be determined. 443 

As an attempt to address the question in this study, SR at different larval stages (106, 444 

130, 154, 178, and 202 hpe) was found to be significantly correlated to HR at 106 hpe (time to 445 

hatch of all live embryos [or total HR]) while the SR was not correlated to the nTiO2-induced 446 

change in hatching time (HR at 58 [the day of onset of hatching in all treatment groups] and 82 447 

[time to 60% hatch]) hpe. This means that although the magnitude of total hatching can 448 

significantly affect embryo-larvae survivability, the nTiO2-induced change in hatching time does 449 

not directly affect the survivability. 450 

 451 

4.5. nTiO2-induced morphological variation among treatments 452 

We detected a concentration-dependent nTiO2 precipitation on the embryos within 34 h 453 

of exposure (Figure 2, panels a-h), consistent with Bai et al. (2010), Paterson et al. (2011), and 454 

Yan et al. (2014). When the concentration of nTiO2 was increased to 1000 µg/mL the egg 455 

envelope surface became turbid and difficult to observe (Figure 2, panel g and h). Embryos 456 

exposed to nTiO2 showed accelerated hatching (Figure 2 panels g-l), compared to controls 457 
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(panels a-b) at 34 hpe. For changes in hatching time see Paterson et al. (2011) and references 458 

therein.  459 

We observed that early hatched embryos had a significantly smaller size (mean [SD] = 460 

2.12 [0.24] mm) and larger yolk sac relative to body size (a lower TBL to BD-II ratio; mean 461 

[SD] = 2.83 [0.40]) (Figure 2, panels i-l) compared to control (mean [SD] = 2.87 [0.11] mm and 462 

mean [SD] = 4.28 [0.29], respectively) (Figure 2, panel m). This has been reported for medaka 463 

(Leung and Bulkley 1979; Paterson et al 2011) and in an earlier study on zebrafish (Samaee et al. 464 

2015) following nTiO2 exposure. Such phenotypic alterations have already been discussed by 465 

Samaee et al. (2015). 466 

Other observations included bent trunk larvae at 58 hpe (Figure 2, panels 1, n, p-r) and 467 

the presence of nTiO2 precipitation on larvae at 58 (Figure 2, panels n-r), 82, 106, and 130 hpe 468 

(Figure 2, panels v,z,ad). The bent trunk was the only nTiO2-induced abnormality observed in 469 

the current study, consistent with Yan et al. (2014) who reported no significant morphological 470 

abnormality in zebrafish embryos exposed to nTiO2 suspensions of different concentrations. In 471 

earlier studies other types of nTiO2-induced morphological abnormalities have been reported 472 

(Yeo and Kang 2009; Yeo and Kim 2010; He et al. 2014; Wang et al. 2014; Yan et al. 2014). 473 

The variations in nTiO2-induced morphological responses observed in different studies can be 474 

attributed to the characteristics of the nanoparticles (Lovern and Klaper 2006; Zhu et al. 2009; 475 

Wiesner et al. 2006), dispersant (Pettibone et al. 2008; French et al. 2009; Truong et al. 2012), as 476 

well as exposure protocol (Federici et al. 2007).  477 

The lack of clear morphological differences among nTiO2 treatments at 130, 154, 178, 478 

and 202 hpe (Figure 2) shows that the morphological changes observed at early larval stages, 34, 479 

58, 82, and 106 hpe (Figure 2) disappear at advanced developmental stages. Therefore, the 480 
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morphological changes observed in the current study could not be considered as potential 481 

endpoints (markers) to predict zebrafish embryo-larvae success (survivability). 482 

 483 

4.6. nTiO2-induced morphometric variation among treatments 484 

A cluster analysis placed the four nTiO2 treatment groups into separated statistical groups 485 

(Figure 5l). The analysis revealed that there was significant morphometric variation between 486 

nTiO2-exposed and unexposed groups, but also among the exposed groups. These morphometric 487 

variabilities reveal the potential of the MCs to characterize nTiO2-induced responses of embryo-488 

larvae even at environmentally-relevant concentrations (0.01 μg/mL; Mueller and Nowack 489 

2008).  490 

 491 

4.7. Relationship of MCs with HR and SR  492 

In the current study morphometric alterations were found to be stable through all 493 

zebrafish larval stages, therefore contrary to morphological changes, those that disappeared at 494 

advanced larval stages can be nominated as potential endpoints to predict larval success. To 495 

evaluate this potential, simple regression models were formulated between MCs and SR. Based 496 

on the regression models, MCs significantly correlated to HR, SR, or both. Regarding the 497 

significant associations, three groups of MCs were characterized: 498 

The first group of MCs (Tables 2 and 3, non-underlined data) significantly correlated 499 

(either positively or negatively [boldface]) to HR (at 58, 82, and 106 hpe) and SR (during nTiO2 500 

exposure [106 and 130 hpe] and during depuration [178 and 202 hpe). The relationship of these 501 

MCs with HR at 58, 82, and 106 hpe shows that the morphometric variations are a consequence 502 

of the nTiO2-induced changes in hatching time. The synchronous association of the MCs with 503 
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both HR and SR indicates an indirect effect of the nTiO2-induced change in hatching time on 504 

survivability. 505 

The second group of MCs significantly correlated to hatchability at 58, 82, and 106 hpe 506 

(Table 2, underlined data) but was not significantly associated with SR. This means that the 507 

morphometric alterations induced by the change in hatching time do not affect embryo-larvae 508 

SR.  509 

The third group of MCs was correlated to SR but not HR (during nTiO2 exposure [106 510 

and 130 hpe] and during depuration [178 and 202 hpe [Table 3, underlined data]). This shows 511 

that the alteration in this group of MCs cannot be attributed to the nTiO2-induced changes in 512 

hatching time. Probably they have appeared either during exposure of developing larvae to nTiO2 513 

(SR at 106 and 130 hpe) or during depuration (SR at 178 and 202 hpe).  514 

On one hand the presented relationships in the three above paragraphs show that two 515 

groups of MCs (group 1 [Tables 2 and 3, non-underlined data] and group 3 [Table 3, underlined 516 

data]) are significantly correlated to SR. The significant associations of the two groups of MCs 517 

with SR clearly highlight the potential of morphometric alterations (as sublethal endpoints) to 518 

predict survivability (as an acute endpoint). On the other hand the synchronous correlation of the 519 

group 1 MCs [Tables 2 and 2, non-underlined data] with both HR and SR demonstrates the 520 

significant effect of the nTiO2-induced change in hatching time on embryo-larvae survivability 521 

(as the one of objectives of the study). 522 

In general, a key element complicating the establishment of a link between exposure and 523 

a health defect is the time that elapses between exposure and outward response or development 524 

of the health defect (Gluckman et al. 2008; Barouki et al. 2012). Thus, it may take years for an 525 

individual to present a health defect and in addition may pass on these adverse health effects to 526 
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future generations (Jirtle and Skinner 2007). In zebrafish the morphometric alterations appeared 527 

within a short period of exposure to different concentrations of nTiO2 (even at environmentally-528 

relevant concentrations) and could predict later-in-life consequences of an embryonic exposure 529 

to nTiO2. Therefore zebrafish can be considered as a potential biological predictor of the acute 530 

toxicity of nTiO2. This is contrary to studies in which the embryo-larvae of zebrafish (Zhu et al. 531 

2008; Xu et al. 2012; Kovrižnych et al. 2013), medaka (Paterson et al. 2011), and fathead 532 

minnow (Jovanović et al. 2011a) have been cited as low sensitive models to nTiO2 acute toxicity 533 

based solely on the failure to generate LC50 at environmentally-relevant concentrations. 534 

 535 

4.8. Conclusions  536 

1) In the current study, univariate and multivariate analyses that included HR and SR, as 537 

well as MC values differentiated nTiO2-induced responses (even at environmentally-relevant 538 

concentrations) of zebrafish embryo-larvae. 2) Exposure of embryos to nTiO2 led to a significant 539 

concentration-dependent change in hatching time (an nTiO2-accelerated [premature] hatching), 540 

consistent with previous studies. 3) Total hatching (HR at 106 hpe) was significantly correlated 541 

to SR but there was not a significant relationship between the change in hatching time (HR at 34, 542 

58 and 82 hpe) and SR. This suggests that the nTiO2-induced change in hatching time does not 543 

directly affect embryo-larvae survivability. 4) Larval morphometric alterations were significantly 544 

correlated to both nTiO2-induced change in hatching time and total hatching, suggesting that 545 

nTiO2-induced changes in hatching events can affect embryo-larvae development. 5) Most of the 546 

evaluated morphometric variations were significantly correlated to both the change in hatching 547 

time and SR. This clearly provides evidence of the indirect effect of the nTiO2-induced change in 548 

hatching time on embryo-larvae survivability in zebrafish. 6) The MCs whose variations are 549 
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correlated to embryo-larvae SR can be considered as potential endpoints to predict embryo-550 

larvae survivability in an nTiO2-toxicity test. 7) The above mentioned findings provide evidence 551 

of the significant influence of the hatching events, i.e. nTiO2-induced change in hatching time 552 

and total hatching, on zebrafish embryo-larvae development and survivability. 8) The results 553 

suggest zebrafish can be considered as a potential biological predictor of the acute toxicity of 554 

nTiO2. 555 
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TABLES 761 

TABLE 1: Comparison of treatment groups (0, Ti+4, 0.01, 10, and 1000 µg/mL) concerning 762 

magnitude of TiO2-induced changes in morphometric characteristics.   763 

Footnote: Data are mean [SD]. Values superscripted with the same letter are not significantly 764 

different, p < 0.05. See the legend of Figure 3 for abbreviations of the morphometric 765 

characteristics (MCs). 766 

 767 

TABLE 2: Simple regression equations, correlation (r2), F and p values of the significant 768 

relationships found between the hatching rate (HR; at 58, 82, and 106 hpe) and the morphometric 769 

characteristics (MC; at 82, 106, 130, 154, 178, and 202 hpe).  770 



35 
 

Footnote: The non-underlined, underlined, and boldface data show MCs that are correlated to 771 

both HR and SR, are only correlated to HR, and are negatively correlated to HR and/or SR, 772 

respectively. See figure 3 legend for MC abbreviations. 773 

 774 

TABLE 3: Simple regression equations, explanatory effect (r2), F and p values of the significant 775 

relationships between the mean and standard deviation (SRSD) of survival rate (SR at 106, 130, 776 

178, and 202 hpe) and morphometric characteristics (MC at 82, 106, 130, 154, 178, and 202 777 

hpe). 778 

Footnote: The non-underlined, underlined, and boldface data show MCs that are correlated to 779 

both HR and SR, are only correlated to SR, and are negatively correlated to HR and/or SR, 780 

respectively. See figure 3 legend for MC abbreviations.  781 

 782 

 783 

FIGURES 784 

FIGURE 1: The zebrafish embryo-larvae observation time points. 785 

 786 

FIGURE 2: Photomicrographs of zebrafish embryo-larvae. Images are zebrafish embryo-larvae 787 

at 34, 58, 82, 106, 130, 154, 178, and 202 hpe exposed to 0 (control), 0.01, 10, and 1000 μg/mL 788 

nTiO2. Scale bar, 1 mm. 789 

 790 

FIGURE 3: Morphometric characteristics determined in zebrafish embryo-larvae. The 791 

landmarks on the zebra fish larvae schematics depict the characteristics that were utilized for 792 

screening nTiO2-induced responses. TBL (total body length): greatest horizontal body distance 793 
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― anterior-most part of head to the end of body. APB (anterior part of body): anterior-most part 794 

of head to the posterior-most insertion of yolk sac. PoPB (posterior part of body): the posterior-795 

most insertion of yolk sac to the end of body. HL (head length): anterior-most part of head to the 796 

place where the head is connected to the body. BD-I (body depth I): vertical distance from 797 

posterior-most insertion of yolk sac to upper surface of body. BD-II (body depth II): greatest 798 

vertical body distance. Fifteen ratios were calculated from the six morphometric characteristics 799 

TBL/APB, TBL/PoPB, TBL/BD-I, TBL/BD-II, TBL/HL, APB/PoPB, APB/BD-I, APB/BD-I, 800 

APB/HL, PoPB/BD-I, PoPB/BD-II, PoPB/HL, BD-I/BD-II, BD-I/HL, and BD-II/HL. 801 

 802 

FIGURE 4: Physicochemical characteristics of nTiO2 particles. (a,f) TEM micrographs for 803 

nTiO2 nanoparticles dispersed in test solution (egg water) immediately after suspension 804 

preparation (a) and after 24 h (f). (b-e, g-j) nTiO2 particle size at times representing exposure 805 

conditions immediately after suspension preparation (b-d), and 24 h later (g-i). (e, j) Z-potentials 806 

of nTiO2 in egg water. ATR-FTIR spectra for nTiO2 immediately after preparation of suspension 807 

(k), and after 12 (l) and 24 h (m).  808 

 809 

FIGURE 5: Variation among treatment groups concerning hatching rate (HR) (a-c), survival rate 810 

(SR) (d-i),. (a-c) The dendrograms (j-l) illustrate significant differences among zebrafish 811 

embryo-larvae exposed to 0, 0.01, 10, and 1000 μg/mL nTiO2 for HR (j), SR (k), and MCs (l). 812 

The Roman numerals show the number of created groups by cluster analysis. Scatter plots show 813 

significant relationships between SR at different developmental stages (as dependent variables) 814 

and HR at 106 hpe (as the independent variable) (m-p). 815 













Table 1.  
 
No.  Variables Ti4+ and nTiO2 exposure concentration (µg/mL) 
   0 (n=100) Ti4+: 0.0001 

(n=100) 0.01 (n=100) 10 (n=100) 1000 (n=100) 
1  HR-34 0.00 [0.00](a) 0.00[0.00](a) 0.00[0.00] (a) 0.00[0.00] (a) 2.00[6.30] (b) 
2  HR-58 6.00 [9.70](a) 1.43[3.78](a) 9.00[19.10](a) 21.00[29.20](b) 73.00[17.00](c) 
3  HR-82 61.00 [29.20](a) 63.33[19.66](a) 64.00[29.10](a) 67.00[37.10](a) 85.00[14.30](b) 
4  HR-106 89.00 [9.90](a) 90.00[14.14](a) 83.00[16.40](a) 90.00[19.40](a) 90.00[12.50](a) 
5  SR-34 100.00 [0.00](a) 100.00[0.00](a) 100.00[0.00](a) 100.00[0.00](a) 100.00[0.00](a) 
6  SR-58 92.34 [2.39](a) 92.86[1.78](a) 100.00[0.00](c) 100.00[0.00](c) 97.00[2.58](b) 
7  SR-82 92.34 [2.39](a) 92.86[1.78](a) 97.69[1.59](b) 92.67[3.26](a) 92.99[3.12](a) 
8  SR-106 92.34 [2.39](c) 92.86[1.78](c) 97.69[1.59](d) 86.68[3.93](b) 81.01[4.53](a) 
9  SR-130 92.34 [2.39](c) 92.86[1.78](c) 91.69[5.27](c) 86.68[3.93](b) 81.01[4.53](a) 
10  SR-154 92.34 [2.39](c) 92.86[1.78](c) 91.69[5.27](c) 86.68[3.93](b) 81.01[4.53](a) 
11  SR-178 91.18 [2.22](c) 91.86[2.13](c) 91.69[5.27](c) 86.68[3.93](b) 81.01[4.53](a) 
12  SR-220 83.50 [4.81](c) 63.00[1.71](c) 63.17[1.82](b) 60.33[6.97](ab) 57.17[2.50](a) 
13  BL-82 2.87 [0.22](a) 2.92[0.24](a) 3.30[0.12](b) 3.20[0.14](b) 3.13[0.22](b) 
14  PoPB-82 1.74 [0.19](a) 1.78[0.21](a) 2.07[0.09](b) 2.03[0.11](b) 2.21[0.32](b) 
15  BD1-82 0.38 [0.00](b) 0.38[0.00](b) 0.40[0.02](b) 0.40[0.01](b) 0.36[0.04](a) 
16  BL/APB-82 2.53 [0.13](a) 2.56[0.14](a) 2.69[0.08](b) 2.74[0.07](b) 2.66[0.04](b) 
17  BL/PoPB-82 1.66[0.06](b) 1.64[0.05](b) 1.59[0.03](b) 1.58[0.02](b) 1.46[0.19](a) 
18  BL/BD2-82 4.25[0.38](a) 4.33[0.42](a) 5.51[0.45](c) 5.48[0.30](c) 4.93[0.94](b) 
19  BL/HL-82 3.95[0.05](a) 3.97[0.06](a) 4.14[0.14](b) 4.14[0.14](b) 4.26[0.10](b) 
20  APB/PoPB-82 0.66[0.06](b) 0.65[0.06](b) 0.59[0.03](a) 0.58[0.02](a) 0.55[0.07](a) 
21  APB/BD1-82 2.95[0.07](a) 2.97[0.07](a) 3.10[0.28](a) 2.92[0.15](a) 3.34[0.24](b) 
22  PoPB/BD1-82 4.54[0.48](a) 4.65[0.52](a) 5.22[0.45](b) 5.09[0.40](b) 6.19[0.46](c) 
23  PoPB/BD2-82 2.58[0.31](a) 2.65[0.34](a) 3.46[0.30](b) 3.48[0.23](b) 3.46[0.71](b) 
24  PoPB/HL-82 2.38[0.11](a) 2.41[0.12](a) 2.60[0.12](ab) 2.69[0.14](b) 3.02[0.47](c) 
25  APB-106 1.37[0.08](b) 1.39[0.09](b) 1.26[0.05](a) 1.28[0.06](a) 1.30[0.06](a) 
26  BD1-106 0.40[0.01](c) 0.40[0.01](c) 0.38[0.02](b) 0.36[0.01](a) 0.35[0.01](a) 
27  BD2-106 0.63[0.00](d) 0.63[0.00](d) 0.60[0.02](c) 0.58[0.01](b) 0.56[0.03](a) 
28  BL/APB-106 2.45[0.12](ab) 2.43[0.13](a) 2.70[0.06](c) 2.62[0.04](c) 2.53[0.10](b) 
29  BL/PoPB-106 1.70[0.06](bc) 1.71[0.06](c) 1.59[0.02](a) 1.62[0.02](a) 1.66[0.04](b) 
30  BL/BD1-106 8.42[0.22](a) 8.46[0.24](a) 8.91[0.80](b) 9.31[0.23](c) 9.28[0.10](bc) 
31  BL/BD2-106 5.32[0.02](a) 5.32[0.02](a) 5.64[0.42](b) 5.75[0.27](bc) 5.93[0.33](c) 
32  BL/HL-106 3.99[0.08](a) 3.97[0.08](a) 3.96[0.30](a) 4.17[0.1]8(b) 3.96[0.12](a) 
33  APB/PoPB-106 0.70[0.06](bc) 0.71[0.06](c) 0.59[0.02](a) 0.62[0.02](a) 0.66[0.04](b) 
34  APB/BD2-106 2.18[0.12](a) 2.21[0.13](a) 2.08[0.13](a) 2.20[0.13](a) 2.36[0.18](b) 
35  APB/HL-106 1.63[0.05](b) 1.64[0.06](b) 1.46[0.09](a) 1.59[0.05](b) 1.57[0.10](b) 
36  PoPB/BD1-106 4.95[0.04](a) 4.94[0.05](a) 5.61[0.52](b) 5.75[0.10](b) 5.59[0.11](b) 
37  PoPB/BD2-106 3.14[0.10](a) 3.11[0.11](a) 3.56[0.29](b) 3.55[0.15](b) 3.58[0.21](b) 
38  BD1/HL-106 0.48[0.02](a) 0.47[0.02](a) 0.45[0.02](b) 0.45[0.03](b) 0.43[0.01](b) 
39  APB-130 1.25[0.05](a) 1.27[0.06](ab) 1.31[0.05](ab) 1.39[0.07](c) 1.32[0.08](b) 
40  HL-130 0.83[0.03](a) 0.84[0.04](a) 0.84[0.07](a) 0.90[0.03](b) 0.85[0.05](a) 
41  APB/BD1-130 3.31[0.18](a) 3.34[0.19](a) 3.58[0.28](b) 3.75[0.14](b) 3.58[0.29](b) 
42  APB-154 1.32[0.02](b) 1.32[0.02](b) 1.23[0.08](a) 1.35[0.08](b) 1.31[0.08](b) 
43  HL-154 0.89[0.02](b) 0.89[0.03](b) 0.85[0.03](a) 0.88[0.04](b) 0.89[0.02](b) 
44  BL/BD2-154 7.12[0.53](b) 7.22[0.58](b) 7.10[0.35](b) 7.09[0.43](b) 6.39[0.47](a) 
45  APB/BD1-154 3.94[0.23](ab) 3.98[0.25](ab) 3.83[0.10](a) 4.15[0.37](b) 3.92[0.12](ab) 
46  PoPB/BD2-154 4.57[0.40](b) 4.65[0.43](b) 4.64[0.26](b) 4.44[0.39](b) 4.01[0.41](a) 
47  BD1/BD2-154 0.65[0.01](b) 0.65[0.01](b) 0.64[0.01](b) 0.64[0.03](b) 0.61[0.04](a) 
48  BL-178 3.85[0.12](b) 3.83[0.13](b) 3.73[0.10](b) 3.53[0.31](a) 3.70[0.03](b) 
49  APB-178 1.31[0.02](b) 1.31[0.02](b) 1.32[0.05](b) 1.20[0.13](a) 1.28[0.02](b) 
50  PoPB-178 2.54[0.10](c) 2.52[0.11](bc) 2.41[0.06](ab) 2.33[0.20](a) 2.42[0.03](abc) 
51  BL/BD2-178 7.91[0.09](b) 7.89[0.09](b) 7.47[0.26](a) 7.45[0.15](a) 7.33[0.11](a) 
52  APB/BD1-178 4.00[0.03](a) 4.01[0.04](a) 4.17[0.21](b) 3.87[0.26](a) 3.94[0.10](a) 
53  PoPB/BD2-178 5.21[0.11](b) 5.19[0.11](b) 4.83[0.17](a) 4.92[0.15](a) 4.79[0.09](a) 
54  BD1/BD2-178 0.67[0.00](c) 0.67[0.00](c) 0.64[0.01](a) 0.65[0.02](b) 0.64[0.01](a) 
55  BL-202 3.89[0.06](b) 3.88[0.06](b) 3.71[0.10](a) 3.62[0.15](a) 3.64[0.15](a) 
56  PoPB-202 2.56[0.05](b) 2.55[0.05](b) 2.43[0.12](a) 2.36[0.12](a) 2.38[0.08](a) 
57  BL/BD1-202 12.49[0.15](b) 12.47[0.16](b) 11.63[0.19](a) 11.86[0.64](a) 11.98[0.75](a) 
58  BL/BD2-202 7.99[0.14](b) 7.96[0.16](b) 7.42[0.35](a) 7.35[0.29](a) 7.54[0.48](a) 
59  PoPB/BD1-202 8.23[0.13](b) 8.21[0.14](b) 7.61[0.29](a) 7.73[0.34](a) 7.85[0.55](a) 
60  PoPB/BD2-202 5.26[0.11](b) 5.24[0.12](b) 4.86[0.33](a) 4.79[0.17](a) 4.94[0.34](a) 
61  BD1/HL-202 0.37[0.01](a) 0.37[0.01](a) 0.39[0.02](b) 0.36[0.02](a) 0.36[0.02](a) 
62  BD2/HL-202 0.58[0.02](a) 0.58[0.02](a) 0.61[0.01](b) 0.58[0.03](a) 0.58[0.04](a) 



 
Table 2. Table 2. Simple regression equations, correlation (r2), F and p values of the significant 

relationships found between the hatching rate (at 58, 82, and 106 h postexposure) and the 

morphometric characteristics (at 82, 106, 130, 154, 178, and 202 h postexposure) 

No.  Variables    r2 F p 
  Independent Dependent  Equations    
1  HR-58 PoPB-82 y= 0.004x+1.908 0.229 11.288 0.002 
2  HR-58 BD1-82 y=-0.001x+0.398 0.298 16.120 0.001 
3  HR-58 BL/PoPB-82 y=-0.003x+1.635 0.352 20.652 0.001 
4  HR-58 BL/BD1-82 y= 0.013x+7.853 0.232 11.457 0.002 
5  HR-58 APB/PoPB-82 y=-0.001x+0.623 0.263 13.568 0.001 
6  HR-58 APB/BD1-82 y= 0.005x+2.964 0.267 13.837 0.001 
7  HR-58 PoPB/BD1-82 y= 0.019x+4.801 0.536 43.942 0.001 
8  HR-58 PoPB/HL-82 y= 0.008x+2.485 0.428 28.456 0.001 
9  HR-58 BD1-106 y= 0.000x+0.386 0.390 24.287 0.001 
10  HR-58 BD2-106 y=-0.001x+0.613 0.479 34.902 0.001 
11  HR-58 BD1/HL-106 y= 0.000x+0.460 0.219 10.626 0.002 
12  HR-58 BD2/HL-106 y=-0.001x+0.732 0.233 11.520 0.002 
13  HR-58 APB/BD2-106 y= 0.003x+2.131 0.279 14.691 0.001 
14  HR-58 BL/BD2-154 y=-0.011x+7.185 0.335 19.183 0.001 
15  HR-58 BD1/BD2-154 y= 0.000x+0.647 0.225 11.024 0.002 
16  HR-58 PoPB/BD2-154 y=-0.008x+4.622 0.314 17.384 0.001 
17  HR-58 BL/BD2-178 y=-0.005x+7.663 0.293 15.727 0.001 
18  HR-82 BD1-82 y=-0.001x+0.449 0.200 9.473 0.001 
19  HR-82 PoPB/BD1-82 y= 0.033x+3.078 0.328 18.531 <0.001 
20  HR-82 PoPB/HL-82 y= 0.014x+1.750 0.280 14.800 <0.001 
21  HR-82 BD1-106 y=-0.001x+0.426 0.220 10.715 0.002 
22  HR-82 BD2-106 y=-0.001x+0.686 0.290 15.491 <0.001 
23  HR-82 BL/BD2-154 y=-0.020x+8.271 0.239 11.965 0.001 
24  HR-82 APB/BD2-154 y=-0.006x+2.932  0.289 15.474 <0.001 
25  HR-82 BL/BD2-178 y=-0.010x+8.219 0.234 11.617 0.002 
26  HR-106 PoPB/HL-130 y= 1.022x+0.019 0.221 10.772 0.002 
27  HR-106 APB/BD1-178 y=-0.022x+5.986 0.250 12.689 0.001 
28  HR-106 BD1/BD2-178 y= 0.466x+0.002 0.266 13.792 0.001 
29  HR-106 BL/BD1-202 y= 0.065x+6.171 0.258 13.202 0.001 
30  HR-106 BL/BD2-202 y= 0.048x+3.350 0.274 14.315 0.001 
31  HR-106 PoPB/BD1-202 y= 0.051x+3.354 0.298 16.124 <0.001 
32  HR-106 PoPB/BD2-202 y= 0.036x+1.774 0.277 14.589 <0.001 
 
 
Rows 1–12, 14–17, 19–28, rows 13, 18, 29–32, and rows 2–3, 5, 10, 12, 14, 16–18, 21–27 show 

morphometric characteristics that are correlated to both hatching rate (HR) and survival rate 

(SR), are only correlated to HR, and are negatively correlated to HR, respectively.  

APB = anterior part of body; BD-I/BD-II = body depths I and II; BL = body length; HL = head 

length; PoPB = posterior part of body. 

 



Table 3. Table 3. Simple regression equations, explanatory effect (r2), F and p values of the 

significant relationships between the mean and standard deviation of survival rate (at 106, 130, 

178, and 202 h postexposure) and morphometric characteristics (at 82, 106, 130, 154, 178, and 

202 h postexposure). 

No.  Variables    r2 F p 
  Independent Dependent  Equations    
1  APB/BD1-82 SR-106  y= 9.318x-17.233 0.243 12.199 0.001 
2  APB-82 SR-130  y=-50.637x+147.456 0.295 15.933 <0.001 
3  APB/HL-106 SR-130 y= 30.620x+39.991 0.242 12.165 0.001 
4  BL-82 SRSD-130 y= 12.202x-23.874 0.251 12.705 0.001 
5  BL/BD2-82 SRSD-130 y= 3.566x-3.731 0.224 10.955 0.002 
6  APB-130 SRSD-130 y= 33.155x-29.478 0.217 10.519 0.002 
7  BL/APB-130 SRSD-130 y=-23.904x+79.486 0.307 16.836 <0.001 
8  BL/PoPB-130 SRSD-130 y= 64.618x-88.036 0.282 14.959 <0.001 
9  BL/HL-130 SRSD-130 y=-15.635x+80.156 0.318 17.713 <0.001 
10  APB/PoPB-130 SRSD-130 y= 64.618x-23.418 0.282 14.959 <0.001 
11  APB/BD1-130 SRSD-130 y= 9.857x-20.775 0.221 10.779 0.002 
12  PoPB/HL-130 SRSD-130 y=-20.869x+69.919 0.419 27.376 <0.001 
13  APB-82 SR-178 y=-47.663x+143.670 0.281 14.842 <0.001 
14  APB/HL-106 SR-178 y= 28.498x+43.023 0.225 11.058 0.002 
15  BL/APB-178 SR-178 y= 33.018x-8.204 0.293 15.751 <0.001 
16  BL/PoPB-178 SR-178 y=-116.901x+266.212 0.269 14.007 0.001 
17  APB/PoPB-178 SR-178 y=-116.901x+149.311 0.269 14.007 0.001 
18  APB/BD1-178 SR-178 y=-17.196x+156.305 0.347 20.177 <0.001 
19  BD1/BD2-178 SR-178 y= 212.769x-51.069 0.436 29.335 <0.001 
20  BL-82 SRSD-178 y= 12.518x-24.973 0.255 13.026 0.001 
21  BL/BD2-82 SRSD-178 y= 3.688x-4.456 0.232 11.458 0.002 
22  APB-130 SRSD-178 y= 33.696x-30.301 0.217 10.516 0.002 
23  BL/APB-130 SRSD-178 y=-24.620x+81.332 0.315 17.497 <0.001 
24  BL/PoPB-130 SRSD-178 y= 66.618x-91.312 0.291 15.566 <0.001 
25  BL/HL-130 SRSD-178 y=-15.858x+80.987 0.317 17.604 <0.001 
26  APB/PoPB-130 SRSD-178 y= 66.618x-24.693 0.291 15.566 <0.001 
27  APB/BD1-130 SRSD-178 y= 10.042x-21.541 0.222 10.842 0.002 
28  PoPB/HL-130 SRSD-178 y=-21.294x+70.945 0.422 27.748 <0.001 
29  BD1/BD2-178 SRSD-178 y=-181.086x+132.195 0.324 18.199 <0.001 
30  APB/BD2-154 SR-202 y= 35.084x-21.934 0.226 11.115 0.002 
31  APB-178 SR-202 y=-70.227x+155.821 0.279 14.680 <0.001 
32  BL/APB-178 SR-202 y= 55.139x-94.015 0.223 10.892 0.002 
33  APB/BD1-178 SR-202 y=-29.084x+182.178 0.270 14.087 0.001 
34  PoPB-82 SRSD-202 y= 18.943x-22.827 0.251 12.767 0.001 
35  BL/PoPB-82 SRSD-202 y=-36.460x+72.632 0.217 10.532 0.002 
36  BL/BD1-82 SRSD-202 y= 6.930x-41.396 0.330 18.680 <0.001 
37  BL/HL-82 SRSD-202 y= 25.952x-92.339 0.233 11.547 0.002 
38  APB/PoPB-82 SRSD-202 y=-73.956x+59.293 0.236 11.720 0.001 
39  APB/BD1-82 SRSD-202 y= 20.816x-48.743 0.302 16.477 <0.001 
40  PoPB/BD1-82 SRSD-202 y= 8.966x-31.872 0.472 33.940 <0.001 
41  PoPB/HL-82 SRSD-202 y= 15.172x-25.254 0.282 14.921 <0.001 
42  BD1-106 SRSD-202 y=-306.699x+130.108 0.458 32.076 <0.001 
43  BD2-106 SRSD-202 y=-201.617x+134.980 0.484 35.699 <0.001 
44  BL/BD2-106 SRSD-202 y= 12.392x-54.872 0.220 10.722 0.002 
45  BD1/HL-106 SRSD-202 y=-203.849x+106.885 0.323 18.095 <0.001 
46  BD2/HL-106 SRSD-202 y=-108.658x+92.748 0.276 14.451 0.001 
47  BL/BD2-154 SRSD-202 y=-8.795x+76.172 0.237 11.819 0.001 
48  BL/HL-154 SRSD-202 y=-23.286x+110.853 0.261 13.408 0.001 
49  PoPB/BD2-154 SRSD-202 y=-11.512x+66.119 0.268 13.900 0.001 
50  PoPB/HL-154 SRSD-202 y=-27.205x+86.438 0.297 16.087 <0.001 
51  BD1/BD2-154 SRSD-202 y=-161.830x+117.985 0.261 13.422 0.001 
52  BL/BD2-178 SRSD-202 y=-19.190x+159.945 0.294 15.852 <0.001 
53  PoPB/BD2-178 SRSD-202 y=-23.251x+130.088 0.253 12.878 0.001 
54  BL-202 SRSD-202 y=-30.154x+127.305 0.238 11.860 0.001 
55  BL/HL-202 SRSD-202 y=-19.760x+102.959 0.228 11.242 0.002 



Rows 1, 12, 18–19, 28–30, 33-36, 38–43, 45–47, 49, 51–52, rows 2–11, 13–17, 20–27, 31–32, 

37, 44, 48, 50, 53–55, and rows 2, 7, 9, 12–13, 16–18, 28–29, 31, 33, 35, 38, 42–43, 45–55 show 

morphometric characteristics that are correlated to both hatching rate (HR) and survival rate 

(SR), are only correlated to SR, and are negatively correlated to SR, respectively.  

APB = anterior part of body; BD-I/BD-II = body depths I and II; BL = body length; HL = head 

length; PoPB = posterior part of body; SRSD = standard deviation of survival rate. 
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