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Abstract  
This review of metal- and metal-oxide-based nanoparticles focuses on factors that 
influence their distribution into the nervous system, evidence that they enter brain 
parenchyma, and nervous system responses. Emphasis is placed on gold as a model 
metal-based nanoparticle and for risk assessment in the companion review. The 
anatomy and physiology of the nervous system, basics of colloid chemistry, and 
environmental factors that influence what cells see are reviewed to provide background 
on the biological, physical-chemical, and internal milieu factors that influence nervous 
system nanoparticle uptake. The results of literature searches reveal little nanoparticle 
research has included the nervous system, which about equally involved in vitro and in 
vivo methods, and very few human studies. The routes of uptake into the nervous 
system and mechanisms of nanoparticle uptake by cells are presented with examples. 
Brain nanoparticle uptake inversely correlates with size. The influence of shape has not 
been reported.  Surface charge has not been clearly shown to affect flux across the 
blood-brain barrier. There is very little evidence for distribution of metal-based 
nanoparticles into brain parenchyma. Metal-based nanoparticle disruption of the blood-
brain barrier and adverse brain changes have been shown, and are more pronounced 
for spheres than rods. Study concentrations need to be put in exposure contexts. Work 
with dorsal root ganglion cells and brain cells in vitro show the potential for metal-based 
nanoparticles to produce toxicity. Interpretation of these results must consider the ability 
of nanoparticles to distribute across the barriers protecting the nervous system of the 
intact organism. Effects of the persistence of poorly soluble metal-based nanoparticles 
are of particular concern. 
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I. SCOPE OF THE REVIEW  
Much has been reported on polymer-based drug delivery systems that target the brain. 
A prior review in this forum focused on carbon-based and quantum dot (QD) 
nanoparticles (NPs) 1. This review of the English language literature of metal and metal-
oxide based NPs (≤ 100 nm) focuses on the factors that influence their distribution into 
the brain, evidence that they enter brain parenchyma, and their biological responses. 
NPs are being investigated as delivery systems to the brain, including MRI contrast 
agents, photosensitizers for diagnosis, labeling, tumor site identification, and as 
therapeutic agents, especially to treat cancer. Industrial applications include: fuel cells, 
batteries, nanocomposites, coatings, and catalysts. This review has relevance for risk 
assessment of metal-based NPs with the central nervous system (CNS). 
 
Risk assessment requires information on NP characterization, fate, accumulation, 
translocation, release, and effects.  A critical issue for risk assessment is whether 
current in vitro and in vivo results are based on solid knowledge of the dose 
characteristics and mechanisms for adsorption, distribution, metabolism, and elimination 
2. The present review provides some background for these conundrums, emphasizing 
gold as a model NP. Data for gold NPs are used as a model for risk assessment in the 
companion review 2. Core NP physical-chemical characterization properties include 
chemical composition and impurities, crystallinity, shape, and morphology/chemistry of 
surface functional groups (intentional coatings and/or agents that become associated 
with the NP surface, including proteins, surfactants and environmental colloids such as 
humic acids). The roadmap of this review is the nervous system (NS) as a protected 
organ, the colloidal chemistry of NPs, and the pharmacokinetic and pharmacodynamic 
interactions of NPs with the NS.  

 
II. THE NERVOUS SYSTEM: A PROTECTED ORGAN  
There is concern that NPs may compromise the NS which has properties that render it 
uniquely susceptible to insult. The NS is divided into the central NS (CNS) comprised of 
the brain and spinal cord, and peripheral NS (PNS), comprised of 12 pairs of cranial and 
31 pairs of spinal nerves that connect the CNS to organs, muscles and glands. 
Outgoing (effector) neurons mediate motor activity and autonomic activity. Incoming 
(sensory) neurons provide visual, hearing, smell/taste, proprioception (body position), 
and pain/itch information. The afferent neurons pass through the spinal nerve dorsal 
root ganglia (DRG), comprised of neuronal cell bodies that lie along the back of the 
vertebral column (spine). The CNS has many sites of specialized function. 
 
The CNS is enclosed in 3 meninges (the dura, arachnoid and pia membranes). 
Cerebrospinal fluid (CSF) fills a compartment comprised of 4 ventricles within the brain, 
a canal within the spinal cord, and the sub-arachnoid space between the arachnoid and 
pia membranes that surrounds the brain and spinal cord,. This fluid-filled compartment 
dampens mechanical shock to the CNS. Most CSF is produced by choroid plexuses in 
the brain’s 4 ventricles. Some comes from brain extracellular (interstitial) fluid, that 
comprises 20% of the brain volume, flowing along capillary and artery walls, into the 
brain’s ventricles. Drainage of fluid and substances from the human brain is primarily via 
CSF, giving the opportunity to indirectly monitor the brain’s biochemical activity. Most 
CSF drains into blood through the arachnoid villi, although a small percentage drains 
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into the lymphatic system 3. Lymphatic system drainage accounts for a greater 
percentage of fluid drainage from the brain in rats, rabbits and sheep. Lymphatic 
drainage from rat brain into cervical lymph nodes was demonstrated with a dextran-
coated 20 to 200 nm superparamagnetic iron oxide NP (SPION) and MRI 4. 
 
There are 2 cell types in the normal brain, neurons and glial cells.  Although generally 
thought that there are 10-fold more glial cells than the ~100 billion neurons in the human 
brain, the ratio may not be this great, and may be close to 1  5-8. Glia include the 
macroglia (neuroglial cells, of neural origin) which are astrocytes and oligodendrocytes, 
and the microglia. Neurons are thought to be post-mitotic in most mammalian brain 
regions. They are particularly sensitive to insult because of their high metabolic 
requirements and long processes (axons up to a meter long, and dendrites) with large 
surface areas that depend on the cell body for protein synthesis and much metabolism.  
The human brain is 2% of the typical body mass but receives 15% of the blood, utilizes 
20% of the body’s resting oxygen and energy consumption, and is fueled largely by 
transporter influx of glucose. The macroglia have a negative resting membrane 
potential, but do not propagate action potentials. They are physically connected by gap 
junctions to from a functional network. Glial cells express voltage-gated ion channels 
similar to those seen in neurons, are able to express receptors to many of the same 
neurotransmitters and neuromodulators as neurons, have transporters to take up many 
neurotransmitters, and can release some neurotransmitters.  Astrocytes play a role in 
regulation of neuro- and gliogenesis, neuronal path finding and regulation of 
synaptogenesis; form the scaffold of the NS; contribute to and regulate the BBB; 
regulate cerebral microcirculation; provide energy substrates for neurons; and provide a 
favorable extracellular milieu by regulating extracellular potassium and pH and taking up 
neurotransmitters. The oligodendrocytes in the CNS have 4 to 6 processes that produce 
myelin which insulates axons between nodes of Ranvier, assisting fast saltatory action 
potential propagation. Schwann cells in the PNS myelinate axons and also perform 
some functions that astrocytes perform.  Microglia, of monocyte/macrophage lineage, 
are resident immune cells, entering the brain during embryogenesis. In the normal brain 
they are in the resting state. They have numerous receptors and immune molecule 
recognition sites. The glial response to insults is reactive gliosis. It is manifest as 
astrocyte hypertrophy and proliferation, causing increased synthesis of its cytoskeletal 
intermediate filament glial fibrillary acidic protein (GFAP) and axonal degeneration 
(Wallerian degeneration), due to loss of myelination.  In response to many stressors, 
including injury, inflammation, infection, lipopolysaccharide, foreign matter, and brain 
implants, as well as reduction of normal brain activity, microglia can be activated to a 
reactive state within hours, upregulating potassium channels, down-regulating neuronal 
and upregulating immunocompetent receptors, increasing enzyme synthesis, and 
increasing surveillance of brain activity. Some proceed to become phagocytic microglia. 
Microglial over-activation can contribute to neuronal damage and neurodegenerative 
disorders 5. For more background on brain cells see 5, 9.   
 
III. COLLOIDAL CHEMISTRY INFLUENCES “WHAT THE CELL SEES”  
As noted by 10, “Nanoparticles in solution are called colloids.” A review of colloid 
chemistry provides insight into NP physical-chemical properties that impact their uptake, 
distribution, pharmacodynamics, dosimetrics, and biological fate 11-14. In a colloidal 
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system one substance is microscopically dispersed throughout another. The dispersed 
phase particles are usually 1 to 1000 nm. The dispersed and continuous phases may be 
gas, liquid, or solid (except a gas/gas system which is miscible and would not be 
considered a colloid). The stability of colloidal dispersions (that is, whether they remain 
as discrete particles or agglomerate, aggregate, or flocculate) depends on whether the 
discrete phase surface chemistry renders a thermodynamically stable dispersion in the 
continuous phase.1 
 
III. A. Colloidal (and nanoparticle) dispersion stability 
Forces that affect the stability of colloidal systems include: excluded volume repulsion 
(hard particles cannot overlap), electrostatic interaction (colloid particles often carry 
electric charge and can repel or attract one another), van der Waals forces (permanent 
or induced dipoles in particles can repel or attract), entropic forces (systems of particles 
will tend to maximize entropy, leading to interparticle forces), and steric interactions 
(polymers adsorbed to surfaces can provide physical barriers that prevent close 
approach of potentially attractive charges).  Mutual repulsion of like electrical charges 
on NP colloids leads to electrostatic stabilization. Steric stabilization of colloids occurs 
when coatings such as polymers or oligomers are attached to NP surfaces; these 
coatings prevent them from approaching close enough that attractive forces would 
become effective, thus preventing agglomeration. Many commercial NP products have 
surface coatings/functionalizations that are designed to control their dispersion in 
specific media. These materials are referred to as complex NPs 15 or nanocomplexes 16, 
terms increasingly used in the literature. 
  
III.B. Electrostatic stabilization 
Charge stabilization is an important way to control coalescence of colloidal dispersions 
11. Colloidal stability is usually defined as the tendency for particles to 
agglomerate/aggregate or form sediment. Electrostatic stabilization is based on charged 
double layers that develop around colloid particles in polar liquids. The charge on the 
surface of the colloid induces opposite charges in the local liquid. The charged region 
can extend some distance from the hard particle surface, and can be quite sensitive to 
salt concentrations, ion types (multivalent ions in particular), and pH. This is shown in 
Figure 1, that illustrates two solid colloidal particles (gray spheres), that have a negative 
surface charge, in a dispersion. Positive ions (pink) form a dense layer near the 
negatively charged solid surfaces. These ions attract negative ions (blue) via coulombic 
forces, forming a second, more diffuse layer.  Interfacial double layers are important for 
                                                           
1 Agglomerate: A collection of weakly bound particles or aggregates or mixtures where the resulting external 
surface area is similar to the sum of the surface areas of the individual components 
http://www.iso.org/obp/ui/#iso:std:iso:ts:80004:-4:ed-1:v1:en (accessed 8-14-2012).  
Aggregate: A particle composed of strongly bonded or fused particles where the resulting external surface area 
may be significantly smaller than the sum of calculated surface areas of the individual components 
http://www.iso.org/obp/ui/#iso:std:iso:ts:80004:-4:ed-1:v1:en (accessed 8-14-2012).  
Flocculant: In chemistry this is a process wherein colloids come out of suspension in the form of floc or flakes by 
the addition of a clarifying agent. The action differs from precipitation in that prior to flocculation colloids are 
merely suspended in a liquid and not actually dissolved in a solution. In the flocculated system, there is no 
formation of a cake, since all the flocs are in the suspension (www.wikipedia.com).  
Coalescence: A process in which two phase domains (droplets, bubbles or particles) of the same composition come 
together and form a larger phase domain http://en.wikipedia.org/wiki/Coalescence (accessed 8-14-2012). 

http://www.iso.org/obp/ui/#iso:std:iso:ts:80004:-4:ed-1:v1:en
http://www.iso.org/obp/ui/#iso:std:iso:ts:80004:-4:ed-1:v1:en
http://en.wikipedia.org/wiki/Chemistry
http://en.wikipedia.org/wiki/Colloids
http://en.wikipedia.org/wiki/Suspension_%28chemistry%29
http://en.wikipedia.org/wiki/Clarifying_agent
http://en.wikipedia.org/wiki/Precipitation_%28chemistry%29
http://en.wikipedia.org/wiki/Solution
http://www.wikipedia.com/
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systems with large ratios of surface area to volume. The total potential energy of 
interaction for a pair of colloid particles in solution is linked to attractive (e.g., van der 
Waals) and repulsive forces. Attractive forces have been modeled by Hamaker and de 
Boer; this potential energy is directly proportional to the particle radius and the Hamaker 
constant (describing the interaction between the particle and the continuous phase), 
and inversely proportional to the inter-particle separation distance 11.  
 
Electrostatic repulsion forces stabilize particles in aqueous or polar organic media. The 
zeta-potential (ζ) of the colloid can be used as a measure of the thickness of the double 
layer, as shown in Figure 1. Zeta potential measurements are used to estimate the 
double layer charge. The small graph on the right hand side of Figure 1 shows the 
change in electrical potential at various distances from the colloid surface. Voltage 
gradients (V/m) can be very steep in the vicinity of colloids, which affects their stability in 
the dispersion. The ζ potential, which is calculated using theoretical models and 
experimentally-determined electrophoretic mobilities, is the electrical potential in the 
double layer between the ‘slipping layer’ (denoted by the outer black dashed line) and a 
point in the bulk fluid. The total ζ potential is taken to be the linear addition of the 
attractive and repulsive forces. This function usually has a maximum, creating an 
activation energy for agglomeration. For agglomeration to occur, two particles must 
collide with sufficient energy to overcome this barrier. Inside the slipping layer, the local 
fluid, including ions, moves with the colloidal particle. In Figure 1, the positive ions 
induced toward the negative charges on the colloid surface have a gradient that 
decreases rapidly with distance due to the negative ions moving in from the bulk 
solution. A system with a high absolute value of the ζ potential, > 40 mV for example, 
has high repulsive charges at the point where local fluid moves relatively independently 
from the particle. Such a system should be electrically stable, and resistant to 
agglomeration, coagulation, or flocculation. Electrostatic stabilization provides kinetic 
but not thermodynamic ‘stability’, which always tends toward 
agglomeration/aggregation. Stability can be influenced by salt concentration, ion type, ζ-
potential, and particle size 11. As the salt concentration increases, the double layer 
thickness decreases and more collisions will lead to agglomeration. For example, a 30 
mM sodium chloride (NaCl) solution has a double layer thickness of 2 nm, while a 0.1 
mM NaCl solution has a double layer thickness of 30 nm. When multivalent ions are 
present the electrolyte concentration needed for coagulation can decrease by orders of 
magnitude. Repulsive energy is proportional to the square of the measured ζ-potential; 
these values are often used to tune a dispersion to attain kinetic stability. In general, a 
larger particle radius leads to a higher energy barrier.  
 
III.C. Stabilization systems 
There are a variety of stabilization systems used for NP dispersions, including 
surfactants, coupling agents, and polymers.  Each of these stabilization systems can 
have specific responses to subtle changes in the NP’s environment, reducing 
uncertainty about long-term stability of these dispersions.  
 
III.C.1. Surfactants and micelles  
Surfactants, by lowering the surface tension between two phases, can be used to form 
micelles by surrounding a material that is insoluble in a medium to enable its 
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introduction into that medium. Surfactants usually protect the growing particle surface. 
Surfactants used in water dispersions are usually amphiphilic. They adsorb at 
interfaces, such as NP/liquid interfaces. However, surfactants are usually reversibly 
adsorbed to NP surfaces, and can desorb as milieu conditions change. Some 
surfactants can affect cell processes and are toxic.  
  
III.C.2. Coupling agents 
Coupling agents are commonly used to modify NPs for use in a variety of solvents and 
polymers. The most common coupling agents are based on silane chemistry. Many 
reactive groups and non-reactive ligands are available commercially. As with any 
reactive system, it is useful to know the surface density of the reactive group on the 
NPs. Covalent bonding to the surfaces of NPs is sensitive to the physical-chemical 
properties of their surface and the reaction environment 12. 
 
III.C.3. Polymers for steric protection 
Polymer adsorption to NPs depends on polymer charge and molecular weight, and the 
aqueous solution conditions (pH, ionic strength and salts). The polymer may have a 
variety of conformations on the surface; the electrostatic forces around the complex 
particle may be altered, and steric forces may be the major component of the repulsive 
forces. Reorientation of the polymer chains near the surface can occur with changes in 
environmental conditions. See 13 for a good review. 
 
Polymeric NPs (inverse microemulsions) are being developed for drug delivery 
applications, carrying hydrophobic drugs in the micelle interior to specific body sites 14. 
For example, coating complex NPs with polyethylene glycol (PEG) surfactants makes 
their surface hydrophilic, which can lengthen the time the NP circulates in blood 17. 
Particles with sizes less than 100 nm seem to be particularly well-suited for this purpose 
(for an example see 18). 
 
IV. ENVIRONMENTAL FACTORS THAT INFLUENCE “WHAT THE CELL SEES” 
IV.A. Milieu pH 
The milieu pH can influence the NP chemical species, including surface charge and 
solubility. It can also affect colloid (NP) stability and fate. For the mammal, some 
relevant pHs are in Table 1. The upper gastrointestinal tract and lysosomes are most 
likely to affect NP chemical species.  
 
IV.B. Solubility  
Solubility can influence the chemical species and effects of NPs. Insoluble ceria-, gold- 
and titania-based NPs have pharmacokinetics, localization, and effects that are different 
from their soluble forms 1. This becomes less clear for NPs that are soluble at 
physiological pHs, such as copper, iron, silver, and zinc oxide. The following examples 
illustrate this. Dissolution of QDs, often composed of a cadmium selenide, cadmium 
sulfide, or cadmium selenide tellurium core, releases the toxic metal cadmium 19. 
Transmission electron microscopy (TEM) and scanning TEM  failed to reveal ~2.2 nm 
PEG-coated silver NP in the brain 24 to 168 hours after its intraperitoneal injection, 
whereas inductively coupled mass spectrometry (ICP-MS) showed the presence of 
silver, presumably due to dissolution and silver ion brain entry 20. All of the toxicity of a 
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zinc oxide NP was thought to be due to solubilized zinc 21. Metal-based NP distribution 
is often assessed using destructive elemental analysis techniques, such as “bulk” (e.g. 
50 mg) tissue digestion and analysis by ICP-MS; ICP-atomic emission spectroscopy or 
ICP-optical emission spectrometry; graphite furnace (electrothermal, flameless) atomic 
absorption spectrometry; instrumental neutron activation analysis; or radioactive 
analysis. These techniques do not differentiate between intact NP and dissolved metal. 
PEG, mercaptoacetic acid, and zinc sulfide coatings have been used to reduce toxicity, 
but they do not always prevent dissolution 22. 

 
V. METAL-BASED NANOPARTICLES AND THE NERVOUS SYSTEM: SCOPE OF 
THE KNOWLEDGE 
Literature searches were conducted to identify numbers of publications and patents 
about nanoparticles (a SciFinder® search of the concept “nanoparticle” from 1990 
through 2011). The typical search string started with the term, ‘nanoparticles’, and then 
was refined by material composition (i.e., gold, carbon black, metals, etc.) or study type 
(in vitro or in vivo). The publication count includes all scientific inquiries while the patent 
counts point toward commercialization activities. The results are shown in Figures 2 and 
3. Nanoparticle, in vitro NP and in vivo NP publications had 32%, 28%, and 30% 
exponential growth rates, respectively (Figure 2 A). However, the total NP publications 
far exceed those focused on biological systems, reflecting the small percentage of total 
effort focused on biological benefits and risks. For example, in 2011, there were 51,806 
publications on nanoparticles, with 2960 (6%) linked to in vitro studies and 2575 (5%) 
linked to in vivo studies. To understand the extent of reports on NPs and the NS, 
SciFinder® searches were conducted using the terms neuron, nerve, glial cell, 
astrocyte, oligodendrocyte, and microglia paired with nanomaterial and nanoparticle. 
The results were reviewed for studies of metal-based NPs. Two hundred fifty-five 
reports were found. This is~0.1% of the NP literature, showing that remarkably few 
studies of biological effects of metal-based NPs included NS endpoints. The metal(s) 
and research platform(s) (in vitro and/or in vivo) were identified in each report in our 
literature searches. Figure 2 (Panel B) shows the predominant metal NPs and research 
platforms used (Panel C).  
 
A major use of metal-based NPs is as imaging agents, including SPIONs and QDs. 
SPIONS have been investigated for imaging by MRI or combined with a fluorescent or 
optical dye in a multimodal nanoplatform for cell labeling, including neural stem cells 
that have tropism for glioblastomas, magnetic thermotherapy induced by alternating 
magnetic field activation, and external field magnetic targeting. NP surface modification 
with agents specific for brain tumors increases tumor targeting 23. Capitalizing on their 
intense fluorescent emission, QD-conjugated probes have been used to recognize 
glycine, GABAA and tyrosine kinase B receptors, epidermal growth factor receptor, 
nerve growth factor, brain tumors, glutamate transporters, cell surface membrane and 
fusion proteins, and GFAP; label mammalian CNS neural stem and progenitor cells, 
microtubules, GFAP intermediate filament cellular bridges, and aquaporin-4 and P2 
receptors; and visualize endocytosis. Some of these have been visualized using single 
molecule/particle imaging/tracking.  Much of the work so far has been demonstration of 
proof of principle. NS-related demonstrations have been mostly conducted in cells in 
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culture, often PC12 cells (derived from a rat adrenal pheochromocytoma; used as a 
neuron model).  
   
The clinical applications most often addressed utilized SPIONs for NS visualization by 
MRI, cell labeling, and thermotherapy. This has focused on brain cancer 24 and been 
suggested for axon regeneration following NS injury 25. Ceria NPs have been suggested 
to be a potential anti-oxidant therapeutic agent for neurodegenerative disease 26, but 
this has not yet been demonstrated in the intact animal. Studies of metal-based NPs 
given to humans to target the NS have been conducted by only a few groups, focusing 
on the use of iron oxide as a tumor imaging agent 27, 28 and in magnetic thermotherapy 
treatment of glioma 24, 29. To predict the future of NP applications, the number of issued 
patents for NPs is shown in Figure 3, as well as those containing metal-based NPs and 
selected metals. For example, there were 7182 nanoparticle patents issued in 2011.  
Silica- and titania-containing NPs have generally been the focus of more patents than 
gold and silver, suggesting more future commercial applications of the former two.      
 
VI. ROUTES OF AND BARRIERS TO BRAIN NANOPARTICLE UPTAKE   
The major routes of NP uptake in the human are from the respiratory tract (including the 
nasal cavity), gastrointestinal tract, and potentially through the skin. Uptake can lead to 
distribution into the central compartment (blood) from which the NP can distribute into 
the NS across the blood-brain barrier (BBB), blood-cerebrospinal fluid barrier (BCSFB) 
and blood-nerve barrier (BNB). In addition there is a direct route to the brain via cranial 
nerves that are exposed to the environment (see: VI.D. Direct uptake into the brain 
through cranial nerves exposed to the environment). Absorption of metal-based 
NPs from the oral cavity has been demonstrated 30. NP absorption from the colon and 
rectum has been described, but not for metal-based NPs. Sublingual NP absorption has 
not been well demonstrated. Absorption from the stomach and intestine is related to NP 
size 30. Nano titania has been the most studied metal-based NP for dermal uptake due 
to its use in sun screen products. In the absence of damage to the skin, organic 
solvents and irritant detergents, or skin flexing, there is little evidence of metal-based 
NP systemic absorption after dermal application 31.  
 
Hurdles to overcome for NP delivery to the brain from blood include the BBB (discussed 
in VI.A. Nanoparticle uptake through the blood-brain barrier) and the clearance of 
NPs through distribution, metabolism, and excretion processes that reduce the amount 
available to enter the brain. A high percentage of NPs are cleared from circulation by 
the mononuclear phagocyte system. Increasing NP delivery to the brain might be 
addressed by increasing the NP dose. This presents the risk of increasing undesirable 
effects and presenting an even greater NP body burden that creates concern about the 
long-term effects of persistent NPs. Another approach is the use of PEG and other 
surface modifications to render the NP less recognizable by the mononuclear phagocyte 
system.  More targeted approaches include surface modification to enhance selective 
uptake into the target site, e.g., functionalization recognized only by glioma cells when 
treating that condition, the use of magnetic NPs directed to the target brain site by 
external field targeting, and short-term opening of the BBB. These approaches are 
discussed below.  
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Further hurdles to brain delivery are metabolism and elimination. Metabolism is greatly 
influenced by the NP chemical composition, with solubility a significant issue, discussed 
in IV.B. Solubility. Another major issue of metabolism is opsonization, discussed in 
VII.A.4 Surface coating (intended and opsonization). Molecules < 3 nm are freely filtered 
through the kidney’s glomerular capsule; those > 5 nm (~70 kDa) are not. QDs < 5 nm 
were renally eliminated 32.   
 
When “bulk” tissue is used to determine NP distribution, and efforts are not made to 
remove blood from the animal, the NP in the blood within the tissue contributes to the 
bulk tissue NP content. 14C-sucrose very slowly diffuses across the intact BBB and is 
used as an indicator of vascular space. Based on 14C-sucrose in the brain immediately 
after its i.v. administration, compared to its blood concentration, the vascular volume of 
gray matter, white matter, the frontal lobe, cerebellum, and pituitary were calculated to 
be 2.7, 1.1, 2.1, 3.5, and 26.8%, respectively 33. Figure 4 shows results of reports where 
selected, quite insoluble, metal-based NPs were investigated in “bulk” brain which 
reported NP as % of the dose or from which it could be calculated. Many NPs were 
either not seen in the brain or poorly entered the brain, which is ~0.5% of rat and 1.75% 
of mouse body weight. These results are consistent with a recent statement that “less 
than 0.1% of inhaled or systemically injected nanoparticles are found within the brain” 
34. With such limited penetration, one might be inclined to discount the CNS as a target 
for metal-based NPs, but the literature indicates otherwise.  
 
VI.A. Nanoparticle uptake through the blood-brain barrier 
The CNS is insulated from many changes in the body by the BBB and BCSFB; the PNS 
by the BNB. These barriers present a formidable challenge to delivery of substances 
into the NS and create a pharmacological sanctuary. The anatomical basis of the BBB 
includes the brain microvascular endothelial cells (BMECs) that line the ~5 to 10 µm 
diameter vessels that perfuse the brain. Their surface area (20 m2) is 10-fold greater 
than that of the human body. Unlike the endothelial cells that line capillaries in most 
body regions, they are joined by tight junctions that severely limit paracellular flux. Brain 
vascular endothelial cells have little bulk (fluid) phase endocytosis or receptor-mediated 
endocytosis, and generally lack fenestrations. They have, however, considerable 
metabolic activity. They are surrounded by a basement membrane, which is covered by 
pericytes on ~30% of its surface. Astrocyte foot processes cover > 95% of this complex.  
Rapid flux of substances between blood and brain is possible due to the extensive 
distribution of microvessels (which are within ~15 µm of any cell in the brain) 35. Sialic 
acid residues on the BBB luminal surface provide a negative charge, which is expected 
to influence the ability of charged NPs to approach the BBB 36. Most brain entry, 
quantitatively, and the most rapid kinetically, is across the BBB. The mechanism of 
metal-based brain NP uptake across the intact BBB is believed to be transcytosis 
through the BMECs 37-39. Opening of the BBB for < 1 h, typically using 25% mannitol 
infused into a carotid artery, has been used to increase drug delivery to the brain 40. 
This approach has not been reported with metal-based NPs. Focused ultrasound BBB 
disruption has been used to open the BBB for a few hours to enhance 
chemotherapeutic-magnetic NP brain delivery 41, 42. Direct uptake into the brain through 
cranial nerves exposed to the environment provides another route, discussed below.   
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VI.B. Sites lacking an intact blood-brain barrier 
The rodent BBB begins to develop pre-natally. Intraperitoneal injection of 25 to 70 nm 
anatase titania to mice on gestational days 3, 7, 10, and 14 resulted in titania in the 
olfactory bulb and cerebral cortex and apoptosis in the olfactory bulb of 6 week old male 
offspring. The NP presumably distributed into the brain before BBB development was 
sufficient to prevent it 43. Given the insolubility of titania, the brain distribution and effects 
were presumably due to intact NP. 

 
There are sites lacking the BBB, which allow chemical communication between blood 
and brain, including the periventricular organs, the chemoreceptor trigger zone, and 
DRG. Forty nm latex microspheres were detected in vagal sensory ganglia a week after 
their intra-tracheal instillation, suggesting uptake from the lung 44. This creates the 
possibility of further distribution into the NS by retrograde (from the axon terminal 
toward the cell body) axonal transport, as seen with polio and other retroviruses. No 
reports were found assessing the relative ability of NPs to enter the brain at these 
locations normally lacking an intact BBB compared to those that have a BBB.  
 
VI.C. Nanoparticle uptake through the choroid plexuses 
The structural basis of the brain’s BCSFB is the epithelial cell layer of the choroid 
plexuses in the brain’s 4 ventricles. Reports of metal-based NP interaction with the 
choroid plexus are limited to uptake of organic surface-coated iron oxides 45-47 . 
Characterization of the size and other properties of NPs that enable their distribution 
through the tight junctions of the choroid plexus epithelial cells has not been 
determined. The steady state CSF/serum ratio appears to be the best available 
parameter to characterize drug penetration into the CSF 48. The most relevant data, of 
steady state protein in human lumbar CSF and blood serum, suggest the entry of a 
compound into the CSF depends on the square root of its molecular mass 49. 
Extrapolation from the protein results suggests CSF concentration would be ~0.5 and 
0.25% of blood serum concentration for 4 and 10 nm NPs. No reports of distribution 
into, or effects of metal-based NPs on, CSF were found other than a report showing 
measureable cerium in CSF up to 90 days after a single i.v. administration of 30 nm 
ceria 50. 
 
VI.D. Direct uptake into the brain through cranial nerves exposed to the 
environment 
The only sites where the NS is directly exposed to the environment are nerve endings of 
the olfactory nerves in the roof of the nasal cavity and the trigeminal nerve maxillary 
division in the nasal cavity and roof of the mouth. Uptake from the nasal cavity into the 
olfactory nerve, olfactory bulb, and across synapses to connecting neurons of the brain 
was shown with 50 nm colloidal silver-coated gold 51. Translocation of ~35 nm 13C-
carbon particles along the olfactory pathway, and to a lesser extent into the cerebrum 
and cerebellum 1 to 7 days later, was shown 52. Rats exposed by inhalation to ~30 nm 
manganese agglomerates had up to a 3.5-fold increase of manganese in the olfactory 
bulb, and lower (but significant) increases in 4 brain regions. Increases in gene and 
protein expression indicative of inflammatory changes were most pronounced in the 
olfactory bulb 53. Lectin-functionalized, polymer-coated, 95 nm QDs were taken up into 
the brain following their nasal instillation 54. Whole-body inhalation exposure to spherical 
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gold (primary particle size ~20 nm, airborne median size ~78 nm, 2 x 106 particles/cm3) 
for 5 days significantly increased olfactory, septum, entorhinal cortex (the latter two 
areas have direct neuronal connections from the olfactory bulb), and cerebellum (that 
might have been bathed by gold in the CSF) gold 15 days later. However, given this 
exposure route, the gold NPs might have entered systemic circulation from the nasal 
cavity or lung and entered these brain regions through the BBB. There was no 
verification that the gold in the brain was as gold NP, but due to its insolubility, this is 
likely 55. On the other hand, whole-body inhalation exposure to spherical gold (4 to 5 
nm, ~ 2.4 x 104, 2.4 x 105, or 1.8 x 106 particles/cm3) 6 hours/day, 5 days/week for 90 
days did not increase olfactory bulb gold, and only increased brain gold in female rats 
exposed to the highest concentration 56.  
 
Toxic effects of intranasal NP administration have been reported. Intranasal application 
of aqueous dispersions of 0.5 mg 80 nm rutile and 155 nm anatase titania every other 
day for a month resulted in a time-dependent increase of titanium in the olfactory bulb, 
cerebral cortex, hippocampus, and cerebellum; 25 to 30% cell loss in the hippocampal 
CA1 stratum pyramidale region; increased pro-oxidant effects; and neuronal pathology 
30 days later. Given the insolubility of titania NP, it was assumed the effects were due 
to its translocation into the brain 57, 58. Ferric oxide NPs (21 nm) given by intranasal 
instillation entered the axon of olfactory bulb neurons and produced significant pro-
oxidant effects, dendrite degeneration, and membrane structure disruption in the 
olfactory bulb, and an increase of hippocampal lysosomes 59. Similar repeated 
instillation of 22 or 33 nm ferric oxide caused microglial cell activation and increased 
BV2 microglial cell generation of reactive oxygen species (ROS) and generation of nitric 
oxide but not cytokines, in vitro 60. Intra-nasal lipopolysaccharide-functionalized 
cadmium selenide QDs activated microglia and increased nitric oxide generation, as 
might be anticipated with the endotoxin 61.  Intranasal instillation of gold rods produced a 
biphasic microglial activation that was greater than the monophasic activation produced 
by gold nano-urchins (gold NPs with small attached spines). Spheres produced little 
effect 62. More details of these NPs are below (VIII.D.2 Physical-chemical factors that 
affect biological responses, Shape).  Every other day intranasal application of 33 to 380 
nm silver for 2 weeks resulted in defects in spatial cognition (Morris water maze) and 
long-term potentiation and increased hippocampal ROS. In the absence of brain silver 
determination or demonstration of silver NP in the brain, the absorption route and 
chemical species absorbed (NP vs. silver ion) are unknown 63. 
 
A simulation model of 1 to 100 nm NP deposition (undefined composition and density) 
to the rat’s nasal cavity and olfactory region using computational fluid dynamics to 
assess particle size uptake dependence showed 95, 20, and 2% deposition in the nasal 
cavity of the 1, 10, and 100 nm NPs. Deposition to the olfactory region was maximal for 
3 to 4 nm NPs, mostly in the anterior nose 64. Direct uptake into human brain from the 
nasal cavity might be less than in the rat due to the smaller percentage of the nasal 
mucosa innervated by the olfactory nerve (5 vs. 50%) and because the human is not an 
obligate nasal breather 65. However, results of a model suggest the concentration of a 
20 nm particle may be greater in the human, than rat, olfactory bulb 65.  
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Injection of colloidal radiolabeled gold under the mucous membrane of the rabbit’s nasal 
roof resulted in the highest gold concentration in the CSF withdrawn most closely from 
the site of injection. It was presumably taken up through the perivascular space around 
the olfactory nerve, presenting another route of uptake from the nasal cavity into the 
cranium 66. 
 
VI. E. Direct introduction of nanoparticles into the brain 
Metal-based NPs have been directly injected into the brain, bypassing the above 
barriers. One approach is convection-enhanced delivery (CED) that employs a pump to 
produce a pressure gradient to deliver an agent directly to the target (often tumor) site 
via an implanted cannula 23. NPs containing metals as imaging agents have been 
studied by CED. Iron oxide NPs, enabling MRI-image guidance, have been conjugated 
to an epidermal growth factor antibody or albumin and methotrexate to treat 
glioblastoma multiforme tumors 67, 68. CED of QDs to rat brain was not visualized by 
clinical computed tomography (CT) or MRI in the live rat, but could be visualized in 
excised fixed brain by high-resolution, small animal CT 69. 
 
VII. THE PHARMACOKINETICS OF BRAIN NANOPARTICLE UPTAKE AND 
DISTRIBUTION 
The mechanisms of substance distribution into the brain include diffusion, carrier-
mediated transport, and receptor-mediated processes (facilitated diffusion, active 
transport, and endocytosis [cell absorption by engulfing particles and receptor mediated 
uptake in small vesicles into a cell]) 70. A study with perfused 1 to 1.2 nm lanthanum did 
not show flux through the BBB endothelial cell tight junctions of 1 to 14 day old rats 71. 
Diffusion across the BBB favors small molecules (< 500 Da, ~1 nm) and lipophilic 
substances.  Endocytotic processes involve macropinocytosis, caveolae, clathrin-coated 
pits, caveolae/clathrin-independent uptake, and phagocytosis. Caveolar uptake occurs 
in non-fenestrated endothelial cells, involving an invagination of the cell membrane 
surrounded by the protein caveolin on the cytoplasmic surface, receptor proteins, and 
invagination into the cell. The caveolae-mediated uptake pit diameter is ~50 to 80 nm. 
Uptake requires cellular stimulation. The clathrin-coated pit diameter is ~120 nm. An 
example is transferrin binding to its receptor. Phagocytosis can engulf spherical 
particles from ~0.2 to 3 µm into a vacuole. The BBB expresses many influx and efflux 
transporters; most substrates are small molecules 72. NPs might hitchhike through the 
BBB on peptide transporters such as transferrin - the molecular trojan horse approach. 
No reports of transporter-mediated brain uptake of metal-based NPs were found. A 
study using the in situ brain perfusion technique showed that 2 minutes after carotid 
arterial perfusion of 5 nm ceria NP it was associated with the luminal wall of BMECs, but 
had not entered those cells or brain parenchyma. Given more time, the NPs might cross 
the BBB 39.  Six hours after intraperitoneal injection captopril-conjugated QDs were 
frequently seen in brain blood vessels but only occasionally in perivascular areas and 
brain parenchyma of cerebral cortex, thalamus and olfactory bulb 73, consistent with the 
very limited flux of metal-based NPs across the BBB (Figure 4).    
 
Endocytotic processes are believed to be the major mechanism of NP cell uptake. They 
are much slower than small molecule diffusion or transporter-mediated uptake, 
demonstrated by clathrin-mediated uptake half-lives of 2.02, 1.88, and 2.52 hours for 
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14, 50, and 74 nm transferrin-coated gold into SNB19 (brain tumor) cells 74. Metal-
based NPs shown to be taken up by endocytosis include 6 to 20 nm silver NPs into 
human glioblastoma (U251) cells 75 and ~77 nm gold urchins into N9 microglia 62. 
Uptake of 70 nm silver NP into rat BMECs may have been mediated by transcytosis 38. 
A role for clathrin was shown in the uptake of 120 nm L-DOPA-coated iron oxide into rat 
brain capillary endothelial and choroidal plexus epithelial cells, and 40 and 200 nm 
carboxylated polystyrene NPs into an astrocytoma cell line 46, 76.   
 
Based on results of studies with gold nanospheres, nanorods and nano-urchins (see 
VII.B. Subcellular nanoparticle localization) Hutter et al  62 suggested relatively thin 
rods may have a more favorable morphology for cell internalization than the other two 
forms. This may relate to the observation that nanorods enter cells perpendicularly to 
their long axis 77.  Results suggest endocytotic processes mediate NP uptake into 
BMECs. 
 
VII.A Nanoparticle factors that influence central nervous system (CNS) uptake 
VII.A.1. Size 
Smaller NPs enter the brain to a greater extent than larger ones. Figure 5 shows results 
from several studies with various sizes of gold NPs, different surface functionalizations, 
and using three different experimental methods. It appears that size, not charge, 
influenced their permeation differences. Brain uptake results in Panels A through E do 
not inform whether the NPs entered brain parenchyma or were confined to the vascular 
compartment, the issue addressed in Figure 4. In a rat BMEC and astrocyte co-culture, 
2.8% of 70 nm spherical silver NP vs. 0.1% of 12 µm silver particles crossed this in vitro 
BBB model and 34 vs. 8% were associated with the BBB cells, respectively 38. Silver NP 
flux was quantitatively much greater than in vivo reports of brain metal-based NP 
uptake. This illustrates, along with Figure 5 Panel H (permeation through a co-culture 
model of the BBB) compared to Figure 4 (lack of brain parenchymal uptake of PEG-
coated gold NP), the greater leakiness of in vitro BBB models than the mammalian in 
situ BBB. 
 
After i.v. injection of 20 and 100 nm gold NPs only the smaller NPs were observed by 
TEM in retinal neurons, endothelial cells, and peri-endothelial glial cells, suggesting 
permeation of the blood-retinal barrier (BRB) 78. The BRB is comprised of endothelial 
cells, pericytes, astrocytes, and tight junctions between epithelial cells. Bypassing the 
BRB, intra-vitreal injection of various NPs has been shown effective to treat 
angiogenesis-related blindness, retinal degeneration, and uveitis 79. 
 
There was initially slightly more gold in the brain of mice after a single intraperitoneal 
injection of 17 than 37 nm (surface charge - 46 to - 48 mV) gold NPs. Brain gold 
increased over 21 days, possibly due to continued absorption or re-distribution from 
other sites 80. Brain gold 24 hours after an intragastric administration of 1.4, 5, 18, and 
80 nm radiolabeled gold was ~0.0003, 0.0001, 0.0015, and 0.0001% of the dose. The 
differences could be due to absorption or BBB permeation 81. Intravenous administration 
of mono-sulfonated triphenylphosphine gold NPs (1.4, 5, 18, and 80 nm, – 20 to – 23 
mV; and 200 nm, – 41 mV) resulted in uptake that correlated with the volumetric specific 
surface area for the 1.4 to 18 nm NPs, but not the larger ones 24 hours later (Figure 4) 
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82. Evidence was not provided that the NPs entered brain parenchyma. This study 
appears to be the only one assessing the dose metric that best describes NP brain 
uptake, NP size. 
 
There may be an optimal size for NP uptake by brain cells. A diameter of 55 nm 
produces the fastest wrapping time for a membrane to enclose a particle, and therefore 
greatest uptake by endocytosis 74. The optimal particle diameter to accelerate protein 
wrapping of cylindrical and spherical particles, and their interaction with the lipid bilayer 
of cell membranes, was found to be 30 and 60 nm, respectively 83. Smaller particles 
might enter cells as agglomerates. A review of the physical-chemical effects of inorganic 
NPs in relation to their size concluded that NPs with diameters of 30 nm or less have 
characteristics that enhance their interfacial reactivity, giving them properties different 
from their bulk components 84. This critical size for NPs, at which new properties 
typically appear, is strongly related to the exponential increase in the number of atoms 
localized at the surface 84. For 5 to 100 nm citrate-coated gold NPs, the maximal 
association constant with albumin and histone was seen with the 60 nm particles; with 
fibrinogen it was the 60 and 100 nm particles. NP association was considerably greater 
with globulins and insulin and increased with NP size 85. 
 
VII.A.2. Shape 
No reports were found addressing the influence of NP shape on brain uptake in intact 
organisms.   
 
VII.A.3. Surface charge (in relation to luminal surface of brain endothelial cells) 
The luminal to abluminal flux of neutral 60 nm maltodextrin NPs across a co-culture of 
bovine BMECs and rat astrocytes was ~3-fold greater than anionic or cationic NPs. 
When coated with a dipalmitoyl phosphatidyl choline and cholesterol lipid bilayer, flux of 
the charged NPs increased 3- to 4-fold, whereas flux of the uncharged did not change 
86. The binding of 60 nm maltodextrin NPs without, and with, a surface cationic ligand 
(+25 mV), and cationic NPs with an anionic phospholipid (dipalmitoyl phosphatidyl 
glycerol) in the core to give DPPG-NPs (+24 mV) to bovine BMECs was studied. The 
cationic NP bound mainly around the paracellular area, the neutral NPs mainly on the 
cell surface, and DPPG-NPs to both sites. There was no difference in flux of the neutral 
and cationic NPs across a co-culture of bovine BMECs and mixed glial cells. Flux was 
inhibited by filipin, showing dependence on the caveolae pathway 87. Rat brain uptake of 
a 127 nm anionic (-60 mV) surfactant surface-coated emulsifying wax NP increased 
above that seen with a 75 nm (-14 mV) less anionic or a 97 nm (+45 mV) cationic NP. 
The order of disruption to BBB integrity was cationic > anionic > neutral NPs 88.  Mouse 
brain contained more positively-charged 362 nm 99mTechnectium-labeled etoposide-
incorporated tripalmitin than 391 nm negatively charged NPs after their i.v. 
administration 89. However, there was no demonstration in the prior 2 studies that the 
NPs crossed the BBB; they could have adsorbed on the luminal wall of, or been 
sequestered in, the BMECs. The percent of the dose in rat brain of positively charged 
(cysteamine-coated) 2.8 nm gold NPs was somewhat greater than negatively charged 
(thioglycolic acid coated) ones 24 hours after their i.v. administration (Figure 4) 82. The 
authors suggest alterations of the NP surface due to protein binding and exchange were 
major mechanisms determining their accumulation in various organs and tissues. Gold 
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was seen in the brain after intragastric administration of a positively charged (NH3+) 2.8 
nm gold NP (~0.00015% of the dose) but not after a negatively charged (COO-) 2.8 nm 
one. The site causing the difference could be oral absorption or BBB permeation 81. 
Conjugation of a 12 nm gold NP with an amphipathic peptide (CLPFFD) increased brain 
distribution 4-fold compared to citrate-capped gold NP of the same size after their 
intraperitoneal injection. The former had a smaller negative charge (-41 vs. -52 mV) and 
was more hydrophobic. It did not alter BBB integrity and had no effect on cell viability 90. 
No reports that clearly showed an influence of surface charge of metal-based NPs on 
flux across the BBB were found.   
 
VII.A.4. Surface coating (intended and opsonization)  
The surface of an NP is never naked.  Due to high energetic adhesive forces close to 
the surface, NPs can agglomerate or adsorb to the next available biological or non-
biological surface 91. In vivo coating by the several thousand proteins in blood or lipids 
(opsonization) is extremely important, because the NP surface is what cells see 92, 93. 
NP coating can alter size, surface charge, and biological effects 94, 95. There is rapid 
(within seconds) association with the most abundant proteins that shifts over time to 
those with the highest affinity constant, i.e., protein sorption is often reversible. Some 
proteins promote phagocyte clearance. Others, such as albumin and apolipoprotein, 
prolong NP circulation time. The latter also interacts with BBB receptors to enhance 
BBB transport. Cell membrane surfaces are negatively charged. Surface coating of 
polymer NPs has been shown to influence their brain uptake 96. NP size, shape, and 
surface area can influence interactions with proteins and cell components 97-99. The 
binding of plasma proteins to silica, Aeroxide® P25 (Evonik Degussa ~80% anatase 
20% rutile titania), and zinc oxide NPs was NP-dependent. For titania (the only NP 
tested for the effect of shape), qualitatively more proteins bound to nanospheres than 
nanorods or nanotubes 100. Multilayer protein binding has been observed between 5, 10, 
20, 30, 60, 80, and 100 nm citrate-coated gold NPs and 5 plasma proteins. Association 
was assessed using dynamic light scattering to estimate the apparent particle size of 
the dispersions. Maximal association with albumin and histone was seen with the 60 nm 
particles. With fibrinogen it was the 60 and 100 nm particles. It was considerably greater 
with globulins and insulin and increased with NP size 85. The association altered protein 
conformation; potentially contributing to toxicity. By comparing uncoated (hydroxyl 
functionalized, that favors caveolar endocytosis), cationic polymer polyethyleneimine-
coated (that favors adsorptive-mediated endocytosis), and prion protein-coated 500 nm 
silica matrix magnetic core NPs in an in vitro BBB model, it was demonstrated that 
charge and protein ligands affect their mode of internalization, transcytotic potential, and 
intracellular localization 101. NP size and shape therefore influence the proteins that coat 
them in vivo.   
 
VII.B. Subcellular nanoparticle localization 
When metal-based NPs have been localized in brain cells, they have usually been seen 
in the cytoplasm, sometimes in vesicles, of microglia. However, there are reports of 
intra-nuclear distribution. Two nm QDs were localized to the cytoplasm of N9 murine 
microglial cells, whereas 5 nm QDs were in the nucleus 103. Twenty to 50 nm pegylated 
QDs injected into mouse brain were in microglial lysosomes, but not microglial 
mitochondria or nuclei, or neurons 104.  Degussa P25 titania was seen in microglia 
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vacuoles 18 hours after in vitro exposure 105. Silver NPs (6 to 20 nm) were visualized to 
be uniformly distributed, including in the nucleus, of U251 human glioblastoma cells 75. 
In contrast, peptide-coated 20 nm silver NPs, taken up by astrocytes in vitro, were seen 
in cellular compartments, most likely lysosomes 106. Cetyl trimethylammonium bromide 
(CTAB)-coated gold spheres and rods internalized into N9 microglia acidic lysosomal 
compartments, whereas PEG-coated gold spheres and rods did not significantly 
internalize. CTAB- and PEG-coated gold nano-urchins equally internalized, primarily 
into cytosol. In contrast, CTAB- and PEG-coated gold nano-rods decorated the 
dendrites and were internalized in the neurites and cell body of primary hippocampal 
neurons whereas gold spheres and nano-urchins did not 62.  After their intraperitoneal 
injection 17 nm gold NPs were seen in the cytoplasm of hippocampal pyramidal cells, 
surrounded by coated pit-like structures, suggesting endocytotic uptake, whereas 37 nm 
gold NP did not enter neurons 80. NP size and surface coating therefore affect NP 
subcellular distribution in NS cells. 
 
VIII.THE PHARMACODYNAMICS OF NANOPARTICLES IN THE NERVOUS 

SYSTEM  
VIII.A. Blood-brain-barrier responses to nanoparticles 
A cationic (97 nm, +45 mV) emulsifying wax NP increased brain cerebrovascular 
volume to a greater extent than an anionic one (127 nm, -60 mV), which was greater 
than a neutral NP (75 nm, -14 mV). These results suggest cationic NPs were most 
disruptive to BBB integrity and that neutral and low-concentration anionic colloidal NPs 
provide a better benefit-safety profile for drug delivery to the brain 88. A comparable 
study with metal-based NPs was not found. Administration of ~50 nm silver, ~50 nm 
copper, or ~60 nm aluminum NP intraperitoneally (50 mg/kg), intravenously (30 mg/kg), 
carotid arterially (2.5 mg/kg), and intracerebroventricularly (20 µg in 10 µl) opened the 
BBB in rats and mice, demonstrated by Evans blue-albumin brain entry and 1.2 nm 
lanthanum extravasation. Brain edema, neuronal (distorted cell shape, chromatolysis 
and degeneration, nuclear damage, eccentric nucleolus and sponginess) and glial 
(reactive gliosis and perivascular gliosis, myelin loss, myelin vesiculation) changes were 
seen. The effects were greater with the silver than the copper, which was greater than 
the aluminum NP, and greater in the cerebellum than brainstem than hippocampus and 
cortex, than thalamus and hypothalamus. The work did not show NP entry into 
parenchyma 107, 108. The results demonstrate metal NPs can damage the BBB and 
cause adverse brain changes. To test the hypothesis that stress can increase NP-
induced brain pathology, 7 daily intraperitoneal injections of the ~50 nm silver and 
copper NPs were compared to saline in rats whole-body exposed to 38°C for 4 h. The 
silver NPs increased BBB disruption and brain edema and produced cognitive and 
motor impairment more than copper NP injections 109.  
 
Opening the BBB by injection of i.v. mannitol enabled brain entry of dimercaptosuccinic 
acid-coated 4 nm iron oxide 110, consistent with the approach of disrupting the BBB with 
hyper-osmotic mannitol to enhance brain uptake of therapeutic agents 90, 111. Following 
large (50, 250, or 750 mg/kg) i.v. doses of a commercial ~30 nm ceria, increased brain 
Evans blue and fluorescein were seen 1 and 20 hours later, but these increases were 
seldom statistically significant, suggesting minimal disruption of BBB integrity 112, 113.  
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An in vitro study with human BMECs exposed to alumina NPs showed dose- and time-
dependent reduction of viability, loss of mitochondrial potential, increased superoxide 
production, and reduced tight junction protein (JAM-A, ZO-1 and ZO-2) expression 114. 
I.v. administration of alumina NP (29 mg/kg) to rats produced claudin-5 and occludin 
loss, suggesting they have the potential to compromise the BBB, perhaps via alterations 
in mitochondrial function 114. Exposure of a rat BMEC and astrocyte co-culture to 25 nm 
Aeroxide® titania, up to 20 µg/ml, concentration-dependently increased 14C-sucrose flux 
(decreased BBB integrity) and decreased the vinblastine efflux/influx ratio (decreased p-
glycoprotein activity). These effects were much more sensitive to the NP than cell 
viability, which was not affected up 200 µg/ml. The mRNA expression of structural (tight 
junction), transport (caveolar), and detoxification (multi-drug resistant and breast cancer 
related) proteins were depressed. Inflammatory gene expression increased. Titania 
agglomerations were seen in BMEC and glial cells. The results suggest non-lethal 
adverse effects on BBB function associated with intracellular, but not intra-nuclear, 
titania NP 115. An amphipathic peptide-coated 12 nm gold NP showed higher brain gold 
content (although maximally only 0.024% of the dose) than a less negatively charged 
citrate-coated gold NP (maximally only 0.0048% of the dose), and no disruption of BBB 
integrity 90. These studies suggest brain drug delivery in the absence of significant BBB 
disruption is possible. However, an in vitro study with rat primary BMECs showed 
greater pro-inflammatory responses with 25 and 40 nm than 80 nm silver NPs that 
might lead to inflammation-mediated neurotoxicity 116.  Forty and 60 nm copper NPs 
(1.5 and 3 µg/ml) increased primary rat BMEC proliferation but 12.5 to 50 µg/ml 
decreased it 117. Twenty-five µg copper NP/ml increased PGE2,TNFα, and IL-1β release 
and 15 µg/ml increased BBB permeability; responses similar to those seen with silver 
NPs 116, 117. The copper NP effects were size independent. It is not known if these 
effects were due to the copper and silver NPs or if their ions contributed.  Determining 
the relative sensitivity to NPs of measures of disruption of BBB function, such as 
viability, tight junction integrity, metabolic activity, and immune and inflammatory 
processes seems warranted.  
 
No reports were found of the assessment of NP effects on the BNB. 
 
VIII.B. Animal responses to nanoparticles 
A slight brain lesion characterized by hippocampal neuronal vacuoles indicating fatty 
degeneration was seen after a single oral 5 g/kg dose of 80 and 155, but not 20, nm 
titania (crystalline form not stated) to mice 118. Fourteen consecutive daily intraperitoneal 
injections of 5, 10, 50, 100, or 150 mg/kg of 5 nm anatase titania to mice dose-
dependently increased brain titanium (more than a comparable dose of non-NP titania), 
and increased many pro-oxidant endpoints, indicating oxidative stress 119. Daily oral 
administration of this material for 60 days impaired spatial recognition memory after 10 
or 50 mg/kg, which was associated with increased titanium, acetylcholine, glutamate, 
and nitric oxide; decreased norepinephrine, dopamine, serotonin and their metabolites; 
spongiocyte proliferation; changes in cations; and decreased ATPases in the brain 120. 
Intraperitoneal injection of 21 nm Aeroxide® titania to mice previously treated with 
lipopolysaccharide increased ROS and inflammatory cytokines and activated microglia, 
indicating the potential for NPs to enhance inflammatory brain responses 121. Nose-only 
exposure to 22 nm silver nanoparticles for 6 hour/day 5 days/week for 2 weeks resulted 



20 
 

in gene product changes, including genes associated with motor neuron and 
neurodegenerative diseases and immune cell function. The determination of silver or 
silver NP in the brain was not reported 122.  
 
VIII.C. Nervous system responses to nanoparticles not seen in the nervous 

system 
There are reports of NP effects on the NS in the absence of significant NP presence. 
Potential mechanisms come from related work. Inhalation exposure to fine and ultrafine 
air pollution particulates increased brain inflammatory markers, which might be 
explained by either particulate uptake via the olfactory nerve or systemic cytokine 
release and distribution into the brain 123. Another mechanism is potential activation of 
peripheral autonomic or neuronal afferent pathways that result in modulation of CNS 
activity 124. NP-induced DNA damage to fibroblasts in vitro was reported in the absence 
of intracellular NP, mediated by NP interaction with the cell membrane 125.   
 
VIII.D. Physical-chemical factors that affect biological responses  
VIII.D.1. Size 
Toxicity to N9 murine microglia was greater from 2.2 than 5.2 nm diameter cationic QDs 
103. Twenty and 50 nm silver NPs were more toxic to C6 glioma cells than 100 nm NPs 
126. To assess the physical-chemical properties of NPs that best predict toxicity, dose-
effects of 5, 15, 40, and 80 nm citrate-capped spherical gold NPs were determined in 
Drosophila melanogaster. Gold NPs decreased lifespan and fertility and increased 
ROS, heat shock proteins 70 and 83, DNA fragmentation, and apoptosis. Lifespan 
decreased as NP size decreased, when expressed as NP surface area. Comparing the 
different sizes, concentration played a primary role in the toxicity; size and surface area 
did not 127, 128. 
   
VIII.D.2. Shape 
Gold spheres (23 nm) coated with CTAB (42 mV) were more toxic to N9 glial cells than 
PEG-coated spheres (-23 mV), CTAB- (47 mV) or PEG-coated (-23 mV) nano-rods, or 
CTAB- (39 mV) or PEG-coated (-10 mV) nano-urchins 62. PEG-coated spheres and 
nano-rods, but not PEG- or CTAB-coated nano-urchins, increased N9 granulocyte 
macrophage colony-stimulating factor whereas PEG- and CTAB-coated nano-urchins 
increased IL-1α but PEG-coated spheres and nano-rods did not 62. Protein-conjugated 
silver sulfide ~65 nm spherical NPs inhibited C6 glial cell proliferation to a greater extent 
than 40 by 200 nm rods, 50 by > 1000 nm wires, or bulk crystals 129. Coating and NP 
shape can therefore affect glial response. Similarly, 43 nm gold spheres were more 
toxic to a non-NS cell line (MDCK II) than 17 by 38 nm nano-rods 130.  
 
VIII.D.3. Surface charge  
Twelve nm magnetite surface coated with silane-NH2 or silane-COOH was more toxic to 
C6 glioma, U251, and SHG-44 glioblastoma cells than when coated with meso-2, 
3-dimercaptosuccinic acid or silane-short-chain PEG 126. Although ζ potentials were not 
reported, the results suggest surface charge can affect NS cell response to NPs.  
 
VIII.D.4. Surface coating 



21 
 

Similar gold content of N9 microglia was seen after exposure to CTAB and PEG-coated 
gold nano-urchins, which was greater than after exposure to CTAB or PEG-coated gold 
spheres or rods 62. However, CTAB/trioctylphosphine oxide-coated QDs were toxic to 
PC12 cells whereas mercaptopropionic acid QDs were not 131. Citrate-coated iron oxide 
NPs were more toxic to C17.2 neural progenitor cells and PC12 cells and increased 
ROS more than dextran-coated, carboxydextran-coated, or cationic magnetoliposomes 
132, 133. Polydimethylamine-coated ~9 nm core iron oxide NPs reduced the viability of 
primary cortical neurons from embryonic day 7 chicks to a much greater extent than 
aminosilane- or dextran-coated particles. Toxicity was associated with removal of the 
plasma membrane. Their ζ potential in water and Neurobasal® media (media that 
support neuronal growth) was ~55 and -10 mV; 15 and 10 mV; and  ~55 and -10 mV, 
respectively, illustrating the effects of surface coating on surface charge and toxicity 134. 
In contrast, surprisingly, alumina, silica, and tri-methoxy-caprylyl-silane coatings did not 
modify the toxicity of anatase, rutile, or mixed crystalline form titania to DRG cells 135. 
The surface coating of redox-active nanoscale zero-valent iron became more oxidized 
over 11 months. This “aged” form generated less ROS in MV2 microglia. It reduced 
viability of MV2 and N27 neuron cells less than the fresh (non-oxidized) NP form 102.   
 
IX. NANOPARTICLE NERVOUS SYSTEM INTERACTIONS OUTSIDE OF THE BRAIN 
IX.A. The blood-peripheral nerve barrier to nanoparticle uptake into the peripheral 

nervous system (PNS) 
Similar to the CNS, neurons in the PNS are protected by the tight junctions and 
transporters of the endoneurial endothelial cells and pericytes, but no astrocyte foot 
processes, creating the BNB.  Little has been reported on metal-based interactions with 
the PNS. Nerve growth factor-conjugated QDs were shown to enter DRG neurons and 
be retrograde axonally transported 136. Non-functionalized 2 to 3 nm cadmium telluride 
QDs were taken up by DRG cells and transported to the cell body by retrograde axonal 
transport 137. Silicon dioxide (< 12 nm) NPs were taken up by Schwann, but not DRG, 
cells 138.  
 
IX.B. Nanoparticle effects on the spinal cord and peripheral nervous system  
Non-functionalized 2 to 3 nm cadmium telluride QDs taken up by DRG cells produced 
greater toxicity than their constituent elements and were more toxic to DRG than PC12 
cells (as shown by intracellular glutathione depletion and inhibition of neurite outgrowth) 
137. Twenty nm lead oxide particles repeatedly given to rats by intra-tracheal instillation 
decreased rearing and increased ambulation, increased high-frequency 
electrocorticogram activity, increased somatosensory cortical evoked potential latency, 
and decreased conduction velocity in the tail nerve 139. These results could be due to 
CNS and/or PNS effects and NP translocation from lung, or to dissolution of the lead 
oxide.  Apoptosis induced by titania (anatase, rutile and mixtures; 11 to 31 nm) in chick 
embryo DRG cells was not abrogated by the several inorganic and organic surface 
coatings tested 135; cell uptake was evidently not examined. Anatase titania NPs dose-
dependently decreased DRG survival to a greater extent than Schwann cells, IC50 ~5 
and 25 µg/ml, respectively 140. Silica (< 12 nm) NP taken up by Schwann cells reduced 
their survival (IC50 ~150 µM). DRG cells, which did not appear to take up this NP, were 
less affected 138. Repeated intraperitoneal injection of 50 to 60 nm aluminum, copper, 
and silver NPs exacerbated trauma-induced spinal cord pathology, associated with 
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breakdown of the PNS barrier to serum proteins 141. When applied to the spinal cord 5 
minutes after injury, titanium-containing nanowires (with diameters of 50 to 60 nm, 
surface modified) improved motor function and decreased blood-spinal cord barrier 
disruption and spinal cord edema 142. Chitosan-gold NPs enhanced rat sciatic nerve 
axon repair after injury 143. Application of 3 to 5 nm ceria (10 nM) to cultures of spinal 
cord cells isolated from 3 to 4 month old rats increased the live-to-dead-cell ratio 15 and 
30 days later, attributed to an anti-oxidant effect of the nanoceria to scavenge free 
radicals 144. As with CNS cells, NPs can enter PNS cells to produce effects that are NP- 
and cell-type dependent. 
 
X. IN VITRO STUDIES WITH BRAIN-DERIVED CELLS 
There are well recognized advantages and shortcomings of in vitro testing.  The 
complexity of the human NS cannot be adequately modeled in cell culture experiments 
145. As noted above, BBB cell culture models do not have the same degree of 
impermeability as the in situ BBB. Due to the formidable barrier properties of the BBB, 
in vitro studies of NP uptake and effects are informative, but not necessarily 
representative of what would be expected in the whole organism. Without 
understanding the extent of NP penetration into the NS, where the NP could be taken 
up by neural and glial cells, a complete understanding of the potential benefits and risks 
is lacking. NP uptake has been shown in NS cells, including astrocytes 146, 147, microglial 
cells 105, 148, and neurons 148. Greater uptake of peptide-coated 20 and 40 nm silver NPs 
was seen with the astrocytes than neurons of a mixed primary cortical neural cell culture 
consisting mainly of neurons and astrocytes, with some oligodendrocytes 106, 
demonstrating cell type-dependent response.  
 
Many NP effects on NS cells in culture have been reported, illustrating their potential to 
produce NS cell toxicity. Examples are cadmium tellurium and cadmium selenium QDs 
on hypothalamic glial, hippocampal neural, N9 microglial, IMR-32 and SH-SY5Y human 
neuroblastoma, and PC12 cells 103, 149-152; anatase titania, zinc oxide, and magnesium 
oxide NPs on human glioblastoma astrocytoma U87 cells 153; and a commercial 
magnetic NP on microglia 154. Interpretation of NP uptake by NS cells in vitro and effects 
of NP exposure results should be couched in terms of the ability of these NPs to 
distribute across the BBB, BNB, and/or BCSFB into the NS of the intact organism.  
 
Mesenchymal stem cells can undergo neuron-like differentiation. SPIONs were used as 
MRI contrast agents and to label cells. It was shown possible to label human amniotic 
membrane-derived mesenchymal stem cells without producing significant toxicity 155.  
  
XI. VALIDATION THAT IN VITRO APPROACHES PREDICT IN VIVO EFFECTS 
No reports were found that directly addressed validation of in vitro endpoints with in vivo 
data using NS cells. There are a number of studies that used both in vivo and in vitro 
models. There was generally decent agreement, suggesting in vitro models may predict 
in vivo responses.  
 
XII.NANOPARTICLE INTERACTION WITH INFRA-MAMMALIAN ANIMAL SPECIES 

(ZEBRAFISH, C. ELEGANS, AND DROSOPHILA)  
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There may be value in studying small intact organisms that have the full complement of 
organ systems, require less cost and test material, and have short time spans. They 
enable developmental, life-span, aging, and multi-generational studies in much less 
time than traditional mammalian models. The zebrafish, which has 80% homology to the 
human genome, has been utilized to study NP developmental effects. Exposure to 5 to 
20 nm bovine serum albumin-capped silver resulted in a few scattered primary particles 
in the zebrafish embryo brain 156. Microinjection of anatase titania NP into the otic 
vesicle produced significant effects on gene regulation 157. Titanium was found in the 
brain after titania NP exposure 158. Anatase titania NP was more toxic to brain 
biochemical endpoints than its bulk material counterpart 159. Exposure from 6 to 24 or 
48 hours post-fertilization to N,N,N-trimethylammoniumethanethiol (TMAT)-,  
2-mercaptoethanesulfonic acid (MES)-, or 2-(2-(2-mercaptoethoxy)ethoxy)ethanol 
(MEEE)-functionalized 1.5 nm gold NPs resulted in similar uptake, but greater mortality 
and genetic effects from TMAT than MES than MEEE, suggesting surface 
functionalization influenced the differential responses 160. Nerve impulse transmission 
gene expression was enhanced. Exposure to titania NP from fertilization to free 
swimming stage produced adverse behavioral deficits that were more sensitive than 
hatchability and survival effects 161. Initial results with zebrafish suggest it predicts 
effects expected in mammalian organisms.      
 
The adult C. elegans hermaphrodite has 302 neurons that belong to two distinct and 
independent NSs: a large somatic (282 neurons) and a small pharyngeal NS (20 
neurons). It has 959 somatic cells. Its genome has been sequenced. Five nM ceria (8.5 
nm) in the food source increased ROS accumulation and oxidative damage and 
decreased lifespan. No NS endpoints were reported 162. Zinc NP and zinc ion produced 
equipotent effects on movement 163. More work with this organism will be needed to 
determine how well it predicts higher organism NS responses. 
 
A study of drosophila response to citrate-capped spherical gold NPs is summarized in 
VIII.D.1 Size 
 
Sidebar 1: Pharmacokinetics of gold nanoparticle nervous system entry, influencing 
factors, and extent of entry 
To illustrate the current understanding of metal-based NP interaction with the NS, gold 
was selected because it has been used in many studies of NP distribution into the NS 
and resultant effects. Its size, shape, purity, and surface functionalization and charge 
can be easily manipulated during synthesis; it can be quantified by very sensitive 
analytical methods and visualized by TEM; and it has very low background 
concentrations. Gold NPs have been surface coated with many agents, including citrate 
to increase aqueous stability (e.g., the NIST standard reference materials); an 
amphipathic peptide derived from β-amyloid 90; transferrin and PEG to target cancer 
cells 164; radioactive iodine and tripeptide-PEG as probes for targeting cancer cells and 
imaging tumor sites 165; with epidermal growth factor to enhance brain uptake 166; gellan 
gum as a capping and reducing agent and further conjugated with sophorolipids 167; and 
encapsulated in a ternary mixture of dioleoylphosphatidylcholine, sphingomyelin, and 
cholesterol to increase resistance to aggregation 168. Gold NPs are also insoluble, so 
levels can be confidentially attributed to the NP. As seen with other NPs, small (4 and 
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13 nm) gold circulated in blood longer than a larger (100 nm) NP and little was excreted 
in bile or urine 18 , 50. The mononuclear phagocyte system sequesters most NPs from 
the blood, including gold NPs 18, 82, 90, 169. Elevated brain gold was seen following i.v., 
inhalation, intraperitoneal, and intragastric gold NP exposure. Brain gold concentration 
inversely correlated with NP size (Figure 4) 82, 170, 171. In the absence of PEG coating, 
brain gold was usually ≤ 0.01% of an i.v. dose; PEG coating increased brain uptake, but 
did not result in preferential gold NP distribution to the brain (Figure 4) 171, 172. Even less 
gold entered the brain after oral administration due to very low oral NP bioavailability 30, 

81. Positively-charged gold NPs resulted in higher brain gold than negatively charged 
ones. Clathrin-mediated endocytotic processes mediate gold NP cell uptake, with 
uptake half-lives of ~2 hour 74. Intracellular gold NPs have been seen in the cytosol and 
lysosomal compartments of neural and glial cells 62. Repeated intraperitoneal injection 
of 12 nm citrate-coated gold resulted in a dose-dependent increase of brain gold 1 day 
later 169, consistent with the bioaccumulation of insoluble NPs that are too large to be 
filtered by the kidney. Bioaccumulation and prolonged retention has been shown with 
gold 18 and other insoluble NPs, including ceria 50, Thorotrast® (a colloidal solution of ≥ 
45 nm aggregates of thorium dioxide 173), 70% anatase 30% rutile titania 174, and QDs 
175. 
 
Sidebar 2: Gold nanoparticle nervous system pharmacodynamics  
Gold NPs are being investigated for imaging, tracking and labeling (including CT, 
Raman spectroscopy and TEM); as drug and gene delivery carriers; as 
photothermal/photodynamic therapy agents; sensors; electronic conductors; and 
catalysts 166, 176-179. Although insoluble, “colloidal metallic gold is not bio-inert” 180. 
Intraperitoneal injection of 8 mg/kg/week of 8 to 37 nm naked gold NPs to mice was 
lethal within 1 month, whereas 3, 5, 50, and 100 nm NPs were not. Toxicity was seen in 
the liver and spleen, organs that accumulate NPs. The brain was not affected. These 
results are consistent with the size dependent effects of NPs and their inability to readily 
enter the brain181. Intranasal gold NP was shown to activate microglia in a NP-shape-
dependent manner. CTAB-coated gold spheres were more toxic than similarly coated 
nano-rods or nano-urchins, although showing less cell uptake 62. However, CTAB is 
toxic and these results may reflect the surfactant equilibrium. Sub-retinal injection of 
goat IgG-adsorbed gold NPs produced outer retinal degeneration 1 week later in the 
rabbit 182. Citrate-capped spherical gold NPs (~50 nm) injected into the brain of the false 
dead-head roach (Blaberus discoidalis) were seen in the brain and nerve cord, 
demonstrating neuronal transport. Decreased locomotion was seen 2 to 6 weeks later. 
The NPs were protein encapsulated, as is seen with NPs in vivo 183. These results 
illustrate the uptake, effects, and opsonization of metal-based NPs. Although it has 
been suggested gold nanorods might produce an asbestos-like mesothelioma similar to 
that produced by high-aspect-ratio carbon nanotubes, there are no reports of studies 
that assessed this. A study of 3 to 60 nm gold NPs in primary rat brain microvessel 
endothelial cells showed only moderately decreased cell viability with the small gold 
NPs at concentrations ≥ 7.8 μg/cm2 cell surface area and no change in basal levels of 
various pro-inflammatory mediators, in cell morphology, or in BBB integrity 184, 
demonstrating an exposure level producing little effect. There appears to be only one 
dose-response assessment of gold NP toxicity to the NS in vivo that defines a lowest 
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observable effect level (LOEL) and no observable (observed) effect level (NOEL). It is 
reviewed in a risk assessment context in 2. 
  
XIII. CONCLUSIONS AND RESEARCH NEEDS 
Knowledge of colloid chemistry can significantly advance the development of surface-
modified NPs and our understanding of NP opsonization in biological milieu. Much work 
has been done with cells in culture as proof of the concept that novel NPs interact with 
NS cells. Less work has been done testing those materials in vivo. Given the formidable 
barriers to NS entry provided by the BBB, BCSFB, and BNB, there is great need to 
advance the study of these materials in the intact whole animal.   
 
In vitro results with metal-based NPs suggest cause for concern, but in vivo results 
show very low NP brain entry. Given the very low distribution of NPs into the NS, much 
work has been done using exposure concentrations and doses that exceed expected 
acute exposure, although they may model achievable levels after repeated exposure of 
biologically insoluble NPs. To advance the risk assessment process, lower exposures 
and multiple doses also need to be studied to determine the NOEL/LOEL of the 
hazards. Future in vitro NS studies should be designed with exposure conditions 
relevant to NP concentrations that might be achieved in vivo. The status of the literature 
on interactions of metal-based NPs with the NS is summed up well by 178, who referred 
to gold NPs: “Because many teams began their projects independently, there is a great 
scatter in experimental design, including particle size and shape, functionalization 
methods, animal types, particle administration doses and methods and so on. 
Correspondingly, there is a large scatter of data and conclusions on the levels and 
kinetics of biodistribution and on toxicity estimates”. There is a need for work that 
employs one or a few model, well-characterized, NPs. Gold would be a good candidate. 
It should include single and repeated exposure (inhalation and i.v.) to multiple doses 
and resultant NS biodistribution and effects (perhaps compared to other sites). Parallel 
work should be conducted in vitro with comparable concentrations as those seen in the 
NS to determine if there are similar responses, as well as similar persistence, 
accumulation, and effects from repeated exposure. Because NPs are colloids, it is 
particularly important that their surface chemistry in the various milieux be understood 
and related to their behavior and effects. The work should maintain the subjects long 
enough to assess NP persistence, possible resolution (adaptation or compensation) of 
shorter-term effects, and any delayed effects. A concern is the potential for toxicity 
associated with NP accumulation from repeated exposure, which would be predicted 
with NPs that are too large to be cleared by the kidney, insoluble and therefore retained 
for a prolonged time, and have demonstrated toxicity after single large-dose exposure, 
e.g., 50, 185.  Other topics that have been minimally addressed (if at all) include 1) 
adverse effects of metal-based NPs on the choroid plexuses, 2) metal-based NP 
distribution to the spinal cord or PNS, and 3) the relative sensitivity to NPs of measures 
of disrupted BBB function, such as viability, tight junction integrity, metabolic activity, 
and immune and inflammatory processes. These warrant study. 
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Figure Captions:  
 
Figure 1. Interfacial double layers near colloidal particles. Collodial particle = black 
sphere. Positive ions (pink). Negative ions (blue). 
 
Figure 2. Results of SciFinder® searches of A) all publications of NPs and those using 
in vitro and in vivo study platforms, B) metal-based NP nervous system publications by 
metal, and C) metal-based NP nervous system studies by research platform. 
 
Figure 3. Global NP patent activity for all NPs and selected metal-based NPs.  
 
Figure 4. NP distribution into the brain, expressed as a percentage of the dose and time 
after NP administration. Red = Unable to find the NP in the brain or reported that it was 
not in the brain. Black = Brain NP can be attributed to its presence in the brain’s 
vascular compartment and the report provides no evidence of NP distribution into brain 
parenchyma.  Blue = Brain NP is too high to be attributed to its presence in the brain’s 
vascular compartment but the report provides no evidence of NP distribution into brain 
parenchyma, so the NP could have been associated with BBB cells but did not enter 
brain parenchyma. Green = The report provides evidence of NP distribution into brain 
parenchyma. 
 
Figure 5. Influence of NP size on brain uptake. Panels A through E: The percentage of 
gold NP dose in rat or mouse brain. Panels F and G: The percentage of the gold NP 
dose taken up into rat primary BMECs per mg protein. Panel H: The percentage of the 
gold NP dose that permeated through rat BMECs. Asterisks indicate NP sizes that were 
* not detectible, ** below control, or *** reported as 0. The ζ potential of the PEG-coated 
gold NPs was ~- 2 to - 11 mV. The dendrimers were an acetamide PAMAM.  Uptake in 
rat BMECs was conducted with primary cells. Rat brain permeation was through an 
endothelial and astrocyte cell co-culture. From: Panel A 170 , B 186, C 171, D and E ones 
187, F and G 184, and H 188.  
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Figure 1. 
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Figure 3.  
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Figure 4. 
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Figure 5. Dimple is upper casing first letter of appropriate words in titles above panels and X and Y axes 
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Table 1. The pH of some body fluids, organs and tumors.  

Site pH Reference 

Blood 7.35  

Lung bronchioalveolar fluid 6.25 189 

Oral cavity  7.4 190 

Stomach 1-2, up to 4 during proton pump inhibitor 
therapy 

191 

Jejunum 6.05 192 

Duodenum 6.25 192 

Small intestine 7.4 193 

Ileum 7.5 194 

Cecum 6 194 

Large bowel 5.7 194 

Brain extracellular fluid 7.3 195 

Lysosome 4.5 196 

Endosome  6 196 

Tumor (extracellular) 6.5 to 6.9 197 
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