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ADAPTATION OF FORAGE SPECIES TO DROUGHT 

 
D.J. Barker1 and J.R. Caradus 

AgResearch - Grasslands, Private Bag 11008, Palmerston North, New Zealand 

 

Abstract 

 
Variability in rainfall is the single greatest cause of variation in forage production for a 

given site. Current climate scenarios predict future annual rainfall to decrease at some 

geographic regions. The intensity of future rainfall is also predicted to increase at other regions, 

with the expectation of greater variability in soil moisture. The adaptation of forage species to 

drought is an issue that is likely to remain with us into the future. 

Precise definitions are critical to water relations work, and imprecise use of terms has 

complicated comparisons of some studies on plant response to drought. Drought is a purely 

relative term, being abnormally low rainfall. Its duration and intensity will vary between 

locations. The intensity of drought is measured as water potential (-MPa) (relatively difficult), or 

water deficit (mm) (well suited to modeling) or soil water content (g/g, cm3/cm3, %). None of 

these measurements has a linear effect on plants. Drought resistance is a virtually meaningless 

term. Plant water reserves are trivial compared to the demand from the environment, and plants 

are virtually incapable of resisting drought. Forage plants do vary in tolerance to the intensity 

and duration of water deficit. Definition is further complicated by the scale of reference; at the 

plant-scale the plant might tolerate a level of water deficit, however tissues such as primordial 

are protected and do not encounter stress. At the tissue-scale certain cell components might be 

protected by osmotic adjustment, which allows some water loss by the plant but maintains turgor 

and some plant function. 

Since growth is largely the physical response of cells to turgor, opportunity for plants to 

continue growth in the face of water deficit is limited. Plants that could continue growth at low 

water deficit might be useful during mild and short-term drought, but would likely be at a 

disadvantage as drought intensified. Recovery from drought is related to preservation of growing 

points during water deficit, compensatory growth in surviving tissue, and the rate of mobilization 
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of root reserves. Plants with rapid recovery are likely to be vulnerable to false-breaks, and 

appropriate definition of environmental conditions is necessary for plant breeding. 

Drought effects on plant quality characteristics are variable. Although increased quality 

might result from OA, drought invariably decreases plant quality through reduced leaf:stem ratio, 

accelerated flowering and lignin accumulation 

Among the exciting developments in plant water relations are the reports that tolerance to 

water deficit of some grass species is improved through association with endophytic fungi. 

 Whole pasture responses to water deficit are poorly understood. Biodiversity theory 

suggests that sward stability (production and persistence) is greatest for species rich pastures, 

however research in this area is sparse.  

Optimum defoliation during water deficit involves managing the trade-off between 

benefits of maintaining leaf area for a) carbon fixation for osmotic adjustment and root growth, 

b) providing an insulation layer preventing soil heating & evaporation, c) ensuring low water 

potential in the plant to access meager water reserves in the soil. Invariably, at high water deficit 

(low water status) it is preferable to the plant to have low green leaf area to minimize leaf water 

loss and heating from radiation. If this does not occur through grazing, it will result from leaf 

senescence.   

 There are few options for meeting animal requirements during water deficit. Importing 

stock feed, reducing animal intake and reducing stocking rate are significant costs to graziers. 

Excessive defoliation can, however, slow eventual recovery from water deficit, loss of growing 

points, and depletion of plant energy reserves. 

Many forage cultivars have been bred to improve forage production during drought. 

Molecular technologies offer the potential for greater understanding of the role of specific genes 

in controlling plant responses to water deficit.  

 

Introduction 

 

In the millennia since famine forced Abraham from Canaan into Egypt (Genesis 12:10) 

mankind has encountered drought (Woodhouse and Overpeck, 1999). Today, the literature is 

virtually unanimous that variation in soil moisture resulting from variable rainfall is the single 

greatest cause of variation in forage yield. Numerous authors have found strong relationships 



between forage yield and either soil moisture or rainfall (Rickard and Fitzgerald, 1970; Baars 

and Coulter, 1974; Radcliffe, 1979; Alcock and Al-Juboury, 1981; Lambert et al., 1983). 

Although other factors such as temperature, radiation, day length, soil fertility and soil depth 

have large effects on plants, they are inherently less variable at any point in time or space. 

Most drought research has been with non-forage species. Ludlow and Muchow (1990) 

have summarized the suitability of 16 traits for row-crop production in water-limited 

environments. Characteristics such as rooting depth & density, early vigor, developmental 

plasticity, low root hydraulic conductance, low root hydraulic conductance, osmotic adjustment, 

low lethal water status, reduced stomatal conductance, leaf movements, leaf reflectance, heat 

tolerance, low epidermal conductance, and transpiration efficiency are clearly of mutual value in 

both crop and forage plants. Other characteristics such as leaf area maintenance and matching 

phenology to water supply are of uncertain value in forage plants. Of little value to forage plants 

are characteristics ensuring grain harvest, such as mobilization of pre-anthesis dry matter and 

photoperiod sensitivity. Emphasis in this review will be on the areas where demands on forage 

plants are unique from other plants: 

1) most forage plants are perennial and are required to provide feed for use during a drought 

as well as survive after a drought, 

2) all forage plants are subjected to defoliation (grazing or cutting); the severity often increases 

during drought, 

3) many forage plants are grown in drier environments than are cropped, 

4) forages have a requirement for quality in addition to yield; quality characteristics of forages 

are uniquely affected by drought. 

The literature is prolific on the topic of drought. A search of the AGRICOLA database 

for (drought or water) found 158,860 references. Further refinement to (drought, water or 

moisture) and (pasture or forage) found 1,916 references. Among this literature are several 

excellent reviews and readers are referred to Levitt (1980), Jones et al. (1981), Morgan (1984), 

Ludlow and Muchow (1990), Belhassen (1996) and Thomas (1997) for further reading on 

adaptation of plants to drought, and to Turner and Begg (1978), Kemp and Culvenor (1994) and 

Frank et al. (1996) for specific discussion of forage species. 

 Current climate change scenarios predict future annual rainfall to decrease in some 

geographic localities (Campbell, 2001). The intensity of future rainfall is also predicted to 



increase at other localities sites, with the expectation of greater variability in soil moisture 

(Campbell, 2001). The adaptation of forage species to drought is an issue that is likely to remain 

with us into the future. 

 

Definitions 

 

Precise definitions are critical to water relations work, and imprecise use of terms has 

complicated comparisons of some studies on plant response to drought. There are numerous 

definitions of drought (Table 1), with none being universally accepted (Passioura 1996). Du 

Pisani et al. (1998) note that no absolute objective biophysical criteria have been identified for 

quantifying the onset and end of drought. The most consistent element in definitions of drought 

is a negative impact of dry weather on mankind. This can include reduced yield, food quality or 

water supply, or increased production costs or fire risk. In this respect drought is largely a human 

construct, with definitions varying in how dry weather and its impact are determined. Dry 

weather not affecting production (or conceivably improving production) would not be drought. 

Meteorologically-based definitions typically define drought by a minimum threshold for 

rainfall over some period of time (Passioura, 1996). Such definitions have the advantage of being 

simple but the limitation of not considering any impact on plants. In some cases drought is 

defined as some critical (low) proportion of seasonal norms. In this case definition of drought 

can have regional specificity, where what is accepted as drought in one region might not be 

regarded as drought in another (Jones et al., 1981). It also follows in this case that water deficit 

could reduce yield and not necessarily be the consequence of drought, and furthermore that 

irrigation responses could occur in the absence of drought. Du Pisani et al. (1998) also suggest 

caution in reporting return times for drought, since the statistical error in predicting infrequent 

low-rainfall events can be high. 

Biologically-based definitions typically define drought in terms of a growth-limiting 

water deficit. For example, Rickard and Fitzgerald (1970) define agricultural drought as when 

soil moisture in the root zone is at or below wilting point (50-60 mm water deficit). They went 

on to show a strong relationship between pasture production and days of agricultural drought 

(range 2-96 days).  



Sociologically-based definitions often include some climatic thresholds, but also involve 

consideration of impacts on production, farm costs and rural communities, often on a regional 

basis (du Pisani et al., 1998). Such definitions often have the objective of determining the 

requirement for government intervention and aid. 

Drought has components of duration and intensity. The duration of drought has been 

reported to vary from as short as 2 days (Rickard and Fitzgerald, 1970) to as long as 20 years 

(Woodhouse and Overpeck, 1999). The intensity of drought is measured as soil water status, 

with units of water potential (-MPa), soil water deficit (mm) or soil water content (g/g, cm3/cm3, 

%). None of these measurements has a linear effect on plant or animal production, at critical 

points a small change in a water status can result in a large effect on the plant.  

Drought resistance is described by Passioura (1996) as a nebulous term encompassing the 

various strategies for plants to tolerate or escape drought (Levitt, 1980). Although it used widely, 

drought resistance is in reality a misnomer since the potential for plants to truly resist the 

dominating effect of their environment is trivial. Boswell and Espie (1998) describe the ability of 

a rangeland forb (Hieracium pilosella) to preferentially remove water from a �halo� at the limit 

of its rooting circle and maintain a more favourable water status immediately under the plant, 

however such a mechanism is not reported in forage species. Drought tolerance can be 

subdivided into tolerance at high potential (dehydration avoidance (Levitt, 1980)) or tolerance at 

low potential (dehydration tolerance (Levitt, 1980)) (Jones et al. 1981). In the former case cells 

are protected from dehydration and do not encounter stress (Tardieu, 1996). 

Drought adaptation is the process of change in a plant that increases its ability to tolerate 

drought. A vast number of responses to drought have been reported in plants and most cases (but 

not all (Bray, 1993)) confer some adaptive advantage to a plant to survive but not necessarily 

produce during drought. Clearly, time is required for adaptation to occur and in ryegrass (Lolium 

perenne), a slowly applied stress resulted in a smaller effect (40% reduction) on photosynthesis 

than a rapidly imposed stress (80% reduction) (Jones et al., 1980a). Usually plants have a suite 

of interacting responses that in combination confer drought adaptation. Since the occurrence of 

any particular response does not necessarily confer adaptation, breeding for a single trait might 

not necessarily result in improved field performance. Furthermore, the absence of any particular 

response does not necessarily imply drought sensitivity since Barker et al. (1993b) found varying 



levels of osmotic adjustment and cell wall elasticity in a range of grass species that were all well 

adapted to drought. 

 

Summary of Plant Responses to Drought 

 
Community responses to drought 

 

The literature is clear that species vary in their tolerance to water deficit. Species such as 

cocksfoot (Dactylis glomerata) and tall fescue (Festuca arundinacea) are more abundant in 

moderately dry environments (Jackson, 1974) and species such as big bluestem (Andropogon 

gerardii) and wheatgrass (Agropyron cristatum) are more abundant in dry environments (Barnes, 

1985; Frank et al., 1996). These species have traits conferring tolerance to both water deficit and 

variation in the severity of water deficit, and contribute to adaptation of the pasture community 

to survive and produce during future drought. 

Natural reseeding by annuals is frequently cited as a drought avoidance strategy (Levitt, 

1980). This is successful in subterranean clover (Trifolium subterraneum) since this species has 

wide occurrence in dry environments and can replace white clover (T. repens) in non-irrigated 

pastures (Rickard and Fitzgerald, 1970). The rapid growth of annuals upon relief from water 

stress can allow them to exploit spaces in a sward better than their slower growing perennial 

competitors. In contrast however, some studies have found that during their growth phase, annual 

species have greater sensitivity to drought than perennials (e.g. annual compared to perennial 

ryegrass (Norris and Thomas, 1982)) and out-of-season drought can result in decreased 

abundance of annuals in pasture (Espigares and Peco, 1995). 

The study of Tillman and Downing (1994) that reports a strong positive relationship 

between biodiversity (species richness) and recovery from drought in grassland is in contrast 

with Sankaran and McNaughton (1999) who found greatest yield from simpler species mixtures 

in a dry environment. Conceptually, one might imagine that a mixture of species (and genotypes 

within a species) might be better able to exploit a range of conditions in a variably dry 

environment, however insufficient evidence has been collected to fully quantify all the 

circumstances where this might apply. 

 



Morphological  responses to drought  

 

Morphological responses to drought are dramatic and obvious. For example, water 

stressed ryegrass has smaller, thicker and shorter leaves, deeper ridging on adaxial leaf surfaces, 

a slower rate of leaf expansion and slower leaf appearance (Leafe et al., 1977; Jones et al., 

1980b). Collectively, these responses have adaptive value since they reduce the radiation load on 

leaves and reduce water use. Ritchie and Burnett (1971) found in sorghum and cotton that as leaf 

area index decreases below 3, actual evapotranspiration becomes less than potential 

evapotranspiration. 

 Among the most important plant responses to drought is continued root growth. Whether 

greater absolute growth than watered controls, greater root:shoot ratio compared to watered 

controls (Jones et al., 1980b) or deeper root growth (Caradus and Woodfield, 1998) the ability of 

plants to maintain access to soil water reserves is critical to surviving drought. 

In addition to impaired leaf expansion, the rate of tiller appearance is slower in drought 

stressed ryegrass (Korte and Chu, 1982; Barker et al., 1985). Death processes are generally not 

affected by drought and the death rate of tillers present at the start of drought were similar to 

watered controls (Korte and Chu, 1982; Barker et al., 1985). Grazing managements or cultivars 

with a high population density before drought can have faster recovery upon relief from stress 

(Barker et al., 1985; Kemp and Culvenor, 1994; Brock and Caradus, 1996). 

 

Anatomical and physiological responses to drought 

 

As water deficit develops, the plant relative water content and leaf water potential 

decrease. Since growth is related to cell turgor, the first plant process to be affected is the rate of 

cell expansion. Over time this results in reduced plant size, a higher stomatal density, smaller 

epidermal cells and increased chlorophyll concentration compared to watered controls (Leafe et 

al., 1977). As a direct consequence of dehydration, cellular contents become concentrated and 

osmotic potential decreases. Continued photosynthesis and reduced utilization of water soluble 

carbohydrates contribute to a further decrease in osmotic potential (Brown and Blaser, 1970). 

This osmotic adjustment has considerable adaptive value since it helps maintain cell turgor and 

contributes to compensatory growth upon re-watering (Horst and Nelson, 1979). 



 Reduced leaf turgor ultimately impairs stomatal function and causes leaf rolling. These 

process increase stomatal resistance, reduce CO2 exchange and elevate leaf temperature. Plants 

with C4 metabolism are relatively less affected since their unique CO2 pathway allows carbon 

accumulation to continue despite greater stomatal conductance.  

 At moderate stress levels, expression of abscisic acid (ABA) will trigger innumerable 

biochemical and molecular responses as precursors to total loss of leaf (or in extreme cases 

plant) function. Production of osmoprotectants such as proline is proposed to offer protection to 

nucleic acids. As water stress develops, senescence processes are initiated, beginning with the 

export of leaf metabolites towards meristematic areas and ultimately resulting in leaf excision. 

 

Biochemical and molecular responses to drought 

  

 As cellular contents become concentrated through dehydration, plant metabolism responds 

through altered enzyme kinetics and concentration of reaction substrates and products. An increase 

in the activity and concentration of α-amylase (hydrolyzing starch to fructose and glucose) due to 

water stress has been found in maize (Maranville and Paulsen, 1970) and barley (Jacobsen et al., 

1986). Jacobsen et al. (1986) went on to show the increase in α-amylase resulted from de novo 

synthesis regulated ultimately by genetic transcription. In maize and forage sorghum, drought can 

decrease the activity of nitrate reductase, resulting in accumulation of nitrate to levels toxic to stock 

(Foyer et al., 1998). 

 The basis of virtually all plant responses whether fast or slow, direct or indirect lies 

encoded within the genome. Given the complexity of these responses it is likely suites of genes 

are involved in the expression of these responses. Considerable progress has been made in 

identifying molecular responses since 1990, and reviews on this subject include Bray (1993) and 

Belhassen (1996). The production and expression of heat shock proteins during water stress has 

been characterized and the genetic control identified (Key et al., 1981; Heikkila et al., 1984; 

Guerrero and Mullet, 1988). Although these responses might be derived from the genome, the short 

and severe duration of the stress imposed during experimental conditions may be unrelated to 

responses occurring with field conditions. Further work is required to establish adaptive benefit 

(Bray, 1993). 



 The gene Rab21 in rice has been found to be activated by ABA, water stress (Mundy and 

Chua, 1988) and cold (Hahn and Walbot, 1989). This gene may be involved in synthesis or control 

of the enzyme sucrose synthetase (Hahn and Walbot, 1989), and therefore has the potential to exert 

a direct effect on one of the important contributors to osmotic adjustment. The gene pMAH9 from 

maize, which encodes a glycine rich protein, is activated by water stress and ABA accumulation 

(Gomez et al., 1988). Glycine rich proteins such as osmatin and thaumatin can comprise up to 12% 

of total cellular protein of stressed cells, and likely have a role in protein storage or osmotic 

adjustment (Singh et al., 1987). New molecular technologies offer the potential for greater 

understanding of the control of plant responses to drought (Bray 1993). 

 

Pasture Perenniality 

 

Pasture-based animal production requires a year-round supply of forage to meet animal 

requirements and any drought-induced interruption in this supply will either reduce production or 

increase costs. The effect of drought on systems can be differentiated between i) those effects on 

a system adapted to an anticipated water deficit (usually summer) and ii) those effects of an 

unexpected (often severe) water deficit. In this later case, there are few management options, 

other than purchase of additional feed (usually at a demand-inflated price) or decrease in stock 

numbers. Options for production during anticipated water deficit include:  

a) stock management to minimize animal requirements during dry seasons e.g. as non-

lactating/non-pregnant breeding stock,  

b) maximize production during wet seasons e.g. finish lambs early or on-farm conserved feed,  

c) use of specialty forage crops which can accumulate biomass to feed during drought (e.g. 

brassica crops, feed-sorghum), 

d) use of specialty pasture species e.g. C4 grasses, lucerne, tall fescue, chicory.  

It remains unavoidable in pastoral agriculture that maintaining a conservative stocking rate and 

�emergency� feed supplies are production costs of a variably dry environment (Illius et al., 

1998). 

Opinion varies in the acceptability of human intervention in ensuring pasture perenniality 

following drought. Ecologically-speaking, perenniality is a functional requirement of grassland, 

however in pastoral systems this function is complemented to varying extents by human 



intervention through reseeding. Annual species (most notably subterranean clover) are dependant 

on natural reseeding. Perennial species are largely dependant on vegetative propagation, and the 

role of reseeding in perennial species is subject to debate (Hume and Barker, 1991). With the 

negative relationship between drought production and drought survival (Knight, 1973) managers 

are faced with the dilemma of deciding what are acceptable levels of pasture production and 

relative costs of natural vs. interventionist re-establishment following drought. 

Since growth is largely the physical response of cells to turgor, opportunity for plants to 

continue growth in the face of water deficit is limited. Plants that could continue growth at low 

water deficit might be useful during mild and short-term drought, but would likely be at a 

disadvantage as drought intensified. Ecologically-speaking, there are few advantages for a plant 

to continue growth in dry conditions. Some species might gain advantage over others for 

resources (lights & nutrients) by having some growth during short-lived dry periods, however in 

general plants gain greatest advantage from avoiding prolonged dry periods. The ability of plants 

to continue production during drought is of less value than the benefit of plants to survive 

drought (Volaire et al. 1998a). 

As a consequence of being perennial, forage species will encounter a range in climatic 

conditions. Over their typical 5-50 year lifetime, pastures will need to be adapted to both drought 

and wet years. In contrast, row-crops are established annually and a manager has the option of 

varying the cultivar sown in response to current or projected climate. Kemp and Culvenor (1994) 

consider the dilemma of selecting a ryegrass cultivar that might survive a long Australian 

drought but be less productive during wet seasons. 

 

Defoliation (Grazing and Cutting) 

 

Forage plants differ from most other plant species in that they are subjected to grazing, 

the severity of which often increases during drought as feed becomes scarce. Apart from the 

benefit of water conservation under short pasture, the effects of defoliation are largely 

detrimental to plant survival during drought. These effects include reduced photosynthesis and 

impaired osmotic adjustment, impaired root growth, reduced water potential gradient � 

preventing water uptake from the soil, sudden loss of the transpiring surface with consequential 

heating (Barker and Chu, 1985). 



 In general, close and infrequent grazing will give high pasture growth under wet 

conditions (Appadurai and Holmes, 1964; Brougham 1970) but will result in poor pasture growth 

during drought (Appadurai and Holmes, 1964). Baker and Jung (1968) observed high plant 

losses following defoliation during drought, and suggested it might be more important to have 

precipitation at the time plants are defoliated rather than later in the growth period. Jackson 

(1974) found that undefoliated cocksfoot had a leaf water potential up to 0.4 MPa lower than 

defoliated plants during water deficit. In the case where a plant was maintaining its water status 

slightly above the permanent wilting point, defoliation could put the plant into immediate and 

severe water deficit stress (Jantti and Kramer, 1956; Jantti and Heinonen, 1957). 

 The only benefit of defoliating pasture during drought appears to be water conservation. 

Goode (1955) found that short mowing of grass conserved water at 45-90 cm soil depth. It was 

not clear if this was caused by a reduced transpiring surface or from impaired root mass/depth. 

Mitchell and Kerr (1966) also found greater soil water depletion by tall ryegrass (less so for tall 

white clover), attributable to greater radiation and elevated temperature in the tall stand. Neither 

of these studies demonstrated if these swards were able to benefit from this conserved water for 

continued growth during drought or improved survival following drought. 

Defoliation management to increase tiller density prior to drought can result in a greater 

population of tillers surviving drought and a faster recovery following relief of drought 

(Brougham 1970; Barker et al., 1985; Kemp and Culvenor, 1994). These studies used close 

defoliation prior to drought and avoided close defoliation during drought, consistent with the 

recommendation of Appadurai and Holmes (1964). This recommendation is not readily 

compatible with grazing practice where feed deficits during drought make it difficult to avoid 

close grazing. 

 

Dry environments 

 

In geographic regions where soils are too steep, sandy, infertile or dry to be suitable for 

row cropping, the predominant land use is often extensive pastoral farming. Pasture 

establishment in these environments is often impossible, or dependent on low cost methods with 

variable success (Awan et al., 1993; Awan et al., 1996). The forage species in these regions 

frequently encounter extreme water deficits and require adaptations giving tolerance to 



prolonged and severe drought. In such environments most forage production is likely to come 

from brief periods of rainfall, and drought escape would be the best plant strategy. Perennials 

would be dependant on extreme dehydration avoidance strategies, with little benefit likely to 

result from dehydration avoidance strategies. 

 Among the exciting recent discoveries is the role of fungal endophytes in conferring 

environmental tolerance in a number of grass species (Saikkonen et al., 1998). While there is 

clear evidence that endophytes confer resistance to some insects, the benefits in conferring 

drought tolerance are less clear. Some reports show greater tolerance to drought in endophyte-

infected tall fescue (Buck et al., 1997; Assuero et al., 2000) and ryegrass (Ravel et al., 1995), 

however, other reports show no benefit from the plant-endophyte association (Barker et al., 

1997). Clearly further work is required clarifying conditions where the benefit occurs. Evidence 

of an interaction between the plant host and the endophyte strain on physiological responses is of 

considerable interest (Assuero et al., 2000) and also requires closer investigation. 

 

Quality 

 

Nutritive value is an important component of forage quality, and knowledge of situations 

where quality might be affected by drought is of importance. Factors affecting forage quality 

during drought include the frequent accumulation of dead material in the sward, the loss of 

legumes from the sward, direct effects on fibre and protein in the remaining green forage, and in 

some instances the accumulation of anti-quality constituents (alkaloids and nitrate) 

 The amount of dead material in pasture has a huge effect on forage quality. In most cases 

drought will not increase the rate of leaf death, however, non-decay of dead material during dry 

conditions usually results in an increase in the dead content of pasture and a resulting decrease in 

quality. During grazing, animals will attempt to avoid dead material and the influence of 

accumulating dead matter during drought does not always have a proportional decrease in the 

forage consumed by stock. 

  Species vary in both their forage quality and response to water deficit. As a consequence, 

changes in botanical composition during drought can be accompanied by a change in forage 

quality. Although legumes have a higher temperature optimum for growth than most grasses and 

are typically more active during summer, they also tend to be more sensitive to water deficit. 



Since legumes are the highest quality components of pastures, their loss from the sward during 

drought will result in decreased forage quality. 

As plants respond to drought they typically show accelerated maturity, increased fibre, altered 

leaf:stem ratio, breakdown of protein and elevated water soluble carbohydrate status. These 

factors can result in an unpredictable effect on forage quality. In lucerne (Mir Hosseini Dehabadi 

et al., 1994) and other legumes species (Pederson et al., 1992), drought increased the leaf:stem 

weight ratio with the result of improved quality but drastically reduced yield.  

 Anti-quality components that accumulate in forages during water stress include alkaloids 

and nitrate. One consequence of the endophyte-grass association is production of alkaloids 

including lolitrem in ryegrass and ergovaline in ryegrass and tall fescue. These alkaloids are 

typically (but not exclusively) localized in plant crowns and are largely not consumed by stock. 

With the occurrence of drought, ergovaline concentrations can increase above 1-2 ppm in leaves 

and stems and become toxic to stock (Barker et al., 1993a). Furthermore, as feed supplies 

become limited, animals will progressively graze near the plant crowns and can encounter toxic 

levels of these alkaloids. In C4 grasses (e.g. maize, forage sorghum, sudangrass and pearl millet) 

decreased activity of nitrate reductase during drought (Foyer et al., 1998) can result in toxic nitrate 

levels, and testing is recommended prior to grazing these species (Pickrell et al., 1991) 

 

Breeding for adaptation to drought 

  

 Considerable variation exists within species for the array of traits related to their production 

and survival during drought, and this allows scope for selection of plant-types adapted to drought 

(Table 2). Reviews in this area include Johnson and Asay (1993), Kemp and Culvenor (1994) and 

Ceccarelli and Grando (1996). 

 Researchers vary in their views on which traits are of importance in drought-prone 

environments. Tardieu (1996) argues there is sufficient scope for selection of dehydration avoidance 

traits to continue growth during water deficit and that transferring genes for desiccation tolerance 

may have no impact on agronomic yield. In an alternative view, Volaire et al. (1998a) argue that 

in environments with extreme (80 day) drought the best strategy is to avoid growth during drought 



and select for traits of desiccation tolerance, thus increasing plant survival during drought. Clearly 

plants are required to be bred for specific environments. 
 Traditional genetics has made some progress in identifying genes associated with drought 

tolerance. Morgan (1984) found with crossing high and low osmoregulating near-isogenic wheat 

lines, a tendency for F4 and F6 progeny to segregate into groups that were predominantly high or 

low in osmoregulation. He concluded this trait might be controlled by a single gene, however, 

considering the complexity of osmotic adjustment it is difficult to propose a mechanism with only 

one controlling enzyme (or mRNA or gene). In a similar case, with crosses within the big bluestem 

� sand bluestem (Andropogon gerardii) complex, Barnes (1985) found that osmotic potential at full 

turgor and stomatal conductance of hybrids were most similar to big bluestem. This might suggest 

relatively simple genetic inheritance, however, in some cases hybrids were intermediate in character 

and more complex genetic inheritance may be involved. 

 The development of new molecular tools such as restriction fragment length 

polymorphisms (RFLP), chromosome markers, and quantitative trait locus analysis (Quarrie, 

1996) will allow further progress in identifying the genetic control of plant adaptation to water 

deficit and in breeding forages with improved drought tolerance. 

 

Conclusions 

 
In addition to the drought adaptations in common with other crop plants, there are demands 

on forage plants are unique from other species. Most forages are perennial and are required to 

provide feed for use during a drought as well as recover after a drought; annual species are 

expected to survive in successive years through natural reseeding. Survival and production in 

non-drought periods are frequently better strategies than continued production into drought. All 

forage plants are subjected to defoliation (grazing or cutting) and the severity often increases 

during drought. In low-input, extensive pastoral agriculture forage plants are grown in drier 

environments than are cropped and frequently encounter extreme drought stress. In addition to 

yield, forages are required to have sufficient quality for stock; quality characteristics of forages 

are uniquely affected by drought. With an increasing world population, fixed water resources, 

and predictions for climate change, it is likely that adaptation of forage species to drought will 

remain of interest into the future. 
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Table 1 -  Definitions of drought 
 
Term Definition Reference 
crop water stress index (CWSI) calculated from  radiation, wind speed, air temperature, 

humidity, and canopy temperature  (USA) 
Feldhake et al. (1997) 

drought exceptional conditions 
(DEC) 

A 1 in 25 year event � based on meteorological 
conditions, impact on farms and rural communities (A) 

White et al. (1998) 

disaster drought <70% of average rainfall over 2 years (SA) Schulze cited by du Pisani et al. (1998) 
disaster drought <50% of average rainfall over 6 months (SA) Venter cited by du Pisani et al. (1998) 
drought when the 12-month rainfall deficit exceeds monthly 

average rainfall (SA) 
Herbst et al. cited by du Pisani et al. 
(1998) 

severe rainfall deficiency 3-month rainfall is in the lowest 10% of occurrences 
(SA) 

Erasmus cited by du Pisani et al. (1998) 

disaster drought 3-month rain is in the lower 5% of historical events 
(SA) 

Erasmus cited by du Pisani et al. (1998) 

disaster drought <30% of average rainfall over 3 months (SA) Erasmus cited by du Pisani et al. (1998) 
disaster drought Return time 1-in-5 years (SA) Fouche cited by du Pisani et al. (1998) 
disaster drought Return time of 1-in-14 years (SA) de Jagger cited by du Pisani et al. (1998) 
prolonged Mediterranean drought  80 days without rainfall (F) Volaire et al. (1998a) 
agricultural drought 15 days without rain (NZ) Rickard (1960), cited by Coulter (1966) 
agricultural drought  soil moisture at or below wilting point (nominally 50 

mm of water deficit) (NZ) 
Rickard & Fitzgerald (1970) 

drought days the number of days soil moisture at or below wilting 
point (NZ) 

Rickard & Fitzgerald (1970) 

partial drought 29 days with <7 mm rainfall (NZ) cited by Coulter (1966) 
   
Abbreviations: SA = South Africa, A = Australia, NZ = New Zealand, F = France, USA = United States of America 



Table 2 - Summary of forage adaptations to drought 
 
Response Continued vegetative growth Plant survival/enhanced recovery 
Community responses 
 

  

tolerant perennials in some cases important for cocksfoot and ryegrass, no difference between 
species (Volaire et al., 1998a) 

annuals no natural reseeding (Hume and Barker, 1991; Espigares and 

Peco, 1995) 

biodiversity 
 

 positive relationship (Tilman and Downing, 1994) 

   
Morphological responses 
 

 

deep root system 
 

e.g. alfalfa and tall fescue superior survival in cocksfoot and ryegrass (Volaire et al., 
1998a), Ludlow and Muchow (1990) 

reduced leaf area index LAI<3 impairs water use in crops, 
conserves water use (Ritchie and Burnett, 
1971) 

 

survival of leaves  negligible and resulted in little production 
during drought (Volaire et al., 1998a) 

negative association with survival (Knight, 1973) 

survival of tillers, high 
population density 
 

 was critical in post-drought production (Korte and Chu, 1982; 
Barker et al., 1985; Volaire et al., 1998a; Brock and Caradus, 
1996)  

Maintenance of water 
status 

cocksfoot had slower water depletion than 
ryegrass and produced into drought 
(Jackson, 1974) 

Volaire et al., (1998a) 

Early flowering  was associated with drought survival (Volaire & Lelievre) 
Early flowering  Was useful in cocksfoot but not ryegrass (Volaire et al., 

1998a) 
early vigor 
 

Ludlow & Muchow (1990)  
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