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1 Proof of Theorem 1

Theorem 1 (Invariance and variance of informative features). Let Oi ∈ Rm, i = 1, 2, 3, denote three different samples

from three different classes. Let φ : Rm → Ωk be a feature mapping. Let

Com(O1,2,3) , φ(O1) ∩ φ(O2) ∩ φ(O3),

and

Dis(O1,2,3) , φ(O1) ∪ φ(O2) ∪ φ(O3)− φ(O1) ∩ φ(O2) ∩ φ(O3).

That is, Com(O1,2,3) and Dis(O1,2,3) respectively represent the common features and the discriminating features of

O1, O2, and O3. Then we have the following properties:

1) If ω ∈ Dis(O1,2,3), then ω ∈ Dis(O1,2), ω ∈ Com(O1,2), or ω ∈ φ(O3);

2) If φ(O1) and φ(O2) are distinct, i.e., Dis(O1,2) 6= ∅, then there exists a feature ω ∈ Dis(O1,2,3), such that

ω ∈ Dis(O1,2);

3) #Dis(O1,2) 6 #Dis(O1,2,3);

4) Further, suppose that we stratify the discriminated features into two levels:

Disl1(O1,2,3) , φ(O1) ∪ φ(O2) ∪ φ(O3)− (φ(O1) ∩ φ(O2)) ∪ (φ(O1) ∩ φ(O3)) ∪ (φ(O2) ∩ φ(O3)),

and

Disl2(O1,2,3) , (φ(O1) ∩ φ(O2)) ∪ (φ(O1) ∩ φ(O3)) ∪ (φ(O2) ∩ φ(O3))− φ(O1) ∩ φ(O2) ∩ φ(O3).

Generally, the features in Disl1(O1,2,3) are considered more differentiating than those in Disl2(O1,2,3). Then,

we have the following properties:

(1) Disl1(O1,2) = Dis(O1,2);

(2) Disl1(O1,2,3) ∩Disl2(O1,2,3) = ∅;

(3) Disl1(O1,2,3) ∪Disl2(O1,2,3) = Dis(O1,2,3);

(4) If Com(O1,2,3) $ Com(O1,3), or Com(O1,2,3) $ Com(O2,3), then there exists a feature ω, such that

ω ∈ Dis(O1,2), but ω 6∈ Disl1(O1,2,3).

Proof. 1) By condition ω ∈ Dis(O1,2,3), we have

ω ∈ φ(O1) ∪ φ(O2) ∪ φ(O3)− φ(O1) ∩ φ(O2) ∩ φ(O3).
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If ω 6∈ φ(O3), then we have

ω ∈ φ(O1) ∪ φ(O2), but ω 6∈ φ(O1) ∩ φ(O2);

or,

ω ∈ φ(O1) ∩ φ(O2).

So it is proved.

2) We prove it by reductio ad absurdum. We assume that, for any ω ∈ Dis(O1,2,3), ω 6∈ Dis(O1,2), i.e.,

ω 6∈ φ(O1) ∪ φ(O2)− φ(O1) ∩ φ(O2). (1)

Because of (1), we have two cases:

ω ∈ φ(O3)− φ(O1) ∩ φ(O2),

and

ω ∈ φ(O1) ∩ φ(O2).

By analyzing these cases, we obtain

φ(O1) = φ(O2);

that is,

Dis(O1,2) = ∅.

This obviously contradicts the given condition.

3) It is easily proved by the following facts:

φ(O1) ∪ φ(O2) ⊂ φ(O1) ∪ φ(O2) ∪ φ(O3),

and

φ(O1) ∩ φ(O2) ∩ φ(O3) ⊂ φ(O1) ∩ φ(O2).

4) By definition, (1), (2), and (3) can be easily proved. For (4), we prove it by reductio ad absurdum. We assume that,

for any ω ∈ Dis(O1,2), the following holds:

ω ∈ Disl1(O1,2,3).

Note that Com(O1,2,3) $ Com(O1,3), so we have

Com(O1,3)− Com(O1,2,3) 6= ∅.

By definition, we get

Com(O1,3)− Com(O1,2,3) ⊆ φ(O1).
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Then we obtain

Dis(O1,2) ∩ (Com(O1,3)− Com(O1,2,3)) 6= ∅;

That is, there exists a feature ω0, such that

ω0 ∈ Dis(O1,2),

and

ω0 ∈ Com(O1,3)− Com(O1,2,3).

Note that

Com(O1,3)− Com(O1,2,3) = φ(O1) ∩ φ(O3)− φ(O1) ∩ φ(O2) ∩ φ(O3).

So, we have

(Com(O1,3)− Com(O1,2,3)) ∩Disl1(O1,2,3) = ∅,

which implies that there exists a feature ω0, such that

ω0 ∈ Dis(O1,2), but ω0 6∈ Disl1(O1,2,3).

If Com(O1,2,3) $ OCom
2,3 , similarly we come to the same conclusion.

Both contradict our assumption. Thus, it completes the proof.

For the properties 1), 2), and 4) (4), they all have been empirically verified in the experiments on the synthetic and

cross-domain datasets MNIST and noise background data; see Figure 4. Property 1) reveals that some informative

features discriminative for more classes are not so for fewer classes, as evidenced by Figure 4 (d) and (f); Property 2)

indicates that there exist informative features discriminative for more classes as well as for fewer classes, for example,

Figure 4 (c) and (e); Property 4)(4) shows that there can be some informative features that are discriminative for fewer

classes but are not so for more classes, as shown in Figure 4 (c) and (e).
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2 Hyper-parameters for IMRF

In this study, we used the following hyper-parameters in IMRF: on MNIST, in the bootstrapping stage, we sampled

the samples with labels 1 and 9, and with labels 3 and 8 at a ratio of 90:20, respectively. The number of trees was

set to 150, the number of initializations for each sampling p = 100, the number of sampling L = 100, the number of

subgroups q = 4, and the number of top features in each group d = 150. On synthetic data, for binary classification, in

the bootstrapping stage, we sampled the samples with labels 1 and 2 at a ratio of 70:70. The number of trees was set

to 2, 100, the number of initializations for each sampling p = 100, the number of sampling L = 100, the number of

subgroups q = 4, and the number of top features in each group d = 70; for four-class classification, in the bootstrapping

stage, we sampled the samples with labels 0, 1, 2, and 3 at a ratio of 90:30:70:40. The remaining parameters were

the same as binary classification, except for the number of top features in each group, we respectively set d = 80 and

d = 120 for Tables 4 and 5. On AD RNA data of prefrontal cortex from MSBB_ArrayTissuePanel, in the bootstrapping

stage, we sampled the samples with labels control and AD at a ratio of 17:17. The number of trees was set to 150,

the number of initializations for each sampling p = 100, the number of sampling L = 100, the number of subgroups

q = 5, and the number of top features in each group d = 50. On AD and LATE brain RNA data, for four classes,

in the bootstrapping stage, we sampled the samples with LATE+AD, pure LATE, pure AD, and control at a ratio of

41:75:31:90. The number of trees was set to 10, 000, the number of initializations for each sampling p = 100, the

number of sampling L = 180, the number of subgroups q = 4, and the number of top features in each group d = 80;

for pair-wise classes LATE+AD vs. control, pure LATE vs. control, and pure AD vs. control, in the bootstrapping stage,

we sampled the samples for these three cases at a ratio of 41:90, 75:90, and 31:90, respectively; for pair-wise classes

LATE+AD vs. pure LATE, LATE+AD vs. pure AD, and pure LATE vs. pure AD, we did not perform bootstrapping

since their samples were relative balanced; for all these pair-wise classes, the number of sampling L = 50 and the

number of top features in each group d = 50, and the number of trees, the number of initializations, and the number of

subgroups were the same as four classes. For all the experiments of these datasets, in the training stage, we randomly

divided samples at each RF into training and validation sets at a ratio of 70:30.

In addition, for the hyper-parameters in SVM: in Case 1, for each class we randomly chose 16 as validation samples,

the degree of the polynomial kernel was set to four, and all remaining hyper-parameters were set to the default values;

in Cases 2 and 3, due to the fewer number of available samples, for each class we randomly chose 11 as validation

samples, and the hyper-parameters parameters were set to the default values.
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3 Design of synthetic and cross-domain datasets

The following datasets, one is synthetic data with noise background, and one is from the computer vision (CV) field.

The second public image datasets is widely used by researchers in the CV field to verify the performance of their

proposed algorithms. The dataset is freely accessible; see link at http://yann.lecun.com/exdb/mnist/

#Sample 380 20

Image

Label 1 9
Table 1: Imbalanced samples 1 vs. 9

#Sample 380 20

Image

Label 3 8
Table 2: Imbalanced samples 3 vs. 8

#Sample 260 30 70 40

Image

Label 0 1 2 3
Table 3: Four classes of images with or without black points

#Sample 260 30 70 40

Image

Label 0 1 2 3
Table 4: Four classes of images, with or without cross black points. See Section 3.1 for more details
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4 Classification results for synthetic and cross-domain datasets

The classification results and confusion matrix for MNSIT with the labels 1 and 9, and the labels 3 and 8 are shown in

the following Tables 5-6 and Figure 1, respectively. The classification results for synthetic data, with or without black

points, and the corresponding cross case are shown in the following Tables 7-8 and Figure 2, respectively.

Class Precision Recall F1 score support
1 0.975 0.995 0.984 27
9 0.979 0.893 0.920 6
Accuracy \ \ 0.975 33
Macro average 0.977 0.944 0.956 33
Weighted average 0.976 0.975 0.974 33

Table 5: Classification results on MINIST with the labels 1 and 9

Class Precision Recall F1 score support
3 0.949 0.992 0.968 27
8 0.961 0.786 0.847 6
Accuracy \ \ 0.950 33
Macro average 0.955 0.889 0.909 33
Weighted average 0.953 0.950 0.945 33

Table 6: Classification results on MINIST with the labels 3 and 8

(a) (b)

Figure 1: Confusion matrix for MNIST. (a) For the labels 1 and 9; (b) For the labels 3 and 8
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Class (Table 3) Precision Recall F1 score Support
0 0.665 0.855 0.743 27
1 0.774 0.535 0.611 9
2 0.713 0.696 0.696 21
3 0.870 0.516 0.633 12
Accuracy \ \ 0.703 69
Macro average 0.755 0.650 0.670 69
Weighted average 0.738 0.703 0.694 69
Use classes 1 and 2 in Table 3 Precision Recall F1 score Support
0 0.868 0.814 0.835 21
1 0.828 0.877 0.848 21
Accuracy \ \ 0.844 42
Macro average 0.848 0.846 0.842 42
Weighted average 0.853 0.844 0.843 42

Table 7: Classification results on synthetic data with or without black points

Class (Table 4) Precision Recall F1 score Support
0 0.687 0.862 0.759 27
1 0.775 0.536 0.612 9
2 0.708 0.721 0.707 21
3 0.865 0.516 0.632 12
Accuracy \ \ 0.713 69
Macro average 0.759 0.659 0.677 69
Weighted average 0.744 0.713 0.704 69
Use classes 1 and 2 in Table 4 Precision Recall F1 score Support
0 0.867 0.811 0.833 21
1 0.826 0.877 0.846 21
Accuracy \ \ 0.842 42
Macro average 0.846 0.844 0.840 42
Weighted average 0.851 0.842 0.841 42

Table 8: Classification results on synthetic data with or without cross black points
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(a) (b)

(c) (d)

Figure 2: Confusion matrix for synthetic data. (a) Images with or without black points for all classes in Table 3; (b)
Images with or without cross black points for all classes in Table 4. (c) Using classes 1 and 2 in Table 3; (d) Using
classes 1 and 2 in Table 4
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5 Classification results for RNA expression data

Class Precision Recall F1 score Support
LATE+AD 0.982 0.504 0.648 11
pure LATE 0.849 0.521 0.636 23
pure AD 1.000 0.487 0.641 10
control 0.561 0.932 0.699 28
Accuracy \ \ 0.674 72
Macro average 0.848 0.611 0.655 72
Weighted average 0.778 0.674 0.663 72

Table 9: Classification results on RNA expression data

Figure 3: Confusion matrix for RNA expression data. The vertical axis denotes the true labels, and the horizontal
axis denotes the predicted labels
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6 Comparison of different algorithms

(a)

(b)

Figure 4: Comparison of precisions and recalls using the total genes and using the genes selected by different algorithms
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7 Identified genes from different algorithms

Algorithm Gene name (p-value)

RF
HS.97955 (2.56E-1), C2ORF61 (2.83E-3), VPS54 (2.92E-1), LOC651914 (1.41E-1), KLC4
(5.51E-1), HS.545258 (3.94E-2), HS.542777 (7.76E-05), ZBTB7A (9.07E-3), HS.545502
(3.48E-1), ACOX1 (1.83E-05), HS.568485 (5.01E-2), HS.540598 (1.58E-3), FLJ45831
(2.61E-1), LOC440934 (2.65E-4), AGAP3 (2.12E-2), TUB (3.45E-1), NAP1L2 (5.29E-3),
SLC2A9 (3.43E-1), SNORD64 (1.72E-1), LRRC36 (1.60E-1), HS.300217 (1.63E-1), DEGS1
(9.27E-4), HS.533995 (7.10E-3), CHDH (3.08E-2), HS.579547 (6.67E-1), LOC648699
(4.79E-1), GPR143 (8.29E-1), CRYGN (1.20E-1), SLC43A3 (6.34E-1), MED25 (5.37E-06),
HS.380737 (2.10E-1)

RF-CW
CLEC7A (7.12E-1), LOC441546 (7.00E-4), NKIRAS2 (8.39E-1), ING1 (3.35E-
1),HS.568058 (1.87E-2), LOC643665 (2.18E-1), HS.156651 (6.42E-4), SGCD (6.74E-1),
GPC2 (6.72E-3), ZMAT3 (2.73E-1), C8ORF58 (4.77E-3), EPGN (1.51E-3), HS.131229
(8.16E-2), SRY (4.19E-2), MCF2L2 (2.09E-2), LOC646173 (1.02E-1), NLF2 (8.98E-1),
MAGEB1 (9.91E-1), VAV3 (1.68E-1), STARD7 (6.84E-05), CMTM3 (2.42E-1), HS.574894
(8.00E-2), ZNF230 (7.45E-1), KEAP1 (1.42E-3), SEC31B (2.83E-2), LOC132203 (3.58E-
1), HS.565557 (7.34E-3), BMP2K (5.80E-1), CARD11 (1.62E-2), WISP3 (9.35E-1), ALAD
(4.79E-3)

RF-BCW
CLEC7A (7.12E-1), LOC441546 (7.00E-4), NKIRAS2 (8.39E-1), ING1 (3.35E-1),
HS.568058 (1.87E-2), LOC643665 (2.18E-1), HS.156651 (6.42E-4), SGCD (6.74E-1),
GPC2 (6.72E-3), ZMAT3 (2.73E-1), C8ORF58 (4.77E-3), HS.131229 (8.16E-2), EPGN
1.51E-3), MCF2L2 (2.09E-2), SRY (4.19E-2), MAGEB1 (9.91E-1), NLF2 (8.99E-1),
LOC646173 (1.02E-1), STARD7 (6.84E-05), VAV3 (1.682E-1), CMTM3 (2.42E-1),
HS.565557 (7.34E-3), HS.574894 (8.00E-2), BMP2K (5.80E-1), ZNF230 (7.45E-1), KEAP1
(1.42E-3), ALAD (4.79E-3), LOC132203 (3.58E-1), WISP3 (9.35E-1), SEC31B (2.83E-2),
HS.544346 (5.77E-2)

RF-U
NKIRAS2 (8.39E-1), CLEC7A (7.12E-1), HS.156651 (6.42E-4), ING1 (3.35E-1),
LOC643665 (2.18E-1), EPGN (1.51E-3), HS.568058 (1.87E-2), ZMAT3 (2.73E-1),
LOC646173 (1.02E-1), GPC2 (6.72E-3), NLF2 (8.98E-1), SGCD (6.74E-1), LOC441546
(7.00E-4), WISP3 (9.35E-1), MAGEB1 (9.91E-1), HS.574894 (8.00E-2), LOC732162
(9.86E-1), FGF16 (8.30E-3), LOC132203 (3.58E-1), LOC126075 (2.21E-1), ZNF230 (7.45E-
1), SRY (4.19E-2), VAV3 (1.68E-1), BMP2K (5.80E-1), HS.560742 (4.57E-3), MCF2L2
(2.09E-2), CSDE1 (6.80E-2), PCDH7 (3.61E-1), STARD7 (6.84E-05), PAK4 (5.18E-2),
HS.159053 (2.70E-2)

Table 10: Genes identified from 48803 genes by four different kinds of RF-based algorithms. The genes in bold are
also selected by our algorithm IMRF, which are shown in Table 2. For RF, there are 18 genes with p-values greater than
0.05; for RF-CW, there are 17 genes with p-values greater than 0.05; for RF-BCW, there are 18 genes with p-values
greater than 0.05; for RF-U, there are 20 genes with p-values greater than 0.05
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8 Hyper-parameter sensitivity analysis for IMRF

In IMRF, there are mainly 4 more hyper-parameters than traditional RF, that is, the number of initializations for each

sampling p, number of sampling L, number of subgroups q, and number of top features in each group d. Next, we will

give theoretical and empirical analyses of these new hyper-parameters.

Among these hyper-parameters, the number of initializations per sampling p represents the ergodic number of random

states in RF. If p is too small, then the gene subset identified in each sampling would not be stable. However, if p is too

large, it would be time consuming. For L, if we use a relatively small one, the perturbation of selected genes is likely to

increase. In this paper, we tuned them based on the Results stage in IMRF (i.e., the last stage in Figure 1 in the paper),

and we followed the validation results to choose the optimal ones. Therefore, our sensitivity analyses are mainly for the

other two hyper-parameters by examining the effects of different q and different d on the performance of IMRF.

Theoretically, if we use smaller d or larger q, we can get the “most” important disease-specific genes; if we use larger d

or smaller q, maybe some “less” important disease-specific genes will be included. With consistent IMRF, the “most”

important disease-specific genes obtained by smaller d or larger q should be contained in these obtained by larger d or

smaller q.

Different numbers of subgroups q

We keep the other hyper-parameter settings of IMRF in the Supplementary Section 2, and we only vary the number of

subgroups q to 2, 4, and 6. The calculated results are given in Figure 5. It is seen that, although the number of genes in

the identified subsets increases with decreasing q, the resulting gene subsets show a significant subordinate relationship.

So, it is evident that IMRF is consistent for different q.

Different numbers of top features in each group d

We keep the other hyper-parameter settings of IMRF in the Supplementary Section 2, and we only vary the number

of top features in each group d to 40, 60, and 80. The computed results are provided in Figure 6. It is observed that,

although the number of genes in the identified subsets increases with the increasing d, the resulting gene subsets also

show a significant subordinate relationship. Thus, it is clear that IMRF is consistent for different d.

Finally, after tuning these hyper-parameters, we picked up 31 genes as the disease-specific gene subset, which is also

appropriate from the improved performance of downstream classifier and the superior performance over the other

algorithms in comparison.
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Figure 5: Identified gene subsets for different q values.

Figure 6: Identified gene subsets for different d values.
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9 Codes

The main codes of IMRF can be found at

https://drive.google.com/drive/folders/1XA0fzrJurl1TLkniv9qRdms5-I1QcWN8?usp=sharing

We will make all the codes publicly available on GitHub upon acceptance of our paper.
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