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Abstract— In the paper, we perform an in-depth analytic
study of the binary exponential algorithm (BEBA) that is
widely used in distributed MAC protocols, for example,
IEEE 802.11 DCF. We begin with a generalized framework
of modeling BEBA. Then we identify a key difference
between BEBA and the commonly-assumed p-persistent
model: due to the characteristics of BEBA, the slot suc-
ceeding a busy period has a different contention rate from
other slots. This causes access to a slot to be non-uniform
and dependent on whether or not the slot immediately
follows a busy period. We propose a detailed model with
the use of a Markov chain to faithfully describe the channel
activities governed by BEBA. To reduce the computational
complexity, we simplify the model to an approximate one,
and conduct an extensive simulation study. The analytical
results derived in the proposed model are compared against
those obtained from two other representative models. It
is demonstrated that the proposed model is an accurate
characterization of the BEBA algorithm in a broader range
of system configuration.

We further investigate the impact of the stochastic
property of the backoff time, r, on the performance. It
is revealed that in certain circumstances it becomes an
important factor that affects the performance. A case study
shows that by shifting the distribution range of r merely
by 1 slot, substantial degradation in the system throughput
may result.

I. INTRODUCTION

IEEE 802.11 based wireless LANs (WLANs) as-
cribe its conspicuous success to proliferation of portable
and laptop computers and wireless-enabled PDAs, cost
effective deployment of wireless networking devices,
availability of the license exempt band and networking
standards. In order to extend the services provided by
IEEE 802.11 to beyond best efforts, various enhancement
in the basic service sets have been made, including, for
example, the improvement on increasing the protocol ca-
pacity, QoS extensions for delay-sensitive services, and
provisioning of power report facilities. In order to assist
in the incessant evolution of IEEE 802.11 protocols,

an exact, analytical model that characterizes the data
transmission activities governed by these protocols is
important and essential.

Many research efforts have been made to devise
analytic models that describe the operational properties
in IEEE 802.11 wireless LANs. Based on the devised
models, researchers then propose schemes to optimize
the network capacity or to enhance the QoS in the
IEEE 802.11 carrier sense multiple access mechanisms
(i.e., Distributed Coordinated Function (DCF) and/or
Point Coordinated Function (PCF)). An accurate, the-
oretically based understanding is crucial to guide the
design of effective schemes. However, the nonlinear
aspects inherent in the IEEE 802.11 binary exponential
backoff scheme, albeit of its subtlety to impact the
performance, are often ignored for analysis tractability.
Moreover, as will be shown later in this paper, such an
omission has practically prevented existing models from
being applied to analyze IEEE 802.11 enhancements
with a broader system configuration, e.g., the Enhanced
Distributed Channel Access function of IEEE 802.11e
(which employs a radically different contention window
size as compared to DCF of IEEE 802.11).

In this paper, we present a rigorous analysis on the
stationary behavior of the binary exponential backoff
algorithm (BEBA) in IEEE 802.11 DCF. We begin with a
generalized BEBA modeling framework. Then we iden-
tify a key difference between BEBA and the commonly-
assumed p-persistent model: due to the characertistics of
BEBA, the slot succeeding a busy period has a different
contention rate from other slots. This causes access to a
slot to be non-uniform and dependent on whether or not
the slot immediately follows a busy period. We propose
a detailed model with the use of a Markov chain to
faithfully describe the channel activities governed by
BEBA. To reduce the computational complexity, we
simplify the model to an approximate one, and conduct
an extensive simulation study. The analytical results
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Fig. 1. IEEE 802.11 DCF without RTS-CTS.

derived in the proposed model are compared with the
simulation results and those obtained from two other
representative models devised by Bianchi [4] and Xiao
[17]. It is demonstrated that the proposed model is a
more accurate characterization of the BEBA algorithm
in a broader range of system configuration.

To demonstrate the importance of considering faith-
fully the nonlinear aspects of BEBA, we further investi-
gate the impact of the stochastic property of the backoff
time, r, on the performance. We show that it is an
important factor that affects the performance profoundly
under certain cases. A case study shows that by shifting
the distribution range of r merely by 1 slot, substantial
degradation in the system throughput may result.

The rest of the paper is organized as follows. In
Section II, we describe the binary exponential backoff
algorithm employed in IEEE 802.11 DCF and give a suc-
cinct summary of previous work on modeling BEBA. In
Section III, we present a generalized theoretical frame-
work for modeling BEBA. In Section IV, we propose
a detailed model that characterizes the data transmis-
sion activities governed by BEBA. This is followed by
deriving an approximate model with less computational
complexity. In Section VI, we carry out a simulation
study to validate and evaluate the devised models. In
Section VII we investigate the impact of the stochastic
property of the backoff time. Finally, we conclude the
paper in Section VIII.

II. BACKGROUND AND RELATED WORK

A. Overview of BEBA in IEEE 802.11 DCF

In distributed multiple access, a simple yet effec-
tive random backoff algorithm is widely used to avoid
collisions. In particular, the binary exponential backoff
algorithm [3] adjusts the contention window size dynam-
ically in react to collision intensity. Such an algorithm is
embedded in the IEEE 802.11 Distributed Coordination
Function (DCF).

DCF operates as follows (Figs. 1–2). Before an at-
tempt of data transmission is made, a station senses the
channel to determine whether it is idle. If the medium is
sensed idle throughout a specified time interval, called
the distributed inter-frame space (DIFS), the station
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Fig. 2. IEEE 802.11 DCF with RTS-CTS.

is allowed to transmit. If the medium is sensed busy,
the transmission is deferred until the ongoing transmis-
sion terminates. A slotted binary exponential backoff
procedure takes place at this point: a random backoff
interval value is uniformly chosen in [0, CW − 1] and
used to initialize the backoff timer, where CW is the
current contention window size. The backoff timer keeps
running as long as the channel is sensed idle, paused
when data transmission (initiated by other stations) is
in progress, and resumed when the channel is sensed
idle again for more than DIFS. The time immediately
following an idle DIFS is slotted, with each slot equal to
the time needed for any station to detect the transmission
of a frame (in the IEEE 802.11 term, MAC Service
Data Unit (MSDU)) from any other station. When the
backoff timer expires, the station attempts to transmit a
data frame at the beginning of next slot. Finally, if the
data frame is successfully received, the receiver transmits
an acknowledgment frame after a specified interval,
called the short inter-frame space (SIFS), that is less
than DIFS. If an acknowledgment is not received, the
data frame is presumed to be lost, and a retransmission
is scheduled. The value of CW is set to CWmin in
the first transmission attempt, and is doubled at each
retransmission up to a pre-determined value CWmax.
Retransmissions for the same data frame can be made
up to a pre-determined retry limit, L, times. Beyond that,
the pending frame will be dropped.

In the case that the floor acquisition RTS-CTS mech-
anism is used, the same procedure is conducted except
that an RTS-CTS handshake operation proceeds the
DATA-ACK exchange (Fig. 2). For more details, please
refer to [11].

B. Related work

There have been a number of work on performing the
saturation throughput and delay analysis of IEEE 802.11
DCF in single-hop wireless networks. They include [4],
[5], [15], [6] and [12], etc. The most significant ones
might be [4] done by Bianchi and [5] done by Calı̀ et
al.. The former uses a discrete Markov chain to model
the backoff procedure performed by a tagged station, and
the latter uses an iterative algorithm and takes a renewal
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process view of the channel activities. They motivate
substantial subsequent analysis work such as [16], [8],
[17] and [13] etc.

Various modeling techniques and/or viewpoints of the
system behavior are observed in these work. However, in
regards to modeling BEBA, they have a lot in common,
and can be nicely fitted into a framework that will
be described in next section. The most common and
important view (or more exactly, assumption) taken by
existed work is that, the access of each station to each
slot can be viewed as independently and uniformly with
a common probability.

These models and the analytical results obtained have
motivated and guided research efforts on capacity im-
provement and QoS provisioning. Among them, there
are dynamical tuning the contention window size [5],
model-based frame scheduling [12] and differentiation
mechanisms [2].

The importance of an accurate analytical model of
BEBA also lies in that it establish the theoretical bases
for several extensions and/or directions such as: in-
saturation throughput analysis (e.g. [9]), throughput anal-
ysis in multi-hop environments (e.g. [7]) and theoretical
study of IEEE 802.11e (e.g.[17], [10] and [14]).

III. A GENERALIZED FRAMEWORK OF

MODELING BEBA

In this section we generalize a framework of modeling
BEBA. A model of the backoff algorithm for distributed
MAC protocols is in general composed of three steps
(the first two are not necessarily conducted sequentially):
First, derive the attempt probability from the backoff
procedure; Second, model the transition of the channel
state; and lastly, interpret the stationary channel state
probabilities obtained into results wanted according to
specific protocol details. We will takethroughput as an
example. It is also possible to derive other quantitities
such as delay and packet dropping ratio (e.g. [17]).

A. Assumptions

The network we are interested is a single-hop wireless
network, composed of N stations. They share one chan-
nel and the access is governed by the afore-described
binary exponential backoff procedure. All stations can
hear each other, which implies that there is no hidden
terminal. It is possible to extend the model and take
the hidden terminal problem into consideration, however,
as done in [5]. Besides, the RTS-CTS virtual sensing
mechanism can help alleviate the hidden terminal issue.
The channel is an ideal one, introducing no errors to the

reception of a packet other than collisions. The capture
technique is not considered.

The network is in the saturation condition. That is,
every station is backlogged and always has a packet to
deliver.

The backoff algorithm is performed in a time-slotted
fashion as described in Section II-A and the backoff
timer is counted in integer number of slots. Note that
a station attempts to access only at the beginning of
a slot, and during the time when there are channel
activities (a successful transmission or a collision), all
stations not participating the activity will freeze their
backoff timers (enabled by the physical/virtual sensing
mechanism). Therefore, a busy period, which refers
either a successful transmission or a collision, can be
deemed as a virtual time slot. Now we can practically
view the channel in discrete time slots and all stations
are well-synchronized in time slots. For the latter to be
reasonable, it is necessary that compared to the length of
an idle slot the propagation delay is negligible. Indeed,
IEEE 802.11 regulates the slot length to be 20µs and
the maximum propagation delay in a system with 300m
communication range is 1µs.

We say the channel state in a slot is idle (I) (resp.
success (S), collision (C)), if by end of the slot, no (resp.
one, more-than-one) station(s) have transmitted during
that slot. In addition, a busy (B) slot refers to either a
success or a collision slot.

B. Attempt probability

Deriving the attempt probability and modeling the
channel state transition are two closely related steps.
There is an important assumption made in the literature
that, each station attempts to access each slot indepen-
dently and uniformly with a probability, which we term
as the attempt probability, denoted by p. Essentially, this
maps the backoff algorithm into the p-persistent scheme.
All existed work to our awareness share this view and
differ mainly in the approach of deriving p from the
backoff procedure.

One of the first explorers, Bianchi [4] uses a Markov
chain to characterize the backoff procedure, represented
by the backoff stage and the backoff counter value. Solve
the equilibrium equation for the Markov chain, and one
can express the attempt probability p in terms of a
collision probability that can be derived from the next
step. Using an iterative equation yields p.

Two major extensions are made to Bianchi’s model.
One (e.g. [17]) is to incorporate the retry limit L into
the model as the highest backoff stage. In the other one
(e.g. [8] and seen in [17]) a self-loop is added to each
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state in the Markov chain to reflect that the backoff
counter is frozen during the time when there are channel
activities.

There are several work that stem from Bianchi’s model
but try to avoid analyzing the Markov chain to obtain p
(e.g. [13]); or that try to simplify the expression of p in
terms of the contention window size (e.g. [6]).

Another representative work is done by Calı̀, et al. [5]
(referred as Calı̀’s model). A relationship of p and
the current contention window size CW is established
first. Then p is derived using an iterative algorithm
that considers the dynamics of CW and computes the
average contention window size E[CW ]. We note that in
case that CWmin = CWmax and the contention window
size is uniformly CW , both Bianchi’s model and Calı̀’s
model yield p = 2

CW+1 .

C. The stationary channel state probabilities

With the assumption of the p-persistent access pattern,
the distribution of the channel states can be derived inde-
pendently for each slot. Denote the stationary probability
that a slot is idle, success and collision by PI , PS and
PC , respectively. If p is known, one can obtain the three
probabilities by:

PI = (1 − p)N (1)

PS = Np (1 − p)N−1 (2)

PC = 1 − (1 − p)N − Np (1 − p)N−1 (3)

D. Throughput

Knowing [PI PS PC ], we next consider the actual
length of a success and collision slot in order to de-
rive the throughput. Denote them by TD and TC , re-
spectively. In the basic access of IEEE 802.11 DCF,
a successful transmission includes the transmission of
the DATA frame, a SIFS and an ACK transmitted by
the receiver. Because after each successful transmission,
the backoff timer is resumed after a DIFS idle period,
we counter DIFS in each successful transmission to
ease the computation of idle time. Therefore TD =
DATA+SIFS+ACK+DIFS. A collision is awared
by the transmitter upon a sender timer timing-out, and
is detected at other stations by receiving corrupted
packets. After detecting a collision, the receiver node
resumes the backoff timer after an EIFS idle period to
avoid preempting the channel over transmitter stations.
EIFS = SIFS + ACK + DIFS. Therefore, the
colliding and non-colliding stations resume their backoff
timers at approximately the same time. This gives TC as
TC = DATAmax + SIFS + ACK + DIFS, where

DATAmax is the longest DATA frame in the collision.
In case that the RTS-CTS handshake is used, TD and
TC can be similarly developed. Denote the payload in
a DATA packet by payload and the length of an idle
slot by aSlotT ime. The throughput of the network is
obtained by:

η =
PS · payload

PI · aSlotT ime + PSTD + PCTC
(4)

A different view of the channel activities is taken
by Calı̀ et. al in [5]. For a successful transmission to
occur, the channel typically experiences several alternat-
ing occurrences of an idle period and a collision period
and lastly an idle period. This is defined as a virtual
transmission time, tv , and is viewed as a renewal process.
Formally,

tv = E[Nc] · TC + E[idle] (E[Nc] + 1) + TD (5)

where Nc is the number of collisions before a successful
transmission occurs and idle is the length of consecutive
idle slots. Each idle period can be viewed as a renewal
process, too. Denote the number of consecutive idle slots
plus 1 by b. Both Nc and b are subject to the Negative
Binomial distribution, with parameter (1, PC

PS
) and (1, 1−

PI), respectively. Hence,

E[Nc] =
PS

PC
and E[idle] =

PI

1 − PI
aSlotT ime (6)

Bring (6) back to (5) and we obtain tv. The throughput
can be computed by averaging the payload over t v. The
result shows that it has the same mathematical form as
the throughput derived by Bianchi’s model (Eqn. (4)).

By now, we have generalized a framework of model-
ing BEBA, which can accommodate the work previously
proposed. The essential, common assumption made by
the literature is that the channel access governed by
BEBA can be modeled as p-persistent. It has been
shown that two representative approaches ([4] and [5])
have equivalent mathematical form given a uniform
contention window size (but they do provide different
and insightful views of the problem).

IV. MODELING THE BINARY EXPONENTIAL

BACKOFF ALGORITHM

Recall that in the backoff procedure, at the beginning
of each slot, a station transmits if its backoff timer
has expired by that time. Otherwise, depending on the
channel state (idle or busy), by end of the current slot, the
station will count down the backoff counter by 1 or will
have frozen it at a value. Suppose the current slot ends
in the busy state. When next slot begins, the stations
naturally fall into one of the two groups: those that
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have transmitted, and those who did not and have frozen
their backoff counters. Ideally the backoff counter does
not freeze at 0. This introduces a short-term unfairness
among the two groups of stations: only stations in the
former group have privileged possibility to access this
slot since after transmitting these stations generate a new
backoff time with a chance to be 0. For convenience, we
refer a slot subsequent to a busy slot as a post-busy slot.

This subtle yet crucial different access behavior in the
post-busy slot leads the backoff algorithm deviate the p-
persistent model commonly assumed in previous work.
Our model will capture this feature.

A. The channel state transition

We make the same assumptions as given in Section III-
A. In brief, a network composed of N stations that share
one channel in ideal condition and they are operated in
the saturation condition. There are three channel states
in a slot: idle, success and collision. In this section, we
differentiate collision states by the number of stations
that transmit and incur the collision. More generally,
we define the channel state space as S = {Bk, k =
0, 1, · · · , N}, where Bk refers the channel state in a
slot such that k stations transmit in that slot. Note that
I ≡ B0, S ≡ B1 and C ≡ ⋃

k≥2{Bk}.
We model the system using a discrete Markov chain

(Fig. 3 (a)) in the expanded channel state space {Bk, k =
0, 1, · · · , N}. The channel state is sampled at the end
of each slot. The access to a post-busy slot and that to
slots thereafter (in another word, a slot subsequent to
an idle slot) are made with different probabilities. For
a post-busy slot, first, only those who have transmitted
during the preceding busy slot will possibly access
again; second, a station among them access the slot
with probability 1

CW . The later is because an eligible
station can access the post-busy slot only if it chooses
0 among [0, CW − 1] as the new backoff time. Since
the backoff time is uniformly generated, the probability
of choosing 0 is 1

CW . CW is the current contention
window size. We will soon develop the derivation of the
average contention window size E[CW ] and use it in
place of CW . For slots other than post-busy slots, we
assume it is accessed uniformly and independently with
probability τ .

Note that in the Markov chain, a direct transition is
possible only if it is directed from a state to another with
the latter having an equal or smaller subscript (except
that a transition can originate from state B0 to any other
states). It is because the post-busy slot is contended by
only those have transmitted in the previous busy slot.
The non-zero one-step transition probabilities are given

by {
p0,k =

(
N
k

)
τk(1 − τ)N−k,

pk,j =
(
k
j

) (
1

CW

)j (
1 − 1

CW

)k−j
,

(7)

where k = 0 · · ·N and j = 0 · · ·k
Denote the transition probability matrix by P. Assume

that τ is known (we will derive it in Section V), then
all the elements in P can be calculated. The equilibrium
state of the Markov chain π = [π0 π1 · · · πn ] can be
solved from the equilibrium equation π = πP using
Matlab. Recall the stationary probabilities that a slot is
idle, success and collision are denoted by PI , PS and
PC , respectively. We have obtained PI = π0, PS = π1

and PC =
∑

k≥2 πk.
Following the third step as described in the general-

ized framework, the system throughput can be computed
accordingly using (4).

B. A simplified and approximate model

The state space of the model proposed above has is
of (N + 1)-dimension and is not scalable in terms of
N . This motivates us to simplify the model to fit into
a more tractable state space. As shown by Fig. 3 (b),
the states {Bk, k ≥ 2} are merged into a single state, C
(a.k.a. the collision state).

The transition probabilities from the idle state and the
success state to other possible states are respectively⎧⎪⎨

⎪⎩
pii = (1 − τ)N

pis = Nτ(1 − τ)N−1

pic = 1 − pii − pis

(8)

and {
pss = 1

CW

psi = 1 − 1
CW

(9)

To derive the transition probability from the collision
state to the idle state, we condition on the event that
m (m = 2 · · ·N) stations transmit in the collision slot.
Denote this event by Am.

pci
�
= P [an idle slot follows a collision]

=
N∑

m=2

P [an idle slot follows a collision |Am]

× P [Am|a slot is a collision slot]

Given Am, the probability that an idle slot follows a
collision is simply the probability that none of these m
stations choose 0 as the new backoff time, that is, (1 −

1
CW )m. However, the conditional probability of the event
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(a) The detailed Markov chain (b) The simplified Markov chain

Fig. 3. Discrete Markov chains for the channel state sampled at the end of a slot. The subscript k denotes the number of stations that transmit
in the slot. I – Idle, S – Success, C – collision.

{Am| a slot is a collision} is difficult to obtain because of
the transitions among detailed collision states {Bk, k ≥
2} as shown in Figure 3(a). We use the following to
approximate this probability.

P [Am| a slot is a collision slot]

=
(

N

m

)
τm(1 − τ)N−m 1

pic
(10)

With some manipulation of the equation, one can
derive pci as:

pci =
1

pic

[(
1 − τ

CW

)N

− pii −
(

1 − 1
CW

)
pis

]
(11)

Make a similar approximation and one can obtain:

pcs =
N∑

m=2

m
1

CW

(
1 − 1

CW

)m−1

×
(

N

m

)
τm(1 − τ)N−m 1

pic

=
Nτ

CW
· 1
pic

·
[(

1 − τ

CW

)N−1

− pii

]
(12)

and pcc = 1 − pci − pcs.
The stationary probabilities [PI PS PC ] can be ob-

tained by solving the equilibrium equation for this sim-
plified Markov chain.

Remark: Note that limCW→∞ 1
CW = 0. In the

simplified model, as CW → ∞, {pci, psi} → 1 and
{pcc, pcs, pss} → 0; and the model falls back to the
p-persistent model as assumed in all previous work – all
stations contend the access to each slot independently,
and uniformly with a probability. Therefore previously
models can be viewed as a special case of the proposed
model.

C. Numerical results of [PI PS PC ]

We term the models described in Section IV-A and
Section IV-B as the detailed model and the simplified
model, respectively. To compare the proposed mod-
els and previous models (generally referred as the p-
persistent model), and show how well the simplified
model approximates the detailed one, we compute the
numerical results of [PI PS PC ] obtained from each of
the three models. A uniform contention window size
CW is assumed. In our model, the attempt probability is
given by τ = 2

CW as will be explained in Section V. In
the p-persistent model, the attempt probability is given
by p = 2

CW+1 . Figure 4 presents two sets of numerical
results with CW = 8 and 32, respectively.

Three key observations are made. First, the simplified
model is a good approximation of the detailed model.
The difference between the results generated by them is
slight and is noticeable only when the number of nodes
increases beyond 20 in the case CW = 8 as shown in
Fig. 4(a) and (b). Even though, the difference of P I ’s
at n = 30 and CW = 8 is merely around 0.012. Since
[PI PS PC ] determines the throughput and the results of
the simplified model closely match those of the detailed
model but is computationally simpler, we will assume
the simplified model in later sections.

Second, the differences in the results of the proposed
models and the p-persistent model are significant. The
differences in PI ’s and PC ’s obtained from the two
models increase as the number of stations increases. The
difference in PS’s shows a non-monotone trend. It first
increases as N increases, then shrinks till zero (e.g. at
n = 55 in Fig. 4(e)) and then keeps decreasing (in
the inversed direction). These pronounced discrepancies
indicate that the proposed models predict a significantly
different pattern of the channel activities, such as longer
idle time and less collisions. One of the implications
is that the energy consumption computed from the two
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Fig. 4. Compare the numerical results of [PIPSPC ] obtained from three models: the detailed model, the simplified model and the p-persistent
model. A uniform contention window size CW is assumed.

types of models might be rather different.

Third, the maximum PS as predicted by the p-
persistent model is higher than that of the proposed
model. The former is around 0.4, unsurprisingly close to
the theoretical capacity of slotted-ALOHA (0.368). The
latter, however, is only around 0.3 at CW = 8 and 0.25
at CW = 32. After exceeding the maximum PS , both
curves begin to drop. However, the PS of the proposed
model falls at a much slower rate than that of the p-
persistent model; it finally exceeds the latter and main-
tains this superiority afterwards. The reason behind this
trend is that when N is relative small, the post-busy slot
is likely to be idle and lowers the throughput. However,
when N grows, the overall contention intensity is high,
leaving little chance for a successful transmission. But
the post-busy slot is contended by only a subset of all
nodes and thus has larger chance for a successful trans-
mission. Indeed, as we observe in the simulation, when
N is very large relative to the contention window size,
most successful transmissions take place in the post-busy
slot. This reveals a fundamental difference between the
backoff algorithm and the p-persistent scheme.

V. DERIVATION OF THE ATTEMPT PROBABILITY τ

A. Relation between τ and CW

Let us start with the simple case that all stations
have a uniform contention window size CW . Recall
that τ is the probability that a station transmit at the
beginning of a slot subsequent to an idle slot. It measures
the possibility that a station’s backoff counter reaches
zero at the beginning of a non- post-busy slot. Denote
a station’s backoff counter at the beginning of such a
slot by r1 (r is saved to denote a backoff time newly
generated). It is reasonable to assume τ = 1

E[r1]+1 ,
where 1 in the denominator counts the slot in which the
station transmits. Because r is uniformly polled from
[0, CW −1], r1 can be regarded as being approximately
uniformly distributed in [0, CW −2]. Hence the relation
between τ and CW is established as

τ =
1

E[r1] + 1
=

2
CW

(13)

B. An iterative algorithm to derive τ

More generally, to alleviate collision intensity, the
binary exponential backoff algorithm requires the con-
tention window size varies in [CWmin, CWmax] gov-
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erned by the procedure as described in Section II-A. An
iterative algorithm is developed to derive the average
contention window size, E[CW ].

We take the view of a tagged station. Denote the con-
tention window size in the i−th iteration is CW (i) and
correspondingly, τ (i) = 2

E[CW (i+1)]
. When the station of

interest transmits, the probability that it experiences a
collision is

p(i)
c = 1 −

(
1 − τ (i)

)(N−1)

(14)

With the collision probability p
(i)
c , the mass probabil-

ity of CW (i+1) is given by, for k = 0, · · · , L,

qk
�
= P [CW (i+1) = Wk] = p0

(
p(i)

c

)k

(15)

where p0 is a normalization factor and can be computed
by noting

∑L
k=0 qk = 1. L is the retry limit and Wk =

min{2kCWmin, CWmax}.
This iterative algorithm extends the algorithm pro-

posed in Calı̀’s model and incorporates the retry limit.
The convergence of the iterative algorithm can be proved
similarly to those in [5] and [12].

C. Attempt probability and transmission probability

We use the attempt probability in both our model and
previous models to refer the probability that a station
transmits at the beginning of a slot (of course, in our
model, this slot is limited by excluding the post-busy
slot). We use a general notation here, pa. More precisely,
this probability measures how likely a station’s backoff
timer expires at that moment. Hence pa depends on the
value that the backoff timer holds at the beginning of
each slot. This value, when being generated, is uniformly
polled from the contention window, and is decremented
by 1 for each idle slot. For each elapsed busy slot,
note that, the counter is simply frozen, instead of being
prolonged with the probability that the slot is sensed to
be busy. Therefore, pa solely depends on the contention
window size CW . In our model,

pa ≡ τ =
1

E[r1] + 1
(16)

and in the previous models,

pa ≡ p =
1

E[r] + 1
(17)

where E[r1] = E[r] − 1
2 .

The transmission probability in this section particu-
larly refers to the term frequently used in a general
p-persistent model. It is the probability that a station
transmits in any slot. A way to measure it is to count

the number of transmission during a certain period and
average the result over the total number of slots in that
period of time.

Put in the context of the slotted backoff procedure,
to measure or estimate the transmission probability, we
count the number of slots that elapse before a station
is allowed to transmit. Term this amount of time by
waiting time T (in slots). Required by the backoff
algorithm, a station has to wait r idle slots (recall r
is the number of backoff slots that a station generates)
before it can transmit. Consider that it is possible that
the channel becomes busy during the waiting time T
(with probability PB = 1 − PI ), we conclude that T is
a Negative Binomial random variable with parameters
(r, pb). Its mean is given by:

E[T ] = E[ E[T |r] ] =
E[r]
pb

(18)

The transmission probability is estimated by:

ptx =
1

E[T ] + 1
=

1
E[r]
pb

+ 1
(19)

Now it is clear that the transmission probability ptx

relies on both the contention window size and the
number of stations.

Examining the models proposed for BEBA, we note
that pa is used in most work (in particular, Bianchi’s
and Calı̀ models) though appears in various terms such
as the probability that a station transmits in a randomly
chosen slot time in [4], transmission attempt in [5] and
attempt rate in [12] and [13].

The only exceptions are seen in an extension made
to Bianchi’s model (e.g. [8] and [17]), in which p tx is
used instead. In this extension, a self loop is added to
each state in the Markov chain to reflect that the backoff
timer is frozen during the time that the channel is busy.
Derived from Equations (5-7) in [17], “the probability
that a station transmits during a generic slot time” is

τ =
1

1 + CW−1
2(1−p)

(20)

where p is the probability that the channel is idle and
thus 1− p = pb. By noting that E[r] = CW−1

2 , (20) has
exactly the same form as (19).

VI. MODEL VALIDATION

We have performed extensive simulation over a large
range of parameters to validate the proposed model and
to compare it with two other models: Bianchi’s model
as presented in [4] and an extension made to Bianchi’s
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(a.1) [CWmin, CWmax] = [8, 8] (a.2) [CWmin, CWmax] = [8, 16] (a.3) [CWmin, CWmax] = [8, 32]
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(b.1) [CWmin, CWmax] = [16, 16] (b.2) [CWmin, CWmax] = [16, 32] (b.3) [CWmin, CWmax] = [16, 64]
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(c.1) [CWmin, CWmax] = [32, 32] (c.2) [CWmin, CWmax] = [32, 256] (c.3) [CWmin, CWmax] = [32, 1024]

Fig. 5. Comparing the saturation throughput of analytical results and simulation results. DATA payload = 500 bytes.

tslot 20 µs
SIFS 10 µs
DIFS 50 µs
Data Rate 11 Mbps
PLCPDataRate 1 Mbps
PreambleLength 144 bits
PLCPHeader 48 bits
MacHeader 28 bytes
ACK payload 14 bytes

TABLE I

SYSTEM CONFIGURATION USED IN THE SIMULATIONS

model in [17]1. We use the initial of the first author as the

1The paper studies the saturation throughput and delay for differen-
tiated services. We let the number of classes be 1.

prefix and they are abbreviated as B-model and X-model,
respectively. The simplified model we have proposed is
assumed and referred as H-model.

We use a simulator written in C to emulate the IEEE
802.11 MAC DCF in the saturation condition. The code
is available at [1] 2. The system configuration used in
the simulations are listed in Table I. The retry limit is
set to 7. The DATA frames are of uniform size. We have
simulated with the DATA packet payload varying from
100 - 1000 bytes and the trends observed are similar. In
the results presented, the payload is 500 bytes.

2The simulator is for pure purpose of analyzing the 802.11 MAC
DCF performance under the saturation situation. It emulates the
idealized slotted access governed by the binary exponential backoff
algorithm. Its validity has been confirmed by comparing to ns-2 results.
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We vary the contention window size range and plot the
throughputs (normalized over the bandwidth) obtained
from both theoretical analysis and simulation results in
Figure 5. Group (a), (b) and (c) in the figure correspond
to the cases: {CWmin = 8, h = 0, 1, 2}, {CWmin =
16, h = 0, 1, 2}, and {CWmin = 32, h = 0, 3, 5},
respectively. h = log2

CWMAX

CWMIN
. The three groups of

figures demonstrate common trends.
First, the results obtained from the model we have

proposed match the simulation results accurately with
the confidence intervals of 95%, 97% and 99% for
CWmin = 8, 16 and 32, respectively.

Second, the results obtained from Binachi’s model fit
the simulation results well when the number of stations
is small relative to the (average) contention window size,
CW. This is in particular obvious in Fig. 5 (b.3), (c.2)
and (c.3) when CW falls in a higher range. The reason
has been analyzed in Section IV-B. In other figures, the
initial (left) parts of the two curves are close to each
other. As N increases, however, the curves of Bianchi’s
model gradually depart from those of simulation results,
and show a pessimistic trend.

Third, the extension of Bianchi’s model (referred
as X-model in Fig. 5) is in general too optimistic in
estimating the throughput. The results obtained by it
are significantly higher than the simulation results. The
differences generally increase as there are more stations
and as large as twice of the simulation results, for
example, at N = 20 in Fig. 5 (b.1). The reason is that
the transmission probability as the prolonged attempt
probability is used in computing the stationary channel
state probabilities.

Remark: The simulation results show that our model
captures the characteristics of the backoff algorithm
faithfully and is applicable to a broad range of protocol
and system parameters (small CW and large N ). In
contrast, as done in all previous work, assuming uniform
access of each slot fails to capture all of the important
features of the backoff algorithm.

VII. IMPACT OF THE STOCHASTIC PROPERTY OF

THE BACKOFF TIME

When a station’s backoff counter is decremented to
zero, a new backoff time (r slots) will be generated.
IEEE 802.11 DCF requires r be uniformly distributed in
[0, CW − 1]. The model proposed gives us a hint that
the stochastic property of the backoff time may affect
the performance. For a simple example, if the chance
of choosing r = 0 is large than other values while the
average holds the same, intuitively the contention in the
post-busy slot will increase substantially.

(a)

S C

pis pic

pii I1

pis

C

I0
pii

pis

pic
pic

pii

1 1

S

11

I

I

(b)

Fig. 6. Discrete Markov chains for the channel state sampled at
the end of a slot. They model the design that the backoff slots r is
uniformly distributed in [1, CW ]. (a) and (b) are equivalent, and (b)
provides more details on the idle state. I0 – Idle in a post-busy slot,
I1 – Idle in a slot subsequent to an idle slot.

We are interested in how much is the impact of
the stochastic property of r. We have a case ready
as our subject. In the literature, a slightly different r
is often mentioned (e.g. two recent work, [14] and
[13]). That is, r is uniformly distributed in [1, CW ]
instead of [0, CW − 1]. Obviously, such a shift in the
distribution range increases the mean by 1, which alters
the attempt probability a little; and the understanding on
its implication is limited as this far to our awareness.

Guided by the model proposed for the design r ∈
[0, CW − 1] uniformly, we build a model for this seem-
ingly very alike random variable r ∈ [1, CW ] uniformly
and investigate the performance.

A. A case study: Model BEBA with r ∈ [1, CW ]
uniformly

With the backoff time r uniformly distributed in
[1, CW ], a backoff time newly generated is always
no less than 1. Consequently, in a post-busy slot, no
stations will attempt to transmit – stations that have not
transmitted in the busy slot freeze their backoff counters
with remaining time at least 1 slot; and station(s) that
transmit in the busy slot will not, either. Therefore the
channel state in a post-busy slot is idle with probability
1. We designate this channel state as I0. After this
post-busy slot, stations resume the contention for the
channel access. As before, we assume they contend with
a uniform probability τ . With the shift of the distribution
range of r, the computation of τ from CW is changed
to:

τ =
2

CW + 1
(21)

In case CWmin �= CWmax, we can derive E[CW ] using
the iterative algorithm described in Section V-B.

The above behavior can be modeled by a Markov
chain, as shown by Fig. 6 (a). State I , C and S bear
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Fig. 7. Compare the numerical results of [PIPSPC ] obtained from two designs: r in [0, CW − 1] and r in [1, CW ]. A uniform contention
window size CW = 16 is assumed.
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Fig. 8. Comparing the saturation throughput achieved by two designs: r ∈ [0, CW − 1] and r ∈ [1, CW ]. DATA payload = 500 bytes.

the same meanings as in Fig. 3 (b). The equilibrium
equation for the Markov chain can be manually solved
and the stationary probabilities are:

[PI PS PC ] =
[

1
2−pii

pis

2−pii

pic

2−pii

]
(22)

Note that PI is lower-bounded by 0.5 and the lower-
bound is obtained at pii = 0, which corresponds to N →
∞. It further interests us the expenditure of the time in
idle states. In Fig. 6 (b) idle states are categorized into
two types: I0 and I1. I0 has been defined in the above.
State I1 refers to the idle state in a slot subsequent to
an idle slot. From the Markov chain, we can obtain the
stationary probabilities of states I0 and I1:

PI0 =
1

2 − pii
and PI1 =

pii

2 − pii
(23)

As N → ∞, pii → 0, and it leads to PI0 → 0.5 and
PI1 → 0. Clearly, PI0 attributes to the constant part of
the lower-bound of PI . This means even N is very large,
half of the time (in the sense of equal virtual time slot
length) is totally wasted – during which no stations even
attempt to transmit. It is one of the pitfalls that we shall
avoid in designing and configuring a network system.

Fig. 7 depicts the numerical results of [PI PS PC ] at
CW = 16 and compares them with those obtained from
the design that r is uniformly distributed in [0, CW −1].
Fig. 7 (a) visualizes the trend that as N increases, the
probability that a slot is idle approaches 0.5.

Another trend to our concern is the change of the suc-
cess probability PS . If all the successful transmissions
and collisions have the same actual duration as an idle
slot, PS is approximately (due to the PHY/MAC headers)
the actual throughput. As shown in Fig. 7 (b), PS drops
in a much faster rate than in the case that r is uniformly
distributed in [0, CW − 1]. All the observations indicate
that the performance is significantly impaired by shifting
the range of r by 1. Next, we will evaluate the actual
throughput with data payload of 500 bytes (thus the
transmission/collision period is approximately 29 slots)
by means of both theoretical analysis and simulation.

B. Performance evaluation

To evaluate the impact of the change in r on the
performance, we compare the throughput obtained from
simulations for both designs. Meanwhile, to validate the
model described in the above, the analytical results are
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plotted, too.
Three sets of results are shown in Fig. 8 (a-c) with

uniform contention window size CW = 8, 16, and 32,
respectively. Several observations are made.

First, the curves of the analytical results are almost
coincident on those of the simulation results. This shows
that the model accurately captures the system character-
istics in this design.

Second, the throughput obtained by the design r ∈
[1, CW ] is significantly lower than that of the design
r ∈ [0, CW − 1], especially when N is large relative
to CW . This performance degradation becomes more
evident as N increases. For example, as shown in Fig. 8
(a), when N reaches 20, the throughput achieved by the
design r ∈ [0, CW − 1] drops to 1.2. In contrast, the
design r ∈ [1, CW ] achieves the throughput only nearly
0.16, approximately 12.5% of the former.

In summary, we have witnessed that shifting the
distribution range of r merely by 1 results in a great
performance degradation.

VIII. CONCLUSION

In this paper, we have devised an analytic model that
characterizes the data transmission activities governed
by the binary exponential backoff algorithm (BEBA).
We observe that access to a slot becomes non-uniform
under BEBA. Nodes that have transmitted in a slot have
a second chance to access the subsequent slot, while the
other stations do not have this privilege. Consequently,
access to a slot is not totally independent among slots.
We devise a discrete-time Markov chain to characterize
the transition of the channel state, taking into account of
the above subtlety. The numerical results show that the
BEBA exhibits different properties from the p-persistent
model (which is commonly used to characterize the
BEBA). For example, the maximum stationary success
probability PS achieved under the BEBA is lower than
that under the p-persistent model. The simulation study
has validated the proposed model and confirmed the
above findings. With the proposed models, we study
the impact of the stochastic property of the backoff
time r on the performance. Both our analytical and
simulation results show that the subtlety may affect
the performance profoundly. In particular, by shifting
the distribution range of r merely by one slot (that is,
r ∈ [1, CW ]), substantial throughput degradation results,
and the degree of degradation increases as the number
of stations gets large.
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