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ABSTRACT Convex optimization solvers are widely used in the embedded systems that require sophisti-
cated optimization algorithms including model predictive control (MPC). In this paper, we aim to reduce
the online solve time of such convex optimization solvers so as to reduce the total runtime of the algorithm
and make it suitable for real-time convex optimization. We exploit the property of the Karush–Kuhn–Tucker
(KKT) matrix involved in the solution of the problem that only some parts of the matrix change during the
solution iterations of the algorithm. Our results show that the proposed method can effectively reduce the
runtime of the solvers.

INDEX TERMS Convex optimization, linear solver, Karush–Kuhn–Tucker (KKT), embedded systems.

I. INTRODUCTION
Convex optimization has emerged as an important math-
ematical tool in a wide range of science and engineering
disciplines such as automatic control, machine learning, and
statistical signal processing etc. Recent advances including
those mentioned in [1], [2] has enabled its use as realtime
solvers for embedded systems [3]–[5].

Unlike general-purpose solvers, a realtime embedded opti-
mization imposes special requirements on the solver [6]. For
example, it is critical that the linear solver obtains the solution
of the desired accuracy within a specified amount of time at
each step of solving the optimization problem. The solution
timemay have to be shorter than the sample rate of the embed-
ded system, e.g., tens to millions of samples per second. The
solver must be robust. It is not acceptable for the solver to
fail due to a fatal error such as division-by-zero or unreliable
sensors. Furthermore, the solver should use simple code with
a minimal dependency on dynamic libraries. On the other
hand, the general-purpose solvers often depend on either an
integrated environment likeMATLAB, PYTHON, or external

The associate editor coordinating the review of this manuscript and

approving it for publication was Vivek Kumar Sehgal .

libraries such as basic linear algebra subprograms (BLAS) [7]
and linear algebra package (LAPACK) [8], and Intel math
kernel library (MKL) [9] for their programmability, usability,
and performance. This makes it difficult to validate and port
the solver for use in embedded applications. In addition these
solvers runwith human intervention and can fail occasionally.

Two recent works, CVXGEN [10] and ECOS [11] pro-
vide frameworks that generate a specific code for solving
realtime convex optimization problems on an embedded
system. Specifically, given a high-level description of the
optimization problem, CVXGENgenerates a simple, flat, and
library-free C code using disciplined convex programming
(DCP) [12]. The generated code is branch free and suitable
for an embedded system, and can be compiled into a high
performance solver for the specific family of the problems
(e.g., all the matrices have the same sparsity structure). How-
ever, to meet the strict constraint enforced on the solution
time in realtime applications, the dimension of the coefficient
matrix for the linear system is currently limited to O(100) in
CVXGEN.

While embedded solvers come with certain requirements,
they have certain features that can be exploited to reduce
the complexity of the design. The accuracy required by the
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embedded solvers is often limited. For example, with model
predictive control (MPC), even very low accuracy can result
in acceptable control performance [13]. Another feature is
that the structures of many problems do not change from one
solve to the next, e.g., for Kalman filtering, the dimensions
and structure of the system state, input and output vectors,
and steady-state error covariancematrix are all fixed. Further-
more, system parameters remain unchanged with each real-
time solution iteration. Therefore, each solver will perform
many solves for a given problem instance (including the input
data). Finally, the change in the numerical values of the solver
parameters between two subsequent instances of the problem
may be small. These features of realtime optimization provide
the opportunity to significantly reduce the solution time.
While CVXGEN generates the convex optimization solvers
that take advantage of the structure of the problem family, e.g.
the sparsity structure of the resulting Karush–Kuhn–Tucker
(KKT) matrices [14], they fail to take the advantage of the
fact that several blocks in the matrix do not change during
the iterations of a given solve instance.

In this work, we aim to reduce the time to solve the family
of the linear systems by taking advantage of the fact that many
blocks of the KKTmatrices do not change during the solution
of the convex optimization problem [15].

II. QUADRATIC PROGRAMMING CONVEX PROBLEM
In DCP [10], [16], a quadratic programming (QP) convex
problem is transformed into a standard form as follows,

minimize
(
1
2

)
xTQx + qT x

subject to Gx≺h and Ax = b (1)

where x, q ∈ Rn, Q ∈ Sn+�0 is a symmetric positive
semidefinite matrix, A ∈ Rm×n, G ∈ Rp×n, b ∈ Rm, and
h ∈ Rp. With each instance of the solve, the solver goes
through several iterations of the solve until solution meets
a certain level of pre-determined accuracy or the maximum
number of iterations are reached. The iteration time of the
optimization solver is dominated by the solution of the KKT
linear system of equations, Kx = c, whose coefficient matrix
K has the following block structure,

K =


Q 0 GT AT

0 S−1Z Ip 0
G Ip 0 0
A 0 0 0

 (2)

where Ip is the p × p identity matrix. In addition, for QP,
the matrix K is quasisemidefinite (i.e. a symmetric matrix
with (1,1) block diagonal positive semidefinite and (2,2)
block a negative semidefinite block [2]), where S = diag(s) ∈
Rp×p and Z = diag(z) ∈ Rp×p are diagonal matrices, with
s ∈ Rp and z ∈ Rp, respectively, representing the slack
variables and inequality multipliers in the KKT conditions.
This special structure of KKT matrix is most interior-point
methods [17]. To guarantee a reliable and stable perfor-
mance, even for an ill-conditioned K , the linear solvers use

the combination of static and dynamic regularization and
iterative refinements [10]. The regularization is achieved
through scalar parameter ε < 0 to make the matrix K
symmetric quasidefinite (e.g., ε = −10−7). The solution to
the linear system Kx = c

(
c ∈ Rn+m+2p

)
is found through

the LDLT decomposition, PKPT = LDLT , where P is
a permutation matrix, L is a lower triangular matrix with
unit diagonals, and D is a diagonal matrix. With the LDLT

decomposition, the solution to Kx = c is found through
the sequence of forward substitution, diagonal scaling, and
backward substitution.
In this paper, we aim to reduce the cost of solving the

KKT linear systems by taking advantage of the property that
only some of the sub-matrices in the KKT matrices change
during the solution of the convex optimization problem. For
example, for the online arrayweight design or for the adaptive
filtering, only the matrix G in (1) change from one solve
instance to the next. In many cases that we have studied, only
the sub-matrix S−1Z changes from one iteration of one solve
instance to the next [15].

III. ALGORITHM
We focus on the cases where only S−1Z changes during
each iteration of a solution. Example of such applications
include Kalman filtering, and sliding window smoothing and
estimation [6]. We take advantage of the fixed Q, A, and G
blocks. The matrix K is implicitly reordered as K̂ and the
resulting equivalent system K̂ ŵ = ĉ is solved as follows,

Q AT 0 GT

A 0 0 0
0 0 S−1Z Ip
G 0 Ip 0



ŵ1
ŵ4
ŵ2
ŵ3

 =

ĉ1
ĉ4
ĉ2
ĉ3

 (3)

A flowchart of the algorithm is shown in Fig. 1. We will
explain the initial offline setup and the online factorization as
follows.

A. INITIAL OFFLINE SETUP
The initial offline setup steps are the same as proposed in
our previous work [15]. During the initial offline setup stage,
we partially factorize the matrix K such that K = LDLT ,
where

LD =


L1,1 0 0 0
L2,1 L2,2 0 0
0 0 Ip 0
L4,1 L4,2 0 Ip



×


D1,1 0 0 0
0 D2,2 0 0
0 0 S−1Z Ip
0 0 Ip C

 . (4)

In the above the trailing (2, 2) block of D is not yet fully
factorized, and therefore, this block will be factorized in
the online factorization procedure. The above partial LDLT

factorization is computed as follows,
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FIGURE 1. Flowchart of the proposed algorithm.

1) We compute the LDLT factorization ofQ such thatQ =
L1,1D1,1LT1,1.

2) We compute the off-diagonal blocks L2,1 and L4,1
in the first block column of L such that L2,1 :=

A
(
D1,1LT1,1

)−1
and L4,1 := G

(
D1,1LT1,1

)−1
.

3) We compute the LDLT factorization of the second diag-
onal block K̃2,2 such that K̃2,2 = L2,2D2,2LT2,2, where

K̃2,2 := −

(
L2,1D1,1LT2,1

)
. K̃ is used to distinguish

the block from the corresponding block of the original
matrix K .

4) We compute the off-diagonal block L4,2 in the sec-
ond block column of L such that L4,2 :=

K̃4,2

(
D2,2LT2,2

)−1
, where K̃4,2 := −

(
L4,1D1,1LT2,1

)
.

5) We compute the last diagonal block C of D such that

C := −
(
L4,1D1,1LT4,1

)
−

(
L4,2D2,2LT4,2

)
.

B. ONLINE FACTORIZATION
During the solution of the convex optimization problem,
we only need to factorize the Schur complement of thematrix,
given as follows,[
S−1Z Ip
Ip C

]
=

[
Ip 0
L4,3 L4,4

][
D3,3 0
0 D4,4

][
Ip LT4,3
0 LT4,4

]
(5)

where D3,3 = S−1Z , L4,3 = Z−1S, C̃ = L4,4D4,4LT4,4,
and C̃ = C −

(
Z−1S

)
. Since both S and Z are diagonal

matrices, the LDLT factorization of C̃ is computationally the
most expensive part of this factorization.
In this work, we attempt to improve the speed of the

LDLT factorization of C̃ by adapting a numerically sta-
ble product-form Cholesky factorization algorithm [18]. The
LDLT factorization of C̃ can be computed by updating the
contribution from the S−1Z part of C̃ on each solve iteration,
instead of the full LDLT refactorization of C + S−1Z .
We next present the technique to update the LDLT fac-

torization of a matrix on each solve iteration, when a sym-
metric matrix of the form IWIT is added to it, where W ∈
Rp×p is a diagonal matrix and I ∈ Rp×p is an identity
matrix. We rewrite the second term of C̃ = C −

(
Z−1S

)
to

I
(
Z−1S

)
IT and set W = −Z−1S. With also represent C in

its factorized form as C = LDLT . Assuming that LDLT +
IWIT is positive semidefinite, and since L is nonsingular,
the updated LDLT factorization of C̃ is given as,

C̃ = C − I
(
Z−1S

)
IT = LDLT + IWIT

= L
(
D+ YWY T

)
LT = LL̃D̃L̃TLT (6)

where D + YWY T = L̃D̃L̃T represents the Cholesky factor-
ization, Y ∈ Rp×p is the solution of LY = I , (or equivalently
Y = L−1). The matrix inversion of L−1 needs to be computed
only once in the offline setup phase and then used in the
online solve process. Here D ∈ Rp×p is a diagonal matrix
which is also computed once in the offline setup phase. The
computation of L̃D̃L̃T is performed by adapting the iterative
rank-k update algorithm proposed by [18].

1) RANK-K UPDATE
Let the transpose of y(j) ∈ Rp be the jth row of Y and
Y (j)
∈ R(p−j)×p be the matrix consisting of the last p − j

rows of Y , let D(j)
∈ R(p−j)×(p−j) be a diagonal matrix with

diagonal elements dj+1, . . . , dp, therefore D(0)
= D, and let

60 = Z−1S. Therefore,

Y (0)
= Y and

Y (j−1)T
=

[
y(j),Y (j)T

]
(7)

We use symmetric Gaussian elimination to compute the
factorization ofD+Y60 Y T and after the first step, the factor-
ization state is given in (8), as shown at the bottom of the next
page, where d̃1 = d1 + y(1)

T
60 y(1), 61 = 60 − d̃1 q(1)q(1)

T
,

and q(j) ∈ Rp is given as,

q(1) =


(

1

d̃1

)
60y(1), if d̃1 6= 0

0, if d̃1 = 0.
(9)

Fig. 2 shows graphically, the computations involved in
the first iteration of the factorization as given in (8) for the
symmetric Gaussian elimination,D(0)

+Y (0)60 Y (0)T process.
Fig. 2(a) shows the computation of the vector r (1) which is
then used in subsequent computations. Since this is a multi-
plication of σ (0)

1 , which is the first diagonal element of 60
by 1, therefore, there is no operation performed in this step.

116606 VOLUME 9, 2021
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FIGURE 2. Graphical representation of the computations involved in the
first iteration of the recurrence relations given in (20).

FIGURE 3. Graphical representation of the computations involved in
the second iteration of the recurrence relations given in (20).

FIGURE 4. Graphical representation of the computations involved in the
third iteration of the recurrence relations given in (20).

Fig. 2(b) shows the computation which results in the element
d̃1 = d1 + y(1)

T
60 y(1) of D̃. Since y(1)

T
is the first row of Y

and Y being the inverse of a lower triangular matrix, only the
first element of y(1)

T
is 1 and the rest are zero.We can observe

that this computation reduces to a scalar addition between two
terms r (1)1 and d1, as follows,

d̃1 = d1 +
(
y(1)

T

1 r (1)1

)
. (10)

Fig. 2(c) shows the computation of the vector q(1) of L̃ in
the first iteration. Along the same lines, we can also observe
that this computation requires a scalar division of r (1)1 by the
term d̃1 as follows,

q(1) =
1

d̃1
r (1)1 . (11)

Fig. 2(d) shows the computation of the matrix 61 in the
first iteration. Since at this stage, the vectors q(1) and r (1)

T

both have only one element as nonzero, we can see that this
computation also requires a scalar multiplication of two terms
q(1)1 , and r (1)

T

1 , and the resulting scalar term is subtracted from
the matrix 60, which is essentially a scalar operation since

D(0)
+ Y (0)60 Y (0)T

=

[
d1 + y(1)

T
60y(1) y(1)

T
60Y (1)T

Y (1)60y(1) D(1)
+ Y (1)60Y (1)

]
=

[
1 0

Y (1)q(1) I

][
d̃1 0
0 D(1)

+ Y (1)61Y (1)T

][
1 q(1)Y (1)T

0 I

]
(8)

VOLUME 9, 2021 116607
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we only need to subtract from the first diagonal element, σ (0)
1

because other elements will remain unchanged at this stage.
The first diagonal element σ (1)

1 of61 is computed as follows,

σ
(1)
1 = σ

(0)
1 −

(
q(1)1 r (1)

T

1

)
. (12)

Fig. 3 shows graphically, the computations involved in
the second iteration after (8). Fig. 3(a) shows the computation
of the vector r (2) where y(2) now has a nonzero element
y(2)1 and a 1 at y(2)2 . We notice that 61 is still a diagonal
matrix but with the first diagonal element σ (1)

1 , updated in
the previous iteration. By inspection, we can see that this
requires a single multiplication of σ (1)

1 , which is the first
diagonal element of 60 by y(2)1 . Fig. 3(b) shows the second
step of symmetric Gaussian elimination, D(1)

+ Y (1)61 Y (1)T

computation, which results in the element d̃2 = d2+y(2)
T
r (2)

of D̃. Since y(2)
T
is the second row of the lower triangular

matrix Y , only the first two elements are required to compute
this term. Therefore, the number of computation required in
this step include one scalar multiplication between y(2)

T

1 , and
r (2)1 , and two scalar additions as follows,

d̃2 = d2 +
(
y(2)

T

1 r (2)1 + r
(2)
2

)
. (13)

Fig. 3(c) shows the computation of the vector q(2) of L̃
in the second iteration. In order to compute the first two
elements of q(2), we require the first two elements of r (2), for
division by the scalar term d̃2 as follows,

q(2) =
1

d̃2

[
r (2)1
r (2)2

]
. (14)

Fig. 3(d) shows the computation of the matrix 62 in
the second iteration. At this stage the vectors q(2) and r (2)

T

both have the first two elements as nonzero, and we require
four multiplications to compute the resulting 2 × 2 matrix
q(2)r (2)

T
, and then subtracting the resulting matrix from 61.

This computation results in62 with the initial 2×2 diagonal
block updated and the rest of the diagonal elements remain
unchanged as follows,

62 = 61 −


q(2)1 r (2)

T

1 q(2)1 r (2)
T

2 · · ·

q(2)2 r (2)
T

1 q(2)2 r (2)
T

2 · · ·

...
...

. . .

 . (15)

Fig. 4 shows graphically, the computations involved in
the third iteration of the factorization. Fig. 4(a) shows the
computation of the vector r (3) where y(3) now has two
nonzero elements y(3)1 , y(3)2 and a 1 at y(3)3 . We notice that 62
now has the initial 2× 2 block of nonzero elements updated
in the previous iteration. By inspection, we can see that this
computation requires four multiplications and two additions
as follows,

r (3) =

σ
(2)
(1,1)y

(3)
1 + σ

(2)
(1,2)y

(3)
2

σ
(2)
(2,1)y

(3)
1 + σ

(2)
(2,2)y

(3)
2

σ
(2)
(3,3)

 . (16)

Fig. 4(b) shows the third step of symmetric Gaussian elim-
ination, D(2)

+ Y (2)62 Y (2)T computation, which results in
the element d̃3 = d3 + y(3)

T
r (3) of D̃. Therefore, computing

the term d̃3 requires two scalar multiplications and three
additions as follows,

d̃3 = d3 +
(
y(3)

T

1 r (3)1 + y
(3)T

2 r (3)2 + r
(3)
3

)
(17)

Fig. 4(c) shows the computation of the vector q(3) of L̃ in
the third iteration. Here, we require three divisions as follows,

q(3) =
1

d̃3

r
(3)
1
r (3)2
r (3)3

 . (18)

Fig. 4(d) shows the computation of the matrix 63 in the
third iteration. At this stage the vectors q(3) and r (3)

T
both

have the first three elements as nonzero, and we require
nine multiplications to compute the resulting 3 × 3 matrix
q(3)r (3)

T
, and then subtracting the resulting matrix from 62.

This computation results in63 with the initial 3×3 diagonal
block updated and the rest of the diagonal elements remain
unchanged as follows,

63 = 62 −


q(3)1 r (3)

T

1 q(3)1 r (3)
T

2 q(3)1 r (3)
T

3 · · ·

q(3)2 r (3)
T

1 q(3)2 r (3)
T

2 q(3)2 r (3)
T

3 · · ·

q(3)3 r (3)
T

1 q(3)3 r (3)
T

2 q(3)3 r (3)
T

3 · · ·

...
...

...
. . .

 .
(19)

Similarly, each corresponding term of D and a column of
Y is being used to compute a term d̃ for D̃ and the subsequent
steps result in the computation of column vector q(j), which
is then used in the formation of L̃. In the next steps, the
(p− j)×(p− j) matrixD(j)

+Y (j)6jY (j)T is identical in form to
the matrix D(0)

+Y (0)60 Y (0)T . Therefore, by performing the
above-mentioned symmetric Gaussian elimination procedure
on the matrix D(j)

+ Y (j)6jY (j)T for j = 1, 2, . . . , p − 2,
we obtain the factorization L̃D̃L̃T give in (6), where L̃ is
given in (24) and D̃ = diag{d̃1, . . . , d̃p}. The terms q(j) and
d̃j can be computed using the following recurrence relations,
proposed in [18]. Note that the term 6j−1y(j) is used twice
in the iterations, thus we compute it only once as r (j) and
it results in eliminating the multiplication of the term d̃j to
compute 6j.

60 = W , r (1) = 60 y(1)

d̃1 = d1 + y(1)
T
r (1)

for j = 1, 2, . . . , p− 1

q(j) =


(

1
d̃j

)
r (j), if d̃j 6= 0

0, if d̃j = 0

6j = 6j−1 − q(j)r (j)
T

r (j+1) = 6jy(j+1)

d̃j+1 = dj+1 + y(j+1)
T
r (j+1) (20)

116608 VOLUME 9, 2021
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TABLE 1. Computational complexity of the algorithm in FLOPS.

TABLE 2. Computational complexity in FLOPS with varying k . k drops to 1 typically on the 7th Iteration.

2) RANK-1 UPDATE
The term LDLT + IWIT given in (6) can also be computed
using the rank-1 update mechanism performing a sequence of
p rank-1 updates. We let I =

[
e1, e2, e3, . . . , ep

]
, D̃0 = D,

and L̃0 = L, then,

C̃ = LDLT +
p∑
j=1

wjejeTj

= L̃0L̃1L̃2, . . . , L̃pD̃pL̃Tp , . . . , L̃
T
2 L̃

T
1 L̃

T
0 (21)

where j = 1, 2, . . . , p. Each successive L̃jD̃jL̃Tj is the result

of Cholesky factorization of D̃j−1+wjy(j)y(j)
T
as given below,

D̃j−1 + wjy(j)y(j)
T
= L̃jD̃jL̃Tj (22)

and each y(j) ∈ Rp is obtained from the solution of
L̃0L̃1L̃2, . . . , L̃j−1y(j) = ej. In order to compute q(j) and
d̃j, we use the rank-1 update mechanism proposed in [18].
Let us use y to denote the vector y(j), yj to denote its jth

component. Therefore, the vectors y(j), q(j), and matrices 6j
and W become scalars, denoted by yi, qi, σi, and wj respec-
tively. The following algorithm is used to obtain the terms qj
and d̃j for each successive L̃j in computing (21).

for j = 1, 2, . . . , p

Compute y(j):

y(j) = L̃−1j−1, L̃
−1
j−2, . . . , L̃

−1
0 ej

Compute qi, d̃i:

y = y(j), σ0 = wj, r1 = σ0 y1
d̃1 = d1 + y1 r1
for i = 1, 2, . . . , p− 1

qi =


(
1

d̃i

)
ri,if d̃i 6= 0

0,if d̃i = 0
σi = σi−1 − qiri
ri+1 = σiyi+1
d̃i+1 = di+1 + yi+1ri+1 (23)

Thus, we can rewrite (24) as given in (25), as shown at the
top of the next page.

IV. COMPUTATIONAL COMPLEXITY
Considering that each solve instance consists of one offline
setup and 10 online iterations to perform factorization of C̃
part of the KKT matrix. The complexity for online factoriza-
tion is given in the form of k , which represents the rank of
the S−1Z block. Performing simulations of multiple problem
sizes, we have observed that the value of k drops to 1 typically
around 6 or 7 iterations for all the problem sizes. Using the
number of operations involved in each step as explained in
Section III, the computational complexity in terms of floating
point operations (FLOPS) is given in Table 1. In comparison,
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L̃ = L̃
(
Y (1),Q

)
=



1
y(2)

T
q(1) 1

y(3)
T
q(1) y(3)

T
q(2) 1

...
...

...
. . .

y(p−1)
T
q(1) y(p−1)

T
q(2) y(p−1)

T
q(3) · · · 1

y(p)
T
q(1) y(p)

T
q(2) y(p)

T
q(3) · · · y(p)

T
q(p−1) 1


(24)

L̃ = L̃ (y, q) =



1
y2q1 1
y3q1 y3q2 1
...

...
...

. . .

y(p−1)q1 y(p−1)q2 y(p−1)q3 · · · 1
ypq1 ypq2 ypq3 · · · ypq(p−1) 1


(25)

we also show the computational complexity for the method
in [15]. Note that the complexity of online factorization for
the proposed method is given in terms of k , which drops
down to 1 around the 7th iteration. Even though the proposed
method is iterative, reduction in the rank of the matrix to 1,
reduces the complexity of the online factorization opera-
tion which contributes towards the efficiency of the pro-
posed method. On the other hand, the complexity of offline
setup has increased in the proposed method but since that
is required only once for each solve instance, it does not
contribute significantly toward the overall complexity and
efficiency of the algorithm. The complexities in terms of
number of floating-point operations (FLOPS) for various
sizes of the KKT matrix are given in Table 2. It can be seen
that for the largest KKT matrix dimension of 208 in Table 2
the number of FLOPS for the online factorization has reduced
by 40%. Similarly, we can observe a reduction in the number
of FLOPS required to solve other problem sizes except for
the smallest KKT matrix dimension of 13.

We observe that when the rank drops to 1, the product-form
Cholesky factorization method requires the least amount of
FLOPS. However, both the rank-k and rank-1 methods can
take advantage of parallel computation to compute the term
LY = I or Y = L−1, if k parallel processors can compute
each column of Y .

V. CONCLUSION
In this paper, we have proposed a method to factorize
the KKT matrices for solving real-time convex optimiza-
tion problems on an embedded system. We have used a
product-form Cholesky factorization method to efficiently
factorize the KKT matrix online especially when the rank of
the matrix drops significantly to around 1 after 6 or 7 solve
iterations. This approach can be used in combination with
Cholesky factorization of the full-rank matrix to save signif-
icant number of operations in solving a problem of the same
size, i.e. about 40% less number of FLOPS are required to
solve a problem with a KKT matrix dimension of 208.
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