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Abstract

A sizeable proportion of the work in this thesis focuses on a new turbulence model,

dubbed ADC (the approximate deconvolution model with defect correction). The

ADC is improved upon using spectral deferred correction, a means of constructing a

higher order ODE solver. Since both the ADC and SDC are based on a predictor-

corrector approach, SDC is incorporated with essentially no additional computational

cost. We will show theoretically and using numerical tests that the new scheme is

indeed higher order in time than the original, and that the benefits of defect correction,

on which the ADC is based, are preserved.

The final two chapters in this thesis focus on a two important numerical difficulties

arising in fluid flow modeling: poor mass-conservation and possible non-physical os-

cillations. We show that grad-div stabilization, previously assumed to have no affect

on the target quantities of the test problem used, can significantly alter the results

even on standard benchmark problems. We also propose a work-around and verify

numerically that it has promise. Then we investigate two different formulations of

Crank-Nicolson for the Navier-Stokes equations. The most attractive implementa-

tion, second order accurate for both velocity and pressure, is shown to introduce

non-physical oscillations. We then propose two options which are shown to avoid the

poor behavior.

xix





Chapter 1

Notational Preliminaries and

Background

1.1 Overview

Computational fluid dynamics (CFD) in general, and turbulence modeling in partic-

ular, remains a vibrant field with many more questions than answers. Recent work

has shown that defect correction, often dismissed by turbulence modeling researchers,

is computationally efficient in an “accuracy per unit time” sense for these problems.

Especially in a world where improvements in computational resources come increas-

ingly from higher numbers of processors rather than faster processors, the inherent

1



parallelizability of defect correction models make them attractive.

The most significant work in this thesis focuses on just one of these new models,

dubbed ADC (the approximate deconvolution model with defect correction). The

ADC is improved upon using spectral deferred correction (SDC). SDC is a well-

known method for constructing high-order ODE solvers. Since both methods require

a two step process, and through the method of lines the time-dependent Navier-Stokes

equations produce a system of ODEs, incorporating SDC into the ADC is a natural

extension. We will show theoretically and using numerical tests that the new scheme

is indeed higher order than the original, and that the benefit of defect correction is

preserved.

The final two chapters in this thesis focus on a two important numerical difficulties:

poor mass-conservation and possible non-physical oscillations. The most widely used

methods for 2D incompressible flow often struggle to adhere to the incompressibility

condition. First we will investigate grad-div stabilization, the overwhelmingly popular

choice for improving the mass conservation of a solution. We show that grad-div

stabilization, previously assumed to have no affect on the target quantities of the

test problem used, can significantly alter the results even on standard benchmark

problems. We also propose a work-around and briefly verify numerically that it is

worth further investigation.

In the final chapter we investigate two different formulations of Crank-Nicolson for the

2



Navier-Stokes equations (NSE). We will show that care must be taken to avoid non-

physical oscillatory behavior. Although the non-physical oscillations often present in

Crank-Nicolson schemes are well-known to applied and computational mathemati-

cians, the effect is often ignored in the CFD community. Chapter 4 argues that this

may not always be the correct approach.

1.2 The Incompressible Navier-Stokes Equations

Consider the NSE for an incompressible fluid flow in Ω ∈ Rd: find the velocity-pressure

pair u : Ω× [0, T ] → Rd (d = 2, 3) and p : Ω× (0, T ]→ R satisfying

ut + u · ∇u− ν∆u+∇p = f, for x ∈ Ω, 0 < t ≤ T (1.2.1)

∇ · u = 0, x ∈ Ω, for 0 ≤ t ≤ T,

u(x, 0) = u0(x), for x ∈ Ω,

with normalization condition
∫

Ω
p(x, t) dx = 0 for 0 < t ≤ T . In Chapter 2, we will

assume zero periodic boundary conditions for simplicity of the error analysis. We do

this although various test problems, namely that which is the focus of Chapters 3 and

4, will require that we impose Dirichlet boundary conditions.

3



We may also wish to define the weak form of the NSE. First we define the appropriate

velocity and pressure spaces:

X = {v ∈ (L2(Ω))2 : ∇v ∈ (L2(Ω))2, v|∂Ω = 0}

Q = {q ∈ L2(Ω) :

∫
Ω

p(x, t) dx = 0}

Let (·, ·) represent the usual L2(Ω) inner product. Now, consider the weak form of

time-dependent incompressible NSE. Find (u, p) ∈ (X,Q) such that for all (u, p) ∈

(X,Q):

(ut, v) + (u · ∇u · v)− ν(∇u,∇v)− (p,∇ · v) = (f, v)

(q,∇ · u) = 0 (1.2.2)

1.3 2D Incompressible Flow around a Cylinder

Some of the follow work focuses on the test problem considered in [2]. Chapter 2

shows how important this problem is to turbulent flow research. Many test problems

in turbulence modeling are qualitative in nature, however, this one is quantitative.

Therefore, researchers often use this problem as a first task for a novel idea or model.

Figure 1.1 shows the computational domain, with the flow direction being left to

right, indicated by the arrow. Here the two-dimensional flow is considered in Ω =

4



Figure 1.1: Domain of the Test Problem

[0, 2.2] × [0, 0.41] past a cylinder of radius 0.05, whose circumference is labeled S,

centered at (0.2, 0.2). Take the forcing term f = 0, viscosity ν = 0.001, and final

time T = 8.

u(t; 0, y) = u(t; 2.2, y) =
1

0.412
sin(πt/8)(6y(0.41− y), 0).

No-slip conditions are prescribed at the other boundaries.

The quantities of interest and their respective intervals as given in [3]: the maximal

drag coefficient crefd,max(t), maximal lift coefficient crefl,max(t) and the pressure difference

at the final time, ∆pref (8):

crefd,max(t) ∈ [2.93, 2.97], crefl,max(t) ∈ [0.47, 0.49], ∆pref (8) ∈ [−0.115,−0.105].

To a lesser extent, we may concern ourselves with when the maximal drag and lift

coefficents occur. Again from [3], we have:

5



t(crefd,max) ∈ [3.93, 3.94], t(crefl,max) = 5.72.
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Chapter 2

Higher Temporal Accuracy For

LES-C Turbulence Models

2.1 Introduction

In many physical, astrophysical and engineering applications the low viscosity fluid

flows enter the so-called turbulence regime, characterized by sporadic changes in

velocity and pressure. These flows cannot be modeled by direct numerical simulation

(DNS), as various failure modes are documented in the literature: the iterative solvers

fail to converge within the time frame of the problem, and the mesh size, required to

capture the correct qualitative behavior of the true solution, is prohibitively small. To
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grapple with these issues, turbulence models have been developed. One commonly

used family of turbulence models, Large Eddy Simulations (LES), is based on the

idea that the flow can be represented by a collection of scales with different sizes,

and instead of trying to approximate all of them down to the smallest one, one

defines a filter width δ > 0 and computes only the scales of size bigger than δ (large

scales), whereas the effect of the small scales on the large scales is modeled. This

aims at reducing the number of degrees of freedom in a simulation while accurately

representing the large structures in the flow.

Different LES models seek to approximate different quantities of interest (QoI). These

may be the velocity-pressure pair (u, p), the filtered pair (ū, p̄), or a combination of

the above. A method was proposed in [1], where any LES model could be combined

with a defect correction method (of predictor-corrector type) to produce a solution

that is more accurate than the LES solution computed on the same spatial mesh. Al-

ternatively, the new method could be viewed as getting to within the desired tolerance

faster, on a coarser mesh.

The LES-C (Large Eddy Simulation with Correction) turbulence models were intro-

duced in [1] to reduce the LES modeling error via the following procedure.

Algorithm 2.1.1 Turbulence Modeling with Correction.

8



1. If needed, rewrite the NSE system so that the velocity-pressure pair (u, p) is trans-

formed into the QoI pair (h(u), g(p)):

ÑSE(QoI) = 0.

2. Using the turbulence model (TM), find the defect step approximation of the QoI:

TM(w1, q1) = 0.

3. The correction step provides a more accurate approximation of the QoI, via

TM(w2, q2) = TM(w1, q1)− ÑSE(w1, q1).

When constructing an LES-C model via Algorithm 2.1.1, one can aim at reducing not

only the modeling error, but also the error due to temporal discretization. In order to

keep the computational cost unchanged, the reduction of the temporal discretization

error has to be done within the predictor-corrector framework of Algorithm 2.1.1.

The corresponding idea would fall into the category of “deferred correction” methods

- a term introduced by Dutt, Greengard and Rokhlin, [4], for the defect correction in

ODEs. These methods were further developed by Minion et al., [5, 6].

9



The deferred correction approach to ODEs is based on replacing the original ODE

with the corresponding Picard integral equation, discretizing the time interval, solving

the integral equation approximately and then correcting the solution by solving a

sequence of error equations on the same grid with the same scheme; see [4] for the

detailed mathematical presentation of these methods. The so-called spectral deferred

correction (SDC) method within the deferred correction framework was developed in

[5].

Deferred correction has already been successfully used in turbulence modeling to

improve temporal accuracy - see, e.g., [7, 8]. In recent years several papers have

been published, that successfully applied deferred correction to fluid flows in various

settings, [9, 10, 11, 12, 13]. Given that a LES-C model already requires the correction

step, it seems natural to try and incorporate deferred correction into this step, so

that extra temporal accuracy is achieved at almost no extra computational cost.

In the authors’ opinion, it is important to understand the benefits of deferred cor-

rection, so that the expectations and objectives are clear from the beginning. As a

method that provides increased accuracy, deferred correction has been compared to

the other well known higher accuracy families: see, e.g., [5] for the comparison of

this technique against the BDF and Runge-Kutta methods. However, there are also

other advantages of the deferred correction, that could be crucial in computationally

expensive applications of turbulent fluid flows, or flows in complex geometries. One

10



particular setting, where deferred correction was proven to be helpful, was described

in [10]: when trying to decouple a fluid-fluid interaction problem with nonlinear inter-

face condition, most of the well known time discretization methods became unstable.

A clever way to introduce a partitioned method was proposed in [14], but it was only

first order accurate with respect to the time step. Deferred correction came to the

rescue, allowing for the increased time accuracy, while keeping the method partitioned

and unconditionally stable, [10].

Another important benefit of this technique is that it could be built on virtually any

lower order accurate method: the user decides, which method for time discretization

should be used in the defect step, based on the extra stability or other desirable

features. The deferred correction is then used to ensure that the accuracy is improved

in the correction step. In this chapter the Backward Euler method will be used in

the defect step, and the deferred correction would increase the accuracy from first

to second order in the correction step. Since the LES-C models already employ

the correction step to reduce the modeling error, deferred correction could be added

to improve the accuracy of any underlying time discretization method for no extra

computational cost.

The remainder of this chapter is organized as follows. section 2.2 introduces the

necessary notation; the new model is then introduced and full numerical analysis is

done in section 2.3. Given the skepticism, that is sometimes displayed in the CFD

11



community towards the defect correction methods for fluid flows (and stiff problems

in general), it is important to provide various numerical tests to demonstrate the

method’s efficiency; this is done in section 4.2. There, the claimed convergence rates

are verified on a problem with known true solution; this is followed by two more

famous benchmark problems, flows past a step and the computation of drag and lift

coefficients past a circular obstacle, where the correction step is clearly shown to

provide more accurate results, even on a coarse mesh.

2.2 Notation and Preliminaries

Throughout the chapter, the norm ‖ · ‖ denotes the usual L2(Ω)-norm of scalars,

vectors, and tensors, induced by the usual L2 inner-product.

The space that the velocity (at time t) belongs to is given by

X = H1
per(Ω)d = {v ∈ L2(Ω)d : ∇v ∈ L2(Ω)d×d and v is periodic with period L}

equipped with the norm ‖v‖X = ‖∇v‖. The space dual to X is equipped with the

12



norm

‖f‖−1 = sup
v∈X

(f, v)

‖∇v‖
.

The pressure (at time t) is sought in the space

Q = L2
per(Ω) = {q : q ∈ L2(Ω),

∫
Ω

q(x)dx = 0, q periodic with period L}.

Also introduce the space of weakly divergence-free functions

V = {v ∈ X : (∇ · v, q) = 0, ∀q ∈ Q}.

For measurable v : [0, T ]→ X, define

‖v‖Lp(0,T ;X) = (

∫ T

0

‖v(t)‖pXdt)
1
p , 1 ≤ p <∞

13



and

‖v‖L∞(0,T ;X) = ess sup
0≤t≤T

‖v(t)‖X .

Define the trilinear form on X ×X ×X

b(u, v, w) =

∫
Ω

u · ∇v · wdx.

Throughout the chapter, we shall assume that the velocity-pressure finite element

spaces Xh ⊂ X and Qh ⊂ Q are conforming and satisfy the discrete inf-sup, or LBBh,

condition. One of the most commonly used choices is the Taylor-Hood (P2, P1) pair of

piecewise quadratic polynomials for the velocity and piecewise linears for the pressure.

The idea of approximate deconvolution modeling is based on the definition and prop-

erties of the following operator.

Definition 1 (Approximate Deconvolution Operator) For a fixed finite N , de-

fine the N th approximate deconvolution operator GN by

GNφ =
N∑
n=0

(I − A−1)nφ,
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where the averaging operator A−1 is the differential filter: given φ ∈ L2(Ω), φ
δ ∈

H2(Ω) is the unique solution of

Aφ
δ

:= −δ2∆φ
δ

+ φ
δ

= φ in Ω, (2.2.1)

subject to periodic boundary conditions. Under periodic boundary conditions, this

averaging operator commutes with differentiation.

Throughout the chapter, the filtered (averaged) solution ū will be used. If u is the

velocity field that solves the NSE, then, given the filtering width δ, ū is defined via

Aū = u.

Lemma 1 The operator GN is compact, positive, and is an asymptotic inverse to the

filter A−1, i.e., for very smooth φ and as δ → 0, it satisfies

φ = GNφ
δ

+ (−1)N+1δ2N+2∆N+1A−(N+1)φ. (2.2.2)

The proof of Lemma 1 can be found in [15].

Define the explicitly skew-symmetrized trilinear form

b∗(u, v, w) :=
1

2
(u · ∇v, w)− 1

2
(u · ∇w, v).
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The following estimate is easy to prove; see, e.g., [16]: there exists a constant C =

C(Ω) such that

|b∗(u, v, w)| ≤ C(Ω)‖∇u‖‖∇v‖‖∇w‖. (2.2.3)

The proofs will also require a sharper bound on the nonlinearity. This upper bound

is improvable in R2.

Lemma 2 (Sharper bound on the nonlinear term) Let Ω ⊂ Rd, d = 2, 3. For

all u, v, w ∈ X

|b∗(u, v, w)| ≤ C(Ω)
√
‖u‖‖∇u‖‖∇v‖‖∇w‖.

For a proof, please refer to [16].

We also define the following norm, induced by the deconvolution operator A:

‖φ‖2
A = ‖φ‖2 + δ2‖∇φ‖2.

The following discrete Gronwall’s lemma (see, e.g., [17]) will be utilized in the subse-

quent analysis.

16



Lemma 3 (Gronwall’s lemma) Let k, M , and aµ, bµ, cµ, γµ, for integers µ > 0, be

nonnegative numbers such that

an + k
n∑
µ=0

bµ ≤ k
n∑
µ=0

γµaµ + k
n∑
µ=0

cµ +M for n ≥ 0. (2.2.4)

Suppose that kγµ < 1, for all µ, and set σµ ≡ (1− kγµ)−1. Then,

an + k
n∑
µ=0

bµ ≤ exp

(
k

n∑
µ=0

σµγµ

){
k

n∑
µ=0

cµ +M

}
for n ≥ 0. (2.2.5)

The following constants and assumptions on the problem data (written here as as-

sumptions on the true solution u) will be used in the proofs below.

Definition 2

Cū := ‖ū(x, t)‖L∞(0,T ;L∞(Ω))

C∇ū := ‖∇ū(x, t)‖L∞(0,T ;L∞(Ω))

Cζ := ‖ζ(x, t)‖L∞(0,T ;L∞(Ω))

C∇ζ := ‖∇ζ(x, t)‖L∞(0,T ;L∞(Ω))

17



2.3 ADC - Approximate Deconvolution with Cor-

rection

One member of the newly proposed family of LES-C models was discussed in [1] - the

Approximate Deconvolution with Correction (ADC) model. Implementing the defect

correction procedure to reduce the modeling error of the underlying Approximate

Deconvolution Model (ADM), the ADC seeks two consequent approximations to the

true solution (ū, p) via the following equations.

Consider the semidiscrete (continuous in time, discretized in space using Galerkin

finite element method) case. The ADM is used as the first step of ADC: find

(w1, ζ1, q1) ∈ (Xh, Xh, Qh) such that for any (vh, ξh, χh) ∈ (Xh, Xh, Qh)

(w1,t, v
h) + δ2(∇w1,t,∇vh) + ν(∇w1,∇vh) + νδ2(∇ζ1,∇vh) (2.3.1)

+b∗(w1, w1; vh)− (q1,∇ · vh) = (f, vh),

(∇w1,∇ξh) = (ζ1, ξ
h),

(∇ · w1, χ
h) = 0,
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subject to w1(0, x) = uδ0(x) and periodic boundary conditions.

The correction step of the ADC reads: find (w2, ζ2, q2) ∈ (Xh, Xh, Qh) such that for

any (vh, ξh, χh) ∈ (Xh, Xh, Qh)

(w2,t, v
h) + δ2(∇w2,t,∇vh) + ν(∇w2,∇vh) + νδ2(∇ζ2,∇vh) (2.3.2)

+b∗(w2, w2; vh)− (q2,∇ · vh) = (f, vh)

−δ2b∗(ζ1, w1; vh)− δ2b∗(w1, ζ1; vh)− δ4b∗(ζ1, ζ1; vh),

(∇w2,∇ξh) = (ζ2, ξ
h),

(∇ · w2, χ
h) = 0.

2.3.1 New Model: ADC with Deferred Correction

When constructing an LES-C model via Algorithm 2.1.1, one can aim at reducing

not only the modeling error, but also the error due to temporal discretization. We
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propose the following model, which combines the ADC of [1] with a two-step de-

ferred correction method. When based on the ADM with Backward Euler’s tempo-

ral discretization, the new model reads: find (wn+1
1 , ζn+1

1 , qn+1
1 ), (wn+1

2 , ζn+1
2 , qn+1

2 ) ∈

(Xh, Xh, Qh),∀(vh, ξh, χh) ∈ (Xh, Xh, Qh) at t = tn+1, n ≥ 0, with ∆t := ti+1 − ti,

satisfying

(
wn+1

1 − wn1
∆t

, vh) + δ2(
∇wn+1

1 −∇wn1
∆t

,∇vh) + ν(∇wn+1
1 ,∇vh) (2.3.3)

+νδ2(∇ζn+1
1 ,∇vh) + b∗(wn+1

1 , wn+1
1 ; vh)− (qn+1

1 ,∇ · vh) = (f(tn+1), vh),

(∇wn+1
1 ,∇ξh) = (ζn+1

1 , ξh),

(∇ · wn+1
1 , χh) = 0.
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(
wn+1

2 − wn2
∆t

, vh) + δ2(
∇wn+1

2 −∇wn2
∆t

,∇vh) + ν(∇wn+1
2 ,∇vh) (2.3.4)

+νδ2(∇ζn+1
2 ,∇vh) + b∗(wn+1

2 , wn+1
2 ; vh)

−(qn+1
2 ,∇ · vh) = (

f(tn+1) + f(tn)

2
, vh)

+
∆t

2
ν(
∇wn+1

1 −∇wn1
∆t

,∇vh) +
∆t

2
νδ2(
∇ζn+1

1 −∇ζn1
∆t

,∇vh)

+
1

2
b∗(wn+1

1 , wn+1
1 ; vh)− 1

2
b∗(wn1 , w

n
1 ; vh)− ∆t

2
(
qn+1

1 − qn1
∆t

,∇ · vh)

−δ2b∗(ζn+1
1 , wn+1

1 ; vh)− δ2b∗(wn+1
1 , ζn+1

1 ; vh)− δ4b∗(ζn+1
1 , ζn+1

1 ; vh),

(∇wn+1
2 ,∇ξh) = (ζn+1

2 , ξh),

(∇ · wn+1
2 , χh) = 0.

Compared with the ADC model of [1], the model (2.3.3)-(2.3.4) starts with the same

defect step. However, there are five more terms in the right hand side of (2.3.3)

which would lead to increased temporal accuracy of this new model. This is done

with essentially no extra cost, compared to the ADC, because the only modification

concerns the change in the right hand side of the correction step, with the known

quantity.
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Stability and accuracy of the ADM model (2.3.3) are well-established - see, e.g., the

following theorems from [7].

Theorem 1 (Stability of the first approximation) Let w1 satisfy (2.3.3). Let

f ∈ L2(0, T ;H−1(Ω)). Then, for n = 0, . . . , N − 1,

‖wn+1
1 ‖2

A + ν∆tΣn
i=0‖∇wi+1

1 ‖2 + νδ2∆tΣn
i=0‖ζ i+1

1 ‖2 ≤ ‖w0
1‖2
A +

1

ν
∆tΣn

i=0‖f(ti+1)‖2
−1.

Let C be a constant independent of h,∆t,Ω, ν, f , and suppose that the finite element

spaces Xh, Qh consist of continuous piecewise polynomials of degree m and m − 1,

respectively (e.g., m = 2 corresponds to Taylor-Hood elements).

Theorem 2 (Accuracy of the first approximation) Let the time step satisfy

∆t < max

(
ν3

maxi=0,1,..,N ‖∇ū(ti)‖4
,

Cν3

C∇ūν3 + Cūν2 + h4m

)
. (2.3.5)
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Let also ū ∈ L2(0, T ;H3(Ω)) and ūtt ∈ L2(0, T ;H1(Ω)). The error in the first ap-

proximation satisfies

‖ū(tn+1)− wn+1
1 ‖2

A + ν∆t
n∑
i=0

‖∇(ū(ti+1)− wi+1
1 )‖2 + νδ2∆t

n∑
i=0

‖ζ(ti+1)− ζ i+1
1 ‖2

≤ C(∆t2 + δ4 + ∆t
n∑
i=0

((1 + δ2h−2) inf
v∈V h
‖∇(ū(ti)− vi)‖2 + inf

q∈Qh
‖p(ti)− qi‖2)).

(2.3.6)

Remark 2.3.1 The restriction of the time step is a blend of two approaches - see

inequality (3.9) in [7] and inequalities (4.13), (4.16) in [18]. The resulting restriction

depends upon the regularity of the filtered true solution ū.

Consider the solution (wn+1
1 , ζn+1

1 , qn+1
1 ) of (2.3.3); denote ei1 = ū(ti) − wi1 and gi1 =

ζ(ti) − ζ i1, i = 0, 1, ..., n + 1. Given below are Theorem 3.3 from [7] and Theorem 3

from [1]; these accuracy results will be needed in the discussion of the correction step

approximation.

Theorem 3 (Accuracy of the timestep in the first approximation) Let the

conditions of Theorem 2 be satisfied. Let also ūt ∈ L2(0, T ;H3(Ω)) and ūttt ∈

L2(0, T ;H1(Ω)). Then the following accuracy result holds:

23



∥∥∥∥en+1
1 − en1

∆t

∥∥∥∥2

A

+ ν∆t
n∑
i=0

∥∥∥∥∇(ei+1
1 − ei1)

∆t

∥∥∥∥2

+ νδ2∆t
n∑
i=0

∥∥∥∥gi+1
1 − gi1

∆t

∥∥∥∥2

(2.3.7)

≤ C(∆t2 + δ4 + ∆t
n∑
i=0

inf
v∈V h

∥∥∥∥∇((ū(ti+1)− vi+1)− (ū(ti)− vi))
∆t

∥∥∥∥2

+∆t
n∑
i=0

inf
q∈Qh

∥∥∥∥(p(ti+1)− qi+1)− (p(ti)− qi)
∆t

∥∥∥∥2

)

Theorem 4 (Accuracy of the Laplacian) Let the assumptions of Theorem 2

be satisfied. Let also ū ∈ L∞(0, T ;L∞(Ω)),∇ū ∈ L∞(0, T ;L∞(Ω)),∆ū ∈

L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L∞(Ω)),

∇ūtt ∈ L2(0, T ;H1(Ω)). Let the time step and the filtering width satisfy

∆t ≤ h1/2; δ ≤ h1/4. Then the following accuracy result holds for the solution

(wn+1
1 , ζn+1

1 , qn+1
1 ) of (2.3.3):

‖∇(ū(tn+1)− wn+1
1 )‖2 + δ2‖ζ(tn+1)− ζn+1

1 ‖2 + ν∆t
n∑
i=0

‖ζ(ti+1)− ζ i+1
1 ‖2

+νδ2∆t
n∑
i=0

‖∇(ζ(tn+1)− ζn+1
1 )‖2 ≤ C(∆t2 + ∆t2δ2+

δ4 + ∆t
n∑
i=0

( inf
v∈V h
‖∇(ū(ti)− vi)‖2

+ inf
r∈V h
‖(ζ(ti)− ri)‖2 + min (δ−2, h−2) inf

q∈Qh
‖p(ti)− qi‖2)) (2.3.8)

We are now ready to prove stability and accuracy of the correction step approximation

(w2, ζ2, q2).
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Theorem 5 (Stability of the second approximation) Let w2 satisfy (2.3.4)

and let the assumptions of Theorems 1 and 3 be satisfied. Then, for n = 0, . . . , N − 1

‖wn+1
2 ‖2

A+ν∆t
n∑
i=0

‖∇wi+1
2 ‖2 + δ2ν∆t

n∑
i=0

‖ζ i+1
2 ‖2 (2.3.9)

≤ C

ν2

(
‖w0

2‖2
A +

∆t

ν

n∑
i=0

∥∥∥∥f(ti+1) + f(ti)

2

∥∥∥∥2

−1

)

PROOF. Take vh = wn+1
2 and ξ = ζn+1

2 in (2.3.4). Applying Young’s inequality along

with the definition of ‖f‖−1 followed by the Cauchy-Schwartz inequality gives:

‖wn+1
2 ‖2 − ‖wn2‖2

2∆t
+ δ2

(
‖∇wn+1

2 ‖2 − ‖∇wn2‖2

2∆t

)
+ ν‖∇wn+1

2 ‖2 + νδ2‖ζn+1
2 ‖2

≤ 3εν‖∇wn+1
2 ‖2 +

1

4εν

∥∥∥∥f(tn+1) + f(tn)

2

∥∥∥∥2

−1

+
ν∆t2

16ε

∥∥∥∥∇(wn+1
1 − wn1 )

∆t

∥∥∥∥2

+
νδ2

2
‖ζn+1

2 ‖2 +
νδ2∆t2

8

∥∥∥∥ζn+1
1 − ζn1

∆t

∥∥∥∥2

+
1

2
|b∗(wn+1

1 , wn+1
1 ;wn+1

2 )− b∗(wn1 , wn1 ;wn+1
2 )|

+δ2|b∗(ζn+1
1 , wn+1

1 ;wn+1
2 )|+ δ2|b∗(wn+1

1 , ζn+1
1 ;wn+1

2 )|+ δ4|b∗(ζn+1
1 , ζn+1

1 ;wn+1
2 )|

(2.3.10)

Note that the pressure terms vanish due to the divergence free condition and the

first nonlinear term vanishes by the definition of b∗. We now show that each of the

25



nonlinear terms is bounded. For the first such term, we make use of equation (2.2.3).

|b∗(wn+1
1 , wn+1

1 , wn+1
2 )− b∗(wn1 , wn1 , wn+1

2 )| = (2.3.11)

∆t

∣∣∣∣b∗(wn+1
1 − wn1

∆t
, wn+1

1 ;wn+1
2

)
+ b∗

(
wn1 ,

wn+1
1 − wn1

∆t
;wn+1

2

)∣∣∣∣ ≤
C∆t

∥∥∥∥∇(wn+1
1 − wn1 )

∆t

∥∥∥∥ (‖∇wn+1
1 ‖+ ‖∇wn1‖)‖wn+1

2 ‖ ≤

2εν‖wn+1
2 ‖2 +

C∆t2

4ε

∥∥∥∥∇(wn+1
1 − wn1 )

∆t

∥∥∥∥2

(‖∇wn+1
1 ‖2 + ‖∇wn1‖2)

Writing the time difference terms in equations (2.3.11) and (2.3.10) as below, they

are bounded using Theorem 3.

∥∥∥∥∇(wn+1
1 − wn1 )

∆t

∥∥∥∥2

≤ 2

∥∥∥∥∇(en+1
1 − en1 )

∆t

∥∥∥∥2

+ 2

∥∥∥∥∇(ū(tn+1)− ū(tn))

∆t

∥∥∥∥2

∥∥∥∥ζn+1
1 − ζn1

∆t

∥∥∥∥2

≤ 2

∥∥∥∥gn+1
1 − gn1

∆t

∥∥∥∥2

+ 2

∥∥∥∥ζ(tn+1)− ζ(tn)

∆t

∥∥∥∥2

The next two terms are bounded in a very similar manner, using the results of The-

orem 4:
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δ2|b∗(ζn+1
1 , wn+1

1 ;wn+1
2 )| ≤ Cδ2‖∇ζn+1

1 ‖‖∇wn+1
1 ‖‖∇wn+1

2 ‖

≤ εν‖∇wn+1
2 ‖2 +

C

ν2
(νδ2‖∇ζn+1

1 ‖2)(δ2‖∇wn+1
1 ‖2)

δ2|b∗(wn+1
1 , ζn+1

1 ;wn+1
2 )|

≤ εν‖∇wn+1
2 ‖2 +

C

ν2
(νδ2‖∇ζn+1

1 ‖2)(δ2‖∇wn+1
1 ‖2)

Finally, the last term is bounded by making use of the sharp bound on the nonlinearity

and our assumption, δ ≤ h
1
4 together with the inverse inequality:

δ4|b∗(ζn+1
1 , ζn+1

1 ;wn+1
2 )|

≤ δ4|b∗(ζn+1
1 − ζ(tn=1), ζn+1

1 ;wn+1
2 )|+ δ4|b∗(ζ(tn+1), ζn+1

1 ;wn+1
2 )|

≤ Cδ4‖∇(ζ(tn+1)− ζn+1
1 )‖

1
2‖ζ(tn+1)− ζn+1

1 ‖
1
2‖∇ζn+1

1 ‖‖∇wn+1
2 ‖

+Cδ4‖∇ζ(tn+1)‖‖∇ζn+1
1 ‖‖∇wn+1

2 ‖ ≤ +2εν‖∇wn+1
2 ‖2

+
Cδ4

νh
(δ2‖ζ(tn+1)− ζn+1

1 ‖2)(δ2‖∇wn+1
1 ‖2) +

Cδ6

ν2
‖∇ζ(tn+1)‖2(νδ2‖∇ζn+1

1 ‖2)
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Using these bounds on the nonlinear terms leads to

‖wn+1
2 ‖2

A − ‖wn2‖2
A

2∆t
+ ν‖∇wn+1

2 ‖2 +
νδ2

2
‖ζn+1

2 ‖2

≤ 10εν‖∇wn+1
2 ‖2 +

C

4εν

∥∥∥∥f(tn+1) + f(tn)

2

∥∥∥∥2

−1

.

Choosing ε = 1
20

, multiplying by 2∆t, and summing over all time levels completes

the proof.

We now turn our attention to the accuracy of the second approximation. We ob-

tain the equations for the filtered NSE solution by replacing u with Aū in (1.2.1);

then average the filtered NSE over two adjacent time levels, add and subtract the

upwind discretization for Aūt, and rearrange. The filtered true solution ū satisfies

the following equations for all (v, ξ, χ) ∈ (X,X,Q).
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(
ū(tn+1)− ū(tn)

∆t
, v

)
+ δ2

(
∇ū(tn+1)−∇ū(tn)

∆t
,∇v

)
+ ν(∇ū(tn+1),∇v)

+νδ2(∇ζ(tn+1),∇v) + b∗(ū(tn+1), ū(tn+1); v)− (p(tn+1),∇ · v)

=

(
f(tn+1) + f(tn)

2
, v

)
+

∆t

2
ν

(
∇ū(tn+1)−∇ū(tn)

∆t
,∇v

)
+

∆t

2
νδ2

(
∇ζ(tn+1)−∇ζ(tn)

∆t
,∇v

)
+

1

2
b∗(ū(tn+1), ū(tn+1); v)− 1

2
b∗(ū(tn), ū(tn); v)− ∆t

2

(
p(tn+1)− p(tn)

∆t
,∇ · v

)
−δ2b∗(ζ(tn+1), ū(tn+1); v)− δ2b∗(ū(tn+1), ζ(tn+1); v)− δ4b∗(ζ(tn+1), ζ(tn+1); v)

+
δ2

2
(b∗(ζ(tn+1), ū(tn+1); v)− b∗(ζ(tn), ū(tn); v))

+
δ2

2
(b∗(ū(tn+1), ζ(tn+1); v)− b∗(ū(tn), ζ(tn); v))

+
δ4

2
(b∗(ζ(tn+1), ζ(tn+1); v)− b∗(ζ(tn), ζ(tn); v))

+

(
A

(
ūt(tn+1) + ūt(tn)

2
− ū(tn+1)− ū(tn)

∆t

)
, v

)
,

(∇ū(tn+1),∇ξ) = (ζ(tn+1), ξ),

(∇ · ū(tn+1), χ)

(2.3.12)

Theorem 6 (Accuracy of the Second Approximation) Let the assumptions of

Theorems 2-4 be satisfied. Then there exists a constant C such that the following

accuracy bound holds for the solution (w2, ζ2, q2) of (2.3.4):
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‖ū(tn+1)− wn+1
2 ‖2

A + ν∆t
n∑
i+0

‖∇(ū(tn+1)− wn+1
2 )‖2

+νδ2∆t
n∑
i=0

‖ζ(tn+1)− ζn+1
2 ‖2 ≤ C(∆t4 + ∆t2δ4 + δ8

∆t
n∑
i=0

((1 + δ2h−2) inf
v∈Xh

‖∇(ū(ti)− vi)‖2 + (1 + δ4h−2) inf
v∈Xh

‖ūt(ti)− vi‖2

+ inf
q∈Qh
‖p(ti)− qi‖2 + inf

r∈Xh
‖(ζ(ti)− ri)‖2))

+∆t2(ν∆t
n∑
i=0

inf
v∈V h

∥∥∥∥∇((ū(ti+1)− vi+1)− (ū(ti)− vi))
∆t

∥∥∥∥2

+∆t
n∑
i=0

inf
q∈Qh

∥∥∥∥(p(ti+1)− qi+1)− (p(ti)− qi)
∆t

∥∥∥∥2

+νδ4∆t
n∑
i=0

inf
r∈V h

∥∥∥∥(ζ(ti+1)− ri+1)− ζ(ti)− ri)
∆t

∥∥∥∥2

))

PROOF: Subtract (2.3.4) from (2.3.12) and decompose the error such that en+1
2 =

ū(tn+1) − wn+1
2 = φn+1 − ηn+1 and ζ(tn+1) − ζn+1

2 = ψn+1 − µn+1, where φn+1 ∈ V h

and ψn+1 ∈ V h. Choosing vh = φn+1, ξh = ψn+1, and applying the Cauchy-Schwartz

and Young inequalities gives
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‖φn+1‖2 − ‖φn‖2

2∆t
+ δ2‖∇φn+1‖2 − ‖∇φn‖2

2∆t
+ ν‖∇φn+1‖2 + νδ2‖ψn+1‖2 ≤

εν‖∇φn+1‖2 +
1

4εν

∥∥∥∥ηn+1 − ηn

∆t

∥∥∥∥2

−1

+ εν‖∇φn+1‖2 +
δ4

4εν

∥∥∥∥∇(ηn+1 − ηn)

∆t

∥∥∥∥2

+2ε1νδ
2‖ψn+1‖2 +

νδ2

4ε1
‖∆ηn+1‖2

+
νδ2

4ε1
‖µn+1‖2 + εν‖∇φn+1‖2 +

δ4

4νε
‖∇µn+1‖2

+εν‖∇φn+1‖2 +
3

4εν
‖p(tn+1)− qn+1

2 ‖2

+εν‖∇φn+1‖2 +
ν∆t2

16ε

∥∥∥∥∇(en+1
1 − en1 )

∆t

∥∥∥∥2

+εν‖∇φn+1‖2 +
νδ4∆t2

16ε

∥∥∥∥∇(gn+1
1 − gn1 )

∆t

∥∥∥∥2

+εν‖∇φn+1‖2 +
3∆t2

16εν

∥∥∥∥(p(tn+1)− qn+1
2 )− (p(tn)− qn2 )

∆t

∥∥∥∥2

+|b∗(ū(tn+1), ū(tn+1);φn+1)− b∗(wn+1
2 , wn+1

2 ;φn+1)|

+δ2|b∗(ū(tn+1), ζ(tn+1);φn+1)− b∗(wn+1
1 , ζn+1

1 ;φn+1)|

+δ2|b∗(ζ(tn+1), ū(tn+1);φn+1)− b∗(ζn+1
1 , wn+1

1 ;φn+1)|

+δ4|b∗(ζ(tn+1), ζ(tn+1);φn+1)− b∗(ζn+1
1 , ζn+1

1 ;φn+1)|

+
δ2

2
|b∗(ū(tn+1), ζ(tn+1); vh)− b∗(ū(tn), ζ(tn); vh)|

+
δ2

2
|b∗(ζ(tn+1), ū(tn+1); vh)− b∗(ζ(tn), ū(tn); vh))

+
δ4

2
|b∗(ζ(tn+1), ζ(tn+1); vh)− b∗(ζ(tn), ζ(tn); vh)|

+

∣∣∣∣(A( ūt(tn+1) + ūt(tn)

2
− ū(tn+1)− ū(tn)

∆t

)
, vh
)∣∣∣∣ (2.3.13)
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We will now bound each of the nonlinear terms in turn. Considering the first nonlinear

term, we add and subtract b∗(wn+1
2 , ū(tn+1);φn+1) to get

|b∗(ū(tn+1), ū(tn+1);φn+1)− b∗(wn+1
2 , wn+1

2 ;φn+1)| ≤

|b∗(φn+1 − ηn+1, ū(tn+1);φn+1)|+ |b∗(wn+1
2 , φn+1 − ηn+1;φn+1)| ≤

|b∗(φn+1, ū(tn+1);φn+1)|+ |b∗(ηn+1, ū(tn+1);φn+1)|+ |b∗(wn+1
2 , ηn+1;φn+1)| ≤

|b∗(φn+1, ū(tn+1);φn+1)|+ |b∗(ηn+1, ū(tn+1);φn+1)|

+|b∗(ū(tn+1), ηn+1;φn+1)|+ |b∗(φn+1, ηn+1;φn+1)|+ |b∗(ηn+1, ηn+1;φn+1)|

And these five terms are bounded as follows

|b∗(φn+1, ū(tn+1);φn+1)| ≤ εν‖∇φn+1‖2 + Cν−3‖∇ū(tn+1)‖4‖φn+1‖2

|b∗(ηn+1, ū(tn+1);φn+1)| ≤ εν‖∇φn+1‖2 + C · C2
∇ūν

−1‖∇ηn+1‖2

|b∗(ū(tn+1), ηn+1;φn+1)| ≤ εν‖∇φn+1‖2 + C · C2
∇ūν

−1‖∇ηn+1‖2

|b∗(φn+1, ηn+1;φn+1)| ≤ εν‖∇φn+1‖2 + Cν−3‖∇ηn+1‖4‖φn+1‖2

|b∗(ηn+1, ηn+1;φn+1)| ≤ εν‖∇φn+1‖2 + Cν−1‖∇ηn+1‖4
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The first two O(δ2) terms and the first O(δ4) term in equation 2.3.13 are bounded as

follows.

δ2|b∗(ū(tn+1), ζ(tn+1);φn+1)− b∗(wn+1
1 , ζn+1

1 ;φn+1)| ≤

δ2|b∗(ū(tn+1), ζ(tn+1);φn+1)− b∗(ū(tn+1), ζn+1
1 ;φn+1)|

+δ2|b∗(ū(tn+1), ζn+1
1 ;φn+1)− b∗(wn+1

1 , ζn+1
1 ;φn+1)| ≤

C · Cūδ2‖ζ(tn+1)− ζn+1
1 ‖‖∇φn+1‖

+δ2C‖∇(ū− wn+1
1 )‖‖∇(ζ(tn+1)− ζn+1

1 )‖‖∇φn+1‖

+C · C∇ζδ2‖∇(ū− wn+1
1 )‖‖∇φn+1‖ ≤

3νε‖∇φn+1‖2 + C · C2
ūδ

4ν−2(ν‖ζ(tn+1)− ζn+1
1 ‖2) + C · C2

∇ζδ
4‖∇(ū− wn+1

1 )‖2

+Cδ2ν−2(νδ2‖∇(ζ(tn+1)− ζn+1
1 )‖2)(‖∇(ū(tn+1)− wn+1

1 )‖2)

δ2|b∗(ζ(tn+1), ū(tn+1);φn+1)− b∗(ζn+1
1 , wn+1

1 ;φn+1)| ≤

3νε‖∇φn+1‖2 + C · C2
∇ūδ

4ν−2(ν‖ζ(tn+1)− ζn+1
1 ‖2) + C · C2

ζ δ
4‖∇(ū− wn+1

1 )‖2

+Cδ2ν−2(νδ2‖∇(ζ(tn+1)− ζn+1
1 )‖2)(‖∇(ū(tn+1)− wn+1

1 )‖2)

δ4|b∗(ζ(tn+1), ζ(tn+1);φn+1)− b∗(ζn+1
1 , ζn+1

1 ;φn+1)| ≤

2νε‖∇φn+1‖2 + C · C2
ζ δ

6ν−1(δ2‖ζ(tn+1)− ζn+1
1 ‖2)

+Cδ4h−1ν−2(νδ2‖∇(ζ(tn+1)− ζn+1
1 )‖2)(δ2‖ζ(tn+1)− ζn+1

1 )‖2)
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The remaining terms of 2.3.13 are bounded as below. The first trilinear term is given.

The last two are very similar. The last term includes the difference of two O(∆t2)

approximations for ū(tn+ 1
2
).

δ2|b∗(ū(tn+1), ζ(tn+1);φn+1)− b∗(ū(tn), ζ(tn);φn+1)| ≤

δ2|b∗(ū(tn+1), ζ(tn+1)− ζ(tn);φn+1)|+ δ2|b∗(ū(tn+1)− ū(tn), ζ(tn+1);φn+1)| ≤

+εν‖∇φn+1‖2 + Cδ4∆t2‖∇ū(tn+1)‖2

∥∥∥∥∇(ζ(tn+1)− ζ(tn))

∆t

∥∥∥∥2

+εν‖∇φn+1‖2 + Cδ4∆t2‖∇ζ(tn+1)‖2

∥∥∥∥∇(ū(tn+1)− ū(tn))

∆t

∥∥∥∥2

∣∣∣∣(A( ūt(tn+1) + ūt(tn)

2
− ū(tn+1)− ū(tn)

∆t

)
, φn+1

)∣∣∣∣ ≤
O(∆t4 + ∆t4δ4) + 2εν‖∇φn+1‖2

Now choosing ε = 1
58

, ε1 = 1
4
, multiplying by 2∆t, summing over all time levels, and

applying Lemma 3 completes the proof.

34



2.4 Numerical Tests

In order to numerically investigate the proposed model, three benchmark problems

will be considered in this Section. We will start by verifying the claimed convergence

rates, when the model is applied to a problem with a known true solution. Next,

we apply the model to a flow past the full step, and show that the correction step

approximation w2 captures the qualitative features of the true solution in a much

more accurate way, than does the defect step approximation w1. Finally, the model

will be tested on a benchmark problem, that is quantitative, rather than qualitative:

the computation of drag and lift coefficients in the flow past a cylinder. All problems

in this Section are two-dimensional, and the computations were performed using the

FreeFEM++ software, [19].

2.4.1 Convergence Rates

In this subsection, we apply the ADC model (2.3.3) − (2.3.4) to a problem with

known true solution. The errors and the convergence rates will be computed for

the values of the viscosity coefficient, typically associated with transitional flows,

ν = 10−3, and fully developed turbulence, ν = 10−5. The space-time domain is

{0.5 ≤ x ≤ 1, 0.5 ≤ y ≤ 1, 0.25 ≤ t ≤ 0.75}, and the solution of the test problem is
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given by

u1 = 3
4

+ 1
4

cos(2π(x− t)) sin(2π(y − t))e(−8π2tν),

u2 = 3
4
− 1

4
sin(2π(x− t)) cos(2π(y − t))e(−8π2tν),

p = − 1
64

cos(4π(x− t)) cos(4π(y − t))e(−16π2tν).

First we compute the errors and convergence rates for the defect step approximation

w1 and the correction step solution w2 on a uniform mesh, as the mesh diameter,

time step and filtering width are being refined, δ = h = ∆t. In this case, the

theory predicts the first order accuracy, O(h2 + δ2 + ∆t) = O(h), for the defect

step approximation. The correction step should produce a second order accurate

approximation, O(h2 + δ4 + ∆t2) = O(h2). The results, given in Tables 2.1 - 2.2,

demonstrate the claimed convergence rates (N represents the number of points on

one side of the boundary, h = 1
2N

).

The Approximate Deconvolution Model (ADM) - and, subsequently, the correspond-

ing LES-C model ADC, discussed herein - aims to approximate the filtered velocity

and non-filtered pressure (ū, p). Thus, in order to verify the claimed convergence

rates, we first calculate the filtered solution on the given mesh with given filtering
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width δ, satisfying

ū− δ2∆ū = u in Ω, ū = u on ∂Ω,

and then compare it against the model solutions w1, w2. In the calculation of ū an

extra error is committed, as it is not possible to derive the correct boundary conditions

for ū on ∂Ω, based on the values of u ∈ Ω.

Table 2.1
Errors in (2.3.3) and (2.3.4), ν = 10−3, δ = h = ∆t

N ||ū− ω1||L2(L2) ||ū− ω2||L2(L2) ||ū− ω1||L2(H1) ||ū− ω2||L2(H1)

16 0.00710468 0.00723822 0.173303 0.350676
32 0.00423811 0.00269028 0.140095 0.238938
64 0.00227292 0.000675002 0.0914498 0.0972327

Table 2.2
Convergence rates for errors in Table 2.1

ω1 ∈ L2(L2) ω2 ∈ L2(L2) ω1 ∈ L2(H1) ω2 ∈ L2(H1)
0.75 1.43 0.31 0.55
0.90 1.99 0.62 1.30

The defect correction methods are known for having only asymptotic convergence

properties - and it might seem from these tables, that more mesh refinements are

needed to capture the correct convergence rates in the energy norm. However, as the

next results demonstrate, it suffices to reduce only the time step and the filtering

width, in order to see the correct convergence rates on a fixed mesh.
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We create a quasi-uniform mesh with N1 = 64 points on the left and bottom walls

of the domain, and N2 = 80 mesh nodes on the right and top boundaries: the mesh

diameter is h = 1
2N1

= 1
128

. With this mesh being fixed, we refine the time step and

filtering width. The errors and convergence rates are given in Tables 2.3 - 2.4. Note

that the mesh is quasi-uniform, which results in the difference between the values in

the first row of Table 2.3 and those in the last row of Table 2.1.

Table 2.3
Errors in (2.3.3) and (2.3.4), ν = 10−3, spatial mesh is fixed at h = 1

128 ,
while the time step and filtering width are refined.

N ||ū− ω1||L2(L2) ||ū− ω2||L2(L2) ||ū− ω1||L2(H1) ||ū− ω2||L2(H1)

h 0.00227971 0.000657181 0.0900065 0.0940873
h/2 0.00117971 0.000147313 0.0544724 0.0311926
h/4 0.000600011 2.97E-05 0.0311129 0.00846719
h/8 0.000302609 5.58E-06 0.0169704 0.00188764

Table 2.4
Convergence rates for errors in Table 2.3

ω1 ∈ L2(L2) ω2 ∈ L2(L2) ω1 ∈ L2(H1) ω2 ∈ L2(H1)
0.95 2.16 0.72 1.59
0.98 2.31 0.81 1.88
0.99 2.41 0.87 2.17

Several conclusions can be drawn from Tables 2.3 - 2.4. First, comparing the results in

Tables 2.1-2.2 to those in Tables 2.3 - 2.4, we deduce that the component of the overall

error, stemming from the finite element approximation, is small compared to the

modeling and time discretization error components. Secondly, as the filtering width

and the time step are being refined, we clearly see the advantage of the correction
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step approximation over the defect step - both in the reduced absolute values of the

errors, and in the improved convergence rates. Finally, as the convergence rates of

||ū − ω2||L2(0,T ;L2(Ω)) and ||ū − ω2||L2(0,T ;H1(Ω)) increase past the value 2, we conclude

that the claimed second order convergence with respect to the time step has been

verified. The next example in this subsection will show that, as we keep reducing

the time step and the filtering width, these rates increase even further - suggesting

that the rate of convergence with respect to the filtering width is at least 3, even in

the case of a much higher Reynolds number. This does not fully verify the claimed

fourth order accuracy with respect to the filtering width, and further refinements of

the time step and, possibly, spatial mesh, might be needed to verify the fourth order

accuracy.

Next we will further reduce the viscosity coefficient, letting ν = 10−5. While the true

solution is still smooth, we expect this to be a more challenging test for our model.

As in the previous case, we fix the mesh with N1 = 64, N2 = 80, h = 1
128

, and refine

the filtering width and the time step simultaneously, always keeping δ = ∆t. The

results, shown in Tables 2.5 - 2.6, again show the clear advantage of the correction step

solution over the defect step solution; the convergence rates are as predicted by the

theory, although a few extra refinements of the filtering width and time step (on the

same spatial mesh) might be needed to achieve these rates. The convergence rates

of the defect step approximation decrease as the time step and the filtering width

become too small - indicating that the finite element error becomes a bigger part of
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the overall error. However, the convergence rates of the correction step solution are

still approaching the values claimed by the theory - and, more importantly, the error

in approximating the true solution by the correction step solution w2 becomes seven

times smaller than the error from the defect step approximation w1.

Table 2.5
Errors in (2.3.3) and (2.3.4), ν = 10−5, spatial mesh is fixed at h = 1

128 ,
while the time step and filtering width are refined.

δ = ∆t ||ū− ω1||L2(L2) ||ū− ω2||L2(L2) ||ū− ω1||L2(H1) ||ū− ω2||L2(H1)

h 0.00245446 0.00981675 0.223553 5.73065
h/2 0.00127319 0.00290769 0.170311 2.70714
h/4 0.00066767 0.00107661 0.16385 0.959415
h/8 0.000381481 0.000369831 0.163266 0.291716
h/16 0.00022466 8.21E-05 0.119295 0.0609031
h/32 0.000121875 1.32E-05 0.0683414 0.00941398

Table 2.6
Convergence rates for errors in Table 2.5

ω1 ∈ L2(L2) ω2 ∈ L2(L2) ω1 ∈ L2(H1) ω2 ∈ L2(H1)
0.95 1.76 0.39 1.08
0.93 1.43 0.06 1.50
0.81 1.54 0.01 1.72
0.76 2.17 0.45 2.26
0.88 2.64 0.80 2.69
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2.4.2 Flow Past the Full Step

For the next step of validating the model (2.3.3)-(2.3.4), we consider the benchmark

problem of flow past the forward-backward facing step. This model has been com-

monly used in numerical tests of turbulence models and regularization techniques

for the NSE - see, e.g., [1, 20, 21, 22, 23]. It is known that for 500 ≤ Re ≤ 700 a

recirculation region is clearly seen behind the step, where vortices are formed; with

time, they shed, deform and travel with the flow.

Following the setting of, e.g., [22], we consider the domain [0, 40] × [0, 10] with the

step of unit height at 5 ≤ x ≤ 6. For both model solutions w1 and w2 we impose

the parabolic inflow and outflow boundary conditions ui = y(10 − y)/25, vi = 0,

where wi = (ui, vi)
T , i = 1, 2. No-slip boundary conditions are imposed on the rest

of the boundary. The Reynolds number is fixed at Re = 600, and the time step is

∆t = 0.005.

We present the results, obtained at a very coarse mesh with only 6, 010 degrees

of freedom (dofs). These are compared against the reference solution, obtained by

solving the NSE system with Crank-Nicolson time discretization (CN) at a very fine

mesh of 86, 125 dofs. As another point of comparison, we consider the results of [1],

where a mesh with 8, 897 dofs was used in combination with the ADC model and
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Crank-Nicolson time discretization. In all the results, presented in this subsection,

the filtering width was fixed at δ = 0.125. The results are presented in Figure 2.1

below. When compared to the CN-NSE and CN-ADC solutions, given in Figure

2.2, we see that the correction step solution w2 of (2.3.4) produces the flow that is

qualitatively much closer to the reference solution, than the defect step solution w1 of

(2.3.3). Even on such a coarse mesh, the correction step solution is able to correctly

predict the process of vortices forming, shedding and traveling.

The CN-NSE solution plays the role of the “true” solution here, as it is computed

without any modeling (δ = 0), on a much finer spatial mesh, and it has the verified

second order convergence (as opposed to the asymptotic convergence of the ADC

solution to second order accuracy) w.r.t. the time step. Thus, comparing the ADC

solution against the CN-NSE solution, we show that we can capture the qualitative

features of the DNS (direct numerical simulation) solution, while using a substantially

coarser mesh.

The plot in Figure 2.2(b) shows the CN-ADC solution, where the ADC has already

been implemented in space (with δ = 1/8), but the Crank-Nicolson method was used

for time discretization. This could be viewed as a solution “half way” between the

proposed full ADC (Figure 2.1(h) ) and the “true” DNS solution in Figure 2.2(a).

When viewing the development from Figure 2.2(b) to Figure 2.1(h) to Figure 2.2(a),

one can see that the qualitative behavior of the solution is captured well by the
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(a) Defect Step Solution at
t=10

(b) Correction Step Solution
at t=10

(c) Defect Step Solution at
t=20

(d) Correction Step Solution
at t=20

(e) Defect Step Solution at
t=30

(f) Correction Step Solution
at t=30

(g) Defect Step Solution at
t=40

(h) Correction Step Solution
at t=40

Figure 2.1: Time evolution of the flow, captured by the Defect Step solution
(left) vs. the Correction Step solution (right column).
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(a) CN-NSE solution at t=40; 86,125
dofs

(b) Correction Step Solution at t=40;
8,897 dofs

Figure 2.2: CN-NSE solution at a very fine mesh (left) and the CN-ADC
solution of [1] (right) at T = 40.

proposed method. One can also use Figure 2.1(h) to attribute the delay in the vor-

tex motion of Figure 2.2(b) to the deferred correction - the correction of the time

discretization error. Notice also, that the proposed model used Backward Euler as

the time discretization method for the defect step; this can be replaced with Crank-

Nicolson or any other method with sufficient stability properties, and the deferred

correction would then improve the quality of the solution even beyond that of the

Crank-Nicolson approximation.

2.4.3 Flow Past 3D Step

In this subsection we consider the 3D analogue of the previous test problem: flow

past a step. The region is given by Ω = [0, 40] × [0, 10] × [0, 10], with the step at

5 ≤ x ≤ 6, 0 ≤ z ≤ 1. Parabolic inflow is prescribed at the left wall x = 0, and it is
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given by u1 = z ∗ (10−z)/25. The computations are performed at a very coarse mesh

with only 33, 204 dofs, with the Reynolds number Re = 600. The reference solution

is obtained by solving the NSE with Crank-Nicolson time discretization (CN-NSE),

and with the time step ∆t = 1/16. The time step for the ADC model is chosen to be

∆t = 1/8, so that the CN-NSE solution could be viewed as a “true” solution. The

streamlines, plotted in Figure 2.3, clearly capture the wave front traveling near the

plane x = 17 in both the CN-NSE solution and the ADC Correction step solution.

To the contrary, this front is not adequately predicted by the solution of the Defect

step of the ADC, which is the ADM with Backward Euler time discretization.

Another way of viewing these solutions is presented in Figure 2.4, where the solutions

are projected onto the plane y = 5. Again, the waves travelling at or near the plane

x = 17 are visible in the CN-NSE solution and the ADC-Correction step solution,

but they are not captured by the ADC-Defect step solution.

2.4.4 Drag and Lift Coefficients

Referring now the problem outlined in chapter 1, the following data will be collected

from this experiment, and compared against the results in the literature: maximal

values of the drag and lift coefficients, the times when these values were attained, and

the difference of pressure before and after the obstacle at the final time, ∆p(8), where
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(a) CN-NSE solution at T=40; 33,204 dofs; ∆t =
1/16

(b) Defect Step Solution at T=40; 33,204 dofs;
∆t = 1/8

(c) Correction Step Solution at T=40; 33,204 dofs;
∆t = 1/8

Figure 2.3: Solutions at a coarse mesh: (a) reference CN-NSE solution at
∆t = 1/16; (b) ADC Defect Step Solution at ∆t = 1/8; (c) ADC Correction
Step Solution at ∆t = 1/8.
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(a) CN-NSE solution at y = 5

(b) Defect Step Solution at y = 5

(c) Correction Step Solution at at y = 5

Figure 2.4: Solutions from Figure 2.3, projected onto the midplane y = 5.
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∆p(t) = p(t; 0.15, 0.2)− p(t; 0.25, 0.2). We aim to demonstrate the clear advantage of

the correction step solution w2 over the defect step solution w1. This test is not very

well suited for the Approximate Deconvolution-based models, because these models,

including the ADC model of this chapter, aim to approximate the filtered solution ū

- not the exact velocity field u. Nevertheless, in the computations below we will use

the exact deconvolution of the model’s solutions, Aw1 and Aw2, as our approximation

of the exact velocity field u. Throughout this subsection the mesh will be fixed, with

the number of degrees of freedom being 23, 392 for velocity and 3, 004 for pressure

(compared to 25, 408 and 3, 248 in [2], level 2). The filtering width is also fixed, with

δ = 1
8
h. The only parameters that is being modified in this test problem is the time

step; thus, the performance of the model solutions w1 and w2 could be attributed to

the model’s treatment of the time discretization.

As the time step is being refined, we check the performance of the defect step and

correction step solutions: the drag and lift coefficients, as well as pressure difference,

must approach the reference intervals given in chapter 1 for these values.

In Tables 3.1-2.9 below we report the error, computed as the shortest distance from

the computed quantity of interest to the corresponding reference interval. Upper

script values 1, 2 correspond to the defect and correction steps, respectively.

We notice from the tables above that the maximal drag coefficient is the least sensitive

among the quantities of interest (the authors of [2] arrived at the same conclusion),

48



Table 2.7
Maximal Drag Coefficients

∆t c1
d,max Error1 t(c1

d,max) c2
d,max Error2 t(c2

d,max)

0.04 2.92099 0.00901 3.92 2.97026 0.00026 3.92
0.02 2.92046 0.00954 3.92 2.97028 0.00028 3.94
0.01 2.92022 0.00978 3.93 2.97033 0.00033 3.93
0.005 2.92108 0.00892 3.93 2.97135 0.00135 3.93
0.0025 2.92107 0.00893 3.92 2.97156 0.00156 3.92
0.00125 2.92113 0.00887 3.92875 2.9717 0.0017 3.93375
0.000625 2.92119 0.00881 3.92875 2.97178 0.00178 3.93375

Table 2.8
Maximal Lift Coefficients

∆t c1
l,max Error1 t(c1

l,max) c2
l,max Error2 t(c2

l,max)

0.04 0.0011635 – 0.88 0.00113649 – 0.92
0.02 0.00119218 – 0.92 0.00113227 – 0.92
0.01 0.0146167 – 7.45 0.0823751 – 7.31
0.005 0.136315 0.333685 6.365 0.271198 0.198802 6.29
0.0025 0.258605 0.211395 6.3025 0.381947 0.088053 5.755
0.00125 0.32374 0.14626 5.78375 0.438826 0.031174 5.7325
0.000625 0.367117 0.102883 5.77125 0.465565 0.004435 5.72

Table 2.9
Pressure Difference

∆t ∆p1 Error1 ∆p2 Error2

0.04 -0.127816 0.012816 -0.127665 0.012665
0.02 -0.127547 0.012547 -0.127664 0.012664
0.01 -0.126691 0.011691 -0.115572 0.000572
0.005 -0.112033 0 -0.101175 0.003825
0.0025 -0.102725 0.002275 -0.105263 0
0.00125 -0.102771 0.002229 -0.1099 0
0.000625 -0.104269 0.000731 -0.111787 0
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with both the defect and the correction step approximations giving relatively accurate

prediction of its value, as well as the time when this value is achieved.

The lift coefficient is much more sensitive: both w1 and w2 approximate the maximal

lift coefficient poorly, until the time step becomes sufficiently small. At ∆t = 0.005

the approximations start to produce better results. At the next two refinements of

the time step size, ∆t = 0.0025 and ∆t = 0.00125, the correction step predicts the

maximal value of the lift coefficient much more accurately, than does the defect step

approximation; the time when this value is achieved, is also closer to the reference

value for the correction step approximation, than it is for the defect step approxima-

tion.

The pressure difference is also more accurately computed by the correction step ap-

proximation, with ∆p(8) inside the reference interval for ∆t ≤ 0.0025, whereas the

defect step approximation produces the pressure difference outside of the reference

interval for all values of ∆t, except for ∆t = 0.005.

2.5 Conclusion

In this chapter, a method was presented, that creates a turbulence model with reduced

modeling error and reduced time discretization error. The method takes a model
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of the newly proposed LES-C class and combines it with the deferred correction

technique; this allows for the increased time accuracy for no extra computational cost,

compared to the LES-C model. Following the Algorithm 2.1.1, this defect-deferred

idea could be applied to any LES model. However, in this chapter only one model

was considered, the Approximate Deconvolution Model (ADM). The application of

Algorithm 2.1.1 with deferred correction for increased time accuracy, resulted in the

ADC model. We were able to perform full numerical analysis for this model, including

the proof of its stability and the error analysis. Four numerical tests were invoked to

illustrate the model’s performance, including the verification of claimed convergence

rates, the flow past the step (2D and 3D) and the computation of drag and lift

coefficients in the flow past the circular obstacle. In all these tests the correction step

solution was shown to clearly outperform the defect solution - both qualitatively and

quantitatively. This serves as a demonstration of the effectiveness of the ADC model,

compared to the ADM: at least for the transitional flows in the chosen benchmark

problems, the ADC solution gives higher accuracy per computational time, than the

ADM solution. That is, the ADC could be used to either provide more accurate

results than ADM on the same mesh; or the ADC could reach the same tolerance, as

the ADM, while using a coarser mesh (in space and time) and obtaining the results

faster.
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Chapter 3

Grad-div Stabilization and 2D

Flow around a Cylinder

3.1 Introduction

Grad-div stabilization has been a popular choice for solving the Stokes equation and

NSE for low viscosity fluids and this technique is routinely used in various fluid flow

applications, including turbulence modeling [24]. In [25, 26, 27, 28], it was shown

that grad-div stabilization improves the accuracy and the convergence of iterative

solvers of Stokes equation and NSE. It is shown in [29] that grad-div stabilization

improves the stability and the accuracy of a solution to the Stokes equation. In [30]
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a sensitivity analysis of the grad-div stabilization is performed on both the Stokes

equation and NSE. A modular grad-div approach and its impact on the solution of

the NSE is discussed in [31]. It also aims to improve the convergence of the iterative

solvers.

The calculation of drag and lift coefficients around a cylindrical obstacle has been

widely used as a quantitative benchmark problem for the NSE. High fidelity refer-

ence values for a direct numerical solution to the NSE are given in [2]. An earlier

effort can be found in [32]. Similarly the drag and lift coefficients for the modular

grad-div method were given [31]. However, there has been no detailed study of the

impact of grad-div stabilization on drag and lift coefficients. In this chapter we use a

series of numerical tests to suggest that grad-div stabilization can have an effect on

the target quantities for this test problem. We further suggest a remedy making use

of the Scott-Vogelius modified pressure, introduced in [33].

Scott-Vogelius finite elements, proposed in [34], produce a pointwise divergence-free

solution to the Stokes equation or NSE. Scott-Vogelius finite elements achieve this

using Lagrangian triangular elements, just as Taylor-Hood finite elements do, but

also allowing a discontinuous pressure space. In this work, the Scott-Vogelius finite

elements are only considered as a means of justifying our results, relying on the con-

nection between grad-div stabilized Tayloor-Hood finite elements and Scott-Vogelius

finite elements estabilished in [33]. In [33], it was shown that a Scott-Vogelius so-

lution can be thought of as a limiting case of the stabilized Taylor-Hood solution.
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Grad-div stabilized Taylor-Hood and Scott-Vogelius solutions for this problem was

also considered in [35]. While this work showed that the grad-div stabilized Taylor-

Hood calculations differ from the unstabilized case, it did not address how this may

be corrected, or attempt to demonstrate that for large stabilization parameters the

quantities of interest calculated with grad-div stabilized Taylor-Hood finite elements

converge to those calculated with Scott-Vogelius finite elements.

3.2 Background

3.2.1 2D Incompressible Flow around a Cylinder

Returning to the benchmark problem outlined in chapter 1, we start by giving the

definition of the drag and lift coefficients are given by:

cd(t) = 20

∫
S

∂uts(t)

∂n
ny − p(t)nx dS

cl(t) = −20

∫
S

∂uts(t)

∂n
nx + p(t)nx dS,
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where uts is the velocity component tangential to the obstacle. As shown in[2],

choosing a test function vd such that vd = (1, 0)T on S and vanishes on all other

boundaries and considering the weak form of the NSE, we can find an area integral

over the whole domain for cd. Likewise, we can choose vl = (0, 1)T on S, vanishing

on other boundaries. These choices of test function give the following formulation for

lift and drag coefficients:

cd(t) = −20

∫
Ω

ν∇u(t) : ∇vd + (u(t) · ∇)u(t) · vd − p(t)(∇ · vd) dx dy

cl(t) = −20

∫
Ω

ν∇u(t) : ∇vl + (u(t) · ∇)u(t) · vl − p(t)(∇ · vl) dx dy

However, grad-div stabilization introduces an extra term that we propose cannot be

ignored. Thus, in the final numerical test we will also consider the formulae:

c̄d(t) = −20

∫
Ω

ν∇u(t) : ∇vd + (u(t) · ∇)u(t) · vd − (p(t)− γ(∇ · u(t))(∇ · vd) dx dy

c̄l(t) = −20

∫
Ω

ν∇u(t) : ∇vl + (u(t) · ∇)u(t) · vl − (p(t)− γ(∇ · u(t))(∇ · vl) dx dy
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where c̄d and c̄l will be referred to as pressure-corrected drag and lift coefficients and

γ is the grad-div stabilization parameter, discussed further in the next subsection.

3.2.2 Grad-Div Stabilization

The grad-div stabilization method is then obtained by adding γ(∇·u,∇·v) to equation

1.2.2. We seek (u, p) ∈ (X,Q) such that for all (u, p) ∈ (X,Q):

(ut, v) + (u · ∇u, v)− ν(∇u,∇v)− (p,∇ · v) + γ(∇ · u,∇ · v) = (f, v)

(∇ · u, q) = 0 (3.2.1)

Since on the continuous level ∇ · u = 0 pointwise, the term γ(∇ · u,∇ · v) = 0 for

the continuous problem. In the discrete problem however, the stabilization term will

serve to penalize solutions with poor mass conservation.

3.2.3 Modular Grad-Div Stabilization

The optimal grad-div parameter is problem dependent. For some time it was thought

that most of the benefit of grad-div stabilization could be captured by γ = O(1).

However, in [33], it is suggested that large γ may be useful for some problems. For
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large γ values, there may be breakdown of iterative solvers due to an increase in the

condition number of corresponding linear system. As a remedy for those problems,

the modular grad-div method was introduced in [31]. We considered the first of two

algorithms proposed in that work. The following Algorithm is used along with the

Crank-Nicolson time discretization. Note that two linear solves are required per time

step, corresponding to step 1 and step 2.

Algorithm 3.2.1 Step 1: Given un ∈ X, find ûn+1 ∈ X and pn+1 ∈ Q satisfying,

(
ûn+1 − un

∆t
, v) + (un · ∇ûn+1, v) +∇(pn+1, v) = (fn+1, v)

(∇ · ûn+1, q) = 0

Step 2: Given ûn+1 ∈ X, find un+1 ∈ X satisfying,

(un+1, v) + (β + γ∆t)(∇ · un+1,∇ · v) = (ûn+1, v) + β(∇ · un,∇ · v)

for all v ∈ X and q ∈ Q

3.2.4 Scott-Vogelius Finite Element Spaces

We will also make use of the Scott-Vogelius finite element pair. Scott-Vogelius finite

elements permit a discontinuous pressure space. This allows for very strict adherence
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to the incompressibility condition. For example, take the ((P 2(Ω)2, P 1
disc(Ω)) spaces

used in this work. Now, ∇ · u is an element of the pressure space. Thus, taking

q = ∇ · u in 3.2.1, it is clear that the velocity field is pointwise divergence-free.

Ordinarily, when using Scott-Vogelius finite elements, one has to be careful not to

violate the Ladyzhenskaya–Babuska–Brezzi (LBBh) condition, also called the discrete

inf-sup condition, given below as in [36].

Definition 3 (Ladyzhenskaya–Babuska–Brezzi Condition) A velocity-

pressure pair of spaces (Xh, Qh) are said to satisfy the LBBh condition if there exists

βh uniformly bounded away from 0 such that

inf
qh∈Qh

sup
vh∈Xh

(qh,∇ · vh)
||vh||||qh||

≥ βh > 0

where Qh and Xh are finite dimensional subsets of Q and X and || · || represents the

usual L2(Ω) norm.

The difficulty arises from spurious pressure modes at singular nodes. Singular nodes

are any node at the intersection of only two straight lines. However in [37] it was

shown that the spaces ((P k(Ω)2, P k−1
disc (Ω)) satisfy the discrete LBBh condition as long

as 1) k ≥ d where d = 2, 3 is the dimension of the domain and 2) The mesh used is

a barycenter refinement of a regular mesh. In particular, a mesh satisfying condition
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2) cannot have singular nodes, leading to a much simpler implementation.

Since grad-div stabilization is a method for more tightly imposing mass conservation,

it is natural to compare our results against Scott-Vogelius finite elements. Especially

in light of [33], where it was proven that as γ → ∞, the grad-div stabilized Taylor-

Hood velocity converges to the Scott-Vogelius velocity. It was also shown that as

γ → ∞, pTH − γ(∇ · uTH) → pSV , where TH denotes a solution using Taylor-Hood

finite elements and SV denotes the solution using Scott-Vogelius finite elements.

3.3 Numerical Tests and Results

In this section we present our numerical results and evaluate them by comparing them

with the reference values. The reference interval given in [2] for the drag coefficient

is cd ∈ [2.93; 2.97], for the lift coefficient is cl ∈ [0.47; 0.49], and for the pressure drop

across the obstacle is ∆P ∈ [−0.115,−0.105]. Crank-Nicolson time discretization was

used in all simulations. A skew-symmetric form of the nonlinearity was used as well:

(u · ∇u, v) = 1
2
(u · ∇u, v)− 1

2
(u · ∇v, u) as is often done, see for example [24, 36]. All

computations were done in FreeFEM++, see [19]. Our computations were done in

two parts:

1. Compute the maximum drag coefficient, maximum lift coefficient, and final
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pressure drop across the obstacle using equation 3.2.1 (grad-div stabilization)

and algorithm 3.2.1 (modular grad-div stabilization) on a fixed mesh. Several

γ values were used and for each γ a range of ∆t was used from 0.04 to 0.0025.

For algorithm 3.2.1, we take β = γ. For all of the calculations a fixed mesh with

65k velocity degree of freedom with 8k pressure degrees of freedom was used.

2. Compute the maximum drag, maximum lift, maximum pressure-corrected

drag, and maximum pressure-corrected lift coefficients using grad-div stabilized

Taylor-Hood finite elements on a barycenter refined mesh using a sufficiently

small ∆t = 0.0025. Then compare these results with the computed maximum

drag and maximum lift coefficients on the same mesh using the same ∆t and

((P 2(Ω)2, P 1
disc(Ω)) Scott-Vogelius finite elements. For these calculations, a fixed

mesh with 64k velocity degrees of freedom with 48k discontinuous pressure de-

grees of freedom or 8k continuous pressure degrees of freedom was used. The

mesh was generated using one barycenter refinement of a regular mesh.

3.3.1 Numerical Results for Standard and Modular grad-div

Stabilization

The max drag coefficient calculation can be seen in the Table 1. All the values are

within the reference range. For γ = 0 (the non stabilized case), the calculated max
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drag coefficients are near to the middle of the reference range. Note also that for

γ = 0 we recover maximum drag coefficient values very close to those in [2]. The

same can be said for our results for maximal lift coefficient and final pressure drop

discussed below. When grad-div stabilization is included, the max drag coefficient

values are shifted toward the left endpoint of the reference interval. While the max

drag coefficient decreases with increasing γ, the most notable impact comes from any

nonzero choice of γ, causing a shift of 0.02 the coefficients. However, the max drag

values do not depend significantly on ∆t.

Table 3.1
Maximal Drag Coefficients using Standard Grad-div

∆t γ = 0 γ = 1 γ = 1000 γ = 100000
0.04 2.95020 2.93960 2.93142 2.93117
0.02 2.95042 2.93986 2.93168 2.93143
0.01 2.95051 2.93995 2.93177 2.93153
0.005 2.95053 2.93997 2.93180 2.93155
0.0025 2.95053 2.93998 2.93180 2.93155

On the contrary, Table 2 shows that higher temporal accuracy is needed to capture the

maximal lift coefficient, just as reported in [2]: The values are not within the reference

interval until ∆t ≤ 0.01. In addition, the lift coefficient values are not as strongly

dependent on γ as the maximal drag coefficient, but there is a consistent positive

shift. In general we may wish to approximate lift coefficients to a very high accuracy

and in those applications even a variation of O(0.01) is significant. Thus, care should
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be taken to acknowledge the small effect that grad-div stabilization introduces.

Table 3.2
Maximal Lift Coefficients using Standard Grad-div

∆t γ = 0 γ = 1 γ = 1000 γ = 100000
0.04 0.377712 0.388797 0.389097 0.389069
0.02 0.446280 0.456438 0.456741 0.456709
0.01 0.468146 0.476338 0.476363 0.476330
0.005 0.472425 0.480351 0.480506 0.480474
0.0025 0.473326 0.481439 0.481519 0.481483

Of all three quantities of interest, ∆P depends on γ most weakly. From Table 3, it

cannot be said that ∆P consistently increases or decreases with γ. However, it is

still noteworthy that even for the most fine ∆t the different γ values do not reach the

same final pressure drop.

Table 3.3
∆P Coefficients using Standard Grad-div

∆t γ = 0 γ = 1 γ = 1000 γ = 100000
0.04 -0.102888 -0.102367 -0.102344 -0.102334
0.02 -0.106176 -0.107267 -0.107319 -0.107308
0.01 -0.110923 -0.111103 -0.111076 -0.111064
0.005 -0.111424 -0.111330 -0.111281 -0.111269
0.0025 -0.111607 -0.111447 -0.111607 -0.111380

For the modular grad-div calculations, we observe similar trends. In the Table 4,

all the values are within the considered reference range. For γ = 0, the max drag

coefficient values are in the middle of the reference range. But when modular grad-div

stabilization was included, the max drag coefficient values are shifted to the left half
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of the reference interval. Similarly to the grad-div calculation, the max drag values

do not depend on ∆t. There is a significant impact for nonzero γ, with the coefficient

again decreasing slightly for even larger γ.

Table 3.4
Maximal Drag Coefficients using Modular Grad-div

∆t γ = 0 γ = 1 γ = 1000 γ = 100000
0.04 2.95020 2.93780 2.93774 2.93775
0.02 2.95042 2.93804 2.93783 2.93778
0.01 2.95051 2.93818 2.93764 2.93763
0.005 2.95053 2.93825 2.93717 2.93717
0.0025 2.95053 2.93824 2.93634 2.93632

In the Table 5, the max lift coefficient calculation for the modular grad-div method

can be observed. The observations are similar to the previous max lift coefficient cal-

culation. Again, any nonzero γ produces a small rightward shift in the lift coefficient.

As before, the maximum lift coefficient is sensitive to ∆t.

Table 3.5
Maximal Lift Coefficients using Modular Grad-div

∆t γ = 0 γ = 1 γ = 1000 γ = 100000
0.04 0.377712 0.378482 0.378587 0.378711
0.02 0.446280 0.447291 0.447477 0.447422
0.01 0.468146 0.471557 0.471863 0.471828
0.005 0.472425 0.477423 0.477880 0.478042
0.0025 0.473326 0.479629 0.480208 0.479900

In contrast to Table 3, we note that in Table 6, one detects a consistent shift in the final

time pressure drop across the obstacle. As mentioned, modular grad-div stabilization
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is a more stable method for large γ. The extra stability is likely what allows us to

recover this small effect which was not seen using standard grad-div stabilization.

While the positive shift is admittedly small for this problem, it should be noted that

larger effects could be seen for other benchmark problems not considered in this work.

Additionally, it is conceivable that even a change of O(0.0001) could be significant

in some applications especially if, as these results may suggest, the effect is visible

across a wide range of ∆t values.

Referring now to all three quantities of interest, it would be interesting to investigate

if the effect of standard/modular grad-div stabilization is diminished on a fine mesh

or for sufficiently small ∆t. While a more detailed study is needed, the data may

already suggest that refining ∆t is not enough to correct the discrepancy. If the effect

is indeed resistant to increased computational effort, then using the pressure-corrected

coefficients discussed in the next subsection may be unavoidable.

Table 3.6
∆P Coefficients for Modular grad-div method with different γ

∆t γ = 0 γ = 1 γ = 1000 γ = 100000
0.04 -0.102888 -0.102800 -0.102801 -0.102795
0.02 -0.106176 -0.106271 -0.106278 -0.106294
0.01 -0.110923 -0.110898 -0.110906 -0.110907
0.005 -0.111424 -0.111298 -0.111297 -0.111299
0.0025 -0.111607 -0.111429 -0.111404 -0.111404
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3.3.2 Comparison between Grad-Div Stabilized Taylor-Hood

and Scott-Vogelius Finite Elements

A comparison of the coefficients for the Scott-Vogelius (represented by SV in the

last column) case as well as the pressure-corrected and uncorrected stabilized Taylor-

Hood case is given in the following table. The results are presented for the finest

∆t = 0.0025 value considered in this analysis, but similar results were seen for all ∆t

tested.

Table 3.7
Comparison of Corrected and Uncorrected Coefficients and the

Scott-Vogelius Results

γ 1 100 100000 SV
cd 2.93196 2.93189 2.93166
cl 0.486703 0.486886 0.486844
c̄d 2.95000 2.95000 2.95000 2.95001
c̄l 0.487622 0.487811 0.487813 0.488330

One can see that the corrected drag coefficients are much closer to the center of

the reference interval than the uncorrected values. The drag coefficient is known

to be much less sensitive than the lift coefficient [2]. Thus it is unsurprising that

convergence is achieved very quickly, essentially right away for γ = 1. On the other

hand, the convergence for the corrected lift coefficient is slow. The nonlinear problem

is difficult to solve for higher γ values, but perfect convergence is expected eventually.

66



3.4 Conclusion

We have shown that some care must be taken in applying grad-div stabilization to

well-known test problems. First we have shown that for 2D flow around a cylinder,

grad-div stabilization and modular grad-div stabilization has a consistent and nearly

identical effect on the maximal drag coefficient, maximal lift coefficient, and pressure

drop across the obstacle. Next we showed that this can be corrected for using a mod-

ified pressure, motivated by the relationship between Scott-Vogelius finite elements

and grad-div stabilized Taylor-Hood finite elements.

It remains to be seen if grad-div stabilization has this effect on other test problems.

If grad-div stabilization does have an impact on other benchmark problems, it may

be of interest to investigate if a Scott-Vogelius modified pressure is applicable outside

the analysis here.

Of course, how to select γ is still an open question. This analysis does not attempt

to address the question, but may suggest as in [33] that for some problems a large

γ could be required to achieve extremely high fidelity convergence to the reference

value. Where necessary, one could investigate whether the modular grad-div stabilized

NSE has the same relationship to the NSE solved with Scott-Vogelius finite elements

and, if so, investigate if a modular grad-div stabilization plus Scott-Vogelius modified
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pressure would allow for accurate results for high γ values.
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Chapter 4

Note On Two Formulations of

Crank-Nicolson Method for

Navier-Stokes Equations

4.1 Introduction

In this short chapter we will discuss one further detail of implemening the NSE: the

precise formulation of Crank-Nicolson method for time discretization, particularly

with regards to pressure, and how that may affect results.
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Discretizing equation 1.2.2 in time, we introduce the time step ∆t, with 0 = t0 <

t1 < t2 < ... < tN = T , ∆t = ti+1 − ti, ∀i = 0, 1, 2, ..., N − 1. The continuous in

space, discrete in time models will be created, that seek approximations (ui, pi) to

the true velocity-pressure pair (u(ti), p(ti)). In the numerical tests below the Taylor-

Hood finite element method will accompany the Crank-Nicolson time discretization,

to create a fully discrete formulation of (1.2.1). We will omit the detailed discussion

of the spatial discretization, as it is not relevant to the topic of this report.

The Crank-Nicolson (CN) method, that is extremely popular among the researchers

and practitioners, was first introduced in [38]. Since that time, it has been used

in a plethora of applications; it has also been known for more than half a century,

that the CN solutions could exhibit non-physical oscillatory behaviour, see, e.g., [39,

40]. Nevertheless, the method is still routinely used for many real-life applications,

including fluid flow modeling. In the latter, there are some reports that suggest a

combination of the CN with some other methods to overcome the instability issue

- see, e.g., [41] and the references therein; however, there is also a large body of

literature where the CN method is used for solving the NSE without any extra effort

made to remove the possible oscillations, e.g., [1].

There are two well-known and widely used formulations of the Crank-Nicolson time

discretization method for the NSE, that differ in the treatment of the pressure term.

The first model, that we will denote by CN1, reads
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un+1 − un

∆t
− ν∆

(
un+1 + un

2

)
+

(
un+1 + un

2

)
· ∇
(
un+1 + un

2

)
(4.1.1)

+∇pn+1 =
f(tn+1) + f(tn)

2
.

This model has been widely used in various applications for more than thirty years;

in particular, we want to mention that exactly this formulation of the Crank-Nicolson

method was utilized in [2], where the drag and lift coefficients were computed for a

flow around a circle.

Another formulation of the CN method, that we will denote here by CN2, has also

been widely used for many years. It aims to create a second order accurate approxi-

mation for both velocity and pressure, and it reads

un+1 − un

∆t
− ν∆

(
un+1 + un

2

)
+

(
un+1 + un

2

)
· ∇
(
un+1 + un

2

)
(4.1.2)

+∇
(
pn+1 + pn

2

)
=
f(tn+1) + f(tn)

2
.
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The purpose of this report is to apply these two models to a well-known test problem

and show that the presumably more attractive model CN2 (which approximates the

pressure with second order accuracy in time, whereas the model CN1 is only first order

accurate in approximating the pressure) leads to a solution with poor quality and

non-physical oscillations. On the contrary, the CN1 solution doesn’t have oscillations

and seems to be a much more attractive choice - at least for the test problem at

hand. However, we will also show how to overcome the issues of the CN2 model: it

is sufficient to use the time averaged solution un+1+un

2
of CN2, when computing the

quantities of interest.

4.2 Numerical Test

4.2.1 Drag and Lift Coefficients

We will use two versions of the Crank-Nicolson method, combined with the Taylor-

Hood (piecewise quadratic polynomials for velocity and piecewise linears for pressure)

finite element method for spatial discretization, to model a flow past a circular ob-

stacle, described in chapter 1.

Figure 4.1 below shows the evolution of the drag coefficient, computed for 0 ≤ t ≤

8. The maximal drag coefficient is compared against the results in [2], Table VI.
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The number of degrees of freedom in our computations is 65, 288 d.o.f.s for velocity

and 8, 297 d.o.f.s for pressure; this mesh is somewhere between Level 2 and Level 3

meshes, per the classification in [2]. The drag coefficient, computed (at time tn) with

the solution un of the model CN2, clearly exhibits nonphysical oscillations, and this

model’s prediction of the maximal value of drag is poor. To the contrary, when the

CN1 model is used, the maximal value of the drag coefficient is very close to the one

computed in [2] (2.9508 vs. 2.95089), and there are no nonphysical oscillations in the

CN1 solution.

Another result that we report here, is the following. If one computes the drag at

time tn, using the CN1 solution un; then computes the drag at time tn+1/2, using the

CN2 solution un+1+un

2
, and plots both Drag(t) functions on one plot - the results are

virtually indistinguishable. See the zoomed version of the plot, Figure 4.2, for a more

noticeable difference in these solutions.

Similar to the situation with the drag coefficient, the (clearly nonphysical) oscillations

are seen when a CN1 solution un is used to compute the time evolution of the pressure

drop, ∆p(t) = p(t; 0.15, 0.2) − p(t; 0.25, 0.2). These oscillations disappear, if a CN2

solution un or a CN1 averaged solution un+1+un

2
is used instead - see Figures 4.3-4.4

below.

Finally, we look at the lift coefficient. As is shown in Figures 4.5-4.6, the models CN1

and CN2 provide comparable results in computing the evolution of the lift coefficients.
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Figure 4.1: Evolution of the Drag Coefficient, computed with the CN2
solution (oscillatory) vs CN1 solution. Indistinguishable from the CN1 so-
lution is the plot of the Drag Coefficient, computed with the averaged CN2
solution un+1+un

2 . The horizontal line shows the maximal Drag Coefficient
value of 2.9508.

4.3 Conclusion

We considered two formulations of the Crank-Nicolson method, CN1 and CN2, that

differ in their treatment of the pressure term. Both models were applied to a test

problem of flow past a circular obstacle. When calculating the drag coefficient and

the pressure drop (difference of pressure in front of and past the obstacle), the CN2

solution showed nonphysical oscillations. This is especially interesting and frustrating

to the researchers who would prefer to use the CN2 model: it could be viewed as

more favorable than model CN1, because its a priori error estimates show that it
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Figure 4.2: Evolution of the Drag Coefficient, Zoomed In. Here we notice
the difference between drag coefficient computed with the CN1 solution un,
and the drag coefficient computed with the averaged CN2 solution un+1+un

2 .

approximates the pressure with second order accuracy w.r.t. the time step - whereas

the CN1 model is only first order accurate in time. However, we also showed that,

at least for this test problem, there is a simple “fix” that improves the quality of the

CN2 solution and removes the nonphysical oscillations: the averaged solution un+1+un

2

should be used.
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Figure 4.3: Evolution of the Pressure Drop ∆p(t) = p(t; 0.15, 0.2) −
p(t; 0.25, 0.2), computed with the CN2 solution (oscillatory) vs CN1 solu-
tion. Indistinguishable from the CN1 solution is the plot of the Pressure
Drop, computed with the averaged CN2 solution un+1+un

2 .
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Figure 4.4: Evolution of the Pressure Drop, Zoomed In. Here we notice
the difference between the pressure drop computed with the CN1 solution un

(dashed), and the pressure drop computed with the averaged CN2 solution
un+1+un

2 .
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Figure 4.5: Evolution of the Lift Coefficient, computed with the CN2
solution, CN1 solution, and the averaged CN2 solution un+1+un

2 . None of
these solutions exhibit nonphysical oscillations.

Figure 4.6: Evolution of the Lift Coefficient, Zoomed In. Here we notice
the small difference between the three solutions (dashed solution of CN1,
dots used to denote the average of the CN2 solution) from Figure 4.5.
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