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Abstract 

Landslides are the most destructive hazard in the mountainous Idukki district in the State 

of Kerala, India. Therefore, evaluating the possible occurrence of landslides and 

analyzing the factors that trigger failure is an essential part of a reliable landslide 

assessment. Physics-based models are commonly used to determine potential landslide 

susceptible areas in terms of Factor of Safety (FS). Recent years have seen the use of 

physics-based methods for regional-scale landslide susceptibility analysis using 

geospatial tools. In this study, we compare two physics-based models using the same 

data from Idukki. The two models are the Geographic Information System-Tool for 

Infinite Slope Stability Analysis (GIS-TISSA) that utilizes the infinite slope stability 

analysis, and the Scoops3D algorithm that uses limit-equilibrium analysis. The 

significant difference between these two physics-based models is that the GIS-TISSA 

assumes a shallow failure surface parallel to the slope angle. In contrast, the Scoops3d 

evaluates deeper rotational failure surfaces.  The results from these two physics-based 

landslide models are critically evaluated with the existing landslide database to verify the 

validity of these methods for Idukki.  

The results show that the GIS-TISSA model is more effective in landslide-prone area 

mapping, with 41% of the actual landslides identified as unstable. For the Scoops3D, the 

same output only identifies 16% of the landslides. The GIS-TISSA model matched 87% 

landslides with the FS values less than 1.7 within unstable-medium stable classes, while 

the Scoops3D model shows 62% landslides. 

6
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1 Introduction

A landslide is the movement of rocks and soils on a sloped surface that can happen in 

different mechanisms, causing property damage, human fatalities, or ecosystem 

instability (Highland et al., 2008). For 20 years, from 1995 to 2015, 3876 landslides 

caused 163,658 deaths and 11,689 injured worldwide (Froude and Petley, 2018). 

According to Hauge et al. (2019), landslides as natural disasters are the 4th biggest life 

taker after floods, earthquakes, and storms.  In the Asian region, 75% of all spotted 

landslides worldwide occur, and 15% of these landslides are happening in India (Froude 

and Petley, 2018).  India deals with landslides every year. The annual loss of 400 million 

US dollars threatens thousands of lives (Thampi et al., 1995). The Geological Survey of 

India (GSI) reports that 12% of the country's territory is landslide-prone. One of the main 

susceptible zones in India is the Western Ghats, especially the Idukki district of the State 

of Kerala. The recent Rajamala landslide on August 7th, 2020, took 62 lives, reported by 

Kerala Chief Minister (Ani, 2020). Highlands and heavy rainfalls characterize the Idukki 

district during the monsoon season that influences the stability of slopes. Studies by 

Abraham et al. (2019) showed that landslide events are more dependent on prolonged 

rains in Kerala.  

Landslide susceptibility modeling is commonly used to estimate the threat of widespread 

landslide hazards on a large territory. Landslide susceptibility modeling can be divided 

into quantitative and qualitative approaches. The latter requires detailed inventory 

mapping of landslides or expert estimation on the site and suffers from subjectivity. The 

quantitative approach is usually divided into statistical, which needs historical inventory 

and parameters of landslides, and the geotechnical or physics-based model (Aleotti and 
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Chowdhury, 1999, Smith et al., 2014, Oommen et al., 2017). To perform statistical 

modeling, developing accurate inventory can be challenging.  A reliable alternative is the 

physics-based approaches that allow susceptibility estimation. For the physics-based 

landslide susceptibility approach, geological or geotechnical input data with digital 

terrain models (DEM) are essential for possible scenario evaluation (Corominas et al., 

2013). The physics-based models use the factor of safety (FS) as a characteristic of slope 

stability. However, there are several physics-based methods. Some of these models are 

more suitable for shallow slope failures (for example, GIS-TISSA), whereas others are 

suitable for deep-seated failures (for example, Scoops3D). In most landslide-prone 

regions, even when one type of landslide is dominated, a combination of shallow and 

rotational landslides occurs. This is true in Idukki, where studies have shown (Kuriakose 

et al. 2008) that shallow landslides dominate the landscape, but other types of slope 

failures also occur in the region. The question in the regional-scale analysis of landslides 

using the physics-based model is whether to use a GIS-TISSA model or a Scoops3D 

model for a landscape with different types of landslides?  In this study, we address this 

question by evaluating the applicability of GIS-TISSA and Scoops3D in Idukki with an 

extensive database of landslides identified to assess the performance of these models.  A 

comparison of GIS-TISSA and the Scoops3D model over a large study area using a high 

spatial resolution DEM (12.5 m spatial resolution) has not been performed previously. 

Comparing these models with existing landslides databases might help us understand the 

major mechanism of landslides in the Idukki district and factors that significantly 

influence it. 
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2 Area of study 
The Idukki is the second largest district in the State of Kerala and covers 12.9% of the 

state (5,105.22 km2) (Figure1). Forests and mountains cover nearly 97% of Idukki, with 

altitudes from 1200 to 3900 feet above sea level. The terrain slopes up to 80 degrees are 

typical for this area. The district population is 1,093,156 (AVST) and mainly inhabits 

valleys, flat areas, and near the main transportation corridors. During the monsoons, 97% 

of the roads are damaged and blocked by landslides, debris flows, and floods.  Most of 

the Idukki population lives in landslide-prone areas, leading to population vulnerability 

and household threats due to landslides.  In the year 2018, 341 major landslides were 

reported from 10 districts of Kerala, and 143 of them located in the Idukki district (Gov 

of Kerala, 2018). Debris flows are also common in Idukki, and the morphological 

characteristics of the region can explain the high landslide mobility (Kuriakose et al., 

2008). 

The Western Ghats is the most distinctive mountain range of the Indian peninsula that 

stretches 1600 km along the coast.  The climate condition with monsoon seasons leads to 

significant weathering of hornblende gneiss, granite gneiss, lateritic soils, and forest 

loams that consist of the study area. The Western Ghats can be divided by the Gap of 

Palghat into north and south segments. Shallow landslides are common in the southern 

part. Rotational and deeper landslides are more frequent in the northeastern part of 

Western Ghats. The Idukki district belongs to the southern part of Western Ghats, where 

soil thickness varies from 0.25-5 m and is prone to shallow landslides (Sreekumar, 2009). 

Besides, this weathered soil with increasing water content decreases its strength, and the 

annual rainfall is more than 5000 mm (Kuriakose et al., 2008, Jaiswal and van Westen, 
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2009). Rainfall intensity is higher during June - September caused by the monsoon 

season.  Studies have shown that, in the Idukki district, cumulative rainfalls greater than 

70.6 mm within ten days can trigger landslides (Abraham et al., 2019).  
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Figure 1. Location map with the study area. a) map of India with the Kerala state; b) 

Kerala state with the Idukki district; c) The Idukki district with registered landslide 

dataset and modeled area. 
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3 Objectives 
This study's objective is to perform the GIS-TISSA analysis to perform an infinite slope 

stability analysis and Scoops 3D stability model by limit-equilibrium analysis. These 

models represent two main mechanisms of landslides that occur in the area: rotational 

and shallow landslides. The applicability of these models for regional-scale landslide 

susceptibility mapping will be analyzed with an existing database that counts near 1000 

landslides. No previous study has compared the applicability of these models for a large 

study area using high spatial resolution DEM (12.5 m). 
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4 Literature review 
The problem of landslides speaks out loudly every year in Idukki. The Idukki, a highland 

region, is inherently susceptible to landslides. Several different size lineaments cross the 

district, and the Periyar River originates in the district's upslope and provides the 

condition for the area's vulnerability to landslides and floods (Vishnu et al., 2019).  The 

Idukki district is known for high landslide activity during the monsoon season. Kuriakose 

et al. (2008) summarized significant historical landslide events in Kerala and the Idukki 

district. Study shows that landslides and floods are happening in the area for centuries. 

However, attention to this area increased last decades with landslides mortality caused by 

population increase and human activity. Kuriakose et al. (2008) concluded that the Idukki 

district is prone to shallow landslides on hill slopes >20 degrees based on field 

observations.  

During the monsoons, landslide activation increases, related to increased pore pressure 

due to intense rainfalls (Kuriakose et al., 2008). The previous studies agree that the 

increasing events of shallow landslides are associated with deforestation, inefficient land 

use, and the debris flows resulting from blocking natural drainage systems caused by 

poor geotechnical decisions (Sajinkumar et al., 2011). Enormous precipitations in 

summer 2018 led to the most disastrous impact since 1924, with the loss of lives and 

infrastructure (Kanungo et al., 2020). Post-disaster field observations and landslide 

mapping gave a detailed vision of primary landslide triggers and recommendations for 

hazard mitigation. (Sulal and Archana, 2019, Kanungo et al., 2020). Post-disaster field 

visits concluded that the combination of natural factors and human intervention are 

reasons for catastrophic losses.  
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Fieldworks and site visits provided data and materials for laboratory analyses of soil's 

geotechnical properties for further slope stability modeling (Kuriakose et al., 2008, 

Sreekumar, 2009). 

One of the first slope stability models for the region was developed by Kuriakose et al. 

(2009) in the Tikovil river basin, which is administratively part of the Idukki and 

Kottayam districts. In the model, root cohesion as an input parameter has been applied. A 

physics-based, dynamic, and distributed hydrological model (STARWARS) combined 

with a probabilistic slope stability model (PROBSTAB) demonstrated slope stability in 

terms of FS in the Idukki district.  Even though the study had insufficient input data, 

spatial and temporal patterns of landslide-prone areas were generated, indicating slope 

stability in Idukki depends on few factors like root cohesion, soil depth, and angle of 

internal friction. A high-resolution Digital Elevation Model (DEM) is no less critical 

characteristic for shallow landslide prediction (Kuriakose et al., 2009).  

A study conducted by Seekumar (2009) focused on hillside slope stability along the road 

connecting Kottayam and Kumili. This work showed that slope stability estimated using 

Ordinary and Bishop's methods could describe the mechanics of rotational landslides in 

the region (basically the Scoops3D method).  A stability analysis conducted across a 

lateritic cross-section at Kumili revealed slopes with conditions close to the threshold of 

collapsing (FS  < 1.2) due to moisture content. This decrease in stability can be attributed 

to the increased piezometric head during heavy rainfall periods (Sreekumar, 2009). 

Lately, the concepts of multidimensional analysis in the GIS environment in the central 
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part of the Idukki verified high landslide susceptibly in terms of risk (Abraham and Shaji, 

2013, Sajinkumar and Anbazhagan, 2014).  

Few more papers tried to demonstrate slope stability through FS in the region. However, 

the primary input parameter was precipitation data to detect rainfall-triggered landslides. 

A more detailed landslide study was made in the area of Munnar by Sajinkumar et al. 

(2017). The local Munnar college site was discovered as a potential landslide-prone area 

using a vertical electrical sounding method. This method showed that 11 meters of soil 

near the prior landslide are at high risk of failure. The slope stability analysis based on 

the one-dimensional infinite slope model proved the area's instability even in dry 

conditions. Results of this rainfall threshold analysis concluded that landslides happened 

due to high precipitation amounts across five days (Sajinkumar et al., 2017).  

Landslides triggered by rainfall are challenging to predict due to insufficient data from 

failure locations and precipitation information. One of the methods applied in the study 

area is the Transient Rainfall Infiltration and Grid-Based Regional slope stability 

(TRIGRS) by Weidner et al. (2018). This method models slope stability based on a 

relationship of long-term rainfall and pore pressure. Parameters used in the TRIGRS are a 

mix of regional data sources, data from remote sensing, and analysis-based parameters of 

two discovered landslides in the past. The limitation of one-dimensional and TRIGRS 

models are small area mapping and output with a low-resolution map based on DEM.  

Besides listed research aimed to classify the study area in terms of stability, more 

research was done to discover precipitation impact as the main triggering factor in slope 

instability. 
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Abraham et al. (2019) developed rainfall thresholds for landslide prediction utilizing 

three days, ten days, 20 days, 30 days, and 40 days continuous rainfalls as a trigger. 

Results showed that the possibility of failures increases from 72.12% to 99.56% with 

increasing rainfall from 3 to 40 days. (Abraham et al., 2019). Lately, by this author, 

empirical and probabilistic threshold models were improved by the effect of average soil 

moisture where the soil moisture data was obtained from passive microwave remote 

sensing (Abraham et al., 2021). 

Many landslides in summer 2018 caused by critical heavy rainfall led to a deeper 

understanding of landslide triggering factors in Idukki. Besides natural factors (i.e., 

prolonged precipitations, slope parameters, geotechnical soil properties, etc.), the human 

influence decreases slopes stability. It leads to landslide activation via lack of proper 

geotechnical measures, slopes cuts, blocking natural drainage, and building's load on soil 

masses (Sulal and Archana, 2019, Kanungo et al., 2020). Based on landslide sites studied 

in the State of Kerala, the Landslide Atlas of Kerala was created to include data about the 

state's risks (Sajinkumar, 2021).  

Some of the previous slope stability analyses in Kerala are one-dimensional slope 

stability analysis, where the slope stability was discovered under dry and wet conditions. 

(Sajinkumar et al., 2017), Transient Rainfall Infiltration and Grid-based Regional Slope 

stability (TRIGS) as a tool for modeling slope stability along with the connection 

between pore pressure and critical rainfall data (Weidner et al., 2018), and GIS Tool for 

Infinite Slope Stability Analysis (GIS-TISSA) (Escobar-Wolf et al., 2021) that is a 

ToolBox package of implementation PISA-m algorithms for ArcGIS software was 
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applied in the Kannur district and showed high correlation with existing landslide 

database.  
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5 Methodology 

This study aims to compare two models that simulate different landslide mechanisms for 

the Idukki district in Kerala.  The GIS-TISSA and Scoops3D models have significantly 

different approaches to slope stability computation. GIS-TISSA is the ArcGIS 

implementation of infinite slope stability analysis and is applicable for shallow landslides 

modeling. The Scoops3D computes slope stability using limit-equilibrium analysis and is 

applicable for rotational slides. The performance of these models for the slope stability in 

Idukki is evaluated here and validated using an existing landslide database.  

5.1  GIS-TISSA 

The collapse of a thin layer of soil along the surface parallel to the slope is the most 

common type of landslide, called transitional or shallow landslide (Highland and 

Bobrowsky, 2008). The slope stability modeling for this type of landslide uses the 

"infinite slope" model (Naidu et al., 2018). The model shows slope stability as a factor of 

safety (FS), a ratio of soil shear strength to the shear stress of possible failure surfaces 

(Zhu et al., 2017). The slope is stable when FS > 1 and unstable when FS < 1. Equation 1 

and Fig. 2 shows the parameters used for infinite slope stability analysis (Hammond, 

1992). 

𝐹𝑆 =  
𝐶𝑟 + 𝐶𝑠[𝑞𝑡 + 𝛾𝑚𝐷 + (𝛾𝑠𝑎𝑡 − 𝛾𝑤)𝐻𝑤𝐷]𝑐𝑜𝑠2𝛽𝑡𝑎𝑛𝜑

[𝑞𝑡 + 𝛾𝑚𝐷 + (𝛾𝑠𝑎𝑡 − 𝛾𝑤 − 𝛾𝑚)𝐻𝑤𝐷]𝑠𝑖𝑛𝛽𝑐𝑜𝑠𝛽

(1) 

where: 

Cr is the contribution to the soil cohesive strength from the roots (when vegetation is 

considered) 
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Cs is the cohesive soil strength 

qt is the vegetation weight added to the slope (the surcharge) 

γm is the unsaturated (moist, above the phreatic surface) soil unit weight 

γsat is the saturated (under the phreatic surface) soil unit weight 

γw is the water unit weight, a constant equal to 9810 N/m3 in SI units, or 62.4 lb./ft3 in 

imperial units 

D is the depth of the slip surface 

Hw is the height of phreatic surface above slip surface, normalized relative to soil 

thickness (dimensionless varies from 0 to 1) 

β is the terrain slope 

ϕ is the internal friction angle of the soil. 

Figure 2. The inputs for the infinite slope stability model (Escobar-Wolf et al., 2021) 
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Eq.1 does not include uncertainties of input values. Thus, Hammond et al. (1992) 

suggested a Monte Carlo method to distribute errors and uncertainty calculations from 

Eq.1. Later, to propagate input uncertainty within the infinite slope model, another 

approach based on First Order Second Momentum (FOSM) method was applied 

(Haneberg, 2004). The FOSM method includes two more equations for error calculations 

in Eq.1.  Mean values from the input are used for computing the FS (Eq.2). Assuming 

that there is no error correlation, the algorithm calculates FS output variance from Eq.3.  

𝐹𝑆 = 𝐹𝑆(𝑥) (2) 

 

FS is the mean estimation of the factor of safety 

FS is the factor of safety calculation function as defined by Eq. (1) 

x  is the set of mean values for the input variables in Eq. (1). 

  

(𝜎𝐹𝑆)2 = ∑ (
𝜕(𝐹𝑆)

𝜕(𝑥𝑖)
)

𝑖

(𝜎𝑥𝑖)2 
(3) 

 

𝜎𝐹𝑆 is the standard deviation of FS 

https://www.sciencedirect.com/science/article/pii/S1674987120302097?via%3Dihub#fo0005
https://www.sciencedirect.com/science/article/pii/S1674987120302097?via%3Dihub#fo0005
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𝜕(𝐹𝑆)

𝜕(𝑥𝑖)
 are the partial derivative of FS, given by Eq.1, with respect to any of the input 

variables xi. 

𝜎𝑥𝑖 are the estimates of the standard deviation for all the input variables 𝑥𝑖

The mean and standard deviation from Eq. 2, 3 estimates FS of slope stability more 

reliably, with less computational time. Further, this model was implemented into the 

software (PISA-m) by Haneberg (2007). The GIS-TISSA is an implementation of the 

PISA-m algorithm in ESRI® ArcMap software (Escobar-Wolf et al., 2021).  

5.2 Scoops3D 

Figure 3. Trial surfaces created by the intersection of the sphere and DEM in two 

locations. (USGS) 
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The Scoops3D software was designed by the US Geological Survey (USGS) to calculate 

the stability of soil masses captured by a significant number of spheres for cutting the 

surface (Reid, 2015). As a result, it generates trial surfaces by limit-equilibrium analysis, 

estimates slope stability in three dimensions between the intersection of the DEM surface 

and potential sliding spheres (Figure 3). It computes the FS for each possible intersection 

using Bishop's simplified or Fellenius (ordinary) method (Reid, 2015). The ratio of the 

shear strength to the shear stress defines the FS at the moment of balance, Eq.4. The 

shear stress is calculated by Mohr-Coulomb failure criterion in Eq.5, where c' is the 

effective cohesion, φ ′ is the effective internal friction angle, σn is the normal stress, 

and u is the pore water pressure.  

𝐹𝑆 =  
τ

𝑠
(4) 

𝜏 = 𝑐′ + (𝜎𝑛 − 𝑢)𝑡𝑎𝑛𝜑′ (5) 

For the moment of equilibrium, the resisting moment is equal to the driving moment. For 

computing, the FS in Bishop's simplified method normal force must be calculated by the 

equilibrium force in vertical and horizontal directions (Eq.6, Figure 4). 

𝐹𝑆 =  
∑ 𝑅𝑖,𝑗 [𝑐𝑖,𝑗𝐴ℎ𝑖,𝑗

+ (𝑊𝑖,𝑗 − 𝑢𝑖,𝑗𝐴ℎ𝑖,𝑗
)𝑡𝑎𝑛𝜑𝑖,𝑗]

∑ 𝑊𝑖,𝑗(𝑅𝑖,𝑗𝑠𝑖𝑛𝛼𝑖,𝑗 + 𝑘𝑒𝑞𝑒𝑖,𝑗)

1

𝑚𝛼𝑖,𝑗

(6) 

Where: 

i,j number of column 

R represents the radius of a sphere; 
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Ah represents the horizontal area of a trial slip surface (Ah = A*cosε);  

W represents the weight of the potential failure mass;  

α represents the apparent inclination of the sliding direction;  

ε represents the intersection angle; 

keq represents the horizontal pseudo acceleration;  

e represents the length of the horizontal driving force moment arm. 
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Figure 4. Schematic of forces acting on one column (Zhang and Wang, 2019) 

More detailed information about the Scoops3D program can be found in the Scoops3D 

manual by U.S. Geological Survey (Reid, 2015). Scoops3D software uses few search 

parameters for controlling the process. These parameters are volume limits, search 

resolution, and horizontal-vertical distance of search nodes.  
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Table 1. The input data for Scoops3D 

Input data Description 

Digital Elevation 

Model 

DEM represents the local topography (ASCII file). 

Underground soil 

layers 

A number of soil layers are defined by a set of raster maps of 

elevations of layer bottoms. The geometry of these soil layers 

may be irregular. The soil layers may reach the terrain surface 

or disappear in depth. 

Soil parameters (c, 

ϕ, γ) 

Each soil layer has its own soil properties. 

Pore-water 

pressure inputs 

Scoops3D provides three different ways to include the pore 

water pressures on slope stability.  

No groundwater pressure. Dry underground condition. 

Pore pressure ratio, ru. ru is defined as the ratio of pore pressure 

to vertical stress at a point. Each soil layer have its own ru.  

(3) Piezometric surface. Piezometric surface represents the

groundwater surface with vertically hydrostatic heads. 

Earthquake loading Scoops3D includes the horizontal seismic loading using a 

pseudoacceleration coefficient keq (-). In the calculation of FS, 

the keq multiplied by soil weight represents the horizontal 

seismic force. 

5.3 Model Validation 

For classification models, typically, three validation parameters can be used: overall 

accuracy (OA), precision, and recall. These parameters can be estimated from the 

confusion matrix. This matrix helps to assess the quality of the classification and 

evaluates observed classes versus predicted ones. The parameter OA estimates the 

percentage of accurate classification (Eq.5).  
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𝑂𝐴 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑝 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) (5) 

True positive (TP) – the sum of landslide samples correctly predicted; true negative (TN) 

– sum non-landslide sample correctly predicted; false positive (FP) – the sum of samples

non-landslides predicted as landslides; false negative (FN) – the sum of landslides 

samples predicted as landslides. The parameter precision (Eq.6) estimates how accurate 

the prediction of a single class and recall (Eq.7) estimates how accurate prediction is 

based on predicted values (Oommen et al., 2010). 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) (6) 

𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) (7) 

Table 1 Confusion matrix shows where Observed result in Rows and Predicted in 

Columns 

Observed 

Yes No 

Predicted Yes TP FP 

No FN TN 

To validate the models, 995 landslide locations were used. In the database there are three 

types of failures: shallow slides - 597 (SS), rockfalls - 38 (RF), and debris flows - 360 

(DF). In addition, 1000 random non-landslide points were generated within the modeled 

area in ArcGIS software within modeled area. FS values were converted to binary outputs 

(landslides and non-landslides points) using a threshold from both classified models 

(GIS-TISSA & Scoops3D). The thresholds used for the conversion are 1.0, 1.2, and 1.7.  
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6 Input parameters 

For Scoops3D and GIS-TISSA the digital elevation model is required as an initial input 

parameter. The DEM with horizontal resolution 12.5 m from the ALOS PULSAR 

mission was downloaded from the Alaska Satellite Facility website (ASF, 2020) used in 

the study. A DEM resolution of 12.5 m is the highest available for this area and had not 

been used for any physics-based modeling of landslide susceptibility of this region 

before. There are four types of soils in the study area provided by Sajinkumar K.S. 

(Moderately dry loam, Poorly drained clayey soil, Gravelly loam, and Gravelly loam) 

(Fig.5).  

Figure 5.Types of soil in the study area. 
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Geotechnical parameters of Kerala's soils were analyzed by previous studies (Kuriakose 

et al., 2009, Weidner et al., 2018). Soil cohesion, unit weight, angle of friction, water 

table, and soil thickness varied in narrow span and were chosen as a constant value for 

Scoops3D, for the GIS-TISSA model parameters are used based on papers by Escobar-

Wolf et al. (2021) (Table 2 & 3).   

Table 2. Input parameters for the Scoops3D model 

Input parameter Value range Value selected Units 

Cohesion 10,000-18,000 14,000 N/m2 

Internal friction angle 17-23 20 degrees 

Unit weight of soil 17,000-19,000 18,000 N/m2 

Saturated unit weight 15,000-19,000 18,000 N/m2 

Soil thickness 0-5 0-5 m 

Soil phreatic ratio 0.5 0.5 - 

Table 3. Mean and standard deviation soil and tree property values for the GIS-TISSA 

model  

Soil type 

Property Moderately 

drained loam 

Poorly drained 

clayey soil 

Gravelly clay Gravelly loam 

Mean STD Mean STD Mean STD Mean STD 

Internal 

friction 

(degrees) 

31 3 24 4 32 2 32 4 

Soil cohesion 

N/m2 

32361 0 14,000 4041 19,000 4,000 26,478 8,492 

Depth (m) 5 3.18 5 3.18 5 3.18 5 3.18 

Moist unit 

weight N/m2 

20,787 567 18,165 844 20,459 567 22,752 852 

Saturated unit 

weight N/m2 

16,000 1,500 17,850 1,760 18,296 1,645 15,058 1,331 
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Soil type 

Property Moderately 

drained loam 

Poorly drained 

clayey soil 

Gravelly clay Gravelly loam 

Mean STD Mean STD Mean STD Mean STD 

Root 

cohesion 

N/m2 

4762 5842 4762 5842 4762 5842 4762 5842 

Surcharge 

N/m2 

1190 481 1190 481 1190 481 1190 481 

The GIS-TISSA has the option to include a standard deviation value for each input 

parameter (Table 3). A fixed value for soil thickness can be used on small-scale, well-

discovered areas to study shallow landslides and give reliable results. However, in large 

areas with low information coverage, the soil thickness survey is costly. A linear equation 

can define this parameter based on the slope angle (He et al., 2021, Tran et al., 2017). In 

the study area, the soil thickness is defined as the cosine of the topographic slope, where 

the maximum thickness 5 m. This equation showed the correlation of soil depth and slope 

angle from high-resolution imagery at barren rocks (Fig.6) (Weidner et al., 2018). Visual 

estimate suggested that soil thickness is close to 0 m on slopes with an angle above 40 

degrees and can be defined by Eq.6, where D is a maximum 5 m depth of soil thickness 

that reaches zero at slope angle x or 40 degree that is equal to 0.698 rad. 

𝑦 = 𝐷 ∗ cos (𝑥 ∗ 0.44) (6)
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Figure 6. Plot showing the equation used for soil thickness approximation in the study 

area (Weidner et al., 2018) 

To reduce the time-consuming calculation of Scoops3D, a rectangular subset of the study 

area with the highest density of landslides was chosen within Idukki. There are 995 

landslides in the selected area (Figure 1.).  
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7 Results 

In general, the predicted areas with FS less than 1.0 are considered unstable, and FS > 1 

are considered stable. To perform more detailed classification, the FS threshold values of 

1.0, 1.2, and 1.7 were chosen for both models. The areas with FS less than 1.0 are 

considered unstable, FS values more than 1 and less than 1.2 are accepted as quasi-stable, 

FS values between 1.2 and 1.7 considers as medium stable, and more than 1.7 as 

stable(Table 4) (Escobar-Wolf et al., 2021).  

Table 4. Classification of slope stability and instability 

Stability classification Factor of safety Slope stability class 

1 FS < 1 Unstable 

2 1 < FS < 1.2 Quasi stable 

3 1.2 < FS < 1.7 Medium stable 

4 FS > 1.7 Stable 

The GIS-TISSA model shows that among 995 landslides in the model area, 41% are 

located on unstable slope stability class, 18% in the quasi-stable area, and 26.3% belong 

to the medium stable area. The rest, 12.7%, of landslides are located in the stable zone 

(Figures 7 & 8). The number of landslides matched with the model's medium and lower 

stability classes shows a high percentage, and the area classified as unstable covers 20% 

of the map and matched with 41% of landslides.  
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Figure 7. Result of the GIS-TISSA model. 
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Figure 8. FS values distribution for the GIS-TISSA model (dashed lines represent 

threshold values of 1.0,1.2, and 1.7, respectively). 

The relationship between FS values of landslide points and slope angle in the GIS-TISSA 

shows that FS can vary for different failures with the same slope angle (Figure 9). It can 

be explained that input parameters for this model are more flexible in calculations 

because it accounts for the standard deviation for each parameter like soil cohesion, 

internal friction, or unit weight. Also, the output result is the mean FS value of each pixel. 

We have three types of soils present in the modeled area in our situation, each type with 

different geotechnical parameters. Rock-falls (RF) are more frequent with slope angle 

increasing, and when slope angle reaches 40 degrees, only two shallow slides (SS) are 

observed. It supports the idea that soil thickness is related to the slope angle based on 

Eq.6. Debris Flows (DF) and RF are the main types of failure on weathered high inclined 

slopes. Some landslide point values are above the major point cloud and belong to the 
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area with other soil types with higher cohesion parameters, which lead to higher FS. 

(Figure 9). We observe that the slope angle near 25 degrees, the FS value of the 

landslides turns to the unstable class. For the quasi unstable class, it is a slope angle near 

20 degrees that might support previous studies of shallow landslides that stated that 

shallow landslides occur on slopes with angles >20 degrees. (Kuriakose et al., 2009).  

 

Figure 9. Relation between GIS-TISSA FS values and slope angle with threshold limits. 

 

For the Scoops3D model, only 16.2% of landslides belong to an unstable class. For the 

quasi-stable -15% of landslides fall in this class, and the medium stable zone - 31.3 % of 

landslides. Landslides that fall into a stable zone are 37.5% (Figures 10 & 11). An area 

covered by unstable class is 9%, and the coverage of quasi-stable class is 7%.  
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Figure 10. Result of the Scoops3D model. 
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Figure 11. FS values distribution for the Scoops3D model (dashed lines represent 

threshold values of 1.0, 1.2, and 1.7, respectively). 

The relationship between FS values for the Scoops3D model and slope angle shows that 

slope stability values vary within the same slope angle and that it does not have a strong 

influence on the FS calculation (Figure 12). For our modeling, the Scoops3D used 

homogeneous geotechnical parameters. However, the values of landslide volume as an 

input can change when the program generates trial surfaces and choosing the one with the 

lowest FS value. The threshold value FS<1 with the lowest slope angle is less than 20 

degrees. The average for the intersection of the threshold line and landslides cloud is near 

27 degrees.  
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Figure 12. Relation between the Scoops3D FS values and slope angle with threshold 

limits. 

Correlation between the two models shows that FS values for the Scoops3D are higher 

than for the GIS-TISSA for the same landslide points (Figure 13). It is expected because 

the GIS-TISSA model covers a larger area in the unstable class, while for the Scoops3D 

the same class covers a smaller area. Thus, many spatial points are changing class into 

more stable with higher FS values. Analyzing each type of failure separately, the RF for 

both models are located in unstable areas. The average slope angle for registered rock 

falls estimates 37 degrees, which is a reason for low stability values. Debris flow average 

slope angle is 26 degrees. Thus, FS values are distributed in all stability classes. Shallow 

landslides FS values spread in wide-angle range with an average slope angle of 23 

degrees. The mechanisms that trigger shallow landslide activation are more complex and 

can include human factors, heavy rainfalls, or soil saturation. 
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Landslides' location towards slope angle is close to normal distribution for each type of 

failure (Figure 14). Shallow landslides are located on slopes with lower inclination 

compared to debris flow and rockfalls. In total, 27% of landslides are located on slopes 

less than 20 degrees. Comparison of area for each type of failure shows that shallow 

landslides mostly cover areas near 100-10000 m2, with a mean of 1360 m2. While for 

debris flows, average area values area near 3000 m2 (Figure 15). 

Figure 13. Relation between GIS-TISSA and Scoops3D FS values for landslide point 
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Figure 14. Landslides density distribution on slope angles. 

 

Figure 15. Area of failures density 
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8 Model validation results 
Models validation results show that OA increases with an increasing threshold value 

(Table 5 & 6). For the GIS-TISSA, it rises from 0.621 for threshold 1.0 to 0.733 for 

threshold 1.7. The Scoops3D model has lower accuracy, OA= 0.54 for 1.0 threshold and 

rises to 0.629 for 1.7 thresholds. When the OA parameter shows percentage samples 

correctly classified, the precision shows the accuracy of predictions, and this parameter is 

above 0.65 for both models and all threshold values. The recall parameter estimates 

prediction accuracy according to predicted values. The OA itself cannot show the 

predictive performance of models. Thus, in model validation, precision and recall 

parameters were calculated separately for landslides (LS) and non-landslides (NLS) 

points.  

In the case of the GIS-TISSA model, we can see that the model has higher precision for 

LS and NLS points than the Scoop3D. Precision values for the GIS-TISSA are the 

highest for the threshold value of 1 and is 0.697, while for the Scoop3D, the highest 

result is when threshold 1.2 and is 0.689. Also, the recall parameter is higher for the GIS-

TISSA model for all threshold values. Based on validation results, for both models the 

FS=1.2 is an optimal threshold for the prediction of the two classes of LS and NLS points 

with moderate OA.  

Table 5. Models validation results for the GIS-TISSA model 

Threshold 
value/Model 

GIS-TISSA 
Recall LS Recall NLS Precision LS Precision 

NLS 
OA 

FS = 1 0.427 0.185 0.697 0.412 0.621 

FS = 1.2 0.599 0.312 0.657 0.367 0.644 

FS = 1.7 0.871 0.405 0.682 0.178 0.733 

 

Table 6. Models validation results for the Scoop3D model 

Threshold 
value/Model 

Scoop3D 
Recall LS Recall NLS Precision LS Precision 

NLS 
OA 

FS = 1 0.169 0.09 0.651 0.477 0.54 

FS = 1.2 0.314 0.141 0.689 0.444 0.586 

FS = 1.7 0.621 0.364 0.63 0.373 0.629 
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9 Discussion  
 

Despite great results, these models have several limitations that should be considered in 

further researches. One limitation is the hydrological conditions of the area. On large-

scale modeled areas, it is challenging to use proper input for hydrological parameters like 

the groundwater table level. There is a lack of hydrological data coverage, day-to-day 

data update, and proper interpolation due to the area's terrain.  

Landslides activation is related to monsoon seasons; thus, heavy rainfalls are the no less 

important trigger that cannot be counted in physical-based modeling by the GIS-TISSA 

and the Scoop3D models. In the future, these models can be combined with models that 

are focused on precipitation or can be used for small-scale modeling with accurate rain 

gauge data.  

Based on the results, 13% of failures are located in stable zones for the GIS-TISSA, and 

38% for the Scoop3D. Also, 27% of landslides happened on low inclined slopes. The 

main triggers might be a combination of the human factors, rainfalls amount, 

hydrological conditions, and other factors that should be referred to understand in next 

further investigations. In addition, landslides that happened in stable classified areas have 

uncertainties that our models cannot predict. Revising of threshold values of stability 

classes could show more accurate results in prediction and matching with a higher 

percentage of LS points. 
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Slope stability modeling based on 12.5 m DEM showed detailed results for the study 

area. However, DEM resolution improvement can be gained through geostatistical 

methods and applied on small-scaled areas with high landslide density  
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10 Conclusions 
In this work, the GIS-TISSA model was used for infinite slope stability analysis, and 

Scoops3D was applied to calculate three-dimensional slope stability estimation. DEM 

with resolution 12.5 m has been used for the first time for slope stability modeling in the 

study area. As one of the input parameters defining output resolution, it showed more 

detailed results for both models than previous studies based on SRTM data with a 30 m 

spatial resolution. Other input parameters of soil's geotechnical properties were chosen 

based on field observations of other authors and previous studies. For adequate 

comparison of models, the soil parameters were picked up the constant for the Scoop3D 

model (Table 2) and the same values for the GIS-TISSA with standard deviations (Table 

3). 

Comparing the GIS-TISSA and the Scoops3D models showed that the GIS-TISSA was 

more accurate in landslide slope stability analysis based on the existing database. The 

GIS-TISSA covered 87% of landslides spot within unstable to medium stable zones. 

While for the Scoops3D model, coverage is only 62%.  

The OA of models increases with increasing a threshold value. The GIS-TISSA shows 

better prediction results of all types of landslides. The threshold value FS=1.2 shows a 

satisfactory prediction of LS and NLS for both models.  

Analysis of slope angle towards FS values shows that GIS-TISSA landslide point falls 

into unstable class when slope inclination is more than 20 degrees. This supports previous 

studies' conclusions; however, 27% of failures happened in areas with lower slope 
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inclination. According to remote sensing observations of the landslide locations, these 

failures mainly occur in cultivated lands or near the roads due to human interventions.  

Comparing the GIS-TISSA and Scoops3D model indicates that the GIS-TISSA is more 

applicable for regional-scale landslide susceptibility mapping when multiple landslides 

types exist within the study area.  
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