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Preface

Popular Jewish folklore about the fifteenth century Rabbi Loew is of the Golem of

Prague. The Rabbi created Golem out of clay, like modern computers with Silicon,

at its core and gave life to it by writing emet (meaning Truth) on the forehead of

the clay being. To the amazement of the Rabbi, the Golem was extremely powerful

but could only distinguish between Truth and False statements like the modern-day

computers. According to folklore, the apathetic creature turned malevolent due to

the ambiguity in its orders.

This dissertation is about a few Golems (read Models) to explore atmospheric pro-

cesses in the context of the cloud chamber. The Michigan Tech cloud chamber is a

unique experimental facility to produce and sustain clouds for extended periods. This

facility can study the behavior of cloud particles in a moist turbulent environment.

The scaling and modification of System for Atmospheric Modeling (SAM) to simulate

the cloud chamber, discussed in Chapter 3, occurred first chronologically. With an

experimentally validated model, we looked into the processes in the cloud chamber,

which yielded two significant results discussed in Chapter 4 and Chapter 5.

We created a second Golem to answer the question, Can we predict the behavior of

the cloud system in the cloud chamber if we knew the boundary conditions? The

xxiii



isolation provided by COVID 19 during the Summer of 2020 provided an excellent

opportunity to answer this question. A simple mean-field model for the cloud chamber

was developed jointly with my advisor Dr. Raymond Shaw. The analytical model

and a coupled ODE solver provided a perfect sandbox to play with and understand

the effect of various parameters of the cloud system. Currently, the model accounts

only for the condensation effects but can be non-trivially expanded to include collision

coalescence effects.

In the final chapter, we acknowledge the limitations and envision the future directions

to create new and better Golems.
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Abstract

Understanding atmospheric clouds is essential for human progress, ranging from short-

term effects such as when and how much it rains to long-term effects such as how

much temperatures would rise due to global climate change. Clouds vary globally

and seasonally; also they have length scales ranging from a few nanometers to a

few kilometers and timescales from a few nanoseconds to a few weeks. Knowledge

gaps in aerosol-cloud-turbulence interactions and a lack of sufficient resolution in ob-

servations pose a challenge in understanding cloud systems. Experimental facilities

like the Michigan Tech Cloud Chamber can provide a suitable platform for study-

ing aerosol-cloud interactions in the presence of turbulence without any feedback

processes, within a steady state environment. In the current thesis, we modify an at-

mospheric model to simulate the Michigan Tech Cloud Chamber and validate against

the turbulence measured from the experiments. The modified atmospheric model is

used to gain insights into the cloud chamber processes, and to predict and interpret

the experimental results. This model is used to validate theoretical results, such as

the presence of a constant microphysics independent heat flux. Further, the model

results helps us to identify the non-Gaussian nature of supersaturation during iso-

baric mixing processes. Finally, this model serves as the first-order approximation

for insights into the physics governing the cloud-turbulence interactions for a larger

cloud chamber.

xxv





Chapter 1

Introduction

“A journey of a thousand miles begins with a single step”

- Lao Tzu

The story of human civilization is intertwined with the story of water[4, 5]. Civiliza-

tions have risen and fallen owing to changes in rain patterns[6, 7]. Droughts and floods

have been sources of disputes between nation - states, internal conflicts, human mi-

gration, affecting both the economy and internal stability of the nations[8, 9, 10, 11].

Attempts to avert such crises by pleasing the rain gods across human history have

panned from dances[12], songs[13] to cloud seeding[14]. Hence understanding when,

where, and how much it would rain requires an understanding of the cloud systems

and why it rains.

1



Clouds and the associated microphysical phenomena range from a few nanometers to

a few tens of kilometers and spatially from a few microseconds to a few weeks[15, 16].

The number, type, origin, and history of the nanoscale aerosol affect the macroscopic

cloud properties[17, 18]. Therefore, clouds form a complex system with multiple

interacting scales. Hence the studies of atmospheric clouds without proper charac-

terization of both small-scale and large-scale processes leaves significant gaps in the

understanding of weather[16, 19]. The field campaigns, ground observations, satellite

observations, and numerical simulations constitute independent efforts to observe,

analyze and synergistically improve the understanding of the weather system[20].

Decoupling the individual processes - in the context of this thesis, the cloud micro-

physical processes - poses significant challenges because of the complexities mentioned

above. Thus laboratory experiments prove to be of importance in decoupling the

feedbacks and identifying the primary interactions. These experiments can serve as

a testbed to evaluate the reliability and fidelity of the numerical simulations. The

current thesis describes a rigorous attempt to understand the physical phenomena

occurring in an experimental setup using numerical simulations.
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1.1 Michigan Tech Cloud Chamber

The Michigan Tech cloud chamber is a modern–day experimental setup to study

turbulence - aerosol - cloud interactions in a controlled environment[21]. The fluid

flow in the chamber is initialized and sustained by an unstable temperature gradient

between the cold top and warm bottom surface. The supersaturation is thus pro-

duced by mixing process as discussed in Chapter 3. To the turbulent supersaturated

environment, the aerosols are injected to form cloud particles.

The experimental studies in the Pi cloud chamber were instrumental in identifying

the role of turbulence in the activation of aerosols [22], associated activation regimes

[23], growth of activated droplets in warm cloud conditions[24], cloud collapse[25]

and glaciation in mixed phase clouds[26]. Further, it has provided valuable insights

into the effect of cloud processing of aerosols[18], effect of variability of cloud droplet

number[27], secondary ice particle production [28], cloud optical processes[29] and

light scattering due to spatial correlations [30, 31].

The studies mentioned above represent the first–order experiments possible with the

cloud chamber. In order to conduct higher–order experiments using the cloud cham-

ber, we need to develop a deeper understanding of the processes in the chamber.

A deeper understanding would require a three-dimensional picture of the processes
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in the cloud chamber. The numerical simulations can provide a more refined de-

scription of the cloud chamber without any intrusive measurements. A finely tuned

numerical simulation can provide details of the local processes leading to large–scale

self-organization. Further, a model can provide insights, predictions, and directions

and narrow the parameter space for experiments.

In this thesis, Chapter 2 discusses the understanding of the fundamental physical

processes in the cloud chamber. Modification of an atmospheric model to simulate

the fluid dynamics and microphysics inside the cloud chamber and validation with

experiments are illustrated in Chapter 3. The non–dimensional numbers relevant

for the RBC processes and microphysics of the cloud droplets formed in the cloud

chamber are identified, and existence of a constant flux is demonstrated in Chapter

4. In Chapter 5, we demonstrate the non–Gaussian nature of supersaturation as

a result of mixing processes. The preliminary results based on the dynamics and

microphysics comparing the current chamber to a hypothetical chamber of larger size

is presented in Chapter 6. Finally, the thesis concludes in Chapter 7 by acknowledging

the limitations of the model and envisioning the path forward.
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Chapter 2

Cloud Chamber Processes

“Standing on the shoulders of giants.”

- Issac Newton

The Michigan Tech cloud chamber is an experimental setup sitting at the juncture

of two well developed branches of physics - Rayleigh–Bénard Convection and Cloud

Microphysics, with long histories and their own unique challenges. The cumulative

research spanning a few centuries in each of the fields has produced massive literature

from experiments, observations and simulations. Hence we use the widely accepted

results from each of these fields to generate a first picture of the cloud chamber.
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2.1 Dynamics : Rayleigh–Bénard Convection

(RBC)

Rayleigh-Bénard system is an extensively studied fluid dynamics problem, with a rich

history and exciting developments[32, 33]. We can gain a first understanding of the

flow dynamics and thermodynamics from the well-known results in Rayleigh-Bénard

convection systems. A dry Rayleigh-Bénard convection system consists of a warm

bottom surface (at Tb) and a cold top surface (at Tt), with convection ensuing due

to the unstable density gradient along the direction of gravity. In the Pi Chamber,

we have both top and bottom surface wetted, and hence at steady-state conditions,

these surfaces remain saturated. For Rayleigh–Bénard Convection (RBC) in a box

identical to the MTU Pi Chamber, the characteristic length scale is the height of the

chamber (H).

For a dry RBC system with temperature difference of ∆T between top and bottom

is characterized by four non–dimensional numbers :

1. Aspect Ratio (Γ = L/H)

2. Prandtl Number (Pr = ν/νT )

3. Rayleigh Number (Ra = gβ∆TH3/ννT )
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4. Nusselt Number (Nu)

Here ν is the momentum diffusivity, νT is the thermal diffusivity, g is the acceleration

due to gravity and β is the thermal expansion coefficient. The aspect ratio is the

non–dimensionalized horizontal length scale,L. Prandtl number compares the dissi-

pation of the momentum to that of thermal energy. Rayleigh number quantifies the

competition of the motion (
√
gHβ∆T ) of fluid parcel due to buoyancy against drag

and diffusion. Finally, Nusselt number is a measure of the efficiency of heat transfer

by convection compared to the conductive heat transfer.

2.1.1 Convection Velocity

For a dry Rayleigh–Bénard convection system, the air-parcel free fall velocity scale is

accepted as the characteristic velocity scale [33]. This free fall velocity scale is given

by

w =
√
g H β∆T

w ∝
√
H ∆T .

(2.1)
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Another candidate for a characteristic velocity is the convective velocity scale intro-

duced by Deardorff [34] given by

w∗ =
( g
T
ziwT0

)1/3

. (2.2)

For the scenario of RBC, zi = H and wT0 is the kinematic heat flux near the surface.

It should be noted that wT0 is independent of H, therefore the convective velocity

scale has H dependence as,

w∗ ∝ H1/3. (2.3)

2.1.2 Time Scales

The characteristic timescale depends on the choice of velocity scale. For free fall

velocity scale,

t ∝ H1/2∆T−1/2. (2.4)

For the Deardorff/convective velocity scale,

t ∝ H2/3. (2.5)

Unlike the Deardorff velocity scale depending on the heat flux, free–fall velocity scale

depends on the imposed boundary conditions and the height of the chamber.
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2.1.3 Mean Temperature and Water Vapor

In the bulk (volume far away from the boundaries) of the chamber, the mean tem-

perature and mean water vapor mixing ratio are given by

T̄ =
ρb Tb + ρt Tt
ρb + ρt

. (2.6)

Similarly,

Q̄ =
ρbQsat(Tb) + ρtQsat(Tt)

ρb + ρt
. (2.7)

Here ρt is the density of the fluid at the top of the chamber and ρb is the density of

the fluid at the bottom of the chamber. In equations 2.6 and 2.7, we ignore the effects

of the sidewalls. The effect of sidewalls is discussed in detail in Chapter 3. Thus the

mean for any passive scalar can be written as,

Ψ̄ =
ρb Ψb + ρt Ψt

ρb + ρt
. (2.8)
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2.1.4 Temperature and Water Vapor Fluctuation

According to the experimental observations by Niemela et al.[35] temperature fluctu-

ations for a single phase Rayleigh-Bénard convection system is given by

T ′

∆T
∝ Ra−1/7. (2.9)

Thus temperature fluctuations would scale as,

T ′ ∝ H−3/7 × ∆T. (2.10)

The temperature and water-vapor mixing ratio transport differ only by differential

diffusivity, and these effects are significant compared to the advection transport only

close to the boundary. Hence, in bulk, we assume a similar behavior for the water

vapor mixing ratio.

Q′v
∆Qv

∝ Ra−1/7. (2.11)

Identical to Eq. 2.10, we have

Q′v ∝ H−3/7 × ∆Qv. (2.12)
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In Niemela et al.[35], the proportionality constant which fits the experimental data

is 0.37. The proportionality constant for temperature and water vapor mixing ratio

might be different.

An implication of Eq.s 2.10 and 2.12 is that as the height of the chamber increases,

both temperature and water vapor fluctuations decrease. Similarly, as the temper-

ature difference and water vapor difference between the top and bottom surface de-

crease, the corresponding fluctuations decrease. For identical gradients the fluctu-

ations scale as H4/7. For Rayleigh-Bénard systems, it has been shown by Niemela

et al. [33, 35], that the scalar fluctuations are Gaussian in nature, therefore the the

temperature variance is of the form

T ′2 ∝ H−6/7 × ∆T 2 (2.13)

and consequent water vapor variance is given by,

Q′2v ∝ H−6/7 × ∆Q2
v. (2.14)

Kulmala [36] derived an expression for supersaturation variance given by

S ′2 ∝ S
2

(
Q′2v

Qv
2 −

2Lw

RvT

Q′v T
′

Qv T
+

(
L

RvT

)2
T ′2

T
2

)
. (2.15)
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Assuming the co-variance of water vapor and temperature, Q′v T
′, scales identical to

the variance of temperature. From Eq. 2.13 and 2.14, the supersaturation fluctuation

variance can be shown to have a height dependence as

S ′2 ∝ H−6/7. (2.16)

Therefore as the height increases, for the same temperature and water vapor differ-

ence, the supersaturation fluctuations decrease with height.

2.1.5 Rayleigh Number

Rayleigh number scales with H and ∆T as [33]

Ra =
g β H3 ∆T

ν α

Ra ∝ H3∆T.

(2.17)

2.1.6 Nusselt Number

Nusselt number is the ratio of the heat transferred non–dimensionalized by the heat

transfer in the absence of any flow. For a moist convection system, the Nusselt number
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is given by

Nuµ =
w′T ′ + L

Cp
w′Q′v − α∇zT − L

Cp
νv∇zQv

α ∆T
H

+ νv
L
Cp

∆Qv

H

. (2.18)

In a dry convective system for Rayleigh number ranges of our interest, it has been

experimentally and numerically demonstrated that [35, 37]

Nu ∝ Ra1/3 ,therefore

Nu ∝ H∆T 1/3.

(2.19)

From Eq. 2.19, it can be demonstrated that the heat flux is independent of the

height of the chamber, but dictated by the temperature and water vapor boundary

conditions at the top and bottom boundary conditions. The derivation of Eq. 2.18

and the physical implications are discussed in detail in Chapter 4.

2.2 Microphysics

The cloud microphysics problem of finding the number of cloud droplets and their

mean droplet sizes can be studied in idealized conditions, of a constant mean super-

saturation. We can establish the following steady-state microphysics balances for the

cloud chamber :

1. Assuming all the injected aerosols are activated, in every time step the number
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of droplets activated should be equal to the number of droplets removed via

precipitation.

2. The mass of total water vapor condensed should be equal to the total liquid

water mass removed via precipitation.

Assuming the cloud droplets settle via Stokes’ settling velocity, these balances would

establish the number concentration of the cloud droplets, n and the mean radius r.

The equations are

∂n

∂t
= ṅin −

n

τres
(2.20)

∂ql
∂t

= q̇l −
ql
τres

. (2.21)

Here, n is the number of cloud droplets, ṅin is the injected cloud droplets, τres = H/Vt

is the droplet residence time, Vt = k1r
2 is the terminal velocity, k1 is the Stokes’

velocity constant and ql is the liquid water mixing ratio. Finally

q̇l = n ρl 2πrdr
2/dt

and the droplet growth equation[38] is

dr2/dt = 2Gs.
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Here r is any droplet radius, and G is the parameter accounting for diffusion of water

vapor and the effect of latent heat due to condensation. To determine the in-cloud

supersaturation s,

ds

dt
=
s0 − s

τt
− s

τc
.

Here s0 is the steady state supersaturation produced by mixing processes in the

absence of the cloud droplet, τt is the supersaturation replenishment time-scale, τc(=

(4πnrD′)−1) is the phase relaxation time-scale and D′ is the modified diffusivity for

droplet growth[39].

For steady state, the number concentration of cloud droplets is

n = ṅin
H

k1 r2
. (2.22)

and radius r is the positive real solution of the quartic equation given by,

r4 +

(
4πD′Hṅinτt

k1

)
r3 − 3GHs0

k1

= 0. (2.23)

In this approach, the steady state mean supersaturation is

s = s0 (1 + 4π nD′ rτt)
−1
. (2.24)
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Figure 2.1, illustrates the solutions of equations 2.22,2.23 and 2.24 for a convection

chamber of H = 1m, operating at a mean temperature before condensation of T =

284.16K and ∆T = 20K. In panel 3, the maximum mean radius achieved by droplets

plateaus when the cloud droplet lifetime is bounded by height of the chamber and

the Stokes’ settling velocity. We also notice the supersaturation also following an

analogous behavior in the panel 1 of the figure. However as the number of activated

cloud droplets increases, both supersaturation and the mean cloud droplet radius

starts decreasing. Finally, we notice as the number of activated droplets increase, the

liquid water content increases monotonically.

Figure 2.1: The steady state supersaturation, cloud droplet number con-
centration, mean droplet radius and liquid water content are plotted against
aerosol injection rate ṅin. The parameters τt = 10 s and s0 =21.32% are
held constant. As the injection rate is increased, the cloud droplet num-
ber concentration increases, consequently, mean supersaturation and mean
radius of cloud droplets decrease.
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The same solution can be achieved by simultaneously solving,

∂T

∂t
=

T0 − T

τt
+
L

cp
q̇l (2.25)

∂qv
∂t

=
qv0 − qv

τt
− q̇l. (2.26)

(2.27)

in addition to Eq. 2.20 and 2.21. Here T0 and qv0 are the mean temperature and

water vapor before droplets are injected. The latter method can be used to predict

transient problems.

Figure 2.2 shows time series of supersaturation, liquid water content, droplet number

concentration and droplet mean diameter. The system is initialized at the steady

conditions that exist in the chamber when no aerosol particles are present, i.e., super-

saturation of approximately 20%, corresponding to a mean temperature of 284.16K

and ∆T = 20K. Aerosol injection starts at t = 0 and the system is observed to reach

steady state within approximately 10 s, and the observed values of s, ql, n and d

match to the values given by the analytical steady state model (shown as red dashed

lines). At t = 60 s the aerosol injection is switched off and the liquid water content

and droplet number concentration drop off, the supersaturation relaxes back to the

no-cloud steady state, and the diameter of remaining cloud droplets grows to to the

maximum size predicted by the steady state analytical theory described above (green

dotted line).
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Figure 2.2: Comparison of the ODE solutions (blue) with analytical so-
lution (red dashed line). a) Supersaturation , b) liquid water content, c)
number concentration and d) radius are compared. The system is initial-
ized at the steady-state conditions that exist in the chamber with no cloud
droplets present and with aerosol injection starting at t = 0 s. At t = 60
s the injection is turned off and the cloud collapses. During the cloud col-
lapse, the mean supersaturation increases and the droplet diameter increases
consequently droplet removal flux increases. The maximum droplet size ob-
tained analytically (green dotted line) is reached as the droplet concentration
becomes very small.

2.3 Modeling of cloud chamber

Finally, in this section of the current chapter, we intend to examine the cloud chamber

in the context of analytical models[40] and numerical models[2, 41, 42].
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2.3.1 Analytical Models

The mechanisms leading to the steady-state cloud droplet size distribution experi-

mental observations[43] in the cloud chamber are discussed in Chandrakar et al. [40].

Combinations of assumptions about the nature of supersaturation and the droplet life

timescales are considered to be the necessary mechanisms. The different combinations

discussed are

1. Constant mean supersaturation without turbulent fluctuations of supersatura-

tion and Stokes’ removal of droplets[44].

2. Zero mean supersaturation with turbulent fluctuations of supersaturation and

Stokes’ removal of droplets[29].

3. Zero mean supersaturation with turbulent fluctuations of supersaturation and

constant droplet lifetime[2].

The authors also compare the observations against the droplet size distributions pre-

dicted by the maximum entropy principle[45]. Based on the hypothesis testing, the

authors conclude that the model with zero mean supersaturation with turbulent fluc-

tuations of supersaturation and droplet removal by Stokes’ settling agrees the most

with the experiments.
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Assuming, condensational droplet growth only due to constant mean supersaturation

and droplet removal via Stokes’ settling, Krueger[44] derived an expression for the

distribution of droplet lifetimes in the cloud chamber. The variation in the size

of the droplets was a result of the different lifetimes of the droplet. This method

can evaluate the in-cloud mean supersaturation in the experiments from the mean

number concentration and the mean radius of the cloud droplet distribution. Thus,

the model is an excellent diagnostic tool with limited predictive capability. The model

also assumes the droplets to be well mixed in the chamber. However, the droplets

tend to size-sort themselves in the larger sizes once they exceed the updraft velocities.

The models described above assumes droplet number concentration and droplet size

distribution are driven by mean supersaturation. The mean and fluctuations of su-

persaturation are also affected by the cloud droplet number concentration and droplet

sizes. The latter interaction are not accounted for in both Chandrakar et al. [40] and

Krueger [44].

2.3.2 Numerical Models

The cloud chamber proved to be an excellent facility to test the reliability and fidelity

of numerical simulations[46]. Hence, numerical modeling of the Pi Cloud Chamber is
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included as one of the six workshop cases at the International Cloud Modeling Work-

shop (ICMW) 2020/2021 [41, 47]. Despite the wide attention, only three numerical

studies based on the Pi cloud chamber have been published at the time of writing.

1. System for Atmospheric Modeling (SAM) with spectral bin microphysics [41].

2. Direct Numerical Simulations based on an idealized central region of the Pi

Chamber [2].

3. Baby EULAG with bin and Lagrangian cloud microphysics [42].

The first attempt to model the cloud chamber in its entirety is discussed in Chapter

3 of the current thesis.

In the direct numerical simulation of the Pi chamber by Saito et al. [2], the cen-

tral region of the cloud chamber was modeled, assuming it to be isotropic. The

study intended to numerically simulate the experimental observations at the Pi cloud

chamber[24]. The domain under consideration is 1.024 meters, with velocity and

temperature fields forced independently. The droplets modeled as point particles are

removed at a timescale of 580 seconds to match the Stokes’ settling based interpreta-

tions of experimental observations from the cloud chamber. An analytical expression

for the size distribution is derived, and the numerical solutions match Saito et al..

Chapter 3 demonstrates that the sidewall fluxes are significant and cannot be ig-

nored. Secondly, the temperature and water vapor fluctuations need to be correlated
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in RBC, and hence the supersaturation probability distribution need not be Gaussian.

The importance of water vapor-temperature correlation on supersaturation PDF is

discussed in great detail in Chapter 7.

The third study uses the cloud chamber[42] as a testbed to compare bin microphysics,

and Lagrangian cloud microphysics. In that study, the droplet size distribution pre-

dicted by the bin and Lagrangian cloud model is similar. The author concludes that

bin microphysics has less diffusion since the bins are finely spaced, and the absence

of numerical diffusion is due to vertical advection. Though, Lagrangian model could

have provided more information on activation and deactivation of aerosols, using

Twomey activation negates any such advantages.

From the initial discussions of the Pi chamber case at ICMW [47] - it would be worth

discussing some of the models under development. The two significant paths are

Large Eddy Simulations (LES) combined with Lagrangian Cloud Models and Direct

Numerical Simulations (DNS) with point particles. The models are

1. System for Atmospheric Modeling[48] with LCM [49].

2. CM1[50] with LCM [51].

3. DNS with point particles [52].

4. One dimensional turbulence with embedded microphysics.
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In the DNS with point particles, the periodic boundary conditions are implemented at

the lateral surfaces. The mean supersaturation is attained by adjusting the saturation

ratio at the bottom surface instead of side walls as in [41]. As mentioned earlier, the

sidewalls which have a more considerable influence are not modeled in the study.
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Chapter 3

Scaling of an atmospheric model to

simulate turbulence and cloud

microphysics in the Pi Chamber

“Thirty years ago, we used to ask: Can a computer simulate all pro-

cesses of logic? The answer was yes, but the question was surely wrong.

We should have asked: Can logic simulate all sequences of cause and ef-

fect? And the answer would have been no.”

- Gregory Bateson

This chapter is about the scaling of an atmospheric model to simulate the Michigan
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Tech Pi Chamber. It is based on a collaborative research published in the Journal of

Advances in Modeling of the Earth Systems[41]1.

Abstract

The Pi Cloud Chamber offers a unique opportunity to study aerosol–cloud micro-

physics interactions in a steady-state, turbulent environment. In this work, an atmo-

spheric large eddy simulation (LES) model with spectral bin microphysics is scaled

down to simulate these interactions, allowing comparison with experimental results.

A simple scalar flux budget model is developed and used to explore the effect of side-

walls on the bulk mixing temperature, water vapor mixing ratio, and supersaturation.

The scaled simulation and the simple scalar flux budget model produce comparable

bulk mixing scalar values. The LES dynamics results are compared with particle

image velocimetry measurements of turbulent kinetic energy, energy dissipation rates

and large scale oscillation frequencies from the cloud chamber. These simulated re-

sults match quantitatively to experimental results. Finally, with the bin microphysics

included the LES is able to simulate steady-state cloud conditions and broadening

of the cloud droplet size distributions with decreasing droplet number concentration,

as observed in the experiments. The results further suggest that collision-coalescence

does not contribute significantly to this broadening. This study opens a path for

1An edited version of the paper is published by AGU
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further detailed inter-comparison of laboratory and simulation results for model val-

idation and exploration of specific physical processes.

3.1 Introduction

Large-eddy simulation (LES) has been used for studies of clouds since the 1970s and

80s [53, 54], with the sophistication of cloud microphysics representation progressing

steadily [e.g., 55, 56, 57]. LES has since been used in studying a wide range of cloud

problems: from aerosol indirect effects [58], to deep tropical convection [59], to Arctic

mixed-phase clouds [60]. Validation has typically been accomplished through model

intercomparisons [e.g., 60, 61] and carefully-designed field projects [e.g., 62, 63, 64].

For detailed cloud studies, aerosols and clouds represented through ‘bin microphysics’

[e.g., 65] are often considered the gold standard, but recently it has been recognized

that numerical artifacts can become dominant [66]. This surprising result emphasizes

yet again the critical importance of rigorous model evaluation against the best possible

measurements [67].

The purpose of this paper is to explore the ability of a widely-used large-eddy simu-

lation model with detailed (spectral bin) cloud microphysics, to capture the observed
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behavior of convection and cloud properties in a laboratory convective-cloud cham-

ber. The Pi Cloud Chamber [21] generates clouds through isobaric mixing in tur-

bulent Rayleigh-Bénard convection. Because aerosol input and thermodynamic forc-

ing are independently and externally controlled, Pi Cloud Chamber offers a unique

opportunity to explore turbulence–microphysics interactions [24, 25, 27]. Besides

the well-characterized boundary and input conditions, turbulence and microphysical

properties can be sustained in a dynamic steady state, with aerosol injection and

cloud droplet activation balanced by droplet growth and sedimentation. This facili-

tates comparison to the LES cloud model and provides an opportunity to evaluate its

ability to simulate the observed dynamics and microphysical processes in the cloud

chamber. The interaction is two-way, because the model can also be powerful in

helping to interpret measurements and providing guidance for future experiments.

The idealized Rayleigh-Bénard theory does not include sidewalls; following convention

in the fluid mechanics literature [33], however, we will continue to refer to turbulent

convection in an enclosed chamber as Rayleigh-Bénard convection. The Pi cloud

chamber, if constructed according to the typical confined Rayleigh Bénard model,

would have unstable temperature gradient along the direction of gravity and adia-

batic sidewalls. Construction of an insulated sidewall, that is adiabatic in nature for

the scalars, temperature and water vapor, poses an insurmountable engineering chal-

lenge. Hence by having actively temperature controlled sidewalls, and maintaining

the sidewalls at the mean temperature between top and bottom - the sidewalls are
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approximately adiabatic for the temperature, assuming a well-mixed fluid. For the

water vapor field, the well-mixed fluid value is greater than the saturated value at

the wall temperature; therefore, the zero-flux condition for water vapor cannot be

achieved. Hence, to model the cloud chamber using traditional DNS or LES, with pe-

riodic lateral boundaries, appropriate scalar fluxes have to be provided. An approach

to the budgeting of scalar fluxes for the Pi chamber is provided in the Section 3.3.1.

The Pi Cloud Chamber, in its box configuration used in the studies of Chang et al.,

Chandrakar et al., and Desai et al., [21, 24, 27], has dimensions 2 m × 2 m × 1 m,

and generates turbulence by maintaining an unstable temperature gradient along the

direction of gravity. To generate supersaturation inside the cloud chamber, the cold

top and hot bottom surfaces are maintained at water saturation. On reaching the

turbulent steady state, aerosol particles are introduced into the chamber, and can act

as cloud condensation nuclei (CCN) when exposed to sufficient supersaturation to

form cloud droplets. A variety of instruments exist for measurement of temperature,

water vapor mixing ratio, turbulence, aerosols, and cloud droplet size distributions

[21, 27].

The cloud chamber conditions in a typical experiment are accessible to a variety of

computational approaches. On the high-fidelity side is direct numerical simulation

(DNS) of the turbulent convection, with Lagrangian treatment of cloud droplets [e.g.,

68, 69]. While this approach is being explored by several groups, it results in large
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computational overhead both in terms of machine resources and time. We take the

more computationally efficient approach of LES for two reasons: 1) it is agile, in the

sense that it allows us to explore a variety of experimental configurations with relative

computational ease; 2) it is widely used in the cloud physics community, and therefore

it is of value to make direct comparison to highly-constrained and well-characterized

experiments. LES allows us to comprehensively explore the turbulence and micro-

physics throughout the volume of the cloud chamber, with relatively few assumptions

or approximations imposed in obtaining boundary fluxes. In the cloud chamber, the

Kolmogorov length scale is of the order of 1 mm and the droplet diameters are in

the range 1 − 50 µm. Here we explore the possibility of studying the cloud droplet

condensation growth in a turbulent environment using LES with a spatial resolution

of ≈ 3 cm, coupled with spectral bin microphysics.

The paper is organized as follows: In Sec. 3.2 we describe both the dynamics and

microphysics of the LES model, including modifications to dynamics and boundary

conditions made to emulate the cloud chamber. Section 3.3 presents the results of the

study: first, we present a scalar flux budget model for calculating mean thermody-

namic properties in the cloud chamber, and predicted supersaturations are explored

for a range of chamber boundary conditions; second the supersaturations predicted

by the flux budget model are compared to the simulated mean properties in the

LES; third, LES turbulence and flow properties are compared to known properties of
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Rayleigh-Bénard convection and to measurements made with particle image velocime-

try; fourth, we explore the ability of LES and bin microphysics to capture various,

previously-published observations from the cloud chamber. Finally, the paper con-

cludes with a summary and suggestions for next steps.

3.2 Description of the large-eddy simulation and

cloud microphysics model

For the LES model in this study, we use the System for Atmospheric Modeling [SAM]

[70], which solves the equations of motion with the anelastic approximation and a 1.5

order closure based on turbulent kinetic energy for the subgrid-scales. These equa-

tions of motion are integrated using a third order Adams-Bashforth scheme, on a

fully staggered Arakawa C-type grid with uniform horizontal and vertical grid sizes.

The prognostic scalars are advected using a multidimensional positive definite advec-

tion transport algorithm [71]. Monin-Obukhov similarity theory is used to simulate

surface fluxes. In standard atmospheric applications, SAM is configured to have pe-

riodic lateral boundaries and a rigid lid at the top of the domain, with Newtonian

damping applied to all prognostic variables in the upper third of the model domain

to reduce gravity wave reflection. For the Pi chamber, in addition to the bottom wall,

which plays a role analogous to land surface, the top wall and lateral sides can also
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impose momentum and scalar fluxes. Hence, in this study, the Monin-Obukhov sim-

ilarity theory is also applied at these boundaries to compute appropriate fluxes. The

magnitude of the momentum fluxes is adjusted to match observed dynamical con-

ditions in the Pi-chamber by scaling a prescribed Monin-Obukhov roughness length

parameter. The mean horizontal velocity close to the top and the bottom plates is

zero, hence the application of constant flux Monin - Obukhov similarity theory would

yield zero flux. Therefore, the Monin-Obukhov theory is applied to individual grid

boxes. Fluxes from Monin - Obukhov similarity theory were compared to and found

to match those from the temperature wall function model based on Rayleigh number

scaling developed by Mcdermott et al. [72]. Furthermore, the turbulence properties

thus obtained match the experimental measurements in Section 3.3.3. The top and

bottom walls have saturated water-vapor conditions at their respective temperatures,

and the sidewall boundary condition is chosen to mimic the condensation processes

observed during the cloud chamber experiment (further details are given in Sections

3.3.1 and 3.3.2). Temperatures of the top, side, and bottom walls are all fixed.

Aerosol-cloud interactions in SAM are simulated by a spectral bin microphysics [SBM]

model described in Khain et al.[73] and Fan et al.[74]. The SBM model involves

aerosols and seven hydrometeors: water droplets, ice crystals (columnar, plate like

and dendrites), snowflakes, graupel, and hail, with size distributions represented in

33 mass-doubling bins. The model accounts for relevant microphysical processes and

interactions, such as activation of cloud droplets, diffusion growth or evaporation of
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droplets, drop collisions, turbulence effects on collisions, and collisional breakup.The

presented study focuses only on warm conditions and liquid clouds and, therefore, ice

microphysics is not considered in the presented simulations.

The Pi chamber simulations presented here use a 64× 64× 32 grid with grid spacing

of 3.125 cm to simulate the 2 m × 2 m × 1 m box, for a physical time of 2 hours

simulated with a 0.02 second time step. The grid spacing is at least 30 times the

Kolmogorov length scale, hence the eddy cut off for current simulations lies in the

inertial range according to Yaglom and Monin[75]. The time step is chosen to sat-

isfy the CFL criteria. At these scales it is also possible to use under-resolved DNS

with numerical diffusion playing the role of molecular diffusivity, without a subgrid

scale model [76]. The energy of the system can also be dissipated via numerical dis-

sipation instead of parameterized subgrid scale (SGS) dissipation, as in the implicit

LES studies conducted by Pedersen et al.[77] and Pressel et al.[78]. However, we

opted for traditional LES with SGS for scalability of the model in future. The system

is initialized with a linear (unstable) temperature profile and a linear water vapor

mixing ratio profile between the top and bottom walls. All velocity components are

initialized to zero. The system is then allowed to spin-up to a steady state, character-

ized by a stable mean for turbulent kinetic energy, sub-grid scale dissipation, relative

humidity, bulk mean temperature and bulk water vapor mixing ratio. Even though

relative humidity exceeds 100% in part of the domain, no condensation occurs during

the spin-up period, because initially no CCN are present. On reaching steady state,
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after 20 minutes of physical time, a CCN source is turned on and aerosol particles

begin to be continuously added to a single grid point inside the domain, mimicking

aerosol injection in the real chamber. The CCN spectrum is assumed to be monodis-

perse, having a mean diameter of 62.5 nm, also a typical condition in Pi Chamber

experiments. The CCN, on activation grow into cloud droplets and in the presence of

supersaturation, the cloud droplets grow in size and are removed by settling process.

Thus, the removal mechanism for CCN is activation and for the cloud droplets is

gravitational settling.

3.3 Results

3.3.1 Scalar flux budget model for the Pi Chamber

We begin by introducing a flux budget model for estimating the mean supersaturation

in the Pi Chamber. The model is first explored in order to understand the role of terms

that are not typical in atmospheric modeling, such as the influence of sidewall heat

and water vapor fluxes. Absolute measurement of supersaturation is challenging, and

therefore we rely on these fundamental calculations to aid in the evaluation of LES

results for supersaturation. The comparison of the flux budget model calculations to

LES results is presented in Sec. 3.3.2.
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The conservation law for a scalar Ψ in a volume V0, is given by

∂

∂t

∫
V0

ΨdV =

∮
S0

FdS, (3.1)

where F is the scalar flux through the bounding surface S0. Introducing the volume-

mean value Ψ̄ and breaking S0 into bottom, top, and side walls with areas Ab, At and

As, respectively, we get

∂

∂t
Ψ̄V0 = FbAb + FtAt + FsAs (3.2)

Assuming the fluxes are driven by difference between the value of the scalar at the

wall and the mean value inside the volume, i.e., Fb/t/s ∝ (Ψb/t/s− Ψ̄). Assuming the

turbulent diffusivities for all walls to be identical Eq. 3.2 can be solved for the steady

state condition, yielding

Ψ̄ =
Ψb + Ψt + ÂΨs

2 + Â
. (3.3)

Here, we have exploited the fact that for a configuration with vertical side walls and

parallel top and bottom planes, At = Ab, and introduced an area ratio, Â = As/Ab.

Equation 3.3 implies that the effect of the sidewall is scaled by the area ratio, which
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in case of the Pi chamber is Â = 2. We also note that for a limiting case of infinite

top and bottom plates, the sidewall effects disappears because Â = 0 and we have

Ψ̄ =
Ψb + Ψt

2
. (3.4)

The same Ψ̄ can be achieved by maintaining the sidewall value of the scalar at

Ψs =
Ψb + Ψt

2
. (3.5)

The volume mean temperature and water vapor mixing ratio in the chamber calcu-

lated from Eq. 3.3 are given by

T̄ =
Tb + Tt + Â Ts

2 + Â
(3.6)

and

Q̄ =
Qsat(Tb) +Qsat(Tt) + ÂQsat(Ts)

2 + Â
, (3.7)

with the assumption of water vapor being saturated at the walls at their corre-

sponding temperatures. Because of the nonlinear dependency of Qsat on T , we

have Q̄ > Qsat(T̄ ) and supersaturated conditions are produced, as illustrated in
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Figure 3.1: Water vapor pressure versus temperature, with the Clausius-
Clapeyron-derived equilibrium curve (purple solid line), and line represent-
ing mixing between the bottom and top boundaries (blue dot-dashed line).
The red and blue dashed line represent the mixing temperature with and
without sidewalls respectively. [Left] The sidewalls are maintained at 284
K, the average of top wall and bottom wall temperatures of 274 K and 294
K, respectively. The blue dashed line and red dashed line coincide in this
case. [Right] The sidewall temperature is 290 K, with the top and bottom
temperatures at 274 K and 294 K, respectively. The red and blue markers
indicate the resultant mixing saturation vapor pressure for the cases with
and without saturated sidewalls.

temperature–vapor-pressure coordinates in Fig. 3.1. In this figure, Tt = 274 K and

Tb = 294 K and two different sidewall conditions are shown. Without the side wall

contribution, the mixture properties lie on a line segment connecting bottom an top

conditions (blue dot-dashed line in Fig. 3.1). Vapor pressures on this mixing line

are everywhere above the corresponding equilibrium (or saturation) vapor pressures

given by the Clausius-Clapeyron equation, corresponding to the classic isobaric mix-

ing cloud scenario [e.g., 79, Secs. 3.7 and 6.8]. Adding side walls at an intermediate

temperature between Tb and Tt always reduces Q̄ and, therefore, the supersaturation
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of the mixture. For example, in the left panel of Fig. 3.1 the sidewall temperature

is taken as the mean value, so that Eq. 3.5 applies. The vapor pressure and tem-

perature that would be achieved in an ideal system with no sidewalls is shown by

the blue dot, and that achieved in a system with saturated sidewalls is shown by the

red dot, as calculated from Eqs. 3.6 and 3.7. The right panel of Fig. 3.1 shows the

vapor pressure and temperatures for a sidewall temperature between the mean and

bottom-wall temperatures.

The supersaturation is plotted as a function of sidewall temperature in Fig. 3.2. For

this figure, the top wall is maintained at Tt = 274 K and bottom wall at Tb = 294 K,

and the sidewall temperatures are varied from Tt to Tb. The black diamond markers

show the supersaturation without any sidewall effects and the blue circular markers

indicate the resulting supersaturation from Eq. 3.3. The supersaturation graph of

sidewalls with supersaturation in Fig. 3.2 has two regimes dominated by heat flux

and vapor flux respectively. The region to the left of the minimum, is dominated by

heat flux. Roughly speaking, the sidewalls maintained at a lower temperature than

the mean of top and bottom walls, act as heat sinks and result in a reduced bulk

temperature compared to the case without any sidewalls. Simulations with periodic

lateral boundaries, as is typical for atmospheric applications of traditional LES and

DNS, without accounting for scalar diffusivities to or from sidewalls, yields a higher
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Figure 3.2: Supersaturation versus sidewall temperature, assuming no side-
walls (black diamonds), fully-saturated sidewalls (blue circles), and slightly
subsaturated sidewalls (red circles). Here, it is assumed that the top and
bottom wall temperatures are 274 K and 294 K, respectively.

supersaturation represented by the black diamond markers in Fig. 3.2. The right

hand side of the minimum is dominated by vapor flux from the sidewalls maintained

at a higher temperature than the mean of top and bottom walls. As the sidewall

temperature increases, both the heat flux and vapor flux at the sidewall switches sign
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from negative to positive direction. The overall supersaturation decreases as the heat

flux switches sign, however it increases as the vapor flux switches sign, resulting in a

minimum. A more careful derivation of the minimum point is provided in Supporting

Information. The important point here is that the area weighted sidewalls leads to a

depletion of supersaturation compared to an infinite parallel plate case.

All the preceding discussions assumed saturated sidewalls, however in the Pi Chamber

the only source of saturation of sidewalls arises from the condensation of droplets on

the sidewalls, and there are dry areas at the locations of windows. To account for

this in the flux balance model, we can decrease the area of sidewalls covered with

water droplets. The resulting supersaturation for a value of 90% is represented by

the red line in Fig. 3.2, and as expected, it is lower compared to the saturated-sidewall

conditions.

In practice, it is of interest to consider the conditions necessary to sustain cloud

growth in the Pi Chamber, i.e., to achieve a supersaturation greater than zero. Side-

wall conditions that are not fully saturated (or that experience some excess heat

transfer, e.g., through windows) can be compensated for either by increasing the

temperature difference∆T = Tb − Tt or by adjusting the sidewall temperature Ts.

The two effects are illustrated in Fig. 3.3, which shows the minimum sidewall satu-

ration ratio necessary to attain relative humidity of 100 % (or zero supersaturation)

in the Pi Chamber. The red axis and curve show the ratio as a function of ∆T , and
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Figure 3.3: [Red] Minimum saturation ratio at the sidewall required for
100% relative humidity in the cloud chamber, versus temperature difference,
∆T . Here the sidewall temperature is kept at the mean bulk temperature
of 284 K. Larger ∆T is required to compensate for drier sidewalls, in order
to maintain cloud-sustaining conditions. [Blue] Minimum saturation ratio
at the sidewall required for 100 % relative humidity in the cloud chamber,
versus the sidewall temperature. Here the temperature difference, ∆T is
kept constant at 20K and the sidewall temperatures are changed from 274
K to 294 K. A derivation describing these two curves is provided in the
Supporting Information.

the blue axis and curve show the ratio as a function of Ts. At lower ∆T , we can see

that a sidewall saturation ratio closer to 100%, implying a fully saturated sidewall is

required to yield supersaturation. As the temperature difference increases to 20 K,

a sidewall saturation ratio as low as 80% can yield supersaturation. Hence at higher

temperature differences, it is easier to attain supersaturation, even if the sidewalls

are not fully saturated. The blue curve shows that this can be further adjusted by

varying the sidewall temperature, as was implied in the earlier discussion.
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3.3.2 Scalar flux budget model compared with LES results

The flux budget model suggests that the mean supersaturation attained in the Pi

Chamber depends on a combination of ∆T and Ts. This provides a reference for

interpreting the mean state calculated with the LES. In this section, all LES results

are for the thermodynamic state of the turbulent mixture of air and water vapor, with

no cloud formation. Figure 3.4 is obtained by varying saturated sidewall temperature

from Tt to Tb, for fixed ∆T . Panels showing the mean fluid temperature, water vapor

mixing ratio, and relative humidity are shown. The blue circles are the results from

the flux model and the red squares are from the LES, both for ∆T = 20 K and with

Ts increments of 2 K.

The results in Fig. 3.4 show reasonable consistency between the trends from the LES

and the predictions of the relatively simple flux balance model. The mixing tempera-

ture and mixing ratio, for varying sidewalls are shown in the top two panels of Fig. 3.4.

For temperature and water vapor, we can see the scalar flux model predicts slightly

higher values than LES for higher sidewall temperatures and slightly lower values than

LES for lower sidewall temperatures. Encouragingly, the crossover occurs at a tem-

perature very close to the mean of Tb and Tt, Ts = 284 K. The offsets at smaller and

larger Ts are likely due to the assumption of uniform turbulent diffusivities for top,
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Figure 3.4: Comparison of mixing temperature, water vapor mixing ratio,
and relative humidity versus sidewall temperature, as calculated from the
scalar flux budget model (blue circles) and the large-eddy simulation (red
squares). Results are shown for a temperature difference of ∆T = 20 K with
top and bottom boundaries at 274 K and 294 K respectively. LES values
are obtained by averaging over the full volume, excluding grid points close
to the sidewall boundaries, and averaging in time from 1800 s to 3600 s.

bottom and sidewalls in the simple scalar flux model. The relatively small discrepan-

cies in temperature and water vapor mixing ratio result in lower supersaturation for

the LES at lower Ts than predicted by the scalar flux model. Conversely, the lower

mixing temperatures at higher sidewall temperatures result in a higher supersatura-

tion for LES than the scalar flux model at larger Ts. These trends in supersaturation
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are evident in the third panel of Fig. 3.4. Again, the scenario with sidewall temper-

ature at the mean of the top and bottom boundary temperatures serves as a check

(cf. Eqn. 3.5) and indeed, the supersaturation from the LES matches the prediction

of the scalar flux model quite well.

Accurate experimental measurement of supersaturation and water vapor inside the

cloud chamber is a matter of continuing effort, but based on the activated fraction

of aerosols, and mean cloud droplet diameters, the supersaturation can be estimated

as close to 1% − 2% for ∆T ≈ 19K and the configuration used in several recent

experiments [24, 25, 43]. In order to achieve these values of supersaturation in the

LES, the sidewall saturation ratio is reduced for the simulations analyzed below.

For chamber boundary temperatures of Tt = 280 K, Tb = 299 K and Ts = 285 K,

i.e., ∆T = 19 K, Eqs. 3.6 and 3.7 show that a sidewall saturated fraction of 0.74 is

required to achieve 100% RH. The same set of equations predict a RH of 102.5% with

a saturated fraction of 0.80. We then iterate to determine that this RH is achieved

in the LES with a sidewall saturated fraction of 0.82, and this value is used in the

subsequent work.
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3.3.3 LES turbulence and flow properties

In this subsection we describe the flow and turbulence properties of the convection,

as captured by the LES. Particle-image velocimetry measurements are also described

and compared to the LES in order to evaluate the model performance.

Figure 3.5 shows the time-averaged temperature and water vapor mixing ratio pro-

files along the axis of gravity for the conditions before and after aerosol injection. As

expected for turbulent Rayleigh-Bénard convection, the temperature and the mixing

ratio remain relatively constant throughout the bulk of the chamber due to the ef-

ficient mixing of the turbulence. The strongest gradients in temperature and water

vapor mixing ratio are found near the top and bottom boundaries. In Fig. 3.5 we

can see that the temperature profile shifts to the right when aerosol is introduced

and a cloud is formed, indicating an increase in temperature, owing to the latent

heat release due to the condensation growth of cloud droplets. This process in turn

decreases the available water vapor in the bulk causing the mixing ratio curves to

shift to the left as illustrated in the figure.

The turbulent kinetic energy (TKE), energy dissipation rate ε, and the frequency of

oscillations of the large-scale circulation are measures of the convective turbulence

inside the chamber. Matching TKE and ε from the LES with experimental results
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Figure 3.5: Vertical profiles of horizontally-averaged temperature and
water-vapor mixing ratio. Profiles are shown for cloud-free, i.e., no aerosol
particles, conditions (red circles), for a temperature difference of 20 K with
Tb, Ts, Tw at 294 K, 284 K and 274 K, respectively. The results are obtained
by averaging over time from 1800 s to 3600 s in the chamber simulation.

indicates that the boundary fluxes are properly evaluated. We use Particle Image

Velocimetry (PIV) to visualize and measure the 2-dimensional velocity field at the

center of the chamber. A 200 mW CW laser is used in combination with a laser-

line-generator lens to illuminate a sheet of droplets at the center of the chamber.

The illuminated droplets are recorded using a CCD camera (Alpha 7S2, Sony) at a

framerate of 120 fps and a resolution of 1920× 1080 pixels at ≈ 60− 100 µm/pixel,

depending on the field of view (20×10 to 10×5 cm2). By using the cloud droplets as a
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fluid tracer, no additional particulates (such as oil droplets, or polymer powder) have

to be introduced into the cloud environment. This requires that the Stokes number of

the droplets, St = τd/τη is very small, where τd = ρld
2/18νρa is the droplet response

time and τη = (ν/ε)1/2 is the turbulence dissipation eddy time scale. Here ρa and

ρl are mass densities for air and liquid water, respectively, and ν is the kinematic

viscosity of air. For the droplet distributions used in this experiment, assuming an

(expected) dissipation rate ε ≈ 10−3 m2 s−3 [21], the Stokes number results vary on

the order of 10−5 − 10−3, and therefore droplets serve as reasonable tracers.

To obtain a converged estimate of the turbulence statistics, the camera records the

droplet dynamics for approximately an hour for each condition measured. Image

pairs at a time delay of ∆t = 1/120 s are sampled at 2 Hz, resulting in approximately

2500-4000 image pairs per experiment (accounting for adequate averaging). Com-

mercial PIV software (Pivtec, PIVTEC Gmbh) was used to process the images. PIV

correlation windows of 48× 48 and 64× 64 pixels are used, depending on the droplet

number concentration and field of view, with a consistent window overlap of 50%.

To determine the TKE, the root-mean-square of the droplet velocity components (in

both horizontal (u) and vertical (w) directions) are averaged over the available data,

i.e., U =
∑

(u2 + w2)1/2, where the sum is taken over the full PIV window and all

available image pairs.

The dissipation rate ε can be estimated using the Smagorinsky turbulence model
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from the measured velocity gradients in the PIV. As the measurement has a lim-

ited resolution, the minimum PIV window size (5 cm) is 50 times larger than the

Kolmogorov length (1 mm) of the small-scale turbulent eddies. This results in an

inherent filtering of the turbulent velocity field, which requires a correction of the

resulting dissipation rate, detailed by Bertens et al.[80]. This correction, based on

the size of the PIV window to the Kolmogorov scale η, gives an uncertainty ≈25%

in homogeneous, isotropic turbulence. It should also be noted that the turbulence in

Rayleigh-Bénard convection is somewhat anisotropic, so the equipartition of TKE is

not strictly valid and therefore we make the comparison of PIV and LES results in

2D.

The left two panels of Fig. 3.6 show the comparison of the average TKE and ε for

LES (blue circles) and experiments (red squares), for four different values of ∆T .

As expected, in the experiments both the turbulent kinetic energy and consequently

the energy dissipation rates increase as the temperature difference is increased. The

LES captures a quantitatively similar trend. The TKE and ε from the simulations

are slightly higher than the experimental observations, but within the experimental

uncertainties.

The presence of a coherent, large-scale circulation in Rayleigh-Bénard convection

within the Pi Chamber has been documented by Andersen et al.[81]. Encouragingly,

the LES also produces a large-scale circulation, and it is observed to experience
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Figure 3.6: Turbulent kinetic energy (TKE), eddy dissipation rate (ε), and
large-scale oscillation frequency versus temperature difference ∆T . The LES
results are shown by the blue circles and the experimental results by the red
squares. The LES results are time averaged between 1800− 3600 s. The 2D
TKE is calculated from the u and w velocity fluctuations, and similar to the
experimental results, the effect of large-scale oscillations are filtered by sub-
tracting a moving mean over 1 minute from the point measurements in the
simulation. ε is obtained from the center plane and the large-scale oscillation
frequency is obtained from the FFT of point temperature measurements in
the simulation.

oscillations similar to the experiments. To determine the frequency of large scale

oscillation in the LES, a Fourier analysis is performed on the temperature sampled

at 50 Hz from a point at the center of the chamber. From the frequency spectra

thus obtained, the maximum between 0.1 to 0.01 Hz is identified as the large scale

oscillation frequency (an example of a frequency spectrum is shown Figure 1 in the

Supplemental Materials).

As shown in the right panel of Fig. 3.6, the LES is able to qualitatively, and even to

some extent quantitatively capture the frequencies measured in the cloud chamber

experiments.
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3.3.4 Simulated steady-state cloud

A primary motivation for experiments in the Pi Chamber is to study aerosol-cloud-

turbulence interactions in a controlled environment [21]. For example, Chandrakar

2016 & 2018[24, 43] found that the width of cloud droplet size distribution increases

with a decreasing aerosol injection rate, and this broadening is due to a combination

of mean and variability in the diffusional growth of cloud droplets in a turbulent en-

vironment, rather than broadening due to the collision-coalescence process. However,

there is only indirect observational evidence to support the predominant role of con-

densation growth including a significant contribution from turbulence, as well as the

absence of collisions in the chamber. This is because the growth history of individual

cloud droplets is unknown (and currently unobservable), and only the distribution

properties are known. The modified cloud-resolving LES in this study provides a

useful tool to study the relative roles of condensation and collisions in the growth

process, and on the cloud droplet size distribution in the cloud chamber.

Here we present the results of the simulated steady-state clouds in detail, as a parallel

study to Chandrakar 2016 & 2018[24, 43]. The scientific questions we want to address

are (1) can the model simulate the microphysical properties of steady-state clouds?

(2) do simulations reproduce the broadening of cloud droplet size distribution with the

decrease of cloud droplet number concentration? (3) does the collision-coalescence

50



-1

-0.5

0

0.5

1

1.5

2

 l
o

g
 n

d
 (

#
 /

 c
m

3
)

-1

-0.5

0

0.5

1

1.5

2

 l
o

g
 n

a
 (

#
 /

 c
m

3
)

0 500 1000 1500 2000 2500 3000 3500

time (seconds)

-2

0

2

4

6

 S
u

p
e

rs
a

tu
ra

ti
o

n
 (

%
)

Figure 3.7: Time series of cloud droplet number density (top panel, blue
circles), aerosol concentration (top panel, red circles), and supersaturation
(bottom panel, black circles). Up to a time of 1500 s no aerosols or cloud
droplets are present, and at 1500 s a steady injection rate of aerosol particles
is initiated. The plots are volume averaged droplet concentration, CCN
concentration and supersaturation, excluding the grid points close to the
boundaries.

process really play a negligible role in droplet growth in the chamber? It should

be mentioned that this model can also be applied to investigate several other pro-

cesses, including cloud cleansing and collapse [25], and the influence of variable cloud

microphysical properties on stochastic condensation [27]. Simulations under those

conditions will be investigated in the future. For this paper, our purpose is to demon-

strate that previously-published, steady-state microphysical results can be reasonably

replicated by the LES.

The simulation is set up with a temperature difference of 19 K, with bottom, top
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and sidewall temperatures set to 299 K, 280 K and 285 K, respectively. The cloud

box is modeled with a grid size of 3.125 cm and a step size of 0.02 seconds. The

top and bottom walls are saturated and the sidewall saturation ratio is set to 0.82

to ensure a mean supersaturation of 2.5% when no cloud droplets are present. The

cloud microphysical processes are simulated using a bin microphysical scheme [73].

There are 33 mass-doubling bins for aerosol and 33 mass-doubling bins for cloud

droplets. Aerosol particles in one bin are activated as cloud droplets if their critical

supersaturation is smaller than the environmental supersaturation in that grid box,

based on Köhler theory. Diffusional growth, collisional growth and sedimentation of

cloud droplets are considered. To mimic the constant aerosol injection rate during

the experiments [24, 43], a point source of monodisperse aerosol with a fixed number

concentration is added at the center of the simulation domain. It should be mentioned

that instead of injecting aerosol in the simulation domain, we forced a constant aerosol

number concentration in one grid box (at the center). This is because the current

LES model and microphysical scheme lack two important sinks for aerosols: cloud

scavenging and wall loss. Without those processes, the simulated aerosol number

concentration will continuously increase with time for a constant aerosol injection rate,

which is not consistent with the observed steady-state aerosol number concentration

in the cloud chamber. (In experiments, steady state conditions in cloud properties are

reached before steady state conditions in aerosol concentration because of the differing

sinks for the two. See, e.g., Fig.1 in Chandrakar et al.[25].) The total simulation time
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Figure 3.8: The PDF of supersaturation fluctuations at the center of the
chamber, with no aerosol injection. The standard deviation is 1.033. The
measurements are from spatial and temporal averages within the simulated
chamber. The kurtosis of the supersaturation is 5.7, greater than 3 for
Gaussian, implying greater excursions of supersaturation fluctuation from
the normal distribution.

is one hour: without aerosol input for the first half an hour and with aerosol input

for the second half an hour.

Figure 3.7 shows the time series of the domain-averaged cloud droplet number concen-

tration, aerosol number concentration, and relative humidity for one cloud simulation

with an aerosol source number concentration of 3697 cm−3 for the bin centered at

62.5-nm diameter at the center of the chamber. It can be seen that cloud does not

form without aerosol input within the first half an hour, even though the relative

humidity is above 100%. The domain-averaged relative humidity reaches a steady
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state of about 102% after about 100 s. Relative humidity varies due to fluctuations

in temperature and water vapor within the turbulent environment [82]. The PDF of

supersaturation fluctuations (s′ = s− s̄) at the center of the chamber without aerosol

input is similar to a Gaussian distribution, as shown in Fig. 3.8. This is consistent

with the observational results [24] and the assumptions made in several additional

studies [25, 27, 43]. It should be noted, however, that the LES suggests a somewhat

more intermittent distribution than Gaussian, with a kurtosis of 5.7; this departure

and its possible implications will be interesting topics for an additional study in the

future. When aerosols are introduced to the simulation domain, the relative humid-

ity decreases as expected due to the formation and growth of cloud droplets (bottom

panel of Fig. 3.7). Cloud droplet number concentration, aerosol number concentration

and the relative humidity reach a steady-state, consistent with the observations [21].

Finally, the PDF of supersaturation fluctuations after the cloud has formed becomes

narrower, as expected (see Figure 2 in Supplemental Materials).

To investigate the influence of aerosol concentration on the cloud droplet size distri-

bution, we did sensitivity studies by changing the aerosol number concentration of

the point source. Four different aerosol number concentrations were implemented by

maintaining concentrations of 3697 cm−3, 5545 cm−3, 7394 cm−3 and 9242 cm−3 at

the center of the chamber. The mean and standard deviation of cloud droplet diam-

eter during the steady state, as obtained from both a temporal and spatial average,

are calculated for each case. Figure 3.9 shows that both the mean and the standard
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Figure 3.9: Mean (circles) and standard deviation (squares) of cloud
droplet diameter versus cloud droplet concentration.Blue symbols denote
collisions on and red symbols denote collisions off. The relative dispersion
(σr/r̄) varies from 0.51 to 0.42 with increasing cloud droplet concentration
for cases with collisions off. Size distributions are obtained from the number
per bin at each grid point in the bulk of the chamber for a single snapshot,
and mean and standard deviations are calculated from the distributions.

deviation of droplet size decrease with increasing cloud droplet number concentration,

which is consistent with the observations of Chandrakar [24, 43]. The trends are con-

sistent, but the exact values of mean diameter and standard deviation do not closely

match the observational results (e.g., Table 1 in Chandrakar et al.[24]), especially

for relatively clean conditions, where the simulated mean diameter and standard de-

viation are both smaller than the observations. This might be due to the different

averaging procedures in LES versus experiment, the differences in injected aerosol
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Figure 3.10: Number of droplets observed in the cloud chamber simu-
lation versus the diameter for one set of aerosol conditions. The collision
coalescence physics is turned on and off in the simulations for blue and red,
respectively. The distribution is obtained from the number of droplets per
bin at each grid point in the bulk of the chamber, for a single snapshot.

size distribution, the measurement uncertainties, or the inaccurate representation of

either dynamics or microphysics or both. A careful investigation of this will be carried

out in the future. Finally, we note that examples of size distributions due to aerosol

injection are shown in Figure 3 in the Supplementary Materials file.

The LES model can simulate and maintain a steady-state cloud by adding a source of
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aerosol with a constant aerosol number concentration (cf., Fig. 3.7). Modeling results

also show the broadening of cloud droplet size distribution with the decrease of cloud

droplet number concentration (Fig. 3.9). These results are consistent with observa-

tions Chang et al. and Chandrakar et al. [21, 24], implying that the cloud-resolving

LES model captures the essential cloud microphysical properties in the convection

chamber. An additional question is, does the collision-coalescence process contribute

to the observed broadening of the droplet size distribution? In order to answer this

question, we did another set of simulations without the collision-coalescence process.

An example result is shown in Fig. 3.10, corresponding to an aerosol concentration of

5545 cm−3 at the center of the chamber and a steady-state cloud droplet concentration

of 40 cm−3 without coalescence and 47 cm −3 with coalescence. The results, which

are representative of the other cases, show that the shape of the cloud droplet size

distribution does not change significantly without the collision-coalescence process.

This confirms that the width of the droplet size distribution is primarily a result of

the vapor condensation process. The small change in droplet concentration observed

between the with and without coalescence runs is intriguing and is the topic of on-

going study. We note, however, that the estimate of mean diameter varies spatially

and temporally, so determining what differences are a result of statistical fluctuations

versus actual changes in mean properties, will require careful averaging. For exam-

ple, for the results shown in Fig. 3.9, the standard deviation of the estimate of the

mean diameter, estimated from spatial variations at one time, is between 0.2 and 0.5
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µm. Thus, interpreting the small changes in distribution shape when collisions are

included or not, will require longer averaging.

3.4 Summary and Discussion

The System for Atmospheric Modeling (SAM) LES code coupled with spectral-bin

cloud microphysics, has been modified to simulate conditions in the Pi Chamber.

To accommodate the presence of the lateral and top walls, momentum and scalar

fluxes are implemented using Monin-Obukhov similarity with the roughness parame-

ter scaled for quantitative matching. The top and bottom walls are held at saturated

conditions and at constant temperatures during the simulations, with an unstable

temperature difference that drives turbulent Rayleigh-Bénard convection. The lat-

eral walls are prescribed a saturated fraction to achieve realistic supersaturation levels

consistent with the condensation growth observed in the cloud chamber experiments.

A flux balance model is introduced to quantify the steady state scalar values, and

this model is used to explore the supersaturations achieved by treating temperature

and water vapor mixing ratio as independent scalars. The presence of the sidewalls

decrease the supersaturation from the maximum attainable values for an idealized

condition with no sidewalls. The supersaturation thus attained can be further de-

creased by the presence of an additional heat flux or partially saturated sidewalls.
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The trend predicted by the flux balance model is faithfully replicated by the LES

model.

With these changes to SAM, the results from the simulation agree adequately with

the experiments in terms of dynamics and microphysical properties. The dynamics,

measure by TKE, turbulence energy dissipation rate, and oscillation frequency of the

large-scale circulation are within the uncertainty range of experiments. Furthermore,

key microphysical behaviors observed in experiments with the Pi Chamber are able to

be reproduced in the simulations. Specifically, steady-state microphysical conditions

are achieved for a constant injection of aerosol particles to the chamber; the super-

saturation field in the cloud chamber shows an approximately Gaussian distribution;

mean and standard deviation of the cloud droplet size distribution increase monoton-

ically with decreasing cloud droplet number density; and finally, the droplet growth is

dominated by condensation rather than collisions for typical conditions in the cloud

chamber. Taken together, these results imply that there is reasonable scalability of

the LES model and the microphysical processes to the laboratory context.

The initial motivation for developing a LES of the convection and aerosol-cloud inter-

actions in the Pi Chamber was to more deeply understand and interpret laboratory

observations, which are usually Eulerian in nature and do not provide easy access

to some important variables, like absolute water vapor supersaturation (water vapor

fluctuations can be more reliably quantified). But as the work progressed we began
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to see it in a broader context. First, LES provides an excellent opportunity to scale

processes and results observed in the laboratory to a more realistic atmospheric con-

text. In that sense, it is especially compelling to perform this study with a model like

SAM that is widely used in the cloud community.

Second, and perhaps more ambitiously, LES not only can inform the experiments and

allow for re-scaling of results, but also provides an opportunity to evaluate and even,

at some stage, to validate numerical models for turbulence and microphysics. Sim-

ply put, intercomparison with a steady-state laboratory flow with known boundary

conditions, and carefully measured properties, allows LES and bin microphysics to

be compared to experiment with a level of detail and precision heretofore not pos-

sible. The atmospheric-boundary-layer community has a history already of synergy

between laboratory experiments and LES [67, 83, 84, 85]. Furthermore, the need

for such intercomparison has been emphasized. For example, Stevens [86] pointed

out the need for “initiatives to develop symbiotic relationships between observations,

experiments, and LES” and Wyngaard[46] particularly emphasized the role of labo-

ratory experiments: “A remaining and not widely acknowledged problem is the great

difficulty of testing the fidelity and reliability of the LES results. Here laboratory

flows can serve as ground truth, since they generally provide ‘cleaner’, less scattered

data than the atmosphere itself.” The cloud physics community, in contrast, has long

relied on laboratory experimentation for the investigation of fundamental processes,

often linked to single particles, such as ice nucleation or collision efficiencies. But to
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our knowledge, there has been little discussion of the potential benefits of compar-

ing the observed dynamics of ensembles of aerosol and cloud hydrometeors within a

turbulent flow directly with cloudy LES. In that regard, we consider this as a first,

tentative step, with emphasis on description of the LES model as applied to the Pi

Chamber, and sufficient evaluation of the flow dynamics and cloud microphysical

properties to provide support for the further study. Many opportunities for detailed

intercomparison focused on specific problems now are possible: the role of supersat-

uration mean and fluctuations on the broadening of size distributions, and the role

of collision-coalescence under varying aerosol conditions stand out as examples. For

the purposes of the current study, the default bins from HUJISBM are sufficient to

capture the general trends observed in the experiments. However, to study other

aspects of aerosol-cloud interactions, such as, for example broadening of DSD due to

Ostwald ripening [87], one might have to rely on other approaches such as 2D bin

microphysics[88, 89]. Grabowski et al.[90] have pointed out the challenges in model-

ing cloud microphysics using the popular bulk and bin methods, including the effect

of numerical diffusion both in radius space and vertical advection causing artificial

broadening, and they propose Lagrangian particle methods described by Andrejcuk

et al., Shima et al., Solch et al., and Riechelmann et al.[49, 51, 91, 92] as a promising

way forward. Thus, a potential extension of the current work would be to explore

cloud chamber modeling using Lagrangian particles and an intercomparison with a

laboratory validated LES study presented in this paper.
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Chapter 4

Dimensionless parameters for

cloudy convection:

Supersaturation, Damköhler, and

Nusselt numbers

“It’s always seemed like a big mystery how nature, seemingly so effort-

lessly, manages to produce so much that seems to us so complex. Well,

I think we found its secret. It’s just sampling what’s out there in the

computational universe.”

- Stephen Wolfram
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Abstract

In turbulent, dry Rayleigh-Bénard convection under steady-state conditions, the sen-

sible heat flux is constant with height. When water vapor is present and cloud

formation occurs, there is also an additional latent heat flux component, and the

exact flux profiles of each of these components depends on the microphysical state

of the clouds: specifically, whether substantial supersaturations exist and whether

cloud liquid water is removed through sedimentation/precipitation. In this article

we bridge between the Rayleigh-Bénard convection literature and the atmospheric

literature. We express the governing equations for cloudy convection in dimensionless

form, thereby explicitly identifying the governing parameters of Rayleigh and Prandtl

numbers, as for dry convection, as well as Schmidt, Damköhler, and sedimentation

numbers for the cloudy case. We further connect to the atmospheric literature by

obtaining a microphysics-independent heat flux Nusselt number (dimensionless heat

flux) for a cloud–convection system, directly from the conservation equations for tem-

perature and water vapor. This flux has the same form as that identified by Zhang

et al. (2019) for convection with water vapor, but is extended to the cloudy case,

and is independent of the microphysical details of the system, such as liquid water

mixing ratio and cloud droplet number concentration and size distribution. For equal

thermal and water vapor diffusivities, the flux corresponds to the widely-used at-

mospheric quantities equivalent temperature and moist static energy. We illustrate
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the microphysic independence through a large eddy simulation (LES) of an idealized

cloudy Rayleigh-Bénard convection system with fixed boundary conditions. From

the results, we show the height-dependence in the profile of sensible heat flux and

latent heat flux, depending on the liquid water content, whereas the modified heat

flux remains a constant throughout the height of the chamber.

4.1 Introduction

Classical Rayleigh-Bénard convection is described by the Rayleigh number, Ra =

gβ∆TH3/(νTν), which captures the competing roles of buoyancy forcing and diffusive

losses, and the Prandtl number, Pr = ν/νT , which is a material parameter defining

the relative magnitude of diffusion of momentum and thermal energy. Here, g is

the gravitational acceleration, β is the coefficient of thermal expansion, νT is the

thermal diffusivity, ν is the kinematic viscosity, and H is the separation distance

between surfaces with imposed temperature difference ∆T . For sufficiently large Ra

and Pr ∼ 1 relevant to atmospheric flows, the convecting fluid is strongly turbulent.

The hallmark of turbulent convection, in turn, is highly efficient transport of energy.

The non-dimensional heat flux is given by the Nusselt number Nu, the ratio of the

total heat flux to the conductive heat flux (νT∆T/H) across an identical, static fluid
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layer:

Nu =
w′T ′ + νT∇zT

νT∆T/H
, (4.1)

where w is the vertical component of velocity, overline denotes ensemble average

over a horizontal surface and prime denote fluctuations from the mean [33]. By

definition, in steady state this horizontally-averaged heat flux is constant with height

within the convecting fluid. Seeking an understanding of the Nusselt number and its

dependence on the Rayleigh number remains a challenge even for single-fluid (‘dry’)

convection [33, 37]. When phase changes are included at the boundaries, even in

idealized laboratory convection experiments, the heat flux problem becomes much

more complex [93]. Furthermore, the flux problem becomes complex in the presence

of phase change effects in the bulk as it introduces an additional heat source/sink

via latent heat associated with the phase change processes [41, 94]. Additionally,

the amount of condensate in the system depends on the rate at which phase change

effects occur (e.g., condensation/evaporation). In the context of cloudy convection,

the rate of evaporation/condensation is strongly influenced by the properties of the

cloud droplets including size, number concentration, etc (henceforth, referred to as

‘microphysics’). For example, if the condensate load is fixed, plentiful small droplets

allow for efficient conversion of water vapor to the condensed phase compared to a

few large droplets. Additionally, small droplets have lower sedimentation velocities

and thus result in a higher condensate load in the system [41].
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The idealization of Rayleigh-Bénard convection has a long history in guiding our un-

derstanding of cloud formation [53, 95, 96, 97, 98, 99]. In the atmospheric context

the conundrum posed by the interaction between temperature, water vapor and liq-

uid water on large scales is circumvented by using conserved variables derived from

thermodynamics. However, for cloudy convection non-equilibrium conditions can ex-

ist depending on the microphysics, thereby making troublesome entropic variables

derived under ideal assumptions of reversibility. At the same time, the fluid dynam-

ics community making no such assumptions explored the parameter space for moist

convection in the absence of any liquid water [93]. In Section 4.2, we present the

governing equations for cloud Rayleigh-Bénard convection and introduce and discuss

the associated dimensionless parameters. Then in Section 4.3 we provide a non-

thermodynamic derivation of a microphysics independent heat flux and subsequently

a Nusselt number independent of any cloud droplets analogous to and thus expanding

the scope of the Nusselt number proposed by Zhang et al.[93]. Furthermore, under the

assumptions of constant molecular/turbulent diffusivities of temperature and water

vapor, we retrieve the equivalent temperature and moist static energy from the flux

derivations that are widely used in the atmospheric sciences community (see Section

4.3). Both equivalent temperature and moist static energy are derived using only the

first law and therefore avoid problems of reversibility [79, 100]. It should be noted

that the microphysics-independent flux is not limited to atmospheric applications but

can be extended to systems with phase change and chemically reactive systems (see

67



Section 4.6).

In this article we aim to connect the Rayleigh-Bénard literature with the atmospheric

science literature in two ways. We present the equations for cloudy convection in

dimensionless form, making clear the relevant parameters describing the system. As

described in the previous paragraph, we derive a microphysics-independent Nusselt

number for cloudy Rayleigh–Bénard convection, directly from the equations for tem-

perature and water vapor mixing ratio. Entropy conservation is not assumed in

the derivation and thus non-equilibrium conditions can be adequately represented;

nevertheless, the derived heat flux is constant with height throughout the convec-

tion system, independent of the dimensionless parameters related to the microphys-

ical properties of the cloud. We present Large Eddy Simulations (LES) of cloudy

Rayleigh-Bénard convection with varying aerosol conditions to explore and illustrate

the characteristics and the utility of the approach. In the final section we discuss

the prospective implications of the conserved flux and its applications, as well as its

connections to atmospheric variables.
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4.2 Governing Equations and Dimensionless Pa-

rameters for Cloudy Convection

4.2.1 Governing equations in dimensional form

The Navier-Stokes equation for cloudy convection can be written as ([101])

∂Ui
∂t

+ Ui · ∇Ui = − 1

ρa
∇p+

[
β
(
T − T

)
+ ε
(
Qv −Qv

)
−QL

]
gẑ

+ν∇2Ui, (4.2)

where U is the velocity vector, ρa is the density of air, p is the pressure, and ν is the

kinematic viscosity. The buoyancy term contains three contributions multiplied by

the gravitational acceleration g, which is assumed to act in the vertical ẑ-direction.

First, the usual term depending on the difference between the temperature T and

the average value T , multiplied by the thermal expansion coefficient β. Second, a

contribution from the perturbation in water vapor mixing ratio Qv (the ratio of the

mass of water vapor to the mass of the dry air) multiplied by term ε = md/mv − 1,

where md and mv are the molecular weights of dry air and water vapor, respectively.
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Third, a contribution of the liquid water mixing ratio QL, which accounts for the

drag force applied to the fluid due to settling cloud droplets.

For a cloudy convective system with phase change effects, the continuity equation,

the energy equation and the water vapor and liquid mass balance equations are given

by

Dρ

Dt
+ ρ∇ · Ui = 0 (4.3)

∂T

∂t
= ∇ · (−UiT + νT∇T ) +

L

Cp
Q̇L (4.4)

∂Qv

∂t
= ∇ · (−UiQv + νv∇Qv) − Q̇L, (4.5)

∂QL

∂t
= ∇ · (−UiQL + wTQL) + Q̇L, (4.6)

where νT and νv are thermal and water vapor diffusivities respectively, wT is the

terminal speed of a cloud droplet, and Q̇L is the rate of condensation/evaporation

of water. It should be noted here that, while we include the sedimentation term in
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equation 4.6, we have not included a corresponding energy-loss term in equation 4.4

because for typical cloud conditions the thermal inertia of droplets is negligible.

4.2.2 Non-Dimensional formulation

It is instructive to consider the non-dimensional form of the governing equations.

We take the height of the chamber (H) and the free-fall velocity for dry Rayleigh-

Bénard convection (w =
√
g β∆T H) as the scales for length and velocity. The non-

dimensional scaled variables (denoted by tilde on the top of the variable) of length,

time, velocity, temperature and water vapor for moist Rayleigh–Bénard convection

are L̃ = L/H, t̃ = tw/H, Ũ = U/w, T̃ = T −T
∆T

, Q̃v = Qv −Qv

∆Qv
. The acceleration due to

gravity is g, thermal expansion coefficient is β and ε is the ratio of dry air to water

vapor gas constants. The non dimensional momentum equation is written as

∂Ũ

∂t̃
+ Ũ · ∇̃Ũ =

−1

ρa
∇̃p̃+

(
T̃ +Bv Q̃v −BL

)
ẑ +

√
Pr

Ra
∇̃2Ũ

where, Ra is the Rayleigh number (Ra = g β∆T H3

νT ν
), Pr is the Prandtl number

(Pr = ν/νT ). The second term grouped within brackets on the right hand side

of the non-dimensionalized Navier-Stokes equation is the buoyancy contribution to
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momentum, and acts along the direction of gravity. The buoyancy contribution comes

from temperature, water vapor and the drag associated with the sedimentation of the

condensate. The dimensionless parameter for water vapor is Bv = ε∆Qv/(β∆T ) and

that for liquid water is BL = QL/(β∆T ).

The dimensionless equation for temperature (equation 4.4) can be rewritten as follows

∂T̃

∂t̃
+ Ũ · ∇̃T̃ =

1√
RaPr

∇̃2T̃ +
L

Cp∆T

H

w

QL

τcond
. (4.7)

Here we have taken Q̇L = QL/τcond, where τcond is a characteristic time for the conden-

sation process. We then note that the terms L/Cp∆T and τt/τcond, where τt = H/w,

are dimensionless numbers associated with the cloud condensation process. The time

scale for condensation can be conceptually understood by considering the idealization

of growth of a population of single-sized cloud droplets in a supersaturated environ-

ment. A cloud of droplets with radius R and number density N in an environment

with mean supersaturation s,

Q̇L =
ρl
ρa

d

dt

(
4π

3
NR3

)
=

ρl
ρa

4πNR2dR

dt
, (4.8)

where ρl is the density of water and ρa is the density of air. Using an expression [39]
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for the droplet growth rate dR/dt, equation 4.8 can be rewritten as

Q̇L = 4πξNR s
ρl
ρa
. (4.9)

Here ξ is a factor associated with thermal and vapor diffusion during the droplet

growth[39]. Thus, the phase relaxation time (τc) can be understood as the timescale at

which droplets respond to any change in its surrounding environment, defined as τc =

(4πξNR)−1 [102]. Assuming the flux timescale, given by τt = H/w, represents the

scale at which the environment changes, the Damköhler number (Da) can be defined

as τt/τc [24]. At very high Damköhler numbers, the droplets respond quickly to any

change in the surrounding environment and conversely at small Damköhler numbers

the environment changes faster than the droplets can respond to it. Hence, these

regimes are called fast and slow microphysics respectively. Therefore, equation 4.7

can be rewritten as

∂T̃

∂t̃
+ Ũ · ∇̃T̃ =

1√
RaPr

∇̃2T̃ +
1

Ste

ρl
ρa
Da s. (4.10)

We note that the expression on the right hand side consists of dimensionless quantities

Ste = Cp∆T/L, ρl/ρa, Da and s, where Ste is the Stefan number. Similarly, the

equation for water vapor mixing ratio becomes

∂Q̃v

∂t̃
+ Ũ · ∇̃Q̃v =

1√
RaScLe

∇̃2Q̃v −
1

∆Qv

ρl
ρa
Da s, (4.11)
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where Sc is the Schmidt number (Sc = ν/νv) and Le is the Lewis number(Le =

Sc/Pr). Using Q̃L = QL/∆Qv, the non dimensional form of liquid water mixing

ratio (equation 4.6) is,

∂Q̃L

∂t̃
+ Ũ · ∇̃Q̃L = Rou Q̃L +

1

∆Qv

ρl
ρa
Da s. (4.12)

An additional dimensionless group appears, the ratio of the droplet terminal speed

and the convection free-fall speed, which is sometimes referred to as the Rouse number

Rou = wT/w [103, 104]. It is essentially a gravitational settling parameter or, it can

be expressed as the inverse of a dimensionless droplet residence time τt/τres.

These dimensionless parameters appearing in these equations are summarized in Ta-

ble 4.1. The parameters Pr, Sc, Le, Ste, and Bv describe material properties, so

for a water-air system as in Earth clouds, they are essentially constants. Note that

the water vapor contribution to buoyancy Bv can be considered a material property

because, assuming saturated boundaries, the quantity ∆Qv/∆T can be related to the

Clausius-Clapeyron equation dps/dT = L/(RT ), where ps is the saturation water va-

por pressure; it is however a material property that depends on the mean temperature

of the system. The dimensionless parameters that describe the cloud microphysical

properties are s, Da, Rou, and BL. It can be noted that BL connects the micro-

physics directly to the buoyancy term in the Navier-Stokes equation, but in fact the

phase changes described by s and Da also influence the buoyancy term through their
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Dimensionless
Number

Definition Description

Ra gβ∆TH3/(νTν) Buoyancy forcing and diffusive losses

Bv ε∆Qv/(β∆T )
Relative contribution of water vapor to buoy-
ancy

BL QL/(β∆T )
Relative contribution of cloud water to buoy-
ancy

Pr ν/νT
Diffusion of momentum relative to thermal
energy

Sc ν/νv
Diffusion of momentum relative to water va-
por

Le νT/νv
Diffusion of thermal energy relative to water
vapor

Da τt/τc
Rate of turbulent mixing relative to Rate of
water vapor condensation in a cloud

s Qv/Qs(T )− 1 Excess water vapor driving condensation
Ste Cp∆T/L Latent heat compared to sensible heat

Rou wt/w
Rate of removal of cloud droplets by sedimen-
tation relative to rate of turbulent mixing

Nuµ Eqn. 4.21
Microphysics-independent energy flux rela-
tive to conductive flux

Table 4.1
Dimensionless parameters for the microphysical state in cloudy

Rayleigh-Bénard convection.

contributions to the T and Qv fields. Finally, the state of macroscopic convection

is described by the dimensionless parameter Ra, as well as a Nusselt number Nu

discussed in the next section.
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4.3 Heat Flux and a Microphysics-Independent

Nusselt Number

A defining aspect of convection is the efficient transfer of energy, which can be ex-

pressed through the dimensionless Nusselt number. Here we outline a simple route

to obtaining a Nusselt number for cloudy convection and discuss its relationship to

known variables of atmospheric thermodynamics and the relevance of cloud micro-

physical properties. We proceed initially with the dimensional forms of the equations

for notational clarity.

Applying Reynolds decomposition, we write the instantaneous variable as a sum of

the mean and the fluctuations represented by overbar and prime respectively,

U = Ui + u′i; T = T + T ′; Qv = Qv + Q′v , (4.13)

and it then follows from equations. (4.4) and (4.5) that the mean scalar evolution

equations are

∂T

∂t
= ∇ ·

(
−UiT − u′iT

′ + νT∇T
)

+
L

Cp
Q̇L (4.14)

∂Qv

∂t
= ∇ ·

(
−UiQv − u′iQ

′
v + νv∇Qv

)
− Q̇L. (4.15)
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The two scalar equations can be combined together by eliminating the net condensa-

tion/evaporation rate Q̇L by adding equation. (4.14) and L/Cp× equation. (4.15):

∂

∂t

(
T +

L

Cp
Qv

)
= ∇ ·

(
− Ui

(
T +

L

Cp
Qv

)
− u′i

(
T ′ +

L

Cp
Q′v

))
+ ∇ · ∇

(
νT T + νv

L

Cp
Qv

)
.

(4.16)

Equation 4.16, steady in time and averaged over a plane with normal along the

direction of gravity is

∇z ·
(
−w′T ′ + νT∇zT

)
+

L

Cp
∇z ·

(
−w′Q′v + νv∇zQv

)
= 0. (4.17)

From equation. (4.17), a constant surface flux is obtained along the z-direction:

Φµ = w′T ′ +
L

Cp
w′Q′v − νT∇zT −

L

Cp
νv∇zQv. (4.18)

Thus, an effective Nusselt number can be defined as,

Nuµ =
w′T ′ + L

Cp
w′Q′v − νT∇zT − L

Cp
νv∇zQv

νT
∆T
H

+ νv
L
Cp

∆Qv

H

. (4.19)

This microphysics independent flux (equation. 4.18) has been obtained from the tem-

perature and water-vapor governing equations, independent of the rate and amount

of condensation or evaporation occurring within the flow. It depends only on the

temperature difference and water vapor difference imposed at the top and bottom
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boundaries across the convecting system. We note that equation 4.19 is identical to

the Nusselt number obtained by Zhang et al. [93] for moist convection without phase

change, here we have demonstrated that it is useful for cases with phase change as

well.

In fact, assuming temperature and water vapor to have the same diffusivities, the

Nusselt number can be written solely in terms of the familiar atmospheric quantity

‘equivalent temperature’ (e.g., refer to equation 6.74, page 285 of Bohren and Albrecht

[79]):

Te = T + (L/Cp)Qv. (4.20)

The equivalent temperature is defined as the temperature to which air would rise if

all its water vapor were to condense in an adiabatic, isobaric process. Such a process

is allowed by the first law of thermodynamics, but it is prohibited by the second law

of thermodynamics for a closed system [79]. This connection is discussed further in

section 4.6.

Following the exact same steps but using the dimensionless forms of the governing

equations, we get the flux (equation 4.18) in terms of non–dimensional quantities.
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Φ̃µ = W̃ ·
(
T̃ +

L

Cp

∆Qv

∆T
Q̃v

)
− 1√

Ra

(
1√
Pr
∇̃T̃ +

L

Cp

∆Qv

∆T

1√
ScLe

∇̃Q̃v

)
z

(4.21)

The Nusselt number expressed in non-dimensional form would be

Nuµ =
Φµ

L
Cp

∆Qv

∆T
1√

RaScLe
∆Q̃v + 1√

RaPr
∆T̃

(4.22)

Nuµ =
W̃ ·

(
T̃ + L

Cp

∆Qv

∆T
Q̃v

)
L
Cp

∆Qv

∆T
1√

RaScLe
∆Q̃v + 1√

RaPr
∆T̃

(4.23)

−
1√
Ra

(
1√
Pr
∇̃T̃ + L

Cp

∆Qv

∆T
1√
ScLe
∇̃Q̃v

)
z

L
Cp

∆Qv

∆T
1√

RaScLe
∆Q̃v + 1√

RaPr
∆T̃

From equations. 4.21 and 4.22, we note that the flux is independent of Damköhler
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number and supersaturation, the two microphysically-relevant dimensionless param-

eters. Compared to the dry-convection Nusselt number, which depends on Ra and

Pr, for cloudy convection the dimensionless parameters Sc and Le are also needed.

4.4 Numerical Simulations of Moist Rayleigh-

Bénard Convection with Varying Cloud Mi-

crophysics

In this section, we explore the microphysics-independent flux and the equivalent tem-

perature derived in Section 4.2.2 by simulating moist Rayleigh-Bénard convection

under varying microphysical conditions. The simulations are motivated by prior ob-

servations from and simulations of the Pi convection-cloud chamber [24, 41, 94]. The

convection is initiated by imposing an unstable gradient of temperature and water

vapor between the top and bottom plates. The bottom and top plates are maintained

at saturated conditions at 290 K and 276 K respectively. The four sidewalls have adi-

abatic conditions for both temperature and water vapor mixing ratio, and a no slip

condition for velocity. The different aerosol injection rates used in the current study

are listed in Table 4.2, with a cloud-free case included for reference. Correspond-

ing steady-state microphysical properties including the liquid water mixing ratio, the
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cloud droplet number concentration, mean diameter, and water vapor supersatura-

tion are also listed in Table 4.2. These conditions are chosen such that significant

supersaturations and cloud droplet removal by sedimentation are observed. The exis-

tence of non-zero supersaturation implies that the cloud is not in an equilibrium state,

and the condensation process is therefore irreversible. As the aerosol injection rate is

increased, the cloud droplet number concentration increases and the mean diameter

decreases. We also observe an increase in the liquid water content as the aerosol

injection rate is increased, because smaller cloud droplets have lower sedimentation

rates.
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Details of the model setup for the Pi convection-cloud chamber are discussed in

Thomas et al. [41]. A brief description of the model is provided here for sake of

completeness. The simulations use the modified System for Atmospheric Modeling

(SAM) [70] combined with a spectral bin microphysics (SBM) model[105]. The Sys-

tem for Atmospheric Modeling is a large eddy simulation (LES) code that solves the

equations of motion under the anelastic approximation, and that uses a Smagorinsky

model for the subgrid-scales. The equations are integrated using a third-order Adams-

Bashforth scheme on a fully staggered Arakawa C-type grid with uniform horizontal

and vertical grid sizes. The prognostic scalars are advected using a multidimensional

positive definite advection transport algorithm [71]. Boundary fluxes are calculated

using Monin-Obukhov similarity theory.

Aerosol-cloud interactions in SAM are simulated using SBM. The SBM model involves

aerosols and water droplets with size distributions represented in 33 mass-doubling

bins. The model accounts for relevant microphysical processes and interactions, such

as activation of cloud droplets, diffusion growth or evaporation of droplets, drop

collisions, turbulence effects on collisions, and collisional breakup. The present study

focuses only on warm clouds with droplet activation and diffusional growth, and the

effects of collisional growth are turned off.

We consider a convection chamber of dimensions 2 m × 2 m × 1 m along the x, y and

z directions respectively. The computational domain is discretized uniformly with
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cubic boxes of side length 3.125 cm yielding 64× 64× 32 grid boxes. The time step

is 0.02 s, and the system is initialized with an unstable temperature and water vapor

gradient. For the current study, we allow the system to evolve in a cloud-free state

and reach a steady supersaturation of 10.5% (∆T = 14K, Tmean = 283.15K), after

which we inject a single size of cloud condensation nuclei (CCN), corresponding to the

bin centered at 62.5 nm, injected uniformly in the volume of the chamber. The cloud

reaches a steady state after about an hour of simulated time by reaching a balance

between droplet activation and removal due to sedimentation. On reaching a steady

state with respect to microphysics after 1 hour, the system is allowed to evolve for

another 2 hours.

After one hour of physical time, 3D fields are output at every five minutes for the next

three hours to obtain statistically independent droplet size distributions within the

simulated cloud chamber (this time is chosen so as to be larger than the large-scale

circulation time so as to ensure independence). Each grid point thus has a cloud

droplet number concentration sorted into 33 different bins according to their sizes.

The fluxes are evaluated from 3D fields of velocity u, v, w, temperature, water vapor

and liquid water mixing ratio.
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Figure 4.1: Averaged profiles of (a) temperature, (b) water vapor and (c)
equivalent temperature. These profiles were obtained by horizontal averag-
ing of the 3D output obtained every 5 minutes within a span of 2 hours,
after reaching a steady state. Each color refers to different CCN injection
rates; for details refer to Table 4.2.

4.5 Results: LES of Cloudy Convection with Vary-

ing Microphysics

4.5.1 Vertical profiles of scalars

Figure 4.1 shows vertical profiles of temporal and area (horizontal) averaged tem-

perature, water vapor mixing ratio and total water content for the different aerosol

injection rates. The injection of aerosols into the supersaturated system described

in section 4.4 results in the formation of cloud droplets. The liquid water content
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in the chamber reaches a steady state through a dynamic equilibrium between con-

densational growth and gravitational sedimentation. As shown already in Table 4.2,

and as observed in both experiments and prior simulations [24, 41], increasing the

aerosol injection rate results in a corresponding increase in the steady-state liquid

water content in the cloudy Rayleigh Bénard convection system. The condensation

rate is proportional to NdD, where Nd is the number concentration of droplets and

D is the mean droplet diameter, and therefore increases with aerosol injection rate.

That leads to a reduction of the mean water vapor mixing ratio as shown in figure

4.1(b) and an increase in the bulk temperature due to enthalpy change associated with

condensation Fig 4.1(a). This reduction in the mean water vapor mixing ratio and

increase in the mean temperature result in a much lower supersaturation for cloudy

conditions compared to moist conditions without any aerosols. Therefore, as evident

from Table 4.2, the mean bulk supersaturation shift towards zero as the number con-

centration and liquid water content increase. We observe a monotonous increase of

equivalent temperature in Fig 4.1(c) with increasing cloud droplet number concen-

tration. From a parcel point of view, one would expect the equivalent temperature

to be a constant for a given total water content. However, the total water content

inside the cloud chamber is not a constant. As the number of cloud droplets increase,

the droplet radius decreases increasing the droplet lifetime. Thus, with a reduced

the precipitation efficiency, the total water content and consequently the equivalent

temperature increases.
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4.5.2 Sensible heat flux, latent heat flux and microphysics-

independent flux

The sensible heat flux (SHF), latent heat flux (LHF) and microphysics-independent

flux defined in equation (4.18) are plotted in figure 4.2. The boundary flux contribu-

tions are discussed later, and only the turbulent fluxes are considered in this figure.

In the bulk, the turbulent transport terms for scalars are of the form, u′iφ
′, where φ′

is the fluctuation component of a scalar. The turbulent sensible heat flux and latent

heat flux at any height z are given by:

SHFturbulent = ρz Cp〈u′kT ′〉z (4.24)

LHFturbulent = ρz Lw〈u′kQ′v〉z. (4.25)

The height-dependent density ρz has to be multiplied to account for non-

Oberbeck–Boussinesq (NOB) effects associated with strong temperature gradients.

Again, the SGS fluxes and boundary contributions are not considered here, there-

fore these equations are applied along the height of the chamber to generate figure

4.2. The variability inherent in the turbulent flow is shown with uncertainty bars

obtained from the standard deviation of the average values of 12 samples, with each

sample representing a 10-minute average (roughly 10 large-scale circulation times).

The averaged microphysics-independent flux, as predicted, remains relatively constant
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Figure 4.2: Time averaged profiles of (a) SHF (ρCpw′T ′), (b) LHF
(ρLw w′Q′v) and (c) microphysics independent flux (MIF) from 3D outputs
sampled at a frequency of 5 minutes for 2 hours. The shaded region shows
the turbulent variability in the data. The line colors refer to the different
CCN injection rates, as defined in Table 4.2.

compared to SHF and LHF under different aerosol injection rates. Specifically, the

sensible and latent heat flux profiles are increasingly sloped as aerosol injection rate

increases, and the curves lie outside the turbulent variability envelopes near the top

and bottom boundaries. The microphysics-independent fluxes calculated for different

aerosol injection rates, however, fall within the inherent turbulent variability.

The profiles of SHF [figure 4.2(a)] and LHF [figure 4.2(b)] can be interpreted by

considering the governing equations for temperature and water vapor in the presence

of cloud droplets:

∂T

∂t
= ∇ · (−UiT + νT∇T ) +

Lw
Cp
Q̇L (4.26)
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∂Qv

∂t
= ∇ · (−UiQv + νv∇Qv) − Q̇L (4.27)

For a steady state system the left sides of Eqs. (4.26) and (4.27) are zero. On ap-

plying Reynolds decomposition and horizontal area averaging, the first term in Cp×

equation (4.26) is the sensible heat flux Cp
(
w′T ′ − νT∇zT

)
, and the first term in

Lw× equation (4.27) is the latent heat flux Lw
(
w′Q′v − νv∇zQv

)
. Under these as-

sumptions, Cp× equation (4.26) and Lw× equation (4.27) can be written as

d
(
SHF

)
dz

= LwQ̇L (4.28)

d
(
LHF

)
dz

= −LwQ̇L (4.29)

From equation (4.28) and equation (4.29) it is clear that a net condensation rate

results in vertical gradients of SHF and LHF, and that horizontally-averaged vertical

profiles of SHF and LHF have opposite slopes as demonstrated in low cloud droplet

number cases A, B, and C in figure 4.2. However, as the number of cloud droplets

in the bulk increases the supersaturation approaches water vapor saturation (refer

Table 4.2). In such cases, any supersaturation is produced at the boundaries due to

the mixing of plumes from the boundary with the bulk parcels thus localizing any

condensation predominantly to the boundaries. Therefore, the slope of SHF and LHF

in the bulk of the chamber, characterizing the condensation rate, reduces as shown by

the SHF and LHF profiles of cases D, E, F, and G in figure 4.2. From the theoretical
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derivation, we expect the MIF to remain a constant along the height of the chamber.

From the LES simulations, we notice from panel (c) of figure 4.2, MIF remains within

the turbulent variability for different cloud droplet number cases.

4.6 Discussion

The theoretical analysis and results presented so far confirm that the effective heat

flux in a cloudy convection is conserved, and is independent of the rate of condensa-

tion/evaporation in the fluid from the LES simulations. Additionally, the theoretical

analysis also shows that the effective flux is independent of the nature of the nucle-

ation: heterogeneous (aided by aerosols - current study) or homogeneous ([106]). The

effective heat flux is only a function of Ra, Pr, Sc and Le. The fact that the effective

heat flux is independent of the form of phase change aids in generalizing the present

work to any form of phase change in the bulk. This would indicate that convective

system with a heat source/sink in the core of the flow, similar to effects of a first order

phase transition, will have an effective heat flux similar to the one in equation (4.18).

Let us consider the simple case of a boiling system [107]. A similar formulation is

applicable in the context of a two-phase boiling convection system (e.g. boiling of

water), where the roles of vapor and liquid is reversed with reference to the current

study. The latent heat of condensation is replaced with the latent heat of vaporization
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in the corresponding temperature, i.e., the sign of the phase change term in the

temperature, water vapor and liquid water equation is reversed. Furthermore, the

rate of boiling in the bulk of the fluid will depend on the number concentration

of the bubbles and their total surface area, similar to the observations discussed in

Section 4.5. Thus, the net heat flux in a boiling convective system will have the exact

form as Equation 4.18, with the latent heat of condensation replaced by the latent

heat of fusion/vaporization.

Additionally, this analysis can be extended to chemically reacting systems, where the

heat release/absorption associated with the reaction is analogous to the latent heat

of condensation/evaporation in a cloudy system. The idea of Damköhler number

discussed in the present work is borrowed from studies involving chemically reacting

systems, and is used for identifying slow, moderate and fast reaction with respect to

the flow timescale [108]. Thus, a chemically reacting system is analogous to a cloudy

convection system, and will have an effective heat flux that will be independent of

the Damköhler number.

The discussion so far suggests that in a convection system, the heat released/absorbed

in the bulk of the fluid due to phase change effects or chemical reactions does not

influence the effective flux, which is dependent only on the boundary contributions.

Thus, this flux (in the limit when Sc = Pr) is conserved and could be used for iden-

tifying the effects of non-conservative contributions to the flow, for e.g., entrainment
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effects in a cloudy boundary layer flow (see the sub-section on atmospheric implica-

tions for additional details), evaporating jets, etc.. Additionally, the properties of the

effective flux is applicable in the context of extrasolar planetary atmosphere that have

cloud systems composed of fluids with properties very different from that of water

[106, 109].

Finally, the equivalent potential temperature is defined as the temperature attained

by a parcel of air when all the water vapor content is converted to liquid water by

raising the parcel from the surface to infinity :

θe = θ exp(LwQv/CpT ) ≈ θ + LwQv/Cp. (4.30)

Further, it should also be noted that this derivation assumes the entropy change

to be zero. Multiplying equation 4.30 with Cp, gives another familiar atmospheric

quantity, the moist static energy Se = Cp T + g z + LwQv. The moist static energy

is obtained from the first law and is essentially equivalent to the enthalpy [110]. It

has been widely used to study the energy budget in deep convective clouds as well as

the response of clouds to entrainment [111, 112, 113, 114].
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4.7 Summary and Outlook

In Section 4.2.2, we have derived a flux independent of microphysics that is conserved

with the height of the chamber. Over the range of the microphysics explored here, we

also observe that the flux is independent of microphysics. Subsequently, we expand

the definition of Nusselt number derived by Zhang et al[93] to include the effect of

cloud microphysics as well. Further, by non dimensionalizing equations of tempera-

ture and water vapor mixing ratio, we identify Damköhler number, Schmidt number,

Prandtl number and Lewis number are relevant for cloudy Rayleigh Bénard convec-

tion cases, in addition to the traditional Rayleigh number and Prandtl number for

dry Rayleigh Bénard cases.

In Section 4.5 we demonstrate that the microphysics independent flux remains a con-

stant for different aerosol injection cases explored using an atmospheric LES modified

to simulate cloudy Rayleigh Bénard processes. One of the caveats associated with

atmospheric models is that they assume the same turbulent diffusivities for temper-

ature and water vapor in the LES. We demonstrate the increase in latent heat flux

and a commensurate decrease in the sensible heat flux from bottom surface resulting

in a constant heat flux for different cloud droplet number cases. Further, we explain

the profiles of latent heat flux and sensible heat flux within the chamber as a function

of the condensation rate within the bulk of the Rayleigh-Bénard convection flow.
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Finally in Section 4.6, we explore the possibility of using fluxes analogous to micro-

physical independent flux for other phase change systems such as boiling convection

systems and for chemically reacting systems. Further, we connect the microphysical

independent flux to the atmospheric context - in terms of equivalent temperature,

equivalent potential temperature and moist static energy.

Ideally, investigations using direct numerical simulations with point particles would

allow for a more detailed investigation on the conservation of the microphysics inde-

pendent flux. Thus a parameters space varying Ra , Pr , Sc ,Da can be explored from

a fluid dynamics perspective and from an atmospheric context, the effect of roughness

and surface flux parameterizations needs to be explored thoroughly. Thus the micro-

physics independent flux can lead to the development of improved parameterizations

of heat and mass fluxes for cloudy convection.
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Chapter 5

Is the water vapor supersaturation

distribution Gaussian?

“It is by logic that we prove, but by intuition that we discover.”

- Henri Poincaré

This chapter is about the mixing supersaturation PDFs. It is based on a collaborative

research published in the Journal of Atmospheric Sciences.1.

1An edited version of the paper is published by AMS[115]
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Abstract

Water vapor supersaturation in the atmosphere is produced in a variety of ways,

including the lifting of a parcel or via isobaric mixing of parcels. However, irrespective

of the mechanism of production, the water vapor supersaturation in the atmosphere

has typically been modeled as a Gaussian distribution. In the current theoretical

and numerical study, the nature of supersaturation produced by mixing processes is

explored. The results from large eddy simulation and a Gaussian mixing model reveal

the distribution of supersaturations produced by mixing to be negatively skewed.

Further, the causes of skewness are explored using large eddy simulations and the

Gaussian mixing model. The correlation in forcing of temperature and water vapor

fields is recognized as playing a key role.

5.1 Introduction

According to Köhler theory, cloud microphysical processes such as activation, deacti-

vation and growth of cloud particles depend on the mean thermodynamic properties of

the environment surrounding the particle [39]. These thermodynamic properties are

determined by the temperature and water vapor content present in the system. Cloud

particles respond to any non-equilibrium conditions present in the cloud system by
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condensational growth or evaporation according to the Le Chatelier’s principle [102].

In a thermodynamically stable two-phase system, the water vapor pressure dynami-

cally balances the condensation and evaporation fluxes over a flat, pure water surface

at temperature T . This vapor pressure is called the saturation vapor pressure and is

given by the Clausius–Clapeyron equation. Any excess/deficit of vapor pressure leads

to non-equilibrium conditions, and is quantitatively expressed by supersaturation (s),

and is given by,

s =
qv

qsat(T )
− 1 (5.1)

Please refer to Appendix A for variable definitions.

The study described in [116] theoretically explored the implications of turbulent fluc-

tuations on droplet size distributions, and recent experimental [23, 24, 40] , field

[82, 117, 118, 119] and numerical [1, 2, 36, 120, 121, 122, 123, 124] studies have

demonstrated the importance of scalar fluctuations caused by turbulence on activa-

tion, condensational growth and deactivation processes for aerosol and cloud particles,

in addition to the mean supersaturation [39, 44]. Thus, an accurate representation of

the supersaturation variability is required to capture the cloud microphysics effects

[125].

In modeling studies, if supersaturation is treated as a random variable at all, its prob-

ability density function (PDF) is usually treated as Gaussian [2, 43, 123], similar to

scalars like temperature and water vapor mixing ratio. However, the supersaturation
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PDF is dependent on the process by which supersaturation is produced. In a par-

cel view of the atmospheric clouds, supersaturation can be produced by the vertical

ascent of parcels [39] and by the isobaric mixing of parcels [126]. Cloud entrain-

ment [127, 128] and cloud–free Rayleigh-Bénard convection [2, 3, 93] are examples

of processes that can produce supersaturation via isobaric mixing, occurring both in

nature and in the laboratory. For the current study, we focus on supersaturation

generated via mixing processes, and cloud–free Rayleigh-Bénard convection (RBC)

is an ideal surrogate for such processes. RBC can be considered the simplest model

of the subgrid-scale mixing within a typical cloud Large Eddy Simulation(LES), for

example. It is further advantageous because it efficiently produces a statistically sta-

tionary thermodynamic state corresponding to the mixing processes. Furthermore,

an atmospheric LES model can be modified to simulate cloud–free RBC to exclu-

sively study mixing processes without any complexities and uncertainties involving

cloud-supersaturation feedback interactions and boundary forcings. This model not

only serves as the test bed to reveal insights into the nature of supersaturation PDF

produced by mixing processes in the absence of cloud droplets, but also helps in

validating a computationally inexpensive Gaussian mixing model introduced here.

In this study, we investigate the shape of the supersaturation PDF in the context of

atmospheric mixing processes in the absence of cloud droplets using an atmospheric

LES and a Gaussian mixing model(GMM) detailed in section 5.3. The results are

presented in section 5.4 and atmospheric implications are discussed further in section
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5.5.

5.2 Theory

Scalar equations

We begin by considering the origin of supersaturation fluctuations. The advection–

diffusion equation of scalars with external large scale forcing required to sustain the

fluctuations is given by

∂T

∂t
= ∇ · (−UT + α∇T ) +

Lv
Cp
q̇l + fT (5.2)

∂qv
∂t

= ∇ · (−U qv + νv∇qv) − q̇l + fq (5.3)

Consider Eq. 5.2; the rate of change of temperature at a point depends on the temper-

ature advected by the fluid motion, the diffusional heat transfer due to local gradients,

rate of release/absorption of latent heat due to condensation/evaporation and finally

any external forcing. Similarly in Eq. 5.3, for water vapor, all the terms on the right

hand side are analogous to Eq. 5.2 except for the latent heat effects term which is

replaced by rate of condensation/evaporation of water vapor. Note that we have used
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temperature (T ) instead of pressure compensated potential temperature because iso-

baric mixing assumes the process to be local in nature. For parcel studies such as

[122], fT & fq represent the change in forcing of temperature and water vapor due to

the entrainment of surrounding environmental air into the parcel.

From Eqs. 5.2 and 5.3 we gather that for a given flow field, the difference between

appropriately normalized temperature and water vapor fields at a location can arise

only from one of the following scenarios: (i) differential diffusivity of scalars, (ii)

condensation/evaporation processes and (iii) correlation between fT & fq.

In the absence of cloud droplets for a RBC system in steady state, the bulk mean

temperature (T ) and water vapor (qv) are given by

T =
ρt Tt + ρb Tb
ρt + ρb

(5.4)

qv =
ρt qvt + ρb qvb

ρt + ρb
. (5.5)

In this context, bulk refers to the region of fluid sufficiently far away (∼ 12.5cm) from

the boundaries. Without considering the effects of turbulence, at a given pressure,

the mean supersaturation expressed in mixing ratios is given by

s =
qv

qsat(T )
− 1 (5.6)

For a turbulent flow, [36] derived the supersaturation mean and variance to be
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Eq. (5.7) and (5.8) respectively:

s =
qv

qsat(T )

{
1− Lv

RvT

q′vT
′

qvT
+[

1

2

(
Lv

RvT

)2
T ′2

T
2 +

Lv

RvT

T ′2

T
2

]}
− 1

(5.7)

σ2
s =

(
qv

qsat(T )

)2{
q′2v
qv

2 − 2
L

RvT

q′vT
′

qvT
+(

Lv

RvT

)2
T ′2

T
2

}
.

(5.8)

For random variables x and y, the ensemble mean is represented as x, any fluctuations

from the mean by prime x′ and co–variance terms by x′y′.

To understand the role of turbulence on the mean supersaturation, one can subtract

Eq. 5.6 from Eq. 5.7. The coefficient of terms with (T ′/T )2 is always positive and

hence tends to increase the mean supersaturation. On the other hand, the coefficient

of the co-variance term q′vT
′ is negative, hence its effect on mean supersaturation

depends on the sign of the covariance term. In the subsequent sub-section we explore

the factors affecting q′vT
′.

Discussions on the water vapor temperature co-variance

On applying Reynolds decomposition for temperature and water vapor (e.g., refer to

chapters 3 and 4 of [129]) by separating into mean and fluctuation components and
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subtracting the mean equations, we get the evolution equation for temperature and

water vapor fluctuations:

∂T ′

∂t
= ∇ ·

(
−UT ′ −U′ T + α∇T ′ − U′T ′

)
+
Lv
Cp
q̇′l + fT (5.9)

∂q′v
∂t

= ∇ ·
(
−U q′v −U′ qv + νv∇q′v − U′q′v

)
− q̇′l + fq. (5.10)

To derive the evolution equation for q′vT
′, we multiply Eq. 5.9 with q′v and Eq. 5.10

with T ′

q′v
∂T ′

∂t
= q′v∇ ·

(
−UT ′ −U′ T + α∇T ′ − U′T ′

)
+
Lv
Cp
q′v q̇
′
l + q′vfT

(5.11)

T ′
∂q′v
∂t

= T ′∇ ·
(
−U q′v −U′ qv + νv∇q′v − U′q′v

)
− T ′q̇′l + T ′fq.

(5.12)

Summing Eqs. 5.11 and 5.12 we obtain

∂q′vT
′

∂t
= − q′v∇ ·

(
−UT ′ −U′ T + α∇T ′ − U′T ′

)
− T ′∇ ·

(
−U q′v −U′ qv + νv∇q′v − U′q′v

)
+
Lv
Cp
q′v q̇
′
l − T ′q̇′l + q′vfT + T ′fq.

(5.13)
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The time evolution of q′vT
′ is obtained by averaging Eq. 5.13

∂q′vT
′

∂t
+ U · ∇

(
q′vT

′
)

+ U′ · ∇ (q′vT
′) +

U′T ′ · ∇ (qv) + U′q′v · ∇
(
T
)

=

νv∇2
(
q′vT

′
)
− νv 2

(
∇q′v∇T ′

)
+ (Le− 1) νv q′v∇2 T

+
L

Cp
q̇l
′q′v − q̇l′T ′ + T ′fq + q′vfT .

(5.14)

In Eq. 5.14, the first term on the left hand side is the time evolution of q′vT
′, while

the second and the third terms represent advective transport by mean and fluctuating

components of the flow. The fourth and fifth terms on the left hand side are the two

sources for production of q′vT
′ due to the presence of a mean gradient in temperature

and water vapor. The interpretation of the right hand side of Eq. 5.14, is complicated

due to the production of local gradients in temperature and water vapor due to phase

change processes.

For the ease of interpretation, let us assume a case in the absence of droplets and

external forcing. Therefore, terms with q̇l
′ disappear from the right hand side of

Eq. 5.14 and only the diffusive terms are retained. For such a case the right hand

side can be rewritten as

νv∇2
(
q′vT

′
)
− νv 2

(
∇q′v∇T ′

)
+ (Le − 1) νv q′v∇2 T , (5.15)
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where Le = α/νv is the Lewis number. These terms on the right hand side of

Eq. 5.15 can be interpreted as follows: the first term is the diffusive transport of

q′vT
′ and the second term is the dissipation term since ∇q′v∇T ′ is positive definite

since both scalars behave identically in the flow field. The third term is relevant for

cases with differential diffusivity, Le 6= 1. The effects of differential diffusivity make

the interpretation of the term difficult without a fully resolved study. It should be

noted that these effects are significant only at diffusive length scales.

To evaluate the phase change effects, consider a system with temperature and water

vapor transported only by advection processes but including condensation effects.

In such a case, any local condensation results in the depletion of water vapor and

increase in temperature and vice versa for any local evaporation. Therefore, q̇l
′q′v −

q̇l
′T ′ would always be negative and hence acts as a sink term for q′vT

′. However,

in physical systems phase change events produce local gradients of temperature and

water vapor, resulting in interactions of all terms on the right hand side of Eq. 5.14.

Strictly speaking, these processes can only be disentangled through particle-resolved

simulations of the turbulent flow, i.e., even beyond direct numerical simulation of

turbulence, down to the temperature and vapor gradients existing at particle scales.

Here, we will focus primarily on the supersaturation PDF without cloud droplet

growth.

The production terms U′T ′ · ∇qv and U′q′v · ∇T in Eq. 5.14 are active only close to
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the boundaries where ∇T and ∇qv are significant. The terms U′T ′ and U′q′v at these

boundaries are generally modeled using Monin-Obukhov similarity theory. The diffu-

sive terms in atmospheric models are modeled using sub-grid scale parameterizations.

Finally, the rate of condensation depends on the microphysical parameterization. It

should be noted that the time rate of change of q′vT
′ depends entirely on the level

of approximation with reality by Monin-Obukhov similarity theory, subgrid-scale pa-

rameterization of diffusivity and microphysics.

5.3 Analysis Tools

In this paper, we use two computational approaches to explore supersaturation fluctu-

ations in a turbulent Rayleigh-Bénard convection flow. First, we describe a detailed

Large Eddy Simulation approach, and second, we introduce an idealized Gaussian

mixing model based on observed behavior of scalar fields from measurements and

numerical studies of Rayleigh-Bénard convection. The latter model also can explore

the effect of differential diffusivity, forcings of temperature and water vapor and their

correlations on the supersaturation PDF.
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5.3.1 Large Eddy Simulation

The System for Atmospheric Modeling (SAM) [70] coupled with Hebrew University

Spectral Bin Microphysics [65, 74] is configured to simulate the Michigan Tech Pi

Cloud Chamber as described in [41]. We provide a brief discussion of the model for

completeness. The RBC system is a 2m × 2m × 1m box modeled as 64 × 64 × 32

grid points with a grid size of 3.125 cm. The convective system is initialized by

imposing an unstable temperature gradient and water vapor mixing ratio gradient

along the height of the chamber, keeping the top and bottom boundaries saturated.

Furthermore, adiabatic conditions for temperature and water vapor mixing ratio are

imposed for the sidewalls. Once initialized, the system is allowed to evolve for 2 hours

of physical time and the simulation reaches a stationary state in 20 minutes. The

results from the last 1 hour of the simulation are used for the analysis presented here.

5.3.2 Gaussian Mixing Model

The isobaric mixing process in a turbulent cloud–free RBC system is emulated using

a Gaussian mixing model. In the model, the PDFs of temperature and water vapor

are assumed to be Gaussian in nature, as is observed for the bulk fluid in turbulent

RBC ([35, 130] and references therein). The mean for temperature and water vapor
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are given by Eqs. 5.4 and 5.5. The standard deviation required for the description

of a Gaussian PDF in RBC is given by equations 3.6 and 3.7 from [3] and can be

rewritten as

σ∗T = C−1/2Ra−1/6
m

( z
H

)−1/2

(5.16)

σ∗qv = C−1/2Ra−1/6
m Sc−1/2 Pr1/2

( z
H

)−1/2

, (5.17)

with

σ∗T ≡ σT∆T−1

σ∗qv ≡ σqv∆q−1
v

C = κ× C1
−2.

Here, Ram is the ratio of time–scale for transportation via diffusion to convection,

Pr is the ratio of momentum diffusivity to thermal diffusivity, Sc is the ratio of

momentum to vapor diffusivity and Le is the ratio of thermal diffusivity to vapor

diffusivity or Sc/Pr. The procedure for calculating C is described next. For a given

temperature difference, the mean and standard deviation of temperature are obtained

at the mid-plane (z = H/2) of the RBC cell using LES. From Eqs. 5.16 and 5.17, C

is calculated after setting Pr equal to Sc since the effects of differential diffusivity

are not captured in the current LES model.C has a mean value of 3.378 and standard

deviation of 0.51 from the 4 LES simulations. In the absence of any trend, for the

subsequent calculations, C is assumed to be a constant 3.378. A Gaussian profile is
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assumed for the temperature and water vapor, with the mean values calculated using

Eqs. 5.4 and 5.5. Thus a single realization of random variables – temperature and

water vapor mixing ratio, is obtained by the following expression.

T = T + σTNT (0, 1) (5.18)

qv = qv + σqvNqv(0, 1). (5.19)

Here, NT (0, 1) and Nqv(0, 1) are normally distributed Gaussian random numbers with

zero mean and unit variance. Generally, NT and Nqv need not be correlated, how-

ever for physical systems one can expect a certain level of correlation between the

temperature and water vapor scalars. From LES results, we find this correlation co-

efficient to be 0.9994. We use Cholesky decomposition of the T–qv co-variance matrix

to generate a lower triangular matrix and its transpose, and further we use the re-

sulting lower triangular matrix to create any desired correlation coefficient between

the temperature and water vapor scalars.

Figure 5.1 shows the supersaturation PDFs of four cases with temperature differences

of 8 K, 10 K, 14 K and 18 K. The solid line shows the data obtained from LES at

the mid plane of the chamber, at least 12.5 cm away from the sidewalls. The dashed

lines are the results from the GMM model with correlation coefficient between T –

qv to be 0.9994 and the constant C set to 3.378. We notice the shapes of the PDFs

are qualitatively the same and the modes are shifted by 10% maximum. This level

108



of agreement of the GMM will suffice for exploring the qualitative behavior of the

supersaturation distribution under varying assumed T – qv correlations.

Assuming the correlation coefficient between temperature and water vapor remains

the same, the effects of differential diffusivity of scalars are explored by varying Pr

and Sc. In order to understand the effect of scalar forcings, the correlation coefficient

between NT (0, 1) and Nqv(0, 1) is changed and further in section 5.4 explored without

considering the differential diffusivity effects .

5.4 Results

The supersaturation PDFs simulated using LES are shown in Fig. 5.1, for temperature

differences of 8 K, 10 K, 14 K and 18 K with an initial mean of 283.16 K. Though the

bulk temperature and bulk water vapor PDFs are Gaussian in nature, a negatively

skewed supersaturation PDF is observed in the bulk of the chamber. From Table

5.1, it is clear that the magnitude of the skewness is larger at lower temperature

differences than at higher values. For LES, the term ‘bulk’ here refers to all the grid

cells that are at least 12.5 cm away from the walls of the chamber, in order to avoid

the wall effects.

In order to understand this negative skewness, the supersaturations obtained from
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Figure 5.1: Cloud–free Rayleigh-Bénard convection supersaturation PDFs
for different temperature differences (∆T , refer to labels) centered at the
same mean temperature (Tm = 283.16 K). As the temperature difference
increases, the supersaturation PDF becomes more symmetric. The LES
data is obtained from the bulk, whereas the GMM data is obtained at the
center of the chamber z = 0.5H.

the LES runs are plotted against temperature. A mixing curve obtained by mix-

ing parcels from top and bottom plates, characterized by different temperature and

saturated water vapor mixing ratios, in different proportions, is also shown. In Fig.

5.2 the mixing curves (dashed lines) are plotted in supersaturation and temperature

coordinates. The filled circles are the LES results from the bulk of the chamber. For

a RBC system without the density effects, the density–weighted mean temperature is
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Figure 5.2: Supersaturation versus temperature, illustrating the mixing
line (dashed line) and LES data (filled circles) for different temperature
differences (∆T , refer to labels) centered at the same mean temperature
(Tm = 283.16 K). Note that only a small part of the mixing curve is sampled
during a turbulent mixing process in the bulk. The part of the mixing curve
sampled becomes less symmetric as the temperature difference is increased.

the mean temperature between the top and the bottom plates. At low temperature

differences, the peak of the mixing curve coincides with the density–weighted mean

temperature, hence the mode of supersaturation is the maximum supersaturation.

As the temperature difference increases, the peak of the mixing curve shifts to lower
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∆T (K) T (K) σT (K) Mean (%) Mode (%) Skewness
8 283.09 0.2492 3.201 3.22 -2.70
10 283.05 0.3993 4.985 5.04 -2.47
14 282.94 0.5012 9.842 9.91 -1.51
18 282.86 0.6041 16.437 16.53 -1.14

Table 5.1
Mean, mode and skewness of supersaturation for different temperature

differences. These results are obtained from the LES simulations starting
with a mean temperature of 283.16 K. Note the decrease in supersaturation

skewness as ∆T increases.

temperature. This leftward shift of the mixing curve arises from the non-linear nature

of the Clausius–Clapeyron equation. Hence the density–weighted mean temperature

in the fluid moves from the maximum to the relatively linear region of the mixing

curve. Furthermore, the region of the mixing curve sampled by the bulk increases,

due to the increased variance of temperature and water vapor as a result of increase

in Rayleigh number. Though density effects (Non-Boussinesq effects) can counter-act

these effects by reducing the positive skewness of the mixing curve and reducing the

mean temperature, these effects are negligible for our conditions (refer to Table 5.1).

Please note that all of the mixing line is not populated because only the bulk is sam-

pled, the rest of the mixing line can be sampled from the boundary layer regions near

the top and bottom walls.

Figure 5.3(a) plots qv versus T , comparing the Gaussian mixing model (red dotted

line) and LES results (blue). Notice that they lie on a straight line joining the points

corresponding to the state of the top and bottom plates. Figure 5.3 (b) compares

the supersaturation PDFs obtained from the LES and the GMM. The deviation of
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Figure 5.3: (a) Water vapor mixing ratio versus temperature, showing the
Clausius–Clapeyron line (black dashed line), LES data (blue filled circles)
and GMM data (red dotted line). (b) Comparison of supersaturation PDF
of LES data (blue) and GMM data (red), notice LES data has a longer
negatively skewed tail compared to GMM results. Plots are generated with
∆T = 18 K and Tm = 283.16 K. LES assumes the same turbulent diffusivities
for temperature and water vapor, and for comparison the GMM also assumes
the same diffusivities for temperature and water vapor in the calculation of
standard deviations of these scalars.

the the model from the LES results is probably due to the approximation of scalar

fluctuations to be Gaussian. The skewness of the temperature data from the LES

reveals a slight positive skewness of the order of 0.1, compared to 0.0 for a perfect

Gaussian distribution. The density effects drive the mean bulk temperature to slightly

less than the average of top and bottom plate temperatures, hence more positive

fluctuations arise to reduce this difference.
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Figure 5.4: Supersaturation versus temperature and supersaturation PDFs
illustrating the effect of differential diffusivity in the mixing process, by
varying the ratio of νv/α shown in different colors. Panel (a) shows the
distribution of these points about the mixing curve (dashed black curve).
Panel (b) compares the PDF generated with real physical diffusivities (black)
compared to a case with same diffusivities (red). The differential diffusivity
results in a deviation from theoretical mixing processes and this deviation
results in the reduction of negative skewness. Though differential diffusivity
reduces the skewness of the supersaturation PDF and increases the left–right
symmetry, the supersaturation PDF is still negatively skewed. Results are
obtained from the GMM for ∆T = 8 K.

Figure 5.4(a) illustrates the effect of differential diffusivities on supersaturation fluc-

tuations. The case νv = α = Le−1= 1, shown in red is the diffusivity formulation

ubiquitous across LES and most DNS. As discussed earlier, this result in a negatively

skewed distribution of the supersaturation PDF. The physical diffusivities follow Le−1

= 1.16, and the role of differential diffusivity is explored with Le−1 of 0.75 and 1.33.

An interesting observation is that except for when Le−1 = 1, the mixing process no
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Figure 5.5: Panel (a) shows the saturation ratio PDF and panel (b) the
mixing ratio versus temperature for different correlation coefficients (fT fq)
shown in different colors. Results are plotted assuming equal scalar diffusiv-
ities with ∆T = 8 K. The mean temperature and the variance of scalars are
the same across the different cases.

longer follows an isobaric mixing line (black dotted line). From the earlier arguments

based on the density–weighted mean temperature, it is easy to see that the differen-

tial diffusivities do reduce the negative skewness of supersaturation as illustrated in

Fig. 5.4(b). However, note that the PDF is still non-Gaussian and negatively skewed

with Le−1 = 1.16. A detailed treatment of differential diffusivity and its role in the

supersaturation PDF pertaining to RBC can be found in [3].

In all the cases discussed above, the forcings of temperature and water vapor, fT and

fq respectively, have a perfect correlation. In Fig. 5.5 (a) we can see a broad symmetric
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supersaturation PDF for uncorrelated and anti-correlated forcings of temperature and

water vapor. We recall that for a cloud–free RBC system, as described in Sec. 5.3,

the minimum saturation ratio that is allowed is 100%. However, for lower correlation

coefficients, saturation ratios are as low as 90 % as show in the figure. Any decrease in

forcing correlation from a perfect correlation coefficient of 1 (shown in blue) results in

a change in the average slope of the distribution of points (panel a) and an increased

spread of the distribution of points around the average slope. From Fig. 5.5(b), it is

observed that the spread reaches a maximum when the scalar forcings are perfectly

uncorrelated (shown in red) and as they become anti-correlated the spread starts to

reduce and falls on a line for correlation coefficient of −1 (shown in green). During

this process, the points fall below the limit imposed by the Clausius–Clapeyron line

resulting in subsaturated conditions.

Figure 5.6 illustrates the effect of cloud droplet growth on the supersaturation gener-

ated by mixing. The blue dots represent the mixing line in the absence of cloud

droplets and red dots represent the mixing in the presence of cloud droplets at

the high Damköhler (Da) number limit [24]. The high Da case is similar to the

bulk microphysics limit for which the mixing leads to points collapsing onto the

Clausius–Clapeyron line. In Fig. 5.6 the straight, cloud-free mixing line approaches

the Clausius–Clapeyron curve as the Damköhler number increases. The slight de-

viation the from Clausius–Clapeyron curve can either be the result of a numerical

artifact or a physical process and cannot be resolved using the current LES model.
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Figure 5.6: Mixing ratio versus temperature for cloud–free (blue) and
cloudy (red) conditions simulated using LES for a ∆T = 20 K with Tm
= 283.16 K, with equal diffusivities for temperature and water vapor. On
reaching a steady state cloudy condition, the water vapor mixing ratio moves
closer to the Clausius–Clapeyron line.

This transition requires careful investigation and will be explored in a future study.
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5.5 Discussion and Concluding Remarks

The comparison and verification of the previously demonstrated numerical results

with experiments is the focus of ongoing research. It depends on making measure-

ments of the distribution of supersaturation in a turbulent flow, which is a signifi-

cant experimental challenge. Very few direct measurements are available from the

field [82, 117]. Progress toward in situ measurement of supersaturation in cloud–free

Rayleigh-Bénard convection is discussed in [81]. Efforts for simultaneous remote mea-

surement of temperature and water vapor concentration at sufficiently high precision

for obtaining reliable supersaturation estimates are also being made [131].

In the current study, we use LES and a Gaussian mixing model to explore the isobaric

mixing processes in an idealized turbulent cloud–free Rayleigh-Bénard convection sys-

tem. In the idealized system we observe the supersaturation PDF to be non-Gaussian

and negatively skewed, as shown in Fig. 5.1. Further, we observe the PDF to be more

negatively skewed for smaller temperature differences than at higher temperature

differences.

To understand the supersaturation PDF and how it may be generalized to other

contexts, we explore the co-variance term q′vT
′. We identify differential diffusivity,
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condensation/evaporation processes and the correlation coefficient between any forc-

ing of temperature and water vapor as possible causes of any change in the magnitude

of the co-variance q′vT
′. For example, using the GMM we notice that the supersatu-

ration PDF tends to be less skewed when differential diffusivity is accounted for.

A detailed understanding of the effect of condensation/evaporation on q′vT
′ would

require a dedicated study over a range of microphysical conditions. However, for

a high Dämkohler number [24] case, we observe that the mixing line falls on the

Clausius–Clapeyron curve, assuming the same diffusivity for temperature and water

vapor. In [125] it is observed that the supersaturation PDF tends to become narrower

in the interior of the cloud, consistent with the high Dämkohler number predictions

from [24]. Such a narrowing of the supersaturation PDF can be observed in the

current study also — however the detailed source of destruction of the width of the

supersaturation PDF would require a cloud droplet resolved study.

A key point emerging out of the current study is the importance of correlation coef-

ficient between external forcings of temperature and water vapor, fTfq. Figure 5.7

shows saturation ratio PDFs for several values of fTfq in panel a, and the corre-

sponding mixing diagrams in panel b. The temperature difference is chosen to be 8 K

(corresponding to Fig 9 from [3]), so that for cloud–free RBC with saturated boundary

conditions any point in the bulk of the chamber cannot be subsaturated. However,
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Figure 5.7: (a) Saturation ratio PDF and (b) mixing ratio for different
correlation coefficients (fT fq) from studies by [1, 2] and [3] shown in different
colors. Results are plotted assuming same scalar diffusivities with ∆T = 8
K. This temperature difference is chosen to match the supersaturation PDF
shown in Fig 9 of [3]. Supersaturation fluctuations introduced by keeping
temperature constant and fluctuating water vapor mixing ratio (red) [2].

by varying the correlation coefficient of fTfq, such nonphysical sub-saturation fluctu-

ations can be seen to exist. For an 8-K temperature difference, correlation coefficients

of 0.5 (green), 0.0 (purple), -0.5 (black) are cases identical to those specified in [1];

with supersaturation fluctuations induced by water vapor alone (red) as in [2]; and

with correlation coefficient of 1.0 (blue) from cloud–free One-dimensional Turbulence

model (ODT) as in [3].
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It should be noted that even though cloud–free RBC requires the forcings of temper-

ature and water vapor to follow a relation of the form σT ∼ σqv∆T/∆qv, that is not

necessarily the case in all atmospheric contexts. For example, in the case of cloud-top

entrainment [114], even though entrained air from above a capping inversion is at

higher temperature, it is drier than the cloud air itself. Forcing terms for the air from

a capping inversion region would have a correlation coefficient closer to −1, resulting

in a more symmetric PDF for supersaturation fluctuations. In contrast, for lateral

entrainment from subsiding shells into a cumulus cloud, the temperature and water

vapor is more likely to be positively correlated[132].

For LES studies of the convection-cloud chamber [21] such as in [41], the boundary

fluxes are modeled using Monin-Obukhov similarity theory, resulting in a perfectly

correlated forcing from the boundaries. However, in the sub-grid scale model the

temperature and water vapor fields are diffused with the same turbulent diffusivity.

Therefore any positive supersaturations arising due to differential diffusivity are not

captured, thus impeding the cloud droplet growth. Therefore the droplet size distri-

butions obtained from such simulations should be at least somewhat narrower than

what would arise from experiments or from a DNS accounting for differential diffusiv-

ity. In DNS studies that do not account for differential diffusivity effects, such as the

cloud parcel studies by [2] that have only water vapor forcing (refer to the red points

in Fig.5.7), a broader size distribution of cloud droplets is obtained than warranted

by a physically consistent supersaturation field.
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Atmospheric models [70, 133] typically use two separate prognostic variables to cap-

ture temperature and water vapor. Subsequently, the diagnostic variable – mean

supersaturation – is calculated from temperature and water vapor in individual grid

boxes ignoring any sub-grid scale variability that is important for cloud droplet ac-

tivation [23] and growth [24]. The calculated supersaturation interacts with the mi-

crophysics scheme to produce cloud droplet numbers and the corresponding masses

or higher moments depending on the scheme’s complexity. Often, DNS studies

[123, 124, 134] intended to understand the cloud droplet growth in a turbulent envi-

ronment and treat supersaturation as a prognostic scalar disregarding the non-linear

behavior of the Clausius–Clapeyron equation. The treatment of supersaturation as a

scalar is suitable in regimes where the Clausius–Clapeyron equation can be linearly

approximated. However, in systems such as Rayleigh-Bénard convection, this is no

longer true since the production of mixing supersaturation relies inherently on the

non-linear behavior of the Clausius–Clapeyron equation. Furthermore, there may be

scenarios in which differential diffusivity needs to be accounted for, which would lead

to the decorrelation ofQ′vT
′. Ignoring such processes may result in over-estimating the

effect of turbulence on droplet growth. Finally, the correlation between temperature

and water vapor depends on the processes that produce these fluxes. Hence careful

evaluation of the correlation of temperature and water vapor is needed to accurately

capture the extend of supersaturation fluctuations, as demonstrated earlier.
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In the larger context, the concerns about subgrid-scale variability of temperature, wa-

ter vapor and subsequent microphysics interactions highlighted by [133, 135] remains

an open challenge even today, even in spite of LES studies with increasing resolution.

One approach for addressing the subgrid-scale fluctuations considered by [125] is the

use of a Linear Eddy Model, although this may be computationally expensive in full

implementation. However, the GMM described here may provide a computationally

inexpensive but efficient alternative to incorporate physically consistent subgrid-scale

variability. A second part of the puzzle, involving supersaturation–cloud particle in-

teractions still needs to be addressed. Re-examination of lateral entrainment studies

with the consideration of negatively skewed supersaturation–microphysics interac-

tions in the context of droplet activation and growth can help in answering the latter

part of the puzzle.
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Definitions of symbols in Chapter 5

qv : Water vapor mixing ratio

qsat(T ) : Saturation vapor mixing ratio at temperature T

qv/qsat(T ) : Saturation ratio

U : Velocity vector of the fluid

q̇l : Rate of condensation/evaporation of water vapor

Lv : Latent heat of vaporization of water

Cp : Specific heat of air at constant pressure

fT , fq : External forces on T and qv

ρt/b : Density of air at top (t) and bottom (b).

Tt/b : Temperature at top (t) and bottom (b).

qvt/b : Water vapor mixing ratio at top (t) and bottom (b).

νv : Water vapor diffusivity

α : Thermal diffusivity

Le : Lewis number (α / νv)

∆T : Temperature difference between top and bottom plate

∆qv : Water vapor mixing ratio difference between top and bottom plate
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σT : Standard deviation of temperature T

σqv : Standard deviation of water vapor mixing ratio qv

Sc : Schmidt number (ν / νv)

Pr : Prandtl number (ν /α)

Le : Lewis number (α / νv)

ν : Momentum diffusivity

νv : Water vapor diffusivity

α : Thermal diffusivity

C1 : Proportionality constant for Eqs. 5.16 and 5.17

z : Vertical location in the chamber, assumed to be 0.5H

H : Height of the chamber

Ram : Moist Rayleigh number

(
g β∆T H3

ν α
+
g ε∆qvH

3

ν α

)
g : Acceleration due to gravity

β : Thermal expansion coefficient
(
1/T

)
ε : Ratio of gas constants of air and water vapor(≈ 0.622)
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Chapter 6

An Uber Pi Chamber

“The problem with life was that there was a constant lack of experi-

ence: you learned from the past, yes, but the future held new and unex-

pected things in store.”

- Terry Pratchett, Pyramids

6.1 Introduction

The results in Chapters 3, 4 and 5 pertain to a cloud chamber of size 2m× 2m× 1m,

which is the same as the MTU Pi Chamber. The unanswered question is, how do the

conclusions based on the observations from the cloud chamber (∼ O(1)m ) translate

127



into explaining the atmospheric cloud processes (∼ O(1000)m ). Similarly, recent

discussions at a workshop held at the Foothills Laboratory of NCAR emphasize the

importance of building a large-scale facility.

Apart from the new experimental approaches and improved instrumentation, the

advancement of computational models validated against the experiments emerged to

be a resonating point in the workshop. Therefore, as a first step, we scale the cloud

chamber simulations discussed in Chapter 3 to study a chamber of larger height with

the same aspect ratio as the Pi chamber in order to avoid any effects of aspect ratio.

In the current study, we investigate how the fluctuations of temperature and water

vapor change with height, how do the microphysical properties vary with height, and

finally, if there is a height dependence on the collision-coalescence.

6.2 Methodology

In Table 6.1, the physical dimensions of four cloud chambers with heights 1 m, 2 m,

4 m, and 8 m are shown. The grid size for each chamber is 3.125 cm, and the time

step is 0.02 seconds, the same as the Pi cloud chamber discussed in Chapter 3. The

grid size and time steps are maintained to ensure there is no grid dependence for the

scalar and momentum fluxes from the top and bottom boundaries. We evaluate the

capability of LES to represent the temperature scaling for an RBC system discussed
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H Physical Dimensions Grid Boxes
1 2 m x 2 m x 1 m 64 x 64 x 32
2 4 m x 4 m x 2 m 128 x 128 x 64
4 8 m x 8 m x 4 m 256 x 256 x 128
8 16 m x 16 m x 8 m 512 x 512 x 256

Table 6.1
Heights, physical dimensions and the corresponding grid box numbers used

to generate Figure 6.1.

in Chapter 2.

To study the effect of height on both condensational and collision-coalescence growth

of cloud microphysics, we use a double moment spectral bin microphysics scheme

described by Chen and Lamb[105], unlike Chapter 2. The bin microphysics coded by

Dr. Fan Yang of Brookhaven National Laboratory has a more refined grid spacing

and reduced numerical diffusion than the HUJISBM. Chambers of heights 4 m and 8

m are not explored for cloudy conditions due to the computational expense associated

with bin microphysics.

In all the simulations, the temperature difference between the top and the bottom

plate is 14 K. All the walls are assumed to be saturated. However, the lateral walls

are assumed to be adiabatic for scalars temperature and water vapor.
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6.3 Results

6.3.1 Scaling of the scalar variance with height

Figure 6.1: Compensated temperature fluctuations are plotted against the
height of the chamber. The temperature difference between the top and the
bottom plate is 14 K and the mean temperature is 283.16K.

Figure 6.1 shows standard deviation of temperature σT vs. H, with σT compensated

by the scaling demonstrated in Section 2.1 of Chapter 2. The fluctuation of tempera-

ture scaled by temperature difference ∆T and height H is expected to be a constant.

For each chamber, the temperature is obtained by excluding the boundary data points

( ∼ 25% of total grid points in each direction). Further, we notice the fluctuations

reach a constant when we sample sufficiently large volumes over a sufficiently long
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period. The lack of collapse in the first data point might be due to the absence of

sufficient averaging.

6.3.2 Microphysics with height

We compare cloud chambers of heights 1 m and 2 m, with collision-coalescence physics

turned on and off. Further to make fair comparisons, we ensure the number of cloud

droplets per unit volume is the same for both chambers. Firstly, we run cases of

different CCN injection rates for a cloud chamber of height 1 m. Then, we fit a

relation between the CCN injection rate and the cloud droplet number for a given

chamber and temperature difference. Figure 6.2 demonstrates a linear fit obtained for

the cloud chamber of height 1 m by plotting the cloud droplet number density obtained

from LES with Chen and Lamb[105] microphysics against the aerosol injection rate

for a temperature difference of 14 K. The linear fit is used to adjust the injection rate

of CCN for a cloud chamber of height 1 m at 14 K temperature difference to match

the cloud droplet numbers from chambers of height 2 m or 4 m.

The cloud chamber of size 2 m is run for two different aerosol injections corresponding

to two different cloud droplet numbers. The cloud droplet numbers are matched for

chambers of heights 1 m and 2 m using the parameterizations shown in Figure 6.2.

Droplet size distribution PDF of cloud droplets are shown in Figure 6.4. Cases with
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(a) Low cloud droplet number

(b) High cloud droplet number

Figure 6.2: Linear fit of aerosol injection rate vs. cloud droplet number for
cloud chamber with height of 1 m. The temperature difference between the
top and the bottom plate is 14 K and the mean temperature is at 283.16 K.

collision-coalescence physics turned on and off are compared for chambers of sizes

1 m and 2 m. We notice that regardless of the height of the chamber, the cloud

droplet size PDF with the collision physics turned off (blue and green dashed lines)
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remains identical. Further, we notice that the liquid water content per unit volume

and the precipitation flux remain identical for the same aerosol injection conditions for

chambers of different heights. We know the supersaturation fluctuations for a larger

chamber for the same imposed temperature difference. In the numerical simulations,

the mean supersaturations are identical for chambers of different heights, and the

supersaturation fluctuations are narrower for the larger chamber (refer to Chapter

2). Therefore, the relative magnitudes of the mean and fluctuating components of

supersaturation in the condensational droplet growth regime need to be explored.

Additionally, the relative roles of the turbulent transport of cloud droplets to the

gravitational settling is an integral part of understanding the precipitation observed.

These two puzzle pieces need to be solved to better comment on the surprisingly

identical droplet size distributions shown in Figure 6.4. When the collision physics

are turned on, we observe the droplet size distributions to be broader than the cases

with collision physics turned off. Due to the effect of variability from the last two

bins, we cannot conclude if the collision rates are dependent on the height of the

chamber.

In Figure 6.3, the comparison of droplet size distributions for chambers of sizes 1 m,

2 m, and 4 m are shown with the collision physics turned off. The number of cloud

droplets are respectively 450 cm−3, 472 cm−3, and 476 cm−3. Similar cloud droplet

numbers were obtained by fitting an injection rate vs. cloud droplet number graph

for chambers of sizes 1 m and 2 m. The CCN injection rates for 1 m and 2 m were
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Figure 6.3: Cloud droplet numbers are matched for the cloud chambers of
height 1 m, 2 m, and 4 m for a temperature difference of 14 K and mean of
283.16 K.

respectively 5.05 times and 1.68 times the CCN injection rate of a cloud chamber of

height 4 m. We notice that, for the chambers of different heights (1 m, 2 m, and 4

m), for similar cloud droplet numbers, for the same boundary conditions, we have

identical droplet size distributions. However, we could not make a comparison for the

4 m case with collisions turned on because it requires extensive computational power.

This therefore remains an ongoing work.
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(a) Low cloud droplet number : 38/cm3

(b) High cloud droplet number : 2000/cm3

Figure 6.4: Cloud droplet numbers are matched for the cloud chambers of
height 1 m and 2 m for a temperature difference of 14 K and mean of 283.16
K. The liquid water content is 0.11 g/kg and 0.37 g/kg respectively for low
and high number concentration cases. The mean radii are respectively 7.5
and 3.04 µm.
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6.4 Point vs Dispersed Injection of Aerosols

In the Michigan Tech Pi Chamber, we inject aerosols at a single point in the volume

of the chamber. We explore the impact of the location of the aerosol injection on the

cloud droplet size distribution. Figure 6.5, illustrates that point injection produces

cloud droplet size distributions that are broader than the dispersed injection cases.

There will be spatial variability in the droplet number for the low cloud droplets

number case since the droplets are transported only via advection, diffusion, and

gravitational settling. Furthermore, the smaller size droplets tend to be concentrated

in a small region around the point injection region compared to the dispersed injec-

tion case. However, for high cloud droplet number cases, the point vs. dispersed

injection does not differ since unactivated aerosols are present abundantly. In the

high cloud droplet number case, the point injection tends to produce numerical insta-

bility at the grid box of the injection in HUJISBM, producing non-physical negative

supersaturations.

The studies presented in the current chapter are a pioneering first step towards build-

ing a larger cloud chamber. The results from these studies can serve as a first-order

approximation and guidance towards the engineering and the cloud microphysics chal-

lenges faced in building a larger chamber.
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(a) Low cloud droplet number cases

(b) High cloud droplet number cases

Figure 6.5: Cloud droplet size distributions for point and dispersed injec-
tion in a cloud chamber of height 1 m. The temperature difference is 14 K
and the mean temperature is 283.16K.
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Chapter 7

Conclusion

“We can only see a short distance ahead, but we can see plenty there

that needs to be done.”

- Alan Turing

The models and results discussed in Chapters 3, 4, and 5 are appropriate under the

given assumptions. However, in this Chapter, we discuss some of the limitations and,

consequently, how to improve their physics and computational efficiency.
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7.1 Limitations of the SAM model

7.1.1 Sidewalls

Modifying SAM to emulate Pi Cloud Chamber requires adding sidewalls to account

for momentum flux, heat flux, and water vapor flux to and from the sidewalls to the

bulk. The sidewalls can either be adiabatic to heat or water vapor but not to both

because of the non–linear relationship of the Clausius Clapeyron equation. Therefore,

there is a continuous flux of temperature, water vapor, or both from sidewalls to the

bulk for a physical cloud system. We use the Monin-Obukhov similarity theory in

the unstable configuration for the four lateral sidewalls to emulate scalar fluxes in the

current model.

The flux transfer from the walls depends on the interaction between bulk and wall

surface. The nature of interaction depends on the flow conditions close to the wall.

A chamber with a box configuration tends to lock the large-scale convection along

the corners, causing two faces to have partial updrafts and the other two with partial

downdrafts. Therefore, the nature of convection – free/ mixed convection depends on

Richardson’s number and needs to be investigated.

The amount of water vapor flux depends on the level of saturation of the walls.
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Though, one can assume saturated conditions at the sidewalls or reduce the satura-

tion value of sidewalls to attain the required bulk supersaturation as in [41]. Exper-

imentally measuring the great unmeasurable – supersaturation can yield some clues

to the saturation level in the sidewalls[81].

The sidewall–bulk interactions can serve as a proxy to study entrainment-microphysics

interaction in a laboratory under controlled turbulence.

7.1.2 Boundary layers

Apart from the boundary layer associated with sidewalls, modeling of the bot-

tom boundary layer is an area that requires attention. In the context of Rayleigh

Bénard convection, the definition of boundary layer remains controversial - we adopt

Howard[136] approach. The thickness of the boundary layer depends on the Nusselt

number, which depends on the imposed temperature difference between the top and

bottom walls. In the current simulations, the boundary layer - bulk interactions are

again approximated by Monin Obukhov Similarity theory. Even if the scalar fluxes are

computed accurately, the microphysics-dynamics interactions are not well resolved –

the competition between the terminal velocity of the droplets and the vertical velocity

of the fluids determine the rate at which the droplets settle.

Since the boundary layer tends to be the order of grid size of the current model,
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we do not capture any velocity profile that might exist within the bottom grid. For

large droplets, the settling might be captured accurately owing to larger settling

velocities. However, for smaller droplets, the rate of settling of the droplets might

be accelerated or impeded compared to the actual conditions in the current model

affecting the droplet size distributions.

There are several approaches to study the settling problem; a straightforward ap-

proach would be to generate statistics for inertial point particles Rayleigh-Bénard

convection using DNS as in [52] of different sizes. From the presentations associated

with ICMW 2020, we have realized this model has been extended to study the Pi-

Chamber with periodic lateral wall approximations with droplet growth accounted

for. Since the maximum true resolution achievable by the model is limited to Ra

∼ O(106), this model can provide some guidance regarding the rates of settling of the

droplets.

Another approach is to model the boundary layer profile using the one-dimensional

turbulence (ODT) in conjunction with the discussed LES model [137, 138]. Such an

approach would replace the current precipitation model with the newly developed

ODT - droplet settling interactions. Though LCM - linear eddy mixing - LES, inter-

actions have been studied using [125], the aforementioned droplet settling model is

not relevant for their study and hence absent from the model.
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7.2 Advances in Microphysics

7.2.1 Lagrangian Cloud Modeling

Lagrangian cloud modeling does provide an advantage for the modeling of cloud

droplets at the expense of computational power in atmospheric systems. However,

studies [42] have demonstrated that there is no significant advantage of using LCM

over a well-resolved bin model in the context of the cloud chamber. Introducing

sub-grid scale fluctuations with LCM [125] can reach an entirely different conclusion.

A missed opportunity in the context of LCM/super-droplet studies is the effect of

multiplicity and statistical averaging in terms of cloud droplets, and they need to be

validated against reliable experimental measurements such as cloud chamber. The

emerging body of literature treating super-droplets as the panacea for all maladies is

yet to explore and acknowledge the method’s physical and computational limitations.

The experimental inter-comparisons with LES-LCM (SAM-LCM, CM1-LCM, Baby

EULAG) models can provide much-needed test and validation of the super-droplet

method. Questions of scientific interest such as the effect of the cloud droplet number–

supersaturation interaction[23] can be studied with such models.
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7.2.2 Machine Learning

In recent years, machine learning has been used to represent the sub-grid scale model

for climate models [139]. The accuracy of such statistical models depends on the

training dataset, which is generated from CCSM-CRM setup [48]. The numerical-

experimental synergy with the cloud chamber provides two different opportunities in

the context of machine learning models.

Firstly, the cloud chamber has generated stationary and independent datasets from

the last six years of operation. This enormous dataset can serve as a training dataset

for various machine learning models based on the experiments. The trained model can

interpolate into the new dynamics and microphysics conditions. Further, a machine

learning model can flag anomalies in the measurements from Pi Chamber based on

past expectations

A second opportunity would be to use the 3D results from the numerical

simulations[140] of Cloud Chamber in ICMW 2020 as a training data set to de-

velop machine—learning dataset. This model can generate a 3D picture of vertical

velocity, temperature, water vapor, number of cloud particles, and their location in

the chamber.

The results generated using the models discussed above apply only to the experiments
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and simulations in the cloud chamber. However, a larger philosophical question is to

evaluate the physical or computational benefit one would derive from applying ML

techniques, or are we jumping on to the ML bandwagon[141]?

7.3 Lotka–Volterra Models

In the current thesis, we have explored the behavior of the cloud-chamber using

numerical models by solving the differential equations for dynamics and microphysics

at each grid box. The average behavior of the system is obtained by the spatial and

temporal averaging of independent samples from the bulk. As the number of grid

points increases, the computational power and time required to solve these equations

increase.

Hence, another approach would be to use bulk models with a system of equations as

described in 2. Here, we use equations to describe other physical systems to describe

the cloud chamber.

Lotka–Volterra equations used to describe the populations of predator–prey has been

used to describe non–linear systems [142].

The cloud chamber system can be modeled as a predator – prey model. The cloud–

chamber can be modeled as follows,
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1. The water vapor gets preyed on by liquid water.

2. The liquid water gets removed by Stokes’ settling.

3. The water vapor gets replenished from the surface.

∂qv
∂t

=
qv − qv0

τt
− q̇L
τc

(7.1)

∂qL
∂t

=
q̇L
τc
− qL
τs

(7.2)

The Eq. 7.1 is the evolution of water vapor, the first term in the RHS represents the

water vapor replenishment from the surfaces, and the second term the conversion of

water vapor to liquid water. The second term in the RHS of Eq. 7.2 is the removal

of liquid water at a time scale given by Stokes’ settling.

The rate of conversion of water vapor to liquid, supersaturation, time scales τc and

τs depend on the number of droplets, n and mean radius r. The values of n and r

depend on the microphysics, therefore we need to add another equation

∂n

∂t
= ṅact −

n

τs
(7.3)

The first term on the RHS of Eq. 7.3 has the activation of droplets and the second
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term captures the droplet removal by settling.

The rate of conversion of water vapor requires solving for supersaturation (s) and

therefore requires solving for temperature (T ).

∂T

∂t
=

T − T0

τt
+

L

Cp

q̇L
τc

(7.4)

Therefore Eqs. 7.1, 7.2, 7.3 and 7.4 is a well-constrained system of 4 equations with

4 unknowns. The flux replenishment time scale (τt) and activation rate (ṅact) for

simplicity can be considered as the adjustable parameters. Can we identify oscillatory

solutions (corresponding to second fixed point) as in Lotka-Voltera equations? Can

these be observable in experiments or in LES-Microphysics model?[143]

Epilogue

Rabbi Loew found the Golem to be unruly and results to be frustrating. He disabled

the unruly Golem by removing e from emet(“Truth”) to met (Dead). Inspired by the

Rabbi, the modern-day masters should not feel any qualms in disabling the frequently

unruly Golem and look towards the whiteboard and nature for inspiration.
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[33] Chillà, F.; Schumacher, J. The European Physical Journal E volume 2012,

35(7), 58.

[34] Deardorff, J. W.; others. Journal of the Atmospheric Sciences 1970, 27(8),

1211–1213.

[35] Niemela, J.; Skrbek, L.; Sreenivasan, K.; Donnelly, R. Nature 2000, 404(6780),

837–840.

152
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