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Abstract 
Transformation-Optics (TO) is a new theoretical tool that allows for designing advanced 
electromagnetic and photonic devices. TO theory often prescribes material parameters for 
transformed media that cannot be found in nature. Metamaterials (MMs) were initially used 
for realization of TO-based devices. However, conventional MMs possess noticeable 
losses caused by their metallic parts that prevents their utilization in optical range. 
Alternatively, photonic crystals (PhCs) formed from arrays of low-loss all-dielectric 
elements can be good substitutes for building TO-prescribed devices. Metasurfaces (MSs) 
comprised from 2D arrays of dielectric resonators (DRs) have been found as other 
promising candidates for realizing flat and efficient devices. In our work, we explored 
incorporation of all-dielectric artificial media in invisibility cloaks, representing the most 
exciting TO application, wave collimators, and MSs. We studied associated 
electromagnetic and photonic phenomena and solved engineering problems met at the 
development of device prototypes.  

We designed and used anisotropic PhCs composed of rectangular lattice dielectric rod 
arrays to build up a cylindrical cloak medium realizing prescriptions of TO (Chapter 2). 
We also formed another cylindrical invisibility cloak by utilizing the self-collimation 
phenomenon in PhCs without considering TO prescriptions for turning the wave in the 
cloak medium (Chapter 3). Furthermore, we designed a wave collimator by employing 
high-anisotropic rectangular lattice dielectric rod arrays with unidirectional near-zero 
refractive indices (Chapter 4). Then, we studied the resonance and scattering responses of 
MSs composed of dielectric disks, while altering the periodicity of MSs. Our results 
demonstrated that periodicity of arrays has significant influence on defining the responses 
of MSs. (Chapter 5). Increasing lattice constants of dielectric MSs provided us with an 
opportunity to investigate interactions between lattice resonances (LRs) and dipolar 
electric and magnetic resonances that affected characteristics of MSs (Chapter 6). We 
analyzed the formation of Fano responses and wave interference processes in dense MSs 
to reveal the nature of electromagnetically induced transparency (EIT) that was detected at 
the frequency of electric dipolar resonance. (Chapter 7).   
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1 Introduction 
1.1 Transformation Optics 
Transformation optics (TO) was proposed and developed by Pendry et. al. in 2006 as a new 
method [1, 2] that enabled creation of electromagnetic and photonic devices, such as 
invisibility cloaks, lenses, and beam splitters, which control the properties of wave 
propagation in terms of direction, velocity, and phase [3, 4]. It is worth noticing that the 
roots of TO theory can be found in Einstein’s theory of relativity [5]. Original form of 
Maxwell equations does not change in different coordinate systems. This provides an 
opportunity to manipulate the wave propagation by transforming the reference coordinate 
system into a new coordinate system. In any coordinate system, trajectories of 
electromagnetic wave are defined with respect to the geometry of the coordinate system. 
In a conventional Cartesian coordinate system, wave has a straight trajectory while in a 
new coordinate system with curved geometry obtained by transforming the original 
reference coordinate system, wave propagation follows curved paths [4]. Applying new 
and proper values of permittivity and permeability into the transformed space calculated 
by using specific mapping functions preserves the fundamental form-invariance of 
Maxwell equations.  If the medium in the reference coordinate system of (x, y, z) has the 
relative permittivity and permittivity tensors of ε and μ and the transformation medium 
has the relative permittivity and permeability tensors of ε ′ and μ ′ , the relation between 
reference and transformation media is given by TO theory as [3, 5]: 

                                                                   
det( )

TA A
A

εε′ =                                                   (1.1) 

det( )

TA A
A

μμ′ =                                                    (1.2) 

A is Jacobina matrix that can be found as: 

x x x
x y z
y y yA
x y z
z z z
x y z

′ ′ ′ ∂ ∂ ∂
 ∂ ∂ ∂ 

′ ′ ′ ∂ ∂ ∂=  ∂ ∂ ∂ 
 ′ ′ ′∂ ∂ ∂
 ∂ ∂ ∂ 

                                              (1.3) 

Material parameters prescribed by TO for the media of electromagnetic devices with 
unusual functionalities often appear anisotropic and spatially varying with singular values, 
i.e. near-zero values. Therefore, their realization is very challenging. Natural materials do 
not provide all required values of permittivity and permeability. They also have weak 
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magnetic responses at high frequencies preventing them from providing relatively big 
permeabilities. Accordingly, artificial media have been designed and utilized for 
realization of various TO applications in recent years. In contrast to natural materials, 
artificial media such as metamaterials (MMs), which were the first candidates for TO-based 
applications, consist of specifically designed dielectric or metallic resonators, which 
represent meta-atoms [6, 7]. At electromagnetic resonances in meta-atoms, these media 
can exhibit unusual electromagnetic properties.  While TO is a robust theoretical tool to 
advance electromagnetic and photonic devices, realization of TO-based devices urges 
designing artificial media which can satisfy TO prescriptions.   

In this dissertation, we explore and design artificial media formed from all-dielectric 
materials for developing electromagnetic and photonic devices with advanced 
functionalities. 

1.2 Invisibility Cloak 
Invisibility cloak was proposed as the most exciting application of TO [1]. The invisibility 
cloak guides the incident wave around the hidden object without any reflection or 
scattering. Then, it reconstructs the original shape of the incident wave without casting 
shadows. Using TO approaches, it is possible to prescribe the material parameters of cloak 
media that will render the object invisible.  In first attempt for realizing a TO-prescribed 
invisibility cloak media, MMs composed from metallic split-ring resonators (SRRs) were 
employed by Schurig et. al.  [8] MMs are a class of artificial media that were realized in 
2000 by Pendry and Smith et. al. [9, 10]. MMs could demonstrate unconventional 
electromagnetic characteristics such as negative refraction and backward wave propagation 
caused by simultaneous negativity of permeability and permittivity of the media [11, 12]. 
It is worth noticing that the concept of negative refractive index and its electrodynamic 
consequences were introduced earlier by Veselago in 1968 [13]. Conventional MMs are 
formed from arrays of metallic elements such as SRRs and cut wires and they can support 
formation of magnetic or/and electric resonances. Electromagnetic responses of MMs can 
be studied by using the effective medium theory [14]. According to the effective medium 
theory, if the size and periodicity of artificial media’s unit cells are much smaller than the 
wavelength of incident wave, such medium can be considered as a homogenous medium 
and characterized in terms of effective permittivity ( effε ) and effective permeability ( effμ ).  
In SRRs, magnetic resonances are formed by the currents excited on the circumference of 
metallic rings and induce spectral changes of effective permeability that could be described 
as Lorentz-type resonances [9]. In addition, electric responses of cut wire arrays result in 
spectral variations of effective permittivity that were described with Drude model [15]. 
Changes of effective permittivity and permeability of MMs demonstrate extraordinary 
values such as negative, near-zero, or large positive values. However, resonant nature of 
these responses makes the performance of MMs very narrow-band.  

According to TO approach employed in designing the cylindrical invisibility cloak media 
at TE polarized incidence in [8], these media should be prescribed a radial permeability (
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rμ ) dispersion with near-zero values rapidly increasing from inner to outer layers of cloak. 
The function of near-zero material parameters is to enhance phase velocity in the cloak 
media, realizing superluminal wave propagation. Inside the cloak, wave traverses a longer 
distance along curvilinear paths around the hidden object in comparison with the straight 
wave flow in free space.  Superluminal wave propagation is necessary for compensating 
the phase mismatch between two aforementioned wave paths. 

TO prescriptions in [8] also requested constant positive values for θμ and zε in the cloak 
media. In addition to accelerating the waves, cloak media with described above material 
parameters bends the wave flow around the hidden object. These two functions of cloak 
media are necessary for achieving wave-front reconstruction.  It is worth noting that exact 
TO-prescribed rμ , θμ and zε distributions in the cylindrical cloak media are proportional 
to the ratio between the inner and outer radii of the cloak [8].  For realizing a TO-prescribed 
cylindrical cloak media in [8], SRRs with properly chosen parameters were arranged in the 
concentric circular layers around a metal cylinder. In the operating frequency range, SRRs 
could realize near-zero permeability values. Geometrical parameters of SRRs were slightly 
altered to gradually change the frequency of their magnetic resonances. This resulted in the 
changes of SRRs’ effective permeability at the operating frequency of the cloak. 
Consequently, at the operating frequency, changes of effective material parameters of 
SRRs located in different layers could represent the TO prescriptions. Realized cloak could 
guide the incident microwave radiation around the hidden metal cylinder and reduce the 
scattering. However, significant losses attributed to the skin effect in metallic SRRs 
prevented implementation of such cloak at optical frequencies.   

For decreasing the losses in the cloak media, it was proposed to use all-dielectric MMs 
instead of structures such as metallic SRRs. The cloaks presented in [16, 17] were 
composed from arrays of glass or ceramic cylinders and were capable of operating in, 
respectively, infrared and microwave regimes. In these cloaks, gradual shift of magnetic 
resonance frequency through neighboring circular layers was achieved by varying the air 
gaps between identical deictic resonators in arrays. Diameter of hidden metal cylinder was 
several times bigger than wavelength of incident wave while obtained cloaking effect was 
also narrowband because of resonant nature of all-dielectric MMs. 

Further intriguing works [18-20] showed that low-loss all-dielectric photonic crystals 
(PhCs) can be promising candidates for realization of material properties requested by TO. 
PhCs, i.e. photonic bandgap materials, are a category of artificial structures formed from 
periodic elements. PhCs were introduced by Sajeev John and Eli Yablonovitch in 1987 
[21]. They have been employed in designing numerous photonic devices such as 
waveguides, modulators, lenses, and multiplexers [22].  PhCs’ electromagnetic responses 
are attributed to their periodicity while the periodicity of a PhC can be along one or more 
axes. In contrast to MMs, periodicity of PhCs elements can be comparable with the 
wavelength of incident wave. Therefore, they do not have the problem of homogenization.  
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PhCs can be characterized by using their dispersion diagrams depicting the dependencies 
between frequency and wave number. Emergence of band gaps when transmission is 
prohibited inside the PhC at a specific range of frequencies, is also detectable in dispersion 
diagrams. Refractive indices of PhCs can be calculated based on their dispersion data. 
Notomi showed that PhCs are capable of providing negative, near-zero, and positive values 
of refractive indices in their transmission bands [23]. It was also shown that PhCs can 
demonstrate the phenomenon of self-collimation (SC) [22, 24]. Direction of self-collimated 
wave movement is defined with respect to the crystallographic axis of the lattice and by 
gradually changing the orientation of unit cells, it is possible to control the wave path. SC 
phenomenon expands perspectives for using PhCs at designing electromagnetic and 
photonic devices [25].   

In [19], it was shown that a low-loss dielectric cloak media built from bilayer PhCs could 
bend a gaussian beam around the hidden object. However, proposed cloak media was not 
operating under plane wave illumination and did not result in a significant cloaking effect. 
In a later work of our team [26], a novel TO-based cylindrical invisibility cloak media was 
designed by using 2D PhCs composed from dialectic rod arrays. For realization of the 
cylindrical cloak media by using PhCs characterized by dispersion diagrams and refractive 
indices, TO-prescribed material parameters were recalculated in the terms of azimuthal and 
radial components of refractive index. Azimuthal component of index dispersion had to 
have superluminal indices (near-zero values) while values of radial component had to be 
bigger than unity. As described earlier, near-zero indices are necessary for accelerating 
wave propagation in the cloak media and obtaining phase-matching and flat wave-front 
beyond the cloak. Meanwhile, bigger than unity radial indices are expected to result in 
turning the wave trajectories in the cloak media around the hidden object.  

PhCs made from square lattice arrays of dielectric rods were found capable of providing 
near-zero refractive indices in the lower edge of their 2nd transmission band. Square lattice 
PhC fragments with properly chosen lattice constants were coiled around a metal cylinder 
to realize TO-prescribed azimuthal indices in the cloak media at an operating frequency 
corresponding to PhCs’ 2nd transmission bands. Gradually altering the lattice constants of 
PhC fragments provided an opportunity to slightly shift the frequencies of their 2nd 
transmission bands and approximate TO-prescribed azimuthal index changes in the cloak 
media at a specific operating frequency. Simulated field patterns of the cloak media 
confirmed that it could guide the wave path around hidden metal cylinder at an operational 
frequency. Obtained results demonstrated that PhCs composed from dielectric rod arrays 
can be used for realizing invisibility cloak. However, employing square lattice dielectric 
rod arrays with near-zero indices could not satisfy the TO-prescribed bigger than unity 
radial indices in the cloak media. Metal cylinder’s scattering cross width was not decreased 
significantly and shadows were observed in the wave-front beyond the cloak. Accordingly, 
it appeared imperative to look for other opportunities to design a new PhC-based media 
that can realize both TO-prescribed azimuthal and radial index dispersions, i.e. anisotropic 
index distribution. Furthermore, possible contribution of SC phenomenon in PhC-based 
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cloak media for turning the wave around hidden object at absence of TO-prescribed radial 
indices, had to be investigated.  

1.3 Dielectric Metasurfaces    
Another artificial media composed of periodic arrays of dielectric resonators (DRs) are 
planar 2D metasurfaces (MSs), which have been designed in recent years to realize flat and 
efficient components for electromagnetic and optical devices with important functions such 
as beam steering, wave-front manipulation, tailored directional scattering, lensing, sensing, 
and holography [27-30]. Dielectric MSs are comprised from same constituents as dielectric 
MMs and PhCs and their development requires investigating the electromagnetic 
characteristics of DRs.   In a study published by Kerker et. al. in 1983, it was shown that 
for a hypothetical particle, if ε μ= , backward-scattering (BS) will be totally diminished 
providing forward-scattering (FS) [31]. This phenomenon could not attract attentions 
because its realization demanded having access to components with both electric and 
magnetic responses. An opportunity for realization of so-called 1st Kerker effect and 
directional scatterings was found in recent years at employing subwavelength DRs [32-
37]. DRs support formation of Mie resonances that were studied by Gustav Mie. Interplay 
between radiations of different Mie resonances including dipolar magnetic and electric 
resonances (MDR and EDR), quadrupolar magnetic resonance (MQR) and other higher-
order resonances governs scatterings of DRs [38]. In particular, destructive interreferences 
between radiations of MDR and EDR of a single dielectric sphere, suppresses the backward 
scattering (BS) and only allows forward scattering (FS). This intriguing phenomenon 
realizes the so-called 1st Kerker effect at an off-resonance frequency which is smaller than 
MDR’s frequency. Kerker effect was confirmed with experimental measurements carried 
out for dielectric spheres operating in microwaves (mm-sized sphere) [33].  

EDRs in DRs are formed due to boundary between dielectric and air and enhancement of 
electric field in central area of DR. If wavelength of wave inside DR is comparable to the 
size of DR, displacement currents induced by electric field will form loops in DR. These 
loops of displacement currents excite MDRs in DRs [39]. In a single subwavelength 
dielectric sphere, MDR and EDR are spectrally separated while MDR appears at a 
frequency smaller than EDR’s frequency. Meanwhile, 1st Kerker effect happens in longer-
wavelength side of spectrum. Considering that frequency of 1st Kerker effect is 
corresponding to the tails of EDR and MDR, the power scattered in forward direction (FS) 
is very small. Scattering is maximal at the frequencies of Mie resonances peaks. At 
respective frequencies, BS and FS values are similar and therefore, directional scattering 
cannot be achieved. One possible approach for enhancing the FS that is necessary for 
realizing efficient devices, could be shifting the frequency of 1st Kerker effect towards 
frequencies of Mie resonances peaks.  

It was shown that in dielectric cylinders, changing the height/diameter ratio provides an 
opportunity for adjusting the spectral distance between MDR and EDR [40]. In particular, 
Staude et. al. proposed that when cylinder’s dimeter was approximately double the height, 



6 
 

frequencies of MDR and EDR were overlapping [41]. Then, it was suggested that 
coincidence of MDR and EDR leads to formation of 1st Kerker effect at the same 
overlapping frequency providing a maximal FS. However, resonant responses of DRs with 
overlapping EDR and MDR demanded further analyzes because coincidence of EDR and 
MDR was expected to perturb their normal formation inside DR.  

Dielectric MSs are comprised from various meta-atoms arranged in a periodic lattice while 
each meta-atom is composed of one or several DRs. Geometrical design and permittivity 
of meta-atoms are adjusted to control their resonant responses affecting phase change of 
transmitted wave at frequency of 1st Kerker effect where there is a high transmission ratio. 
In particular, MDR or EDR produce π radians phase change [27]. Staude et. al. suggested 
that overlapping MDR and EDR in dielectric disks can combine their effects at changing 
the phase-shift of transmitted waves and extend it to 2π radians at the frequency of MDR 
and EDR coincidence [41]. Effects of lattice periodicity on responses of MSs have not been 
typically considered in design procedure of MSs. Authors of these works speculated that 
Mie resonances are confined inside DRs and coupling effects between resonators can be 
ignored. They assumed that electromagnetic responses of arrays can be characterized by 
responses of single “meta-atoms. It is essential to investigate the effect of periodicity on 
the responses of MSs. Specifically, characteristics of 1st Kerker effect and directional 
scatterings from MSs composed of DRs arrays at changing the periodicity have to be 
explored.    

1.4 Objectives  
Development of low-loss electromagnetic and photonic applications by employing all-
dielectric artificial media is the primary goal of this dissertation. We worked on finding the 
solutions to the problems revealed in published literature and described in previous 
sections. We were able to develop invisibility cloaks and collimators using rectangular 
lattice arrays of low-loss dielectric rod. Our results revealed that anisotropic rectangular 
lattice PhCs can provide TO-requested material characteristics. Furthermore, we studied 
electromagnetic responses of DRs, in particular dielectric cylinders, and MSs in the terms 
of resonance, scattering, radiation, transmission, and phase. In our studies, we altered the 
height/diameter ratio of dielectric disks and periodicity of MSs.  

Employing square lattice PhCs with superluminal indices in the cylindrical invisibility 
cloak media could not realize TO-prescribed radial index dispersion with bigger than unity 
values. The goal of the work presented in Chapter 2 was realizing both TO-prescribed 
distributions of azimuthal and radial refractive index components in the cylindrical 
invisibility cloak media by using anisotropic PhCs. We studied frequency dependencies of 
the directional refractive indices of PhCs composed of rectangular lattice dielectric rod 
arrays and observed that they were comparable with TO-prescriptions at a frequency range 
corresponding to 2nd transmission band of the PhCs. Our results demonstrated that in a 
suitable frequency range for the TM polarized waves moving along short side of the cells 
in rectangular lattice PhCs, indices could have near-zero values while for the wave 
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propagation along long side of the cells, indices appeared bigger than unity.   We built up 
cylindrical cloak media employing fragments of concentric dielectric rod arrays with 
rectangular lattices coiled around a metal cylinder. We faced challenges at approximating 
the TO prescribed anisotropic index dispersions with PhC fragments in the cylindrical 
cloak media for several reasons. TO prescribed relatively big radial indices in inner layers 
of the cloaks with acceptable thicknesses that exceeded degree of index anisotropy 
attainable in rectangular lattice PhCs. In addition, it was cumbersome to mimic steep 
changes of index dispersions in the cloak media at incorporating PhC fragments. We could 
propose proper solutions for these challenges. Our cloak media formed using rectangular 
lattice dielectric rod arrays led to wave-front restoration beyond the cloak and reduction of 
total scattering cross-width (TSCW) of hidden metal cylinder.  

In Chapter 3, we used self-collimation (SC) phenomenon instead of realizing TO 
prescribed indices, in particular difficult bigger than unity radial indices, in a cylindrical 
invisibility cloak media. SC effect in a bent square lattice dielectric PhC fragment allowed 
for turning the wave around the hidden object. Employment of self-collimated 
waveguiding to bend the wave path in the cloak medium requested transforming the 
straight wave paths in free space into circular wave movement in the cloak. A specific TO 
approach was used to design transformation areas at the beginning and end of SC part in 
the cloak. We found proper index dispersions for transformation parts of the cloak and 
realized them by using rectangular lattice dielectric rod arrays. Our proposed SC-based 
cloak media provided a significant unidirectional cloaking effect.   

In Chapter 4, we explored collimation effect in high-anisotropic rectangular lattice PhCs 
with near-zero indices and presented an application for it. We showed that in rectangular 
lattice dielectric rod arrays with properly selected lattice parameters, superluminal 
propagation with near-zero refractive indices could be formed along short side of the cells 
while propagation along long side of the cells was fully suppressed. Operating frequency 
was correlated with the lower edge of 2nd transmission band. The proposed media could 
effectively collimate a divergent incident radiation at the operating frequency.   

In Chapter 5, we investigated resonance phenomena in dielectric MSs. We studied 
interactions between electric and magnetic resonances inside single DRs and their effects 
on directional scatterings. We altered height/diameter ratio in a single dielectric disk and 
could study the responses at varying the spectral distance between peak frequencies of 
magnetic and electric dipolar resonances. Most substantial directional scattering, i.e. 
optimum 1st Kerker effect, could be obtained when MDR and EDR were not overlapping. 
We also studied the couplings between DRs inside the arrays in MSs. In particular, we 
analyzed the effects of periodicity in dense and sparse arrays on responses of MSs.  Our 
obtained results revealed that characteristics of dense MSs in the terms of resonances and 
scatterings have significant differences in comparison with MSs having sparse arrays. In 
densely composed MSs, dipolar electric resonance was correlated with a narrow-band full 
transmission. It is worth noting that dipolar resonances are conventionally reflective. We 
performed our analysis for both optical and microwave MSs comprised of, respectively, 
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silicon nano-disks and ceramic mm-sized disks and revealed that their responses are 
analogous. 

In Chapter 6, we investigated the formation of lattice resonances (LRs) in MSs comprising 
arrays of dielectric disks, which appear due to in-plane propagation of surface waves at 
normal wave incidence. We widely extended the periodicity of arrays to study the 
interactions between LRs and elementary Mie resonances in vicinity of Rayleigh anomaly 
(RA) area where array’s periodicity was comparable with the wavelength of incident wave. 
We described the responses of MSs including resonance, transmission, and reflection 
spectra and 1st Kerker effect in the presence of LRs. LR formation excited high-intensity 
field spots nearby DR edges in the gaps between DRs that could be responsible for red 
shifting of electric and magnetic dipolar resonances at approaching RA condition.   

The goal of Chapter 7 was to explore the nature of extraordinary narrow-band transmission 
that was detected at the dipolar electric resonances in dense MSs composed from dielectric 
disks. The response was analogous of electromagnetically induced transparency (EIT) 
initially observed in atomic systems. We studied destructive and constructive processes 
between resonant fields and incident wave fields and formation of Fano resonances in 
dense MSs to reveal the nature of this promising effect. Analyzing the electric field 
intensity and phase signals at specific spatial points disclosed the competing processes that 
shaped the Fano responses and led to realization of conditions providing transparency of 
the MS. 
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2 Realization of TO-based Invisibility Cloak with 
Rectangular Lattice Photonic Crystals 

2.1 Spatial Dispersion of Index Components Required 
for Building Invisibility Cloak Medium from Photonic 
Crystals1 

2.1.1 Introduction 
Transformation optics (TO) has opened new perspectives for designing advanced 
electromagnetic (EM) devices with superior functionalities [1]. TO employs coordinate 
transformations to control EM wave paths by imposing specific spatial dispersion of the 
media parameters [2]. Coordinate transformations can be derived for compressing, 
expanding, or bending space, enabling designs of invisibility cloaks, field concentrators, 
perfect lenses, beam shifters, etc. Realization of these devices, however, depends on the 
possibility to create transformation media with prescribed properties [3], which include 
highly anisotropic dispersion of material parameters, as well as parameters providing wave 
propagation with superluminal phase velocities. Therefore, metamaterials (MMs), which 
were expected to exhibit most versatile properties, were considered as first candidates for 
realizing TO-based devices [4, 5]. Application of conventional MMs composed of spilt 
ring resonators and cut wires, however, met serious challenges, such as increased losses in 
metal elements at higher frequencies, extremely narrow frequency band of operation, inter-
resonator coupling, and the need to provide homogenization. In order to decrease losses, 
dielectric MMs, instead of metal ones, were used for developing invisibility cloaks for 
infrared range [6, 7]. However, resolving all of the above listed problems would require 
substituting MMs in the cloak media by alternative materials. Photonic crystals (PhCs) 
could be considered as promising substitutes [8].  

In [9] it was shown that the cloak medium, formed from fragments of 2D photonic crystals 
composed of dielectric rods, supported wave propagation around metal cylinder with 
superluminal phase velocity that provided wave-front restoration beyond the target. These 
results have demonstrated the perspectives of PhC applications in transformation media, 
although used in [9] crystals with square lattices could not provide TO-requested 
asymmetry of spatial index dispersion. It is worth noting that one complication with 
building a cloak from PhCs was that the number of periods required to form the band 
structures in PhC fragments affected the minimum volume of the cloak. In addition, 
boundaries between PhC fragments in the cloak medium could contribute to reflections. 

                                                 

1Reprinted from ‘S. Jamilan, G. Semouchkin, N. P. Gandji, and E. Semouchkina, “Spatial Dispersion of 
Index Components Required for Building Invisibility Cloak Medium from Photonic Crystals,” Journal of 
Optics, 20 (4), 045102, 2018’; with permission from © IOP Publishing. 



14 
 

However, as it was shown in [9], the problems of both reasonable cloak thickness and 
excessive reflections could be solved by properly designing the cloak. 

In this work, we, first, investigate the roles of spatial dispersions prescribed for orthogonal 
index components on the performance of cylindrical invisibility cloaks that allows for 
relating successful operation of PhCs-based cloak in [9] to the phenomenon of self-
collimation (Section 2). Then we explore the opportunity to realize TO-requested 
asymmetry of dispersion laws for orthogonal index components by forming the cloak 
medium from anisotropic 2D PhCs with rectangular lattices of dielectric rods. We show 
that, although TO-prescribed index dispersion asymmetry could be qualitatively achieved 
in these PhCs, providing the exact TO-prescribed index values by varying parameters of 
rod arrays in practically acceptable ranges presents a serious challenge (Sections 3 and 4). 
To solve the problem, we propose reduced prescriptions for spatial dispersion of radial 
component of index, which are compatible with capabilities of PhCs. We demonstrate that 
following these prescriptions does not cause significant changes in the cloak performance 
compared to performance of the cloak medium with parameters satisfying full TO 
prescriptions (Section 5). The results of full-wave field simulations presented in this work 
were obtained by using COMSOL Multiphysics software package, while dispersion 
diagrams for PhCs were calculated by using last versions of MPB software developed at 
MIT [10].     

2.1.2 TO-based Prescriptions for Orthogonal Index Components 
and Functions of These Components in the Cylindrical 
Cloak Medium   

TO-prescriptions for the effective parameters, permittivity and permeability, of a 
cylindrical cloak medium have been originally proposed in [1] and later modified in [11], 
to avoid impedance mismatch at the outer boundary of the cloak. In order to form the cloak 
medium from PhCs instead of MMs, TO-prescriptions need to be re-formulated for radial 
and azimuthal index components of refractive index [8]. Following our earlier work [9], 
here we consider prescriptions to be defined by a coordinate transformation, which shrinks 
infinitely long cylindrical space, represented in cylindrical coordinate system by radius 𝑟 , 
into an annular cylindrical space, represented by radius 𝑟:  

              𝑟 = 𝑓 𝑟 = 1 − + 𝑟 − 𝑅 𝑟 + 𝑅  ;  𝜃 = 𝜃  ;  𝑧 = 𝑧          (1) 

where 0 ≤ 𝑟 ≤  𝑅  and 𝑅 ≤ 𝑟 ≤  𝑅 , while the values 𝑅  and 𝑅  are, respectively, 
the inner and the outer radii of the cloaking shell (Fig. 1 (a)). At TM polarization of incident 
waves (magnetic field directed along 𝑧-axis of the cylindrical cloak), prescriptions for 
effective permeability of the cloak medium could be reduced to  = 1 [5], while for the 
components of effective permittivity in E-field plane (normal to the cloak axis) following 
expressions could be obtained following [11]:                                              
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                                          𝜀 =  ; 𝜀 =                                          (2) 

Expressions (2) could be then used to derive index components for wave propagation in 
azimuthal and radial directions (Fig. 1 (a)) by utilizing dependencies of these components 
on effective parameters of the medium: 𝑛 = 𝜀   and 𝑛 = 𝜀  . Accordingly, we 
obtain: 

                                                 𝑛 = 1 − +                                               (3) 

                                                                𝑛 =                                                                (4)                         

where 𝑟  could be found from equation (1) as following: 

                                   𝑟 =                                    (5) 

Equations (3-5) could be used for calculating prescribed by TO spatial dispersions of index 
components. Curves A and F in Fig. 1 (b) present these dispersions for a cloaking shell 
having  = 3.5, which is hiding the target with the diameter of 74 mm. As seen in the 
figure, TO prescribes ascending dispersion from inner to outer cloak layers (curve A) for 
azimuthal index component and descending dispersion (curve F) for radial index 
component. In addition, azimuthal index component should have values less than 1 within 
the entire cloak, i.e. these values should support wave propagation with superluminal phase 
velocities, while radial index component, just opposite, should be higher than 1, i.e. its 
values should support refraction phenomena, turning waves around the cloak axis.            

(a)                                                                (b) 
Figure 1. (a) Cross-section of cylindrical cloak and (b) various spatial distributions of index 
within cloaking shell with = 3.5. 
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Considering the described above functions of two index components caused by their 
specific spatial dispersions, it could be suggested that employing PhCs with square lattices 
in the cloak medium, as in [9], should exclude obtaining the cloaking effect. In fact, 
providing superluminal index values in azimuthal direction in PhCs with square lattices 
had to introduce similar values for indices in radial direction. Fig. 2 (a) presents the wave 
pattern simulated for the cloak model with identical dispersions of index components in 
two directions (corresponding to curve A in Fig. 1 (b)). The frequency of 11.4 GHz was 
taken arbitrary, since index values in the model were taken to be frequency-independent. 
As seen in the figure, a typical shadow behind the metal target is observed instead of the 
cloaking effect. Wave-patterns presented in Figs. from 2 (b) to 2 (f) correspond to the cloak 
models with dispersions for radial index component changing from curve B to curve F in 
Fig. 1 (b), respectively, while dispersion for azimuthal index component was kept as curve 
A in Fig. 1 (b).  It can be seen that significant decrease of the shadow occurred only at 
radial index values exceeding 1 (and essentially exceeding 1 near the target) with radial 
dispersion approaching curve F in Fig. 1 (b). It is obvious from the obtained results that the 
media with dispersions following curve A for both index components should not provide 
the cloaking effect, unless any other physical mechanism, instead of refraction, can support 
wave turning around the target.       

 
Figure 2. Simulated wave patterns at 11.4 GHz for the cloak with = 3.5 for (a) curve 
A in Fig. 1 (b) as radial and azimuthal index dispersions; (b), (c), (d), (e), and (f): curve A 
as azimuthal index dispersion, while radial index dispersion is following curves B, C, D, 
E, and F in Fig. 1 (b), respectively. 
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Figure 3. Wave-pattern for the cloak in [9] formed from square-lattice PhCs demonstrates 
the effect of self-collimation at 13.6 GHz.  

This mechanism could be related to the known in PhCs phenomenon of self-collimation. 
According to [12], due to this phenomenon, PhCs could support wave propagation along 
crystallographic axes, even if they are bent. Indeed, Fig. 3 taken from a row of images of 
wave-patterns in [9] just demonstrates self-collimated wave movement in outer PhC layers 
of the cloak, while beyond the cloak, a shadow similar to that presented in Fig. 2 (a) can 
be clearly seen. This observation opens up an opportunity for employing self-collimation 
in PhCs for providing TO-requested functionalities of the cloak medium, when 
prescriptions for material properties could not be realized in full. 

2.1.3 Achieving Anisotropic Index Dispersion in PhC-based 
Cloak Media 

As it was shown in Section 2, if self-collimation is not realized in the cloak medium formed 
by PhCs with square lattices, cloaking effect could not be observed in such medium, since 
TO-prescribed difference between spatial dispersions for azimuthal and radial index 
components could not be provided. However, according to [13, 14], difference between 
index component for wave propagation in two orthogonal directions could be achieved in 
PhCs with rectangular lattices. Therefore, we explored an opportunity to employ such PhCs 
in the cloak medium for obtaining desired difference of spatial dispersions of 𝑛  and 𝑛 . 

In [9] it was demonstrated that changing the lattice constant of PhC caused shifting of the 
2nd transmission band in its dispersion diagram along the frequency axis. This also caused 
respective shift of the extracted from the dispersion diagram frequency dependence of 
index values. It was also proven in [9] that the 2nd branch of array dispersion diagram 
supplied index values in the range from zero to higher than 1. Therefore, it was possible to 
determine a set of array lattice constants providing at some frequency a collection of index 
values representing the spatial dispersion law depicted by curve A in Fig. 1 (b). The 
requested dispersion law was then realized in the cloak medium by building it from 
fragments of PhCs with respective lattice constants. 
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In order to investigate, how the difference in lattice constants along two directions would 
affect the dependencies of index values on frequency, we first calculated dispersion 
diagrams for PhCs with rectangular lattices at TM wave incidence along either one of two 
crystallographic directions, which we denoted as 𝑥 and 𝑦. Fig. 4 (a) presents 2nd branches 
of dispersion diagrams within Γ-X range of wave-vectors for arrays with relative rod 
permittivity 𝜀 = 35 and 𝑅 = 1.5 mm (same rod parameters as in [9]), with the same lattice 
constant 𝑎  and with various lattice constants 𝑎 . As seen in the figure, difference between 𝑎  and 𝑎  results in changes of dispersion diagrams, i.e. in anisotropy of array properties. 
From dispersion diagrams, the values of 𝑥- and 𝑦-components of index were calculated by 
using well-known relation given in [15]:  

                                                   𝑛 = sgn(𝑣 .𝑘)( |𝑘|)                                                 (6) 

where 𝑐 is the speed of light in free space and 𝑣 =   is the group velocity, while k and 
ω are wave vector and angular frequency, respectively. Equation 6 characterizes the 
dominant refractive index. As discussed in [9, 15, 16], this approach provides the effective 
values of phase refractive indices in the second transmission bands of 2D PhCs. In [9], this 
approach has been verified by comparing the indices obtained from the dispersion diagrams 
of 2D rod arrays (at various rod permittivities) with the results of the index retrieval 
procedure.  

 
                                   (a)                                                                 (b)                                                           
Figure 4. (a) 2nd branch of dispersion diagrams for rod arrays when incident TM waves are 
propagating in either 𝑥 or 𝑦 directions: 𝑎  is fixed at 5 mm while 𝑎  for curves A, B, and 
C is 5 mm, 6 mm, and 7 mm, respectively. (b) Dependencies of refractive index 
components 𝑛  and 𝑛  on frequency calculated using dispersion diagrams in (a).  

Fig. 4 (b) presents frequency dependencies of 𝑛  and 𝑛  found by using respective 
diagrams in Fig. 4 (a). As seen in Fig. 4 (b), at 𝑎 = 𝑎  frequency dependencies of 𝑛  and 𝑛  coincide (curve A). At 𝑎  > 𝑎  dependencies for 𝑛  and 𝑛  shift and split, so that 
dependencies for 𝑛  get steeper, while dependencies for 𝑛  become less steep and, 
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therefore, cross the curve A. Shifting of the spectra of 𝑛  and 𝑛  reflects lowering of the 
edge of the 2nd transmission band, which is well seen in Fig. 4 (a). It could be also noticed 
in Fig. 4 (b) that at increased values of 𝑎 , 𝑛  values become significantly exceeding 1 at 
such frequencies, at which the values of slower growing 𝑛  still remain below 1. Such 
difference between 𝑛  and 𝑛  in arrays with rectangular lattices seems to point out at an 
opportunity of realizing desired anisotropy of TO prescriptions for index components in 
two orthogonal directions.  

 

Figure 5. Frequency dependencies of directional index values in the 2nd transmission bands 
for four arrays with rod parameters: 𝜀 = 35 and 𝑅 = 1.5 mm, and with rectangular lattices; 𝑎  and 𝑎  values (in mm) for the curve couples A, B, C, and D, are, respectively: (5 ; 7.8), 
(5.5 ; 8.15), (6.5 ; 8.6), and (8 ; 8.9). 

Further investigations, however, have shown that obtaining thus high values of 𝑛 , as 
defined by curve F in Fig. 1 (b), is challenging for PhCs, since having much bigger 𝑎  compared to 𝑎  does not allow for achieving much higher index values than those 
presented in Fig. 4 (b). Instead, it leads, first, to extinction of the 2nd branch and then, to 
switching of the sign of 𝑛  from positive to negative, which is not suitable for controlling 
wave propagation in the cloak. Thus, there are limits for increasing 𝑎  at any chosen 𝑎 . 
For example, at 𝑎  = 5 mm, 𝑎  should not exceed 8 mm to avoid negative index values. At 𝑎 < 8 mm and used in [9] rod parameters (𝜀 = 35 and 𝑅 = 1.5 mm), 𝑛  values bigger than 
1.5 cannot be achieved, while they should be close to 2.4 near the target, according to curve 
F in Fig. 1 (b) for the cloak with  = 3.5. Taking this into account, we looked for a set 
of arrays with rectangular lattices and with the same, as in [9], rod parameters, which could 
be used for providing, at some frequency, best fit of index values to dispersion curves A 
and F in Fig. 1 (b). We considered a set of four arrays, the fragments of which could be 
used for assembling the cloak, for which prescribed dispersion curves for index 
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components would be represented by step-functions consisting of four steps. Fig. 5 shows 
extracted from dispersion diagrams frequency dependencies of 𝑛  and 𝑛  values for such 
four arrays, having different combination of lattice constants 𝑎  and 𝑎 . The presented data 
demonstrate that combining fragments of these arrays in the cloak medium can provide 
descending spatial dispersion for radial index component and ascending spatial dispersion 
for azimuthal component at the operation frequency of 13.73 GHz, although the prescribed 
maximal value of 2.4 for 𝑛  cannot be achieved. This result pushed us to searching for 
opportunities to decrease maximal 𝑛  values, prescribed by TO, by varying cloak 
dimensions and to increase 𝑛  values, achievable in rod arrays with rectangular lattices, by 
modifying rod radius and permittivity.   

2.1.4 Fitting Capabilities of Rod Arrays to TO Prescriptions for 
Index Components  

From the expressions given in Section 2, it follows that requested index values strongly 
depend on the ratio .  Fig. 6 demonstrates that by increasing this ratio, prescribed radial 
index values near the target can be essentially reduced, while azimuthal index values are 
just slightly affected. Thus, as seen in Fig. 6, capabilities of rod arrays would become 
sufficient for satisfying TO prescriptions at  > 4.6. This ratio, however, characterizes, 
in fact, the thickness of the cloak, so that increasing this ratio means significant increase of 
the cloak thickness at fixed size of the target. In particular, changing the ratio from 3.5 to 
4.6 corresponds to 44% increase of the cloak thickness, which is, obviously, not desirable 
for practical applications.   

 

Figure 6. TO-prescribed radial and azimuthal index distributions for three different ratios 
 of the cloak, when 𝑅  is fixed. 
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Another approach to satisfying TO prescriptions for the cloak medium formed from rod 
arrays could be seen in manipulating parameters of rods. As demonstrated in Fig. 7 (a), 
increasing rod radius from 1.5 mm up to 1.9 mm provided an increase of highest achievable 𝑛  value in PhCs up to 1.8, which corresponded to TO requirements for cloak thickness 
defined by the ratio = 4.6, although it was still below the requirements for smaller 

cloak thickness, when = 3.5. The effect of another parameter, i.e. rod permittivity, on 
achievable index values in rod arrays, is demonstrated in Fig. 7 (b). As seen in the figure, 
changing rod permittivity did not influence effectively the highest values of 𝑛 , however, 
it allowed for decreasing the asymmetry of array responses along 𝑥 and 𝑦 directions and 
made frequency dependences of both index components 𝑛  and 𝑛  less steep that opened 
up a window for playing with radii of  rods and/or lattice parameters of arrays with the aim 
of providing higher 𝑛  values. Fig. 7 (c) shows the effect of increasing rod radius in arrays 
with slightly higher rod permittivity than that used in Fig. 7 (a). From comparing Figs. 7 
(a) and (c), it can be seen that an increase of rod permittivity from 35 to 39 allows for 
approaching 𝑛  value of 2.0, while at permittivity of 35 (as in [9]) it was impossible to 
reach values of 𝑛  exceeding 1.8. Although performed studies have shown that combined 
variations of cloak thickness, rod permittivity, and rod radii allow for approaching TO-
requested prescriptions for index components in the cloak medium, it would be desirable 
to search for such reduced prescriptions, which could make practical implementation of 
PhC-based cloak much more feasible.  

2.1.5 Reduced Prescriptions for Spatial Dispersion of Index 
Components in the Cloak Medium 

Here we consider an opportunity to replace TO-based prescriptions by reduced spatial 
dispersion law for radial index component. Our approach is based on understanding of the 
main function of radial index component in governing wave propagation in the cloak. As 
it follows from Section 2, the role of radial indices can be described as turning waves 
around the target. To accomplish this task, TO prescriptions for the radial index component 
demand very high index values near the target and steep decrease of these values further 
from the target. In order to restrict TO demands by physically achievable in rod arrays 
index values, we were looking for reduced dispersion laws for 𝑛 , which would still be able 
to accomplish the function of turning waves around the target. In particular, we looked for 
dispersion laws with decreased against TO prescriptions 𝑛  values near the target and 
increased, for compensating this decrease, 𝑛  values in outer cloak layers, as shown by 
solid red curve in Fig. 8. To choose appropriate analytical expression describing 𝑛  
dispersion (solid red curve in Fig. 8), various functions were tested. Basic criteria, 
employed for the choice, were restoration of the flat wave front behind the cloak and 
maximal decrease of the total scattering cross-width of the cloaked target versus that of the 
bare target. Based on these criteria, the expression given below, which is controlled by 
three parameters, was used as the reduced prescription for 𝑛  dispersion:  
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                                    (a)                                                                  (b) 

 
                         (c) 

Figure 7. Frequency dependencies of directional index values in 2nd transmission bands of 
rectangular arrays with 𝑎  = 5 mm and 𝑎  = 7 mm for various values of: (a) rod radius at 𝜀 = 35, (b) rod permittivity at 𝑅 = 1.5 mm, and (c) rod radius at 𝜀 = 39. 

 

                                        𝑛 = 𝛼      ;    𝑅 ≤ 𝑟 ≤ 𝑅                                                 (7) 

where 𝛼, 𝛽, and 𝛾 are, respectively, the parameter controlling the value of 𝑛  at inner 
boundary of the cloak, the parameter controlling the lowest level of  𝑛  (at outer boundary 
of the cloak), and the parameter managing the steepness of radial index dispersion. 
Expression (7) has been obtained at transforming the well-known decaying function 𝑛 =𝛼 , where 0 < 𝑥 < 1 is the distance from some origin. Since, in our case, the distance 
of interest was defined by the distance between 𝑅  and 𝑅 , we, first, replaced 𝑥 by 
expression − 1, which became equal to zero at 𝑅 = 𝑅   and, thus, provided 𝑛 = 𝛼 at 
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the inner boundary of the cloak. Then we introduced additional complication in the 

definition of 𝑥 as: 𝑥 = , which led to 𝑥 = 1 at the outer cloak boundary and, 

respectively, to 𝑛 = 1, if 𝛽 = − 1.  Taking the value of 𝛽 bigger than − 1 
allowed for requesting the value of 𝑛  at the outer boundary of the cloak to be bigger than 1 up to desired level. Introducing coefficient 𝛾 in the expression for 𝑛  provided additional 
option for manipulating the dispersion law at the search for the law providing better fit to 
the described above criteria. 

 
 
Figure 8. TO-prescribed and reduced (based on Eq. 7 at 𝛼 = 1.75, 𝛽 = 4.3, and 𝛾 = 0.65) 
index dispersions for cloak with = 3.5. 

Proposed approach can be illustrated by finding an appropriate reduced prescription for the 
cloak with = 3.5. First, we determined the values of parameters 𝛼, 𝛽, and 𝛾, at which 
the dispersion law, prescribed by expression (7), would fit TO-prescribed dependence 
presented by curve F in Fig. 1 (b). Red curve in Fig. 9 (a) illustrates the result of fitting. 
Then, by reducing the value of 𝛼, as shown in Fig. 9 (a), the highest value of 𝑛  near the 
target has been lowered down to less than 1.8, which was attainable in rod array with 
rectangular lattice, rod radius R = 1.9 mm, and ε = 35 (blue curve in Fig. 9 (a)). Then, to 
increase 𝑛  values in outer layers of the cloak with the aim to compensate for weaker 
refraction caused by reduced values of 𝑛  near the target, we employed higher than 2.5 
values of 𝛽 in expression (7) and have chosen 𝛽  to be equal 4.3 to obtain 𝑛  ≃ 1.25 at the 
outer boundary of the cloak (blue curve in Fig. 9 (b)). Finally, we varied 𝛾 around the value 
of 0.7 used at fitting the dispersion law prescribed by expression (7) to TO-prescribed law 
given by curve F in Fig. 1 (b) (see Fig. 9 (c)).  
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(a)                                        (b)                                         (c) 

Figure 9. Calculated radial index dispersions according to expression (7) for various 𝛼, 𝛽, 
and 𝛾 at = 3.5. 

Wave propagation through cloaks with media obeying different dispersion laws for 𝑛 , was 
simulated and compared to wave propagation through the cloak with TO-prescribed 
dispersion (red curve in Fig. 9 (a)).  In addition, COMSOL software was used to calculate 
total scattering cross-widths for the cloaks under study, following [17]. The best 
performance of the cloak employing reduced prescriptions, which was quite comparable to 
the performance of the cloak based on TO prescriptions at = 3.5, was demonstrated 
for the values of parameters 𝛼, 𝛽, and 𝛾 equal to 1.75, 4.3 and 0.65, respectively. Fig. 10 
demonstrates that the target (metal cylinder) covered by the cloak having reduced index 
dispersion, causes only slightly higher scattering compared to scattering caused by the 
target covered with TO-prescribed cloak, both being much lower than scattering caused by 
bare target. 

 

Figure 10. Calculated total scatterings cross-width of bare target (A), of target covered by 
cloak with reduced index dispersion (B), and of target covered by cloak with TO-prescribed 
index dispersion (C).  
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                                      (a)                                                                 (b)  

Figure 11. Simulated wave-patterns at an arbitrary frequency of 11.4 GHz, at TM wave 
incidence from left on cloaked targets with = 3.5: (a) at TO-prescribed index 
dispersion, (b) at reduced dispersion of radial index component.  

As seen in Fig. 11, simulated field patterns for wave propagation through metal cylinders 
concealed by cloaks with TO-prescribed and reduced index dispersions, look almost 
identical. It could be concluded, that the main function of TO-prescribed spatial dispersion 
for radial index component in the cloak medium, which can be described as turning the 
paths of incident waves around the target with minimal reflection or scattering, could be 
achieved at reduced prescriptions, if they provide compensation of weaker refraction near 
the target by enhanced refraction in outer cloak layers. The main advantage of reducing the 
maximum value of 𝑛  near the target is an opportunity to realize properly performing cloak 
by using dielectric PhCs with rectangular lattices. It is worth mentioning here that earlier 
in [3], where the cloak medium was composed of MMs, TO requests to spatial dispersions 
of material parameters have also been reduced. Original   and   distributions in [3] were 
approximated by constant values, and   was the only radially varied parameter that made 
the realization of the cloak essentially easier. However, this cloak did not provide 
appropriate wave-front reconstruction beyond the target and demonstrated a non-negligible 
shadow, characteristic for improper realization of refraction demands. Similar, as in [3], 
approach was used at building the cloak from dielectric-metal MMs in [18], where   and 𝜀  were reduced to constant values, while  𝜀  was changing from 0 at inner boundary of 
the cloak to 1 at outer boundary. Similar to [3], power flow beyond the cloak with reduced 
material parameters was found to be essentially lower than that in the case of the cloak 
with full parameters prescribed by TO.  

We have shown that for obtaining proper cloaking effect, cloak medium, formed from 
PhCs, should have its radial index component changing from values exceeding 1 near the 
target down to 1 at the outer boundary of the cloak, in addition to ascending dispersion for 
azimuthal index component, unless waves are guided around the target due to self-
collimation phenomenon mimicking refraction effects. It is demonstrated that two types of 
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spatial dispersions prescribed for index components of cylindrical cloaks can be realized 
in the media built from 2D PhCs with rectangular lattices of dielectric rods. Such crystals 
were shown capable of supporting, in the 2nd transmission bands, index values ranging 
from zero to those significantly exceeding 1. Increasing PhC’s lattice constants allowed for 
shifting their 2nd bands in dispersion diagrams down to lower frequencies thus providing 
spatial dispersion of indices in the cloak composed of PhCs fragments with different lattice 
constants. However, maximal values of radial indices, which could be obtained in PhCs at 
increasing lattice asymmetry, appeared to be less than those prescribed by TO because of 
restrictions imposed on crystal asymmetry by extinction of the 2nd transmission band. 
Changes of the cloak thickness and rod parameters were found incapable of completely 
closing the gap between TO prescriptions and modalities of used PhCs. To solve this 
problem, we proposed reduced prescriptions for radial index dispersion. Reduced 
dispersion law suggested employing essentially smaller values of radial index near the 
target, than those requested by TO, so that these values would be achievable by using 
crystal asymmetry. To compensate for weaker refraction in inner layers, we proposed to 
provide higher than requested by TO index values in outer layers of the cloak. Conducted 
simulations of the cloaks with reduced spatial dispersions of radial indices have shown that 
these cloaks perform similarly to TO-following cloaks, i.e. support wave front restoration 
beyond the target and drastic decrease of the total scattering cross-width by the cloak. 
These results make feasible practical realization of invisibility cloak by using PhCs with 
rectangular lattices.  

2.2 Employing GRIN PC- inspired Approach for Building 
Invisibility Cloak Media from Photonic Crystals2 

2.2.1 Introduction  
Dielectric photonic crystals (PCs) provide a low-loss platform for designing various 
photonic devices. One of perspective applications for PCs is their employment in 
transformation media, in particular, in invisibility cloaks [8]. It is known that 
Transformation Optics (TO) requests materials with properties, which cannot be found in 
nature. In our recent work [9] it was demonstrated that in cylindrical cloaks formed from 
2D PCs with square lattices, waves could move with superluminal phase velocities. Later 
in [19] we have shown that at employment of PC with rectangular lattices, anisotropic 
dispersions of refractive index components could be achieved in the cloak media, in 
addition to superluminal wave propagation. 

In this work, in order to decrease scattering from cloaked objects, we investigate an 
opportunity of using an approach, inspired by GRIN PCs [20, 21], to form the cloak 
medium with prescribed index dispersions. As known, GRIN PCs are formed by 
                                                 

2Reprinted from ‘S. Jamilan and E. Semouchkina, “Employing GRIN PC-inspired Approach for Building 
Invisibility Cloak Media from Photonic Crystals,” IEEE Photonics Conference, VA, USA, 2018’; with 
permission from © IEEE Publishing. 
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appropriate gradual changes of PC lattice constants in one direction. For the cloak medium, 
we had to solve a more complicated task of providing gradual modification of PC 
parameters in two directions to control radial dispersions of azimuthal and radial index 
components. Obtained results demonstrate that employed approach allows for substantial 
decreasing the thickness of the cloak without deteriorating expected according to TO 
predictions wave front reconstruction beyond cloaked target. Decreased thickness of the 
cloak leads to essentially less scattering from cloaked object compared to scattering from 
bare target thus providing more efficient cloaking effect. Full-wave simulations in this 
work have been performed by using COMSOL Multiphysics software, while MPB package 
was employed for calculating dispersion diagrams of PCs. 

2.2.2 TO Prescriptions for Cloak Medium Built from Anisotropic 
PhCs 

To provide proper performance of cylindrical invisibility cloak, TO requires specific radial 
dispersions for azimuthal index component 𝑛  and for radial index component 𝑛 . The 
value of 𝑛  has to grow up from zero at inner boundary of the cloak towards 1 at outer 
boundary of the cloak, while the value of 𝑛  has to descend from bigger than 1 values at 
inner boundary of the cloak to 1 at the outer cloak’s boundary [9]. PCs with rectangular 
lattices were found capable of providing anisotropy of refractive indices along two normal 
to each other crystallographic axes of crystals [19]. However, modifications of rectangular 
unit cells did not allow for ensuring such high degree of index anisotropy, which was 
prescribed by TO for cloak layers located close to inner boundary of the medium. As 
described in [19], the possibility to overcome this discrepancy was found in replacing TO-
prescribed dispersion law for 𝑛  by reduced dependence incorporating achievable in PC 
values of 𝑛  near the cloaked object and higher than TO-prescribed values of 𝑛  in outer 
layers of the cloak. Careful balancing of these changes has allowed for observing the TO-
predicted cloaking effect in cloak models with reduced index dispersion that justified an 
employment of proposed reduction. Fig. 12 presents TO-prescribed dispersion for 𝑛  and 
the reduced dispersion for 𝑛 . The figure also shows an approximation of the dispersion 
curves by step-functions made of six gradual steps. These steps were used to determine the 
values of index components for circular arrays, which represented fragments of PCs 
necessary to form the cloak.  

Fig. 13 demonstrates frequency dependencies of index components calculated for two 
orthogonal directions X and Y in six infinite PCs composed of dielectric rods with different 
sets of lattice constants 𝑎  and 𝑎 . Presented dependencies have been obtained from the 2nd 
transmission branches in dispersion diagrams of respective PCs [9].  It is well seen in the 
figure that at the frequency of 11.2 GHz chosen as operating frequency, indices controlling 
wave propagation along X-axis are spread in the range from 0.3 up to 1 and, so, are capable 
of supporting “superluminal” phase velocity of waves, while indices controlling Y-
direction are in the range between 1.25 and 1.8, and so, can provide reduced dispersion of 𝑛 . Therefore, using properly rolled-up concentric fragments of PCs from series A-F in 
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Fig. 13 provided an opportunity to build the cloak medium with dispersions presented by 
step-functions in Fig. 12.  

 
Fig. 12. Green curves-dispersions of index components chosen for building a cloak with 𝑅 /𝑅 = 2.8; red and blue steps–parts of step-functions used for approximating chosen 
dispersions 

 
Fig. 13. Frequency dependencies of directional index components (in the 2nd transmission 
band at TM wave incidence) for composed of dielectric rods (ε = 35, 𝑅 = 2 mm) PCs with 
lattice constants 𝑎  and 𝑎  (in mm): A (4.95 × 6.85), B (5.2 × 7.37), C (5.75 × 8.26), D 
(6.2 × 8.77), E (6.8 × 9.32), and F (7.45 × 9.75).  

2.2.3 Verifying GRIN PC- Inspired Approach to Designing PhC- 
based Cloak Medium 

To verify the applicability of the GRIN PC- inspired approach, we represented fragments 
of PCs from series A-F (Fig. 13) in the cloak medium by single circular arrays. Thus we 
have built the cloak medium from six circular arrays. From captions to Fig. 13 it is seen 
that transition from one circular array to another is accompanied by gradual changes of two 
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lattice constants (in azimuthal and radial directions). Although such changes should cause 
some distortions of the shapes of unit cells, we expected that these distortions would not 
significantly affect the index values found for respective lattice constants. Field patterns 
simulated at TM wave incidence on clocked object and on bare object are presented in Figs. 
14a and 14b, respectively. From comparison of two figures it could be concluded that 
GRIN PC-inspired approach to designing the cloak medium provided an opportunity to 
realize predicted by TO wave front changes at wave movement around hidden object and 
wave front reconstruction beyond the object. Calculations of the total scattering cross-
width (TSCW) for two cases have shown that TSCW of cloaked object appears to be 40% 
less that the TSCW of the bare object. 

 

Fig. 14. Snap-shots of TM wave incidence on (a) metallic object covered by PC-based 
cloak and (b) bare object at frequency of 11.49 GHz.  

Obtained results confirm an opportunity to use the GRIN PC-inspired approach to 
designing the cloak medium from fragments of PCs with rectangular lattices. This allows 
for realizing close to TO-prescribed spatial dispersions of radial and azimuthal index 
components, which control bending the wave paths around the cloaked object and speeding 
up waves along curvilinear paths. The proposed approach to designing cylindrical cloaks 
can be scaled to higher frequencies, including optical range, by scaling dimensions of 
dielectric rods. 
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3 Using Self-collimated Wave-guiding in Invisibility 
Cloaks3 

3.1 Introduction  
An ideal cylindrical invisibility cloak should guide incident waves around a hidden object 
without scattering and reflection. Transformation Optics (TO) prescribes the values of 
material parameter in the cloak medium suitable for such guiding [1]. However, realizing 
TO prescriptions is very challenging, since they request close to zero values of azimuthal 
index components and values of radial index components, far exceeding 1. Such values are 
necessary for providing superluminal phase velocities of waves along elongated paths 
around the target, on one hand, and for proper turning wave trajectories to support circular 
wave movement, on the other hand. While metamaterials have been conventionally 
considered as the best candidates for the cloak media, we have earlier shown that there are 
advantages of forming the transformation media from fragments of photonic crystals 
(PhCs) [2, 3]. However, it was also found that at building up the cloak of desired thickness 
from arrays of dielectric rods with rectangular lattices, it was not possible to realize in full 
all TO-prescribed values for radial components of refractive indices in the cloak medium. 
At the same time, it was revealed that in the cloaks, composed of concentric circular rod 
arrays, waves could be sent around the target using the phenomenon of self-collimation 
(SC) [3]. Realizing such SC effects requires turning crystallographic axes of PhC fragments 
that could be accomplished by gradually altering the orientation of unit cells [4]. In this 
work, we investigate the possibility to employ self-collimated wave-guiding, instead of 
using prescribed by TO high values of radial index components, at designing the cloak. 
The cloak was composed of rods with relative permittivity of 37.2 and radii of 3 mm for 
performing future experiments in microwave range. The design of the cloak can be re-
scaled for optical range at using silicon nano-rods. 

3.2 Underlying Concept, Design, and Performance of the 
Cloak 

Figure 1 illustrates the concept of the cloak design. The wave paths controlled by SC are 
shown by two big arcs in the central areas of the cloak. These cloak parts were built up of 
rod array composed of identical unit cells with the same lattice parameters along azimuthal 
and radial directions. These lattice parameters had to provide the values of refractive index 
components equal to 1, i.e., corresponding to free space, at the cloak operation frequency. 
While lattice parameters were not varied on the wave paths within SC parts of the cloak, 
turning of wave paths was provided by SC. Orientation of unit cells, constituting SC 
regions, was changing from cell to cell, so that azimuthally directed sides of cells followed 

                                                 

3Reprinted from ‘S. Jamilan and E. Semouchkina, “Using Self-collimated Wave-guiding in Invisibility 
Cloaks,” SPIE Conference, Metamaterials XIII, 11769, 117690K, 2021’; with permission from © SPIE 
Publishing. 
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circular paths, while their radially directed sides were normal to them. Such reorientation 
of cells mimics bending of crystallographic axes in PhC. In the SC parts of the developed 
cloak design, we used four parallel rows of unit cells, bent along circular paths. Identical 
lattice parameters of four arrays excluded impedance mismatch at the wave movement 
along arcs within SC regions. Two additional transition regions at the cloak input and 
output (see Figure 1) were designed using TO approaches. These regions had to transform, 
first, wave movement along straight path at the cloak input into circular movement within 
SC controlled areas and then, from circular movement into straight movement at the cloak 
output. Figure 2 presents the results of modelling wave propagation throughout the output 
region at the right end of SC controlled circular arc in the upper half of the cloak. At solving 
the transformation problem, we employed TO-based approaches used in [5]. 

 
Figure 1. Cross-section of the schematic of wave flow through unidirectional cylindrical 
invisibility cloak, hiding cylindrical object. The cloak is employing self-collimated wave 
movement along circular paths between input and output.  

 
Figure 2. Schematic of wave pattern provided by TO-based transition section of the cloak 
medium at the end of upper arc-type self-collimated path. Transformation medium operates 
with waves passing along four arc-type layers (A, B, C, and D) and starts to modify the 
wave movement at the dashed-dotted line marking the upper edge of θ angle. Presented 
field-pattern is based on the solution obtained by using COMSOL Multiphysics software.  

Chosen coordinate transformation was aimed at redirecting waves, propagating along four 
arc-type circular paths, into output straight paths. Redirection was equivalent to turning the 
wavefront counterclockwise by π/4 radian. This turning was provided due to radial 

TO-based
part

incident wave object

SC-based
part

TO-based
part guided wave
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dispersion of azimuthal index component in the medium of TO-based cloak section at fixed 
values of radial index components, controlling the four arc-type paths (as seen in the Table 
in Figure 2). TO-prescribed azimuthal index component had the lowest value for the path 
A and the highest value for the path D that caused increased phase velocity of wave moving 
near the lower edge of the transformation medium and much slower wave propagation 
along the path D. As seen in Figure 2, defined by the Table dispersion of azimuthal index 
component allowed for realizing the desired counterclockwise turning of wavefront within 
the transformation medium. On the left side of the cloak, we had to form the transformation 
medium, inverted relatively one presented above, to allow wave moving along straight path 
enter the region with four arc-type wave paths (from D to A). Thus, in the left transition 
section, the transformation medium had to provide turning of wavefront by 45 degrees to 
make it parallel to dashed-dotted line marking the upper edge of θ angle. The resulting 
wave flow, normal to this line, had to initiate SC-controlled wave flow in the upper part of 
the cloak.  

 

Figure 3. (a) Schematic of 2D rod array with rectangular lattice in xy cross-section 
(diameter and relative permittivity of rods: D = 6 mm and ε = 37.2). (b) Frequency 
dependencies of orthogonal refractive index components for four rod arrays within their 
2nd transmission bands under TM wave incidence, used in TO-based transition regions. 
Lattice constants (𝑎𝑥 and 𝑎𝑦) in four layers of transition regions are, respectively (in mm): 
A (7.32, 8.74), B (7.55, 8.62), C (7.84, 8.48), and D (8.24, 8.24). (c) Frequency dependence 
of refractive index (2nd band for TM wave) in rod array with square lattice: 𝑎𝑥 = 𝑎𝑦 = 9.9 
mm used in SC-based region. MPB (MIT Photonic Bands) software was used for 
calculating the dispersion data of rod arrays [7]. 

Figure 3 (b) shows frequency dependencies of index components for rod arrays 
representing four layers (A, B, C, and D in Figure 2) of TO-based cloak parts. These layers 
should respond identically in radial direction at the operating frequency of 7.5 GHz 
providing nr = 0.6, while their indices in azimuthal direction should experience changes on 
the wave paths. At building the layers of arc-type transformation media, we oriented unit 
cells with their short sides along x direction and elongated sides along y direction that 
corresponded to azimuthal and radial directions, respectively, in the cloak medium. Thus, 
the curves in Figure 3 (b) were calculated for two orthogonal directions x and y, within the 
2nd transmission bands of arrays. It is worth noting here that building TO-based parts of the 

AC BD(a) (b) (c)
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cloak from rod arrays was performed at relying on the concept of graded index (GRIN) 
PhCs [6]. Respective fragments of four PhCs (A, B, C, and D) included single circular 
arrays.  

Two arc-type wave paths in the central SC-based part of the cloak were formed by the rows 
of unit cells properly oriented to mimic bent arrays with square lattices. The responses of 
these arrays are represented by the frequency dependence of their index presented in Figure 
3 (c). It is seen in the figure that arrays with square lattices provided at the operation 
frequency of 7.5 GHz the value of index equal to 1, i.e., the value characteristic for free 
space. In addition, to avoid index mismatch at the boundaries of SC-based parts and TO-
based regions, we properly adjusted the refractive index values in neighboring unit cells. 
We used matching arrays (A', B', C', and D') between SC-parts and TO-sections (A, B, C, 
and D). Matching arrays had to provide median indices, given in the table in Figure 4, with 
respect to the index of SC-parts (n =1) and indices of TO-part layers. Frequency 
dependencies of index components within 2nd transmission bands of four rod arrays with 
rectangular lattices A', B', C', and D' are plotted in Figure 4. Considering the operation 
frequency of 7.5 GHz, lattice parameters of these PhCs were properly chosen for realizing 
the desired matching arrays. 

 

Figure 4. Frequency dependencies of orthogonal index components (2nd band for TM wave) 
in rod arrays for matching layers. Lattice constants (𝑎𝑥 and 𝑎𝑦) are, respectively (in mm): 
A (8.03, 8.81), B (8.22, 8.78), C (8.42, 8.74), and D (8.66, 8.66).  

Complete cloak medium was formed using SC-parts, TO-based regions, and matching 
layers composed from identical dielectric rods. The diameter of cylindrical metal object 
was 100 mm, and a TM polarized plane wave was used for excitation. Figure 5 allows for 
comparing wave patterns, observed at wave scattering by the bare metal cylinder and by 
the cloaked cylinder. It is seen in the figure that at the operation frequency, the designed 
cloak demonstrates a very good restoration of the flat wavefront beyond the object. In 
Figure 6, calculated total scatterings cross-width (TSCW) curves show that the cloak is 
reducing scattering by 40%. 
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SC-based cloak has a relatively small thickness, so that Rout / Rin = 1.79, where Rout and Rin 
are, respectively, inner and outer radii of the cylindrical cloak medium. For a cloak that 
was designed fully using TO-prescribed material parameters by employing rectangular-
lattice arrays of similar dielectric rods, this ratio was Rout / Rin = 3 [8].  In addition, newly 
designed SC-based cloak is operating under plane-wave illumination, while SC-based 
devices typically work with electromagnetic beams [9]. With described above 
characteristics, SC-based cylindrical cloak composed of dielectric rod arrays is a promising 
candidate for practical applications in microwave and optical ranges. 

 
Figure 5. Simulated using COMSOL Multiphysics software wave patterns for wave 
passing (a) bare metal cylinder and (b) cloaked cylinder at the operation frequency (7.66 
GHz). 

 

Figure 6. Total scatterings cross-widths (TSCWs) calculated for bare metal cylinder and 
for metal cylinder cloaked with SC-based cloak.  
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4 Collimation Effect in Strongly Modulated Anisotropic 
Photonic Crystals with Near-Zero Refractive Indices4 

4.1 Introduction  
Development of the media with near-zero refractive indices (NZRIs) has opened new 
opportunities for controlling electromagnetic wave propagation [1]. Such media could be 
employed for realizing various unusual effects including cloaking. Especially, effective 
control of wave processes is expected at anisotropy of NZRI media [2, 3]. Since natural 
materials could not possess with NZRI, creating such media requires employing 
metamaterials or photonic crystals (PhCs). In particular, all-dielectric media of such types 
were considered as the best choice, since they allowed for overcoming the loss problems. 
Following [4], we have operated in this work with 2D dielectric rod arrays, which 
demonstrated PhC-type responses. The MPB and COMSOL software packages were used 
to simulate the dispersion data, S21 transmission spectra, and wave-patterns. Rods had the 
permittivity of 37.2 and diameter of 6 mm and were considered to be infinitely long along 
z-axis. We fixed directional lattice constant ax at 8 mm and changed ay from 8 mm to 14 
mm. 

 

Fig. 1. Dispersion diagrams and transmission spectra for PhCs with unit cell width 𝑎  = 8 
mm and the lengths: (a) 𝑎  = 8, (b) 10, (c) 12, and (d) 14 mm, when TM wave propagates 
in either x or y directions.  

4.2 Unidirectional Transmission in Rod Arrays  
The idea underlying the design of anisotropic NZRI media was based on the properties of 
dielectric rod arrays with rectangular lattices. We have found previously that such arrays 
                                                 

4Reprinted from ‘S. Jamilan and E. Semouchkina, “Collimation Effect in Strongly Modulated Anisotropic 
Photonic Crystals with Near-Zero Refractive Indices,” CLEO: QELS_Fundamental Science, 2021’; with 
permission from © The Optical Society (OSA) Publishing. 
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could demonstrate significant differences in wave propagation along two orthogonal 
directions, defined by long and short sides of unit cells [5]. In this work, we detected that 
extending the lengths of unit cells at fixed width caused shifting of the dispersion diagrams, 
characterizing wave propagation in long side direction, to lower frequencies.  At proper 
cell lengths, the 2nd stop-band for waves moving in this direction became observed at the 
frequencies, corresponding to the 2nd transmission-band in the orthogonal direction, thus 
introducing strong anisotropy in the array properties. Figure 1 shows the changes of array 
dispersion diagrams at transforming the original square lattices in rectangular ones and 
then increasing the cell lengths at keeping their widths fixed. As seen in the figure, the 
second branch of dispersion diagrams for the direction defined by the long sides of unit 
cells gradually becomes less steep, compared to its original shape and even acquires a 
negative slope at the cell length equal to 14 mm. As the result, transmission spectra (S21) 
of arrays shift along the frequency axis, so that the 2nd transmission band for the long side 
direction appears located at the frequencies, corresponding to the bandgap for wave 
propagation along the short sides of unit cells (see Figure 1 (d)). It means that the described 
lattice transformation makes the array demonstrating unidirectional transmission. 

 

Fig. 2. (a) Frequency dependencies of refractive indices within 2nd transmission band for 
TM waves, propagating along x-axis in PhCs with unit cell width 𝑎  = 8 mm and the 
lengths: 𝑎  = 8, 10, 12, and 14 mm. EFCs of fGHz (kx , ky) in irreducible Brillouin zone at 𝑎  = (b) 8 and (c) 14 mm. 

4.3 Performance of Anisotropic NZRI Medium 
To realize anisotropic NZRI media, we intended to employ the specifics of rod arrays with 
square lattices, which demonstrated close to zero values of refractive indices near the lower 
frequency edges of 2nd transmission band [4]. Before employing these specifics, we had to 
ensure that the above property could be conserved at transforming the square lattices into 
rectangular ones with ɑy approaching 14 mm. Figure 2 (a) shows the result of calculating 
the refraction index values for wave propagation along the short sides of unit cells, i.e. in 
x direction in arrays with ɑy changing from 8 mm to 14 mm. It is seen in the figure that at 
increasing ɑy, the range of frequencies providing NZRI becomes wider, so that at ɑy = 14 
mm, the index values remain less than 0.5 between 6.75 GHz and 7.0 GHz. It is worth 
noting that at these frequencies, propagation is fully suppressed along y-direction. Figures 
2 (b) and (c) demonstrate the transformations of equi-frequency contours (EFCs) from 

(a) (b) (c)

0.5 0.5
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elliptically shaped curves into flat ones at increasing ɑy. Such flat EFCs are expected to 
cause strong collimation effects in PhCs. To illustrate the response of unidirectional NZRI 
media, we obtained wave patterns, presented in Figure 3. Fragments of dielectric rod arrays 
with square lattice (𝑎  = 𝑎  = 8 mm) and with two rectangular lattices (𝑎  = 8 mm and 𝑎  
equal to either 12 mm or 14 mm) were placed in front of the source of TM waves, which 
provided spreading of radiation around x-direction in free space. Comparison of Figures 3 
(a), (b), (c), and (d) demonstrates that the media with rectangular lattices, providing 
unidirectional NZRI response (𝑎  = 8 mm and 𝑎  = 14 mm), forms and guides x-directed 
electromagnetic beam, preventing it from becoming divergent, at the proper operating 
frequency of 6.85 GHz. Due to NZRI realization and superluminal wave propagation along 
x direction in Figure 3 (d), wavelength inside PhC media (λPhC = 130 mm) is much longer 
than the wavelength in free-space (λair = 43 mm), corresponding to the refractive index 
value of 0.3. 

 

Fig. 3: Wave patterns for (a) radiation of wave source with TM polarization in free-space 
and in PhC media with 𝑎  = 8 mm and 𝑎  equal to: (b) 8, (c) 12, and (d) 14 mm. Frequency 
corresponded to the lower frequency edge of 2nd transmission bands for x-directed wave 
propagation. 

Thus, the conducted work has shown an opportunity to design PhC-type media with NZRI 
properties, providing full transmission at wave incidence along one crystallographic 
directions and stop-band at wave incidence normally to this direction. Such types of PhCs, 
performing as anisotropic NZRI media, can offer collimating effects for wave sources used 
in microwave and photonic systems. 
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5 Specifics of Scattering and Radiation from Sparse 
and Dense Dielectric Metasurfaces5 

5.1 Introduction 
Dielectric meta-surfaces (MSs) composed of silicon nanoparticles and exhibiting 
essentially lower losses compared to plasmonic MSs, attract increasing attention at the 
development of novel photonic de vices. In particular, it was demonstrated in [1-3] that 
scattering from MSs formed from dielectric resonators (DRs) made of silicon rods/disks 
could be controlled by changing the height-to-diameter ratio of the particles. Such 
geometric changes were shown to shift the frequencies of magnetic and electric Mie-type 
resonances in DRs up to their coincidence, when full transmission of incident waves 
through MSs was observed with 2π phase control [3]. These results were the reason for 
projecting that dielectric MSs will be the basic media for developing new optical devices, 
controlling both intensity and phases of scattered waves that is required for obtaining 
holographic images [4]. The observed phenomena were explained using the concepts of 
directional scattering from dielectric spheres at so-called Kerker’s conditions [5, 6] that 
were thoroughly investigated in both microwave and optical ranges [6-10]. Similar 
approaches were used in following works (for example, [11]), although the physics of the 
observed phenomena still called for clarification. In particular, the effects of particle 
resonance integration in MSs were omitted from consideration in [1-3], and, instead, 
metamaterials concepts, assuming that the response of the entire array could be represented 
by the response of a single “meta-atom”, were used. Meanwhile, MSs investigated in [1-3] 
were formed from dense DR arrays, in which interaction of particle resonance fields should 
be expected. In our earlier work in 2005 [12], we described such interaction and coupling 
phenomena, which were later observed in other works on metamaterials [13-15]. When 
recently conducting a set of numerical experiments [16] with the same type of arrays as 
those used in [3], we observed strong effects of lattice parameters on MS responses, 
including their forward (FS) and backward (BS) scattering. It was shown that at so small 
lattice constants as those used in [3], DRs in MSs appeared strongly coupled that affected 
observed resonance frequencies and interaction between MSs and incident waves.  

In this work, we present the results of a broader investigation aimed at deeper 
understanding of various cooperative phenomena in dielectric MSs, including interactions 
between electric and magnetic resonances within DRs, as well as inter-resonator 
interactions in arrays. Obtained results are important for understanding the complexity of 
MS responses and provide the guidance for choosing optimal MS design. We start from 
the analysis of responses from single DRs placed in free space and then turn to the 
phenomena in arrays.  

                                                 

5Reprinted from ‘S. Jamilan, G. Semouchkin, N. P. Gandji, and E. Semouchkina, “Specifics of Scattering 
and Radiation from Sparse and Dense Dielectric Meta-surfaces,” Journal of Applied Physics, 125 (16), 
163106, 2019’; with permission from © AIP Publishing. 
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5.2 Models and Methodology of Numerical Experiments 
“Meta-atoms” of MSs in these studies were represented by silicon DRs of various shapes 
(Fig. 1a). Dielectric constant of DRs was 12.25 that is typical value for silicon at optical 
frequencies [17]. Cylindrically shaped DRs were similar to those employed in [3], 
however, in difference from [3], the diameter of DRs was not changed to control their 
resonances and kept equal to 240 nm. Instead, for varying resonance frequencies, the height 
of DRs was changed from 240 nm down to 60 nm (Fig. 1a). Such approach, first used in 
[16], provided an opportunity for investigating the effects of lattice parameters on MS 
responses. Comparing the responses of DRs of different shapes allowed for observing the 
transformation of well-studied responses of dielectric spheres into responses of disk-
shaped DRs.   

 
Fig. 1.  Examples of (a) DRs and (b) 3 x 3 fragments of MSs used in these studies.    
 
Simulations were performed by using Frequency Domain Solver of COMSOL 
Multiphysics and verified using Time Domain Solver of CST Microwave Studio software 
packages. Plane waves, incident normally to MSs (along Z-axis in Fig. 1), were used for 
excitation. To evaluate scattering from MSs, we, first, simulated S - parameter spectra, as 
it was done in [1-3], Such approach suggested representing periodic DR arrays by one-cell 
model, conventionally used at modeling homogenized metamaterials, when one cell is 
assumed representing the entire medium. We employed one-cell model with periodic 
boundary conditions (BCs) for calculating S-parameters spectra, to characterize interaction 
between MSs and incident waves. In addition, to describe radiation from resonating MSs, 
we employed proposed in COMSOL technique for evaluating FS and BS spectra from 
finite size samples and also simulated far-field patterns, thus considering MSs as sources 
of radiation comparable to antennas.  The latter approach is often used at the studies of 
resonance scattering, which could be also referred to as resonance radiation and which is 
expected to play an important role in MS responses. It could be noted that at strong 
coupling between DRs, employment of one-cell model requested justification. However, 
at weak interaction between DRs, i.e. in the cases of sparse arrays, one-cell model was 
expected to provide adequate representation of array interaction with incident waves. To 
characterize resonance scattering/radiation from MSs, we used MS fragments consisting 
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of 9 (3 x 3) unit cells (Fig. 1b), which were found to represent MSs properly, based on 
experiments with fragments of various sizes. Finally, to characterize resonance fields and 
coupling effects, we simulated field patterns in cross-sections of MS fragments applying 
periodic boundary conditions at their boundaries. 

 
 Fig. 2. Simulated using COMSOL Multiphysics and CST Microwave Studio packages 
spectra of signals from E- and H-field probes placed in points A and from E-field probes 
placed in points B (upper row) and spectra of BS and FS power density (lower row) for 
DRs with (a) spherical and (b) cylindrical shapes. Inset shows positions of field probes in 
central XZ cross-section of DRs. Diameter of spheres is 278 nm, while cylindrical DRs 
have both diameter and height equal to 240 nm. 

5.3 Analysis of Resonances in Single Particles and 
Scattering from Them 

The upper row in Fig. 2 presents spectral changes of signals from E (electric) and H 
(magnetic) field probes placed either in centers (points A) of spherical and cylindrical DRs 
excited by plane waves or in points B near the edges of Z-directed diameters of central XZ 
cross-sections. Signals from points A allowed for observing electric (EDR) and magnetic 
(MDR) dipolar resonances, while signals from points B were characterizing magnetic 
quadrupolar resonances (MQR) formed at blue tails of EDRs.  Diameters of spherical DRs 
were slightly increased compared to diameters of cylindrical DRs to provide in two types 
of DRs similar frequencies of EDRs and MDRs. As seen in the graphs, while the strengths 
of dipolar resonances in two DRs are comparable, MQR in spheres is twice stronger than 
that in cylindrical DRs and fMQR for spheres is closer to fEDR. In general, however, the 
spectra of responses from two DR types, as well as their BS and FS spectra, given in the 
lower row of Fig. 2, demonstrate similar features at f < fEDR (λ> λEDR)  and do not reveal 
any differences at employing various software in simulations. 

The spectra of BS and FS for two types of DRs demonstrate higher BS compared to FS in 
the range between EDRs and MDRs that is characteristic for the 2nd Kerker’s condition and 
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show deep drops of BS (at seemingly undisturbed FS) at f < fMDR (λ > λMDR) that is typical 
for the 1st Kerker’s condition. Such similarity confirms that dipolar resonances in 
cylindrical DRs with heights close to their diameters are analogous to Mie resonances in 
spheres. Difference in BS and FS spectra of two DRs at f > fEDR  (λ < λEDR) appears due to 
differences in MQR responses. 

 
Fig. 3. Spectral distributions of (a) BS and (b) FS for single cylindrical DRs of various 
heights at occurrence of EDRs, MDRs, and MQRs. Diameters of DRs are equal to 240 nm. 
White and black colored circles mark spectral positions of EDRs and MDRs. Purple circles 
on two graphs mark the case, when frequencies of EDR and MDR coincide.  

Fig. 3 presents spectral distributions of BS (Fig. 3a) and FS (Fig. 3b) power density, 
provided by single cylindrical DRs of different heights at their excitation by incident plane 
waves. The positions of EDR and MDR, obtained from the spectra of signals from E- and 
H-field probes placed in DR centers, are marked in the presented patterns by white and 
black circles, respectively. It is seen in the figures that the curves, representing EDRs and 
MDRs, cross each other at DR heights close to 90 nm that is in agreement with the data in 
[1-3]. However, these crossings are not accompanied by either increase of FS or BS, or by 
deep drops of these values, which would allow to detect specific directional scattering from 
MSs composed of 90 nm high DRs. It is well seen that, while MDRs provide strong and 
wideband FS, which gradually decreases at smaller DR heights, EDRs produce comparable 
FS only at DR heights close to 240 nm, while at heights below 210 nm, FS, caused by 
EDRs, drops down by an order of magnitude and more. BS at EDRs also looks significantly 
weaker than BS at MDRs at DR heights, starting from 240 nm down to, at least, 140 nm. 
It is worth noting here that meaningful FS and BS can be seen at MQRs, visualized at 
higher frequency sides of the blue colored “canyons” adjusting to the curves of EDRs. A 
deeper and wider “canyon” is seen in BS pattern to the right of the curve of MDRs. It seems 
related to realizing 1st Kerker’s condition (see Fig. 2), i.e. condition for destructive 
interference of waves scattered by EDR and MDR in backward direction. It is important to 
mention that the tails of two “canyons” in BS pattern come closer to each other at DR 
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heights of about 110 nm, when strong FS provided by MDR still exists. It shows an 
opportunity for obtaining directional scattering at MDR frequencies. 

Fig. 4 shows changes of resonance responses and BS/FS spectra for single cylindrical DRs 
at decreasing their heights from 140 nm down to 90 nm (to the case when frequencies of 
EDR and MDR coincide). It can be seen that at the DR height of 140 nm, when EDR and 
MDR are still relatively far from each other, they affect BS/FS spectra differently. At EDR, 
both BS and FS drop down, demonstrating the same trend as could be noticed for spheres 
in Fig. 2, while at MDR, when FS, as in the case of spheres, remains high, BS experiences 
wideband descend, approaching deep drop below 10-19 W/m2, which is defined by realizing 
the 1st Kerker’s condition. 

At the smaller DR height of h=110 nm, the Kerker’s condition gets realized exactly at the 
frequency of MDR, It is worth mentioning that the observed effect looks accompanied by 
decrease of MDR strength. At further decrease of DR height down to 100 nm, the BS/FS 
drops lose their depths in the vicinity of EDR and the Kerker’s effect also decreases, 
although EDR and MDR frequencies still remain different. At h=90 nm, when EDR and 
MDR coincide, all features of BS/FS spectra, specific for resonances, continue to 
degenerate, so that considering the observed scattering as clearly directional phenomenon, 
defined by the Kerker’s effect, loses any sense. 

 

Fig. 4. Upper row: spectra of signals from E- and H-field probes placed in centers of DRs 
with heights from 140 nm down to 90 nm.  Lower row: respective BS/FS spectra. Disk 
heights are indicated above the columns.  

To understand the reasons, which cause deterioration of scattering capabilities of disk 
resonators at decreasing their heights, we have simulated field distributions in disk cross-
sections at EDR and MDR in DRs of various heights. It could be inferred that in disk DRs 
of small heights, excitation of competing resonances could be incapable of forming 
authentic dipoles. Fig. 5 presents the data confirming significant distortions of resonance 
modes, when EDR and MDR frequencies approach each other. While at h=150 nm field 
patterns at both resonances still look corresponding to typical images of electric and 
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magnetic dipoles directed along the normal to each other diameters of cylindrical DR, at 
DR height of 100 nm, we observe shifting of the location of electric dipole center along Z-
axis and curving of H-field lines around the shifted position of the electric dipole center. 
At h=90nm, the above trends become enhanced, so that electric dipole starts to look as 
formed near the upper disk surface, while magnetic dipole – as represented by an arc of a 
circle.  Such transformations of the resonance modes could be responsible for described 
above distortions in the spectra of BS and FS from disk resonators.    

 
Fig. 5. Upper row – E-field patterns in XZ cross-section of DRs at EDRs: (a) λ=638nm, 
h=150nm, (b) λ=588nm, h=100nm, (c) λ=574nm, h=90nm. Lower row – H-field patterns 
in ZY cross-section at MDRs: (d) λ= 793nm, h=150nm, (e) λ=619nm, h=100nm, (f) λ= 
574nm, h=90nm. 

5.4 Effects of DR Arraying on BS/FS and S21 Spectra of 
MS Fragments  

As we have shown earlier in [16], DR arraying could seriously affect MS responses and 
cause changing of their resonance frequencies and scattering parameter spectra. According 
to [16], such small lattice constants, as those used in [1-3], i.e. of 330 nm, made resonance 
fields of cylindrical DRs with diameters of 240 nm strongly coupled, so that complicated 
grid-like field patterns, incorporating both dipole fields inside DRs and the fields in gaps 
between resonators became seen in planar cross-sections of MS. These data imply that 
responses of dense MS could not be considered as the sum of responses from independent 
DRs and that effects of integration of elementary responses in MS media should be 
accounted for. However, in this section, we first analyze relatively soft resonance 
integration in MSs, expected, according to [16], at the array lattice constant of 450 nm, and 
then, in the following section, switch to the analysis of cases with significant integration 
of resonances.  

Fig. 6 presents spectral distributions of BS and FS power density provided by 3 x 3 
fragments of MSs composed of cylindrical DRs of various heights. From comparison with 
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Fig. 3 for single resonators, it is seen that the basic features of respective distributions are 
quite comparable. However, there are aslso some differences between distributions in Figs. 
3 and 6, i.e. lower frequencies of EDRs and higher frequencies of MDRs, higher BS at both 
EDR and MDR, at also higher FS at EDR. It is also worth mentioning that curves marking 
resonances in Fig. 6 have crossings at larger DR height and at higher wavelength compared 
to crossings in Fig. 3. In addition, Fig. 6 demonstrates relatively high BS intensities in the 
spectral regions between EDR and MDR, and low FS intensities in these regions. These 
specific features are characteristic for realizing the Kerker’s conditions of 2nd type and, 
correspondingly, for directional scattering with dominant backward  radiation (as 
confirmed later in Fig. 8a). Presented data show that DR arraying provides a wide 
bandwidth for this phenomenon. It is also worth noting the differences in appearances of 
“canyons” with suppressed BS at f< fMDR (λ>λMDR) and at f>fEDR(λ<λEDR), and with 
suppressed FS at f>fEDR(λ<λEDR) in Figs. 3 and 6, although it is difficult to qualititavely 
describe these differences, since the scales of power density in two figures differ by about 
two orders of magnitude.  

 
Fig. 6. Spectra distributions of BS and FS power density for 3 x 3 fragments of MSs 
composed of cylindrical DRs with heights ranging from 240 nm to 60 nm.  Diameters of 
DRs are equal to 240 nm, lattice constants of MSs are 450 nm. Spectral positions of EDRs 
and MDRs are marked, respectively, by white and black colored circles. Purple circles on 
two graphs mark the case, when frequencies of EDR and MDR coincide. 
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Fig. 7. Spectral distributions of EM responses from MSs differ by DR heights (shown 
above each column). Upper group of data – for h, nm: 240, 160, 130, and 120. Lower group 
of data – for h, nm: 115, 110, 105, and 100.  Upper row in both groups: signals from E- 
and H-field probes in the centers of DRs at modeling MSs by single cells with periodic 
boundary conditions; middle row: S-parameters (|S21| = T and |S11| = R) simulated at 
above conditions; lower row: BS and FS spectra for 3 x 3 fragments of MSs.  

Fig. 7 presents spectral distributions of signals from E- and H-field probes placed in DRs 
to control resonances in MSs, scattering parameter spectra calculated for infinite MSs, and 
spectral distributions of BS and FS power density characteristic for 3 x 3 fragments of the 
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same MSs. All data were obtained for MSs composed of DRs with the heights chosen 
within the range from 240 nm down to 100 nm.  As seen in Fig. 7, at h=240 nm, i.e. when 
DR responses are comparable to responses of spheres, EDR frequency for the array is close 
to the EDR frequency for single resonator (Fig. 1b), while MDR frequency for the array 
appears to be higher than that for single DR (Fig. 1b). EDR in the array looks stronger, 
while MDR – weaker than in the case of single resonator, and Q-factors of resonances in 
the array seem to be a little higher than those in the case of single DR. All these changes 
are expected to happen at arraying, which, in fact, should slightly decrease the space for 
forming the field “halos” of DR resonances. It could be noted that MQR is not distinctly 
seen in the spectra presented in Fig. 7, in contrast to the case of single DR, however, despite 
of this, MQR still seems located at the same frequency (i.e. at λ=650 nm), since field 
patterns in DR cross-sections (not presented here) confirm characteristic for MQR field 
distributions just at this frequency. MQR also appears responsible for the specific changes 
observed in the scattering parameter spectra and in the BS/FS spectra at f>fEDR. In the S-
parameter spectra, while moving from EDR to MQR, we see, first, a deep drop of S11, 
while S21 approaches the maximum value of “1”. Then, at fMQR, S21 drops down, while 
S11 forms a peak. The values of both BS and FS drop down closer to MQR but then at 
f=fMQR also form peaks. 

At frequencies below fEDR (λ>λEDR), S21 spectrum demonstrates clear dips at frequencies 
close to fEDR and fMDR. Such dips are often considered as a proof of resonances, which are 
expected to cause total reflection and no transmission for incident waves. However, it is 
seen from Fig. 7 that at the resonance frequencies, the values of S21 and S11 appear equal. 
It means that the energy scattered in forward direction becomes equal to the energy 
scattered in backward direction that is characteristic, in particular, for the bagel-type 
radiation patterns. Described features remain clearly seen at decreasing DR heights in MSs 
down to 120 nm, and even to 110 nm when, instead of two overlapped S21 dips, one dip is 
observed, which is decreasing at decreasing DR heights. It is worth noting here, however, 
that FS spectra do not demonstrate any dips or drops and look comparable to spectra 
representing the power radiated by single particles at resonances (see Fig. 2). In contrary 
to FS, deep drops observed in BS spectra of MS fragments appear well correlated with 
drops in the spectra of S11. As seen in Fig. 7, this correlation is conserved at the heights of 
DRs ranging from 240 nm down to 105 nm, and only at the height of about 100 nm, when 
frequencies of EDR and MDR coincide, it disappears because of degradation of all features 
of the spectra. At small DR heights, the frequencies of BS and S11 drops at f>fEDR (λ<λEDR) 
tend to become very close to fEDR, while FS drops get increasingly separated from BS drops 
and shifted to higher frequencies (shorter λ). BS drops, which are observed at f<fMDR 
(λ>λMDR) in spectra of all MSs with DR heights ranging from 240 nm down to 105 nm 
could be, without a doubt, related to realizing Kerker’s conditions of the 1st type as in the 
single resonators. In MSs with smaller DR heights, the frequencies, at which these drops 
occur, get significantly higher, i.e. they shift following fMDR to approach fEDR. To 
additionally verify the relation of BS drops at f<fMDR to the Kerker’s conditions, we 
simulated far-field patterns provided by radiation from MS fragments at the frequencies of 
interest. Fig. 8b shows that the latter BS drops mark the formation of far-fields 
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corresponding to directional FS expected at Kerker’s conditions. Common features of BS 
and S11 drops at f<fMDR and at f>fEDR allow for suggesting that the latter drops are also 
defined by realizing conditions similar to Kerker’s conditions of the 1st type. In principle, 
approaching these conditions at f>fEDR could be expected, since phase jumps of dipole field 
oscillations at EDR and MDR should make the relation between phases of oscillations in 
high-frequency tails of EDR and MDR close to the relation characteristic for f<fMDR.. Far-
field patterns characterizing radiation from MS fragments at frequencies corresponding to 
drops in BS and S11 at f>fEDR (Fig. 8c) confirm obtaining at these frequencies clearly 
expressed directional FS, typical for the 1st Kerker’s conditions.  

The features of S11 and BS/FS spectra of MSs at heights of DRs providing coincidence of 
EDR and MDR frequencies need additional comments. It is well seen from Fig. 7 that this 
coincidence leads to degradation of characteristic features of both BS and FS spectra, i.e. 
no deep drops can be seen any more and, therefore, a discussion about realizing Kerker’s 
conditions either at f<fMDR or at f>fEDR loses sense. BS intensity increases all over the 
spectrum, approaching FS intensity. This does not allow for obtaining desirable directivity 
of scattering (Fig. 8d). It is interesting to note that, in difference from the data in [1-3], our 
data show a drop of S21 at weak peaking of S11 at the common resonance frequency of 
EDR and MDR.  This also shows that coincidence of EDR and MDR does not provide an 
optimal solution for obtaining unidirectional scattering, while much better result can be 
achieved at employing MSs with DRs of larger heights providing close, but distant 
positions of dipolar resonances in the spectrum.   

 
Fig. 8. Far-field patterns representing radiation from fragments of MSs: (a) at fEDR>f>fMDR, 
for DR heights within 120 nm<h< 240 nm, when realizing of Kerker’s condition of the 2nd 
type is expected (exemplified at h=160nm  at λ=731nm); (b) at BS drops observed at 
f<fMDR, when realizing of 1st Kerker’s condition is expected (exemplified at h=105nm at 
λ=643nm); (c) at BS drops observed near fEDR for smaller DR heights (exemplified at 
h=105nm at  λ=612nm); (d) at EDR and MDR approaching coincidence, when DR height 
is of about 100 nm (exemplified at h=100nm at λ=624nm). Black arrow shows the direction 
of wave incidence.  

Finally, it is worth pointing out that observed correlation between BS spectra of 3 x 3 
fragments of MSs and S11 spectra, obtained for unit cells with periodic boundary 
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conditions, i.e. for infinite MSs, confirms that at lattice parameter of 450 nm, single unit 
cells of MSs are still capable of representing MS responses adequately. This also confirms 
that 3 x 3 fragments of MSs with lattice constant of 450 nm can be used to represent 
radiation capabilities of the entire MSs. 

 
Fig. 9. Spectral distributions of BS and FS power densities for 3 x 3 fragments of MSs 
composed of DRs with heights ranging from 240 nm to 60 nm. Lattice constants of MSs 
are 300 nm, diameters of DRs are equal to 240 nm. Spectral positions of EDRs and MDRs 
are marked, respectively, by white and black colored circles. Purple circles on two graphs 
mark the case, when frequencies of EDR and MDR coincide. 

5.5 Effects of Lattice Constant Decrease on BS/FS and 
S21 Spectra of MS Fragments  

In this section, the responses of MSs with essentially smaller lattice constants of 300 nm 
are investigated for comparison with the results presented in the previous section. At such 
small lattice constants, we earlier observed significant changes in MS performance [16], 
pointing out at the formation of integrated responses of the media, different from the 
responses of single particles. Fig. 9 presents spectral distributions of BS and FS power 
densities provided by 3 x 3 fragments of MSs composed of cylindrical DRs of various 
heights. From the comparison of Fig. 9 with Fig. 6, obtained for MSs with lattice constants 
of 450 nm, it is seen that, although decreasing the lattice constant down to 300 nm does not 
eliminate main features of spectral distributions of BS abd FS, essential changes of these 
distributions are obvious. First, total decrease of BS power density in the area between 
EDR and MDR, especially at smaller DR heights, can be observed. FS power density is 
also decreased, but  not so strongly. In addition, FS power density becomes more uniformly 
distributed in the region between EDR and MDR, so that no so significant FS decrease in 
the cental part of this region, comparable to the decrease seen in Fig. 6, is registered. At 
total decrease of BS power, it seems that Kerker’s conditions of the 2nd type could not be 
realized in densely packed MSs. One more visible change is blue shifts of EDR positions 
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in the spectra. Similar EDR shifts at decreasing MSs’ lattice constants were noticed in[16]. 
As the result of this shifting, the curve of white circles marking EDRs in BS pattern looks 
coinciding with the curve marking maximal canyon depths. Shifting of EDR frequencies 
also places the curve of white circles, connecting EDR markers, in touch with the “canyon” 
observed in FS pattern, while at lattice constants of 450 nm, similar curve was located at 
relatively significant distance from the “canyon”. 

This happens, since the spectral position of the “canyon” in FS pattern is more stable with 
respect to lattice constant changes, than spectral positions of EDRs. It follows from the 
data, presented in Fig. 9, that in dense MSs, EDRs are not able to support strong FS power, 
as they do in more sparse MSs (Fig. 6).  Considering MDRs, it can be noticed that, for MSs 
with lattice constants of 300 nm, the curves of black circles, marking MDRs in BS/FS 
patterns in Fig. 9, have less steep slopes than those in Fig. 6. This means that MDR 
frequencies also experience blue shifts, which become bigger at smaller DR heights, 
although still remain smaller than EDR shifts. It is worth noting that, as the result of 
different characters of EDR and MDR shifting at decreasing the lattice constants, the 
crossing of the curves, connecting EDR and MDR markers, appears at approximately the 
same frequency and at appoximately the same DR height for arrays with large (450 nm) 
and small (300 nm) lattice constants. 

Fig. 10 presents spectral distributions of signals from E- and H-field probes placed in DRs 
to control resonances in MSs, scattering parameters spectra calculated for infinite MSs 
using one-cell model with periodic boundary conditions, and spectral distributions of BS 
and FS power density characteristic for 3 x 3 fragments of the same MSs. The data 
presented in Fig. 10 were obtained, as in the previous section, for MSs composed of DRs 
with the heights chosen within the range from 240 nm down to 100 nm. As seen in the 
figure, at h=240 nm, MQR demonstrates Fano-type shape of its resonance curve and is 
located in the spectrum much closer to EDR, compared to the case of MSs with the lattice 
constant of 450 nm. Characteristic for Fano-type resonances drops of E-field probe signals 
down to zero on the higher frequency sides of EDRs continue to be seen at decreasing DR 
heights down to 120 nm, however, at this decrease, they shift further away from EDR to 
blue side of the spectrum. Considering the difference between S-parameters spectra for 
MSs with DR heights of 240 nm and 160 nm and also the difference in BS/FS spectra of 
respective MSs at f>fEDR, it can be concluded that at h=160 nm the MQR related effects 
leave the EDR vicinity.  
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Fig. 10. Spectral distributions of EM responses from MSs, which differ by DR heights 
(shown above every column). Upper group of data – for h, nm: 240, 160, 130, and 120. 
Lower group of data – for h, nm: 115, 110, 105, and 100.  Upper row in both groups: signals 
from E- and H-field probes located in the centers of DRs at modeling MSs by single cells 
with periodic boundary conditions; middle row: S-parameters simulated at above 
conditions; lower row: BS and FS spectra for 3 x 3 fragments of MSs.  

However, a new phenomenon appears instead: a narrowband drop of the reflection 
coefficient S11 down to almost zero accompanied by sharp peaking of S21 parameter up 
to 1 exactly at EDR frequencies. At the first glance, the new phenomenon could be 
compared to described in Section 3 scattering in sparse MSs at f>fEDR, which we found to 
be similar to the effects observed at 1st Kerker’s condition, with typical deep drops of BS 

500 600 700 800 900 1000 110
Wavelength (nm)

00 600 700 800 900 1000 110
Wavelength (nm)

00 600 700 800 900 1000 1100
Wavelength (nm)

FS
BS

00 600 700 800 900 1000 110
Wavelength (nm)

h=110nm h=100nm

E
H

T
R

h=115nm h=105nm

E
H

T
R

EDR MDR MDREDR EDR & MDR MDR EDR
h=115nm h=110nm h=105nm h=100nm

0

0.2

0.4

0.6

0.8

1

M
ag

ni
tu

de

0
1
2
3
4
5
6
7
8
9

10

|E
| (

V/
m

)

0
0.005
0.01
0.015
0.02
0.025
0.03
0.035
0.04

|H
| (

A/
m

)

10-14

10-15

10-16

10-17

10-18

Sc
at

te
rin

g
(W

/m
2 )

00 600 700 800 900 1000 1100
Wavelength (nm)

FS
BS

00 600 700 800 900 1000 110
Wavelength (nm)

00 600 700 800 900 1000 110
Wavelength (nm)

500 600 700 800 900 1000 110
Wavelength (nm)

h=160nm h=130nm h=120nm

0
1
2
3
4
5
6
7
8
9

10

|E
| (

V/
m

)

h=240nm

0
0.005
0.01
0.015
0.02
0.025
0.03
0.035
0.04

|H
| (

A/
m

)

0

0.2

0.4

0.6

0.8

1

M
ag

ni
tu

de

T
R

E
H

EDR MDR MDRMDRMDREDR EDREDR
h=240nm h=160nm h=130nm h=120nm

10-14

10-15

10-16

10-17

10-18Sc
at

te
rin

g 
(W

/m
2 )



55 
 

at relatively high FS. However, the phenomena in sparse MSs were always observed at f > 
fEDR and not at f=fEDR. In addition, they were not narrowband and, instead of peaks of 
transmission, demonstrated relatively high transmission in a wide band. Therefore, the new 
phenomenon with delta-function-like changes in scattering parameters spectra at f=fEDR, 
especially in MSs with h=120mm and h=130 nm, resemble, rather, electromagnetically 
induced transparency (EIT). Taking into account observations of Fano resonances in MSs, 
which, as known, are related to interference processes, realization of EIT in dense MSs 
could be expected, even though additional studies should be conducted for clarifying the 
underlying physics. In any case, it is not excluded that just EIT was responsible for 
observed in [3] full transmission through MSs at EDR and MDR coincidence.  

In difference from EDRs, MDRs in dense MSs do not show new specifics, neither in 
S11/S21 spectra, nor in BS/FS spectra, compared to MDRs in sparse MSs, except for the 
coincidence of MDR frequencies with frequencies, at which S parameter spectra 
demonstrate crossings of S11 and S21 spectra. It is seen from Fig. 10 that, in difference 
from the data for sparse MSs, S parameters spectra of dense MSs do not show deep drops 
of S21, demonstrating just decreased S21 values at frequencies fEDR>f>fMDR. In contrast, 
S11 values increase in this frequency range, especially at DR heights exceeding 120 nm. 
At smaller DR heights, decrease of S21 and increase of S11 looks gradually degrades 
because of narrowing the gap between EDR and MDR owing to the fact that blue shifts of 
MDRs exceeds blue shifts of EDRs. In difference from MSs with lattice parameter of 450 
nm, approaching coincidence of MDR and EDR frequencies is not accompanied by 
disappearance of BS drop caused by realizing the Kerker’s conditions. As seen in columns 
of Fig. 10 for two smallest DR heights, BS drops continue to be well seen in BS/FS spectra 
as at coincidence of resonances, so even at reversing positions of EDR and MDR in the 
spectra. It is worth mentioning here that FS increases at decreasing DR heights, however, 
the peak values of this radiation are observed at frequencies slightly exceeding the 
resonance frequencies. According to the results presented in Fig. 10, better directionality 
of scattering should be observed not at the common for EDR and MDR resonance 
frequency of 600 nm, but at the frequency, which provides the realization of Kerker’s 
condition (640 nm).  

To understand the reasons, defining changes of MS responses at decreasing the array 
packing density, we simulated field patterns in cross-sections of MSs with different lattice 
constants and with different DR heights. Fig. 11 presents respective distributions for 
electric fields. 
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Fig. 11. Distributions of E- fields in XY, YZ, and XZ central cross-sections of MSs 
composed of DRs with heights: 1st row - h=220 nm; 2nd row - h=160 nm; 3d row - h=110 
nm with the lattice constants: of 450 nm (left column) and 300 nm (right column). All 
patterns are obtained at the frequencies of EDRs. 

As seen in the figure, all MSs under study have demonstrated, in their central XY cross-
sections, grid-like field distributions characteristic for coupled DR arrays [18]. The lines 
of grids are defined by X and Y axes passing through the centers of DRs. Grid lines, going 
along X-axis seem to be formed by extensions of resonance fields, which accompany the 
formation of electric dipoles in the centers of DRs. The fields in these extensions on two 
sides of each X-oriented gap between DRs look co-directed with dipoles and demonstrate 
the trend for overlapping.  The sequences of Y-oriented gaps seem forming Y-directed 
lines of the grid. In Y-oriented gaps, electric fields appear directed oppositely to dipoles 
inside DRs. These fields can be considered as originating from electric field lines circling 
around neighboring resonating dipoles and overlapping within the gaps. In narrow gaps, 
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specific for MSs with lattice constant of 300 nm (dense MSs), fields in the gaps become 
enhanced up to the level of fields inside DRs. The strength of gap fields also increases at 
decreasing the DR heights in MSs, however this effect much weaker than the effect of 
decreasing the lattice constant. Observed enhancement of gap fields in MSs with lattice 
constant of 300 nm at h<160 nm allows for considering Y-sides of field grids as chains of 
oppositely directed dipoles. It is not excluded that such transformation of field patterns in 
dense MSs makes reflection from MSs at f=fEDR negligible and causes characteristic for 
them EIT-type full transmission at frequencies of EDRs. The grids with alternating 
resonance fields could be also the reason for observed at decreasing DR heights 
degeneration of BS drops at f=fEDR in spectra of MSs with lattice constant of 300 nm (Fig. 
10).  Analyzing comparable BS drops observed in spectra of MSs with lattice constants of 
450 nm at f>fEDR (see section 4), we assumed that they could be related to another 
realization of Kerker’s conditions of the 1st type for interference of radiation from two 
dipolar resonances. Alternatively oriented dipoles could affect realization of these 
conditions in MSs with lattice constant of 300 nm, due to destructive interference of 
radiation from dipoles and resonance fields in Y-gaps.  

One more interesting effect can be seen at comparison of field distributions for MSs with 
lattice constants of 450 nm and 300 nm at h=110nm. In YZ cross-section of MS with lattice 
constant of 450 nm, it is well seen that centers of electric dipoles are shifted relatively 
centers of DRs, similarly to that observed in Fig. 5 for single DRs. Meanwhile, in MS with 
lattice constant of 300 nm, no similar shifting is detected, apparently, due to decreased 
freedom of resonance formation in MSs with closely packed neighboring resonators.    

5.6 Conclusion 
We have investigated the directivity and power density of radiation from MSs composed 
of cylindrical silicon resonators, organized in square lattices, with sparse and dense 
packing, in spectral ranges involving magnetic and electric dipolar resonances, and 
magnetic quadrupolar resonance. We changed the spectral positions of resonances by 
varying the DR heights, while keeping their diameters constant. Decreasing the heights of 
resonators allowed for moving both dipolar resonances to the blue edge of the spectra and 
for shifting the frequencies of MDRs closer to EDRs frequencies, up to their coincidence. 
Such coincidence is often considered in literature as a critical condition for obtaining full 
transmission through MSs with 2π phase control. In this work, we intended to get a deeper 
insight onto the phenomenon of scattering from silicon MSs. For comparison with S-
parameter spectra, we obtained BS and FS spectra and far-field patterns characterizing 
radiation from MS fragments. In addition, to visualize spectral changes of BS and FS in 
dependence on DR geometry, we simulated 3D patterns, in which color changes were used 
to represent variation of scattered power density.  

We compared characteristics of single spherical and cylindrical DRs, to identify in the 
latter the resonances analogous to dipolar and quadrupolar Mie resonances in spheres. It 
was found that, for sparsely packed MSs (with lattice constant of 450 nm), coincidence of 
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dipolar resonances did not provide dominant FS or full transmission of incident waves. 
Analysis of S-parameter spectra and BS/FS spectra allowed for detecting the realization of 
1st Kerker’s conditions in the range f< fMDR at decreasing DR heights. In addition, an 
opportunity was found for realizing similar conditions at f >fEDR.  The drops in BS spectra 
were found entirely corresponding to the drops in S11 spectra that allowed for suggesting 
that they both were controlled by the impedance specifics. The studies of densely packed 
MSs (with lattice constant of 300 nm) revealed no effects characteristic for realizing 
Kerker’s conditions of the 1st type at f >fEDR. Instead, at DR heights below 160 nm, the S-
parameter spectra of dense MSs demonstrated full transmission and no reflection at f=fEDR. 
Responses of such type are not typical for conventional resonances. They could be 
explained by interference phenomena providing a kind of electromagnetically induced 
transparency in dense MSs. Analysis of field patterns in cross-sections of dense MSs 
allowed for relating the observed transparency to the specifics of field distributions in dense 
arrays, which could be interpreted as the sets of alternating dipoles. 

Thus, although the possibility to observe full transmission through dense MSs has been 
confirmed, it did not look related to combined two π-value jumps in phase at EDR and 
MDR. Coincidence of dipolar resonances was not found to be productive for directional 
scattering. In particular, full transmission at f= fEDR could be obtained at distant positions 
of two dipolar resonances in spectra. Our data show that better directivity could be realized 
at f <fMDR at 1st Kerker’s conditions. Confirmation of realizing the Kerker’s effects in MSs 
composed of cylindrical silicon DRs with heights in the range from 240 nm down to 100 
nm presents a valuable result of these studies. In addition, we have concluded that DRs in 
dense MSs do not respond as independent “meta-atoms” and that their responses become 
defined by integrated resonance fields.   
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6 Lattice Resonances in Metasurfaces Composed of 
Silicon Nano-Cylinders6 

6.1 Introduction 
Silicon metasurfaces (MSs) demonstrate unique capabilities for controlling light 
propagation and scattering at the formation of Mie resonances in constituent posts or disks. 
The properties of MSs can be employed for realizing various photonic functionalities in 
sensing, imaging, light-guiding, and holographic applications [1-5]. Originally, plasmonic 
MSs have been developed and utilized for these purposes [2]. However, employing metal 
in their design caused excessive losses in optical range. Alternative MSs, composed of 
dielectric resonators (DRs), were found free from similar drawbacks that had opened a 
window for implementing efficient optical components and led to advances in photonics 
[1]. However, recent works on the resonance phenomena in dielectric MSs have revealed 
that in addition to elementary resonances, such as electric and magnetic dipolar and 
quadrupolar resonances (EDR, MDR, and MQR) in constituent particles, MSs are capable 
of supporting complicated resonance phenomena, which integrate the entire lattice due to 
the propagation of surface waves [3-5]. The studies of the effects of lattice periodicity on 
these phenomena have shown that at lattice constants, comparable to the wavelengths of 
radiation, diffraction of surface waves, which are initiated by elementary electric and 
magnetic resonances, leads to appearance of so-called lattice resonances (LRs), which 
significantly affect MS responses [4, 5]. Realization of LRs opens up new perspectives for 
developing various applications demanding field-localization or high-Q resonances [5]. 
This work aims to provide a deeper insight into the formation and the effects of LRs in 
silicon MSs. Special attention is paid to the realization of the Kerker’s effects.   

6.2 Results and Discussion 
MSs under study had square lattices and were composed of silicon nano-posts with the 
diameters of 240 nm and with variable heights. Unit-cells of MSs with periodic boundary 
conditions were simulated by using COMSOL Multiphysics software package. Electric and 
magnetic components of the incident wave were polarized, respectively, along X and Y 
axes, while Z-directed wave-vector was normal to the plane of lattice. Fig. 1 presents 
spectral changes of MS responses at increasing the lattice constants Δ. It is seen in the 
figure that both electric and magnetic resonance responses, registered by the probes, 
located in DRs’ centers, demonstrate red spectral shifts in MSs with bigger Δ. As the result, 
the curves, representing dependences of resonance positions on Δ, turn towards longer 
wavelengths and gradually approach the lines, corresponding to Rayleigh anomalies (RAs), 
which play the role of asymptotes for respective dependencies. Similar effects were earlier 
noticed in [4] at studying planar arrays of spherical silicon resonators, organized in 
                                                 

6Reprinted from ‘S. Jamilan and E. Semouchkina, “Lattice Resonances in Metasurfaces Composed of Silicon 
Nano-Cylinders,” 14th International Congress on Artificial Materials for Novel Wave Phenomena - 
Metamaterials, New York, USA, Sept. 28th – Oct. 3rd, 2020’; with permission from © IEEE Publishing. 
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rectangular cells. Authors of [4] related the obtained data to an interplay of elementary 
dipolar resonances with surface lattice resonances. However, presented below data do not 
confirm integrating of these resonances. As seen from the presented in Fig. 1 S-parameter 
spectra, red shifting of electric responses creates an opportunity for realizing both electric 
and magnetic responses at the same wavelengths of incident light. However, at an obvious 
presence of LRs in MSs, such overlapping does not lead to realizing any special effects in 
MS transmission or reflection spectra. It should be noted that LRs, formed by surface 
waves, propagating in MS plane, are not expected to directly affect transmission of waves 
at normal incidence. Kerker’s effect, caused by interference of EDR and MDR radiations, 
is well seen as deep drops in the presented S11 spectra at wavelengths, exceeding the 
resonance wavelengths (see dark-blue line to the right from MDRs in Fig. 1).  

 
Fig. 1. Red shifting of electric and magnetic resonance responses of square-latticed MSs at 
increasing their lattice constants and representation of resonance responses by color images 
of S-parameter spectra. The heights of silicon posts were 160 nm. Positions of Rayleigh 
anomalies are shown by dashed-dotted lines. 

According to [4], LRs gain their strength in spectral regions close to the RA lines. Thus, 
the data presented in Fig. 1 could be used to determine the range of lattice constants, at 
which clear signs of LR appearance could be expected in field distributions of MSs. 
Considering the electric lattice resonance, it can be concluded from Fig. 1 that the presence 
of LRs should be expected in E-field distributions of MSs with lattice constants in the range 
from 450 nm to 750 nm. These distributions in planar (XY) and normal to the MS plane 
(ZX) and (ZY) cross-sections are presented in Fig. 2.  
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Fig. 2. Changes of gap-edge field configurations at increasing the lattice constants Δ in 
square-latticed MSs, composed of DRs with the heights of 160 nm and diameters of 240 
nm. Field patterns in three rows were obtained, respectively, in XY, XZ and YZ cross-
sections passing through DR centers. Z-axis is normal to MS plane, X- and Y- axes are co-
directed with E- and H-fields of incident waves. Dashed lines show positions of ZX and 
ZY cross-sections. 

As seen in the figure, at Δ = 450 nm, strong fields can be observed in the centers of MS 
resonators in all three cross-sections. The distributions of these fields correspond to the 
formation of the electric dipolar resonances in DRs. However, at Δ = 550 nm, the field 
patterns change. In addition to dipolar fields, an appearance of field spots in X-oriented 
gaps between resonators can be observed. These field spots look adjacent to the resonator 
bodies and having maximal intensity at outer surfaces of resonators. They are called further 
the gap-edge fields. These fields spread in air in both Z and X directions and do not look 
as an extension of the dipolar fields. At bigger Δ, they become much stronger, than dipolar 
fields inside resonators, the intensity of which does not experience visual changes. It is 
worth mentioning that gap-edge fields, formed at two sides of resonators, do not overlap, 
and therefore, can be considered as independent entities. On the other hand, the field 
patterns in ZY cross-section allow for suggesting that the gap-edge fields in X-oriented 
gaps affect the fields in Y-oriented gaps between resonators. While at Δ = 450 nm, the 
fields in Y-oriented gaps have relatively low intensity, being defined by dipolar fields, 
circling in air around resonators, then at bigger Δ, the intensity of Y-gap fields experiences 
a significant enhancement correlated with an enhancement of gap-edge fields in X-oriented 
gaps. The mechanism of this correlation has to be investigated additionally.   

To ensure that the gap-edge fields can serve as the markers of LRs, the spectra of E-field 
signals from probes placed in special points of MSs have been simulated. As evident from 
the schematic in Fig. 3, P1 probe characterizes the dipolar resonance formation, P2 probe 
represents incident wave field within MS, and P3 probe provides information about the 
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formation of gap-edge fields. From the data in Fig. 3 it is well seen that the peak intensity 
of the dipolar resonance in point P1 experiences no changes at increasing Δ, despite red 
shifting of the spectral positions of peaks. Intensity of background radiation (point P2) 
becomes less at bigger Δ, as it is expected, while the strength of the gap-edge fields in point 
P3 grows up significantly, so that its dual peaking even exceeds the resonance peak in point 
P1. Spectral positions of P3 peaks coincide with positions of electric and magnetic dipolar 
resonances that agrees with the suggestion that LRs are caused by the diffraction of surface 
waves, launched by resonance radiation. 

 
Fig. 3. Schematic of probe location and spectra of signals from respective E-field probes 
placed at points P1, P2, and P3 of square-latticed MSs having different lattice constants ∆. 
Resonator heights were 160 nm and diameters - 240 nm. 

6.3 Conclusive Remarks 
According to the obtained results, resonances inside DRs conserve their strength at the 
conditions, which cause strong enhancement of LRs. Thus, the formation of LRs does not 
inevitably affect dipolar resonances inside DRs. It could be then presumed that surface 
waves, responsible for the formation of LRs, do not interact with DRs in the same manner, 
as the plane waves, incident normally to the MS plane. Under such assumption, the 
formation of elementary resonances inside DRs, on one hand, and the formation of gap-
edge fields, as LR markers, on the other hand, should be controlled by physically different 
processes. At the same time, surface waves should experience scattering at their interaction 
with DRs, located on their path, even though this scattering could not affect the strength of 
resonance fields inside DRs. Scattered fields are, most probably, collected in the spots of 
gap-edge fields near the centers of scattering, i.e. DRs. However, the physics underlying 
appearance of resonance-like field enhancements in these spots still needs clarification. 
Additional question, which requires further clarification, is the nature of red shifting of the 
resonance responses at increasing the lattice constants. Since this shifting proceeds without 
changing the strength of resonance fields in DR centers, it should be related to some 
geometric factors. In particular, it could be suggested that shifting of electric responses to 
longer wavelengths could be defined by coherent oscillations of dipolar fields, formed 
inside DRs, and gap-edge fields, formed in X-oriented gaps. Such coherence could increase 
the effective wavelengths of oscillations controlling the formation of resonances in the 
centers of DRs. 
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7 Analog of Electromagnetically Induced Transparency 
in Metasurfaces Composed of Identical Dielectric 
Disks7 

7.1 Introduction  
The phenomenon of induced transparency of otherwise opaque medium was initially 
revealed in atomic gases, where it was named “electromagnetically induced transparency” 
(EIT) and was considered as defined by destructive quantum interference between 
competing electron transitions, which led to appearance of a narrowband window for the 
trespassing light [1-3]. Later, similar window openings at wavelengths far longer than those 
in atomic gases were observed in arrays of metallic meandered wires [4], coupled 
plasmonic resonators [5], as well as in metamaterials and metasurfaces (MSs), composed 
of specially designed resonators including dielectric ones [6-10]. All these structures were 
found capable of supporting full propagation of incident electromagnetic waves within a 
narrow band, while at lower or higher frequencies, waves were either completely reflected 
or absorbed. The fact that phenomenologically similar results were obtained in quite 
different substances did not seem surprising, since it was shown in [11] that basic 
characteristics of EIT-like phenomena in quantum gases could be modelled by using 
classical systems of coupled harmonic oscillators (coupled RLC circuits in electrical model 
or properly connected particles and springs in mechanical model).  

In difference from the referenced above works on metamaterials and MSs composed of 
resonators with complex configuration, we observed narrow-band transparency at electric 
dipolar resonances in densely packed MSs formed from simple silicon resonators of 
cylindrical or disk shapes [12, 13]. At such MS geometry, the concept of interfering bright 
and dark modes in coupled resonators, which was conventionally used for explaining EIT-
like phenomena in multi-resonator arrays, could not be applied. In this work, we present 
the results of investigations, which allow for forwarding an alternative concept, clarifying 
the reasons for induced transparency of MSs composed of identical disk resonators. In 
particular, we pay special attention to Fano-type resonances in MSs under study. These 
resonances, as known, are the product of interference between competing wave processes 
[6, 14, 15]. A deeper insight into the formation of Fano resonances in MSs allows us to 
understand wave processes, which define the appearance of EIT-type phenomenon in MSs 
under study.   

It should be noted here that employing the EIT phenomena promises significant advances 
in optical information processing. In particular, opening a narrowband transparency 
window at EIT was found to result in dramatic reduction of the light group velocity, i.e. in 

                                                 

7Reprinted from ‘S. Jamilan, G. Semouchkin, and E. Semouchkina, “Analog of Electromagnetically Induced 
Transparency in Metasurfaces Composed of Identical Dielectric Disks,” Journal of Applied Physics, 129 (6), 
063101, 2021’; with permission from © AIP Publishing. 
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slow light [16], enabling even complete stop of the propagating optical pulse and its storage 
in the atomic ensembles [17]. Similar stop was observed in waveguides, side-coupled to 
tunable resonators, when a photonic band structure representing a classical analogue of EIT 
was generated [18]. Slow light was also used in optical networks for implementing optical 
buffers [19]. Tunable optical buffers were recently developed by using an analogue of EIT 
in coupled photonic crystal cavities [20]. In [21], the EIT was used to build optical switches 
and wavelength converters. In [22], it was proposed to design switches and filters by using 
switchable EIT phenomenon in graphene-loaded MSs composed of split silicon nano-
cuboids. Thus, it is expected that realizing EIT in very simple MSs will open up additional 
perspectives for various applications 

7.2 Model and Methods Description 
Fig. 1 presents the schematic of MS fragment, used in our studies. The structures were 
composed of silicon cylinders or disks with the diameters (D) of 240 nm and heights (h) 
varied from 100 nm to 240 nm. These cylinders/disks are further called “dielectric 
resonators” (DRs). Parameters of resonators were chosen to provide comparison of 
obtained results with the results of our earlier studies [12, 23, 24], as well as with the data, 
presented in well-known works on silicon MSs [25, 26]. Lattice parameters (Δ) of MSs 
under study were varied in the range from 275 nm to 450 nm. At smaller Δ, the structures 
were considered as densely packed, since the distances between DRs in such structures 
could be equal to 35 nm, that was much smaller than the diameters of silicon particles, 
while at larger Δ, the structures were considered as rather sparsely packed, since the 
distances between DRs approached 210 nm, i.e. became compared to the diameters of DRs. 
The terms “dense” and “sparse” were introduced earlier in [12, 23, 24], to stress out 
significant differences in responses of MS structures with different Δ. 

 
FIG 1. Schematic of MS composed of silicon nano-disks.  

The studies were conducted for MSs with square and rectangular lattices. To verify the 
results of numerical experiments, we compared the data obtained by using two types of 
commercial software: COMSOL Multiphysics and CST Microwave Studio. As seen in Fig. 
1, incident waves were sent normally to MS planes with electric (E) and magnetic (H) field 
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vectors, directed along X- and Y-axes, respectively. The amplitude of incident wave’s 
electric component was always fixed at 1 V/m. Field data and scattering parameters (S-
parameters) were directly extracted from the results of simulations. In simulation models, 
DRs were placed in air that allowed for investigating the basic physics of MS performance 
without complications arising from substrate involvement. It is, however, shown in section 
III that inserting substrates did not deteriorate observed EIT-type effects.  

As it was demonstrated in our earlier work [24], all characteristic features of MS responses 
could be conserved, when the structures with nano-sized particles, used in the optical range, 
are rescaled for operating in the microwave range, where experimental studies are much 
easier to perform. Therefore, in this work, experiments were performed at microwave 
frequencies with MSs, composed of ceramic mm- size resonators. Parameters of resonators 
and MSs were chosen to provide scaling of the phenomenon of induced transparency from 
optical to microwave range. Experimental technique is described in section IV. 

7.3 Detecting the Transparency of Densely Packed MSs 
The phenomenon of induced transparency in densely packed MSs with square lattices, 
composed of cylindrical silicon resonators, was first noticed in [12] at the studies of MS 
resonance responses in dependence on DR heights. In these studies, the lattice constant of 
MSs was kept on the level of 300 nm, while changes of MS responses were provided by 
varying the heights of constituent resonators in the range from 200 nm to 100 nm. In 
particular, the spectra of electric (E) and magnetic (H) field probe signals and transmission 
spectra S21 were investigated. The effects, reminding the EIT phenomenon, were detected 
in the spectra of S-parameters, which demonstrated sharp peaks of S21 up to 1 and narrow-
band drops of S11 down to zero at the frequencies of electric dipolar resonances (EDRs). 

Fig. 2 demonstrates EIT-like responses, simulated by using either COMSOL or CST 
software, for MSs with DRs placed either in air or on the PDMS substrate with relative 
permittivity of 2.25 and thickness of 200 nm. The observed in S-parameter spectra narrow 
transparency window is surprising, since the formation of Mie resonances in dielectric MSs 
is usually associated with spectral regions of high reflections. 

Fig. 3 presents S-parameters spectra of MSs with square lattices and the spectra of E- and 
H-probe signals, obtained at placing the probes in the centers of DRs, at different lattice 
constants of MSs. Since the properties of MSs could be also modified by changing the DR 
heights, Fig. 3 allows for comparing the data, obtained for MSs with DRs heights of 160 
nm and 130 nm. 
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FIG 2. S-parameters spectra for MSs with square lattices and lattice constants of 275 nm, 
simulated by using COMSOL (upper row) and CST (lower row) software. Heights of 
silicon disks were 160 nm, while they were placed in (a) air and (b) on the PDMS substrate 
with thickness of 200 nm. Diameters of DRs were 240 nm. Spectral positions of EDRs and 
magnetic dipolar resonances (MDRs) are indicated by vertical dashed-dot lines.  

As seen in the figure, S-parameter spectra in most dense MSs (at Δ < 300 nm) exhibit the 
features, which are very common for multiple demonstrations of EIT in literature [4-10]. 
In particular, narrowband peaks of S21, combined with sharp dips of S11, are seen in the 
surrounding of gradually varying parts of two spectra, which are less or more symmetric 
with respect to EIT windows. For MSs with Δ < 325 nm, no other singularities of S 
parameters could be found in spectral regions near EDRs, i.e. nothing disturbed the opaque 
property of MSs, except for peaks of S21 at deep drops of S11 at EDR frequencies.  

Most symmetric with respect to EDRs EIT-type responses were observed in MSs with h = 
160 nm at the lattice constant Δ = 275 nm and in MSs with h = 130 nm at the lattice constant 
Δ = 300 nm. At increasing Δ, combined S21 peaks and S11 dips continued to be seen in S-
parameter spectra of MSs at all values of Δ up to 400 nm. However, the symmetry of S-
parameter spectra on the blue and red sides of the EIT-type singularity disappeared for the 
case h=160 nm at Δ > 300 nm. Gradually, the two spectra, S21 and S11, became anti-
symmetric in the EIT area. In particular, in addition to initial peaks of S21, accompanied 
by S11 dips, a wide ridge of close to unity S11 values, accompanied by dips of S21, 
appeared at slightly longer wavelengths. At Δ = 325 nm and above, two spectra crossed 
each other at wavelengths between the spectral locations of their extrema. As known, 
similar crossings were noticed in S-parameter spectra of dipole antennas (when |S21| = 
|S11| = 0.7). At lattice constants of about 450 nm, sharp S21 peaks could not be seen 
anymore, but the tops of wide S21 ridges, formed instead of peaks, still approached the 
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unity value at some wavelength λ, smaller than λEDR, while S11 continued to demonstrate 
dips down to zero. It is worth noting here that the described above changes occurred along 
with the appearance of deep depression of S21 on the red side of EIT-type window at Δ > 
300 nm (that is especially well seen in Fig. 3 (a)). At further increasing Δ, this depression 
transformed into dual dips of S21, usually associated in sparse structures with two dipolar 
resonances (electric and magnetic ones), which were expected to cause zero transmission 
at total reflection. However, such direct association is not obvious from the data presented 
in Fig. 3, especially for magnetic resonance, since it appeared in probe signal spectra at 
longer wavelengths, than wavelengths of red-side S21 dips. Positions of S21 dips, located 
at shorter wavelengths, experienced relatively small spectral changes at increasing the Δ 
values, but at bigger Δ, they approached the positions of electric resonances, since the latter 
shifted to the red side of the spectra. Altogether, the described changes, observed at 
increasing Δ, transformed S-parameter spectra into configurations, which were 
characteristic for sparse MSs [12].  

 

FIG 3. E- and H-field probe signal spectra and S-parameters spectra at various lattice 
constants of silicon MSs with square lattices, having different heights of constituent 
resonators: (a) 160 nm and (b) 130 nm. Diameters of resonators are 240 nm. 

From the comparison of sets (a) and (b) in Fig. 3, it could be noticed that decreasing DR 
heights allows for shifting EIT window to shorter wavelengths, as well as for increasing 
the range of lattice constants, at which typical for EIT features of S-parameter spectra could 
be observed. However, at Δ = 450 nm, the spectra of MSs with DRs of different heights 
acquired similar shapes.  
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It is also seen in Fig. 3 that at wavelengths longer than those, corresponding to positions of 
red-side dips in S21 spectra and positions of MDRs in probe signal spectra, S-parameter 
spectra of MSs demonstrate one more singularity, i.e. regions with full transmission (|S21| 
= 1) and sharp drops of reflection coefficient S11 down to zero. This phenomenon is 
characteristic for the Kerker’s effect, which is observed at interference between waves, 
radiated by oscillating fields of electric and magnetic resonances in MS particles. The 
results of our studies of this effect in MSs, composed of silicon nano-disks, were presented 
in our earlier work [12].  

 Fig. 4 provides color-scaled (3D) representations of the discussed above transformations 
of S-parameters spectra at increasing the lattice constants, which help to understand the 
factors, restricting the realization of induced transparency in MSs composed of silicon 
disks.  It is well seen in the figure that in dense structures with Δ < 325 nm, the EIT-like 
phenomenon reveals itself in S21 spectra as a spectrally narrow strip of red color, which 
corresponds to full transmission (|S21| = 1). In S11 spectra, induced transparency causes 
appearance of a narrow strip of dark-blue color, which corresponds to zero reflection (|S11| 
= 0). At increasing the Δ values, both strips become wider. However, the EIT-related strip 
in the image of S21 spectra becomes several times wider, when Δ changes from 325 nm to 
375 nm, while similar strip in the image of S11 spectra remains relatively narrow at 
increasing Δ up to 450 nm. 

 
FIG 4. Effects of MS periodicity on (a) spectral positions of EDRs and on colour-scaled 
images of (b) S21 and (c) S11 spectra. DR heights in all MSs were kept equal to 130 nm, 
diameters of DR were 240 nm. 

Fig. 4 also visualizes the deterioration of the symmetry of S-parameter spectra at bigger 
lattice constants. As seen in the image of S21 spectra, the EIT-related strip crosses 
identically colored light blue areas only at Δ < 325 nm, while at bigger Δ, the colors on 
two sides of the strip become contrast: red color marks close to unity values of S21, while 
blue color marks close to zero values of S21 that excludes any symmetry. The EIT-related 
strip in the image of S11 spectra passes between two identically colored red areas (with 
|S11| = 1) only at Δ < 325 nm, while at bigger Δ, the area to the left from the strip becomes 
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colored light blue, while the area to the right turns to become dark red (with |S11| = 1) that 
also excludes any symmetry in S11 spectra.  

In addition to deteriorating the symmetry of S-parameter spectra at increasing the array 
lattice constant, there is another reason, which restricts realizing EIT-type effects in sparse 
MSs. As it is seen from the presented data, the Q-factors of observed phenomena in MSs 
with bigger lattice constants look significantly decreased. In literature related to the EIT 
phenomenon, high Q-factors are considered as an important benefit, degrading of which 
can create problems for obtaining practically important slow-light effects. Therefore, it was 
desirable to look for opportunities to increase the range of options for realizing narrow 
band of EIT in MSs. For this purpose, we investigated the EIT-type phenomena in MSs 
with rectangular lattices. In these studies, we fixed the “dense” value of Δ (275 nm) in 
either X- or Y-direction, while varied the Δ value for another direction in wide range.  

 

FIG 5. Transformations of E- and H-field probe signal spectra and S-parameters spectra at 
modifying MSs by extending their unit cells: (a) along X-axis at fixed Δy = 275 nm, and 
(b) along Y-axis at fixed Δx = 275 nm.  Vertical dashed-dotted lines show spectral positions 
of EDRs and MDRs. DR heights in all MSs are 160 nm, while DR diameters are 240 nm.   

Fig. 5 (a) shows, how S-parameters spectra change at extending lattice cells of MSs in X-
direction, while Δy value is fixed. As seen in the figure, these changes have a lot in common 
with changes observed in Fig. 3 (a) for MSs with square lattices. In particular, there is 
similar difference in the changes of S-parameters in blue and red parts of the spectra around 
the EIT singularity, and similar appearance of anti-symmetric line-shapes in S21 and S11 
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spectra, with their crossings at close to EDR wavelengths at bigger Δ. The only difference 
of the case with rectangular lattices versus the case with square lattices is seen in very 
sharp, almost vertical, drops of S11 near EDRs and in conserved peaking of S21 curves at 
EDRs even at Δy = 525 nm. The similarity of the basic features of the data presented in 
Figs. 3 (a) and 5 (a) (both sets were obtained at DR heights of 160 nm) implies that these 
features are controlled by changing the Δx values, regardless of whether these changes are 
accompanied by similar changes of Δy, or Δy remains fixed at the value of 275 nm.   

 
FIG 6. Simulated responses of dense MSs composed of silicon disks with identical heights 
of 160 nm and various diameters. DR diameters are, respectively, 240, 250, and 260 nm, 
and lattice constants of respective MSs are 275, 287, and 301 nm, respectively. 

However, extending lattice cells of MSs in Y-direction at keeping Δx fixed at the level, 
characteristic for dense structures, does not produce changes in S-parameters spectra, 
comparable to those, observed at extending lattice cells in X-direction. As seen in Fig. 5 
(b), S-parameters spectra conserve such characteristic features of EIT, as full transmission 
and zero reflections at EDR wavelengths, at increasing Δy up to 450 nm and even bigger 
values. However, the line-shapes of S11 and S21 spectra degrade at increasing Δy, in 
comparison with the line-shapes observed for MSs with square lattices at Δ = 275 nm. In 
particular, the peaks and dips of S-parameters become essentially less sharp and are 
characterized by much smaller Q-factors, compared to narrowband EIT-like singularities. 
At Δy = 500 nm and bigger, EDRs reveal themselves in S-parameter spectra by wide dips 
of S11 down to zero, comparable to dips observed at the Kerker’s conditions, and by hill-
like patterns of S21 spectra at the frequencies of EDRs. It is also worth noting that 
increasing Δy practically does not change spectral positions of MDRs, while the positions 
of EDRs demonstrate red shifts, thus bringing two resonances closer to each other. The 
specifics of changes in S-parameter spectra at extending lattice cells in Y-direction allows 
for suggesting that, in difference from extending the cells in X-direction, such lattice 
transformation does not deteriorate physical processes, responsible for the EIT 
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phenomenon, while provides more options for its realization. It is worth noting that 
significant red shifting of EDR’s spectral positions at Δy > 450 nm is apparently caused by 
the formation of lattice resonances, when Δy approaches the values corresponding to 
appearance of Rayleigh anomalies [27]. This shift, however, does not occur in densely 
packed MSs. 

EIT wavelength could be changed by changing EDR frequency at varying aspect ratio of 
DRs. In Figs. 3 (a) and (b), heights of disks were changed, while their diameters were fixed 
equal to 240 nm. Fig. 6 shows that an increase of DR diameters from 240 nm up to 260 
nm, if DR heights are fixed equal to 160 nm and lattice constants Δ are properly adjusted, 
leads to red shifting EIT wavelengths. This could be used for adjusting spectral position of 
EIT window in dense MSs composed of identical dielectric disks.  

7.4 Scaling MSs and Experimental Confirmation of 
Induced Transparency in Microwave Range 

To scale MSs for performing microwave experiments, we followed the approach used in 
[24]. Similar to optical nano-resonators, microwave resonators were initially supposed to 
have relative permittivity of 12.25. Resonators were represented by disks with the 
diameters of 6 mm and the heights of 3.5 mm. To provide desirable MS responses, lattice 
constants were chosen in the range from 6.5 mm to 12 mm. As seen in Fig. 7, using the 
above listed parameters allowed for reproducing in S-parameter spectra of “microwave” 
MSs all details, characteristic for S-parameter spectra of MSs, composed of nano-
resonators. 

As seen in the figure, the EIT-type peak of S21 parameter, combined with the dip down to 
zero of S11 parameter, was obtained for microwave MS at the frequency of electric dipolar 
resonance. Similar to the case of optical MSs, this singularity in S-parameter spectra of 
microwave MSs was accompanied by the enhancement of reflections on both sides of S21 
peak that allowed for describing the phenomenon as appearance of a narrow-band 
transparency window for incident waves in otherwise opaque medium. Similar to optical 
case, S-parameter spectra of microwave MS demonstrated crossing of S21 and S11 spectra 
at the frequency, close to the frequency of magnetic dipolar resonance, and also the 
features, characteristic for the Kerker’s effect (at f = 20 GHz) [12, 24].  

Since the frequency, corresponding to the S21 peak in the spectrum of microwave MS 
appeared to be higher, than that convenient for experiments, the permittivity of DRs had to 
be increased. The results of simulations, presented in Fig. 8, show, how the frequency 
range, necessary for the observation of induced transparency in microwave MSs, changes 
at varying the values of dielectric permittivity of the resonator material.  
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FIG 7. Upper row: simulated E- and H-field signals from probes located in centers of MS 
resonators. Lower row: simulated S-parameter spectra of MSs. Left column: optical MSs 
with lattice constant of 300 nm, composed of DRs with h = 160 nm, D = 240 nm, ε = 12.25. 
Right column: microwave MSs with lattice constant of 8 mm, composed of DRs with h = 
3.5 mm, D = 6 mm, ε = 12.25. 

 

FIG 8. Upper row: simulated E- and H-field signals from probes located in centers of MS 
resonators. Lower row: simulated S-parameter spectra for densely packed MSs, composed 
of DRs with h = 3 mm D = 6 mm. The relative permittivity of DRs in three MSs, from left 
to right, is equal to 17, 27, and 37.2, respectively. 

As seen in Fig. 8, the desired frequency range, centered around 11 GHz, is achievable in 
MSs, composed of resonators with the relative permittivity close to 40, instead of 12.25. 
Presented in Fig. 8 data also show that increasing the permittivity of dielectric material 
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improves the shape of the singularity, representing the induced transparency, i.e. the Q 
factor of related S21 peak. In addition, MSs’ responses on both sides of the singularity 
demonstrate strongly opaque properties of the medium. Based on the obtained data, arrays 
of ceramic resonators with the diameters and heights of, respectively, 6 mm and 3 mm, and 
the relative permittivity of 37.2, have been selected for microwave experiments. 

Fig. 9 shows the schematic of experimental setup with MS sample. The samples were 
representing arrays of disk resonators with square lattices of various lattice constants. 
Arrays were fixed on paper boards by using double-sided sticky tape. As seen in Fig. 8, 
MS sample was placed between two identical X-band horn antennas (with operating 
frequencies from 8 GHz to 12 GHz), transmitting and receiving ones. Horn antennas were 
connected by standard 50-ohm coaxial cables to Agilent vector network analyzer with the 
frequency range 10 MHz - 20 GHz.  

 

FIG 9. Schematic of experimental setup with the vector network analyzer, two X-band 
horn antennas, operating in the range of 8 GHz – 12 GHz, 50-ohm coaxial cables, and MS 
sample. 

The responses of four MS samples with different lattice constants are presented in Fig. 10. 
As seen in the figure, simulated and experimental spectra of S-parameters demonstrated 
good agreement. In particular, at Δ = 8 mm, both spectra showed dual dips of S21 on the 
red side of the small peak with full transmission. This peak was located at about 11.6 GHz, 
i.e. very close to the frequency of electric dipolar resonance, detected in the probe signal 
spectrum in Fig. 8, while dual dips, associated with reflections from dipolar resonances, 
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were related to magnetic response at about 11 GHz and to electric response at the 
frequency, close to 11.5 GHz. It should be noted that in our earlier works [12, 24] we 
observed appearance of related to dipolar resonances dual dips constants are presented in 
Fig. 10. As seen in the figure, simulated and experimental spectra of S-parameters 
demonstrated good agreement. In particular, at Δ = 8 mm, both spectra showed dual dips 
of S21 on the red side of the small peak with full transmission. This peak was located at 
about 11.6 GHz, i.e. very close to the frequency of electric dipolar resonance, detected in 
the probe signal spectrum in Fig. 8, while dual dips, associated with reflections from 
dipolar resonances, were related to magnetic response at about 11 GHz and to electric 
response at the frequency, close to 11.5 GHz. It should be noted that in our earlier works 
[12, 24] we observed appearance of related to dipolar resonances dual dips of S21 in 
relatively sparse MSs, composed of nano-resonators. These dips were related to 
conventional reflections from resonating nano-elements. As seen in Fig. 10, at decreasing 
the lattice constant to Δ = 7.3 mm, two dips in simulated spectra came closer to each other 
and at Δ = 7 mm, they merged in one dip. At decreasing the lattice constant down to Δ = 
6.6 mm, S21 spectrum acquired the shape, quite similar to that of a typical EIT-type 
spectrum, with narrow peak of full transmission, located between symmetrical spectral 
parts with very low, opaque-type transmission. From the experimental S21 spectrum, 
obtained at Δ = 6.6 mm, it is not obvious that the spectral location of the peak with full 
transmission coincides with the position of electric dipolar resonance. However, 
comparison with the simulated probe signal spectrum, presented in Fig. 8 for MS with Δ = 
6.6 mm, confirms this fact. Conducted experiments with microwave MSs have confirmed 
that the phenomenon of induced transparency, revealed originally by simulations for MSs, 
composed of silicon nano-resonators, can be also realized in dense MSs, composed of 
ceramic microwave resonators. 

 
FIG 10. Measured and simulated |S21| spectra (in dB) for MSs, composed of dielectric 
disks with the diameters and the heights of, respectively, 6 mm and 3 mm and relative 
permittivity of 37.2 at four various lattice constants ranging from 8 mm to 6.6 mm.   

7.5 Analysis of Electric Field Distributions and Search 
for Interference Partners at Fano Resonances  

It is presumed that EIT is caused by interference between light-controlled processes, which 
are defined either by the specifics of excitation paths, as it is the case in atomic gases [1-
3], or by the specifics of overlapping electromagnetic fields in arrays of coupled resonators, 
when excitation is provided by only one source, such as plane wave [4, 6]. In the case of 
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MSs, composed from resonators of only one type, the concept of coupling between 
resonators of various types, responsible for the formation of either dark, or bright modes, 
does not seem adequate. In literature, bright mode typically refers to a resonance, directly 
excited by incident radiation in one type of resonators of the EIT system. Dark mode is a 
secondary resonance in another type of resonators, excited by the bright mode through 
coupling effects. It is usually assumed that destructive interactions between bright and dark 
modes can induce the transparency of multi-resonator EIT system.  

In order to explain appearance of induced transparency in MSs, composed of identical 
resonators, we had to look for alternative partners of interference. With this purpose, we 
analyzed Fano-type responses, observed at the studies of dipolar resonances in MSs. These 
responses often demonstrated zeros of the signals, characteristic for Fano resonances. As 
known, such zeros could be considered as the product of destructive interference, which, 
in the case of Fano resonances, is usually expected between wideband background/incident 
radiation and narrowband resonance scattering [6, 14]. To obtain more information about 
interference parties, we investigated Fano-type responses at some specific locations in 
MSs. Our previous studies of field distributions in planar cross-sections of MSs [12, 23, 
24] have shown that in dense structures with square lattices useful information could be 
provided not only by the resonance fields inside DRs, but also by the fields, formed in the 
gaps between resonators in the X- and Y-oriented rows of DRs, as well as by the fields in 
the centers of geometric cells.  

 
FIG 11. E-field distribution in central planar cross-section of a square-latticed MS at the 
wavelength of EDR’s peak (λ = 634 nm). The heights and diameters of resonators are, 
respectively, 160 and 240 nm. The lattice constant is 275 nm. 

Fig. 11 exemplifies electric field pattern, observed in planar XY cross-section of the 
geometric cell of MS with square lattice at the frequency of EDR. It is well seen that 
resonating dipoles are confined within DRs and provide strongest fields in DR centers. 
Electric fields in the gaps between resonators, arranged along X direction, with which 
dipolar electric fields are co-directed, look uniformly distributed within the gaps, even at 
increasing the lattice constant. This means that resonance fields do not fully control fields 
in the gaps. As it was found in numerical experiments, at bigger lattice constants, the 
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strengths of gap fields could decrease, when the strengths of dipolar fields demonstrated 
almost no changes. It allows for suggesting that fields, seen in X-oriented gaps between 
DRs, include contributions from incident waves, which interfere with dipolar fields. In 
such case, these contributions from incident waves can be considered as background fields. 

Although electric fields in the gaps between resonators, arranged along Y direction, look 
directed oppositely to dipolar fields formed inside the resonators, they are apparently 
defined by field lines, originating from dipoles and passing in air around the resonators 
[23]. The strength of these fields in each of Y-oriented gaps is the result of combining field 
lines, coming from dipoles formed in neighboring resonators arranged along Y direction. 
Therefore, the strength of these fields can be a measure of coupling between resonators.  

Another specific feature of the field pattern in Fig. 11 is seen in relatively weak blue 
colored fields in the centers of MS geometric cells. These fields are co-directed with the 
fields in Y-oriented gaps, i.e. are opposite to dipolar fields formed inside resonators. 
However, they do not seem to be of the same origin, as that of the gap fields. At bigger 
lattice constants, these fields were found to strengthen and to contribute to the formation 
of specific field distributions, represented by parallel X-oriented field lines of alternating 
polarity and lattice-defined periodicity. Such type of distributions could be related to the 
formation of standing surface waves.  

The presented analysis shows that field patterns, similar to that given in Fig. 11, integrate 
electric fields of different origins. The studies of these fields should be helpful for deeper 
insight into the physics of wave processes in MSs.   

 
FIG 12. (a) Geometric schematic of MS lattice cell with four points, chosen for placing E-
field probes in planar MS cross-section; (b) spectra of signals from E-field probes, placed 
according to the schematic shown in (a) in MSs with different lattice constants ∆.  
Resonator heights are 160 nm, and their diameters are 240 nm. 

Fig. 12 uses the schematic of one geometric cell of MS with square lattice to show the 
positions, which were chosen for placing E-field probes. Point P1, located in the center of 
DR, is used for characterizing the formation of dipolar resonances (EDRs). Point P2, placed 
in the middle of the gap between resonators arranged along X direction, can describe 
interstitial fields in X-oriented rows of DRs. Point P3 is used for judging about the surface 
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wave contribution in field distributions. Point P4 is employed to characterize interstitial 
fields in Y-oriented rows of resonators.  

As seen in Fig. 12, the spectra of signals from all probes in MSs with different lattice 
constants demonstrate features, typical for Fano-type resonances, and resonance maxima 
look located close to the wavelengths, characteristic for spectral positions of EDRs. In 
points P1, P3, and P4, beyond the spectral region defined by EDR-related phenomena, 
probe signals do not demonstrate any specific features, except for decaying, while in point 
P2, on the contrary, probe signals conserve significant strengths and remain stable in wide 
spectral ranges from 700 nm to 900 nm and above. The intensity of these stable signals is 
maximal in densest structures, while it decreases significantly in MSs with bigger lattice 
constants.  The observed specifics of P2 signals justify the suggestion that they originate 
from incident waves, while their stable values in air-filled interstitials can be defined by 
incident fields distributed in non-uniform air-dielectric medium. At increasing the Δ 
values, the voltage associated with incident fields has to be applied to sparser rows of 
resonators with wider air gaps that explains decreasing the field magnitudes in air gaps. 
This consideration is in favor of earlier made suggestion that the fields in X-oriented gaps 
can represent background fields, required for the formation of Fano-type responses.   

7.6 Fano Resonances and Interference Processes 
To analyze Fano resonances, revealed by signals from four E-field probes, we consider 
presented in Fig. 13 spectra of probe signal magnitudes and phases, along with the field 
patterns, observed at zero signals of respective Fano line-shapes. The data presented in Fig. 
13 were obtained for the dense MS with the lattice constant of 275 nm. 

We start from analyzing the spectra of probe signals and field patterns, to draw first 
conclusions about interference processes in MSs under study, and then employ the spectra 
of probe signal phases for providing deeper insight. As seen in Fig. 13 (a), the probe signal 
spectrum, obtained at point P1, demonstrates typical for EDR resonance peak at 634 nm 
with characteristic for Fano-type resonance zero signal in the line-shape at 588 nm, i.e. far 
from the peak. Since the strength of EDR fields at 588 nm is significantly decreased, it can 
be expected that the background radiation, destructive interference of which with 
resonance fields causes zero in the line-shape of P1 signal, is also weak. The data presented 
in Fig. 13 (b), do not contradict these expectations, despite seemingly strong background 
fields in air-filled interstitials of X-oriented rows of DRs at 588 nm. In fact, the strength of 
background fields inside DRs, where they compete with resonance fields, should be much 
smaller than it is in air, since the value of DR’s dielectric constant is equal to 12.25.  
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FIG 13. (a) Spectra of E-field probe signals in four points of MS geometric cell (see Fig. 
12 (a)); (b) field patterns in planar cross-sections of MS at wavelengths of zero signals in 
line-shapes of Fano resonances (see Fig. 13 (a)); and (c) spectra of probe signal phases in 
four points. Circles in field patterns exemplify zero field locations. MS lattice constants 
are equal to 275 nm, DR heights are 160 nm, and DR diameters are 240 nm. Dashed purple 
line in Fig. 13 (a) shows extension of the background portion of P2 signal. 

The spectrum registered at point P4, which should characterize dipolar fields, circling 
around resonators, also demonstrates a peak at the EDR wavelength of 634 nm. However, 
the respective Fano-type line-shape at point P4 has its zero in the red portion of the 
spectrum, i.e. at 722 nm that agrees with the opposite polarity of fields in Y-oriented gaps, 
with respect to the polarity of dipolar fields inside resonators.  The spectrum of P2 signal 
reveals classic Fano-type line-shape in the vicinity of EDR. It is characterized by a peak 
on the red side of EDR and by a deep drop down to zero on the blue side of EDR. These 
features allow for suggesting that Fano resonance in point P2 is defined by interference of 
background radiation and signals, radiated by EDRs. At λ = 625 nm, corresponding to the 
location of zero in the Fano line-shape at point P2, the respective field pattern in Fig. 13 
(b) demonstrates zero fields in X-oriented gaps that tells about total suppression of 
background/incident radiation in these gaps by the fields, radiated from resonating dipoles. 
Destructive interference of two fields is the result of their π-value phase difference, which 
will be confirmed below at the analysis of phase changes given in Fig. 13 (c).    

It should be accentuated here that competing wave processes, which define the appearance 
of Fano resonances, should be in phase at constructive interference and should be shifted 
by π radians at destructive interference. Therefore, if one of two processes does not change 
the phase in the spectral range, corresponding to the transition from constructive to 
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destructive interference at Fano resonance, then the second process must experience phase 
shift by π radians in the same spectral range. In the case under consideration, the formation 
of dipolar resonances should be accompanied by changes of the phase of resonance 
oscillations by π in the spectral range between red and blue ends of the resonance line-
shape. This knowledge should be kept in mind at the analysis of phase changes, which 
probe signals experience at the formation of Fano responses in the chosen four points of 
MSs.   

As seen in Fig. 13 (c), the spectra of probe signal phases at Fano resonances in all four 
points of MS cross-section, experience at least one jump up by π radians at moving along 
the spectra from longer to shorted wavelengths. However, spectral positions of these jumps 
are specific for probe locations, since jumps occur at the wavelengths, corresponding to 
zeros in the line-shapes of respective Fano resonances. 

 In addition to sharp jumps, all spectra of probe signal phases demonstrate gradual decrease 
of signal phases by π radians in the range of wavelengths, corresponding to the EDR region 
in P1 spectrum. This decrease is apparently due to switching of the phase of resonance 
oscillations by π radians at dipolar resonances. The fact, that similar changes are observed 
in P2, P3, and P4 spectra, indicates that they are controlled by EDR-caused radiation. In 
difference from gradual changes, sharp jumps by π radians in the spectra of probe signal 
phases indicate that at zero signals in Fano line-shapes, defined by destructive interference 
of competing wave processes, there is a change of the leader in this competition.   

Clarification of the nature of competing wave processes can be exemplified by the case of 
P2 signal. It is seen in Fig. 13 (c) that, while the phase of P2 signal coincides with the phase 
of P1 signal in the range 750 nm > λ > 625 nm, the phases of two signals become different 
by π radians after the π-value jump up of P2 phase at λ = 625 nm. Sin-phase changes of P1 
and P2 signals in the red portion of EDR-related spectral range indicate that in this spectral 
portion, P2 signal is controlled by EDR, as it is expected, considering the radiation from 
resonating dipoles. The fields, induced by the radiation, apparently define peaking of P2 
signal at λ = 636 nm that marks the maximal result of constructive interference. Subsequent 
drop of P2 signal at shorter wavelengths should be related to conversion to destructive 
interference between background radiation and fields, induced by radiation from EDRs, 
since the latter gradually switches its phase by π radians. In difference from resonance 
fields, background radiation experiences no phase switching and, therefore, finally 
becomes π radians different in phase with respect to resonance fields on the blue side of 
EDR. This fact defines mentioned above destructive interference between background 
radiation and fields induced by EDR that leads to zero probe signal in X-oriented gaps 
(point P2) at λ = 625 nm. Since gradual switching of the phase of P1 signal by π is almost 
completed at the wavelengths, corresponding to the π radians jump in P2 phase spectrum, 
this jump cannot be related to the resonance phenomenon. Instead, it is reasonable to 
suggest that the jump in P2 spectrum is the result of prevailing of background fields over 
decaying fields induced by resonance radiation on the blue side of EDR. It is obvious that 
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at λ < 625 nm, decaying radiation from EDR becomes incapable of balancing the 
background radiation, so that the latter starts to control the phase of P2 signal.  

Exemplified above approach to analyzing spectral changes of probe signal phases can be 
similarly employed for clarifying the nature of processes, defining the formation of Fano 
resonance at other probe locations.  

7.7 Fano Resonances and Induced Transparency  
Conducted analysis of Fano resonances in MSs under study, helped us to reveal the 
specifics of interference processes in these structures. In order to relate these processes to 
appearance of the EIT phenomenon, it is worth recalling the approaches, used in the first 
works on EIT [1-3]. Fig. 14 shows a typical schematic, employed for explaining zero 
energy absorption at EIT in atomic gases. The central idea was that no energy spending 
could be provided due to destructive interference between the competing transitions 1-2 
and 3-2. 

 
FIG 14. Three levels schematic used to explain the role of coupled transitions between 
states 3 and 2 for eliminating the energy absorption.  

Thus, quantum interference was assumed capable of controlling the entire optical response, 
in particular, of eliminating the absorption and the refraction (linear susceptibility) at the 
resonant frequency. In such case, from the side of observer, located in state 1, the situation 
could be seen as absence of any transitions between state 1 and state 3. The reality of such 
situation was in details analyzed in [28].  

Considering EIT in MSs under study, an analogy with the case of atomic gases could be 
seen in destructive interference between background/incident radiation and radiation from 
dipolar resonances, which was shown to be critical for the signals in point P2. In fact, for 
an observer, located in point P2, MS response at zero signal in the Fano line-shape will be 
seen as identical to the case with no background radiation and, so, with no presence of 
incident waves in the MS. In this case, the observer should not expect any absorption or 
refraction of incident waves, as well as their reflection (at zero susceptibility and zero 
index). Therefore, it seems logical to assume that at zero signal in the Fano line-shape in 
point P2, nothing prevents waves from transmitting without losses through MS and, so, the 
conditions for EIT could be realized.  
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It is worth pointing out here that the spectral distance between the positions of EDR and 
zero signal in Fano line-shape in point P2 is just a few nanometers at Δ = 275 nm. 
Therefore, in S-parameter spectra, the EIT position appears almost indistinguishable from 
the EDR position. More accurate studies of EDR and EIT spectral positions at varying the 
Δ values are desired to additionally verify the character of correlation between two 
phenomena. 

It could also be noticed that we did not observe EIT-like phenomena associated with 
magnetic dipolar resonances (MDRs). The reason for this could be seen in Fig. 3. As seen 
in the figure, in dense MSs, Q-factors of MDRs are very low. In sparse MSs, Q-factors of 
MDRs become higher, however, sparse MSs do not create conditions for superposition of 
fields required for the formation of Fano-resonances. 

7.8 Conclusions 
Numerical experiments with MSs, composed of identical cylindrical silicon nano-
resonators, have shown that these structures can demonstrate full narrowband transparency 
for normally incident plane waves at the frequencies of EDRs. In MSs with square lattices, 
this EIT-like phenomenon has been observed only at the lattice constants in the range 
between 275 nm and 325 nm, i.e. in densely packed MSs  

The studies of electric field distributions in planar cross-sections of MSs and of signal 
spectra from E-field probes, placed in characteristic points of MS’s unit cells helped us to 
identify physical processes, defining the specifics of Fano resonances observed at various 
probe locations. In particular, it was shown that Fano resonances, detected in the gaps 
between resonators, arranged along E-field direction, were controlled by interference 
between background radiation and waves, radiated by resonance fields, formed inside DRs. 
Well known switching of the phase of resonance oscillations by π radians at the resonance 
frequency made this interference transforming from constructive to destructive at passing 
the resonance. Destructive interference provided suppression of background radiation and 
full MS transparency at the frequencies of zero signals in Fano line-shapes, registered at 
the described above locations. The wavelengths of spectral positions of the above zero 
signals were found to be just about several nanometers shorter than the EDR wavelengths 
that created an illusion of coincidence of EIT and EDR effects.   
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8 Summary and Future Works 
8.1 Summary  
In Chapter 1, we introduced the concepts of transformation optics (TO), which presents a 
new tool for developing electromagnetic and photonic devices with advanced 
functionalities, in particular invisibility cloaks. We explained that realization of TO-based 
devices requests designing artificial media with unusual properties. While conventional 
metamaterials (MMs) fail to provide desired responses at high frequencies, artificial media 
composed from all-dielectric constituents such as dielectric photonic crystals (PhCs) can 
be another candidate for developing TO-based devices. Furthermore, we explained that 
metasurfaces (MS) made of 2D arrays of dielectric resonators (DRs) are another class of 
all-dielectric artificial media for employment in flat devices controlling propagation and 
scattering of electromagnetic waves.  

Chapter 2 described our approach for realizing TO-prescribed cylindrical invisibility cloak 
by using anisotropic PhCs. First, we clarified the functions of TO-prescribed azimuthal and 
radial indices having, respectively, near-zero and bigger than unity values. It was observed 
that both index dispersions are essential for accelerating waves travelling in the cloak 
media and for properly turning waves around hidden objects. Then, we studied responses 
of anisotropic PhCs composed from dielectric rod arrays with rectangular lattices under 
TM polarized illumination. We found out that frequency-dependencies of directional 
refractive indices of such PhCs in their 2nd transmission bands demonstrate values that are 
compatible with TO-prescribed azimuthal and radial index dispersions. However, at a 
reasonable thickness of the cylindrical cloak medium, it was seen that TO prescribes bigger 
radial indices in inner layers of the cloak, overstepping the degree of index anisotropy in 
rectangular lattice PhCs. We proposed to reduce the ideal TO prescriptions to mitigate the 
problem. Our analysis verified that a cloak medium with precisely modified radial index 
dispersion providing smaller values in inner layers of the cloak and bigger values in outer 
layers of the cloak, in comparison with ideal TO prescriptions for radial index, provides a 
nearly perfect cloaking effect. For realizing cloak prototype, we approximated the reduced 
index dispersion with a step-function. Then, we found lattice parameters of rectangular 
lattice PhCs that could provide approximated indices at the operating frequency. We coiled 
fragments of these PhCs around a metal cylinder in concentric circular arrays. In the cloak 
medium, short sides of rectangular cells were oriented along azimuthal direction, while 
long sides of the cells were directed along radial direction. Rods were infinite along z-axis. 
Obtained wave patterns showed that cylindrical cloak media composed from dielectric rod 
arrays with rectangular lattices could provide desired wave-front restoration at the 
operating frequency. Scatterings of the metal cylinder was also significantly reduced by 
the designed cloak medium.  

In Chapter 3, considering the challenges met at realizing TO prescribed radial indices, we 
proposed to refuse from TO prescriptions in the cylindrical cloak medium and employ self-
collimation (SC) phenomenon in PhCs for turning waves around hidden object. We bent 
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PhC fragment comprising four identical arrays of dielectric rods with square lattice to 
realize the SC effect. We also designed transformation regions in the left and right sides of 
the cylindrical cloak medium to transform the wave movement from straight in free space 
into curvilinear in the SC-part of the cloak. These transformation parts were realized by 
using dielectric rod arrays with rectangular lattices. Obtained results revealed that SC-
based cylindrical cloak media can provide cloaking effect. Our designed SC-based 
cylindrical cloak had a smaller thickness, i.e. less ratio of outer/inner radii, in comparison 
with TO-based cloak realized in Chapter 2. Furthermore, our SC-based cloak media 
properly worked under plane wave incidence, while devices operating based on SC 
phenomenon usually work for electromagnetic beams.  

In Chapter 4, we realized the media with unidirectional high-anisotropic near-zero 
refractive index properties. In PhCs with rectangular-lattices composed of dielectric rod 
arrays, we found that for specifically selected lattice parameters, superluminal propagation 
with near-zero refractive indices could be formed along short sides of PhC’s cells, while 
propagation along long sides of the cells was totally prohibited. This phenomenon was 
detected at the lower edge of 2nd transmission band considering TM waves moving along 
short sides of the PhC’s cells. Such PhCs demonstrated flat equi-frequency contours 
(EFCs) in the operating frequency range. Flat EFCs were expected to provide substantial 
collimation effect. For verifying the response, we placed a fragment of high-anisotropic 
NZRI PhC in front of a divergent radiation. It could effectively collimate, confine, and 
guide the incident wave along short sides of the PhC’s cells.   

In Chapter 5, we investigated resonance and scattering phenomena in metasurfaces (MSs) 
formed from 2D arrays of dielectric resonators (DRs). We studied the electric and magnetic 
dipolar resonances (EDR and MDR) in a single subwavelength dielectric cylinder by 
controlling their spectral positions. We varied the height of the cylinder at a fixed diameter. 
The optimum directional scattering from a single dielectric disk was detected when there 
was a specific spectral distance between peak frequencies of EDR and MDR and they were 
not coinciding, as often assumed in literature. In addition, we altered the periodicity of 
dielectric disk arrays in MSs and characterized their responses in terms of scattering and 
radiation. Our results demonstrated that periodicity of arrays significantly affected 
electromagnetic responses of MSs. In particular, in densely packed MSs, a sharp 
transmission peak was excited at the frequency of EDR, opposing conventionally expected 
response of EDR. We considered this type of response in dense MSs as analogous to the 
phenomenon of electromagnetically induced transparency (EIT).  

In Chapter 6, we explored the interactions between EDRs/MDRs formed inside DRs in 
MSs with the lattice resonances (LRs). We increased the lattice constants of dielectric disk 
arrays up to values where it was comparable to the wavelengths of ED and MD resonances. 
This resulted in red shifting of the EDR and MDR frequencies at approaching Rayleigh 
Anomaly (RA). We obtained near-field patterns and observed that formation of LRs is 
associated with excitation of strong field spots in the gaps nearby edges of DRs. We 
suggested that coherent oscillations of these field spots with dipolar resonance fields that 
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were formed inside DRs, enhanced the effective wavelengths of oscillations and led to red 
shifting of elementary Mie resonances at emergence of LRs. Our results also illustrated the 
changes in scattering responses of MSs affected by interactions of LRs with EDRs and 
MDRs.  

Results presented in Chapter 7 discussed the nature of extraordinary narrow-band 
transmission that was detected in dense MSs at EDR. In literature, devices with EIT-like 
responses typically have complex designs. Our results demonstrated that EIT-like response 
could be realized in simple MSs composed of identical dielectric disks. We studied the 
formation of destructive/constructive interferences and Fano resonances in dense MSs by 
recording electric field intensity and phase signals in several spatial points chosen in MS 
Plane. Analysis of interactions between resonant fields inducing π radian phase shifts 
clarified the origin of Fano responses. Diminishing background scattering nearby EDR’s 
frequency, rendered the dense MS transparent.     

8.2 Future Works 
Described above studies can be inspiring for future potential works at designing and 
utilizing all-dielectric artificial media. We used anisotropic PhCs with rectangular lattice 
arrays of dielectric rods for designing cloaks and collimators. We suggest using PhCs with 
rectangular lattices in other advanced electromagnetic and photonic devices such as beam 
splitters and modulators. A collimator can be engineered to enhance the far-field directivity 
of an antenna radiation and to boost the efficiency and connectivity in a communication 
system. We designed our PhC media with mm-sized ceramic rods with permittivity of 37.2 
for conducting experiments in microwave regime. However, designing anisotropic PhC 
media from silicon nano-rods appears important for optical applications. At designing the 
SC-based cloak, we obtained a mismatch between indices of SC and TO parts. Improving 
the design of the cloak to mitigate this problem can lead to further reduction of hidden 
object’s scattering.  

We studied the responses of infinitely periodic dielectric MSs at employing single unit-cell 
models with periodic boundary conditions. However, practical applications of MSs 
incorporate finite MS samples.  Therefore, it is imperative to explore the responses of finite 
fragmental MSs and characteristics of the formation of MDRs, EDRs, and LRs in them. 
We observed that an EIT-like response emerged at EDR frequencies in dense MSs. 
Investigating an opportunity for realizing such effect at MDRs in MSs can be the subject 
of future research. It was seen that formation of LRs created high intensity localized field 
spots in the gaps nearby DRs’ edges in the MSs. Benefits of these field spots can be 
considered for advancing super-oscillatory applications that request localized intense fields 
with a low-loss response.  

We used anisotropic PhCs made of infinite rods for realizing invisibility cloaks. Therefore, 
our designed cloak media were bulky. We propose to realize new types of compact 
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invisibility cloaks by employing and designing dielectric MSs. It is worth noting that it was 
seen that at specific frequencies, back scattering of MSs was suppressed.  

 

 

 

 



92 
 

A Letters of Permission 
A.1 Permission to reprint the article from IOP Publishing 

 

 



93 
 

 

 

A.2 Permission to reprint the article from IEEE Publishing 

 



94 
 

A.3 Permission to reprint the article from SPIE Publishing 

 

A.4 Permission to reprint the article from OSA Publishing 

 



95 
 

A.5 Permission to reprint the article from AIP Publishing 

 

 

 

 

 

 

 

 

 


	DEVELOPING ELECTROMAGNETIC AND PHOTONIC DEVICES BY USING ARTIFICIAL DIELECTRIC MATERIALS
	Recommended Citation

	tmp.1628093968.pdf.Z7zKJ

