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Abstract 

Obesity is a chronic metabolic disorder associated with increased risk of 

cardiovascular disease. Evidence suggests that chronic intermittent fasting 

improves cardiometabolic health and reduces arterial blood pressure. 

However, the mechanisms underlying the reductions in blood pressure and 

improved cardiovascular health observed from chronic fasting studies remain 

unclear. The autonomic nervous system has a central role in the regulation of 

blood pressure and is essential for cardiovascular homeostasis. We 

conducted a study to investigate how acute fasting influences autonomic 

control of blood pressure at rest and during stress. Twenty-five young, 

healthy, normal weight, normotensive participants were tested twice, once in 

the fed state (3 hours postprandial) and again in the fasted state (24 hours 

postprandial). Aim 1 of the study was to determine the influence of an acute 

fast on hemodynamics, peripheral neural activity, and cardiovascular control 

at rest. To fulfill this aim we measured 24-hour ambulatory blood pressure for 

both conditions leading up to an autonomic function test. During the 

autonomic function test, we controlled breathing at 0.25 Hz and measured 

blood pressure, heart rate, muscle sympathetic nerve activity, and forearm 

blood flow for 10 minutes. Fasting reduced overall ambulatory blood pressure 

and heart rate compared to the fed condition. From the autonomic test we 

measured enhanced vagal modulation of the heart through 1) increased R-R 

interval and heart rate variability measured via spectral analysis; 2) Increased 

spontaneous (rest) and dynamic (Valsalva Maneuver) cardiovagal baroreflex 

sensitivity indicating enhanced reflexive vagal activation. Fasting did not alter 

peripheral sympathetic activity or blood pressure during the autonomic test. 

However, forearm vascular resistance and stroke volume were increased 

during the fasting condition. Aim 2 investigated if fasting influenced 

cardiovascular and neural reactivity to a mental stressor (5 min mental 

arithmetic). Fasting did not augment neural or cardiovascular reactivity to a 
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mental stress challenge. Aim 3 investigated if fasting reduced orthostatic 

tolerance to intense lower body negative pressure (LBNP). LBNP was applied 

in a stepwise manner until participants became presyncopal. Fasting reduced 

the duration of negative pressure participants could tolerate before 

presyncope occurred. The reduced tolerance to central hypovolemia seems 

to have been caused by an impaired ability to increase peripheral resistance 

as measured from the forearm. This dissertation provides novel insight into 

how systemic energy balance influences autonomic regulation of blood 

pressure. Specifically, that fasting reduces 24-hour ambulatory blood 

pressure, increases vagal modulation of the heart, and enhances cardiovagal 

baroreflex sensitivity. 
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1 INTRODUCTION 

 

1.1 The Problem of Plenty  

In the United States, overeating, inactivity, and obesity have emerged as 

serious public health challenges that reduce life expectancy (Peeters et al., 

2003). The problem has only gotten worse as we progress through the 21st 

century. Caloric intake in the United states has increased 22% in women and 

7% in men between 1971 and 2000 (Wright, Kennedy-Stephenson, Wang, 

McDowell, & Johnson, 2004). The prevalence of obesity in the U.S. 

population increased from ~31% to ~42% from 2000 to 2018 (Hales, Carroll, 

Fryar, & Ogden, 2020). Accessible countermeasures are needed to abate the 

rise in obesity and improve life expectancy and health.  It is well established 

that physical activity enhances cardiometabolic health and increases life 

expectancy in humans in a dose dependent manner (Mandsager et al., 2018; 

Moore et al., 2012; Reimers, Knapp, & Reimers, 2012). However, only ~23% 

of American adults over 18 years old engage in the recommended amount of 

physical activity (Blackwell & Clarke, 2018). Recently, caloric restriction and 

intermittent fasting have been proposed as countermeasures to improve 

cardiometabolic health and potentially increase life expectancy. 

1.2 An Evolutionary Perspective  

In developed societies such as the United States hyperpalatable foods 

are abundant and accessible to a majority of the population. Undoubtedly, this 

abundance of food has allowed for sustained population growth throughout 

the 21st century. However, regular intake of calorically dense food represents 

a significant divergence from homo sapiens evolutionary history. Early human 

societies that subsisted on hunting and gathering evolved in environments 

where they intermittently experienced periods of little to no caloric intake 

(Crittenden & Schnorr, 2017). In these societies caloric intake was 



16 

opportunistic, and periods of fasting were not uncommon. In order to survive 

these environments our ancestors had to constantly make the metabolic shift 

from glucose utilization and fat storage (lipogenesis) during times of plenty, to 

fat breakdown (lipolysis) and ketone utilization for energy when food was 

scarce. The switch to lipolysis and the mobilization of fatty acids for energy 

production only occurs once glycogen stores in the liver are depleted. 

Depending on energy expenditure and liver glycogen stores, the switch to 

lipolysis occurs approximately 12 to 36 hours after caloric cessation and is 

characterized by the production of ketones (β-hydroxybutyrate) from 

triglycerides (Merimee, Misbin, & Pulkkinen, 1978). In the fasted condition, 

ketone bodies provide a major source of energy. However, in the United 

States it is common for individuals to consume 3 meals a day plus snacks. 

This constant energy intake keeps ketone levels low, as there is a near 

continuous infusion of glucose for energy. People who adhere to the 3 meals 

a day eating pattern never make the metabolic switch to the production and 

utilization of ketones for energy unless they engage in strenuous exercise. 

We as a species are physiologically well suited for periods of caloric 

restriction and complete caloric cessation. Sections 1.3 and 1.4 will briefly 

cover the emerging evidence supporting the potential health benefits of 

chronic caloric restriction and intermittent fasting.  

1.3 Caloric Restriction, Cardiometabolic Health, and 

Lifespan 

Caloric restriction has been reported to significantly increase the 

lifespan and delay the onset of age-related disease. In lower order 

eukaryotes, such as yeast and worms, caloric restriction extends their 

lifespan by 3 fold (Fontana, Partridge, & Longo, 2010). Caloric restriction is 

also reported to extend the lifespan of higher order eukaryotes like flies (by 2 

fold) and mice (by 30-50%) (Fontana et al., 2010). There may also be benefits 
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to the lifespan of primates who consume a calorie restricted diet. In 1989 a 

longitudinal study commenced in rhesus monkeys investigating caloric 

restriction and lifespan. By 2013, 63% (24/38) of the control animals died of 

age-related causes, compared to only 26% (10/38) of the animals in the 

caloric restricted group (Colman et al., 2014). The rhesus monkey study is still 

active. The most recent report in 2017 reported that six calorie restricted 

monkeys had lived beyond the age of 40 years old, which was previously 

thought to be maximal lifespan for the species (Mattison et al., 2017). The 

degree of caloric restriction that confers maximal benefits to the lifespan is 

unknown. However, the evidence suggests that lower caloric intake improves 

lifespan in animals.  

To date, there is no direct evidence to support that caloric restriction 

increases the lifespan of humans. The most prominent caloric restriction 

study conducted in humans is the Comprehensive Assessment of Long-term 

Effects of Reducing Intake of Energy trial (CALERIE). The CALERIE trial was 

conducted in 218 healthy non-obese men and women and prescribed a diet 

that had 25% less calories than needed to maintain energy balance over a 2-

year period. While the diet prescription was 25% below energy needs, actual 

adherence in the caloric restriction group averaged out to 12% over the 2-

year period. As expected, participants in the caloric restriction group lost 

about 10.4% of their body weight, 71% of which was fat (Kraus et al., 2019). 

The study showed improvements in cardiometabolic health greater than those 

conferred by the concordant weight loss. The caloric restriction group 

consistently had lower low-density lipoprotein (LDL) and serum triglycerides 

(TG) concentrations, which was accompanied by elevated high-density 

lipoprotein (HDL) concentrations. The caloric restriction group also reported 

lower systolic, diastolic, and mean arterial pressure. Insulin sensitivity was 

improved and fasting glucose was lower in the caloric restriction group. 

Lastly, high sensitivity C-reactive protein (hs-CRP), a measure of low-grade 
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chronic inflammation was significantly reduced at the 2 year time point (Kraus 

et al., 2019). Caloric restriction of just 12% on average in this population 

improved multiple indicators of cardiometabolic health and reduced risk 

factors for cardiovascular disease. Additional support for the hypothesis that 

caloric restriction has cardiovascular benefits comes from observational 

studies. 18 individuals who reported self-imposed caloric restriction for 3-15 

years exhibited similar cardiovascular benefits as the participants in the 

CALERIE trail. The observational study reported that in the caloric restricted 

group blood pressure, carotid artery intima media thickness, LDL, TG were 

lower and HDL were higher than the age-matched comparison group 

(Fontana, Meyer, Klein, & Holloszy, 2004). The CALERIE trial and the 

observational study provide evidence that caloric restriction may be beneficial 

for cardiovascular health. However, the metabolic switch from preferential 

glucose utilization to ketone bodies for energy does not occur during caloric 

restriction as energy intake does not cease. Without exercise, fasting is 

required for the metabolic switch to occur and for ketone production to 

commence. This may be an important metabolic distinction between caloric 

restriction and fasting because the ketone β-hydroxybutyrate has been 

reported to inhibit sympathetic nerve activity in cell cultures and rat models 

(Kimura et al., 2011). Intermittent fasting requires the complete cessation of 

energy intake for a specific time period resulting in the production of ketone 

bodies. Section 1.4 will discuss the beneficial association between chronic 

intermittent fasting and cardiovascular health. 

1.4 Chronic Intermittent Fasting and Cardiovascular 
Health 

Intermittent fasting is a rapidly growing dieting concept popular with 

individuals seeking to lose weight. The most popular intermittent fasting 

regimens are alternate day fasting, 5:2 intermittent fasting (fasting 2 days out 

of the week), and time restricted feeding (Anton et al., 2018). 5:2 and 
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alternate day fasting commonly involve fasting for an entire 24 hours. Studies 

have demonstrated that intermittent fasting can promote weight loss and 

increase fat oxidation in obese and non-obese populations (Heilbronn, Smith, 

Martin, Anton, & Ravussin, 2005; Varady et al., 2013) Additionally, 

intermittent fasting has been utilized by weight lifters to successfully reduce 

body fat mass while maintaining muscle mass (Moro et al., 2016).  Separate 

from weight loss fasting may convey other health benefits. Two observational 

studies have reported that populations who periodically fast as infrequently as 

once a month have reduced prevalence of diabetes and coronary artery 

disease (Horne et al., 2012). When adjusted for age, sex, BMI, hypertension, 

hyperlipidemia, smoking, and family history, the meta-analysis suggested that 

odds of diabetes were 43% lower and coronary artery disease 42% lower in 

the infrequent fasters (Horne et al., 2008; Horne et al., 2012) suggesting that 

even an acute periodic fast may have beneficial cardiovascular and metabolic 

outcomes. The cardiovascular benefits of fasting have primarily been 

investigated in chronic fasting models. 

 In rats, intermittent fasting increases heart rate variability and reduces 

blood pressure and heart rate (Mager et al., 2006). Reductions in blood 

pressure measured in the rats was attributed to enhanced parasympathetic 

activation at the heart. The ability for fasting to reduce blood pressure has 

also been observed in humans. A recent review reported that chronic 

intermittent fasting is beneficial for lowering blood pressure in obese and non-

obese individuals (Malinowski et al., 2019). One month of alternate day 

fasting effectively lowers blood pressure and heart rate, suggesting that 

chronic fasting may enhance parasympathetic activity (Stekovic et al., 2019). 

A drop in blood pressure has also been measured in men observing 

Ramadan fasting (Samad et al., 2015). However, the influence of fasting on 

the autonomic nervous system and the mechanism responsible for the 

observed reduction in blood pressure remains unclear. The autonomic 
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nervous system is intimately linked to cardiovascular health. Remarkably, few 

studies have investigated how an acute fast influences autonomic balance in 

humans (section 2.5) or how fasting affects autonomic cardiovascular control 

of blood pressure. Therefore, the purpose of this research study is to 

identify how an acute 24-hour fast influences autonomic cardiovascular 

and neurovascular control of arterial pressure at rest and during stress. 

1.5 Summary 

We are far removed from the eating and activity patterns of our early 

ancestors. Nevertheless, humans are metabolically well equipped to 

compensate for periods of complete cessation in energy intake. Humans are 

capable of making the metabolic switch from glucose for energy production to 

ketones through the breakdown of fat. It is well established that reducing 

caloric intake through restriction or fasting will result in weight loss. Current 

evidence suggests that fasting could have cardiovascular benefits separate 

from weight loss. However, knowledge on how the autonomic nervous system 

influences cardiovascular control of blood pressure during periods of fasting is 

limited. This dissertation will contribute new knowledge to the field of 

autonomic physiology by investigating how acute fasting influences 

cardiovascular and neurovascular control of blood pressure at rest and during 

stress.   
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2 LITERATURE REVIEW 

 

2.1 Obesity 

2.1.1 State of the Disease 

Obesity in adults is most commonly defined as having a body mass 

index greater than or equal to 30 kg/m2. According to a 2020 report from the 

Centers for Disease Control and Prevention in 2017-2018, 42.4%(~138 

million people) of the population in the United States is considered obese 

(Hales et al., 2020). These data show an approximate 12% increase in the 

overall prevalence of obesity since the year 2000. Obesity is a chronic 

metabolic disorder associated with increased risk of cardiovascular disease, 

stroke, type 2 diabetes, and overall mortality (Poirier et al., 2006). In 2008 

alone, medical costs associated with obesity were estimated to be 147 billion 

dollars (Finkelstein, Trogdon, Cohen, & Dietz, 2009). Obesity affects some 

groups disproportionally. Non-Hispanic Black adults and Hispanic adults have 

the highest prevalence of obesity at 49.6% and 42.2% (Ogden et al., 2017). 

The association between obesity, income, and educational level is complex 

and varies by sex, race, and ethnicity. Obesity prevalence is lower among 

college graduates for White men and women, Black women, and Hispanic 

women but not for Black and Hispanic men. In general, women with a higher 

income are less likely to be obese. However, there is no difference in obesity 

prevalence between the lowest and highest income groups in men (Ogden et 

al., 2017). Obesity is often considered to be a result of either excessive 

energy intake and/or of insufficient energy expenditure. This is known as 

energy imbalance and will be further explored in the next section. 
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2.1.1.1 Energy Balance Theory 

The first law of thermodynamics states that internal energy of a system 

equals the net heat transfer into the system minus the net work done by the 

system. This can be explained by the following equation  

Equation 1: 1st Law of Thermodynamics 

∆𝑼 = 𝑸 − 𝑾 

ΔU= change in internal energy of the system  

Q = is the sum of all heat transfer into and out of the system 

W = the net work done on or by the system 

Applied to human metabolism, Q is heat transfer out of the body and 

lost to the environment (meaning Q is always negative and relatively 

constant). W is the sum of work done by the body (energy expenditure) and 

also work done on the body in the form of food (energy intake). There are 

three uses for energy in human metabolism; heat transfer, doing work, or 

storage in the form of fat. The first law of thermodynamics assures that body 

weight cannot change if over time energy intake and energy expenditure are 

equal. Energy balance has played a central role in the study of human 

obesity. Weight gain must be caused by a positive energy balance just as 

weight loss must be caused by a negative energy balance. The equations 

below summarize this concept. 

Equation 2: Energy Balance 

Energy Intake > Energy Expenditure = Weight Gain (positive energy balance; +U) 

Energy Intake < Energy Expenditure = Weight loss (negative energy balance; -U) 
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Multiple studies have attempted to ascertain if excessive energy intake 

or insufficient energy expenditure is the primary driver for human obesity. 

Those who claim excessive energy intake as the cause of obesity have 

reported that highly palatable energy dense foods lead to accidental excess 

energy consumption (Prentice & Jebb, 2003).  Others who claim insufficient 

energy expenditure as the cause of obesity have reported that over the last 

50 years daily energy expenditure has declined by more than 100 calories 

(Church et al., 2011). It is likely that both excessive energy intake and 

insufficient energy expenditure contribute to the increase in the prevalence of 

obesity in the United States. Bariatric surgery is currently the most effective 

treatment for obesity and all procedures effectively decrease energy intake or 

energy absorption to result in weight loss. (Waseem, Mogensen, Lautz, & 

Robinson, 2007). However, bariatric surgery is an invasive and expensive 

intervention. Other lifestyle weight loss strategies such as diet and exercise 

should always be the first options for promoting weight loss.  

The first law of thermodynamics cannot be violated in regard to the 

onset, maintenance, or reversal of obesity. However, obesity is an extremely 

complex disease sensitive to genomic, metabolic, and environmental 

influences. The autonomic nervous system has been proposed to have an 

integrated regulatory role in maintaining constant energy storage and 

expenditure. Studies in both animals and humans have reported that the 

autonomic nervous system responds to changes in systemic energy balance. 

The following sections will describe the autonomic nervous system and how it 

responds to acute energy intake and energy deprivation.  
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2.2 Autonomic Nervous System  

 

2.2.1 The Autonomic Nervous System 

2.2.1.1 A Brief History and Organization of the Autonomic Nervous System  

The first identification and description of the Peripheral Vegetative 

Nervous System (i.e. Autonomic Nervous System; ANS) was first made by 

Galen in 150 A.D by dissecting pigs. However, Galen’s physiological ideas 

were heavily influenced by humoral theory and he thus believed that the 

nerves he identified were used to transfer animal spirits to muscle and organs 

in what he described as sympathetic action (Ackerknecht, 1974). The term 

Autonomic Nervous System (ANS) would not be coined until 1898 by John 

Newport Langley. Langley is recognized for his work concerning the 

anatomical organization of the ANS. Langley is also credited with 

distinguishing the sympathetic and parasympathetic branches of the ANS. 

The basis for the separate distinction of the sympathetic and parasympathetic 

branches of the ANS was the recognition that multiple organ systems are 

under the opposing influences of two sets of nerves. The importance of the 

balance between the sympathetic and parasympathetic branches of the 

autonomic nervous system would become evident in the work of Claude 

Bernard. Bernard’s work identified numerous autonomic effector targets, such 

as the influence of the vagus nerve on heart rate, the glycemic function of the 

liver, and the link between blood flow and temperature regulation. Bernard 

also famously coined the phrase milieu interior or internal environment stating 

that “The constancy of the internal environment is the condition for free and 

independent life.”(Wehrwein, Orer, & Barman, 2011)  The concept that 

maintenance of a constant internal environment was revolutionary at the time 

and is a fundamental tenet in the discipline of human physiology. Walter B. 

Canon expanded upon Bernard’s work and highlighted the central role of the 

ANS in maintaining a constant internal environment. Cannon coined the term 
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homeostasis to described factors that maintain internal stability, stating “If a 

state remains steady it does so because any tendency towards change is 

automatically met by increased effectiveness of the factor which resist the 

change.” Cannon went on to describe that thirst, hypoglycemic reaction, and 

thermogenic functions all become more intense as the disturbance to 

homeostasis is more pronounced (Walter B Cannon, 1929). These corrective 

factors are necessary for the maintenance of constant internal state and 

governed by the branches of the ANS.  

2.2.1.2 The Sympathetic Branch  

The sympathetic nervous system (SNS) is a division of the autonomic 

nervous system whose preganglionic neurons are located between the first 

thoracic and first few lumbar spinal segments (C8-L2). Sympathetic 

preganglionic neurons are relatively short compared to the receiving 

postganglionic neurons that proceed to the effector organ. Sympathetic 

preganglionic neurons release acetylcholine (ACH) to their receiving nerve 

terminals that then transmit the nerve action potential to release 

norepinephrine (NE) at the target effector organ. Sympathetic postganglionic 

neurons mainly terminate on smooth muscle, but also project into the thoracic 

cavity to innervate the heart, bronchi, and visceral targets such as the 

gastrointestinal tract, urinary bladder, and kidneys. Most blood vessels are 

exclusively innervated by the sympathetic postganglionic neurons making the 

sympathetic nervous system the primary regulator of peripheral vascular 

resistance and the governor of blood flow throughout the body.  

The unique characteristic of the SNS to control blood flow and thus 

direct necessary resources to organs and muscle makes it the primary 

system called upon when responding to danger and stress. This responsibility 

of the sympathetic nervous system to respond to danger earned it the 

designation the “fight or flight response.” The SNS prepares the body to fight 
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or flee by 1) increasing heart rate and contractility thus cardiac output by 

direct stimulation; 2) increasing blood flow to active muscles while 

concurrently decreasing blood flow to metabolically inactive organs not 

needed for motor function such as the gastrointestinal tract and kidneys; 3) 

bronchodilation in the lungs to facilitate greater ventilation; 4) enhancing 

utilization of glycogen stores to increase blood glucose; and 5) mobilizing 

epinephrine from the adrenal glands into the blood stream to enhance 

glycogenolysis and reduce muscle fatigue (Walter Bradford Cannon, 1922). 

The sum of these mechanisms allows for the best possible conditions for 

maximal physical effort to escape or neutralize the threat.  

Two classes of adrenergic receptors are primarily responsible for 

mediating the sympathetic cascade of the fight or flight response, alpha (α1, 

α2) and beta (β1, β2). The agonists for alpha and beta receptors are 

epinephrine, released mostly from adrenal medulla and norepinephrine 

released predominantly from sympathetic nerves. Briefly, α1 receptors are 

expressed on vascular smooth muscle and facilitate vasoconstriction through 

the binding of epinephrine or norepinephrine. The α1 receptor has high affinity 

to both epinephrine and norepinephrine. In low concentrations epinephrine 

paradoxically causes vasodilation until a threshold saturation is reached and 

vasoconstriction is facilitated. The α2 receptor are primarily localized on 

presynaptic nerve terminals and act to inhibit norepinephrine release to 

attenuate excitatory transmission. The β1 receptor are present in the heart 

and have a greater affinity for epinephrine and increase heart rate and 

contractility when activated. Lastly, β2 receptors are present in the smooth 

muscle of the respiratory tract and have a high affinity for epinephrine that 

induces relaxation or dilation (Wehrwein et al., 2011; William Tank & Lee 

Wong, 2011).  
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The circulating levels of epinephrine in conjunction with circulating and 

directly released norepinephrine increase during stress and physical activity 

(Zouhal, Jacob, Delamarche, & Gratas-Delamarche, 2008). Epinephrine and 

norepinephrine are the primary agonists of the sympathetic nervous system 

responsible for resting vascular tone and mediating rapid mobilization of 

resources for physical activity. However, many autonomic effector organs are 

influenced by the parasympathetic nervous system. The sympathetic and 

parasympathetic nervous system are anatomically and functionally distinct 

and control autonomic effector organs synergistically, antagonistically, and 

independently.  

2.2.1.3 The Parasympathetic Branch 

The parasympathetic nervous system (PNS) is a division of the 

autonomic nervous system whose preganglionic neurons project from cranial 

nerves III, VII, IX, X and the sacral region of the spinal cord (S2-S4). A 

divergent characteristic of the PNS is that all preganglionic and postganglionic 

neurons of the parasympathetic nervous system release acetylcholine (ACh). 

Unlike the sympathetic nervous system, the preganglionic neurons of the 

parasympathetic nervous system are quite long and synapse with their 

respective postganglionic neurons close to or embedded in their effector 

organs. Parasympathetic fibers innervate lacrimal, oral, and nasal glands as 

well as the gastrointestinal tract, rectum, kidneys and bladder. However, The 

majority of parasympathetic fibers (75%) are located in cranial nerve X or the 

vagus nerve (McCorry, 2007). The vagus nerve is central to autonomic 

physiology because of its powerful direct influence on the sinoatrial node and 

atrioventricular nodes of the heart.  

ACh released from the vagus nerve binds to muscarinic receptors (M2) 

on the sinoatrial node of the heart and effectively slow heart rate (Brodde, 

Bruck, Leineweber, & Seyfarth, 2001). The sinoatrial node is the predominant 
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pacemaker of the heart and is under the constant influence of the vagus 

nerve. Without the influence of the vagus nerve the sinoatrial node would fire 

at its intrinsic rate of >100 beats per minute (Shaffer, McCraty, & Zerr, 2014). 

However, the heart is innervated by both sympathetic and parasympathetic 

nerves. If both divisions of the ANS innervate the heart, why is heart rate 

under the dominant control of the PNS? Simply put, parasympathetic nerves 

exert their effects faster, with a vagal impulse reaching the SA node in less 

than a second allowing for beat-to-beat modification. Cardiac sympathetic 

nerves can take upward of 5 seconds to exert their influence (Nunan, 

Sandercock, & Brodie, 2010). Therefore, a single vagal impulse triggers an 

immediate response within the cardiac cycle and its affect is eliminated after 

one or two cardiac cycles, due to rapid action of acetylcholinesterase which 

breaks down ACh (Shaffer et al., 2014; Wehrwein et al., 2011). This is a 

foundational concept in heart rate variability and with be expounded upon in 

section 2.2.2.1.  

ACh acts on two primary receptor types, nicotinic (NN) and muscarinic 

(M1, M2, M3) receptors. Transmission of signals in autonomic ganglia are 

primarily facilitated by nicotinic (NN) receptors which should not to be 

confused with the nicotinic receptors (NM) that facilitate skeletal muscle 

contraction. The only muscarinic receptors found in the autonomic synapses 

of the PNS are M1, M2, and M3. M1 receptors are found in autonomic ganglia 

while M2 and M3 are concentrated on PNS target organs. M2 receptors are 

highly concentrated on the heart and are responsible for enabling vagal 

influence over heart rate (SA node), contractility (atrial muscle), and 

conduction velocity (AV node & His-Purkinje system) (Brodde et al., 2001; 

Wehrwein et al., 2011). M3 receptors are associated with exocrine glands 

influenced by the PNS such as pancreas β cells responsible for insulin 

secretion.  
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The summation of the influences of the PNS is why it is commonly 

referred to as the “rest and digest system.” The SNS and PNS work in 

tandem to maintain homeostasis via widespread innervation of glands, 

smooth muscles, and the heart. Frequently, the PNS and SNA are thought of 

conceptually in stark dichotomy. However, the PNS and SNS work in 

harmony as part of an integrated regulatory system and neither works in 

isolation. Section 2.2.2 will discuss how balance between these two systems 

is measured and interpreted.  

2.2.2 Techniques Used to Access Autonomic Balance in 
Humans 

2.2.2.1 Heart Rate Variability 

The heart is not a metronome. Each cardiac cycle is deliberately and 

meticulously controlled by the autonomic nervous system to ensure adequate 

perfusion of organs critical to sustain life. Heart rate variability (HRV) is the 

term used to describe changes in the time interval between consecutive 

cardiac cycles at the R-wave of the electrocardiogram (ECG) or contraction of 

Figure 1: ECG and R-R Interval Example 
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the ventricles this can be seen in figure 1. All HRV assessments are 

calculated from the time interval from R wave to adjacent R wave, known as 

the R-R interval. The time interval between R waves is influenced by multiple 

factors including autonomic neural activity, blood pressure, and respirations 

(W. H. Cooke et al., 1998; Hirsch & Bishop, 1981). The influence of 

respiration on R-R interval can be seen in figure 1.  The most used methods 

for assessing HRV are time-domain analyses and frequency domain analyses 

(power spectral density).  

2.2.2.1.1 Time Domain Analysis of Heart Rate Variability  

To calculate time-domain HRV in a continuous ECG, each R wave is 

detected and the time between each R wave is measured in a given time 

period. The time between each R wave of the QRS complex is commonly 

referred to as the normal-to-normal (NN) interval in time domain analysis. The 

most commonly used measured derived from the NN interval differences 

include standard deviation of the NN intervals (SDNN, unit: ms), square root 

of the mean squared differences of the NN intervals (RMSSD, unit: ms), and 

the percentage of successive NN intervals that differ by more than 50 ms 

(PNN50, unit: %) (Electrophysiology, 1996). All these assessments measure 

respiratory frequency variations between cardiac cycles. It is necessary that 

when comparing these measurements of heart rate variability, the duration of 

recordings is the same.   

Interpreting time domain analysis of heart rate variability is relatively 

straight forward. In general, and increase in SDNN, RMSSD, and PNN50% 

indicate greater vagal activity at the level of the heart when comparing short-

term recordings. Time domain analysis of HRV is also valuable for cardiac 

and mortality risk stratification. Over a 24-hour period SDNN is good cardiac 

risk stratification tool in the acute phase of myocardial infarction (Casolo et 

al., 1992). Short term ECG recordings indicate that low heart rate variability 
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(SDNN) is associated with risk of death in middle-aged and elderly men 

(Dekker et al., 1997). Additionally, one study found that a pNN50 <3% is 

strongly associated with occurrence of a future coronary event in patients 

admitted to a coronary care unit (Manfrini, Pizzi, Trerè, Fontana, & Bugiardini, 

2003). After clinical stabilization 56% of patients with a pNN50 <3% had a 

subsequent coronary event (Manfrini et al., 2003). These studies indicate that 

reductions in time-domain measurements of heart rate variability are strong 

predictors of deleterious health outcomes.  

2.2.2.1.2 Frequency Domain Analysis of Heart Rate Variability 

Frequency domain analysis of HRV requires the same initial steps of 

time domain analysis of HRV. R waves of a continuous ECG are identified, 

and the R-R time intervals are measured and plotted over time. A fast Fourier 

transform (FFT) is performed on the R-R intervals data at a selected time 

point. The FFT creates a power spectrum that provides information on how 

variance (power) distributes over frequency. This process yields two 

physiologically relevant frequency bands, the low frequency band (LF; 0.04 – 

0.15 Hz) and the high frequency band (HF; 0.15 – 0.40 Hz). The HF band 

reflects parasympathetic activity at the level of the heart (Hayano et al., 

1991).The physiological relevance of the LF band, traditionally associated 

with sympathetic activity, has been questioned. The ability of the LF band to 

reflect sympathetic activity is dubious because there is significant vagal 

contribution to power density in the LF band (Eckberg, 1997). Evidence for 

vagal contribution to the LF power comes largely from autonomic blockade 

studies. High dosage atropine administration blocks sinoatrial responses to 

acetylcholine released from the vagus nerve (Epstein et al., 1990). When 

atropine is administered HF power is abolished and LF power is severely 

reduced (Pomeranz et al., 1985). Thus, the reductions of LF power via 

atropine administration reveals the significant vagal contribution to LF power 

density. Moreover, the low frequency component of heart rate variability does 
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not correlate with cardiac norepinephrine spillover, the gold standard index of 

cardiac sympathetic outflow (Moak, 2007). In summary, cardiac vagal activity 

is the primary contributor to the HF band and heavily influences power density 

at the LF band. The LF component of heart rate variability does not reflect 

cardiac sympathetic activity. The significant contribution of vagal activity to 

the HF band makes HF power density a powerful reflection of vagal 

modulation (parasympathetic activity) at the heart.  

Spectral analysis of heart rate variability is a useful tool in evaluating 

autonomic function. Similar to time domain measurements of HRV frequency 

domain analysis can be used for disease risk stratification. Multiple 

cardiovascular diseases exhibit a decrease in HF power and/or an increase in 

LF power, such as myocardial infarction (Lombardi et al., 1996) and 

hypertension (Piccirillo, Munizzi, Fimognari, & Marigliano, 1996). In sepsis 

patients a reduction in LF band power below 18 ms2 is associated with 

development of multiple organ dysfunction syndrome and a 64% mortality 

rate (Pontet et al., 2003). Similarly, in chronic heart failure patients’ 

diminishment of LF band power below 11 ms2 is an independent predictor of 

sudden death (Rovere et al., 2003). Both sepsis and chronic heart failure are 

associated with extreme sympathetic overactivity so why does the diminishing 

of LF band power act as a predictor for deleterious health outcomes? 

Reduced LF power during diseases associated with sympathoexcitation may 

be due to an impaired baroreflex, reduced responsiveness of the SA node, or 

vagal withdrawal (Rovere et al., 2003). Nevertheless, while the usefulness of 

the LF band for evaluating autonomic balance is dubious it is useful as a risk 

stratification tool.   

While power density is typically expressed in absolute values of power 

(ms2) LF and HF can also be quantified in normalized units. Normalization is 

done by dividing the LF or HF power by the total power of the spectrum and 
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multiplying by 100 (Malliani, Pagani, Lombardi, & Cerutti, 1991). Total 

spectral power varies greatly between individuals. Reporting normalized units 

emphasizes the balance between the LF and HF power bands relative to total 

power for better interindividual comparison. Lastly, it should be noted that 

cardiovascular rhythms and respirations are intimately linked through 

respiratory sinus arrythmia (RSA). Variations in heart rate are synchronized 

with respirations, by which the intervals between R waves on an ECG are 

shortened during inspiration and prolonged during expiration. Since RSA’s 

initial description and recording it has been further explored and understood 

to be the modulation of the cardiac vagal efferent activity through respiratory 

central drive (Shykoff, Naqvi, Menon, & Slutsky, 1991). The influence of 

breathing on autonomic neural outflow make breathing a potential 

confounding factor in human autonomic testing (W.H. Cooke, 1998). 

Controlled (or paced) breathing ≥0.2 Hertz has been advised as a means to 

increase the reproducibility and stability of heart rate variability measurements 

during short-term autonomic testing (T. E. Brown, Beightol, Koh, & Eckberg, 

1993; W. H. Cooke et al., 1998; Pitzalis et al., 1996). 

2.2.2.2 Blood Pressure 

Blood pressure is the force exerted by the blood against any unit area 

of the arterial vessel wall. When blood pressure is recorded two numbers are 

typically reported, systolic pressure (mmHg) which is arterial pressure when 

the ventricles are contracting, and diastolic pressure (mmHg) which is arterial 

pressure when the ventricles are refilling.  Blood pressure should be recorded 

at the level of the heart, therefore non-invasive measurements are recorded 

at the upper arm.   

Blood pressure is a fundamental variable of the cardiovascular system, 

and short-term regulation is driven by the autonomic nervous system. 

Maintaining blood pressure chronically within normotensive ranges (Systolic: 



34 

<120 mmHg; Diastolic: <80 mmHg) is one of the homeostatic responsibilities 

of both the ANS and the kidney. Adequate perfusion pressure is necessary to 

maintain consciousness and avoid syncope and potential injury from falling 

(Hainsworth, 2004). Conversely, chronically elevated blood pressure is a 

primary contributor to cardiovascular disease and potentially organ damage. 

Therefore, highly integrative responses are necessary for the control of blood 

pressure. Autonomic control of blood pressure with be discussed in detail in 

section 2.2.3. This section will cover non-invasive beat-to-beat and 

ambulatory blood pressure recordings.  

2.2.2.2.1 Noninvasive Beat-to-beat Arterial Pressure  

Noninvasive continuous measurement of arterial pressure from the 

finger was first introduced in the 1980’s (Imholz, Wieling, van Montfrans, & 

Wesseling, 1998). Since its introduction noninvasive finger arterial pressure 

has been extensively validated as a reliable method to track changes in blood 

pressure (Imholz et al., 1998; Truijen, van Lieshout, Wesselink, & Westerhof, 

2012). When calibrated to brachial blood pressure noninvasive finger arterial 

pressure are comparable to invasively measured intraarterial brachial 

pressures (Guelen et al., 2008).  

Continuous measurement of arterial pressure allows for accurate 

evaluation of the pressor response to stressful stimuli such as mental stress, 

cold pressor test, and isometric exercise. Additionally, beat-to-beat blood 

pressure measurements are essential for measuring hemodynamic 

responses to the Valsalva maneuver and orthostatic stressors such as lower 

body negative pressure (van Wijnen et al., 2017). When paired with ECG, 

continuous arterial pressure can be used to assess spontaneous and 

dynamic cardiovagal baroreflex sensitivity (described in section 2.2.3.1.). 

Using the Modelflow method, beat-to-beat arterial pressure can be used to 
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estimate stroke volume and cardiac output (Langewouters, Wesseling, & 

Goedhard, 1984).  

In conclusion, continuous blood pressure is a valuable and reliable 

measurement for the assessment of pressor response, orthostatic 

intolerance, and baroreflex sensitivity. However, this technique has 

limitations. Continuous blood pressure recordings are often short-term and 

done in a controlled laboratory setting with participants mostly stationary. Due 

to these limitations continuous blood pressure recordings fail to capture the 

circadian rhythm or blood pressure during normal living. The deployment of 

ambulatory blood pressure devices has allowed for a more holistic look of 

blood pressure over a 24 period.  

2.2.2.2.2  Ambulatory Blood Pressure   

Ambulatory blood pressure (ABPM) allows for the recording of multiple 

blood pressure readings several times an hour across a 24-hour period. 

Recording blood pressure over a 24-hour period gives ABPM the unique 

ability to group blood pressure measurements into time windows of wake and 

sleep recordings and render a 24-hour mean. ABPM can also be used to 

evaluate the morning surge and nighttime dipping patterns of blood pressure. 

Given these advantages, ABPM has become a valuable tool for the diagnosis 

and management of hypertension and the prediction of cardiovascular 

disease (Krakoff, 2013).  

 ABPM is the best measurement methodology for assessing nighttime 

blood pressure dipping when paired with sleep diaries or actigraphy 

measurement (Dolan et al., 2005). Measurement of nocturnal blood pressure 

dipping is an increasingly important prognostic parameter for cardiovascular 

morbidity and mortality. Ambulatory recordings also allow for the ruling out of 

white-coat hypertension as blood pressure recordings are taken outside the 

laboratory during the subject’s normal life. White-coat hypertension is a 
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phenomenon wherein individuals show elevated blood pressure in clinical, or 

laboratory settings. White-coat hypertension can occur in approximately 15 to 

30 percent of subjects (Franklin, Thijs, Hansen, O’Brien, & Staessen, 2013). 

Despite the advantages of ABPM, it also has limitations. A successful ABPM 

recording requires at least 20 valid wake measurements and 7 valid sleep 

measurements which can be difficult to obtain in some participants (O’Brien, 

Parati, & Stergiou, 2013). ABPM monitoring can cause potential discomfort 

during nighttime periods that disrupt sleep. Due to the potential for sleep 

disruption, it is important to pair ABPM measurements with an objective sleep 

measurement such as actigraphy, to accurately assess sleep time for 

nighttime dipping calculation. Additionally, ABPM monitoring does not account 

for body position at the time of measurement (seated, supine, etc.) 

 In conclusion, ABPM allows for the measurement of 24-hour blood 

pressure and assessment of circadian driven blood pressure activity such as 

nocturnal dipping and morning surge. ABPM allows for a more holistic 

assessment of blood pressure compared to short-term beat-to-beat 

recordings and allows for the ruling out of white-coat hypertension. In the 

future ABPM may allow for the timing of hypertension medications and 

lifestyle interventions to the endogenous circadian rhythm of blood pressure. 

2.2.2.3 Microneurography  

Microneurography is a technique used to directly record multifiber 

postganglionic nerve impulses in human subjects. The microelectrode used 

for the technique is made from tungsten and is inserted through the skin into 

the accessible peripheral nerve. Microneurography is commonly performed in 

peripheral nerves such as the peroneal neve of the leg and/or the ulnar, 

median, or radial nerves of the arm. The technique was first developed by 

Vallbo and Hagbarth at Academic Hospital in Uppsala, Sweden in 1966 

(Vallbo, Hagbarth, & Wallin, 2004). Vallbo and Hagbarth effectively developed 



37 

the technique to measure both efferent and afferent muscle and skin neural 

activity. Muscle sympathetic nerve activity can be quantified by bursts per 

minute (burst frequency) and/or by burst per 100 cardiac cycles (burst 

incidence). Both burst frequency and burst incidence give insight into neural 

control of the vasculature. Section 2.2.2.3.1 will expound upon the 

measurement of efferent muscle sympathetic nerve activity. 

2.2.2.3.1 Description, Measurements, and Reliability  

Efferent postganglionic nerve activity that innervates muscle vascular 

beds is a stable and reproducible measurement at baseline within individuals 

(Fonkoue & Carter, 2015; Grassi et al., 1997; G Sundlof & Wallin, 1977). 

Muscle sympathetic nerve activity (MSNA) is characterized by strong intra-

individual reproducibility and large inter-individual variability (Fagius & Wallin, 

1993). The cause for the interindividual variability of MSNA is unknown, but a 

genetic component may influence MSNA as identical twins have similar basal 

MSNA (B G Wallin, Kunimoto, & Sellgren, 1993). At rest, MSNA is highly 

correlated with both cardiac and renal norepinephrine spillover (B. Wallin, 

Thompson, Jennings, & Esler, 1996; B.G. Wallin et al., 1992) The relationship 

between MSNA and norepinephrine spillover does not stand during 

measurements taken during stressful stimuli, such as mental stress or 

isometric handgrip (B.G. Wallin et al., 1992).  

The relationship between transient rises in blood pressure and 

quiescence in MSNA was first reported by Wallin (G. Sundlof & Wallin, 1978). 

Wallin also observed that stimulation of the carotid sinus produced a clear 

inhibition of MSNA (B. G. Wallin, Sundlöf, & Delius, 1975). Later, the arterial 

baroreceptors dominance over MSNA would be proven in an elegant study by 

Allyn Marks group. Upon the infusion of phenylephrine, arterial pressure 

sharply increases inducing a baroreflex mediated reduction in MSNA  

(Sanders, Ferguson, & Mark, 1988).  Baroreflex inhibition of MSNA has been 
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observed when humans consume other drugs that exhibit a pressor response 

such as nicotine (Gonzalez & Cooke, 2021; Grassi et al., 1994). The 

observation of baroreflex mediated inhibition of MSNA is the foundation for 

the development of sympathetic baroreflex analyses.  

MSNA is a major contributor in the creation and control of peripheral 

vascular resistance in humans. Nonetheless, there is a paradoxical lack of 

correlation between MSNA and arterial pressure (Skarphedinsson, Elam, 

Jungersten, & Wallin, 1997; G. Sundlof & Wallin, 1978), meaning young 

individuals whose blood pressure fall in the normotensive range can have 

widely varying basal MSNA. Not until middle age (~40 years) does a 

relationship between resting blood pressure and MSNA develop (Michael J. 

Joyner, Charkoudian, & Wallin, 2010; Narkiewicz et al., 2005). There does 

exist a negative relationship between MSNA and cardiac output in men, with 

higher MSNA being associated with lower cardiac output (Michael J. Joyner 

et al., 2010). Furthermore, in normotensive young men there is a positive 

relationship between total peripheral resistance and MSNA; there is no 

relationship in women (Emma C Hart et al., 2009). Lastly, greater waist 

circumference and fat mass are strongly correlated with an increase in MSNA 

in men (Jones, Davy, Alexander, & Seals, 1997).   

Another persistent characteristic of MSNA is that it tends to increase 

with age. These age-related changes in MSNA also differ between the sexes. 

MSNA in men and women are similar at age 20. MSNA and women will then 

decrease until about age 30. From age 30 on MSNA in both women and men 

increase, with women having significantly lower activity until age 50 (Keir et 

al., 2020). After age 50, average activity converges again between men and 

women. Additionally, in both men and women younger than age of 40 no 

relationship exists between baseline mean arterial pressure and MSNA. 

However, after the age of 40 a positive relationship emerges in both sexes 
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between baseline MSNA and mean arterial pressure (Narkiewicz et al., 2005).  

In women, resting MSNA is also influenced by menstrual phase. Resting 

MSNA has been reported to be higher during the mid-luteal phase of the 

menstrual cycle compared to the earlier follicular phase (Minson, Halliwill, 

Young, & Joyner, 2000). However, this finding was not replicated by Carter & 

Lawrence who found similar resting MSNA during the mid-luteal and early 

follicular phases of the menstrual cycle (Carter & Lawrence, 2007). A later 

study explained the inconstancies by investigating to what degree sex steroid 

surges contributed to resting MSNA (Carter, Fu, Minson, & Joyner, 2013).  

Specifically, it was reported that the magnitude of estradiol increase during 

the mid-luteal phase was significantly correlated with decreases in resting 

MSNA (Carter, Fu, Minson, & Joyner, 2013). Hormonal contraceptives are 

used by ~80% of women in the United States during their lifetime. Studies 

have reported that women on oral contraceptives have higher resting blood 

pressure but no change in resting MSNA when compared to normal 

menstruating women (Harvey et al., 2015). Women on contraceptives also do 

not have significant differences in resting MSNA during the low hormone 

phase (placebo period) and high hormone phase (17-20 days after start of 

estrogen-progestin pills) (Minson et al., 2000). However, it is important to note 

that blood pressure, sympathetic baroreflex sensitivity, and cardiovagal 

baroreflex sensitivity are all greater during the low hormone phase of 

contraceptive use (Minson et al., 2000). Indicating that oral contraceptive use 

can modify the mechanisms by which blood pressure is regulated in women.  

2.2.3 Autonomic Control of Blood Pressure and Blood Flow  

 

The autonomic nervous system plays a central role in the maintenance 

of mean arterial pressure and cardiovascular homeostasis. An intact and 

responsive ANS is paramount in the maintenance of perfusion pressure 

during postural changes, food consumption, exercise, and hemorrhage. 
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Concurrently, the ANS must be able to respond to sharp increases in blood 

pressure to prevent serious cardiovascular complications such as stroke, 

myocardial infarction, organ hyperperfusion injury and blood vessel rupture. 

The ANS relies on feedback from the mechanoreceptors of the baroreflex to 

regulate arterial pressure. The ANS uses feedback from the baroreflex to 

regulate mean arterial pressure by altering either cardiac output and/or 

peripheral resistance. Cardiac output is influenced by both heart rate and 

stroke volume. The creation of vessel resistance is best described by 

Poiseuille’s law (Equation 5). The radius of the vessel, which is influenced by 

the sympathetic nervous system, has the greatest contribution to the creation 

of peripheral resistance. The relationship between cardiac output and vessel 

resistance describes mean arterial pressure. 

 Poiseuille’s law can also be used to understand how pressure and 

resistance influence blood flow. The equation clearly shows the influence of 

vessel radius on flow rate, explaining how the ANS influences both local 

blood flow and mean arterial pressure through its control of the heart and 

vessel radius in the periphery.  The next section will focus on the negative 

feedback loop of the baroreflex and how it is assessed. Additionally, the next 

section will also contain a brief description of venous occlusion 

plethysmography and how the technique estimates blood flow.  

Equation 3: Determinants of Mean Arterial Pressure 

𝑀𝐴𝑃 = 𝐶𝑎𝑟𝑑𝑖𝑎𝑐 𝑂𝑢𝑡𝑝𝑢𝑡 𝑋 𝑇𝑜𝑡𝑎𝑙 𝑃𝑒𝑟𝑖𝑝ℎ𝑒𝑎𝑟𝑙 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒  

Equation 4: Cardiac Output 

𝐶𝑎𝑟𝑑𝑖𝑎𝑐 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑆𝑡𝑟𝑜𝑘𝑒 𝑉𝑜𝑙𝑢𝑚𝑒 𝑋 𝐻𝑒𝑎𝑟𝑡 𝑅𝑎𝑡𝑒 

Equation 5: Determinants to Resistance to Flow (Poiseuille's Equation) 

𝑉𝑒𝑠𝑠𝑒𝑙 𝑅𝑒𝑠𝑖𝑡𝑎𝑛𝑐𝑒 =
8(𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑)(𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑣𝑒𝑠𝑠𝑒𝑙)

𝜋(𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑣𝑒𝑠𝑠𝑒𝑙)4
 



41 

Equation 6: Determinants of Flow Rate (Poiseuille's Equation) 

𝐹𝑙𝑜𝑤 𝑅𝑎𝑡𝑒 =  
𝜋(𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠)(𝑅𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑉𝑒𝑠𝑠𝑒𝑙)4

8(𝑉𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 𝑜𝑓 𝐹𝑙𝑢𝑖𝑑)(𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑉𝑒𝑠𝑠𝑒𝑙)
 

 

2.2.3.1 Baroreflex Sensitivity  

The primary mechanoreceptors of the baroreflex negative feedback 

loop are located in the aortic arch and the carotid sinuses. The baroreflex is 

the fastest mechanism to regulate acute changes in blood pressure through 

both fast vagal action at the heart and slower sympathetic action in peripheral 

vessels (de Boer, Karemaker, & Strackee, 1985). In other words, if blood 

pressure is perturbed, sympathetically mediated changes in peripheral 

resistance and sympatho-vagal modulation of heart rate and contractility 

(stroke volume) work together to adjust cardiac output and maintain blood 

pressure homeostasis. The ability of the baroreflex to appropriately sense 

acute changes in blood pressure and respond appropriately by activating or 

inhibiting the branches of the autonomic nervous system is called baroreflex 

sensitivity. Impairment of the baroreflex sensitivity is associated with multiple 

disease conditions such as myocardial infarction (Farrell et al., 1992), heart 

failure (Mortara et al., 1997), and even type II diabetes (Kück et al., 2020). 

Additionally, impaired baroreflex sensitivity is an independent prognostic 

value in predicting cardiac mortality (Rovere et al., 2001). Aerobic exercise 

has been reported to improve baroreflex sensitivity in healthy individuals and 

improve survival after a myocardial infarction (La Rovere, Bersano, Gnemmi, 

Specchia, & Schwartz, 2002; Monahan et al., 2000). Aerobic exercise has 

also been reported to reverse the age associated decline in baroreflex 

sensitivity (Monahan et al., 2000). Section 2.2.3.2 will discuss the hearts beat-

to-beat control of arterial pressure known as cardiovagal baroreflex 

sensitivity. 
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2.2.3.2 Cardiovagal Baroreflex Sensitivity  

Cardiovagal baroreflex sensitivity (cvBRS) is described as the slope of 

the relationship between the R-R interval and systolic blood pressure during 

acute changes in arterial blood pressure. cvBRS contributes to the beat-to-

beat control of arterial blood pressure and is an indicator of cardiac autonomic 

regulation (Parlow, Viale, Annat, Hughson, & Quintin, 1995). In particular, the 

sequence method of cvBRS is a good indicator of fast vagal regulation of the 

heart because the parameters for the technique are usually shorter than six 

beats (Silva, Dias, da Silva, Salgado, & Fazan, 2019). That cvBRS is primarly 

regulated by vagal modulation has been proven through atropine infusion 

which eliminates the baroreflex slope (Parlow et al., 1995). Spontaneous 

baroreflex function can be assessed at rest and during forced dynamic 

changes in blood pressure. At rest, cvBRS can be assessed as blood 

pressure and heart rate naturally oscillate in response to respiratory rate and 

Mayer waves, which have a ~10 second (0.1 Hz) rhythm (deBoer, Karemaker, 

& Strackee, 1987). Assessment of the baroreflex can also be done by 

perturbing blood pressure. This will be discussed in section 2.3.1 with the 

Valsalva maneuver.  

2.2.3.3 Venous Occlusion Plethysmography and Blood Flow 

Venous occlusion plethysmography (VOP) is a minimally invasive, 

relatively simple, and effective technique for assessing vascular function of 

the limbs. As the name implies it requires occlusion of the veins by inflating a 

cuff located proximal to the measurement site above venous pressure, but 

below diastolic arterial pressure. Therefore, Inflation pressure of the cuff 

prevents venous blood from leaving the limb but does not inhibit arterial blood 

from entering. When taking measurements in the forearm, it is standard 

practice to exclude hand circulation by inflating a secondary cuff above 

arterial pressure throughout the measurement.  This results in a linear 

increase in limb volume over time.  Changes in limb volume are then 
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measured by a plethysmograph (Whitney, 1953).  Measurements are made 

successively, with upper cuff inflated for a 7 second recording, and then 

deflates for 7 seconds to allow for venous emptying. At rest, approximately 

70% of forearm blood flow is through skeletal muscle and the rest is through 

skin blood vessels (Cooper, Edholm, & Mottram, 1955). VOP provides a 

estimate of blood flow rate to the part of forearm enclosed by the two cuffs.  

Blood flow rate depends on arterial pressure and vessel resistance 

(Equation 6). Due to this relationship vascular resistance in the limb can be 

estimated by taking mean arterial pressure and dividing by blood flow rate. 

Equation 7: Forearm Vascular Resistance Equation 

𝐹𝑜𝑟𝑒𝑎𝑟𝑚 𝑉𝑎𝑠𝑐𝑢𝑙𝑎𝑟 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝑀𝑒𝑎𝑛 𝐴𝑟𝑡𝑒𝑟𝑖𝑎𝑙 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒

𝐹𝑜𝑟𝑎𝑟𝑚 𝐵𝑙𝑜𝑜𝑑 𝐹𝑙𝑜𝑤
 

This technique does have serious limitations. The forearm vascular resistance 

equation assumes laminar flow of a Newtonian fluid, driven at a constant 

pressure, through a fixed resistance (Benjamin et al., 1995). However, Blood 

is not a Newtonian fluid, that can have turbulent flow, driven by a pulsatile 

pressure through a distensible vessel. Therefore, calculated resistance 

should be interpreted with caution.   

2.2.3.4 Sex Differences in Blood Pressure Regulation  

There are multiple clinically relevant sex-related differences in blood 

pressure regulation between men and women. First, young men have a 

higher prevalence of hypertension and in general have higher blood pressure 

than women (Burt et al., 1995; Wiinberg et al., 1995). This trend continues 

until age 70 and then the prevalence of hypertension in women surpasses 

men. Second, young women are at higher risk of orthostatic intolerance (Ali et 

al., 2000). These sex related differences in blood pressure regulation are 

influenced by the sex steroids testosterone, estrogen and progesterone.  
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In premenopausal eumenorrheic women the menstrual cycle is 

characterized by 4 phases; menstruation, follicular phase, ovulation, and the 

luteal phase. In general, studies that investigate sex difference in blood 

pressure regulation divide the menstrual cycle into 2 phases, the early 

follicular and mid-luteal phase. The early follicular (2-5 days after 

menstruation) is commonly used among autonomic studies because it is 

characterized by low estradiol and low progesterone levels. The mid-luteal (8 

to 10 days after luteinizing hormone surge) serves as a good comparison time 

point in the menstrual cycle because it is characterized by high estradiol and 

high progesterone. Occasionally studies will include the late follicular phase 

(10-14 days after menstruation) to isolate the influence of progesterone 

because late follicular is characterized by low estradiol and high 

progesterone. These phases are important in understanding sex differences 

in blood pressure regulation because they can alter baroreflex sensitivity. 

Sympathetic baroreflex sensitivity is greater in the mid-luteal phase but 

cardiovagal baroreflex is not affected (Minson et al., 2000). There is no 

reported difference between vascular transduction of muscle sympathetic 

activity between the two phases (Minson et al., 2000). Resting MSNA is 

elevated in the mid-luteal phase, but this does not translate to increases in 

blood pressure (Minson et al., 2000). Later, studies demonstrated that the 

increase in MSNA observed in the mid-luteal phases is related to the ratio 

and concentration of the sex steroid estradiol and progesterone. Specifically, 

increases in estradiol are associated with sympathoinhibition and 

progesterone with sympathoexcitation (Carter et al., 2013). Another important 

distinction between young men and women is that men have a positive 

relationship between peripheral resistance and MSNA and women do not 

(Emma C Hart et al., 2009). The lack of a relationship between peripheral 

resistance and MSNA appears to be due to a reduced vasoconstrictive 

response to norepinephrine in young women. However, when β-adrenergic 
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receptors (vasodilate in response to norepinephrine) are blocked and 

norepinephrine is infused, women exhibit vasoconstriction similar to men 

(Emma C. Hart et al., 2011). Suggesting that in young women α-adrenergic 

vasoconstriction may be countered by β-adrenergic vasodilation in the 

periphery (Emma C. Hart et al., 2011). β-adrenergic vasodilation in the 

periphery would account for the lack of relationship between MSNA and 

peripheral resistance, and could contribute to the increase in orthostatic 

intolerance in young women. Lastly, approximately 80% of women in the 

United States will use hormonal contraceptives during their lifetime. Hormonal 

contraceptives are reported to increase mean arterial pressure, but the 

mechanism is unclear as MSNA does not change (Harvey et al., 2015) 

Further Investigation into how sex influences blood pressure regulation is an 

important and necessary field of study. 

2.3 Autonomic Function Tests 

As mentioned previously the autonomic nervous system has a central 

role in the maintenance of homeostasis. The purpose of an autonomic 

functions test is to perturb homeostasis through a physical and/or 

psychological stress and measure the response. Commonly, cardiovascular 

and neurovascular measures are used to quantify the autonomic response to 

the test.  

2.3.1 The Valsalva Maneuver  

The cardiovascular and neurovascular response to the Valsalva 

maneuver provides reliable and reproducible information regarding the 

integrity of the baroreflex loop. The Valsalva maneuver requires a human 

subject to forcefully exhale air through a mouthpiece while blocking airflow 

through their nose for 15 seconds at a pressure of 40 mmHg. The Valsalva 

maneuver increases intrathoracic pressure and thus impedes venous return 

to the heart. This results in a fall in blood pressure that begins to rise as heart 
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rate and peripheral resistance increase (Phase II). When the intrathoracic 

pressure is released, venous return is restored, and cardiac output is 

significantly increased. The increased cardiac output is forced into elevated 

peripheral resistance causing blood pressure to rapidly rise (Phase IV). The 

rise in blood pressure is blunted by a reduction in heart rate allowing for blood 

pressure to stabilize. The Valsalva maneuver is a reliable and reproducible 

tool to assess the arterial baroreflex sensitivity to hypotensive (Phase II) and 

hypertensive (Phase IV) stimuli (displayed in figure 2) (Palamarchuk, Ives, 

Hachinski, & Kimpinski, 2014).  

Figure 2: Representative Valsalva Maneuver 

 

2.3.2 Mental Stress  

Throughout human evolution the sympathetic nervous system played a 

critical role in helping our ancestors survive physical threats. In the modern 

world, physical threats are usually limited. However, the evolutionarily 

conserved sympathetic nervous system does not discriminate between real 

threats and perceived threats. Psychological stress can be induced through a 
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speech task (Trier social stress test), attention task (Stroop test), and mental 

arithmetic (rapid serial subtraction) (Carter & Goldstein, 2015). Mental 

arithmetic induces sympathetically mediated increases in heart rate, blood 

pressure, skin sympathetic nerve activity, and also causes variable muscle 

sympathetic activation in humans (Carter, Kupiers, & Ray, 2005; Muller, 

Sauder, & Ray, 2013). The cardiovascular and neurovascular responses to 

mental stress are reproducible across laboratory sessions separated by at 

least 1 month (Fonkoue & Carter, 2015). Individuals who exhibit an 

exaggerated hemodynamic response to mental stress may be at heightened 

risk for the development of hypertension (Chida & Steptoe, 2010). Modern 

societies have mostly eliminated the need to activate the sympathetic nervous 

system to survive physical threats. However, managing acute hemodynamic 

reactivity to mental stress remains an important target in the prevention and 

treatment of cardiovascular disease.   

2.3.3 Lower Body Negative Pressure  

Homo Sapiens being upright bipeds with their brains located above their 

heart have a unique gravitational problem. A majority of our blood volume 

(70%) is located below the level of the heart (Rowell, 1993). Gravity and the 

location of the heart create the problem of venous return in upright humans. 

Fortunately, we have many solutions to the problem of being a terrestrial 

biped. A change in posture stimulates the otolithic organs initiating the 

vestibulosympathetic reflex. The vestibulosympathetic reflex can evoke 

sympathetic nerve firing to increase vascular resistance before blood 

pressure changes are detected by the baroreflex (Yates, Bolton, & Macefield, 

2014). The respiratory pump creates negative intrathoracic pressure that 

assists in venous return. Meanwhile, large leg muscles contract and move 

blood from the veins in the legs back towards the heart, known as the muscle 

pump (Rowell, 1993). The muscle pump in the legs is effective due to one-

way valves in the veins. The one-way valves in the veins prevent the backflow 
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of blood after muscle contraction displaces volume towards the heart. 

Additionally, rapid and precise control of the heart and adjustments in arterial 

vascular resistance are constantly fine-tuning perfusion pressure.  

Lower body negative pressure (LBNP) induces a shift in blood volume 

from the central circulation of the upper body to the peripheral veins of the 

lower body. When performed in the supine position LBNP does not stimulate 

the otolith organs and renders the muscle pump ineffective as no significant 

leg contractions occur. At high pressures, LBNP results in central 

hypovolemia which unloads the arterial and cardiopulmonary baroreflexes. 

The result of LBNP induced hypovolemia is dramatic cardiovascular and 

neurovascular compensation to maintain arterial pressure and cerebral 

perfusion (W. H. Cooke, K. L. Ryan, & V. A. Convertino, 2004). Without the 

assistance of the muscle pump for venous return the maintenance of 

perfusion pressure falls to the sympathetic nervous system. Sympathetic 

activation maintains perfusion pressure by facilitating the creation of 

peripheral resistance and enhancing cardiac output. The central hypovolemia 

induced by LBNP is immediately reversed upon release of pressure. This 

feature of LBNP makes it a valuable non-invasive method for investigating 

sympathetic compensation to hypovolemia and orthostatic stress. LBNP is a 

particularly useful tool for investigating physiological responses to simulated 

hemorrhage (W. H. Cooke et al., 2004).  

 

2.4 The Influence of Energy Intake on Autonomic 
Balance 

 

 The sympathetic nervous system has a fundamental role in energy 

expenditure, weight stabilization, and heat production in mammals. In rats, 
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short-term overfeeding increases norepinephrine turnover at the heart, 

indicating activation of the sympathetic nervous system (Landsberg & Young, 

1978). Dogs also exhibit significant increases in norepinephrine after 1 week 

of being overfed a high fat diet (Rocchini, Moorehead, DeRemer, & Bondie, 

1989). In humans, norepinephrine turnover in plasma increases significantly 

with elevated energy intake (O'Dea, Esler, Leonard, Stockigt, & Nestel, 1982). 

These studies demonstrate a clear evolutionarily conserved pattern in 

mammals, that acute overfeeding induces sympathetic activation. Landberg 

postulated that overeating stimulates the sympathetic nervous system in 

order to initiate thermogenesis and stabilize body weight (Landsberg, 1986) 

Unfortunately, the increase in sympathetic activity influences the vasculature 

and thus increases blood pressure. These studies laid the foundation for 

postulating that human obesity is characterized by sympathetic activation and 

increases the risk for hypertension. Increased sympathetic activity has been 

confirmed by measuring significantly elevated renal norepinephrine spillover 

and muscle sympathetic nerve activity in obese individuals (Grassi et al., 

1995; Vaz et al., 1997). However, even without overeating energy intake 

induces sympathetic activation. Sections 2.4.1 and 2.5.2 will explore how 

energy intake influences autonomic balance.  

2.4.1 Cardiovascular Responses to Food Ingestion 

The consumption of food begins a cascade of physiological processes 

essential for the maintenance of life. Almost every major biological system 

responds to the ingestion of food. Macronutrient composition (% protein, % 

fats, % carbohydrate) of a meal is a contributing factor to the physiological 

responses to food consumption, with carbohydrates having the most 

influence. This section will highlight literature in which carbohydrates 

consumed during a meal were adequate so that glucose production was not 

required liver. Due to the fact that if a meal is deficient in carbohydrates, 

insulin is still released at a greater rate than basal, causing the liver to initiate 
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gluconeogenesis to maintain blood glucose concentrations (Cahill Jr, 1978). 

Essentially, when meals are consumed with low-carbohydrates, the liver 

produces glucose as if no meal had been consumed.  

Following a meal there is an increase in energy expenditure, 

commonly referred to as the thermogenic effect of food. (K. Acheson, Jéquier, 

& Wahren, 1983; K. J. Acheson, Ravussin, Wahren, & Jéquier, 1984). This 

increase in energy expenditure is accompanied by an increase in sympathetic 

nervous system activity. Increased sympathetic nervous system activity has 

been demonstrated by postprandial rises in both systemic and local (adipose 

tissue) norepinephrine spillover (Patel, Eisenhofer, Coppack, & Miles, 1999), 

and increases in muscle sympathetic nerve activity (Berne, Fagius, & 

Niklasson, 1989; C. N. Young, Deo, Chaudhary, Thyfault, & Fadel, 2010). 

This increase in MSNA can last up to 2 hours post ingestion (C. N. Young et 

al., 2010). Meal ingestion will also cause a rise in insulin, which facilitates an 

increase in arterial baroreflex gain of MSNA (C. N. Young et al., 2010). 

Spontaneous cardiac baroreflex sensitivity  is not affected by meal ingestion 

(C. N. Young et al., 2010). After a meal,  splanchnic blood flow and cardiac 

output will increase (Høost et al., 1996). The increase in cardiac output 

compensates for the postprandial fall in total peripheral resistance resulting in 

no, or very little decrease in blood pressure (Sidery, Macdonald, Cowley, & 

Fullwood, 1991).  In general, after a meal local vasodilation occurs in 

splanchnic areas, adipose tissue, and the heart but not in other areas such as 

the limbs, skeletal muscle, and the kidney (van Baak, 2008). The sympathetic 

response to food ingestion is essential for the maintenance of arterial 

pressure, as cardiac output is shunted to visceral areas. An example of the 

importance of the sympathetic response to food ingestion can be seen in 

individuals with autonomic dysfunction and in the elderly. After a meal, elderly 

individuals and those with autonomic dysfunction can experience post-

prandial hypotension, resulting in a profound decrease in both systolic and 
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diastolic blood pressure (Jansen & Lipsitz, 1995; Robertson, Wade, & 

Robertson, 1981). Post-prandial hypotension can result in dizziness, syncope, 

and falls (Aronow & Ahn, 1997), highlighting the importance of 

sympathetically mediated cardiovascular responses to food ingestion. 

2.4.2 Hormonal Responses to Food Ingestion  

Postprandial hormonal responses are important for the initiation of 

thermogenesis, satiety, and maintenance of blood glucose concentrations. 

BMI and sex can influence some key baseline circulating hormones and their 

response to meal consumption. Obese subjects have greater increases in 

insulin and glucose when compared to normal weight subjects (Carroll, 

Kaiser, Franks, Deere, & Caffrey, 2007). Circulating levels of ghrelin are also 

lower in obese individuals. Obese individuals experience little to no change in 

ghrelin levels upon meal consumption, while lean subjects exhibit significant 

declines in circulating ghrelin after a meal (English, Ghatei, Malik, Bloom, & 

Wilding, 2002). Stress hormones such as cortisol (Stimson et al., 2014) and 

norepinephrine increase after a meal (Astrup, Simonsen, Bulow, Madsen, & 

Christensen, 1989). The importance of norepinephrine for initiating 

postprandial increases in energy expenditure and glucose uptake was 

demonstrated in a study utilizing β-adrenoreceptor blockade. After the 

blockade, postprandial increases in energy expenditure and glucose uptake 

were blunted (Astrup et al., 1989). Circulating epinephrine levels exhibited a 

significant decrease immediately after a meal (Astrup et al., 1989; Penev, 

Spiegel, Marcinkowski, & Van Cauter, 2005). There are sex specific 

differences in the hormonal responses to food ingestion. Men have greater 

baseline and postprandial glucagon and a slightly greater decline in leptin 

after a meal compared to women (Carroll et al., 2007). In men, meal 

consumption also temporarily reduces serum testosterone (Habito & Ball, 

2001). The influence of meal consumption on estradiol in women has not 

been studied. However, estradiol replacement therapy improves postprandial 
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lipid metabolism and endogenous estrogens attenuate postprandial lipemia 

(Westerveld, 1998). The cardioprotective benefits of estrogen could partially 

be due to estrogen’s beneficial influence on lipid metabolism. 

2.5 The Influence of Fasting on Autonomic Balance 

In the 1970’s Lewis Landsberg and John Young set out to investigate 

how acute fasting influenced the sympathetic nervous system in rats. Their 

initial hypothesis was that fasting would increase sympathetic activation as 

fasting initiates mobilization of fat stores and was thought to be “stressful,” 

overall. However, in an elegant study they found that after 48 hours of food 

deprivation there was a marked suppression of sympathetic activity (James B 

Young & Landsberg, 1977). They measured sympathetic activation at the 

heart using the norepinephrine turnover technique. They found that fasting 

significantly reduced norepinephrine turnover at the heart indicating reduced 

sympathetic activity. This study was repeated in 1982 and they again found 

reduced norepinephrine turnover at the heart that was associated with 

decreased blood pressure in hypertensive rats (Einhorn, Young, & Landberg, 

1982). Initially these findings were counterintuitive to the group because if 

sympathetic activity is suppressed how do fat stores get mobilized? In 

another series of studies Lewis and Landberg discovered that in the fasted 

state sympathetic activity at the heart is disassociated from sympathetic 

activity at the adrenal medulla. They reported that in fasted rats the adrenal 

medulla increases secretion of epinephrine and norepinephrine while cardiac 

sympathetic activity remains suppressed (J. B. Young, Rosa, & Landsberg, 

1984). Landsberg and Lewis’s work laid the foundation for our understanding 

of how fasting influences the autonomic nervous system. Nevertheless, 

translating this work to humans is difficult because a rat’s metabolic rate is 

much higher. Rats heart rate is on average 4 fold faster than humans and 

their metabolic rate is ~6 fold faster than humans (Agoston, 2017). The 



53 

following sections will discuss how short-term fasting affects the autonomic 

nervous system and hormonal responses to energy deprivation.  

2.5.1 Cardiovascular Responses to Short-term fasting  

Short term fasting is defined as a period of complete caloric cessation 

lasting from 12 to 72 hours. When compared to food consumption, an 

overnight fast (~12 hours) enhances parasympathetic modulation of the heart 

as suggested by a study utilizing spectral analysis of heart rate variability. The 

overnight fasting study measured no change in heart rate, decreased LF/HF 

ratio and increased HF power in the fasting group (Kuwahara, Okita, Kouda, 

& Nakamura, 2011). A follow-up study by the same group repeated the 

overnight fasting study but in women during the follicular and luteal menstrual 

phases. The primary findings were that heart rate decreased during fasting in 

both phases, HF power increased during fasting during both phases and 

salivary cortisol was decreased during the fasting luteal phase (Ohara et al., 

2015). However, a similar overnight fast vs. fed comparison done in an older 

sample population (~59±9 yrs; mean±SD) was unable to replicate the 

changes in HF power and even reported an increase in diastolic pressure 

(Rodrigues et al., 2019).  

Few studies have utilized a 24-hour fasting time point in humans. Herbert 

et al., conducted a study in 20 healthy young women who fasted for 24 hours 

in a metabolic ward. Herbert’s study in 20 women reported that fasting for 24-

hours increased heart rate and cardiac output and decreased high-frequency 

normalized units of spectral power (Herbert et al., 2012). Mazurak et al., 

studied 16 healthy women and was unable to replicate the changes in heart 

rate or heart rate variability after 24-hours of fasting. Interestingly, Mazurak 

reported a numerical but not statistically significant increase in RRI and heart 

rate variability (SDNN, RMSSD, HFnu) at 24 hours fasted. However, after 48 

hours of fasting Mazurak reported a decrease in SDNN, a time domain 
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indicator of heart rate variability. Marurak et al., included a tilt test and 

reported that after 24 & 48 hours of fasting participants exhibited greater 

vagal withdrawal when exposed to tilt. Vagal withdrawal was indicated by 

decreased RRI, SDNN, and LogHF power (Mazurak et al., 2013). Greater 

vagal withdrawal and increased heart rate responses to head-up tilt were also 

exhibited after a 72-hour fast (S. J. Brown, Bryant, Mündel, & Stannard, 

2012). It should be noted that the studies conducted by Mazurak and Herbert 

were done exclusively in women and they did not control for menstrual cycle 

or for breathing during heart rate variability measurements.  

A cornerstone study in understanding the influences of acute fasting in 

humans was conducted by Webber and Macdonald. Webber and Macdonald 

investigated the influence of fasting for 12, 36, and 72 hours on 

cardiovascular and hormonal changes in 29 (17F) individuals. The 36-hour 

and 72-hour timepoints were compared to the 12-hour fasting timepoint. The 

authors reported that fasting did not change blood pressure but increased 

heart rate at both the 36- and 72-hour timepoint. Forearm blood flow was 

significantly increased at the 36- and 72-hour time point and plasma 

epinephrine and norepinephrine increased at the 72 hours fasted (J. Webber 

& Macdonald, 1994). Webber and Macdonald repeated their fasting study and 

they again found that heart rate and forearm blood flow increased at 36 and 

72 hours fasted compared to the 12 hour fasted timepoint (J Webber et al., 

1995). It was suggested that forearm vasodilation found could potentially be 

caused by the significant increase in ketones (J Webber et al., 1995). 

However, there is an important methodological caveat to the studies 

conducted by Macdonald and Webber. Both studies compare the 36-hour and 

72-hour fasting timepoint to an overnight fast of ~12-hours. At the beginning 

of this section, it was highlighted that a 12-hour fast may enhance 

parasympathetic activity at the heart (Kuwahara et al., 2011; Ohara et al., 

2015). The studies by Macdonald and Webber report an increase in 
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sympathetic activity, measured via heart rate and blood catcholamines, as 

fasting reaches 36 and 72 hours. However, because they are comparing their 

time points to a 12 hour fast, how fasting influences autonomic activity at 12-

24 hours post caloric cessation remains equivocal.  

To date, only one study has directly measured sympathetic neural outflow 

in fasted participants. The study was conducted in 11 obese middle-aged 

women, before and after a 48 hour fast. Only 6 nerves were recorded, and 

they reported a slight but statistically significant increase in muscle 

sympathetic nerve activity (42.0±5.5 vs. 44.5±5.8 bursts/min)  (Andersson, 

Wallin, Hedner, Ahlberg, & Andersson, 1988). Counterintuitively, the authors 

also reported a reduction in systolic and diastolic blood pressure in response 

to the 48 hour fast (Andersson et al., 1988).  

In conclusion, short-term fasting influences autonomic balance and the 

cardiovascular system. While the influence of fasting on autonomic activity is 

equivocal at the early hours post caloric cessation (~12-24 hours) as fasting 

time extends a clear shift towards increased sympathetic activity occurs. This 

dissertation seeks to elucidate the influence of a 24 hour fast on autonomic 

activity.  

2.5.2 Hormonal Responses to Short-term Fasting 

Short-term fasting alters blood biomarkers and circulating hormone 

concentrations. A 24-hour water only fast that focused on blood biomarker 

expression reported that participants increased human growth hormone and 

circulating cholesterol levels in the fasted state (Horne et al., 2013). 

Additionally, participants in the fasted state exhibited increased red blood cell 

count and hemoglobin without loss in plasma volume (Horne et al., 2013). 

Leptin serum levels fall by ~50% after a 24 hour fast (Boden, Chen, Mozzoli, 

& Ryan, 1996). After 12-hours of fasting ghrelin levels increase ~31% 

(Ariyasu et al., 2001). However,  upon the cessation of food intake ghrelin 



56 

secretions take on a diurnal pattern, increasing at habitual meal times 

(Natalucci, Riedl, Gleiss, Zidek, & Frisch, 2005). Ghrelin also tends to be 

higher in females and has a strong inverse relationship to cortisol in the 

fasted state (Espelund et al., 2005). Serum insulin continuously decreases 

during the first 30 hours of fasting; meanwhile plasma glucagon continuously 

increases during 72 hours of fasting (Højlund et al., 2001). Both plasma 

epinephrine and norepinephrine concentrations fluctuate in a circadian rhythm 

during fasting. Studies have reported significant increases in plasma 

epinephrine and norepinephrine during fasting at the 24-, 48-, and 72-hour 

time points (Højlund et al., 2001; J. Webber & Macdonald, 1994). Plasma 

glucose steadily decreases until it plateaus after approximately 2 days of 

fasting (Haymond, Karl, Clarke, Pagliara, & Santiago, 1982; Højlund et al., 

2001) Concurrently, ketones (β-hydroxybutyrate) progressively increase as 

fasting time continues (Haymond et al., 1982; J. Webber & Macdonald, 1994). 

Notably, women have higher concentrations of ketones during fasting when 

compared to men (Merimee et al., 1978).  
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3 EXPERIMENTAL APPROACH 

3.1 Research Methods Common Across Aims 1-3  

3.1.1 Subject Inclusion and Exclusion Criteria  

Male and female participants between the ages of 18 and 40 years 

were invited to participate. Participants received a verbal briefing from the 

Principal Investigator or Co-Investigator, and a written description of all 

procedures and risks associated with the experiment was provided. Voluntary 

written informed consent to participate in the study was obtained. Because of 

the potential effect on vascular volume and autonomic control, participants 

were asked to refrain from exercise and stimulants such as caffeine, cold 

medications that might alter autonomic function (e.g., those containing 

diphenhydramine), and alcohol 24 hours prior to autonomic testing. Because 

of the potential influence of ovarian hormones on autonomic function (Carter 

et al., 2013; Minson et al., 2000), all female participants were tested in the 

early follicular phase of their menstrual cycles (days 3 to 8). Participants 

visited the laboratory for a familiarization session before the first day of 

experimentation, during familiarization all procedures and equipment were 

explained to them and they had the opportunity to ask questions of the 

investigators. Participants read and signed an informed consent document 

that was approved by the Committee for the Protection of Human Subjects in 

Research at Michigan Technological University. 

All Participants filled out an information sheet prior to being officially 

enrolled in the study (Appendix A.1). This information sheet was used to 

generate an alphanumerical code (e.g. AA001) that was assigned to that 

participant for the duration of the study. Thus, all electronic data files are 

unidentifiable in the unlikely event of an electronic security breach. Paper files 

containing the participant’s information are treated with strict confidentiality. 
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 Participant Inclusion: 

• Individuals between the ages of 18-40 years old  

• All women tested in early follicular phase 

• Individuals able to not eat for 24 hours 

Participant Exclusion:  

• Individuals who have been diagnosed with diabetes 

• Individuals who have a history of blood clots 

• Individuals with a history of hyperthyroidism  

• Women currently taking oral contraceptives, are pregnant or trying to 

become pregnant 

• Individuals with respiratory illnesses (e.g. asthma, chronic obstructive 

pulmonary disease, reactive airways disease, etc.) 

• Hypertensive (Systolic ≥130 mmHg and/or diastolic ≥80 mmHg) 

• Individuals with a history of tobacco or vaporized nicotine use  

 

3.1.2 Measurements  

• Actigraphy: Actigraphy was used to determine sleep/wake patterns and 

to confirm compliance to requirements. Subjects will continuously wear a 

wrist actiwatch (Respironics, Murrysville, PA) to monitor 24-hour activity 

levels (1 min epoch) on the days of monitoring. This is a safe, noninvasive 

procedure that poses no risk to the subjects. 

 

• Ambulatory Blood Pressure Monitor: The ABPM is a lightweight battery 

powered device that measures blood pressure using an arm cuff 3 times 

per hour during the day time and 2 times per hour during the programmed 

sleep time. 
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• Electrocardiogram: 3-lead ECG for identification of R-waves for time- 

and frequency domain analysis of heart rate variability.  

 

• Finger Photoplethysmography: A finger cuff housing an infrared sensor 

was placed on the middle finger and equilibrated to brachial arterial 

pressure with a servo motor (Finometer, Finapres Medical Systems, 

Arnhem, Netherlands) to record beat-by-beat arterial pressures from the 

finger. 

 

• Muscle Sympathetic Nerve Activity: Muscle sympathetic nerve activity 

(MSNA) was measured directly with a Nerve Traffic Analyzer (Model 

662C-2, University of Iowa Bioengineering, Iowa City, IA). To accomplish 

this, multifiber efferent sympathetic nerve traffic from peroneal nerve 

muscle fascicles at the popliteal fossa was recorded with tungsten 

microelectrodes (Frederick Haer and Co., Bowdoin, ME). The course of 

the nerve was mapped by stimulating the nerve through the skin with a 

pencil shaped electrode (10 - 50 v; 0.1 ms duration). Once the nerve was 

located, two sterile wire electrodes (diameter approximately 0.2 mm) were  

introduced through the skin at a depth of approximately 0.5 – 1 cm; one 

electrode served as the ground, and the other as the recording electrode 

inserted directly into the nerve. Both electrodes were connected to a 

differential preamplifier and then to an amplifier (total gain of 90,000), 

where the nerve signal was band-pass filtered (700-2000 Hz) and 

integrated (time constant 0.1 s) to obtain mean voltage neurograms. The 

recording electrode was manipulated into the region of the nerve until a 

characteristic “bursting” sound was detected. At this point minute 

adjustments were made to the electrode position until adequate 

sympathetic recordings were observed and maintained. Satisfactory 
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recordings of MSNA were defined by spontaneous, pulse-synchronous 

bursts that do not change during tactile or auditory stimulation. 

 

• Limb Plethysmography. Limb blood flow was measured from the 

forearm using venous occlusion plethysmography (D.E. Hokanson, 

Bellevue, WA, USA). A mercury-in-silastic strain gauges was placed 

around the maximal circumference of the forearm.  A wrist cuff was 

inflated to 220 mmHg to arrest circulation to the hand.  An arm cuff was 

inflated (~70mmHg) and deflated (0 mmHg) in 7-8 sec intervals (15 

sec/cycle). This technique allows for occlusion of venous blood flow, but 

still allows arterial blood flow. A strain gauges was used to measure 

diameter changes during these inflation/deflation cycles. Vascular 

resistance was calculated as mean arterial pressure divided by limb blood 

flow, and vascular conductance was calculated as the reciprocal of 

vascular resistance.  This technique is a time-honored, safe, and 

noninvasive method for estimating limb blood flow (M. J. Joyner, Dietz, & 

Shepherd, 2001).  

 

• Pneumobelt: A strain gauge was secured around the lower ribcage to 

record respiratory rate. 

 

3.1.2.1 Integrated Data Analysis  

In addition to our primary measurements of interest, a series of secondary 

integrated analysis will be performed using two or more signals   

• Spontaneous Cardiovagal Baroreflex Sensitivity: Spontaneous 

cardiovagal BRS was determined by beat-to-beat changes in R-R interval 

and systolic pressure using the sequence method (Blaber, Yamamoto, & 

Hughson, 1995). Within the time domain baroreflex was assessed by 
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identifying sequences of three or more consecutively increasing systolic 

pressures (SAP) that correspond to 3 or more consecutively lengthening 

R-R intervals (up-up sequences, vagal activation). Additionally, systolic 

pressures that exhibit 3 or more decreases and 3 or more consecutive 

shortenings of R-R intervals was identified (down-down sequences, vagal 

inhibition). Systolic pressures that changes by at least 1 mmHg per beat 

and R-R- intervals that change by at least 4 ms was identified as a 

sequence. Linear regression was used to determine the slope of the linear 

relationships between R-R intervals and SAP for each sequence.  

 

• Dynamic Baroreflex Sensitivity (Valsalva Maneuver): The Valsalva 

maneuver provokes reproducible changes in arterial pressure which 

triggers autonomic responses to expiratory strain. Phases of the Valsalva 

strain were determined by the arterial pressure waveform. The beginning 

of phase 2 was defined as the highest systolic pressure reached before 

arterial pressure begins to fall. The end of phase 2 was defined as the first 

systolic pressure that increases after the falling period. Phase IV was 

identified by the first pressure value that increases after release from the 

strain and continues until the first noticeable drop after overshoot. 

Cardiovagal BRS was determined by calculating the slope between SAP 

and R-R interval during phase II and IV of strain (Yamazaki et al., 2003).  

 

3.1.2.2 Identification of Fasting Compliance  

Fasting for 24 hours can be difficult. To assure fasting compliance, and 

also to have a means to quantify the effect of the fast as a stimulus we 

measured blood glucose, blood ketones, and lipids. The lipid profile quantified 

total cholesterol, high-density lipoprotein, low-denisity lipoproteins, 

triglycerides, and glucose using an Alera Cholestech LDX analyzer. Blood 

ketones were measured using a Precision Xtra ketone monitor. 
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Measurements were taken before each autonomic test. Ketones are 

produced 8 to 12 hours after caloric cessation to levels around 0.2 to 0.5 mM 

which is maintained through 24 hours (Cahill Jr, 1978). Fasting for 24-hours 

decreases glucose by ~8 mg/dL, and triglyerides ~50 mg/dL while increasing 

total cholesterol by ~ 9 mg/dL (Horne et al., 2013). At least one of these 

criteria was met for a fast to be considered successful.  

3.1.2.3 Standardized Meal  

A standardized lunch (Appendix A.2 & A.3) was provided as the last meal 

consumed before the fed and fasted experimental protocols. Resting 

metabolic rate calculations were estimated using the Mifflin-St. Jeor equation 

(Frankenfield, Roth-Yousey, & Compher, 2005). 

• Male: RMR = 9.99 x weight(kg) + 6.25 x height(cm) – 4.92 x age + 5 

• Female: RMR= 9.99 x weight(kg) + 6.25 x height (cm) – 4.92 x age – 

161 

The RMR estimate was then multiplied by a Harris-Benedict physical 

activity factor to estimate total daily energy needs to maintain the participants 

given weight. Caloric content of the meal was estimated to be 1/3 of total 

caloric intake needed to maintain weight. 

• Calories needed = RMR X Activity factor  

• Activity Factor = Sedentary: 1.2; Mild: 1.375; Moderate: 1.55; Heavy: 

1.725; Extreme: 1.9 

3.1.2.4 Assessment of Hydration Status  

Urine was collected before each autonomic testing session. To assess 

hydration status urine specific gravity was obtained using a PALS-10S urine 

refractometer (Atago, Tokyo, Japan).  
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3.2 Specific Aims, Experimental Protocol, and Power 
Analysis   

3.2.1 Specific Aims 

 

 

Specific Aim 1: Determine the influence of a 24-hour fast 
on hemodynamics, peripheral neural activity, and 
cardiovascular control at rest.   

Specific Aim 2: Determine the influence of a 24-hour fast 
on neural and cardiovascular responses to mental 
stress.   

 

Specific Aim 3: Determine the influence of a 24-hour fast 
on neural and cardiovascular responses to a severe 
orthostatic stress.   

 

Hypothesis Aim 1: Acute fasting will reduce blood 
pressure, muscle sympathetic nerve activity, and heart 
rate. Fasting will also enhance parasympathetic 
modulation of the heart and enhance baroreflex 
sensitivity 

Hypothesis Aim 2: Acute fasting will reduce 
cardiovascular and neural reactivity to mental stress 

Hypothesis Aim 3: Acute fasting will reduce tolerance to 
a severe orthostatic stress by reducing cardiovascular 
and neural reactivity to lower body negative pressure 
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3.2.2 Experimental Design 

This study is a randomized controlled crossover design with repeated 
measures. The two conditions are the fed condition which is defined as 3 
hours postprandial and the fasted condition which is defined as 24 hours post 
prandial. The conditions were randomized, and participants were informed 3 
days before scheduled autonomic testing which condition, they were 
assigned. For example, if they were assigned to the fed condition for the first 
autonomic test 4 weeks later, they would be fasted for the autonomic function 
test. Participants would report to the lab 24 hours before their scheduled 
autonomic test to be fitted with an actigraphy watch and ambulatory blood 
pressure cuff. The experimental protocol is summarized in figure 3. 

 
     Figure 3: Experimental Design 
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3.2.3 Power Analysis  

We used a two-tailed paired samples t-test to estimate power based on data 

from a recent publication that specifically investigated acute fasting time in 

humans using heart rate as the primary variable of interest (Ohara et al., 

2015) Using the heart rate mean and SD (Fed = 65±5 & Fasted 61±5) from 

Ohara et al., we calculated an effect size of 0.8. With an α = 0.05 and a β = 

.95 we estimated that a sample size of 23 participants would give us sufficient 

power. We tested a total of 25 participants. 
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4 RESULTS AND CONTROLS COMMON ACROSS 
AIM 1-3 

4.1 Participant Characteristics  

Twenty-five heathy young adults (14 men and 11 women) were recruited 

to participate in this study. All participants had no history of autonomic 

dysfunction, hypertension, respiratory disease, diabetes, or nicotine usage, 

and were not taking any prescription medications. Participant eligibility was 

evaluated through study orientation where they were informed of the purpose 

of the study, what would be asked of them, and the potential risks. Informed 

consent was obtained during the orientation visit.  

 

 

Baseline Participant Characteristics at Orientation 

N 25 (11F) 

Age, yrs 23±3 

Height, cm 176±16 

Weight, kg 76±16 

BMI, kg/m2 24±4 

Systolic, mmHg 110±12 

Diastolic, mmHg 67±6 

Heart Rate, BPM 71±14 

Values are mean ± SD 

Table 1: Participant Characteristics 
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4.2 Blood Biomarkers  

Blood biomarkers were collected to ensure fasting compliance and to 

ensure that a 24-hour fast was a sufficient stimulus to intiate ketone 

production. Participants were weight stable and similarly hydrated between 

conditions. Blood triglycerides and glucose were significantly decreased in the 

fasted condition compared to the fed condition. Blood ketones were 

significantly increased in the fasted condition compared to the fed condition.  

The magnitude of change in glucose, triglycerides, and ketones between the 

fed and fasted condition are similar to previously published literature 

investigating blood biomarkers after a 24 hour fast (Cahill Jr, 1978; Horne et 

al., 2013). Specific gravity was collected in 23 participants because 2 

participants could not produce a urine sample at the start of the experimental 

session.  

Blood biomarkers represented as boxplots. The line in the boxplots represents the 
median and the box represents the interquartile range (IQR; the difference between the 
25th and 75th percentile. The Whiskers extend from the upper and lower edge of the box 
to the 10th and 90th percentile values.  *p<0.05; **p<0.01; ****p<0.0001 

Figure 4: Pertinent Blood Biomarkers 
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Variable  Fed Fasted MD t-test 
p-value  

Wilcoxon 
p-value  

Weight, kg 76.3±15.4 75.6±15.2 0.7±0.6 .271  

Urine Specific 
Gravity, A.U. 
(N=23) 

1.015±.002 1.011±.002 .004±.002 .113  

Total Cholesterol, 
mg/dL  

172.4±35.2 172.7±29.1 0.3±4 .937  

Low-Density 
Lipoprotein, mg/dL  

95.6±29.9 105.5±21.5 5.8±5 .253  

High-Density 
Lipoprotein, mg/dL 

58.8±18.9 56.2±20.3 2.4±1.6 .151  

Triglycerides, 
mg/dL 

120.8±61.6 77.2±37.9**   .003 

Glucose, mg/dL  98.8±11.7 80.9±8.0** 18±2.6 <.001  

Ketones, mmol/L                          
(β-hydroxybutyrate) 

.128±.13 .536±.49**   <.001 

Values are mean ± SD. Paired t-tests were used to compare variables between the 
fed and fasted condition. Wilcoxon matched-pairs signed rank test used to compare 
variables not normally distributed. MD = mean difference between the fed and fasted 
condition Two-tailed p-values are displayed. (*) = p ≤ 0.05 (**) = p ≤ 0.01  

 

4.3 Actigraphy  

 Participants wore Actiwatch Spectrum PRO watches for the 24 hours 

leading up to the autonomic testing session. Inclusion of actigraphy was 

primarily to ensure that participants were able to sleep while fasting and to 

Table 2: Blood Biomarkers 
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properly calibrate the ambulatory blood pressure data points to the wake and 

sleep times. Actigraphy was successfully collected in 22 participants. 3 

Participants had unsuccessful readings during one of the conditions. 2 

Participants removed the watch and forgot to replace it in a timely manner 

and 1 participant experienced equipment failure.  Participants in the fasted 

condition experienced more awakenings, spent more time in bed and got an 

extra hour of sleep on average when compared to the fed condition. However, 

minutes active, wake after sleep onset (WASO) and sleep efficiency were not 

different between the conditions.  

 

Variable  Fed Fasted MD t-test 
p-value  

Time in Bed, hours 7.7±1.7 8.9±1.9** 1.3±0.4 .005 

Total Sleep Time, 
hours 

6.6±1.5 7.6±1.6* 1.1±0.4 .011 

Sleep Efficiency, % 84.7±6.7 85.4±4.4 0.7±1.3 .610 

Sleep Latency, min 15.3±18.1 22.0±17.8 8.6±5.6 .140 

Awakenings, # 30±12.0 35.8±14.3* 5.5±2.5 .037 

WASO, # 35.2±15.8 37.9±17.9 1.7±3.7 .644 

Activity Minutes 612.3±234.6 588.19±361.7 19.6±60.7 .750 

Values are mean ± SD. Paired t-tests were used to compare variables 
between the fed and fasted condition. MD = mean difference between the fed 

and fasted condition Two-tailed p-values are displayed. (*) = p ≤ 0.05 (**) = p 
≤ 0.01 

 

Table 3: Actigraphy Data 
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5 THE INFLUENCE OF AN ACUTE FAST ON 24-HOUR 
AMBULUATORY BLOOD PRESSURE 

5.1 Introduction 

Cardiovascular disease remains the leading cause of death in the 

United States. Hypertension (SAP ≥130 mmHg or DAP ≥80 mmHg) is 

associated with an increased risk of ischemic heart disease and cardiac 

failure (Wilson, 1997). Hypertension is a treatable risk factor, that when 

controlled can mitigate the risk cardiovascular disease. Physicians have a 

variety of pharmaceuticals at their disposal that do assist in the management 

of hypertension and reduce the risk of cardiovascular disease (Glynn, 

Murphy, Smith, Schroeder, & Fahey, 2010). However, observational studies 

have reported that almost half of hypertensive patients taking medications do 

not meet their target blood pressure (Reid et al., 2008). Therefore, despite 

pharmaceutical treatment hypertension remains a major public health concern 

and risk for cardiovascular disease. It is important to understand which 

components of blood pressure influence risk.  

The Framingham Heart Study contributed significantly to our 

understanding of the relationship between blood pressure and heart disease. 

Specifically, the Framingham Heart study was able to distinguish the 

contribution of systolic versus diastolic blood pressure to risk of coronary 

heart disease (CHD). The study reported that in those under the age of 45 

diastolic was the dominant predictor of CHD risk. However, as people age 

systolic blood pressure becomes the more reliable predictor (Kannel, Gordon, 

& Schwartz, 1971). Later, pulse pressure was also identified as an important 

component of risk of CHD (Franklin, Khan, Wong, Larson, & Levy, 1999). 

Pulse pressure is the difference between systolic pressure and diastolic and 

correlates with arterial stiffness (Mitchell et al., 2010). 
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Lifestyle interventions such as diet and exercise are well known to assist 

in reducing blood pressure (Bruno, Amaradio, Pricoco, Marino, & Bruno, 

2018) Recently, it has been reported that chronic intermittent fasting can 

potentially lower both systolic and diastolic blood pressure (Malinowski et al., 

2019). However, how fasting influences blood pressure acutely is unknown. 

Therefore, the purpose of this study was to determine how fasting for 24 

hours influences 24-hour ambulatory blood pressure. Specifically, we will test 

the hypothesis that acute fasting lowers systolic, diastolic, and pulse pressure 

compared to normal eating.  

5.2 Methods 

5.2.1 Data Collection 

24-hour ambulatory blood pressure monitor (ABPM) data were collected 

twice once in the fed state (3-hours post prandial) and once in the fasted state 

(24-hours postprandial) separated by 4 weeks. Sampling frequency was set 

to collect brachial blood pressures every 20 min between 0700 and 2200 

hours and every 30 min from 2200 to 0700 hours. Participants were instructed 

to immobilize their arm upon cuff inflation and to only remove the cuff for 

showering. Participants wore the cuff for a continuous 24-hour period. 

Daytime and nighttime blood pressure values were defined by the actigraphy 

watch. Participant characteristics and actigraphy data can be found in chapter 

4.  

5.2.2 Data Analysis  

To be included in this data set a minimum of 20 daytime measurements 

and a minimum of 7 nighttime measurements were needed for each 

condition. 20 participants were included in this data set. Two participants 

were eliminated for device failure and 3 participants were eliminated for not 

meeting the minimum requirement for successful readings for both conditions. 

Daytime and nighttime blood pressure values were adjusted to reflect 
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actigraphy wake time, sleep time, and sleep latency. Fed vs. fasted conditions 

were compared using a paired t-test. Normality was assessed using a 

Shapiro-Wilk test. If data were found to be not normally distributed a Wilcoxon 

matched pairs signed rank test was used to assess dependent variables. 

Two-tailed p-value <0.05 was considered statistically significant for all tests. 

The table below shows quality and quantity of ABPM readings per condition.  

 

  Fed Fasted 

Reading Success, % 74±12 78±13 

Average Wake Recordings, # 32±7 34±8 

Average Sleep Recordings, # 13±3 15±5 

Total Brachial Recordings, # 902 970 

Data presented are mean ± SD 

5.3 Results 

5.3.1 Overall Blood Pressure  

Fasting significantly reduced overall systolic and mean arterial 

pressure when compared to the fed condition. In total 902 brachial blood 

pressures were averaged from the fed condition and 970 brachial blood 

pressures were averaged from the fasted condition. Heart rate was also 

significantly reduced during the fasted state. However, heart rate was 

estimated from the blood pressure cuff and not an ECG. Overall pulse 

pressure and diastolic blood pressure were not statistically different between 

the two conditions but tended to decrease.  

Table 4: Ambulatory Blood Pressure Data Quality 
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Variable  Fed Fasted MD t-test 
p-value  

Overall SAP 110±1.7 108±1.5* 2.2±1 .045 

Overall DAP 64±1.3 63±1.3 1.6±1 .074 

Overall MAP 81±1.2 78±1.2* 2.1±1 .039 

Overall Pulse Pressure 47±1.4 46±1.2 1±0.5 .106 

Overall Heart Rate 69±1.9 65±2.2** 3.9±1 .003 

Values are mean ± SE. Paired t-tests were used to compare variables between the 
fed and fasted condition. MD = mean difference between the fed and fasted 
condition Two-tailed p-values are displayed. (*) = p ≤ 0.05 (**) = p ≤ 0.01 

 

Overall Systolic (SAP) and mean arterial pressure (MAP) represented as boxplots. The 
line in the boxplots represents the median and the box represents the interquartile range 
(IQR; the difference between the 25th and 75th percentile). The whiskers extend from the 
upper and lower edge of the box to the highest and lowest values.  *p<0.05 

Table 5: Overall Ambulatory Blood Pressure Data 

Figure 5: Overall Ambulatory Systolic and Mean Blood Pressure 
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5.3.2 Wake Blood Pressure  

Wake blood pressure readings were verified via actigraphy watch. 

Fasting significantly reduced wake systolic blood pressure and wake heart 

rate. Diastolic and mean arterial pressure were similar between conditions. 

 

 

 

 

 

 

Wake Systolic (SAP) and heart rate (MAP) represented as boxplots. The line in the 
boxplots represents the median and the box represents the interquartile range (IQR; the 
difference between the 25th and 75th percentile). The whiskers extend from the upper and 
lower edge of the box to the highest and lowest values.  *p<0.05; ***p<.0001 

Figure 6: Wake Ambulatory Systolic and Heart Rate 
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Variable  Fed Fasted MD t-test  
p-value  

Wilcoxon 
p-value 

Wake SAP 115±2.0 113±1.8*   .018 

Wake DAP 69±1.5 68±1.6 1.5±1 .270  

Wake MAP 85±1.5 83±1.5* 1.7±1 .145  

Wake Pulse 
Pressure 

46±1.3 43±2.1   .371 

Wake Heart Rate 74±2.0 68±2.4** 5.4±1 <.001  

Values are mean ± SE. Paired t-tests were used to compare variables between the fed and 
fasted condition. Wilcoxin matched-pairs signed rank test was used to test variables not 
normally distributed. MD = mean difference between the fed and fasted condition Two-
tailed p-values are displayed. (*) = p ≤ 0.05 (**) = p ≤ 0.01 

 

 

 

 

 

 

 

 

 

Table 6: Wake Ambulatory Blood Pressure Data 
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5.3.3 Sleep Blood Pressure  

Fasting did not affect nighttime blood pressure values or nighttime 

dipping patterns.  

 

Variable  Fed Fasted MD p-value  

Sleep SAP, mmHg 100±1.5 99±1.2 1±1.4 .550 

SAP Dip, % 13±1.4 12±1.1 0.4±1.1 .737 

Sleep DAP, mmHg 54±1.2 53±1.0 1±1.1 .346 

DAP Dip, % 21±1.5 20±1.5 0.8±2 .704 

Sleep MAP 72±1.1 70±1.0 2±1.2 .163 

MAP Dip, % 15±1.3 16±1.2 0.7±1.6 .669 

Sleep Pulse Pressure 46±1.2 45±0.9 0.3±1 .822 

Sleep Heart Rate 59±1.9 57±2.3 2±1.4 .271 

Values are mean ± SE. Paired t-tests were used to compare variables between the fed and 
fasted condition. MD = mean difference between the fed and fasted condition Two-tailed p-
values are displayed. (*) = p ≤ 0.05 (**) = p ≤ 0.01 

 

5.4 Discussion 

In young healthy normotensive individuals, acute fasting reduces overall 

24-hour ambulatory blood pressure and heart rate. Additionally, fasting tends 

to reduce wake pulse pressure. Blood pressure is a functional product of 

cardiac output and peripheral resistance. Heart rate was significantly reduced 

while fasting, suggesting that decreased cardiac output may potentially be 

causing the measured reduction in blood pressure. The mechanism behind 

this reduction in blood pressure warrants further exploration. 

Table 7: Sleep Ambulatory Blood Pressure Data 
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The reductions in arterial pressure we measured are mild and acute (Δ2 

mmHg SAP, Δ3 mmHg MAP). However, reductions in arterial pressure 

associated with fasting are similar in magnitude to the 24-hour post exercise 

hypotension measured after a single bout of resistance exercise (Δ1.7 mmHg 

SAP) (Casonatto, Goessler, Cornelissen, Cardoso, & Polito, 2020). Fasting 

may be an alternative for those who still want the acute hypotensive effects of 

exercise but are unable to make it to the gym. In a majority of individuals 

seeking to lower their blood pressure, reducing systolic blood pressure is 

particularly difficult (Chobanian et al., 2003). Thus, it is important to recognize 

that acute fasting primarily reduces the systolic component of blood pressure. 

Controlling systolic blood pressure is the most crucial component when 

assessing risk of future cardiovascular disease (Kannel et al., 1971).  

Chronic intermittent fasting regimens of 8 to 12 weeks have been 

reported to reduce blood pressure (Malinowski et al., 2019). Our study is the 

first to report the acute hypotensive effects of fasting over a 24-hour period. 

Recently, a study demonstrated that medically supervised fasting lasting 4 to 

41 days (average 10 days) can significantly reduce blood pressure (Grundler, 

Mesnage, Michalsen, & Toledo, 2020). However, fasting for multiple days is 

difficult and can interfere with individuals’ day-to-day lives. Crucially, 

normotensive individuals in the study only exhibited a blood pressure 

reduction of 3 mmHg systolic and 1.9 mmHg diastolic, suggesting that there 

may be a floor effect to reductions of blood pressure seen during fasting in 

normotensive individuals. However, a 24 hour fast does appear to be 

sufficient to elicit beneficial blood pressure reductions.  

In conclusion, an acute 24-hour fast reduces blood pressure and heart 

rate in young, healthy, normotensive individuals. Fasting does not influence 

blood pressure dipping or sleep blood pressure. Acute fasting may be a 
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useful non-pharmacological intervention for those seeking to reduce their 

blood pressure.  
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6 THE INFLUENCE OF AN ACUTE FAST ON NEURAL 
AND CARDIOVASCULAR CONTROL AT REST 

6.1 Introduction  

The autonomic nervous system plays a key role in the regulation of 

blood pressure and is a primary contributor to cardiovascular homeostasis in 

humans. Chronic intermittent fasting has been reported to improve multiple 

indicators of cardiovascular health. Intermittent fasting reduces systemic 

inflammation, oxidative stress, blood pressure, and resting heart rate (de 

Cabo & Mattson, 2019). Additionally, routine periodic fasting (1 day per 

month) has been associated with lower prevalence of coronary artery disease 

(Horne et al., 2008). However, few studies have investigated how fasting 

influences the autonomic nervous system and thus the mechanisms behind 

the beneficial cardiovascular outcomes reported from intermittent fasting are 

unknown.  

  An overwhelming majority of studies investigating the influence of 

fasting on autonomic control have used spectral analysis of heart rate 

variability. Short 12 hour fasts increase vagal activity (Kuwahara et al., 2011; 

Ohara et al., 2015)  and longer periods of food deprivation ≥24 hours 

decrease vagal modulation of the heart (S. J. Brown et al., 2012; Mazurak et 

al., 2013).  The only study that has utilized muscle sympathetic nerve activity 

to date is from Andersson et al., who measured MSNA after a 48-hour fast. 

While the study reported a slight increase in sympathetic nerve activity, the 

sample population were obese women, aged 46-62, and MSNA was only 

recorded in 6 participants (Andersson et al., 1988). How a 24-hour fast 

influences peripheral neural activity in young, healthy individuals remains 

unknown. Multiple studies have demonstrated that 48-hours of fasting 

reduces arterial pressure in lean and obese populations (Andersson et al., 

1988; Solianik, Sujeta, Terentjeviene, & Skurvydas, 2016). However, the 

mechanism behind the observed reductions in blood pressure are unknown. 
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Additionally, 48-hours of complete caloric cessation is not typical for 

intermittent fasting that typically utilize 18-24-hour caloric cessation time 

periods (Anton et al., 2018; de Cabo & Mattson, 2019; Varady & Hellerstein, 

2007).  

The purpose of this aim is to assess how 24-hours of fasting influences 

hemodynamics, peripheral efferent nerve traffic, and cardiovascular control at 

rest. To assess how fasting influences the arterial baroreflex, secondary 

analyses will be conducted on spontaneous cardiovagal baroreflex sensitivity. 

Additionally, dynamic baroreflex responses will be assessed by correlating 

changes in arterial pressure and R-R interval during the Valsalva maneuver.  

6.2 Methods  

6.2.1 Experimental Design 

After blood and urine samples were collected participants laid supine on 

a laboratory table. The participants were then instrumented with an ECG, 

finger photoplethysmography, microneurography, venous occlusion 

plethysmography and a pneumobelt. After stable hemodynamic and 

microneurographic signals were established, participants were asked to 

breath in time to a computer display set at 15 breaths per minute (0.25 Hz) for 

10 minutes (figure below). After the 10 minutes of controlled breathing, 

participants were asked to perform 3 Valsalva maneuvers. During each 

Valsalva maneuver participants forcefully exhaled to 40 mmHg for 15 

seconds into a modified pressure manometer. Each of the 3 Valsalva 

maneuvers was separated by a 1-min recovery with normal uncontrolled 

breathing. A nose clip was used to seal the nose and a small leak was 

allowed in the manometer to keep the glottis open during each strain.  
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6.2.2 Data Analysis  

Data were sampled at 500 Hz (WINDAQ, Dataq Instruments, Akron OH) 

and analyzed with specialized software (WINCPRS, Absolute Aliens, Turku 

Finland). R-waves measured from the ECG were automatically detected, 

visually inspected, and marked. Systolic and diastolic blood pressures were 

marked from the Finometer tracings. Muscle sympathetic nerve burst were 

automatically detected and manually verified based on their amplitude and a 

1.3 second expected burst peak latency from the previous R-wave. Data were 

averaged from the last 8 minutes of the 10 min controlled breathing time.  

Heart rate variability was assessed in the frequency domain from R-R 

interval spectral power. To obtain power spectrums, the last 8-minutes of 

controlled breathing were fast Fourier transformed with a Hanning window. 

The high frequency (0.15-0.40 Hz) and low frequency (0.04-0.15 Hz) 

components were then normalized to total power (ex. HF/Total power). Using 

the arterial pressure waveform as an input stroke volume was automatically 

estimated on a beat-to-beat basis using the pulse contour method (Jansen & 

Lipsitz, 1995). Forearm blood flow was measured using the limb occlusion 

plethysmography method described in section 3.1.1.2. 

Spontaneous cardiovagal baroreflex was calculated using the method 

explained in section 3.1.1.3. To calculate dynamic baroreflex sensitivity to the 

Valsalva maneuver the slope method was utilized. Dynamic baroreflex 

sensitivity was determined by the linear relationship of SAP and RRI during 

the hypotensive phase II and hypertensive phase IV of the Valsalva 

maneuver. To be considered a valid sequence, correlation coefficients were 

set at >0.70, and only Valsalva maneuvers that demonstrated morphological 

and temporal consistency were included in the analysis. Additionally, a 

minimum reduction of 15 mmHg during phase II was required for inclusion. 
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6.2.3 Statistical Analysis  

All data were analyzed statistically using the commercial software 

Sigmaplot 14.0 and Prism GraghPad. Dependent variables of interest were 

assessed using a paired t-test. Normality was assessed using a Shapiro-Wilk 

test. If the data failed the Shapiro-Wilk normality test a non-parametric 

Wilcoxon signed-rank test was used to assess the dependent variables. 

6.3 Results  

6.3.1 Influence of Fasting on Vagal Modulation and 
Hemodynamics 

Fasting increased R-R interval and heart rate variability measured via spectral 

analysis. The increase in R-R interval paired with the increase in high 

frequency power suggests that fasting enhances cardiac vagal tone. A 

representative power spectral density is shown for a subject in the fed and 

fasted condition is displayed in figure 7. The fasted condition demonstrates a 

Raw spectral power density for one subject during controlled breathing at 
0.25 Hz in both the fed (top) and fasted (bottom) condition) 

Figure 7: Spectral Power Fed vs. Fasted Representative Subject 
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quiescence of spectral power in the low frequency range (0.04-0.15Hz) and 

an obvious increase in power in the high frequency range (0.15-0.40 Hz). 

Blood pressure was similar during controlled breathing between conditions. 

Stroke volume and forearm vascular resistance significantly increased in the 

fasted condition compared to the fed condition. Muscle sympathetic burst 

frequency and burst incidence did not change between the fed and fasted 

conditions (N=13; 3F) as shown in Table 8.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Forearm Vascular Resistance and Stroke Volume 

Forearm Vascular Resistance (FVR) represented as individual data points and connecting 
lines. Stroke volume (MAP) represented as mean with standard error.  *p<0.05 
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6.3.2 Influence of Fasting on Spontaneous and Dynamic 
Cardiovagal Baroreflex Sensitivity  

Spontaneous cardiovagal baroreflex sensitivity was enhanced in the 

fasted condition. Specifically, cvBRS up-up sequences were significantly 

increased and cvBRS down-down sequences exhibited a strong trend to 

Variable  Fed Fasted MD t-test  
p-value  

R-R Interval, ms 992±30 1059±37* 67±32 .024 

SAP, mmHg 107±2.5 107±2.2 0.1±2.5 .481 

DAP, mmHg 57±1.9 58±2.0 0.3±1.8 .431 

Burst Frequency, b/min  16±3.1 15±2.2 1.6±1.7 .180 

Burst Incidence, b/100hb 23±4.4 26±3.8 0.4±2.2 .426 

RRI HFnu, A.U. 54.5±2.6 61.8±3.2* .07±.04 .022 

RRI LFnu, A.U.  45.5±2.6 38.2±3.2* .07±.04 .022 

Stroke Volume, mL 88±4.0 100±5.4* 13.7±6 .017 

Forearm Blood Flow,     
ml*100ml-1*min-1 

2.4±.19 2.2±.22 0.2±0.2 .143 

Forearm Vascular 
Resistance, 
mmHg*100mL*min*mL-1 

36.9±3.6 46.2±5.9* 9.4±4.3 .019 

Values are mean ± SE. Paired t-tests were used to compare variables between the fed and 
fasted condition. MD = mean difference between the fed and fasted condition one-tailed p-
values are displayed. (*) = p ≤ 0.05 (**) = p ≤ 0.01 

Table 8: Fed vs. Fasted Controlled Breathing Data 
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increase in the fasted condition. An example of the Valsalva maneuver 

phases is depicted in figure 8. Enhanced cardiovagal baroreflex sensitivity 

was also measured during Phase IV, or the hypertensive component of the 

Valsalva maneuver. Increases in RRI were also augmented during the Phase 

IV overshoot in the fasted condition compared to the fed condition. Twenty-

two participants were included in the Valsalva analysis. Three participants 

were excluded because they had no SAP-RRI correlations above .70. 

Average SAP-RRI correlation coefficients for included participants were 0.88 

for Phase II and 0.81 for Phase IV. 

 

 

 

 

 

 

 

 

 

Figure 9: Influence of Fasting on Baroreflex Sensitivity 

Cardiovagal Baroreflex sensitivity up-up (cvBRS up-up) represented as individual data 
points and bar graph (mean ± SE). Valsalva phase IV SAP-RRI (VM Phase IV) slope 
represented as individual data points and bar graph (mean ± SE)   *p<0.05;  
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II IV 

Figure 10: Representative Valsalva Response for One Subject 
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Variable  Fed Fasted MD t-test  
p-value  

Wilcoxon 
p-value  

SP cvBRS up-
up,      
ms/mmHg 

20±2.3 26±4.8*   .029 

SP cvBRS 
down-down,    
ms/mmHg 

17±1.6 21±2.4   .076 

VM cvBRS 
Phase II, 
ms/mmHg 

11±1 12±1.4   .474 

VM cvBRS 
Phase IV, 
ms/mmHg 

9±1.0 12±1.2** 2.2±0.9 .010  

ΔRRI Phase IV, 
ms 

414±42.2 484±40.6* 69.7±33.9 .026  

Values are mean ± SE. Paired t-tests were used to compare variables between the fed and 
fasted condition. SP = Spontaneous VM = Valsalva Maneuver. MD = mean difference 
between the fed and fasted condition. One-tailed p-values are displayed. (*) = p ≤ 0.05 (**) 
= p ≤ 0.01 

 

6.4 Discussion  

We tested young, healthy, normotensive individuals twice, once 24-

hours postprandial (fasted) and 3-hours postprandial (Fed) separated by a 

month. Our purpose was to determine how acute fasting influences 

cardiovascular control mechanisms, hemodynamics, and peripheral 

sympathetic activity. We report three novel findings. First, acute fasting 

increases vagal modulation at the heart without altering peripheral 

sympathetic outflow. Second, fasting enhances cardiovagal baroreflex 

Table 9: Influence of Fasting on Baroreflex Sensitivity 
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sensitivity measured both spontaneously and when baroreceptors are 

challenged with a naturally induced hypertensive stimulus. Third, forearm 

vascular resistance and stroke volume were increased in the fasted state.  

Previous studies have reported mixed results on the influence of acute 

fasting on cardiovagal activity. Herbert et al., reported that 24 hours of fasting 

reduced the high frequency component of HRV but did not report an increase 

in heart rate that would be expected with reduced vagal activity at the heart 

(Herbert et al., 2012; Mazurak et al., 2013). Mazurak et al., reported that after 

24 hours of fasting participants tended to demonstrate increases in HRV and 

RRI that abated after 48 hours of fasting (Mazurak et al., 2013). However, 

both these studies were done soley in women and only reported heart rate 

varibility and not cardiovagal baroreflex sensitivity. In contrast, our study 

provides the following evidence to suggest that acute fasting enhances vagal 

modulation of the heart. 1) fasting increases R-R interval; 2) concomitanly, 

HFnu is significantly increased and LFnu is decreased; 3) spontanoeous and 

dynamic cardiovagal baroreflex sensitvity is increased indicating enhanced 

reflexive vagal activation. Additonally, the enhanced cardiovagal baroreflex 

sensitvity provides a potenital explanatory mechanism for the overall 

reduction in ambulatory blood pressure recorded while particpants were 

fasting (chapter 5). Increased cardiovagal baroreflex sensitvity and enhanced 

dampening of increases in blood pressure, as measured during the Valsalva, 

could effectivly lower average 24-hour arterial pressure. Additonally, 

increased RRI indicates a reduction in heart rate in agreeance with the 

reduction in 24-hour heart rate measured from the ABPM monitor (chapter 5). 

This evidence supports the hypothesis that fasting increases parasympathetic 

activity at the heart.  

We did not observe a change in peripheral sympathetic outflow between 

the fed and fasting condition. At first a lack of change in sympathetic outflow 
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is counter-intuitive as previous studies have suggested that MSNA and 

cardiac sympathetic markers of HRV change inparallel in response to 

autonomic challeneges (DeBeck, Petersen, Jones, & Stickland, 2010; Pagani 

et al., 1997) Additonally, MSNA correlates strongly with cardiac 

norepinephrine spillover at rest (B.G. Wallin et al., 1992). However, previous 

animal studies have reported that fasting induces a disassociation between 

symapthetic actvitiy at the heart and sympahetic stimulation of the adrenal 

medulla (J. B. Young et al., 1984). Therefore, it is resonable to speculate that 

in the fasted state, parasympathetically mediated cardiovascular control is 

enhanced and peripheral sympathetic outflow is unaffected and/or 

disassociated from cardiovascular oscilations.  

   Lastly, fasting reduces overall 24-hour blood pressure (Chapter 5) but 

a reduction in blood pressure was not observed acutly during the autonomic 

function test. Blood pressure between the conditions was similar during the 

autonomic test despite a measured reduction in heart rate in the fasted 

condition. Two separate measures explain how blood pressure is maintained 

in the fasted condition even with reduction in heart rate and no change in 

MSNA; 1) forearm vascular resistance is increased in the fasted condition; 

and 2) stroke volume is increased in the fasted condition. This study does not 

have a measured mechanism to explain the descriptive increases in vascular 

resistance or stroke volume. However, previous studies have measured that 

after 24 hours of fasting urine norepineprine increases (Chan, Mietus, Raciti, 

Goldberger, & Mantzoros, 2007) and as fasting time prolongs (48-72 hours) 

blood epinephrine, norepineprine, and cortisol increase (Boyle, Shah, & 

Cryer, 1989). We did not measure blood catecholamines but it is possible that 

after 24-hours of fasting circulating epinephrine and norepinephrine were 

elevated increasing peripheral vascular resistance and cardiac inotropy.  
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In conclusion, acute fasting increases vagal modulation of the heart and 

enhances cardiovagal baroreflex sensitivity. Increased baroreflex sensitivity 

and vagal modulation of the heart suggest that fasting may convey acute 

cardioprotective benefits. Additonally, enhanced baroerflex sensitivty 

potentially explains the reductions in 24-hour blood pressure reported in 

chapter 5. Heart rate was reduced in the fasted condition but blood pressure 

was similar during the autonomic test between conditions. The reduction in 

heart rate seems to have been compenstated by increased peripheral 

resistance and stroke volume. However, the creation of peripheral resistance 

is not from increased peripheral sympahetic activation and is beyond the 

scope of this study to discuss. Collectivly, the AMPB data from chapter 5 and 

these data support the idea that acute fasting may be an effective dietary 

intervention for lowering blood pressure and improving cardiovascular health. 

Nevertheless, future chronic studies are warrarented to eclucidate whether 

the cardiovascular benefits of fasting are sustained in the long term.  
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7 THE INFLUENCE OF AN ACUTE FAST ON NEURAL AND 
CARDIOVASCULAR REACTIVITY TO MENTAL STRESS 

7.1 Introduction  

Mental stress is associated with the development of myocardial 

ischemia and hypertension (Deanfield et al., 1984; Yan et al., 2003). There is 

evidence suggesting that short-term fasting can alter adrenocortical 

responses to a mental stressor (Kirschbaum et al., 1997). Short-term fasting 

(8-10 hours) can blunt cortisol release following a mental stressor in healthy 

young men (Kirschbaum et al., 1997). Additionally, short-term fasting (12 

hours) influences splanchnic vascular responses to a mental stress (mental 

arithmetic). Performing a mental task while fasted induces vasoconstriction in 

the superior mesenteric artery, a response not exhibited under post-prandial 

conditions (Someya, Endo, Fukuba, Hirooka, & Hayashi, 2010). 

Vasoconstriction of the superior mesenteric artery suggests fasting alters 

vascular responses to mental stress to visceral organs and thus could 

modulate cardiac output and arterial pressure. A common experimental 

mental stressor is mental arithmetic. During mental arithmetic participants 

repeatedly subtract the number six or seven from a two- or three-digit 

number. This type of mental stress produces reproducible reactivity in mean 

arterial pressure, heart rate, and muscle sympathetic nerve activity across 

laboratory sessions (Fonkoue & Carter, 2015). The purpose of this aim is to 

investigate if fasting influences neural and vascular responsiveness to mental 

stress. We tested the hypothesis that fasting will reduce the cardiovascular 

and neural reactivity to mental stress. 

7.2 Methods  

7.2.1 Experimental Design  

After the controlled breathing protocol three brachial blood pressures 

were taken and the NOVA Finometer was recalibrated to the averaged 

brachial pressure. Participants were then asked to rest quietly for 5 minutes, 
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and a second baseline was recorded.  After the 5-minute baseline participants 

performed 5 minutes of mental stress via mental arithmetic. The mental 

arithmetic involved continuous and rapid subtraction of the number 6 or 7 

from a two- or three-digit number. Participants were encouraged by 

investigators to answer as quickly and as accurately as possible. Participants 

answered verbally and were corrected if they answered incorrectly. ECG, 

beat-to-beat blood pressure, muscle sympathetic nerve activity, and forearm 

blood flow were recorded at rest and during the mental stress task. After the 

mental stress task participants were asked to rate their perceived stress using 

a five-point scale. 0, not stressful; 1 somewhat stressful; 2, stressful; 3, very 

stressful; and 4, very, very stressful.  

7.2.2 Data Analysis  

All data were analyzed statistically using the commercial software 

Sigmaplot 14. The stress reactivity was calculated as the mean stress 

response to each min of mental stress minus the 5-min mean baseline. The 

minute-by-minute reactivity to mental stress was analyzed using a 2-way 

repeated measures ANOVA (Condition X Time). Data are presented as 

means ± SE. A probability value of ≤ 0.05 was considered statistically 

significant.  

7.3 Results  

7.3.1 Cardiovascular Reactivity to Mental Stress 

During mental stress minute by minute changes (Δ) in HR, SAP, DAP, 

and MAP were remarkably comparable between fed and fasted condition. No 

condition by time effect was detected for any of the primary outcome 

variables. Additionally, perceived stress during mental arithmetic was similar 

between the fed and fasted condition (Fed vs. Fasted; 2.2±0.2 vs 2.3±0.2; 
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p=.737). Additionally, forearm blood flow and forearm vascular resistance was 

not altered between condition (N=14). 

 

 

 

 

Figure 11: Mean Arterial Pressure and Heart Rate Responses to Mental Stress 

Line graphs are minute by minute mean changes (Δ) in heart rate (HR) and mean arterial 
pressure (MAP). Bar graphs display mean ± SE changes in HR and MAP during 5 min of 
mental stress for both the fed and fasted condition. 
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Figure 12: Forearm Blood Flow Responses to Mental Stress 

7.3.2 Neural Reactivity to Mental Stress 

 Burst frequency and MSNA total activity did not change between 

conditions at baseline or upon exposure to mental stress (N=12). 

Figure 13: Muscle Sympathetic Activity Responses to Mental Stress 

 

 

 

 

 

 

Bar graphs display percentage changes (Δ) form baseline in forearm blood flow (FBF) 
and forearm vascular resistance (FVR) during 5 min of mental stress for both the fed and 
fasted condition.  

Bar graphs display changes (Δ) form baseline in burst frequency and MSNA total Activity 
during 5 min of mental stress for both the fed and fasted condition.  
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7.4 Discussion  

This study is the first to investigate the influence of fasting on neural and 

cardiovascular reactivity to mental stress. In contrast to our hypothesis, 

fasting did not reduce neural or cardiovascular responses to a mental stress 

challenge. Changes in heart rate, blood pressure, forearm blood flow, and 

muscle sympathetic nerve activity were remarkably similar during a mental 

stress challenge between the fed and fasted condition, suggesting that the 

pressor response to mental stress and mechanisms that drive it are 

unaffected by a short-term negative energy balance.  

Short-term fasting has been reported to increase irritability and 

psychological stress for some individuals (Watkins & Serpell, 2016). Our 

study demonstrates that fasting does not appear to act as a compounding 

stressor and does not increase the severity of the pressor response upon 

exposure to a mental stress. This is important to consider as greater 

cardiovascular responses to mental stress are associated with greater 

cardiovascular risk (Chida & Steptoe, 2010). Perceived stress measured after 

the mental stress task did not differ between the fed and fasted condition. 

Callister et al., reported that during a cognitive challenge perceived stress is 

an important determinant of the MSNA response (Callister, Suwarno, & Seals, 

1992). Thus, the consistency in perceived stress between conditions could 

potentially influence the observed similarities in MSNA reactivity. However, 

more recent studies by Carter et al., have not found an association between 

perceived stress and MSNA reactivity (Carter, Durocher, & Kern, 2008; Carter 

& Ray, 2009).  

 Reactivity to mental stress is highly reproducible. MAP, HR, and MSNA 

reactivity to mental stress are reproducible within a study and across 

laboratory visits (Fonkoue & Carter, 2015) In addition, altering neural and 
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cardiovascular responses to mental stress within an individual is difficult. 

Aerobic exercise training for 8-weeks and even a 12-week weight loss 

program (5% loss of weight) do not alter neural or hemodynamic reactivity to 

mental stress (Ray & Carter, 2010; Torres & Nowson, 2007). A study in obese 

women found that weight loss acquired through the combination of diet and 

exercise reduces MSNA reactivity to mental stress (Tonacio et al., 2006). 

Even total sleep deprivation does not alter blood pressure of MSNA reactivity 

to mental stress, although sleep deprivation does increase heart rate 

reactivity (Yang, Durocher, Larson, Dellavalla, & Carter, 2012). Our measured 

cardiovascular and neural reactivity to mental stress are similar to other 

studies that have utilized mental arithmetic (Carter & Goldstein, 2015). 

In conclusion, fasting does not alter cardiovascular or neural reactivity to 

mental stress or influence forearm blood flow reactivity to mental stress. 

Fasting does not act as a compounding stressor as perceived stress after 

mental arithmetic is also not augmented by fasting. This study provides 

insight into human cardiovascular reactivity to a mental stressor while in a 

negative energy balance. 
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8 THE INFLUENCE OF AN ACUTE FAST ON NEURAL 
AND CARDIOVASCULAR RESPONSES TO LOWER 

BODY NEGATIVE PRESSURE 

8.1 Introduction  

Tilt-table studies have demonstrated that participants who have fasted 

for 24, 48, and 72 hours exhibit greater vagal withdrawal when exposed to tilt 

compared to the fed state (S. J. Brown et al., 2012; Mazurak et al., 2013). 

Reduced parasympathetic activity at the heart during tilt suggests greater 

sympatho-excitation in response to an orthostatic challenge. The only lower 

body negative pressure (LBNP) study conducted in fasted humans was 

performed by Bennet et al. In their study they exposed 9 male participants to 

progressive LBNP of negative 10, 20, 30, 40 and 50 mmHg for periods of 1 

min separated by 1 min rest. They compared 12-hours of fasting to 48-hours 

of fasting. After 48-hours of fasting systolic pressure decreased during LBNP 

and heart rate had  increased to a greater extent when compared to the fed 

state (Bennett, MacDonald, & Sainsbury, 1984). 48-hours of fasting also 

increased forearm blood flow in Bennet’s sample population at rest and 

impaired vasoconstriction during LBNP (Bennett et al., 1984). The tilt-table 

studies and LBNP study seem to provide converging evidence suggesting 

that fasting reduces tolerance to an orthostatic challenge. However, direct 

evidence of a reduced tolerance to an orthostatic challenge has not been 

established. This is important because while LBNP not only presents an 

orthostatic challenge it is also an effective simulation of hemorrhage (W. H. 

Cooke et al., 2004). Fulfillment of specific aim 3 could provide valuable 

information regarding the relationship between fasting and tolerance to 

hemorrhage that has application for preoperative fasting as well as military 

medicine. Therefore, the purpose of this study was to determine how fasting 

for 24 hours influences orthostatic tolerance to intense LBNP. Specifically, we 
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tested the hypothesis that acute fasting reduces orthostatic tolerance to 

intense LBNP  

 

8.2 Methods  

8.2.1 Experimental Design  

After the mental stress protocol, a three-minute recovery period, and ten 

minutes of non-recorded rest time, three brachial blood pressures were taken 

and the NOVA Finometer recalibrated to the averaged brachial pressure. An 

airtight seal was then secured around participants’ waists at the level of the 

iliac crest. Participants were then asked to rest quietly for 5 minutes and a 

third baseline was recorded. Following the 5-minute baseline lower body 

negative pressure was progressively applied in a stepwise manner. Lower 

body negative pressure was increased every 5 minutes in increments of 15 

until – 60 mmHg (ex: -15, -30, -45, -60). After -60 mmHg LBNP was increased 

in increments of 10 mmHg until onset of pre-syncope or until voluntary 

participant termination of LBNP. Termination criteria for presyncope were; 1) 

a drop in systolic pressure of 15 mmHg or greater for 10 seconds or greater; 

2) sudden bradycardia; and/or 3) participant-initiated termination. The 

chamber pressure was released immediately at the onset of presyncope or 

upon participant-initiated termination of LBNP.  

8.2.2 Data Analysis  

Tolerance to LBNP was assessed by total duration of negative pressure 

(DNP) in seconds and the cumulative stress index (CSI; pressure X time). 

ECG, beat-to-beat blood pressure, muscle sympathetic nerve activity, and 

forearm blood flow were measured continuously throughout the protocol. Data 

were averaged by taking the last 3 minutes of every 5-minute pressure stage. 

The last minute just prior to presyncope was also averaged for consistency 

despite variable termination times. Due to individual and conditional variability 
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in time to presyncope, we normalized time to presyncope for comparison 

between participants (appendix A.4). Quantifying percent to presyncope as 0, 

40, 80, and 100% for each participant. Using this approach every participant 

is represented within the percentages to presyncope. A paired t-test was used 

to assess duration of negative pressure, cumulative stress index, and overall 

changes in forearm vascular resistance. A 2-way repeated measures ANOVA 

(% to presyncope by Condition) was used to assess primary outcome 

variables. Data are presented as means ± SE. A probability value of ≤ 0.05 

was considered statistically significant. 

8.3 Results  

8.3.1 Fasting and Lower Body Negative Pressure Tolerance 

Fasting moderately reduced tolerance to the orthostatic stress of LBNP. 

Duration of negative pressure was significantly reduced in the fasted 

condition and cumulative stress index tended to be lower in the fasted 

Duration of negative pressure and cumulative stress index represented as boxplots. The 
line in the boxplots represents the median and the box represents the interquartile range 
(IQR; the difference between the 25th and 75th percentile). The whiskers extend from the 
upper and lower edge of the box to the highest and lowest values.  *p<0.05 

Figure 14: Tolerance to Lower Body Negative Pressure 
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condition. Only participants for which the investigator-initiated termination of 

LBNP were included in this data set (N=18). 

 

8.3.2 Hemodynamic and Neural Responses to Presyncopal 
LBNP  

During LBNP, heart rate increased similarly in both conditions. Systolic 

blood pressure was maintained in both conditions up until presyncope. An 

example of a presyncopal drop in blood pressure and concomitant MSNA 

activity can be seen in figure 17.  Maintaining stable nerve recordings 

throughout LBNP was difficult and was only measured in 7 participants. 

However, while there was no significant condition by percent to presyncope 

interaction, the fasted group was slower to ramp up nerve activity. The fasted 

condition significantly increased burst frequency starting at the 80% to 

Line graph is mean ± SE changes in forearm vascular resistance (FVR) for a given 
percent to presyncope for both the fed and fasted condition. Bar graphs display 
percentage (mean ± SE) change in FVR from baseline to 100% presyncope for both the 
fed and fasted condition 

 

Figure 15: Forearm Vascular Resistance During Lower Body Negative Pressure 
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presyncope time point. This is in contrast to the fed condition which 

significantly increased burst frequency from baseline at 40% to presyncope. 

Stroke volume and forearm blood flow decreased similarly between the 

conditions. The fed condition continuously increased calculated total 

peripheral resistance as LBNP increased. In contrast the fasted condition did 

not significantly increase calculated TPR during the LBNP protocol. 

Concurrently, while forearm vascular resistance increased in both condition 

when compared to baseline, only the fed condition significantly increased 

FVR at each time point. Additionally, percent change in FVR from baseline to 

presyncope was greater in the fed condition compared to the fasted condition. 

 

 

 

 

 

 

 

 

 

 

 

 

Line graph is mean±SE changes in muscle sympathetic nerve activity (MSNA; N 

= 7) for a given percent to presyncope for both the fed and fasted condition.  

 Figure 16: Muscle Sympathetic Nerve Activity During Lower Body Negative Pressure 
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Fed  
0 40% 80% 100% %  Cond X 

% 

Heart Rate, beat per 
minute 

63±1 65±1 85±1* 96±1* <.01 .86 

SAP, mmHg 115±1 116±1 114±1 110±1* .01 .61 

Burst Frequency, b/min 
(N=7) 

15±1 25±1* 41±1* 43±1* <.01 .08 

Stroke Volume, mL 84±2 74±2* 55±2* 51±2* <.01 <.01 

TPR 17±1 19±1* 20±1* 21±1* <.01 .41 

Forearm Blood Flow,     
ml*100ml-1*min-1 

2.4±.1 1.7±.1* 1.5±.1* 1.2±.1* <.01 <.01 

Forearm Vascular 
Resistance, 
mmHg*100mL*min*mL-1 

35±3 61±3* 73±3* 85±3* <.01 <.01 

Fasted  
0 40% 80% 100% 

Heart Rate, beat per 
minute 

59±1 61±1 80±1* 94±1* 

SAP, mmHg 113±1 114±1 114±1 105±1* 

Burst Frequency, b/min 
(N=7) 

15±1 21±1 38±1* 45±1* 

Stroke Volume, mL 96±2Ϯ 83±2* 57±2* 50±2* 

TPR 17±1 18±1 20±1 17±1 

Forearm Blood Flow,     
ml*100ml-1*min-1 

2.1±.1 1.7±.1* 1.6±.1* 1.5±.1* 

Forearm Vascular 
Resistance, 
mmHg*100mL*min*mL-1 

42±3 56±4* 64±4* 63±4* 

Values are mean ± SE. A 2-way repeated measures ANOVA was used to compare variables (% to presyncope X 
Condition). Fisher LSD post-hoc test was used to compare variables that had a significant percent to presyncope 
(%) or condition interaction (*) = significant differences within a condition from baseline (†) = significant difference 
between % X condition 

Table 10: Percent to Presyncope LBNP Data 
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8.4 Discussion  

Trauma is a leading cause of death worldwide and approximately half of 

the deaths can be attributed to hemorrhage. In both civilian and military 

 

  

Figure 17: Blood Pressure and MSNA at Presyncope in a Representative 
Subject 
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patients, hemorrhage is the primary cause of death within the first hour of 

traumatic injury. LBNP is an effective simulation of the central hypovolemia 

that occurs during hemorrhagic shock (William H. Cooke, Rickards, Ryan, 

Kuusela, & Convertino, 2009; William H Cooke, Kathy L Ryan, & Victor A 

Convertino, 2004). The purpose of this study was to investigate if fasting 

affected tolerance to a severe orthostatic stress. This study has two novel 

findings. First, acute fasting reduces participants orthostatic tolerance. The 

amount of time participants could tolerate negative pressure was reduced in 

the fasted state by approximately 10%. Additionally, the calculated cumulative 

stress index tended to be lower in the fasted condition. Second, the cause for 

the decrease in orthostatic tolerance appears to be an impaired ability to 

increase peripheral resistance.   

In the fasted condition, forearm vascular resistance plateaus at 80% of 

presyncope and does not increase any further at presyncope. Furthermore, 

the total change in forearm vascular resistance from baseline to presyncope 

is significantly lower in the fasted condition compared to the fed condition. 

Concurrently, calculated peripheral resistance did not change in the fasted 

condition. These two separate estimates of peripheral resistance indicate that 

fasting impairs increases of vascular resistance to reduce tolerance to central 

hypovolemia.  Heart rate and arterial pressure were similar between 

conditions when exposed to LBNP. MSNA data are limited, as maintaining a 

stable nerve signal for both conditions throughout LBNP is difficult. However, 

the fasted condition exhibited a slower increase in MSNA. In the fasted 

condition MSNA did not significantly increase from baseline until 80% to 

presyncope. In contrast, MSNA increased significantly in the fed condition at 

40% to presyncope. Enhanced stroke volume in the fasted condition may 

account for this slower ramp in muscle sympathetic nerve activity. Higher 

intensity LBNP may be needed to overcome the enhanced stroke volume in 

the fasted condition to unload the baroreceptors and initiate vasoconstriction 
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via MSNA. Impaired vascular resistance has been reported before during 

LBNP after 48 hours of fasting (Bennett et al., 1984). However, the study by 

Bennet et al. was limited in its scope as exposure to LBNP was brief (1 min 

per stage) and did not test tolerance (max pressure -50 mmHg). Our study is 

the first to report that fasting in humans reduces tolerance to induced central 

hypovolemia and that this reduction in tolerance is likely caused by impaired 

vascular resistance. 

Our results have clinical implications in regard to preoperative fasting. A 

recent study reported that hemorrhage is the leading cause of death post 

non-cardiac surgery (15.6%) (Spence et al., 2019). A majority of the post-

surgery deaths occurred shortly after operating during the post-surgery stay. 

To mitigate the risk of aspiration, the American Society of Anesthesiologists 

recommends cessation of clear liquids 2 hours before surgery and solid food 

6-8 hours before surgery ("Practice Guidelines for Preoperative Fasting and 

the Use of Pharmacologic Agents to Reduce the Risk of Pulmonary 

Aspiration: Application to Healthy Patients Undergoing Elective Procedures: 

An Updated Report by the American Society of Anesthesiologists Task Force 

on Preoperative Fasting and the Use of Pharmacologic Agents to Reduce the 

Risk of Pulmonary Aspiration*," 2017).  However, due to the unpredictable 

nature of operating rooms fasting is typically prolonged up to 14 hours (Chon, 

Ma, & Mun-Price, 2017) and can even extend to 1 or 2 days (Diks et al., 

2005). Animal studies have reported that 24 hours of fasting reduces the 

survival rate of hemorrhage (Ljungqvist, Jansson, & Ware, 1987). In rats 

subjected to hemorrhagic hypotension, all postprandial rats survived, and all 

rats deprived of food for 24 hours died. Saline infusion did not increase 

survival in the food deprived rats (Ljungqvist et al., 1987). Our study suggests 

that extended fasting (≥24 hours) may reduce humans’ ability to tolerate 

central hypovolemia by approximately 10%. Although fasting moderately 

reduced tolerance to central hypovolemia, preoperative fasting duration may 
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be an important risk factor for physicians to consider in mitigating the risk of 

hemorrhagic shock.   

In conclusion, fasting (24 hours postprandial) reduced participants 

tolerance to a severe orthostatic stress likely by blunting the increases of 

vascular resistance. An impaired peripheral vascular resistance response in 

the fasted state was measured by both venous occlusion plethysmography 

and by calculated total peripheral resistance. Further studies are warranted to 

understand the mechanisms underlying the reduced tolerance to central 

hypovolemia while fasted.  



107 

9 CONCLUSIONS AND FUTURE DIRECTIONS 

9.1 Conclusion  

Obesity is a major risk factor for the development of cardiovascular 

disease (Poirier et al., 2006). Contemporary humans’ intake more and expend 

less energy than their ancestors. This energy imbalance has contributed to an 

alarming increase in prevalence of obesity in the United States (31% 2000 vs. 

42% 2020) (Hales et al., 2020). Accessible and effective countermeasures 

are needed to abate the rise and obesity and improve cardiovascular health 

outcomes. Evidence suggests that chronic intermittent fasting can help 

individuals lose weight, reduce blood pressure, and improve cardiometabolic 

health (Stekovic et al., 2019; Varady et al., 2013). However, the mechanism 

behind these reported reductions in arterial pressure caused by chronic 

intermittent fasting has not been elucidated in humans. Therefore, the 

purpose of this dissertation was to investigate how acute fasting influences 

autonomic cardiovascular control of arterial pressure at rest and during 

stress.  

This dissertation employed continuous 24-hour hemodynamic 

recordings while participants were fasted and fed to ascertain how acute food 

deprivation influences arterial pressure. Additionally, this dissertation utilized 

an autonomic battery to investigate how fasting influences the balance 

between the sympathetic and parasympathetic branches. The balance 

between the autonomic branches was investigated using indirect measures of 

autonomic activity at the heart and direct peripheral sympathetic neural 

recordings to vascular beds. Aim 1 of this dissertation was to determine the 

influences of an acute fast on hemodynamics, sympathetic neural activity, 

and cardiovascular control at rest. Aim 2 employed a mental arithmetic task 

to investigate how fasting influences neural and cardiovascular reactivity to a 

mental stressor. Aim 3 investigated how an acute fast influenced tolerance 
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and cardiovascular reactivity to central hypovolemia. Broadly speaking, the 

scientific rationale for Aim 1 was to elucidate if acute fasting conveyed any 

acute cardiovascular benefit and to elucidate the potential mechanisms 

behind the observed cardiometabolic benefits of chronic fasting. The scientific 

rationale behind Aim 2 was to determine if acute fasting altered 

cardiovascular or neural reactivity to a mental stress task. Lastly, the rationale 

for Aim 3 was to assess if fasting reduced tolerance to induced central 

hypovolemia. Aim 3 is of clinically relevant as fasting is a common practice 

for those undergoing surgical procedures and hemorrhage is a serious risk 

during and after surgery.  

From Aim 1 we were able to demonstrate that acute fasting may convey 

cardioprotective benefits through enhanced vagal tone and reduced 24-hour 

blood pressure. Specifically, acute fasting increased heart rate variability and 

enhances cardiovagal baroreflex sensitivity at rest and during a naturally 

induced hypertensive stimulus. Improved cardiovagal baroreflex sensitivity 

potentially explains the measured reduction in overall 24-hour blood pressure. 

We did not measure any change in peripheral sympathetic activity indicating 

that fasting primary influences sympathetic modulation at the level of the 

heart. This aim provides mechanistic evidence to support the known 

cardiovascular benefits of chronic intermittent fasting.  

Aim 2 demonstrated that fasting does not affect cardiovascular or neural 

reactivity to a mental stress task. Indicating that an acute fast does alter or act 

as a compounding stressor during a mental stress task. From Aim 3 we 

report evidence to suggest that fasting reduces tolerance to a severe 

orthostatic stress by potentially reducing the ability to increase vascular 

resistance in the periphery. Additionally, Aim 3 provides marginal evidence 

from neural recordings that sympathetic burst frequency is not the cause of 

this augmented peripheral resistance.  
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This dissertation provides several novel findings that contribute 

mechanistic and descriptive insights into how systemic energy balance 

influence the autonomic nervous systems control of arterial pressure at rest 

and during stress. Acute fasting appears to convey cardioprotective benefits 

by reducing blood pressure, increasing heart rate variability, and enhancing 

baroreflex sensitivity. However, the cardioprotective benefits of fasting should 

be balanced with the reduction in orthostatic tolerance. The reduction in 

orthostatic tolerance suggests that individuals who decide to acutely fast 

should do so if they are 1) not susceptible to postural orthostatic intolerance 

2) not at risk for severe hemorrhage.  

9.2 Future Directions  

This dissertation provides evidence that suggests that acute fasting 

reduces blood pressure, increases vagal modulation of the heart, and 

enhances baroreflex sensitivity. However, the temporal range of these 

cardiovascular benefits when energy consumption resumes is unknown. 

Additionally, the sample population for this study was young, healthy, 

normotensive, normal weight individuals. Future studies should expand into 

populations of clinical interest, such as individuals with hypertension. 

Studying fasting in individuals with hypertension would provide valuable 

information regarding fasting as a viable intervention to decrease blood 

pressure and enhance baroreflex sensitivity in these individuals.  

In animals, it is well established that food deprivation decreases survival 

to hemorrhagic hypotension (Ljungqvist et al., 1987). In rats, two separate 

studies have reported that food deprivation (20-24 hours) results in 100% 

mortality to hemorrhagic hypotension, compared to a 100% survival rate in 

the postprandial rats (DARLINGTON, NEVES, HA, CHEW, & DALLMAN, 

1990; Ljungqvist et al., 1987) However, when food deprived (24 hours) rats 

are infused with glucose just prior to standardized hemorrhage all survive 
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(Alibegovic & Ljungqvist, 1993). The glucose infused rats were compared to 

food deprived rats that were given a saline infusion of equal volume. This 

study in animals provides evidence to suggest that glucose infusion just prior 

to simulated central hypovolemia in fasted humans may potentially increase 

their orthostatic tolerance. Future studies should employ oral or infused 

glucose to investigate if a rapid energy infusion could increase tolerance to 

central hypovolemia in fasted participants. Such a study could provide 

insightful knowledge to physicians wanting to mitigate the risk of hemorrhagic 

shock during and after surgery.  
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A.2 Calories to Points Calculation Example 
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A.4 LBNP Normalization Procedure 
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