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Abstract

Inverse problems with partial data have many applications in science and engi-

neering. They are more challenging than the complete data cases since the lack of

data increases ill-posedness and nonlinearity. The use of only deterministic or sta-

tistical methods might not provide satisfactory results. We propose to combine the

deterministic and statistical methods to treat such inverse problems. The thesis is

organized as follows.

In Chapter 1, we briefly introduce the inverse problems and their applications. The

classical deterministic methods and Bayesian inversion are discussed. The chapter is

concluded with a summary of contributions.

Chapter 2 considers the reconstruction of the unknown acoustic sources using

partial data. First, we extend the direct sampling method to approximate the source

locations. Second, the inverse problem is formulated as a statistical inference problem

using the Bayes’ formula. The source locations obtained in the first step are coded

in the priors. Then a Metropolis-Hastings algorithm is used to explore the posterior

density.

In Chapter 3, a two-step deterministic-statistical approach is proposed to recover

the trajectories of moving sources using partial measured data. In the first step,

an approximate direct sampling method is developed to obtain the locations of the

sources at different times. Such information is coded in the priors, which is critical for

the success of the Bayesian method in the second step. The combined approach in-

herits the merits of the deterministic method and Bayesian inversion as demonstrated

by the numerical examples.

Chapter 4 studies the reconstruction of Stekloff eigenvalues and the index of refrac-

tion of an inhomogeneous medium from Cauchy data. The inverse spectrum problem

of Stekloff eigenvalues is investigated by the reciprocity gap method. Then a Bayesian

approach is proposed to estimate the index of refraction using a few reconstructed

xvii



eigenvalues.

In Chapter 5, we consider the inverse spectral problem to determine the material

properties given a few transmission eigenvalues. The lack of theoretical results moti-

vates us to propose a Bayesian approach to formulate a statistical inference problem.

The MCMC algorithm is used to explore the posterior density. Due to the non-

uniqueness nature of the problem, we adopt the local conditional means (LCM) to

characterize the posterior density function.

xviii



Chapter 1

Introduction

This chapter presents a brief introduction of the inverse problems, the applications,

deterministic methods, and Bayesian methods. The main contributions of the disser-

tation are summarized at the end of the chapter.

1.1 Inverse problems

Inverse problems have been a particular interesting field in mathematical research.

They have numerous applications such as the atmospheric sciences, geophysics, ma-

terials sciences, image processing, signal processing, oceanography, hydrology, and

traffic flow control.

In 1976, Keller [64] gave a definition of inverse problems:

We call two problems inverses of one another if the formulation of each

involves all or part of the solution of the other. Often, for historical rea-

sons, one of the two problems has been studied extensively for some time,

while the other is newer and not so well understood. In such cases, the

former problem is called the direct problem, while the latter is called the

inverse problem.

In general, a problem is called a direct problem if all the necessary parameters

1



are provided and one needs to predict the measurements given the relation between

the parameters and measurements. In contrast, the process to decide the unknown

parameters given measurements is often considered as an inverse problem. Usually

the direct problem has been thoroughly studied and there are many results available.

On the other hand side, the inverse problem was investigated at a later time with

less results. Furthermore, in many cases, the inverse problem is more challenging

due to the fact that it is inherently nonlinear and ill-posed. In particular, the in-

verse problems studied in this thesis are severely ill-posed since only partial data are

available.

In mathematical physics, according to Hadamard [45], a problem is said to be

well-posed if

1. there exists a solution to the problem (existence),

2. there is at most one solution to the problem (uniqueness),

3. the solution depends continuously on the data (stability).

A precise definition of well-posedness is as follows.

Definition 1.1.0.1. (Chapter 4.1 in [30]) Let A : U Ă X Ñ V Ă Y be an operator

from a subset U of a normed space X into a subset V of a normed space Y . The

equation

Apϕq “ f

is called well-posed or properly posed if A : U Ñ V is bijective and the inverse operator

A´1 : V Ñ U is continuous. Otherwise the equation is ill-posed or improperly posed.

For a long time, researchers mainly concentrate on the study of well-posed prob-

lems that have unique solutions and depend continuously on the given data. Ill-posed

problems connected with partial differential equations in mathematical physics were

only viewed as purely academic interest. This situation changed dramatically due to

the wide applications of inverse problems in real life, the improvement of computation

2



capabilities, as well as the development of new methods for ill-posed problems. Nowa-

days, the inverse problem is an active area in mathematics, sciences, and engineering,

equally important as the direct problem.

1.2 Deterministic Methods

Traditionally the inverse problems were treated using deterministic methods. Most

deterministic methods can be classified as the iterative methods [98, 58, 43, 49, 5, 36,

61] and the direct methods [25, 27, 66, 67, 24, 7, 68, 55, 72, 97].

One can formulate an inverse problem as an optimization problem for a cost

function and the minimizer is the solution to the inverse problem. To compute the

minimizer, iterative methods such as the Newton type methods [98, 58, 43, 49] and

gradient descent methods [5, 36, 61] are applied. Due to the facts that in each step

one needs to solve a direct problem and that the convergence may be slow, iterative

methods are usually computationally expensive. In addition, to ensure convergence,

iterative techniques need a good initial guess, which is often difficult to obtain. Nev-

ertheless, successful iterative methods can provide detail and accurate information of

the unknowns.

Direct methods usually build some indicator functions according to the properties

of the associated partial differential equations. Using indicator functions over the

sampling domain, one can obtain qualitative information of the unknowns such as

the location and size of a target. Furthermore, the implementation of the direct

methods is simple in general. A drawback of direct methods is that they require

substantial amount of measurement data. When only partial data are available,

their performance deteriorates quickly. Well-known direct methods include the linear

sampling method, the factorization method, the reciprocity gap method, the extended

sampling method, the direct sampling method, the orthogonality sampling method,

etc. [25, 27, 24, 7, 66, 67, 23, 68, 91, 95, 57, 86, 88].

3



Due to the ill-posedness of the inverse problems, regularization techniques are

also often used. The basic idea of regularization methods is to construct a stable

approximate solution of an ill-posed problem. Consider the ill-posed linear equations

of the first kind

Aϕ “ y, (1.2.1)

where A : X Ñ Y is a compact operator. The following theorem guarantees the

existence of a unique solution for a popular regularization method - Tikhonov regu-

larization [106, 30].

Theorem 1.2.1. Let A : X Ñ Y be a compact linear operator and let γ ą 0. Then

for each y P Y there exist a unique ϕγ P X such that

||Aϕγ ´ y||2 ` γ}ϕγ}2 “ inf
ϕPX

 

||Aϕ ´ y||2 ` γ}ϕ}2
(

. (1.2.2)

The parameter γ is called the regularization parameter. The minimizer ϕγ is given

by the unique solution of γϕγ ` A˚Aϕγ “ A˚y and depends continuously on y.

1.3 Bayesian method

In recent year, statistical methods have received more attention for inverse problems

[63, 99, 10, 38, 110, 62]. Statistical inversion theory reformulates inverse problems

as problems of statistical inference by means of Bayesian statistics. In the Bayesian

framework, all the parameters are modeled as random variables. The randomness,

which describes the observer’s uncertainty concerning their values, is expressed in the

distribution of the variables. The solution to the inverse problem in the statistical

inversion perspective is the probability distribution that provides a probabilistic de-

scription of the interest unknowns when all information available has been included

in the model.

4



1.3.1 Bayes’ formula

Consider the inverse problem of getting information about x P X from the measure-

ment y P Y . The model which relates these two quantities x and y may be inaccurate

and contain parameters that are not well known to us. In practice the measurement

y always contains noises. The statistical problem can be written as

y “ fpx, eq, (1.3.3)

where f : XˆY Ñ Y is the model function, and e P Y encapsulates the poorly known

parameters as well as the measurement noise. We refer to the directly observable

random variable y as the measurement, the non-observable random variable x that is

of primary interest as the unknown, and the variable e that is neither observable nor

of primary interest as parameters or noises.

In the Bayesian statistical theory, the prior information can be coded into the

prior density πpr which expresses what we know about the unknown before performing

the measurement of y. The conditional distribution of the measurement y given x

is referred to as the likelihood, denoted by πpy|xq. It expresses the likelihood of

different measurement outcomes given x. The conditional distribution πpx|yobservedq
which describes what we know about x given the realized observation y “ yobserved is

called the posterior distribution of x.

Given y “ yobserved, the goal of the Bayesian inverse problem is to seek statistical

information of x by exploring the conditional probability distribution πpx|yobservedq.
The following theorem describes the relationship between the prior, likelihood and

the posterior distribution.

Theorem 1.3.1. (Theorem 3.1 in [63]) Assume that the random variable x P X has

a known prior probability density πprpxq and the data consist of the observed value

yobserved of an observable random variable y P Y such that πpyobservedq ą 0. Then the

posterior probability distribution of x, given the data yobserved, is

πpostpxq “ πpx|yobservedq “ πprpxqπpyobserved|xq
πpyobservedq . (1.3.4)

5



For simplicity, we shall write y “ yobserved. The observed value of y is used in the

evaluation of the posterior distribution. The joint probability density of x and y is

denoted by πpx, yq. Then the marginal density of y in (1.3.4) is

πpyq “
ż

X

πpx, yqdx “
ż

X

πprpxqπpy|xqdx, (1.3.5)

which is a normalization constant.

1.3.2 Estimators

As discussed above, the solution to the Bayesian inverse problem is defined to be the

posterior probability densities of the unknown parameters. To characterize the poste-

rior density functions, one can calculate different point estimates, such as maximum

a posteriori (MAP) and conditional mean (CM).

Definition 1.3.1.1. Given the posterior probability density πpx|yq of the unknown

x P X, the maximum a posteriori estimate (MAP) xMAP is

xMAP “ argmax
xPX

πpx|yq.

Definition 1.3.1.2. The conditional mean (CM) of the unknown x conditioned on y

is defined as

xCM “ Etx|yu “
ż

X

xπpx|xqdx,

provided that the integral converges.

However, for the problem which has non-unique solution, point estimators men-

tioned above might not carry sufficient/correct information of the unknowns. Hence

we also use the local estimators introduced in [103] when necessary.

Definition 1.3.1.3. (LMAP) We call x˚ a local MAP, denoted by xLMAP , if

πpx˚|yq ě ǫmax
xPX

πpx|yq and x˚ “ arg max
xPNpx˚q

πpx|yq

for some constant ǫ P p0, 1q and Npx˚q a neighborhood of x˚.
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Definition 1.3.1.4. (LCM) The local conditional mean xLCM is define as

xLCM “
ż

S

xπpx|yqdx,

where S is a subset of X.

1.3.3 Likelihood function

In the statistical inversion it is important to construct the likelihood function. The

likelihood function contains the forward model used in classical inversion techniques as

well as information about the noise, other measurement, and modelling uncertainties.

Most often, the noise is assumed to be additive and mutually independent of the

unknown x. Then the statistical model (1.3.3) is of the form

y “ fpxq ` e,

where x P X, y, e P Y ,and x and e are mutually independent. Denote the prob-

ability distribution of the noise e is πnoisepeq. Under the assumption of the mutual

independence of x and e, we can derive that

πpy|xq “ πnoisepy ´ fpxqq.

Hence, from Bayes’ formula (1.3.4), one can obtain

πpx|yq9 πprpxq πnoisepy ´ fpxqq,

where 9 means proportional to.

Denote by N the normal distribution. We assume that the noise e follows a

Gaussian distribution, i.e., πnoisepeq “ N p0, Γnoiseq, where Γnoise P Y ˆ Y is positive

definite. Let P px; yq “ 1
2
py ´ fpxqqJΓ´1

noisepy ´ fpxqq. Assume that the posterior

measure µ with density πpostpxq is absolutely continuous with respect to the prior

measure µ0 with density πprpxq. Using (1.3.4) and (1.3.5), we can relate µ with µ0 by

dµ

dµ0

pxq “ 1

Zpyq exp p´P px; yqq , (1.3.6)

7



where Zpyq “
ş

X
expp´P px; yqqdµ0pxq is the normalization constant. The formula

(1.3.6) is understood as the Radon-Nikodym derivative of the posterior probability

measure µ with respect to the prior measure µ0.

1.3.4 Markov chain Monte Carlo methods

One effective way to explore the posterior probability distribution is the Markov chain

Monte Carlo (MCMC) techniques. The basic idea of MCMC methods is to design

a Markov chain txnu8
n“1 that is drawn from the posterior measure µ in (1.3.6). The

MCMC methods are systematic ways of generating samplings from the distribution

we want to explore and contain significant innovation in the design of methods. In

this section, we will introduce one common procedure of the MCMC methods known

as the Metroplis-Hasting (M-H) algorithm.

In the M-H algorithm, the aim is to construct a transition kernel qpx, uq such

that the proposed move u from the current state of Markov chain x is distributed as

qpx, uq. We define acceptance ration αpx, uq

αpx, uq “ min

"

1,
πpostpuqqpu, xq
πpostpxqqpx, uq

*

and a random variable γpx, uq, which is independent of the probability space under-

lying the transition kernel q, with the property that

γpx, uq “

$

’

&

’

%

1 with probability αpx, uq,

0 otherwise.

In particular, in the M-H algorithm, the transition kernel q satisfies the detailed

balance equation, which is given by

πpostpuqαpu, xqqpu, xq “ πpostpxqαpx, uqqpx, uq.

When a point xn P X is given, we can postulate that the kernel q either propose a

move to u P X with probability γpxn, uq or it proposes no move away from xn with

8



probability 1 ´ γpxn, uq, i.e.

xn`1 “ γpxn, uqu ` p1 ´ γpxn, uqqxn with u „ qpxn, uq. (1.3.7)

The following theorem states that the empirical distribution of the Markov chain

generated by the M-H algorithm converges weakly to that of the measure µ.

Theorem 1.3.2. Given µ in (1.3.6), the Markovian sequence txnu8
n“1 defined by

(1.3.7) is invariant for µ: if x1 „ µ, then xn „ µ for all n ě 1. Furthermore,

if the resulting Markov chain is ergodic then, for any continuous bounded function

g : X Ñ R,

lim
NÑ8

1

N

N
ÿ

n“1

gpxnq “
ż

X

gpxqµpdxq

almost certainly.

Instead of a solution of the unknown as the deterministic method, the statistical

method, by formulating the inverse problem as a statistical inference, provides the

probability distribution of the unknown which may contain more information. In most

cases, the posterior distribution cannot be obtained analytically. Computational tools

such as MCMC methods are applied to explore πpost. The choice of prior allows us to

include useful information of the unknown. However, the prior may be subjective and

lead to unreliable inference of the unknown. Motivated by the facts that i) the direct

methods are simple to implement and can produce qualitative information of the

unknown; ii) only partial measurement is available; iii) informative prior distribution

can significantly reduce the computation cost of the MCMC methods, we propose to

integrate the information obtained in the direct methods into the prior distribution

of Bayesian method for the inverse problems with partial data.

1.4 Main Contributions

Inverse problems with partial data are challenging. In many cases, the use of a single

method cannot provide satisfactory results. In this thesis, we propose to combine the

9



deterministic and statistical methods to treat several inverse problems. In particular,

the deterministic methods are used to obtain qualitative information of the unknowns

such as the approximate location and size of the target. This information is built in

the priors for the statistical methods to obtain quantitative information, e.g., the

shape of the target. The proposed approach has been applied to recover 1) the

location and magnitude of static sources, 2) the trajectories of moving sources, 3)

the material property using Stekloff eigenvalues, and 4) the index of refraction using

transmission eigenvalues.

10



Chapter 2

Quality-Bayesian Approach to

Inverse Acoustic Source Problems

with Partial Data 1

2.1 Introduction

In this chapter, we consider the inverse problem to reconstruct the locations and in-

tensities of the acoustic sources from partial near-field or far-field data. This problem

has importance in various applications such as biomedical imaging and the identi-

fication of pollution sources [56, 35]. We refer the readers to [56, 2, 84, 3] and the

references therein for various methods proposed in literature.

Recently, a new quality-Bayesian approach, which combines a qualitative method

and the Bayesian inference, is proposed for the inverse scattering problem [80]. The

approach has two steps. First, qualitative information of the obstacle such as the

size and location is obtained using the extended sampling method (ESM) [84, 86].

Second, the inverse problem is formulated as a statistical inference problem using the

1This chapter has been published as an article in SIAM Journal on Scientific Computing.

https://doi.org/10.1137/20M132345X
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Bayes’ formula [63, 99]. Then a Markov chain Monte Carlo (MCMC) algorithm is

used to explore the posterior density of the parameters for the unknown obstacle. The

information obtained in the first step is coded in the priors. The method provides

satisfactory results using partial data.

In this chapter, we extend the methodology in [80] to the inverse acoustic source

problem with partial data (see Fig. 2.1). In the first step, a direct sampling method

(DSM) is employed to approximate the locations of the sources. The DSM is a non-

iterative method to reconstruct the unknown scatterers [96, 57]. Recently, the DSM

was used in [1, 115] to reconstruct the locations of multiple multipolar sources from

single-frequency Cauchy data. For multi-frequency data, we construct new indicator

functions for the inverse source problems. Similar to those in [88, 3, 115], the indicator

decays as the sampling point moves away from the source (see, e.g., [88]). The DSM

has some attractive features: (i) it is easy to implement and computationally cheap;

(ii) the algorithm does not need any a priori information of the sources; and (iii) the

method can provide reliable location estimations of the unknown sources; (iv) the

method is robust for the noise data. These features make the DSM a good candidate

to obtain some qualitative information of the sources.

receiver

source

observation aperture

Figure 2.1: Inverse source problem with partial near-field data.

In the second step, for the details of the source, we resort to the Bayesian inversion.
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In Bayesian statistics, the parameters of the model are viewed as random variables.

The number and locations of the sources obtained in the first step are coded in

the priors. By using the Bayes’ formula, a posterior distribution of the unknown

parameters is obtained. The well-posedness is proved and a Metropolis-Hastings (MH)

MCMC algorithm is used to explore the posterior density. Consequently, statistical

estimates for the unknown parameters can be obtained. We refer the readers to

[63, 99] for the Bayesian inversion and [10, 13, 80, 83] for the applications. The

current chapter and [80] share the basic idea of using a combined deterministic-

statistical approach for the inverse problems with partial data. However, there are

several major differences. Firstly, the physical models are different. The study in [80]

considers the inverse scattering problem using partial data due to a single frequency.

This chapter treats the inverse source problem using multi-frequency partial data.

Secondly, the deterministic method used in [80] is the ESM, which can only treat a

single target. In this chapter, the DSM is extended to treat multiple targets, which is

clearly an advantage. Thirdly, in the sampling stage, due to the nature of the problem

under consideration, the computation of the forward problem is simpler. Thus the

speed of the inversion in the current chapter is much faster than that in [80].

Inverse problems with partial measurements arise in many applications of practical

importance. In contrast to the cases of full measurements, they are more challeng-

ing since the reconstructions usually deteriorate when the data become less. This

chapter proposes an effective combined deterministic-statistical approach. The con-

tributions include: 1) an effective DSM for partial data to approximate locations of

multiple acoustic sources; 2) an MCMC algorithm to reconstruct the details of the

sources based on the information obtained by the DSM; 3) an analysis of the indicator

functions; and 4) the well-posedness of the posterior density distribution. The DSM

and MCMC are based on the same physical model and use the same set of partial

data. The merits of both methods are inherited by the proposed approach as demon-

strated by the numerical examples. The rest of chapter is organized as follows. In
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Section 2.2, we present the direct and inverse source problems under investigation. In

Section 2.3, we develop a DSM to obtain the approximate locations of the unknown

sources. In Section 2.4, the Bayesian method is employed to reconstruct the details

of the sources. In Section 2.5, numerical examples are presented to show the effec-

tiveness of the quality-Bayesian approach using complete and partial data. Finally,

in Section 2.6, we draw some conclusions.

2.2 Direct and Inverse Source Problems

Let F P L2pR2q denote sources with suppF Ă V , where V is a bounded domain in

R
2. The time-harmonic acoustic wave u P H1

locpR2q radiated by F satisfies

∆u ` k2u “ F in R
2, (2.2.1a)

lim
rÑ8

?
r

ˆBu
Br ´ iku

˙

“ 0, r “ |x|, (2.2.1b)

where k is the wavenumber, (2.2.1a) is the Helmholtz equation and (2.2.1b) is the Som-

merfeld radiation condition. Recall that the fundamental solution to the Helmholtz

equation is given by

Φkpx, yq “ i

4
H

p1q
0 pk|x ´ y|q,

where H
p1q
0 is the Hankel function of the zeroth order and the first kind. It is well-

known that Φkpx, yq satisfies [30]

p∆ ` k2qΦkpx, yq “ ´δpx ´ yq, (2.2.2)

where δ is the Dirac distribution. The solution u to (2.2.1) has the asymptotic

expansion

upx, kq “ ei
π
4?

8kπ

eikr?
r

"

u8px̂, kq ` O

ˆ

1

r

˙*

as r Ñ 8,

where x̂ “ x{|x| P S, S :“ t|x̂| “ 1 : x̂ P R
2u. The function u8px̂, kq, x̂ P S, is the

far-field pattern of upx, kq. The solution u to (2.2.1) and u8 can be written as [30]

upx, kq “
ż

V

Φkpx, yqF pyqdy, (2.2.3)
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u8px̂, kq “
ż

V

Φ8
k px̂, yqF pyqdy, (2.2.4)

where

Φ8
k px̂, yq “ exp p´ikx̂ ¨ yq (2.2.5)

is the far-field pattern of Φkpx, yq.
The inverse source problem (ISP) of interest is to determine F from one of the

following data sets (see Fig. 2.1):

i) tupx, kq : x P Γ, k P rkm, kM su,

ii) tu8px̂, kq : x̂ P S Ă S, k P rkm, kM su,

where Γ is a measurement curve outside V , and km ă kM are two fixed wavenumbers.

By complete data, we mean that Γ is a simple closed curve with V inside, or S “ S.

Otherwise, the measured data is partial.

In this chapter, we consider two F ’s for (2.2.1). The first one is the combination

of monopole and dipole sources (see, e.g.,[115])

Fjpxq “ pλj ` ξj ¨ ∇qδpx ´ zjq, j “ 1, . . . , J, (2.2.6)

where J is the number of sources, zj’s represent the source locations, λj’s and ξj’s are

the scalar and vector intensities such that |λj| ` |ξj| ą 0 and λjξj “ 0. The second

one is the union of

Fjpxq “ λj expp´ξj|x ´ zj|2q, j “ 1, . . . , J, (2.2.7)

where λj’s and ξj’s are the scalar intensities. For simplicity, we write

F px; z,λ, ξq “
J
ÿ

j“1

Fjpx; zj, λj, ξjq, suppFjpx; zj, λj, ξjq Ă Vj, (2.2.8)

where λ “ pλ1, . . . , λJq, ξ “ pξ1, . . . , ξJq, and Vj Ă V .

A source with an extended support cannot be uniquely determined from measure-

ment data at a fixed frequency [33]. Multiple frequency data guarantee the uniqueness

and improve the reconstructions [35, 8]. In fact, the reconstruction by the DSM with

single frequency partial data can be useless (see Section 2.5.1).
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2.3 Direct Sampling Method

Given the measured far-field or near-field data, we propose a direct sampling method

(DSM) to reconstruct the number and locations of the sources. The method only

involves numerical integrations and is robust for noisy partial data, making the DSM

a fast algorithm to obtain some qualitative information. The DSM proposed in [57] is

to reconstruct point-like scatterers using the near-field data of all directions due to a

single incident plane wave. In this section, we extend it to treat the inverse acoustic

source problem by introducing new indicator functions such that it can process 1)

both near-field and far-field data; 2) data of a few observation directions; and 3)

multi-frequency data. Another advantage of the DSM is that it can reconstruct the

locations of multiple targets, while the ESM in [80] can only reconstruct a single

target.

Let D be the sampling domain such that V Ă D and n be the unit outward normal

to BD. Denote by A :“ tkiuNi“1 Ă rkm, kM s a finite set of discrete wavenumbers. We

define two functions

Ipzpq “
ÿ

kiPA

ż

Γ

upx, kiqΦ̄kipx, zpqdspxq, zp P D, (2.3.9)

and

I8pzpq “
ÿ

kiPA

ż

S

u8px̂, kiqΦ̄8
ki

px̂, zpqdspx̂q, zp P D, (2.3.10)

where Φ̄kipx, zpq and Φ̄8
ki

px̂, zpq are the conjugates of Φkipx, zpq and Φ8
ki

px̂, zpq, respec-
tively.
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2.3.1 Near-field Indicator

For near-field data, inserting (2.2.3) into (2.3.9) and changing the order of integration,

we have that

Ipzpq “
ÿ

kiPA

ż

Γ

ż

V

Φkipx, yqF pyqdyΦ̄kipx, zpqdspxq

“
ÿ

kiPA

ż

V

ż

Γ

Φkipx, yqΦ̄kipx, zpqdspxqF pyqdy.
(2.3.11)

From (2.2.2), for Φkipx, yq and Φ̄kipx, zpq, it holds that
ż

D

p∆Φkipx, yq ` k2Φkipx, yqqΦ̄kipx, zpqdx “ ´Φ̄kipy, zpq, (2.3.12)

ż

D

p∆Φ̄kipx, zpq ` k2Φ̄kipx, zpqqΦkipx, yqdx “ ´Φkipy, zpq. (2.3.13)

Using (2.3.12), (2.3.13), the Green’s formula and the Sommerfeld radiation condition,

we derive

Φkipy, zpq ´ Φ̄kipy, zpq “
ż

Γ

"BΦkipx, yq
Bn Φ̄kipx, zpq ´ BΦ̄kipx, zpq

Bn Φkipx, yq
*

dspxq

«
ż

Γ

pikiΦkipx, yqΦ̄kipx, zpq ` ikiΦ̄kipx, zpqΦkipx, yqqdspxq,

(2.3.14)

which implies
ż

Γ

kiΦkipx, yqΦ̄kipx, zpqdspxq « ImpΦkipy, zpqq, (2.3.15)

where Imp¨q denotes the imaginary part.

For y P V and zp P D, define the kernel function for (2.3.11)

Hpy, zpq “
ż

Γ

Φkipx, yqΦ̄kipx, zpqdspxq, ki P A. (2.3.16)

Thus,

Hpy, zpq 9 1

ki
J0pki|y ´ zp|q, ki P A, (2.3.17)

where J0 is the zeroth order Bessel function and 9 means “proportional to”.
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Due to (2.3.11) and (2.3.17), Ipzpq is a superposition of the Bessel functions. From

the asymptotic property of J0ptq [30], one has that

J0ptq “ sin t ` cos t?
πt

"

1 ` O

ˆ

1

t

˙*

, as t Ñ 8, (2.3.18)

and Ipzpq decays similarly when zp Ñ 8.

The discussion leads to an indicator for the near-field data

IDSMpzpq “

ˇ

ˇ

ˇ

ř

kiPA
xupx, kiq,Φkipx, zpqyL2pΓq

ˇ

ˇ

ˇ

ř

kiPA
}upx, kiq}L2pΓq}Φkipx, zpq}L2pΓq

, @zp P D, (2.3.19)

where the inner product x¨, ¨yL2pΓq is defined as

xupx, kiq,Φkipx, zpqyL2pΓq “
ż

Γ

upx, kiqΦ̄kipx, zpqdspxq.

2.3.2 Far-field Indicator

Substituting (2.2.4) into (2.3.10), and changing the order of integration, we have that

I8pzpq “
ÿ

kiPA

ż

S

ż

V

Φ8
ki

px̂, yqF pyqdyΦ̄8
ki

px̂, zpqdspx̂q

“
ÿ

kiPA

ż

V

ż

S

e´ikix̂¨yeikix̂¨zpdspx̂qF pyqdy.
(2.3.20)

For y P V and zp P D, define the kernel function

H8py, zpq “
ż

S

eikix̂¨pzp´yqdspx̂q, ki P A. (2.3.21)

By Funk-Hecke formula [30],

H8py, zpq “ 2πJ0pki|y ´ zp|q, ki P A. (2.3.22)

Due to (2.3.18), I8pzpq is large when zp P V and decays when zp Ñ 8. Consequently,

we define an indicator for far-field data as

I8
DSMpzpq “

ˇ

ˇ

ˇ

ř

kiPA
xu8px̂, kiq,Φ8

ki
px̂, zpqyL2pSq

ˇ

ˇ

ˇ

ř

kiPA
}u8px̂, kiq}L2pSq}Φ8

ki
px̂, zpq}L2pSq

, (2.3.23)
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where

xu8px̂, kiq,Φ8
ki

px̂, zpqyL2pSq “
ż

S

u8px̂, kiqΦ̄8
ki

px̂, zpqdspx̂q.

The algorithm to approximate the locations of the unknown sources is as follows.

DSM for ISP

1. Collect the data upx, kiq on Γ (or u8px̂, kiq on S) for ki P A.

2. Generate sampling points for D.

3. Calculate IDSMpzpq (or I8
DSMpzpq) for all sampling points zp P D.

4. Find the local maximizers zDSM ’s of IDSMpzpq (or I8
DSMpzpq).

The DSM provides the number and rough locations of the sources. Such qualitative

information is integrated into the priors for the following Bayesian inversion.

2.4 Bayesian Inversion

In this section, we present the Bayesian inversion for the inverse acoustic source prob-

lem using the near-field data. The far-field case is similar. Let φ “ pλ, ξ, z1, . . . , zJqT .
Define the forward operator K : RN Ñ L2pΓq as follows

Kpφq :“
ż

V

Φkpy, xqF px;φqdx.

For F given by (2.2.6), N “ 5J . For F given by (2.2.7), N “ 4J .

The statistical model for (2.2.1) can be written as

Y “ Kpφq ` Z,

where Y is the noisy measurement of upx, kq and Z is the Gaussian noise, i.e., Z „
N p0, γ2Iq.

Denote by µY pdφq “ Ppdφ|Y q the posterior measure and by µ0pdφq “ Ppdφq the

prior measure for φ. In this chapter, µ0 is chosen to be Gaussian. Other priors, e.g.,
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the level set prior, can be used as well. The analysis of these priors can be found in,

e.g., [54, 34, 50]. For the inverse problem under our consideration, the Gaussian prior

coding the information obtained by the DSM outperforms the Whittle-Matérn prior

and the level set prior (see Section 2.5.5).

The statistical inverse problem is to find the posterior measure µY pdφq. Assume

that µY is absolutely continuous with respect to µ0, i.e., µ
Y ! µ0. By Bayes’ formula,

dµY

dµ0

pφq “ 1

LpY q exp p´Gpφ;Y qq , (2.4.24)

where expp´Gpφ;Y qq is the likelihood such that

Gpφ;Y q :“ 1

2γ2
}Y ´ Kpφq}2L2pΓq, (2.4.25)

and

LpY q :“
ż

RN

exp p´Gpφ;Y qqdµ0pφq , (2.4.26)

is the normalizing constant of µY .

In the rest of this section, we show the well-posedness of the posterior measure

following [99]. We first analyze the forward operator K.

Lemma 2.4.1. (Page 441 of [111]) Let z P C and Repzq ą 0. Then the following

Nicholson’s formula holds

J2
ν pzq ` Y 2

ν pzq “ 8

π2

ż 8

0

K0p2z sinh tq coshp2νtqdt, (2.4.27)

where

K0pzq “
ż 8

0

e´z cosh tdt,

Jνpzq and Yνpzq are the νth order Bessel function and Neumann function, respectively.

Using Nicholson’s formula (2.4.27), the following property holds for K.

Lemma 2.4.2. There exists a constant C such that

}Kpφq}L2pΓq ď C|φ|8, (2.4.28)

where C depends on Γ and V .
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Proof. According to (2.2.3),

upx, kq “
ż

V

i

4
H

p1q
0 pk|x ´ y|qF pyqdy. (2.4.29)

Let

τ˚ “ mint|x ´ y| : x P Γ, y P V u and τ “ |x ´ y|.

By (2.4.27), it holds that

|Hp1q
ν pkτq|2 “ J2

ν pkτq ` Y 2
ν pkτq

“ 8

π2

ż 8

0

K0p2kτ sinh tq coshp2νtqdt

ď 8

π2

ż 8

0

K0p2kτ˚ sinh tq coshp2νtqdt

“ |Hp1q
ν pkτ˚q|2.

(2.4.30)

Combining (2.4.29) and (2.4.30), we obtain that

|upx, kq| “
ˇ

ˇ

ˇ

ˇ

ż

V

i

4
H

p1q
0 pk|x ´ y|qF pyqdy

ˇ

ˇ

ˇ

ˇ

ď 1

4

ż

V

|Hp1q
0 pkτ˚q||F pyq|dy

ď |V |
4

|Hp1q
0 pkτ˚q|}F pyq}8.

(2.4.31)

Since k ě km, it holds that

}upx, kq}L2pΓq ď |V |
4

|Hp1q
0 pkmτ˚q|}F pyq}8 ď C

|V |
4

|Hp1q
0 pkmτ˚q||φ|8. (2.4.32)

This completes the proof. �

Corollary 2.4.2.1. There exists a constant C, such that

}Kpφ1q ´ Kpφ2q}L2pΓq ď C|φ1 ´ φ2|8, (2.4.33)

where C depends on Γ and V .

Let µ1 and µ2 denote two probability measures. Assume that µ1 and µ2 are both

absolutely continuous with respect to a third measure µ.
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Definition 2.4.2.1. The Hellinger and total variation metrics between µ1 and µ2

are, respectively, defined as

dHpµ1, µ2q “
ˆ

1

2

ż

´

a

dµ1{dµ ´
a

dµ2{dµ
¯2

dµ

˙1{2
(2.4.34)

and

dTV pµ1, µ2q “ 1

2

ż

|dµ1{dµ ´ dµ2{dµ| dµ. (2.4.35)

Both Hellinger and total variation metrics are independent of the choice of the

measure µ. If µ1 and µ2 are both absolutely continuous with respect to µ, then

Hellinger and total variation metrics are equivalent (see, e.g., Lemma 6.36 of [99]).

Theorem 2.4.3. Assume that µ0 is a Borel probability measure on R
N . Let µY and

µY 1

be the measures defined by (2.4.24) for Y and Y 1, respectively. Suppose µY and

µY 1

are both absolutely continuous with respect to µ0. Then the Bayesian inverse

problem (2.4.24) is well-posed in both Hellinger and total variational metrics, i.e.,

there exists a constant M “ Mprq ą 0 with maxt|Y |, |Y 1|u ă r, such that

dHpµY , µY 1q ď M}Y ´ Y 1}8 and dTV pµY , µY 1q ď M}Y ´ Y 1}8. (2.4.36)

Proof. Define the normalizing constant

LpY q “
ż

RN

exp

ˆ

´ 1

2γ2
}Y ´ Kpφq}2L2pΓq

˙

dµ0pφq. (2.4.37)

Clearly,

0 ď LpY q ď 1.

Now we show that LpY q is strictly positive. From Lemma 2.4.2 and (2.4.37), it follows

that

LpY q ě
ż

BpRq
exp

ˆ

´ 1

γ2

´

}Y }2L2pΓq ` }Kpφq}2L2pΓq

¯

˙

dµ0pφq

ě
ż

BpRq
expp´Mqdµ0pφq

“ expp´Mqµ0pBpRqq,

(2.4.38)
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where BpRq denotes a ball with a large enough radius R.

We claim that µ0pBpRqq ą 0. To see this, consider the disjoint sets An :“ tφ|n´
1 ď }φ} ă nu, @n P N. Then tAnu are measurable and

ř8
n“1 µ0pAnq “ µ0pŤ8

n“1 Anq “
1. Consequently, there exists at least one An P tAnu8

n“1 satisfying µ0pAnq ‰ 0.

Combining with (2.4.38), it holds that LpY q ą 0.

Using the mean value theorem and Lemma 2.4.2, we have that

|LpY q ´ LpY 1q| ď
ż

RN

expp´Gpφ;Y qq |Gpφ;Y q ´ Gpφ;Y 1q| dµ0pφq

ď
ż

RN

1

2γ2

ˇ

ˇ

ˇ
}Y ´ Kpφq}2L2pΓq ´ }Y 1 ´ Kpφq}2L2pΓq

ˇ

ˇ

ˇ
dµ0pφq

ď M}Y ´ Y 1}8.

(2.4.39)

By the definition of dH , it holds that

d2HpµY , µY 1q

“ 1

2

ż

RN

#

ˆ

expp´Gpφ;Y qq
LpY q

˙1{2
´
ˆ

expp´Gpφ;Y 1qq
LpY 1q

˙1{2
+2

dµ0pφq

“ 1

2

ż

RN

#

ˆ

expp´Gpφ;Y qq
LpY q

˙1{2
´
ˆ

expp´Gpφ;Y 1qq
LpY q

˙1{2

`
ˆ

expp´Gpφ;Y 1qq
LpY q

˙1{2
´
ˆ

expp´Gpφ;Y 1qq
LpY 1q

˙1{2
+2

dµ0pφq

ď LpY q´1

ż

RN

"

exp

ˆ

´1

2
Gpφ;Y q

˙

´ exp

ˆ

´1

2
Gpφ;Y 1q

˙*2

dµ0pφq

`
ˇ

ˇLpY q´1{2 ´ LpY 1q´1{2ˇ
ˇ

2
ż

RN

exp p´Gpφ;Y 1qqdµ0pφq.

(2.4.40)

Again, using the mean value theorem and Lemma 2.4.2, we have that

ż

RN

"

exp

ˆ

´1

2
Gpφ;Y q

˙

´ exp

ˆ

´1

2
Gpφ;Y 1q

˙*2

dµ0pφq

ď
ż

RN

expp´Gpφ;Y qq
ˇ

ˇ

ˇ

ˇ

1

2
Gpφ;Y q ´ 1

2
Gpφ;Y 1q

ˇ

ˇ

ˇ

ˇ

2

dµ0pφq

ď
ż

RN

1

16γ4

ˇ

ˇ}Y ´ Kpφq}2 ´ }Y 1 ´ Kpφq}2
ˇ

ˇ

2
dµ0pφq

ď M}Y ´ Y 1}28.

(2.4.41)
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According to the boundedness of LpY q and LpY 1q, it holds that
ˇ

ˇLpY q´1{2 ´ LpY 1q´1{2ˇ
ˇ

2

ď M max
`

LpY q´3, LpY 1q´3
˘

|LpY q ´ LpY 1q|2

ď M}Y ´ Y 1}28.

(2.4.42)

Combining (2.4.38)-(2.4.42) we obtain that

dHpµY , µY 1q ď M}Y ´ Y 1}8.

Due to Lemma 6.36 of [99], it also holds that

dTV pµY , µY 1q ď M}Y ´ Y 1}8.

The proof is complete. �

The solution to the Bayesian inverse problem is the posterior distribution µY . To

explore µY , we resort to the Markov chain Monte Carlo (MCMC) method. Based on

the samples generated by the MCMC, various statistical estimates such as maximum

a posteriori (MAP) and conditional mean (CM) can be obtained. In this chapter,

we employ the preconditioned Crank-Nicolson (pCN) Metropolis-Hastings (MH) al-

gorithm for the MCMC [31].

Algoritm pCN-MH:

1. Set n Ð 0 and choose an initial value φ0.

2. Propose a move according to

λ̃j,n “
`

1 ´ β2
˘1{2

λj,n ` βWn, Wn „ N p0, 1q,

ξ̃j,n “
`

1 ´ β2
˘1{2

ξj,n ` βWn, Wn „ N p0, 1qpor N p0, I2ˆ2qq

z̃j,n “ zDSM `
?
σWn, Wn „ N pzDSM

j , I2ˆ2q.

3. Compute

αpφn, φ̃nq “ min
!

1, exp
´

G
`

F px;φnq;Y
˘

´ GpF px; φ̃nq;Y
˘

¯)

.
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4. Draw α̃ „ Up0, 1q. If αpφn, φ̃nq ě α̃, set φn`1 “ φ̃n. Else, φn`1 “ φn.

5. When n “ MaxIt, the maximum sample size, stop.

Otherwise, set n Ð n ` 1 and go to Step 2.

2.5 Numerical Examples

We present four examples to show the performance of the proposed quality-Bayesian

approach. Let V “ r´4, 4s ˆ r´4, 4s. For point sources (2.2.6), the solution to

the forward problem (2.2.1) is computed using the formula in Section 4.1 of [115].

For extended sources (2.2.7), the solution to (2.2.1) is approximated using (2.2.3)

or (2.2.4) as follows. Generate a triangular mesh T for V with mesh size h. For

x̂ :“ pcos θ, sin θq, θ P r0, 2πq, and a fixed wavenumber k, the far-field pattern is

approximated by

u8px̂; kq «
ÿ

TPT
e´ikx̂¨yTF pyT q|T |, (2.5.43)

where T P T is a triangle, yT is the center of T , and |T | denotes the area of T . The

synthetic data are computed using a mesh with h « 0.06. Then 5% random noise is

added

umpx, kq :“ upx, kq ` 0.05pZ̃1 ` iZ̃2qmax |u|,

where Z̃1, Z̃2 „ N p0, 1q. Considering the magnitude of the noise, in the sampling

stage, a relatively coarse mesh is used to compute the solution to the forward problem

(2.2.1), which speeds up the algorithm. All the examples are done on a MacBook

Pro (2.3 GHz Quad-Core Intel Core i7, 32 GB memory). The DSM is super fast and

takes less than a few seconds. The time used in the MCMC stage for 10000 samples

is a few minutes.

Examples 1 and 3 use the near-field data, which are measured on a circle with

radius R “ 6.5 and centered at the origin. Examples 2 and 4 use the far-field data.

Define

S1 :“ r0, 2πq, S2 :“ r0, πq, S3 :“ rπ{8, 5π{8q.
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The near-field data are

tupx; kjq|x “ pR cos θ, R sin θq, θ P Si, i “ 1, 2, 3, j “ 1, . . . , Nku.

The far-field data are

tu8px̂; kjq|x̂ “ pcos θ, sin θq, θ P Si, i “ 1, 2, 3, j “ 1, . . . , Nku.

The aperture S1 represents complete data and S2, S3 represent partial data. Equally

spaced measurement angles are used: 80 for S1, 40 for S2 and 20 for S3. The Nk

wavenumbers in rkm, kM s are given by

kj “ km ` pj ´ 1qpkM ´ kmq{pNk ´ 1q, j “ 1, ¨ ¨ ¨ , Nk. (2.5.44)

The sampling domain for DSM is chosen to be the same as V and is divided into

201 ˆ 201 uniformly distributed sampling points. The priors are Gaussian and the

locations obtained by the DSM are the means for zi, i “ 1, . . . , J . We call them

DSM-Gaussian priors in the rest of this section. Numerical examples show that this

prior is effective for the inverse problems under consideration.

2.5.1 Example 1

Let F pxq “ ř3
j“1 λjδpx ´ zjq with

tλju3j“1 “ t6, 5, 7u, tzju3j“1 “ tp2, 2q, p´2, 2q, p0,´2qu.

Set km “ 5, kM “ 10 and Nk “ 10. In Fig. 2.2, we plot the indicator functions using

data associated with S1, S2, S3 by the DSM. The reconstructed locations tzDSM
j u3j“1

are

S1 : tp2.00, 2.00q, p´2.00, 2.00q, p0.00,´2.00qu,

S2 : tp2.00, 2.00q, p´2.00, 2.00q, p0.00,´2.00qu,

S3 : tp2.00, 2.00q, p´2.00, 2.00q, p0.00,´2.00qu.
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Figure 2.2: Example 1 plots of the indicators of the DSM. Left: S1. Middle: S2.

Right: S3.

For monopole sources, the locations are accurate even for partial data (S2 and S3),

although the plots of the indicators in Fig. 2.2 are quite different.

In the Bayesian inversion stage, we take β “ 0.03 and σ “ 0.0004 in pCN-MH.

The maximum number of samples is set to be 10000. The first 3000 samples are

discarded and the conditional mean of the posterior density for each parameter is

computed. The results are shown in Table 2.1, where ¨‹ represents the conditional

mean. The reconstructed parameters are close to the exact ones.

j
Exact Parameters Reconstructed parameters for S1

λj zj λ‹
j z‹

j

1 6 (2, 2) 5.8528 (1.9980, 1.9967 )

2 5 (-2, 2) 5.0681 (-2.0026, 2.0040)

3 7 (0, -2) 6.9588 (-0.0003, -1.9982)

j
Reconstructed parameters for S2 Reconstructed parameters for S3

λ‹
j z‹

j λ‹
j z‹

j

1 5.9798 (2.0000, 1.9954) 6.2389 (2.0103, 1.9990)

2 5.0730 (-2.0017, 2.0087) 4.8071 (-1.9949, 1.9938)

3 6.9029 (-0.0100, -1.9934) 6.9066 (0.0259, -2.0054)

Table 2.1: Exact and reconstructed parameters for Example 1.
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In Table 2.2, we show the CPU time in seconds of the proposed method. The

numbers for other examples are similar and thus omitted.

Apertures
DSM algorithm MCMC algorithm (10000 samples)

CPU time(s) CPU time(s) Average time(s)/1000 samples

S1 4.2412 102.4620 10.2462

S2 4.2302 101.3700 10.1370

S3 4.1236 96.1320 9.6132

Table 2.2: The CPU time in seconds for Example 1.

As mentioned in Section 2.3, multiple frequency data are necessary to obtain

meaningful reconstructions of sources, in particular, when the data are partial. In

Fig. 2.3, we plot the indicator functions using single frequency data (k “ 5) with

S1, S2, S3 by the DSM. It can be seen that the results are almost useless, in particular,

for S3.

Figure 2.3: Plots of the indicators of the DSM using single frequency data (k “ 5).

Left: S1. Middle: S2. Right: S3.

2.5.2 Example 2

Let F pxq “ ř3
j“1pλj ` ξj ¨ ∇qδpx ´ zjq with

tλju3j“1 “ t0, 9, 0u,

28



tξju3j“1 “ tp
?
2,´

?
2q, p0, 0q, p2, 0qu,

tzju3j“1 “ tp2, 0q, p´2, 2q, p´2,´2qu.

Again, km “ 5, kM “ 10 and Nk “ 10. In Fig. 2.4, we plot the indicator functions for

S1, S2, S3. The locations of sources tzDSM
j u3j“1 reconstructed by the DSM are

Figure 2.4: Example 2 plots the indicators of the DSM. Left: S1. Middle: S2. Right:

S3.

S1 : tp2.00, 0.00q, p´2.00, 2.00q, p´2.00,´2.00qu,

S2 : tp2.00,´0.02q, p´2.00, 2.04q, p´2.00,´2.02qu,

S3 : tp1.98, 0.00q, p´2.00, 2.00q, p´2.20,´1.94qu.

For partial data, the reconstructed locations are not as accurate as the case of full

data, but still satisfactory.

In the Bayesian inversion stage, we set β “ 0.05 and σ “ 0.0004. Then 20000

samples are drawn from the prior distribution and the first 5000 samples are discarded.

The inversion results of the MCMC algorithm are shown in Table 2.3. In particular,

for partial data, the reconstructed locations are improved in general.

2.5.3 Example 3

Let F pxq “ ř2
j“1 λj expp´ξj}x ´ zj}2q with

tλju2j“1 “ t3,´4u,
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j
Exact Parameters Reconstructed parameters for S1

λj ξj zj λ‹

j ξ‹

j z‹

j

1 - p
?
2,´

?
2q (2, 0) - (1.4886, -1.4727) (1.9936, -0.0019)

2 9 - (-2, 2) 8.9373 - (-1.9863, 2.0037)

3 - (2, 0) (-2, -2) - (1.9696, -0.0350) (-2.0030, -1.9970)

j
Reconstructed parameters for S2 Reconstructed parameters for S3

λ‹

j ξ‹

j z‹

j λ‹

j ξ‹

j z‹

j

1 - (1.4087, -1.4573 ) (1.9948, -0.0111) - (1.4073, -1.1819) (2.0037, 0.0072)

2 8.9656 - (-2.0077, 2.0116) 7.7530 - (-1.9899, 2.0016)

3 - (1.7725, 0.0003) (-2.0022, -2.0173) - (1.7091, 0.0544) (-2.1487, -1.9156)

Table 2.3: Exact and reconstructed parameters for Example 2.

tξju2j“1 “ t2.5, 1u,

tzju2j“1 “ tp2, 2q, p´1.5,´1.5qu.

Set rkm, kM s “ r2, 7s and Nk “ 10. In Fig. 2.5, we plot the indicator functions for

S1, S2, S3. The reconstructed locations tzDSM
j u2j“1 by the DSM are

Figure 2.5: Example 3 plots of the indicators of the DSM. Left: S1. Middle: S2.

Right: S3.

S1 : tp2.00, 2.00q, p´1.52,´1.52qu,

S2 : tp2.00, 1.96q, p´1.52,´1.44qu,

S3 : tp2.04, 2.04q, p´1.52,´1.56qu.

The locations are satisfactory. However, the results deteriorate for partial data.
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In the Bayesian inversion stage, we set β “ 0.03 and σ “ 0.004. 15000 samples

are drawn and the first 3000 samples are discarded. The inversion results are shown

in Table 2.4.

j
Exact Parameters Reconstructed parameters for S1

λj ξj zj λ‹
j ξ‹

j z‹
j

1 3 2.5 (2, 2) 3.0458 2.5154 (1.9894, 2.0094)

2 -4 1 (-1.5, -1.5) -4.0901 1.0202 (-1.5012, -1.5128)

j
Reconstructed parameters for S2 Reconstructed parameters for S3

λ‹
j ξ‹

j z‹
j λ‹

j ξ‹
j z‹

j

1 2.8525 2.4827 (2.0098, 1.9999) 3.0494 2.3827 (2.0211, 1.9951)

2 -4.1944 1.0136 (-1.5002, -1.5067) -3.9265 1.0216 (-1.5064, -1.4779)

Table 2.4: Exact and reconstructed parameters for Example 3.

2.5.4 Example 4

Let F pxq “ ř4
j“1 λj expp´ξj}x ´ zj}2q with

tλju4j“1 “ t2, 4,´3, 2.5u,

tξju4j“1 “ t2, 3, 2, 1u,

tzju4j“1 “ tp2, 2q, p´2, 2q, p´2,´2q, p2,´2qu.

Set rkm, kM s “ r1.5, 8s and Nk “ 15. In Fig. 2.6, we plot the indicator functions for

S1, S2, S3.

The reconstructed locations of sources tzDSM
j u4j“1 by the DSM are

S1 : tp2.04, 2.04q, p´2.00, 2.00q, p´2.00,´2.00q, p1.96,´2.00qu,

S2 : tp2.04, 2.04q, p´2.00, 2.00q, p´2.00,´1.84q, p1.96,´2.20qu,

S3 : tp2.00, 1.64q, p´1.96, 2.12q, p´2.08,´2.16q, p2.04,´1.64qu.
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Figure 2.6: Example 4 plots of the indicators of the DSM. Left: S1. Middle: S2.

Right: S3.

Similar to the previous examples, the results deteriorate when data are less.

In the Bayesian inversion stage, β “ 0.03 and σ “ 0.004. 20000 samples are

drawn and the first 5000 samples are discarded. The inversion results are shown in

Table 2.5.

Given the approximate locations by the DSM, the Bayesian step not only recon-

structs the intensities of the sources, but also improve the accuracy of the locations, in

particular, when the data are less. In Table 2.5 for S3, the exact location of the fourth

source is p2,´2q. The location by the DSM is p2.04,´1.64q. After the Bayesian step,

the location is p1.9733,´1.7340q. See also the reconstructions of the third sources of

Example 2 in Table 2.3 and Example 3 in Table 2.4, respectively.

2.5.5 Comparison with Other Priors

We compare the DSM-Gaussian prior with two other priors. The first one is the

Whittle-Matérn prior, which is a Gaussian distribution with covariance function

Cpx, yq “ 21´ν

Γpνq

ˆ |x ´ y|
l

˙ν

Kν

ˆ |x ´ y|
l

˙

, (2.5.45)

where Γp¨q is the Gamma function, Kν is the νth order second kind modified Bessel

function, ν is a smoothness parameter and l is the length scale. The other one is the

level set prior. Given a continuous level-set function ϕ : V Ñ R and fixed constants

32



j
Exact Parameters Reconstructed parameters for S1

λj ξj zj λ‹
j ξ‹

j z‹
j

1 2 2 (2, 2) 2.2408 2.2712 (2.0392, 1.9954)

2 4 3 (-2, 2) 3.9250 2.9601 (-2.0023, 2.0165)

3 -3 2 (-2, -2) -3.1428 2.1598 (-1.9885, -2.0034)

4 2.5 1 (2, -2) 2.5928 1.0771 (1.9531, -2.0413)

j
Reconstructed parameters for S2 Reconstructed parameters for S3

λ‹
j ξ‹

j z‹
j λ‹

j ξ‹
j z‹

j

1 2.1579 2.1221 (2.0347, 1.9412) 1.9819 1.5675 (2.0824, 1.7697 )

2 3.8821 2.8849 (-1.9937, 2.0028) 4.1515 2.9813 (-2.0566, 2.0335 )

3 -2.8060 2.0517 (-2.0167, -1.9650) -3.2017 1.7718 (-2.0677, -2.1082)

4 2.3755 0.9439 (1.9904, -2.1102) 2.2924 0.8748 (1.9733, -1.7340)

Table 2.5: Exact and reconstructed parameters for Example 4.

tliuni“0, ´8 “ l0 ă l1 ¨ ¨ ¨ ă ln “ 8, we define

Vi “ tx P V |li´1 ď ϕpxq ă liu, i “ 1, ¨ ¨ ¨ , n,

such that Yn
i“1V̄i “ V̄ and Vi X Vj “ H for i ‰ j. For given w1, ¨ ¨ ¨ , wn, the level-set

map G : CpV ;Rq Ñ L2pV ;Rq is

Gpϕqpxq Ñ wpxq “
n
ÿ

i“1

wiIVi
pxq,

where IVi
denotes the characteristic function of Vi. For more details of the Whittle-

Matérn prior and the level-set prior, we refer the readers to [34, 54] and the references

therein.

As a test problem, we consider again Example 4. For the level-set prior, we define

Gpϕqpxq Ñ wpxq “ w`
IV`

pxq ` w0
IV0

pxq ` w´
IV´

pxq, (2.5.46)
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Figure 2.7: Three random draws. Top row: Whittle-Matérn prior. Bottom row:

Level-set prior.

Figure 2.8: The exact source function.

where

$

’

’

’

’

’

&

’

’

’

’

’

%

w` “ max
xPV`

ϕpxq,

w0 “ 0,

w´ “ min
xPV´

ϕpxq,

and

$

’

’

’

’

’

&

’

’

’

’

’

%

V` “ tx P V | ϕpxq ą 0.3u,

V0 “ tx P V | ´ 0.3 ď ϕpxq ď 0.3u,

V´ “ tx P V | ϕpxq ă ´0.3u.
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Figure 2.9: Reconstructions. Top row: DSM-Gaussian prior. Middle row: Whittle-

Matérn prior. Bottom row: level-set prior. From left to right: S1, S2, S3.

Figure 2.10: Relative errors with respect to the iterations. Left: DSM-Gaussian prior.

Middle: Whittle-Matérn prior. Right: level-set prior.
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For the level-set prior, one first draws ϕ from the Whittle-Matérn prior and com-

putes the level-set map (2.5.46). The smoothness and length scale parameters in the

Whittle-Matérn prior are ν “ 2 and l “ 0.1, respectively. In Fig 2.7, we show three

random draws from the Whittle-Matérn prior and the corresponding level-set prior.

We use the MCMC method discussed in Section 2.4 for all the priors. The tran-

sition kernel for the Whittle-Matérn prior is

ϕnew “
`

1 ´ β2
˘1{2

ϕold ` βϕ̃, (2.5.47)

and for the level-set prior is

wnew “
`

1 ´ β2
˘1{2

wold ` βGpϕ̃q. (2.5.48)

Here ϕ̃’s in (2.5.47) and (2.5.48) are drawn from the Whittle-Matérn prior. In Fig. 2.8,

we show the exact source function. The reconstruntions are shown in Fig. 2.9. In

Fig. 2.10, we show the relative errors }F ´Finv}l2{}F }l2 with respect to the iterations.

We can see that the proposed method is robust with respect to the observation

aperture. As the observation aperture gets smaller, the inverse problem becomes more

ill-posed. The results of the direct applications of other two priors deteriorate dramat-

ically. When the aperture becomes quite small (S3), it is difficult to tell the correct

number of the sources from the results using the Whittle-Matérn prior (Fig. 2.9, the

third column). Note that the focus of this chapter is some main characteristics of the

sources (the number, locations and intensities) rather than the shape of an arbitrary

source function.

2.6 Conclusions

A new quality-Bayesian approach is proposed to reconstruct the locations and inten-

sities of the unknown acoustic sources. First, a DSM is developed to approximate

the locations of the sources. Second, the Bayesian inversion is used to obtain more

detailed information. The locations of the sources obtained in the first step are coded
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in the priors. A Metropolis-Hastings (MH) MCMC algorithm is employed to explore

the posterior density.

The DSM is fast to obtain the qualitative information of the sources, while the

Bayesian method is effective for the quantitative information. The approximate loca-

tions of the sources reconstructed by the DSM are critical to the convergence of the

MCMC method. The Bayesian approach constructs the intensities and also improves

the location reconstructions. In particular, when the locations by the DSM for par-

tial data is not accurate, the Bayesian inversion still can obtain reasonable results

(see Example 4). The two steps are based on the same physical model and use the

same measured data. The new approach inherits the merits of both the DSM and the

Bayesian inversion. Numerical examples show that the proposed method is effective

when only partial data are available.

In chapter 3, we will study the time harmonic inverse source problem using the

combination of deterministic and statistical method.
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Chapter 3

A deterministic-statistical

approach to reconstruct moving

sources using sparse partial data1

3.1 Introduction

The detection and identification of moving targets using waves have many impor-

tant applications such as radar, underwater acoustics, and through the wall imaging

[9, 12, 22, 76]. In this chapter, we consider the reconstruction of moving acoustic

point sources, which can be mathematically formulated as a time domain inverse

source problem. Several methods were proposed recently from the inverse problem

community for the time-domain inverse problems of wave equations, e.g., the algebraic

method, the time-reversal techniques, the sampling-type methods and the method of

fundamental solutions [93, 105, 41, 37, 20]. See also [51] for a uniqueness result for

the inverse moving source problem. In practice, the measured data are usually sparse,

partial and compromised by noises. Classical methods such as the linear sampling

1This chapter has been published as an article in Inverse Problems.

https://iopscience.iop.org/article/10.1088/1361-6420/abf813
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method and the direct sampling method might not provide satisfactory results. In

general, the performance deteriorates significantly as the data become less [89, 42].

In recent years, the Bayesian method became popular for inverse problems [63, 99].

For some recent applications of the Bayesian method for inverse problems, we refer

readers to [87, 62, 114] and the references therein. Motivated by the detection of

the moving object behind the wall using ultrawideband (UWB) radar [76, 107], the

current chapter considers a time-domain inverse problem to determine the moving

path of a radiating source with partial data. We proposed a two-step deterministic-

statistical approach. In the first step, we develop an approximate direct sampling

method (ADSM) to obtain the rough locations of the sources at different times.

Since only partial data are available, the locations are usually not accurate compared

to the case of full data. Nonetheless, the ADSM does provide useful information

of the unknown sources. In the second step, a Bayesian method is used to obtain

more detailed information. The priors, which are built on the information obtained

in the first step, play a key role for the success of the Bayesian inversion. The idea of

utilizing a combined deterministic-statistical approach was first employed to treat the

inverse acoustic scattering problem to reconstruct an obstacle with limited-aperture

data in [80]. Later, the approach was used to determine both the locations and

strengths of static multipolar sources from partial radiated acoustic fields [81]. For

recent developments on path reconstructions of moving point sources, we refer the

readers to [41, 40, 20, 93, 107, 108, 109].

Inverse problems with partial measurements arise from many applications in sci-

ence and engineering. Compared with the case of full measurements, it is more

challenging in general. The reconstruction deteriorates when the data are less or the

observation aperture becomes smaller. In this chapter, for partial data, we propose a

deterministic-statistical approach to reconstruct the moving paths of acoustic sources.

The contributions are as follows: 1) an approximate direct sampling method is de-

veloped to obtain rough locations of moving acoustic sources; 2) an MCMC (Markov
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chain Monte Carlo) algorithm is employed to improve/construct the moving paths of

the sources using the information obtained by the ADSM; and 3) the well-posedness

of the posterior measure is analyzed under the Hellinger distance. Both steps, ADSM

and MCMC, are based on the same physical model and use the same set of measured

data. The combined approach inherits the merits of the deterministic method and

Bayesian inversion as demonstrated by the numerical examples.

The rest of the chapter is organized as follows. In Section 3.2, the direct and inverse

problems are introduced. An approximate direct sampling method is developed in

Section 3.3. The Bayesian inversion scheme is presented in Section 3.4. Section 3.5

contains several validating numerical examples. Finally, we draw some conclusions in

Section 3.6.

3.2 Direct and Inverse Source Problems

We begin with the mathematical model governing the wave source radiation. Denote

by Ω Ă R
3 a simply-connected bounded domain. Consider the wave propagation due

to a point excitation in a homogeneous and isotropic media. The speed of the wave

in the background media is denoted by the constant c. Let dΩ :“ supx,yPΩ }x´ y} and

T ą 2dΩ{c be the terminal time for measuring the radiated data.

For a single point source, the radiated wave field u satisfies the following wave

equation

c´2Bttupx, tq ´ ∆upx, tq “ λptqδpx ´ zptqq in R
3 ˆ p0, T s, (3.2.1a)

with initial conditions

upx, 0q “ Btupx, 0q “ 0 in R
3, (3.2.1b)

where δ denotes the Dirac delta distribution, the temporal pulse (magnitude of the

impulsive load) λ : R Ñ R is Lipschitz continuous and λptq “ 0 for t ă 0, z : R` Ñ Ω

is the trajectory of the moving point source. We refer to [105] for a regularity result

on the solution of problem (3.2.1) in some spatial-temporal Sobolev spaces.
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Throughout the chapter, we assume that z is continuous and its velocity v :“ dz{dt
exists. Furthermore, we suppose that the point source moves slowly compared with

the speed of the wave c, that is,

}vptq} ! c, @t P r0, T s. (3.2.2)

This is the case for many radar applications such as through-wall imaging radars

where c is the speed of electromagnetic waves and vptq is the speed of the visually

obscured target, e.g., a human being inside the building [76, 107].

The direct problem can be described as follows: given zptq and λptq, find the

radiating field u satisfying (3.2.1). It is well known that the solution to this problem

is given explicitly by the Liénard–Wiechert retarded potential (see, e.g., [59]):

uzpx, tq “ λpτq
4π}x ´ zpτq}

´

1 ´ vpτq¨px´zpτqq
c}x´zpτq}

¯ , t P p0, T s, (3.2.3)

where the retarded time τ is the solution of the equation

t “ τ ` c´1}x ´ zpτq}.

When zptq ” z0 is a static point source, the solution to (3.2.1) is simply

uz0px, tq “ λpt ´ c´1}x ´ z0}q
4π}x ´ z0} . (3.2.4)

For a fixed small enough T , since }vptq} ! c, t P r0, T s, it holds that

|t ´ τ | ! 1 and

ˇ

ˇ

ˇ

ˇ

vpτq ¨ px ´ zpτqq
c}x ´ zpτq}

ˇ

ˇ

ˇ

ˇ

! 1.

Suppose Γ Ă R
3zΩ is a measurement surface (see Fig 3.1 for a geometric illustration

of the problem). Let UT :“ Γ ˆ r0, T s and define }upx, tq}2UT
:“

şT

0

ş

Γ
|upx, tq|2dxdt.

We have that

}uzpx, tq ´ uz0px, tq}2UT
:“

ż T

0

ż

Γ

|uzpx, tq ´ uz0px, tq|2dxdt ! 1. (3.2.5)

In this chapter, we consider the time domain inverse source problem (TISP) of

recovering the trajectory zptq of a moving point source for (3.2.1) from the measure-

ment data upx, tq|Γˆp0,T s. In particular, we are interested in the case of partial data,
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e.g., when Γ is a fraction of a sphere. The temporal pulse λptq P C1r0, T s is assumed

to be a periodic function with period p P R`.

Ω

D

zptq
upx, tq

Γ

Figure 3.1: An illustration of the time-dependent inverse source problem.

3.3 Direct Sampling Method

In this section we shall develop an approximate direct sampling method (ADSM)

for the inverse problem TISP to recover the path zptq from the measurement data

upx, tq|Γˆp0,T s. The sampling-type methods share the basic idea of identifying the

unknown target by constructing some indicator functions over the probing/sampling

region [30]. Once the indicators are evaluated, the geometrical information (e.g.,

location and shape) of the target could be recovered using a point-wise criterion to

determine whether the sampling point lies inside or outside the target.

As one of the sampling-type methods, the direct sampling method became popular

recently due to several compelling features. The direct sampling method is fast and

easy to implement. Moreover, they are robust to noise-contaminated measurements

in general. However, the direct sampling methods usually require a large amount

of measurements and are inherently qualitative. Nonetheless, the direct sampling

methods can provide useful information even for partial measurement data.

Let D be a bounded domain in R
3 such that Ω Ă D. The measurement sensors
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are located on a surface Γ Ă R
3zD̄ (see Fig. 3.1). Define

φpx, t; yq “ λpt ´ c´1}x ´ y}q
4π}x ´ y} , px, t; yq P Γ ˆ p0, T s ˆ D. (3.3.6)

Let tT1, ¨ ¨ ¨ , TJu be a partition of p0, T s such that Tj “ ppj ´ 1qp, jps, j “ 1, 2, ¨ ¨ ¨ , J .
Since the temporal function λptq is a periodic function with period p and }v} ! c, the

displacement of the point source is small on each Tj. Thus zptq can be approximated

by a stationary point y P R
3 on Tj.

Given the measurement data upx, tq with x P Γ and t P Tj, j “ 1, 2, ¨ ¨ ¨ , J , we
propose the following indicator function

Ipy;Tjq :“
ż

Tj

|xupx, tq, φpx, t; yqyL2pΓq|
}upx, tq}L2pΓq}φpx, t; yq}L2pΓq

dt, y P D, (3.3.7)

where x¨, ¨yL2pΓq denotes the usual L2 inner product. Note that, in (3.3.7), instead of

the exact radiating field for a moving point source y P D, we use an approximated

field φ for a stationary point source in (3.3.6). This is why we call the following

algorithm the approximated direct sampling method (ADSM). It is clear that the use

of φ simplifies the computation of the indicators.

The indicator is a superposition of the Bessel functions and decays as the sampling

point moves away from the source. The behavior of the indicator can be analyzed us-

ing the arguments in [88, 81] and thus omitted here. The numerical results in Section

3.5 show that this indicator function approaches its maximum when the sampling

point y tends to the exact instantaneous location of the point source at each time

steps.

Now we are ready to present the approximate direct sampling method for the

TISP.

ADSM: Approximate Direct Sampling Method

Step 1: Collect the data upx, tq at the measurement points txlu P Γ, a sequence

of discrete time ttnj u P p0, T q and for each j, ttnj u P Tj;
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Step 2: Generate the sampling points Th for D;

Step 3: Compute Ipy;Tjq for the sub-interval Tj at sampling point y P Th;

Step 4: Locate the maximum of Ipyj;Tjq for each j, take the corresponding

yj as an approximation of zptq on Tj. The sequence of locations tyjuJj“1 is the

reconstructed moving path.

The performance of the ADSM depends on how much data upx, tq are available.

If the measured data are complete or nearly complete, for example, Γ is a sphere with

D inside and upx, tq is available for x P Γ and t P p0, T s, the algorithm can produce

a good reconstruction of the trajectory of the moving point source zptq. However, in
practice, the measured data upx, tq are usually partial and the reconstructions can

be unsatisfactory. Nonetheless, the ADSM provides useful information of the moving

source. Such information can be coded in the priors for the Bayesian inversion to

obtain improved reconstructions.

3.4 Bayesian Inversion

In this section, we employ the Bayesian inversion to refine the results obtained by the

ADSM. The TISP is reformulated as a statistical inference problem for the source

location. The approximate location obtained by the ADSM is coded in the priors for

Bayesian inversion. The well-posedness of the posterior density function is analyzed

using the Bayesian approximation error approach [63] and the framework in [99]. An

MCMC algorithm is then used to explore the posterior density function of the source

location.

3.4.1 Bayesian Framework for Inverse Problems

The inverse problem can be viewed as seeking information about the unknown q

given the measurement m under the model function F , which might be inaccurate
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and contain noise ξ, i.e., given m, reconstruct q such that

m “ Fpq, ξq. (3.4.8)

For statistical inverse problems, the parameters in (3.4.8) are treated as random

variables. Denote the probability density function and the probability measure of a

random variable γ by πγ and µγ, respectively. Note that the information about q

obtained by the ADSM will be coded into the prior density πpqq2. The probability of

m given q, which is called the likelihood function, is denoted by πpm|qq.
Bayesian inversion seeks the posterior distribution πpq|mq. Using the Bayes’ the-

orem, the joint distribution of the associated variables can be decomposed as

πpq,m, ξq “ πpm, ξ|qqπpqq “ πpq, ξ|mqπpmq

and the posterior distribution of q is then given by

πpq|mq “
ż

πpq, ξ|mqdξ.

Moreover, πpq|mq9πpm|qqπpqq.
In (3.4.8), m “ tupx, tqu P Y “ R

NxˆNp is the noisy measurement data collected

on ΓˆTj, j “ 1, 2, ¨ ¨ ¨ , J , where Nx and Np are the numbers of observation positions

and times. The unknown parameter q P X “ R
3, i.e., the position of the point source

on the time period Tj, is assumed to be static due to (3.2.2). The space Y is equipped

with the Frobenius norm }A}Y “
´

řNp

i“1

řNx

j“1 |aij|2
¯1{2

for A P Y . In this chapter,

the Markov chain Monte Carlo (MCMC) method is employed to explore the posterior

distribution πpq|mq using the Bayesian approximation error approach and the CM is

adopted as the point estimate for q.

3.4.2 Bayesian Approximation Error Approach

The main idea of the Bayesian approximation error (BAE) approach is to replace the

accurate forward model by a less accurate but computationally feasible one [63, 71,

2If the arguments coincide with the probability density function, we drop the subscripts. For

example, we write πqpqq “ πpqq, πm|qpm|qq “ πpm|qq, but retain the subscript in πepm ´ Fpqq ´ ζq.
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62]. Let q̄ “ zptq and F̄ be the accurate forward model given by (3.2.3). We consider

the following statistical model for the TISP

m “ F̄pq̄q ` e, (3.4.9)

where e is the additive error. Furthermore, we assume the noise e follows a normal

distribution with mean e˚ and variance Σee, i.e., πepeq “ N pe˚,Σeeq. Here we take

e˚ “ 0.

Using the statistical model (3.4.9) would require the knowledge of the exact path

of the point source for t P p0, T s, which is inaccessible. Fortunately, the exact path is

not necessary for the BAE. One proceeds as follows. Let P be a projection operator

and q “ P q̄. Instead of the accurate forward model F̄ pq̄q, one uses the following

approximate forward operator

Fpqq “ λpt ´ c´1}x ´ q}q
4π}x ´ q} , (3.4.10)

which is computationally cheaper and more approachable. Then the statistical model

can be written as

m “ F̄pq̄q ` e “ Fpqq ` ζ ` e,

where ζ “ F̄pq̄q ´ Fpqq is the approximation error. Due to the fact that }vptq} ! c

and (3.2.5), it is sufficient to study the well-posedness for the approximate forward

operator Fpqq.
Assume that e is separately independent of q and ζ. According to [71, 62], the

posterior distribution satisfies

πpq|mq 9 πpm|qqπpqq “
ż

Y

πepm ´ Fpqq ´ ζqπpζ|qq dζ πpqq.

In the approximation error approach, πpζ|qq is approximated with a normal distribu-

tion. Assume that the normal approximation of the joint distribution πpζ, qq is given
by

πpζ, qq 9 exp

$

’

&

’

%

´1

2

¨

˝

ζ ´ ζ˚

q ´ q˚

˛

‚

J ¨

˝

Σζζ Σζq

Σqζ Σqq

˛

‚

´1¨

˝

ζ ´ ζ˚

q ´ q˚

˛

‚

,

/

.

/

-

,
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Then we can write ζ|q „ N pζ˚|q,Σζ|qq, where

ζ˚|q “ ζ˚ ` ΣζqΣ
´1
qq pq ´ q˚q,

Σζ|q “ Σζζ ´ ΣζqΣ
´1
qq Σqζ .

Define the normal random variable w so that w “ e ` ζ|q. It holds that

w|q „ N pw˚|q,Σw|qq,

where

w˚|q “ e˚ ` ζ˚ ` ΣζqΣ
´1
qq pq ´ q˚q,

Σw|q “ Σee ` Σζζ ´ ΣζqΣ
´1
qq Σqζ .

The approximate posterior distribution can be written as

πpq|mq 9 exp

ˆ

´1

2
pm ´ Fpqq ´ w˚|qqJΣ´1

w|qpm ´ Fpqq ´ w˚|qq
˙

πpqq,

Let Gpq;mq “ 1
2
pm´Fpqq´w˚|qqJΣ´1

w|qpm´Fpqq´w˚|qq. Assume that µm is absolutely

continuous with respect to µq, i.e., µm ! µq. Using Bayes’ formula, we have that

dµm

dµq

pqq “ 1

Lpmq expp´Gpq;mqq,

where Lpmq :“
ş

X
exp p´Gpq;mqq dµqpqq. In this chapter, the prior is chosen to be

a normal distribution, i.e., q „ N pq˚,Σqqq. We note that in practice other prior

distributions can be used as well.

We now study the properties of the operator F following [99].

Lemma 3.4.1. For every ε ą 0, there exists C :“ Cpεq P R such that, for all q P X,

}Fpqq}Y ď C.

Proof. Since λptq is Lipschitz continuous, we have

|λpt1q ´ λpt2q| ď C1|t1 ´ t2|, @t1, t2 P r0, T s,
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and hence |λptq| ď C2 for all t for some constant C1, C2. Define d “ inft}y1 ´ y2} :

y1 P Γ, y2 P Du. By (3.4.10), it holds that

|Fpqq| ď |λpt ´ c´1}x ´ q}q|
4πd

ď C2

4πd
.

Therefore,

}Fpqq}Y ď C

and the proof is complete. �

Lemma 3.4.2. For every r ą 0 there exists a C :“ Cprq ą 0 such that, for all

q1, q2 P X with maxt}q1}X , }q2}Xu ă r,

}Fpq1q ´ Fpq2q}Y ď C}q1 ´ q2}X .

Proof. Define d̃ “ supt}y1 ´ y2} : y1 P Γ, y2 P Du. Based on the Lipschitz continuity

of λptq,

|Fpq1q ´ Fpq2q| “
ˇ

ˇ

ˇ

ˇ

λpt ´ c´1}x ´ q1}q
4π}x ´ q1}

´ λpt ´ c´1}x ´ q2}q
4π}x ´ q2}

ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇ

ˇ

ˇ

λpt ´ c´1}x ´ q1}q}x ´ q2} ´ λpt ´ c´1}x ´ q2}q}x ´ q1}
4π}x ´ q1}}x ´ q2}

ˇ

ˇ

ˇ

ˇ

ď
ˇ

ˇ

ˇ

ˇ

λpt ´ c´1}x ´ q1}q}x ´ q2} ´ λpt ´ c´1}x ´ q1}q}x ´ q1}
4πd2

ˇ

ˇ

ˇ

ˇ

`
ˇ

ˇ

ˇ

ˇ

λpt ´ c´1}x ´ q1}q}x ´ q1} ´ λpt ´ c´1}x ´ q2}q}x ´ q1}
4πd2

ˇ

ˇ

ˇ

ˇ

ďC2

ˇ

ˇ

ˇ

ˇ

}x ´ q2} ´ }x ´ q1}
4πd2

ˇ

ˇ

ˇ

ˇ

` C1

ˇ

ˇ

ˇ

ˇ

}x ´ q2} ´ }x ´ q1}
4πd2

ˇ

ˇ

ˇ

ˇ

1

c
d̃

ď}q1 ´ q2}X
4πd2

ˆ

C2 ` 1

c
C1d̃

˙

.

It yields that

}Fpq1q ´ Fpq2q}Y ď C}q1 ´ q2}X .

�

The following theorem provides the well-posedness of the Bayesian approximation

error approach. It proof is standard and we refer the readers to Section 4 of [99] for

more details.
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Theorem 3.4.3. Assume that µq is a Gaussian measure satisfying µqpXq “ 1 and

µm ! µq. For m1 and m2 with maxt}m1}Y , }m2}Y u ď r, there exists M “ Mprq ą 0

such that

dHellpµm1
, µm2

q ď M}m1 ´ m2}Y .

Proof. Given

Lpmq “
ż

X

exp

ˆ

´1

2
pm ´ Fpqq ´ w˚|qqJΣ´1

w|qpm ´ Fpqq ´ w˚|qq
˙

dµqpqq,

it is obvious that

0 ď Lpmq ď 1. (3.4.11)

According to Lemma 5.3.1, we have that

Lpmq ě
ż

}q}Xď1

exp
´

´
ˇ

ˇ

ˇ
Σ´1

w|q

ˇ

ˇ

ˇ
}m ´ w˚|q}2Y ´

ˇ

ˇ

ˇ
Σ´1

w|q

ˇ

ˇ

ˇ
}Fpqq}2Y

¯

dµqpqq

ě
ż

}q}Xď1

expp´Mqdµqpqq

“ expp´Mqµqt}q}X ď 1u

ą 0,

(3.4.12)

since the unit ball in X has positive measure and µq is a Gaussian measure.

Using Lemma 5.3.1, for µq, it holds that

|Lpm1q ´ Lpm2q| ď
ż

X

|expp´Gpq;m1qq ´ expp´Gpq;m2qq| dµqpqq.

ď
ż

X

|Gpq;m1q ´ Gpq;m2q| dµqpqq

ď
ż

X

ˇ

ˇ

ˇ
Σ´1

w|q

ˇ

ˇ

ˇ

2

ˇ

ˇ}m1 ´ Fpqq ´ w˚|q}2Y ´ }m2 ´ Fpqq ´ w˚|q}2Y
ˇ

ˇ dµqpqq

ď
ż

X

ˇ

ˇ

ˇ
Σ´1

w|q

ˇ

ˇ

ˇ

2

`ˇ

ˇ}m1}2Y ´ }m2}2Y
ˇ

ˇ ` }Fpqq ` w˚|q}Y }m1 ´ m2}Y
˘

dµqpqq

ď
ż

X

ˇ

ˇ

ˇ
Σ´1

w|q

ˇ

ˇ

ˇ

2

`

p}m1}Y ` }m2}Y q ` }Fpqq ` w˚|q}Y
˘

dµqpqq}m1 ´ m2}Y

ď M}m1 ´ m2}Y .

(3.4.13)
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From the definition of the Hellinger distance, we obtain that

d2Hellpµm1
, µm2

q “1

2

ż

X

#

ˆ

expp´Gpq;m1qq
Lpm1q

˙1{2
´
ˆ

expp´Gpq;m2qq
Lpm2q

˙1{2
+2

dµqpqq

“1

2

ż

X

#

ˆ

expp´Gpq;m1qq
Lpm1q

˙1{2
´
ˆ

expp´Gpq;m2qq
Lpm1q

˙1{2

`
ˆ

expp´Gpq;m2qq
Lpm1q

˙1{2
´
ˆ

expp´Gpq;m2qq
Lpm2q

˙1{2
+2

dµqpqq

ďLpm1q´1

ż

X

"

exp

ˆ

´1

2
Gpq;m1q

˙

´ exp

ˆ

´1

2
Gpq;m2q

˙*2

dµqpqq

`
ˇ

ˇLpm1q´1{2 ´ Lpm2q´1{2ˇ
ˇ

2
ż

X

expp´Gpq;m2qqdµqpqq.

(3.4.14)

With the Lemma 5.3.1, it holds that

ż

X

"

exp
´

´ 1

2
Gpq;m1q

¯

´ exp
´

´ 1

2
Gpq;m2q

¯

*2

dµqpqq

ď
ż

X

ˇ

ˇ

ˇ

1

2
Gpq;m1q ´ 1

2
Gpq;m2q

ˇ

ˇ

ˇ

2

dµqpqq

ď

ˇ

ˇ

ˇ
Σ´2

w|q

ˇ

ˇ

ˇ

16

ż

X

ˇ

ˇ

ˇ
}m1 ´ Fpqq ´ w˚|q}2Y ´ }m2 ´ Fpqq ´ w˚|q}2Y

ˇ

ˇ

ˇ

2

dµqpqq

ď M}m1 ´ m2}2Y .

(3.4.15)

Using the bounds on Lpm1q and Lpm2q, we have that

ˇ

ˇLpm1q´1{2 ´ Lpm2q´1{2ˇ
ˇ

2 ď M max
´

Lpm1q´3, Lpm2q´3
¯

|Lpm1q ´Lpm2q|2. (3.4.16)

Combining (3.4.11)-(5.3.12), we that

dHellpµm1
, µm2

q ď M}m1 ´ m2}Y .

�

We are now ready to present the MCMC method to reconstruct the trajectory

zptq by incorporating in the priors the information obtained by the ADSM.
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ADSM-MCMC:

1. Given p, J , and measured data upxl, t
n
j q on UT .

2. For j “ 1, . . . , J , do

a. Use the ADSM to find yj for Tj and set q
p1q
j “ yj.

b. For k “ 1, ¨ ¨ ¨ , K ´ 1, do

I. Generate

q̃ “ βyj ` p1 ´ βqqj´1 ` σN p0, 1q if j ą 1 pβ “ 1 if j “ 1q;

II. Compute αpq̃, qpkq
j q “ min

¨

˝1,
πpq̃q

π
´

q
pkq
j

¯

˛

‚;

III. Draw α̃ „ Up0, 1q. If α ą α̃, then q
pk`1q
j “ q̃, otherwise q

pk`1q
j “ q

pkq
j .

c. Set qj “ 1
K

K
ÿ

k“1

q
pkq
j .

3. Output the moving path tqjuJj“1.

We remark that how to use of the locations obtained by the ADSM is problem-

dependent. For example, if the target moves rather slow, one can set β “ 0. If the

target moves fast, one can choose β “ 1.

3.5 Numerical Examples

In this section, we will present several numerical examples to demonstrate the perfor-

mance of the proposed method. On each Tj, we choose λptq to be the Ricker wavelet,

which has been widely used in geophysics (see, e.g., [107]),

λptq “
`

1 ´ 2π2f 2
0 pt ´ p{2q2

˘

exp
`

´π2f 2
0 pt ´ p{2q2

˘

, t P r0, ps, (3.5.17)
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where f0 P R` is the central frequency. The synthetic data upx, tq is generated using

(3.2.3) with some noises:

uεpx, tq “ upx, tqp1 ` εrq,

where ε is the noise level and r is a random number from the uniform distribution

Ur´1, 1s.
For all examples, we set c “ 330, the terminal time T “ 4 and p “ 0.1. The

number of equidistant time steps in one period is Np. Since p0, T s “ ŤJ

j“1 Tj, where

J “ T {p, we have the time increment ∆t “ p{Np and NT “ JNp. The time dis-

cretization is tnj “ ppj ´ 1qNp ` nq∆t, n “ 1, 2, ¨ ¨ ¨ , Np, j “ 1, ¨ ¨ ¨ , J . Using the

spherical coordinates pR, θ, ηq

x :“ Rpsin η cos θ, sin η sin θ, cos ηq,

the measurement aperture Γ is a patch on the sphere with radius R “ 7, θ P p0, 2πs,
η P p0, πs. Assume that three measurement data sets are given by

tupx, tq : px, tq “ pθ, η, tq P Si, i “ 1, 2, 3u,

where (see Fig 3.2)

S1 “
! π

16
l, l “ 1, ¨ ¨ ¨ , 32

)

ˆ
!π

5
s, s “ 1, 2, 3, 4

)

ˆ ttnj u, Nx “ 128, Np “ 12,

S2 “
!

π ` π

8
l, l “ 0, 1, ¨ ¨ ¨ , 8

)

ˆ
!π

4
,
π

2

)

ˆ ttnj u, Nx “ 18, Np “ 10,

S3 “
!

π,
5π

4
,
3π

2

)

ˆ
!π

4
,
π

2

)

ˆ ttnj u, Nx “ 6, Np “ 7.

Note that the spacial coverage of S1 is the whole sphere corresponding to the case of

full aperture data. The spacial coverage is 1{4 of the sphere for S2 and 1{8 for S3. In

fact, for S3, there are just 6 measurement locations.

Let the central frequency f0 “ 100 for the temporal function λptq in (3.5.17) in

one period (see Fig 3.2(a)). The measurement locations are showed in Fig 3.2(b)-(d)

for S1, S2 and S3, respectively.
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Figure 3.2: The pulse function and measurement locations. (a) the temporal function

λptq; (b)-(d) measurement locations for S1, S2 and S3.

We take 101 ˆ 101 ˆ 101 sampling points, denoted by Th, uniformly distributed

in the sampling domain D “ r´5, 5s3. For j “ 1, 2, ¨ ¨ ¨ , J , the discrete version of the

indicator function (3.3.7) can be written as

Ipy, Tjq :“

Np
ř

n“1

Nx
ř

l“1

|upxl, t
n
j qφpxl, t

n
j ; yq|

Np
ř

n“1

ˆ

Nx
ř

l“1

u2pxl, t
n
j q
˙1{2 Np

ř

n“1

ˆ

Nx
ř

l“1

φ2pxl, t
n
j ; yq

˙1{2 , y P Th.

The ADSM reconstructs the locations of the source as the global maximum points

yj of the discrete indicator function Ipy, Tjq for y P Th. The sequence tyjuJj“1 is the

reconstructed path zptq by the ADSM. For partial data, the reconstructed path by

the ADSM can be unsatisfactory. The result becomes worse for less measurement
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data as we shall see.

Based on the information obtained by the ADSM, the Bayesian method is em-

ployed to improve the reconstructions. We set w|q „ N p10´41Nxˆ1, 10
´3INxˆNx

q,
where 1Nxˆ1 is a Nx-by-1 vector of ones and INxˆNx

is the Nx-by-Nx identity ma-

trix. For each Tj, K “ 5000 samples are generated in the MCMC algorithm. The

conditional means (CM) are used as the locations of the target.

3.5.1 Example 1: Reconstruction of a C-shape path

The exact moving path of a point source is given by (Fig. 3.3 (d))

zptq “ p1.5 ` 3 cosp4 ´ tq, 2 ` 3 sinp2 ` tq, 1.2 ´ 4 sinpt{2qq , t P r0, T s.

We take Σqq “ 0.2I3ˆ3 as the covariance of the prior distribution. The prior mean

q1,˚ for j “ 1 is y1 which is obtained from the ADSM at T1. At step j “ 2, ¨ ¨ ¨ , J ,
the prior mean qj,˚ is selected to be the CM of the Markov chain tqkj´1uKk“1 in the

previous step, i.e. qj,˚ “ qj´1.

The indicator functions Ipy, T1q using the measured data on S1, S2, S3 are shown

in Fig 3.3 (a)-(c). The reconstructed path using the ADSM and the ADSM-MCMC

are presented in Fig. 3.3(e)-(h) and (i)-(l), respectively. When the observation data

is sufficient (the full aperture case S1), the ADSM yields a satisfactory reconstruction

as shown in Fig. 3.3(e). It can be seen that, when the measured data decrease, the

reconstructions of both the ADSM and the ADSM-MCMC deteriorate (the second

row (e)-(h) and the third row (i)-(l)). Comparing (f) and (j), (g) and (k), or (h) and

(l), the ADSM-MCMC significantly outperforms the ADSM, in particular, when the

measurement data are less. Moreover, the Bayesian inference is robust to noises as

indicated by Fig. 3.3(k) and (l). The reconstructions are quite satisfactory for noise

levels ε “ 1% and 10% with px, tq P S3.
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3.5.2 Example 2: Reconstruction of a bow-shape path

We consider the path given by (Fig. 3.4 (d))

zptq “ p3 ´ 1.6t, 0.2 ` 2.6 sinp1.25tq,´0.3 ´ 2.1 sinp1.75tqq , t P r0, T s.

The covariance Σqq “ 0.2I3ˆ3 is used. Fig. 3.4 show the reconstructions. Again,

Fig. 3.4 (a)-(c) shows the plots of the indicator functions using the measured data

for S1, S2, S3, respectively. The recovered moving paths by the ADSM are given in

Fig. 3.4 (e)-(h), which suggest that the ADSM can provide useful information, but far

from accurate when the measured data are partial. In the second step, the Bayesian

method refines the paths based on the information obtained by the ADSM. Similar to

the previous example, as the measurement data become less, the performance of the

ADSM is getting worse (Fig. 3.4 (f)-(h)). The results of the ADSM-MCMC Fig. 3.4

(j)-(l) are significantly better than those produced by the ADSM.

3.5.3 Example 3: Simultaneous reconstruction of two paths

We consider the case of two moving point sources which are well-separated. Assume

that the signal functions of these sources are the same and their exact moving paths

are given by (Fig. 3.5 (d))

z1ptq “p2 ´ 2 cosp4 ´ 0.5tq, 1 ` 3 sinp2 ` tq, 2q,

z2ptq “p´4,´3 ` 1.3t, 1.5q.

Since (3.2.1a) is linear with respect to the sources, the proposed method works

the same way as the case of a single point source. To be precise, the source term of

(3.2.1a) is the superposition λptqδpx ´ z1ptqq ` λptqδpx ´ z2ptqq. Correspondingly, the
exact solution to (3.2.1) is now given by

upx, t; zptqq “ u1px, t; z1ptqq ` u2px, t; z2ptqq,

where u1 and u2 are given by (3.2.3) with zptq replaced by z1ptq and z2ptq, respectively.
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The case of multiple sources is more challenging. We have less confidence of

the reconstructions of the ADSM for partial data. Thus the covariance is set to be

Σqq “ 0.4I3ˆ3. The ADSM reconstructs two local maximums in Fig. 3.5 (a)-(c),

indicating the presence of two point sources. Similar to the previous two examples,

when the measured data are complete or almost complete, the ADSM can provide

satisfactory reconstructions. The performance is getting worse as the data become

less (Fig. 3.5 (f)-(h)). The ADSM-MCMC improves the reconstructions significantly

(Fig. 3.5 (j)-(l)). If one uses the same Σqq “ 0.2I3ˆ3 as the previous two examples,

more samples (K “ 80000) are needed to obtain satisfactory results (Fig. 3.6).

3.6 Conclusions

A deterministic-statistical approach is proposed to reconstruct the moving sources

using partial data. The approach contains two steps. The first step is a deterministic

method to obtain some qualitative information of the unknowns. The second step

is the Bayesian inversion with the prior containing the information obtained in the

first step. Both steps are based on the same physical model and use the same set of

measured data. Numerical results show that it is a promising technique for tracking

the moving point sources using partial data.

The reconstruction by the ADSM deteriorates significantly as the data become

less. However, it still contains useful information of the sources. Coded in the prior,

such information is critical for the success of the MCMC. One can use the uniform

prior and perform the Bayesian inverse directly. In Fig. 3.7, we show the reconstructed

path of the moving source for S3 and ε “ 1% with 5000 samples which follow the

uniform distribution Ur´5, 5s . It can be seen that the reconstructions in in Fig. 3.7

(c-d) are much worse than Fig. 3.3 (i) and (k).

In next chapter, we will introduce the inverse problem of reconstructing the

Stekloff eigenvalues and the index of refraction of an inhomogeneous medium from
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Cauchy data.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.3: Reconstructions of a C-shape path. (a)-(c) are cross-section plots of the

indicator functions Ipy, T1q. (d) is the exact trajectory zptq. (e)-(g) are the reconstruc-
tions by the ADSM using data on S1, S2, S3 with ε “ 1%. (h) is the reconstruction

by the ADSM using data on S3 with ε “ 10%. (i)-(k) are the reconstructions by the

ADSM-MCMC using data on S1, S2, S3 with ε “ 1%. (l) is the reconstruction by

the ADSM-MCMC using data on S3 with ε “ 10%. z, zs, and zb represent the exact

path, the reconstruction by the ADSM, and the reconstruction by the ADSM-MCMC,

respectively.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.4: Reconstruction of a bow-shape path. (a)-(c) are the cross-section plots

of the indicator functions Ipy, T1q. (d) is the exact trajectory zptq. (e)-(g) are the

reconstructions by the ADSM using data on S1, S2, S3 with ε “ 1%. (h) is the

reconstruction by the ADSM using data on S3 with ε “ 10%. (i)-(k) are the recon-

structions by the ADSM-MCMC using data on S1, S2, S3 with ε “ 1%. (l) is the

reconstruction by the ADSM-MCMC using data on S3 with ε “ 10%. z, dzs, and zb

represent the exact path, the reconstruction by the ADSM, and the reconstruction

by the ADSM-MCMC, respectively.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.5: Reconstruction of two paths. (a)-(c) are the cross-section plots of the in-

dicator functions Ipy, T1q. (d) is the exact trajectory zptq. (e)-(g) are the reconstruc-
tions by the ADSM using data on S1, S2, S3 with ε “ 1%. (h) is the reconstruction by

the ADSM using data on S3 with ε “ 10%. For K “ 5000 and Σqq “ 0.4I3ˆ3, (i)-(k)

are the reconstructions by the ADSM-MCMC using data on S1, S2, S3 with ε “ 1%.

(l) is the reconstruction by the ADSM-MCMC using data on S3 with ε “ 10%.
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(a) (b) (c) (d)

Figure 3.6: Reconstruction of two paths for K “ 80000 and Σqq “ 0.2I3ˆ3. (a)-(c) are

the reconstructions by the ADSM-MCMC using data on S1, S2, S3 with ε “ 1%. (d)

is the reconstruction by the ADSM-MCMC using data on S3 with ε “ 10%. z, zs and

zb represent the exact paths, the reconstruction by the ADSM, and the reconstruction

by the ADSM-MCMC, respectively.

(a) (b) (c) (d)

Figure 3.7: Reconstruction of the C-shape path. (a-b) histograms of the samples

tqpkq
1 uKk“1 with normal and uniform prior for S1, respectively; (c-d) reconstructions by

MCMC with uniform prior for S1, S3, ε “ 1%. The dashed line shows the exact value

of q1 and zu is path reconstructed by the uniform prior.
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Chapter 4

An inverse medium problem using

Stekloff eigenvalues and a Bayesian

approach1

4.1 Introduction

Inverse scattering problems for inhomogeneous media have many applications such

as medical imaging and nondestructive testing. In this chapter, the inverse spectrum

problem to reconstruct the Stekloff eigenvalues from Cauchy data is investigated

using a new integral equation for the reciprocity gap method. Then these eigenvalues

are used to estimate the index of refraction of the inhomogeneous medium. Due to

the lack of knowledge of the relation between Stekloff eigenvalues and the index of

refraction, we propose a Bayesian approach. Since the eigenvalues are complex for

absorbing media and the multiplicities are not known, the recently developed spectral

indicator method is employed to compute the Stekloff eigenvalues [52, 53].

The reconstruction of certain eigenvalues from the scattering data has been studied

1This chapter has been published as an article in Inverse Problems.

https://iopscience.iop.org/article/10.1088/1361-6420/ab1be9
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by many researchers. In the context of qualitative methods in inverse scattering, it has

been shown that interior eigenvalues such as Dirichlet eigenvalues and transmission

eigenvalues can be determined from the scattering data [14, 100, 90] (see also the

special issue edited by Lechleiter and Sun [75]). Note that the inside-outside duality

can also be used to compute interior eigenvalues using the scattering data [65, 73, 74,

94].

Given reconstructed eigenvalues, a legitimate question is what information about

the scatterer can be obtained. For inhomogeneous non-absorbing media, transmission

eigenvalues have been used to reconstruct the shape of the obstacle [101] and estimate

the index of refraction [16, 100, 6, 46, 70, 11, 78]. However, the use of transmission

eigenvalues has two drawbacks: 1) multi-frequency data are necessary; and 2) only

real transmission eigenvalues can be determined from the scattering data so far.

Recently, it is shown that Stekloff eigenvalues associated with the scattering prob-

lem can be determined from far field data of a single frequency [18, 6]. In contrast to

transmission eigenvalues, complex Stekloff eigenvalues can also be determined from far

field data. Hence the use of Stekloff eigenvalues avoids the above two drawbacks and

has the potential to work for a wider class of problems. In this chapter, a new integral

equation for the reciprocity gap (RG) method [23, 32, 91] is introduced to determine

Stekloff eigenvalues from Cauchy data. Then a Bayesian approach is proposed to

estimate the index of refraction, in which the Metropolis-Hastings (M-H) algorithm

is used to explore the posterior distribution. We refer the readers to [63, 99] on the

Bayesian framework for inverse problems and [10, 38, 110, 47] on its applications to

some inverse scattering problems.

The rest of the chapter is organized as follows. In Section 4.2, the forward scat-

tering problem and the associated Stekloff eigenvalue problem are introduced. In

Section 4.3, a new integral equation for the reciprocity gap method is proposed to

reconstruct Stekloff eigenvalues using Cauchy data. In Section 4.4, a Bayesian ap-

proach and the MCMC method are proposed to estimate the index of refraction.
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Numerical examples are provided in Section 4.5. Finally, in Section4.6, we make

some conclusions.

4.2 Scattering Problem and Stekloff Eigenvalues

In this section, we introduce the direct scattering problem, the Stekloff eigenvalue

problem, and the inverse scattering problems using Cauchy data. Then a monotonic-

ity of the largest negative Stekloff eigenvalue is proved.

LetD be a bounded domain in R
2 with C2 boundary BD. Let k be the wavenumber

and npxq be the index of refraction such that npxq P L8pR2q. Assume that npxq “ 1

for R
2zD and ℜpnpxqq ą 0,ℑpnpxqq ě 0, where ℜp¨q and ℑp¨q denote the real and

imaginary parts, respectively. The direct scattering problem is to find the total field

u such that
$

’

’

’

&

’

’

’

%

∆u ` k2npxqu “ 0, in R
2ztx0u,

u “ us ` ui,

lim
rÑ8

r
1

2 pBus{Br ´ ikusq “ 0, r “ |x|,
(4.2.1)

where us is the scattered field and

ui :“ Φp¨, x0q x0 P RzD

is the incident field generated by a point source. Here Φ is the fundamental solution

of the Helmholtz equation.

The associated Stekloff eigenvalue problem is defined as follows [18]. Find λ P C

and a non-trivial function w such that
$

&

%

∆w ` k2npxqw “ 0, in B,

Bw{Bν ` λw “ 0, on Γ,
(4.2.2)

where B is a bounded domain in R
2 and Γ :“ BB such that D Ă B.

Assume that the Cauchy data u and Bνu :“ Bu{Bν are known on Γ for the incident

field ui :“ Φp¨, x0q, x0 P C, where C is a simple closed curve containing B (see

Figure 4.1). The inverse scattering problems considered in this chapter are:
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Figure 4.1: Explicative picture of the problem settings.

IP1 Reconstruct Stekloff eigenvalues from Cauchy data;

IP2 Estimate the index of refraction npxq using Stekloff eigenvalues.

When npxq is real, all Stekloff eigenvalues are real and they form an infinite discrete

set [18]. We call k2 a modified Dirichlet eigenvalue of B if there exists a nontrivial

u P H1pBq such that
$

&

%

∆u ` k2nu “ 0, in B,

u “ 0, on Γ.
(4.2.3)

Remark 4.2.0.1. Note that a standard Dirichlet eigenvalue problem is such that npxq ”
1 in (4.2.3). For simplicity, in the rest of the chapter, we call k2 in (4.2.3) a Dirichlet

eigenvalue.

It is shown in [6] that Stekloff eigenvalues accumulate at ´8 if k2 is not a Dirichlet

eigenvalue. Next, we prove a property of the largest negative Stekloff eigenvalue λ´
1

when npxq is given by

npxq :“ nc “

$

&

%

1, in BzD,

c, in D.
(4.2.4)

Suppose nc is perturbed by

δnc :“

$

&

%

0, in BzD,

δc, in D,
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where δc is also a real constant. The perturbation δnc leads to δw and δλ´
1 of the

eigenpair.

The weak formulation for the Stekloff eigenvalue problem (4.2.2) is to find pλ, uq P
C ˆ H1pBq such that

p∇w,∇vq ´ k2 pnw, vq “ ´λ xw, vy @ v P H1pBq, (4.2.5)

where pf, gq “
ş

B
fgdx and xf, gy “

ş

Γ
fgds. From (4.2.5), δw P H1pBq and δλ´

1

satisfies

`

∇pw`δwq,∇v
˘

´k2
`

pnc`δncqpw`δwq, v
˘

“ ´pλ´
1 `δλ´

1 q
@

w`δw, v
D

@ v P H1pBq.

Using the fact that pw, λ´
1 q is a real eigenpair, we have that

`

∇δw,∇v
˘

´ k2
`

δncpw ` δwq, v
˘

´ k2
`

ncδw, v
˘

“ ´δλ´
1

@

w ` δw, v
D

´ λ´
1

@

δw, v
D

@ v P H1pBq.

Letting v “ w and noting that nc is real, we have that

k2
`

δncpw ` δwq, w
˘

“ δλ´
1 xw ` δw, wy,

which implies

δλ´
1 “ k2

`

δncpw ` δwq, w
˘

xw ` δw, wy

“ k2
`

δncw,w
˘

` k2
`

δncδw, w
˘

xw,wy ` xδw, wy

“
k2δc

`

w,w
˘

D
` k2δc

`

δw, w
˘

D

xw,wy ` xδw, wy , (4.2.6)

where pf, gqD “
ş

D
fgdx. If δc ą 0 is small enough, one has that

|pδw, wqD| ă 1

2
pw,wqD and |xδw, wy| ă 1

2
xw,wy. (4.2.7)

From (4.2.6) and (4.2.7), we have

0 ă
k2δc

`

w,w
˘

D

3xw,wy ď δλ´
1 ď

3k2δc
`

w,w
˘

D

xw,wy . (4.2.8)
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This implies that λ´
1 is monotonically increasing with respect to nc. This breaks until

k2 becomes a (modified) Neumann eigenvalue, i.e., there exists a non-trivial u such

that
$

&

%

∆u ` k2ncu “ 0, in B,

Bu
Bν “ 0, on Γ.

(4.2.9)

Note that a standard Neumann eigenvalue is k2 satisfying (4.2.9) for nc ” 1. Again,

we call k2 for (4.2.9) a Neumann eigenvalue for simplicity. The above derivation

actually proved the following theorem.

Theorem 4.2.1. Let the index of refraction be defined in (4.2.4) and ra, bs be an

interval that k2 is not a Neumann eigenvalue of (4.2.9) for any c P ra, bs. Then the

largest negative Stekloff eigenvalue λ´
1 is monotonically increasing on ra, bs.

Assume that the largest negative Stekloff eigenvalue λ´
n is obtained. If the shape

of D is known, λ´
1 uniquely determines nc on some suitable interval ra, bs by Theo-

rem 4.2.1. However, it is not true on R as it is known that different nc’s can give the

same λ´
1 [18].

4.3 Reconstruction of Stekloff Eigenvalues

Now we consider IP1 to reconstruct Stekloff eigenvalues from Cauchy data. The

main ingredient is the reciprocity gap method [23, 32, 91]. Assume that u and Bνu :“
Bu{Bν are known on Γ for each point source incident wave ui :“ Φp¨, x0q, x0 P C

(see Figure 4.1). We first define an auxiliary scattering problem. Find uλp¨, x0q :“
us
λp¨, x0q ` Φp¨, x0q such that

$

’

’

’

&

’

’

’

%

∆uλ ` k2uλ “ 0, in R
2ztB Y tx0uu,

Bνuλ ` λuλ “ 0, on Γ,

lim
rÑ8

r
1

2 pBus
λ{Br ´ ikus

λq “ 0, r “ |x|,
(4.3.10)

where ν is the unit outward normal to Γ and λ is a constant such that ℑpλq ě 0. It

is shown in [18] that (4.3.10) has a unique solution.
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Denote by U and Uλ the sets of solutions upx, x0q to (4.2.1) and uλpx, x0q to

(4.3.10), respectively. Define the reciprocity gap functional by

Rpv1, v2q “
ż

Γ

pv1Bνv2 ´ v2Bνv1qds, (4.3.11)

where v1 and v2 are solutions of the Helmholtz equation. Let S :“ td P R
2; |d| “ 1u

and consider finding g P L2pSq of the integral equation

Rpuλp¨, x0q ´ up¨, x0q, vgp¨qq “ Rpuλp¨, x0q,Φzp¨qq @x0 P C, (4.3.12)

where Φzp¨q :“ Φp¨, zq for some z P B and vg is the Herglotz wave function

vgpxq :“
ż

S

eikx¨dgpdqdspdq.

Lemma 4.3.1. If
ş

Γ
uλpx, x0qfpxqdspxq “ 0 for all uλ P Uλ, then fpxq “ 0 on Γ.

Proof. Assume that fpxq satisfies
ş

Γ
uλpx, x0qfpxqdspxq “ 0 for all x0 P C. Let ũs be

the solution of the following problem
$

’

’

’

&

’

’

’

%

∆ũs ` k2ũs “ 0, in R
2zB,

Bν ũs ` λũs “ f, on Γ,

lim
rÑ8

r
1

2 pBũs{Br ´ ikũsq “ 0, r “ |x|.
(4.3.13)

Using Green’s representation theorem [30], Green’s second theorem and the boundary

condition Bνuλ ` λuλ “ 0 on Γ for all x0 P C, we have that

ũspx0q “
ż

Γ

BνΦpx, x0qũspxq ´ Φpx, x0qBν ũspxqds

“
ż

Γ

BνΦpx, x0qũspxq ´ Φpx, x0qBν ũspxqds

`
ż

Γ

Bνus
λpxqũspxq ´ us

λpxqBν ũspxqds

“ ´
ż

Γ

uλpx, x0qBν ũspxq ´ ũspxqBνuλpx, x0qds

“ ´
ż

Γ

uλpx, x0qpBν ũspxq ` λũspxqqds

“ ´
ż

Γ

uλpx, x0qfpxqds

69



“ 0. (4.3.14)

The unique continuation principle implies that ũspxq “ 0 in R
2zB̄. By the trace

theorem, f “ 0 on Γ. �

Theorem 4.3.2. If λ is not a Stekloff eigenvalue of (4.2.2), then for u P U and

uλ P Uλ, the operator R : L2pSq Ñ L2pCq defined by

Rpgq :“ R
`

uλp¨, x0q ´ up¨, x0q, vgp¨q
˘

, x0 P C

is injective.

Proof. Let g satisfy Rpuλp¨, x0q ´ up¨, x0q, vgp¨qq “ 0 for all x0 P C. If g ‰ 0, let ws

solve
$

&

%

∆ws ` k2nws “ k2p1 ´ nqvg, in R
2,

lim
rÑ8

r
1

2 pBws{Bν ´ ikwsq “ 0, r “ |x|.
(4.3.15)

Using the boundary condition Bνuλ`λuλ “ 0 on Γ and Green’s second theorem twice,

the following holds

ż

Γ

uλ

`

Bνpws ` vgq ` λpws ` vgq
˘

ds

“
ż

Γ

“

uλBνpws ` vgq ´ pws ` vgqBνuλ

‰

ds

“
ż

Γ

“

uλBνpws ` vgq ´ pws ` vgqBνuλ

‰

ds ´
ż

Γ

“

uBνpws ` vgq ´ pws ` vgqBνu
‰

ds

“
ż

Γ

“

puλ ´ uqBνpws ` vgq ´ pws ` vgqBνpuλ ´ uq
‰

ds

“
ż

Γ

“

puλ ´ uqBνvg ´ vgBνpuλ ´ uq
‰

ds `
ż

Γ

“

puλ ´ uqBνws ´ wsBνpuλ ´ uq
‰

ds

“
ż

Γ

“

puλ ´ uqBνvg ´ vgBνpuλ ´ uq
‰

ds

“ Rpuλ ´ u, vgq (4.3.16)

“ 0. (4.3.17)

From (4.3.16) and Theorem 4.3.1, we have Bνpws`vgq`λpws`vgq “ 0 on Γ. Together
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with (4.3.15), ws ` vg satisfies
$

&

%

∆pws ` vgq ` k2npws ` vgq “ 0, in B,

Bνpws ` vgq ` λpws ` vgq “ 0 on Γ.
(4.3.18)

Since λ is not a Stekloff eigenvalue, (4.3.18) only has the trivial solution ws ` vg “ 0

in B. From (4.3.15) and the unique continuation principle, ws ` vg “ 0 in R
2, i.e.,

the Herglotz wave function vg “ ´ws satisfies the radiating condition. This is a

contradiction. �

The following theorem is the main result on the reconstruction of Stekloff eigen-

values from Cauchy data.

Theorem 4.3.3. 1. If λ is not a Stekloff eigenvalue of (4.2.2) and z P B, then

there exists a sequence tgnu, gn P L2pSq, such that

lim
nÑ8

R
`

uλ ´ u, vgn
˘

“ Rpuλ,Φzq, uλ P Uλ, u P U (4.3.19)

and vgn converges in L2pBq.

2. If λ is a Stekloff eigenvalue, then for every sequence tgznu, gzn P L2pSq satisfying

lim
nÑ8

R
`

uλ ´ u, vgzn
˘

“ Rpuλ,Φzq, uλ P Uλ, u P U, (4.3.20)

lim
nÑ8

}vgzn}H1pBq “ 8 for almost every z P B.

Proof. 1. Let wz be the solution of the following problem
$

&

%

∆wz ` k2nwz “ 0, in B,

Bνwz ` λwz “ BνΦp¨, zq ` λΦp¨, zq on Γ.
(4.3.21)

From Lemma 3.1 of [18], we have

wz “ wi
z ` ws

z,

where wi
z satisfies the Helmholtz equation in B and ws

z P H2
locpR2q is a radiation

solution to
$

&

%

∆ws
z ` k2nws

z “ k2p1 ´ nqwi
z, in R

2,

lim
rÑ8

r
1

2 pBws
z{Br ´ ikws

zq “ 0, r “ |x|.
(4.3.22)
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Due to the denseness property (Theorem 5.21 of [30]), there exists a sequence of

Herglotz wave functions tvgnu such that

vgn ` ws
z Ñ wi

z ` ws
z “ wz, n Ñ 8. (4.3.23)

Next we show that tvgnu satisfies lim
nÑ8

R
`

uλ ´ u, vgn
˘

“ Rpuλ,Φzq. Using Green’s

second theorem twice, one has that

lim
nÑ8

Rpuλ ´ u, vgnq ´ Rpuλ,Φzq

“ lim
nÑ8

ż

Γ

“

puλ ´ uqBνvgn ´ vgnBνpuλ ´ uq
‰

ds ´
ż

Γ

“

uλBνΦz ´ ΦzBνuλ

‰

ds

“ lim
nÑ8

ż

Γ

“

puλ ´ uqBνpvgn ` ws
zq ´ pvgn ` ws

zqBνpuλ ´ uq
‰

ds

´
ż

Γ

“

uλBνΦz ´ ΦzBνuλ

‰

ds

“ lim
nÑ8

ż

Γ

“

uλBνpvgn ` ws
zq ´ pvgn ` ws

zqBνuλ

‰

ds

´ lim
nÑ8

ż

Γ

“

uBνpvgn ` ws
zq ´ pvgn ` ws

zqBνu
‰

ds ´
ż

Γ

“

uλBνΦz ´ ΦzBνuλ

‰

ds

“ lim
nÑ8

ż

Γ

“

uλBνpvgn ` ws
zq ´ pvgn ` ws

zqBνuλ

‰

ds ´
ż

Γ

“

uλBνΦz ´ ΦzBνuλ

‰

ds

“ lim
nÑ8

ż

Γ

“

uλBνpvgn ` ws
z ´ Φzq ´ pvgn ` ws

z ´ ΦzqBνuλ

‰

ds

“ lim
nÑ8

ż

Γ

uλ

“

Bνpvgn ` ws
z ´ Φzq ` λpvgn ` ws

z ´ Φzq
‰

ds

“ 0, (4.3.24)

where the last step is due to (4.3.21) and (4.3.23).

2. Assume on the contrary that for z P Bρ, where Bρ Ă B is a small ball of radius

ρ, }vgzn}H1pBq is bounded as n Ñ 8. Then there exists a subsequence of vgzn , still

denoted by vgzn , converging weakly to a function vi P H1pBq. Then
ż

Γ

“

puλ ´ uqBνvi ´ viBνpuλ ´ uq
‰

ds ´
ż

Γ

“

uλBΦz ´ ΦzBνuλ

‰

ds “ 0. (4.3.25)

Let ws P H2
locpR2q be a radiating solution to

$

&

%

∆ws ` k2nws “ k2p1 ´ nqvi, in R
2,

lim
rÑ8

r
1

2 pBws{Br ´ ikwsq “ 0, r “ |x|.
(4.3.26)
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From the Green’s second theorem and (4.3.25), w :“ vi ` ws satisfies

ż

Γ

uλ

“

Bνpw ´ Φzq ` λpw ´ Φzq
‰

ds

“
ż

Γ

“

uλBνw ´ wBνuλ

‰

ds ´
ż

Γ

“

uλBνΦz ´ ΦzBνuλ

‰

ds

“
ż

Γ

“

puλ ´ uqBνw ´ wBνpuλ ´ uq
‰

ds ´
ż

Γ

“

uλBνΦz ´ ΦzBνuλ

‰

ds

“
ż

Γ

“

puλ ´ uqBνws ´ wsBνpuλ ´ uq
‰

ds

`
ż

Γ

“

puλ ´ uqBνvi ´ viBνpuλ ´ uq
‰

ds ´
ż

Γ

“

uλBνΦz ´ ΦzBνuλ

‰

ds

“
ż

Γ

“

puλ ´ uqBνws ´ wsBνpuλ ´ uq
‰

ds

“ 0. (4.3.27)

From (4.3.27) and Theorem 4.3.1,

Bνpw ´ Φzq ` λpw ´ Φzq “ 0 on Γ,

which, together with (4.3.26), implies that w satisfies

$

&

%

∆w ` k2nw “ 0 in B,

Bνw ` λw “ BνΦp¨, zq ` λΦp¨, zq on Γ.
(4.3.28)

From Theorem 4.3.1 and the proof of Theorem 3.3 of [18], (4.3.28) is solvable if and

only if
ż

Γ

ˆBΦp¨, zq
Bν ` λΦp¨, zq

˙

ωλds “ 0 (4.3.29)

for each Stekloff eigenfunction ωλ P H1pBq. Since ωλ satisfies Bνωλ ` λωλ “ 0 on Γ,

(4.3.29) becomes
ż

Γ

ˆBΦp¨, zq
Bν ωλ ´ Φp¨, zqBωλ

Bν

˙

ds “ 0.

Green’s representation theorem implies that ωλpzq “ 0 for z P Bρ. The unique

continuation principle now implies that the Stekloff eigenfunction ωλ “ 0 in B, which

is a contradiction. �
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Based on Theorem 4.3.3, the following reciprocity gap algorithm is proposed to

reconstruct (several) Stekloff eigenvalues from Cauchy data.

The RG Algorithm

1. For a region of interests (e.g., an interval on R for real Stekloff eigenvalues or a

rectangular region on C for complex Stekloff eigenvalues), generate a grid T .

2. For each λ P T , solve the scattering problem (4.3.10) to compute the auxiliary

Cauchy data uλp¨, x0q and Bνuλp¨, x0q on Γ.

3. Fix a point z P B, use the Tikhonov regularization to compute an approximate

solution gλ P L2pSq to the integral equation

R
`

uλp¨, x0q ´ up¨, x0q, vgλp¨q
˘

“ R
`

uλp¨, x0q,Φp¨, zq
˘

@x0 P C, (4.3.30)

where up¨, x0q is the solution to (4.2.1) for Φp¨, x0q, x0 P C.

4. Choose λ as a Stekloff eigenvalue of (4.2.2) if the norm of gλ is significantly

larger (see Section 4.5.1).

Remark 4.3.3.1. In theory, the constructed solutions to the reciprocity gap equation

(4.3.30) may not form a divergent Herglotz wave function series. Hence the above

numerical algorithm might not be able to construct all the eigenvalues.

4.4 Reconstruction of the Index of Refraction

Given the reconstructed eigenvalues, in this section, we turn to IP2 to estimate the

index of refraction. The relation between the index of refraction and Stekloff eigen-

values is complicated and, to a large extend, unknown. Even when npxq is constant,

a single Stekloff eigenvalue cannot uniquely determine it. Note that Theorem 4.2.1

only holds on an appropriate interval.

To this end, we resort to the Bayesian approach, which has been popular for solving

inverse problems in recent years [63, 99]. Firstly, the inverse problem is reformulated
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as a statistical inference for the index of refraction using a Bayes formula. Then the

Metropolis-Hastings algorithm is employed to explore the posterior distribution of

npxq.

4.4.1 Bayesian Formulation

IP2 can be written as the statistical inference of npxq such that

λ “ Gpnq ` E, (4.4.31)

where λ P C
m is a vector of (reconstructed) Stekloff eigenvalues, npxq is a random

function, G is the operator mapping npxq to λ based on (4.2.2), and E is the random

noise. The noise E „ N p0, σ2q, which is modeled as additive and mutually indepen-

dent of npxq. In the Bayesian framework, the prior information can be coded into

the prior density πprpnq. For example, if n is known to be a real constant n0 such

that a ă n0 ă b, one may take the prior as the continuous uniform distribution, i.e.,

n „ Upa, bq.

Given Stekloff eigenvalues λ, the goal of the Bayesian inverse problem is to seek

statistical information of npxq by exploring the conditional probability distribution

πpostpn|λq, called the posterior distribution of n. The conditional mean (CM) is

applied to obtain a constant estimation of npxq. If n „ Upa, bq, by the Bayes formula,

the posterior distribution satisfies

πpostpn|λq9N pλ´ Gpnq, σ2q ˆ Upa, bq, (4.4.32)

i.e.,

πpostpn|λq9 exp
´

´ 1

2σ2
|λ´ Gpnq|

¯

ˆ Ipa ď n ď bq, (4.4.33)

where I is the density function for Upa, bq.
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4.4.2 Markov Chain Monte Carlo Method

To explore πpostpn|λq given in (4.4.33), we employ the popular MCMC (Markov Chain

Monte Carlo). MCMC to estimate CM is as follows: design a Markov Chain tXju8
j“0

from required distribution and take the mean of the chain to approximate the expec-

tation. In particular, one could estimate Etn|λu by the sample mean using Monte

Carlo integration:

Etn|λu « 1

m

m
ÿ

j“1

nj, (4.4.34)

where nj, j “ 1, ¨ ¨ ¨ ,m, are samples from πpostpn|λq. In this chapter, we use a delayed

rejection adaptive Metropolis-Hasting algorithm [48, 44].

The M-H Algorithm

1. Choose the initial value n1 P R and set j “ 1;

2. Draw a sample w from a proposal distribution with variance γ2

qpnj, wq9exp

ˆ

´ 1

2γ2
|nj ´ w|2

˙

,

and compute

αpnj, wq “ min

ˆ

1,
πpostpw|λq
πpostpnj|λq

˙

;

3. Draw t „ Up0, 1q;

4. If αpnj, wq ě t, set nj “ w, else nj`1 “ nj.

5. When j “ K, the maximum sample size, stop; else, j Ð j ` 1 and go to 2.

4.4.3 Spectral Indicator Method

In the above algorithm, for each sample nj, one needs to compute Stekloff eigenvalues

for (4.2.2). Note that Stekloff eigenvalues may be complex if npxq is a complex

function. The reconstructed eigenvalues are usually not large in magnitude and only

approximate the exact ones. Furthermore, the multiplicities are not known in general.
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Thus it is ideal if one only computes Stekloff eigenvalues of (4.2.2) in a region in the

complex plane close to the origin. A new spectral indicator method (SIM) is a good

fit for this case [52, 53]. It computes all eigenvalues inside a given region. We refer

the readers to [85] for more details.

4.5 Numerical Examples

In this section, we present some numerical examples to use the RG method to recon-

struct Stekloff eigenvalues from the Cauchy data and estimate the index of refraction

using the Bayesian approach. Three scatterers are considered: a disc with radius 1

centered at the origin, a square with vertices given by

p0,´1q, p1, 0q, p0, 1q, p´1, 0q, (4.5.35)

and an L-shaped domain given by

p´0.9, 1.1q ˆ p´1.1, 0.9qzr0.1, 1, 1s ˆ r´1.1,´0.1s. (4.5.36)

Three different indices of refraction are chosen: i) npxq “ 5, ii) npxq “ 4 ` 2|x|, and
iii) npxq “ 2 ` 4i.

The synthetic scattering data is simulated by a finite element method with a

perfectly matched layer (PML) for (4.2.1) [21]. The wavenumber is k “ 1. There are

100 source points uniformly distributed on the curve C, a circle with radius 3. We

compute the Cauchy data at 100 points uniformly distributed on Γ :“ BB (a circle

with radius 2) and add 3% noise.

4.5.1 Reconstruction of Stekloff eigenvalues

Given Cauchy data, we show that several Stekloff eigenvalues close to the origin can

be reconstructed effectively using the RG Algorithm presented in Section 4.3. For

real npxq, all the eigenvalues are real. We choose an interval r´5, 5s and use a uniform
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grid T given by

T :“ tλm “ ´5 ` 0.02m, m “ 0, 1, ¨ ¨ ¨ , 500u.

For complex npxq, the Skeloff eigenvalues are complex. We choose a region r´1, 0.5sˆ
r´0.5, 1s and

T :“ tλm1,m2
“ p´1 ` 0.02m1q ` ip´0.5 ` 0.02m2q, m1,m2 “ 0, 1, ¨ ¨ ¨ , 75u.

Using a fixed point z “ p0.2, 0.6q in B, for each λ P T , a discretization of (4.3.30)

leads to a linear system

Aλgλ “ fλ, (4.5.37)

where Aλ is a matrix given by

Aλ
l,j “ R

`

uλpx, xlq ´ upx, xlq, exppikx ¨ djq
˘

, l, j “ 1, 2, ¨ ¨ ¨ , 100,

and fλ is a vector given by

fλ
l “ R

`

uλpx, xlq,Φpx, zq
˘

, l “ 1, 2, ¨ ¨ ¨ , 100.

The Tikhonov regularization with the parameter α “ 10´5 is used to compute an

approximate solution gλ to (4.5.37):

gλ «
`

pAλq˚Aλ ` αAλ
˘´1pAλq˚fλ.

In the following examples, we show the plots of |gλ|. In all the figures, the crosses

are the exact Stekloff eigenvalues computed using a finite element method [104, 85].

Example 1 Real index of refraction npxq “ 5. The exact and reconstructed

eigenvalues are shown in Table 4.1. The plots of |gλ| for the three domains are shown

in Figure 4.2.

Example 2 Real index of refraction npxq “ 4`2|x|. The exact and reconstructed

eigenvalues are shown in Table 4.2. The plots of |gλ| for the three domains are shown

in Figure 4.3.

Example 3 Complex index of refraction npxq “ 2 ` 4i. The exact and recon-

structed eigenvalues are shown in Table 4.3. The plots of |gλ| for the three domains

are shown in Figure 4.4.
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disc 1.2937 ´0.4763 ´0.5839 ´1.2301

(1.30) (´0.48) (´0.58) (´1.23)

square 0.3792 ´0.5418 ´0.6148

(0.38) (´0.54) (´0.62q
L-shaped 3.0218 0.6882 ´0.5266 ´0.5834 ´1.2188

(3.04) (0.70) (´0.52) (´0.58) (´1.20)

Table 4.1: The exact Stekloff eigenvalues and their reconstructions (in the parenthe-

ses) for npxq “ 5.
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Figure 4.2: The plots of |gλ| against λ for npxq “ 5.
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disc 2.0856 ´0.4898 ´0.5714 ´1.2285

(2.10) (´0.48) (´0.54) (´1.20)

square 0.4137 ´0.5758 ´1.2348

(0.42) (´0.58) (´1.22)

L-shaped 0.9825 ´0.4956 ´0.6018 ´1.2116

(1.00) (´0.50) (´0.60) (´1.20)

Table 4.2: The exact Stekloff eigenvalues and their reconstructions (in the parenthe-

ses) for npxq “ 4 ` 2|x|.
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Figure 4.3: The plots of |gλ| against λ for npxq “ 4 ` 2|x|.
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disc ´0.0549 ` 0.4854i ´0.0211 ` 0.2652i ´0.6361 ` 0.0390i

(´0.06 ` 0.46i) -0.02+0.26i (´0.64 ` 0.04i)

square 0.1303 ` 0.5812i 0.0779 ` 0.1415i ´0.6338 ` 0.0170i

(0.12 ` 0.56i) (0.08 ` 0.14i) (´0.64 ` 0.02i)

L-shaped ´0.0902 ` 0.5468i ´0.1029 ` 0.3600i 0.0364 ` 0.2228i

(´0.10 ` 0.52i) (´0.10 ` 0.36i) (0.04 ` 0.22i)

´0.6385 ` 0.0764i ´0.6346 ` 0.0412i

(´0.64 ` 0.08i) (´0.64 ` 0.04i)

Table 4.3: The exact Stekloff eigenvalues and their reconstructions (in the parenthe-

ses) for npxq “ 2 ` 4i.

4.5.2 Estimation of the index of refraction

Given the reconstructed Stekloff eigenvalues, we present some numerical examples for

the estimation of the index of refraction using the Bayesian approach. The examples

are rather simple. Nonetheless, the results show the potential of statistical approaches

for inverse scattering problems. Since the main goal is to show the effectiveness of

the Bayesian approach, we assume that the shape of the scatterer is known in the

following examples.

Example 4 Real constant index of refraction npxq “ 5. Assume one Stekloff

eigenvalue is reconstructed from Cauchy data: ´0.48 for the disk, ´0.54 for the

square, and ´0.52 for the L-shaped domain. Since n is a real constant, we take a

uniform prior Up0, 8q. The posterior density is given by

πpostpn|λq9 exp
´

´ 1

2σ2
}λ ´ Gpnq}2

¯

ˆ It0 ă n ă 8u. (4.5.38)

We generate 3000 samples for each domain. The initial sample is chosen to be n1 “ 2.

The rest samples tniu3000i“2 are drawn from the symmetric proposal distribution

qpnj, nj´1q9 exp
´

´ 1

2γ2
}nj ´ nj´1}2

¯

,
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Figure 4.4: The plots of |gλ| against λ for npxq “ 2 ` 4i.

where γ2 “ 2.42{2.

Table 4.4 shows nCM for the three domains. The Markov chains are shown in

Figure 4.5. The samples concentrate around n “ 5 for the unit disc and square.

However, for the L-shaped domain, the samples are accumulated around two values,

5 and 7. In fact, this implies that one Stekloff eigenvalue cannot uniquely determine

the constant index of refraction. If two Stekloff eigenvalues, 0.70 and ´0.52, are used

(see Figure 4.6), we obtain nCM “ 5.0074, which is a good approximation.

Example 5 Real index of refraction npxq “ 4 ` 2|x|. Assume that two Stekloff

eigenvalues are given and npxq is of the form β1 ` β2|x|. We first obtain a constant

approximation n0 for npxq as the above example. This provides some ideas of how
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σ2 domain nCM

0.05

circle 4.9953

square 5.0205

L-shaped domain 6.2135 (5.0074)

Table 4.4: The posterior means for three domains (npxq “ 5) using one Stekloff

eigenvalue. The value in the parentheses for the L-shaped domain is obtained using

two Stekloff eigenvalues.

to choose the priors for β1 and β2. For the second step, two Stekloff eigenvalues are

used. The posterior distribution is given by

πpn|λq9 exp
´

´ 1

2σ2
}λ´ Gpnq}2

¯

ˆ It3 ă β1 ă 7u ˆ It0 ă β2 ă 6u. (4.5.39)

Two reconstructed Stekloff eigenvalues from Table 4.2 are used for each domain:

2.10,´0.48 for disc, 0.42,´0.58 for the square, and 1.00,´0.50 for the L-shaped

domain. Table 4.5 shows the reconstruction results.

σ2 domain mean of n0 β1
CM ` β2

CM |x|

0.05

circle 4.9804 4.3916 ` 1.9333|x|
square 6.7791 3.8873 ` 2.3409|x|

L-shaped 6.2197 4.2953 ` 1.7263|x|

Table 4.5: The posterior mean of npxq for the three domains (npxq “ 4 ` 2|x|).

Example 6 Complex index of refraction npxq “ 2 ` 4i. Assume that ℜpnq „
Up0, 8q and ℑpnq „ Up0, 8q. The same proposal distribution qpnj, nj´1q are used to

sample both ℜpnq and ℑpnq. We use Stekloff eigenvalues, ´0.02 ` 0.26i for the disc,

´0.64 ` 0.02i, 0.12 ` 0.56i for the square, and ´0.1 ` 0.52i, 0.04 ` 0.22i for the L-

shaped domain. Table 4.6 shows the reconstruction results and Figure 4.7 shows the

Markov chains.
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σ2 domain nCM

0.05

circle 1.8511 ` 3.9849i

square 2.2515 ` 4.1935i

L-shaped 2.1204 ` 4.1978i

Table 4.6: The posterior means of npxq for the three domains (npxq “ 2 ` 4i).

4.6 Conclusions

In this chapter, we show that the Cauchy data of a medium scattering problem

can be used to detect Stekloff eigenvalues. A Bayesian approach is proposed to

estimate the index of refraction using the reconstructed Stekloff eigenvalues. Since

the multiplicities of the eigenvalues are not known, a spectral indicator method is

developed to overcome the difficulty in the Metropolis-Hasting (M-H) algorithm. The

method is particularly useful when there is a lack of understanding of the relation

between the known scattering data and the unknown quantities.

In the next chapter, we extend the study here to a more challenging inverse spec-

trum problem.
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Figure 4.5: Left: Trace plots and histograms of Markov chains for the three domains

when n ” 5. Right: Probability histograms.
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Figure 4.6: Left: Trace plot of the Markov Chain for the L-shaped using two eigen-

values (n “ 5). Right: Probability histogram.
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Figure 4.7: Trace plots of Markov chains for the three domains (n ” 2 ` 4i).
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Chapter 5

Bayesian inversion for an inverse

spectral problem of transmission

eigenvalues1

5.1 Introduction

The transmission eigenvalue problem plays an important role in the inverse scattering

theory for inhomogeous media and received a lot of attention in the last decade. The

problem is critical to the analysis of the inverse medium problem. Furthermore, it has

been shown that transmission eigenvalues can be reconstructed from the scattering

data and used to obtain qualitative information about the material properties. For

the discreteness, existence, and the determination of transmission eigenvalues from

scattering data, we refer the readers to [17, 30, 19, 15, 100, 46].

In this chapter, given a few real transmission eigenvalues, we consider the inverse

spectral problem to determine the material properties of a non-absorbing medium.

The problem has been treated using certain inequalities or optimization methods

[28, 100]. However, due to the lack of theoretical results and non-uniqueness, these

1This chapter has been submitted.
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methods face some difficulties. For example, the use of inequalities can only provide

rough estimates of the material properties. The optimization method might not

provide the correct solution when non-uniqueness of the inverse problem presents.

Bayesian inversion is an effective approach for inverse problems [63, 99]. Although

sometimes computationally expensive, it is an attractive method for challenging in-

verse problems. In this chapter, we propose a Bayesian approach for the inverse

transmission eigenvalue problem. First, using Bayes’ theorem, the inverse problem is

formulated as a statistical inference for the posterior density of the unknown physical

properties. Then the MCMC algorithm is used to explore the posterior density. Due

to the non-uniqueness nature of the problem, the local conditional means (LCM) are

used to characterize the posterior density. Numerical examples validate the effec-

tiveness of the proposed method. For applications of Bayesian approach in inverse

problems, we refer the readers to, e.g., [63, 99, 62, 80]. In particular, Bayesian inver-

sion was employed in [87] for an inverse Stekloff eigenvalue problem.

The rest of the chapter is organized as follows. In Section 5.2, we present the

transmission eigenvalue problem for acoustic waves and state the inverse spectral

problem of interest. Section 5.3 is devoted to the development of a Bayesian approach

and the stability analysis. In Section 5.4, we first present a continuous finite element

method to compute transmission eigenvalues used in the MCMC algorithm. Then

we show four examples demonstrating the performance of the proposed Bayesian

approach. Conclusions and future work are discussed in Section 5.5.

5.2 Inverse Transmission Eigenvalue Problem

Let D Ă R
2 be a bounded Lipschitz domain. Let Apxq be a 2 ˆ 2 real matrix valued

function with C1pDq entries and npxq P CpDq. Assume that npxq ą 0 is bounded and

Apxq is bounded and symmetric such that ξ ¨ Aξ ě γ|ξ|2 for all ξ P R
2 with γ ą 0.

Given an incident field ui (e.g., plane waves), the direct scattering problem by an
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inhomogeneous medium D is to find u and the scattered field us such that

∇ ¨ A∇u ` k2nu “ 0, in D, (5.2.1a)

∆us ` k2us “ 0, in R
2zD, (5.2.1b)

u ´ us “ ui, on BD, (5.2.1c)

BAu ´ Bνus “ Bνui, on BD, (5.2.1d)

lim
rÑ8

r

ˆBus

Br ´ ikus

˙

“ 0, (5.2.1e)

where k is the wave number, (5.2.1e) is the Sommerfeld radiation condition, r “ |x|,
ν is the unit outward normal to BD and BAu is the conormal derivative

BAupxq :“ νpxq ¨ Apxq∇upxq, x P BD.

It is well-known that there exists a unique solution us to the above scattering problem

[30].

The transmission eigenvalue problem associated to (5.2.1) is as follows. Find

k2 P C and non-trivial functions u, v such that

∇ ¨ A∇u ` k2nu “ 0, in D, (5.2.2a)

∆v ` k2v “ 0, in D, (5.2.2b)

u ´ v “ 0, on BD, (5.2.2c)

BAu ´ Bνv “ 0, on BD. (5.2.2d)

The well-posedness of the above problem has been an active research area for a

decade. We summarize some existence results from [15], which are relevant to the

topic discussed in the current chapter.

(a) Let n˚ “ infD n and n˚ “ supD n. Assume A “ I. If n ě n0 ą 0 and either

n˚ ą 1 or n˚ ă 1, the set of transmission eigenvalues is discrete with `8 as the

only possible accumulation point. The multiplicity of the eigenvalues is finite.
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(b) Let a˚ “ infD inf |ξ|“1 ξ ¨Aξ ą 0 and a˚ “ supD sup|ξ|“1 ξ ¨Aξ ă 8. Assume that

n “ 1 and either a˚ ą 1 or 0 ă a˚ ă 1. Then the set of transmission eigenvalues

is discrete with `8 as the only possible accumulation point.

(c) Assume that either 0 ă a˚ ă 1 or a˚ ą 1 and
ş

D
pn ´ 1qdx ‰ 0. Then the set of

transmission eigenvalues is discrete with `8 as the only possible accumulation

point.

(d) Assume that either 0 ă a˚ ă 1 and 0 ă n˚ ă 1, or a˚ ą 1 and n˚ ą 1. Then

the set of transmission eigenvalues is discrete with `8 as the only possible

accumulation point.

In the rest of the chapter, we assume that there exists an operator G such that

k “ GpA, nq, (5.2.3)

where k P R
m is a vector consisting of m transmission eigenvalues.

Let S be the space of 2 ˆ 2 symmetric matrices with real C1 elements and X “
S ˆ CpDq. Let Y “ R

m. Define two Sobolev spaces

V :“
 

pw, vq P H1pDq ˆ H1pDq|w ´ v P H1
0 pDq

(

,

W :“ L2pDq ˆ L2pDq.

For w “ pu, vq P V and ψ “ pφ, ϕq P V , we define two sesquilinear forms

apw,ψq “ pA∇u,∇φq ` pnpxqu, φq ´ p∇v,∇ϕq ´ pv, ϕq,

bpw,ψq “ pnpxqu, φq ´ pv, ϕq.

Then the transmission eigenvalue problem can be written as follows [112]. Find k2 P C

and nontrivial w with }w}W “ 1 such that

apw,ψq “ pk2 ` 1qbpw,ψq for all ψ P V. (5.2.4)

In this chapter, we only consider positive real transmission eigenvalue since they

represent the wavenumbers that can be reconstructed from the scattering data [14,
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100]. Note that ap¨, ¨q and bp¨, ¨q depend continuously on A and n and, as a conse-

quence, k depends on A and n. We assume that the following Lipschitz continuity

holds

}k ´ k1}Y ď C}pA, nq ´ pA, nq1}X , pA, nq, pA, nq1 P X (5.2.5)

for some constant C.

The interior transmission eigenvalue problem plays an essential role in the inverse

scattering theory for inhomogeneous media. It received significant attention in the last

decade. The study has focused on the discreteness, the existence, the determination

of transmission eigenvalues from scattering data, and the relation between the trans-

mission eigenvalues and the material properties (see, e.g., [28, 14, 17, 100, 30, 46]).

In this chapter, we are interested in the following inverse spectral problem.

ISP: Given a few real transmission eigenvalues k P Y , reconstruct A and n.

In particular, we assume that D is known as an a priori. Note that both D and

the eigenvalues k can be obtained from the scattering data. For interested readers,

we refer to [14, 100, 30] and the references therein.

Except a few special cases, e.g., A “ I and n “ n0 for some constant n0 or

spherically stratified media, little is known about the above inverse spectral problem.

In addition, since only a few transmission eigenvalues are given, non-uniqueness can

happen and it is highly challenging to develop effective deterministic methods for the

ISP. This motivates us to develop a Bayesian approach to seek useful information

about A and n.

5.3 Bayesian Inversion

In the Bayesian framework, the ISP is treated as a problem of statistical inference. All

the parameters are modeled as random variables and the uncertainties of their values

are expressed by distributions. The solution is the posterior probability distribution

that provides a probabilistic description of the unknowns [63, 99].
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Consider the inverse problem of (5.2.3) to reconstruct pA, nq P X from the mea-

surement k P Y . Since the measurement k contains noise, the statistical problem can

be written as

k “ GpA, nq ` E, (5.3.6)

where k “ pk1, k2, . . . , kmqT is a vector of transmission eigenvalues, Apxq and npxq
are random, G is the operator mapping pApxq, npxqq to k based on (5.2.2), and E is

the additive noise, mutually independent of A and n. We assume that the noise E

follows a Gaussian distribution, i.e., E „ N p0, Γnoiseq, where Γnoise P R
mˆm is positive

definite.

The prior density is denoted by π0pA, nq. The conditional distribution of the mea-

surement k given pA, nq is referred to as the likelihood, denoted by πpk|pA, nqq. From
(5.3.6), πpk|pA, nqq “ N pk ´ GpA, nq,Γnoiseq. The solution to the inverse problem is

the posterior distribution πkppA, nq|kq. According to Bayes’ rule, one has that

πkppA, nq|kq “ πpk|pA, nqqπ0pA, nq
ş

X
πpk|pA, nqqπ0pA, nqdpA, nq . (5.3.7)

Let P pA, n;kq “ 1
2
pk ´ GpA, nqqJΓ´1

noisepk ´ GpA, nqq. Assume that the posterior

measure µk with density πk is absolutely continuous with respect to the prior measure

µ0 with density π0. Using (5.3.7), we can relate µk with µ0 by

dµk

dµ0

“ 1

Zpkq exp p´P pA, n;kqq , (5.3.8)

where Zpkq “
ş

X
expp´P pA, n;kqqdµ0pA, nq is the normalization constant. The for-

mula (5.3.8) is understood as the Radon-Nikodym derivative of the posterior proba-

bility measure µk with respect to the prior measure µ0.

Now we study the stability of the Bayesian inversion scheme for the ISP following

[99]. From (5.2.4) and the boundedness of A and n, the following lemma holds.

Lemma 5.3.1. For every ε ą 0, there exists C :“ Cpεq P R such that, for all

pA, nq P X,

}GpA, nq}Y ď exppε}pA, nq}2X ` Cq.
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The assumption (5.2.5) implies that G : X Ñ R
m satisfies the following property.

For every r ą 0 there exists a C :“ Cprq ą 0 such that, for all pA, nq1, pA, nq2 P X

with maxt}pA, nq1}X , }pA, nq2}Xu ă r,

}GppA, nq1q ´ GppA, nq2q}Y ď C}pA, nq1 ´ pA, nq2}X .

Then the function P : X ˆ Y Ñ R has the following properties [99].

(i) For every ε ą 0 and r ą 0 there is an M “ Mpε, rq P R such that, for all

pA, nq P X and k P Y with }k}Y ă r,

P pA, n;kq ě M ´ ε}pA, nq}X .

(ii) For every r ą 0 there is a K “ Kprq ą 0 such that, for all pA, nq P X and k P Y

with maxt}pA, nq}X , }k}Y u ă r,

P pA, n;kq ď K.

(iii) For every r ą 0 there is an L “ Lprq ą 0 such that, for all pA, nq1, pA, nq2 P X

and k P Y with maxt}pA, nq1}X , }pA, nq2}X , }k}Y u ă r,

|P ppA, nq1;kq ´ P ppA, nq2;kq| ď L}pA, nq1 ´ pA, nq2}X .

(iv) For every ε ą 0 and r ą 0 there is a C “ Cpε, rq P R such that, for all k1,k2 P Y

with maxt}k1}Y , }k2}Y u ă r, and pA, nq P X,

|P ppA, nq;k1q ´ P ppA, nq;k2q| ď exppε}pA, nq}2X ` Cq}k1 ´ k2}Y .

The following theorem guarantees the well-posedness of the Bayesian inverse prob-

lem (5.3.8).

Theorem 5.3.2. Suppose X is a Banach space and µ0 is a Borel probability measure

on X with µ0pXq “ 1 . Then the Bayesian inverse problem (5.3.8) is well-posed

in Hellinger metrics, i.e., for k1 and k2 with maxt}k1}Y , }k2}Y u ď r, there exists

M “ Mprq ą 0 such that

dHellpµk1
, µk2

q ď M}k1 ´ k2}Y .
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Proof. By the definition of Zpkq “
ş

X
expp´P pA, n;kqqdµ0pA, nq and µ0pXq “ 1, we

have 0 ă Zpkq ď 1.

Applying the mean value theorem and using properties (i) and (iv), it holds that

|Zpk1q ´ Zpk2q|

ď
ż

X

expp´P pA, n;k1qq |P pA, n;k1q ´ P pA, n;k2q| dµ0pA, nq

ď
ż

X

exppε}pA, nq}X ´ Mq exppε}pA, nq}2X ` Cqdµ0pA, nq}k1 ´ k2}Y

ď C}k1 ´ k2}Y

(5.3.9)

By the definition of the Hellinger distance, we obtain that

d2Hellpµk1
, µk2

q

“1

2

ż

X

#

ˆ

exp p´P pA, n;k1qq
Zpk1q

˙1{2
´
ˆ

exp p´P pA, n;k2qq
Zpk2q

˙1{2
+2

dµ0pA, nq

“1

2

ż

X

#

ˆ

exp p´P pA, n;k1qq
Zpk1q

˙1{2
´
ˆ

exp p´P pA, n;k2qq
Zpk1q

˙1{2

`
ˆ

exp p´P pA, n;k2qq
Zpk1q

˙1{2
´
ˆ

exp p´P pA, n;k2qq
Zpk2q

˙1{2
+2

dµ0pA, nq

ďZpk1q´1

ż

X

"

exp

ˆ

´1

2
P pA, n;k1q

˙

´ exp

ˆ

´1

2
P pA, n;k2q

˙*2

dµ0pA, nq

`
ˇ

ˇZpk1q´1{2 ´ Zpk2q´1{2ˇ
ˇ

2
ż

X

expp´P pA, n;k2qqdµ0pA, nq.

(5.3.10)

Applying again the mean value theorem and using property (iv), we have that
ż

X

"

exp
´

´ 1

2
P pA, n;k1q

¯

´ exp
´

´ 1

2
P pA, n;k2q

¯

*2

dµ0pA, nq

ď
ż

X

ˇ

ˇ

ˇ

1

2
P pA, n;k1q ´ 1

2
P pA, n;k2q

ˇ

ˇ

ˇ

2

dµ0pA, nq

ď 1

4

ż

X

ˇ

ˇ

ˇ
exppε}pA, nq}2X ` Cq}k1 ´ k2}Y

ˇ

ˇ

ˇ

2

dµ0pA, nq

ď M}k1 ´ k2}2Y .

(5.3.11)

Due to the bounds on Zpk1q and Zpk2q, it holds that
ˇ

ˇZpk1q´1{2 ´ Zpk2q´1{2ˇ
ˇ

2 ď M max
´

Zpk1q´3, Zpk2q´3
¯

|Zpk1q ´ Zpk2q|2. (5.3.12)
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Combining (5.3.9)-(5.3.12), we obtain that

dHellpµk1
, µk2

q ď M}k1 ´ k2}Y .

�

Now we present the MCMC (Markov chain Monte Carlo) method to explore the

posterior density functions of A and n given k.

MCMC-ISP:

1. Given D and k.

2. Draw pA, nq1 from π0pA, nq such that A is positive definite.

3. For j “ 2, ¨ ¨ ¨ , J , do

a. Generate pA, nq˚ from π0pA, nq such that A˚ is positive definite;

b. Compute αppA, nq˚, pA, nqj´1q “ min

ˆ

1,
πkppA, nq˚|kq
πk ppA, nqj´1|kq

˙

;

c. Draw α̃ „ Up0, 1q.

d. If α ą α̃, then pA, nqj “ pA, nq˚, otherwise pA, nqj “ pA, nqj´1.

As discussed above, the solution of the Bayesian inverse problem is the poste-

rior probability densities of the unknown parameters. To characterize the posterior

density functions of the inverse problem considered in this chapter, point estimators

such as maximum a posteriori (MAP) and conditional mean (CM) might not carry

sufficient/correct information of the unknowns due to the presence of non-unique so-

lutions. Hence we also use the local estimators introduced in [103] when necessary. If

it is found that a significant number of samples aggregate in more than one region, we

shall use the local estimators instead of the global estimators. Numerical examples

show that the local estimators can identify multiple solutions to the inverse spectral

problems considered here.
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5.4 Numerical Examples

In this section, we present some numerical examples. For theMCMC-ISP algorithm,

one needs an effective method to compute several transmission eigenvalues of (5.2.2)

given A and n. Numerical methods for the transmission eigenvalue problem have

been developed by many researchers. We refer the readers to [26, 102, 4, 69, 29,

77, 113, 104, 92] and the references therein. In particular, finite element methods

for (5.2.2) of anisotropic media are discussed in [60, 112, 39]. In the following, we

present a continuous finite element method from [60], which is used in the simulation.

Note that, from the finite element convergence theory for the transmission eigenvalue

problem [104, 60, 112], the numerical method defines a discrete operator Gh such that

kh “ GhpA, nq. (5.4.13)

The operator Gh approximates G in the sense that

kh Ñ k as h Ñ 0,

where h is the size of the finite element mesh for D.

We first multiply (5.2.2a) by a test function φ and integrate by part to obtain

pA∇w,∇φq ´ k2pnw, φq ´
B Bw

BνA
, φ

F

“ 0, (5.4.14)

where x¨, ¨y is the boundary integral on BD. Similarly, for (5.2.2b), we have that

p∇v,∇φq ´ k2pv, φq ´
BBv

Bν , φ
F

“ 0. (5.4.15)

Subtracting (5.4.15) from (5.4.14) and using (5.2.2d), it holds that

pA∇w ´ ∇v,∇φq ´ k2ppnw ´ vq, φq “ 0. (5.4.16)

Let Th be a regular triangular mesh for D. Let Vh be the space of the linear

Lagrange finite element, V 0
h be the subspace of functions in Vh with vanishing degrees
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of freedom on BD, and V B
h be the subspace of functions in Vh with vanishing degrees

of freedom in D. The boundary condition (5.2.2c) is enforced by setting

wh “ w0,h ` wB,h where w0,h P V 0
h and wB,h P V B

h ,

vh “ v0,h ` wB,h where v0,h P V 0
h .

For ξh P V 0
h in (5.4.14), the weak formulation for wh is

pA∇pw0,h ` wB,hq,∇ξhq ´ k2pnpw0,h ` wB,hq, ξhq “ 0 for all ξh P V 0
h . (5.4.17)

Similarly, the weak formulation for vh is

p∇pv0,h ` wB,hq,∇ηhq ´ k2ppv0,h ` wB,hq, ηhq “ 0 for all ηh P V 0
h . (5.4.18)

Setting φh P V B
h in (5.4.16), we have that

pA∇pw0,h ` wB,hq,∇φhq ´ p∇pv0,h ` wB,hq,∇φh q

´k2 pnpw0,h ` wB,hq ´ pv0,h ` wB,hq, φhq “ 0. (5.4.19)

Let Nh, N0
h , and NB

h be the dimensions of Vh, V 0
h and V B

h , respectively. Let

tξ1, . . . , ξNh
u be the finite element basis for Vh such that tξ1, . . . , ξN0

h
u is a basis for

V 0
h . Let SA be the stiffness matrix with pSAqj,ℓ “ pA∇ξj,∇ξℓq, S be the stiffness

matrix with pSqj,ℓ “ p∇ξj,∇ξℓq, Mn be the mass matrix with pMnqj,ℓ “ pnξj, ξℓq and

M be the mass matrix with pMqj,ℓ “ pξj, ξℓq. The matrix form for (5.4.17), (5.4.18)

and (5.4.19) is the generalized eigenvalue problem

A~x “ k2B~x, (5.4.20)

where

A “

¨

˚

˚

˚

˝

S
N0

h
ˆN0

h

A 0 S
N0

h
ˆNB

h

A

0 SN0

h
ˆN0

h SN0

h
ˆNB

h

pSN0

h
ˆNB

h

A qT p´SN0

h
ˆNB

h qT S
NB

h
ˆNB

h

A ´ SNB
h

ˆNB
h

˛

‹

‹

‹

‚

,
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and

B “

¨

˚

˚

˚

˝

M
N0

h
ˆN0

h
n 0 M

N0

h
ˆNB

h
n

0 MN0

h
ˆN0

h MN0

h
ˆNB

h

pMN0

h
ˆNB

h
n qT ´pMN0

h
ˆNB

h qT M
NB

h
ˆNB

h
n ´ MNB

h
ˆNB

h

˛

‹

‹

‹

‚

.

In all the numerical examples, we use Matlab ”eigs” to compute several eigenvalues

of (5.4.20). Note that if the transmission eigenvalues k are reconstructed using the

scattering data, they are usually not large in magnitude and are only approximations

of the exact ones [100]. Furthermore, the multiplicities of the eigenvalues are not

known in general. Hence, given an eigenvalue k, in the Bayesian inversion stage, one

only needs to know if there exists an eigenvalue k1 of (5.4.20), which is close enough

to k. In the rest of the chapter, the covariance of the noise is set to be Γnoise “ 1
100

I.

Example 1. Let D be a circle with radius 1{2. We consider the isotropic medium,

i.e., A “ I and the constant index of refraction npxq “ nc. The unknown to be re-

constructed is nc. Four transmission eigenvalues are given k “ p2.01, 2.61, 3.23, 3.80q.
These eigenvalues are computed from scattering data (see Fig. 2 in [100]). Note that

the exact index of refraction is nc “ 16.

We first obtain some qualitative information of nc using a deterministic method.

In [28], the following Faber-Krahn type inequality is proved:

k2
1pDq ą λ0pDq

supD npxq , (5.4.21)

where λ0pDq is the smallest Dirichlet eigenvalue. Using the Lagrange finite element

method, we find that λ0pDq « 23.21 (see Chp. 3 of [104]). Consequently, the lower

bound for supD npxq given by (5.4.21) is roughly 5.8.

We consider the following cases:

1.1 use the first transmission eigenvalue to reconstruct n;

1.2 use the first two transmission eigenvalues to reconstruct n;

1.3 use all the four transmission eigenvalues to reconstruct n.
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For all the cases, we choose a Gamma prior n „ Gammap3, 4q ` 5.8 incorporating the

information obtained by the Faber-Krahn type inequality (5.4.21). 2000 samples are

generated in the MCMC-ISP.

The results are shown in Fig. 5.1. For cases 1.1 and 1.2 (Fig. 5.1 (a) and (b)), the

samples aggregate in two regions (around 16 and 27), which indicates the non-unique

solutions. We use the local conditional means (LCM) to characterize the posterior

density function. In Table 5.1, for case 1.1, two local conditional means are shown:

n1
LCM “ 15.90 and n2

LCM “ 27.04. We also compute the associated transmission

eigenvalue, which is close to the given one. In other words, both indices of refraction

have an eigenvalue close to 2.01, which reveals the non-unique nature of the inverse

problem. The scenario is the same for case 1.2.

When four transmission eigenvalues are used, the non-uniqueness disappears on

the interval r8, 30s. As shown in Fig. 5.1(c), all the samples accumulate around

16. The conditional mean nCM “ 16.23 and the corresponding transmission eigen-

values are shown in Table 5.1. It can be seen that there exit four eigenvalues

p1.98, 2.61, 3.24, 3.78q for nCM “ 16.23, which are close to the given eigenvalues

k “ p2.01, 2.61, 3.23, 3.80q.

npxq Transmission eigenvalues

16 2.01 2.61 3.23 3.80

case 1.1
15.90 2.01 - - -

27.04 2.01 - - -

case 1.2
16.05 2.00 2.63 - -

25.62 2.07 2.57 - -

case 1.3 16.23 1.98 2.61 3.24 3.78

Table 5.1: Local conditional means/conditional mean and the transmission eigenval-

ues.
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Figure 5.1: Scatter plots and histograms: (a) and (d) - kp1q; (b) and (e) - kp1 : 2q;
(c) and (f) - kp1 : 4q.

Example 2 Let D be the unit square given by p´1{2, 1{2q ˆ p´1{2, 1{2q. Again,
the medium is isotropic, i.e., A “ I. The exact index of refraction is npxq “ 8 `
x1 ´ x2 for this example. Given the transmission eigenvalues k “ p2.82, 3.54, 4.13q,
we consider two cases:

2.1 assuming n “ n0, reconstruct n0;

2.2 assuming n “ n0 ` n1x1 ` n2x2, reconstruct n0, n1, n2.

Applying (5.4.21) again, we obtain supD npxq ą 2.48. 6000 samples are drawn in

the MCMC stage. We first consider case 2.1 using three transmission eigenvalues.

A uniform prior distribution n0 „ Ur2.5, 14s is used. A large part of the samples

concentrates around 8.1 (see Fig. 5.2 (a-b)). We also notice that some samples are

around 12.3. Similar to Example 1, we compute the local conditional means as shown
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in Table 5.2. The exact transmission eigenvalues close to k for the two LCMs are

also shown in Table 5.2. The differences between the transmission eigenvalues and

the given k are small.

We move on to case 2.2 by coding the reconstruction of n0 in case 2.1 into

the prior. npxq is approximated by the linear function n “ n0 ` n1x1 ` n2x2

with πpn0q “ Ur7.5, 8.5s and πpn1q “ πpn2q “ Ur´1.5, 1.5s. The reconstruction

is npxq “ 8.10 ´ 0.01x1 ´ 0x2. The recovery of the constant term n0 is satisfactory.

Fig. 5.2(c) shows samples of n1, n2. The errors of the coefficient n1, n2 are large. This

is not surprising since x1 and x2 are rather small in D, which makes it difficult to re-

cover their cofficients accurately. Indeed, as seen in Table 5.2, the exact transmission

eigenvalues for the reconstructed npxq are very close to the given k.

n0 n1 n2 Transmission eigenvalues

8 1 -1 2.82 3.54 4.13

case 2.1
8.11 - - 2.81 3.54 4.13

12.21 - - 2.83 3.65 4.05

case 2.2 8.10 -0.01 -0.00 2.82 3.54 4.13

Table 5.2: Local conditional means/conditional mean and the transmission eigenval-

ues.

Example 3. Let D be an L-shape domain given by

p´0.5, 0.5q ˆ p´0.5, 0.5qzr0, 0.5s ˆ r´0.5, 0s.

The exactA and n are diagp1
6
, 1
8
q and 1, respectively. Given k “ p4.31, 4.44, 4.95, 5.47q,

we consider the following cases:

3.1 assuming A “ diagpa0, a1q and n “ n0, reconstruct a0, a1 and n0;

3.2 assuming A “

¨

˝

a0 a2

a2 a1

˛

‚and n “ n0, reconstruct a0, a1, a2 and n0.
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Figure 5.2: Scatter plot (a) and histogram (b) for case 2.1, scatter plot (c) for case

2.2.

For case 3.1, we set a0, a1 „ Ur0.05, 0.25s and n0 „ Ur0.1, 1.6s. The results of the

MCMC-ISP with 6000 samples are displayed in Table 5.3. We can see that A is

approximated by diagp0.14, 0.14q and nCM is 1.34.

Next, we consider case 3.2 using the estimators from case 3.1. As shown in

Fig. 5.3(a), the diagonal elements of A are small and oscillate between 0.1 and 0.2.

Hence we set a0, a1 „ Ur0.1, 0.2s. Choose a2 from Ur´0.05, 0.1s and n „ Ur0.8, 1.6s.
Using 6000 samples to reconstruct A and n, we show the results in Table 5.3 and

Fig. 5.3(b). For both cases, the reconstructions are acceptable and the eigenvalues

are close to the given ones.

npxq a0 a1 a2 Transmission eigenvalues

1 1/6 1/8 0 4.31 4.44 4.95 5.47

case 3.1 1.34 0.14 0.14 - 4.53 4.53 5.00 5.56

case 3.2 1.32 0.13 0.13 0.03 4.17 4.49 4.84 5.48

Table 5.3: Conditional means and the transmission eigenvalues.

Example 4. In this example, we use the same L-shape domain D as Example
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Figure 5.3: Scatter plots for case 3.1 (a) and case 3.2 (b).

3 but A “

¨

˝

1
2

1
7

1
7

1
3

˛

‚ and n “ 2. With k “ p5.32, 5.73, 6.04, 6.53q, we consider the

following cases:

4.1 assuming A “ diagpa0, a1q and n “ n0, reconstruct a0, a1 and n0;

4.2 assuming A “

¨

˝

a0 a2

a2 a1

˛

‚and n “ n0, reconstruct a0, a1, a2 and n0.

npxq a0 a1 a2 Transmission eigenvalues

2 1/2 1/3 1/7 5.32 5.73 6.04 6.53

case 4.1 2.79 0.23 0.22 - 5.22 5.83 6.12 6.60

case 4.2 2.99 0.32 0.26 0.09 5.31 5.61 6.13 6.64

Table 5.4: Conditional means and the transmission eigenvalues.

For case 4.1, we choose the priors a0, a1 „ Ur0.05, 1.05s and n0 „ Ur1.5, 3.5s. The
conditional means of a0, a1 and n are 0.23, 0.22 and 2.79, respectively. Based on the

results of case 4.1, we choose a0 „ Ur0.2, 0.6s, a1 „ Ur0.2, 0.4s, a2 „ Ur´0.05, 0.2s
and n „ Ur1.8, 3.5s for case 4.2. The results are shown in Table 5.4 and Fig. 5.4.
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Figure 5.4: Scatter plots for case 4.1 and 4.2.

The approximation of n is greater than the exact value and approximations of the

entries of A are smaller than the exact ones, indicating the severe ill-posed nature of

the inverse problem. Nevertheless, the computed transmission eigenvalues are close

to the given k for both cases.

5.5 Conclusion

The inverse spectral problem of transmission eigenvalues is studied. Given a few

transmission eigenvalues, the Bayesian approach is employed to reconstruct the ma-

terial properties of the inhomogeneous medium. An MCMC algorithm is used to

explore the posterior density functions of the unknowns. Due to the fact that only

partial data are available (a few eigenvalues), the inverse problem is severely ill-posed

and can have non-unique solutions. To characterize the density functions, we resort

to the recently proposed local estimators. Numerical examples indicate that the pro-

posed Bayesian method is effective for the inverse spectral problem considered in this

chapter.

For Examples 1 and 2, the Faber-Krahn type inequality is first used to obtain some

qualitative information of the index of refraction. Such information can be coded in
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the priors to improve the performance of the Bayesian inversion. The results in

[80, 81] also indicate that the combination of deterministic and statistical methods

can successfully treat challenging inverse problems with partial data.
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