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Abstract

Volcan de Fuego is an active stratovolcano located in the Central Guatemalan seg-

ment of the 1100 m long Central America Volcanic Arc System (CAVAS). Fuego-

Acatenango massif consists of at least four major vents of which the Fuego summit

vent is the most active and the youngest member. The volcano exhibits primarily

Strombolian and Vulcanian behavior along with occasional paroxysms and pyroclastic

flows. Historically, Fuego has produced basaltic-andesitic rocks with more recent erup-

tions progressively trending towards maficity. Several studies have used short-term

deployments of broadband seismometers, infrasound, and long-term remote sensing

techniques to characterize the mechanism of Fuego. In our study, we analyze the tilt

derived from transient broadband seismometers and tiltmeter stationed over several

days during 2009, 2012, and 2015 near the summit crater using unsupervised learning.

Unsupervised learning has the potential to play a significant role in monitoring volca-

noes dominated by large, unlabeled datasets. In our study, we make use of dynamic

time warping distance measure along with unsupervised classification methods to

identify precursory tilt signals. The unsupervised classification revealed two types of

tilt signals with opposite polarity, one of which confirms features identified in previ-

ous studies while the other signal has been previously unknown. Template matching

implemented with the known signal identified 268 events between October 1, 2015

xvii



and January 13, 2016, the duration of which varied between 7 and 39 minutes. The

temporal distribution of these events as well as the maximum amplitude of infla-

tion showed clustering activity accompanied by intra-cluster waxing and waning. We

created subsets of temporal clusters and calculated repose times between successive

events. Auto-correlation functions were calculated for each subset and probability

density functions were fitted which support survival/failure processes. The long-term

tilt records provided a useful tool to characterize the activity and revealed a near-

continuous cyclicity.

xviii



Chapter 1

Introduction

Volcan de Fuego also known as Chi Q’aq’ (in Kaqchikel - one of the Mayan languages)

is one of the most active volcanoes in Guatemala, and is located approximately 44

km from the capital Guatemala city. It is conjoined with another active volcano,

Acatenango, to the north and is aptly nicknamed a ”twin volcano”. Together with

Acatenango, it forms the dynamic volcanic complex of La Horquita. Fuego volcano

is characterized by Strombolian/Vulcanian eruptions, frequent ash explosions leading

up to paroxysms and occasional pyroclastic flows [Lyons et al., 2009].

Since 1524, Fuego volcano has produced more than 60 VEI 2, explosive eruptions and

on June 3, 2018 produced its most deadliest eruption in a 100 years accompanied

by several pyroclastic flows [BBC News, 2018]. The eruptive plumes were shot into
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the atmosphere as high as 10 km and could be seen from the space, and the ash

falls reached as far as 40 km from the volcano. When the eruptive plumes collapsed,

the pyroclastic flows inundated several villages resulting in hundred of casualties and

destroyed more than half of the houses in San Miguel Los Lotes [Wallace, 2018].

Therefore, continued monitoring of the volcano is becoming increasingly essential to

thwart future disasters.

1.1 Geological Setting

Volcan de Fuego is an active stratovolcano located in the northern part of the Central

America Volcanic Arc System (CAVAS). CAVAS is a 1100 m long volcanic arc, parallel

to the Pacific coast, formed by oblique subduction of the Cocos plate under the

over-riding Caribbean plate, converging in N30E direction [Gazel et al., 2021]. The

volcanic arc is divided into several blocks - Western Guatemala, Central Guatemala,

Eastern Guatemala, El Salvador, Western Nicaragua, Eastern Nicaragua, and Costa

Rica- by transverse boundaries running perpendicular to the Middle-America trench

which lies approximately 150 km south of the volcanic chain [Carr , 1984]. Each

block is 100-300 km long with different strikes and volcanic lineaments, and houses

several active volcanoes that exhibit striking inter-volcano variations in morphology,

geochemistry, eruptive styles and patterns. The boundaries between the blocks are

marked by major normal faulting and offset in volcanic lineaments. The blocks tear
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at shallow depths and enter into the mantle at different dips which may explain

the offsets in the positions of volcanoes between different segments. The boundaries

are characterized by relatively higher shallow earthquakes, small volume, and violent

eruptions. Between the depths of 100 km and 150 km is a zone characterized by

an absence of earthquakes which corresponds with the location of volcanic front and

thereby the position of underthrust crustal melting [Stoiber and Carr , 1973].

The Central Guatemala segment is the most active of all the Central America Vol-

canic Arc segments and accomodates the five active volcanoes: Santa Maria, Atitlan-

Toliman, Fuego-Acatenango, Agua, and Pacaya. This segment is 145 km long and

has the third largest volume-length ratio of 2.7. This segment is characterized by the

manifestation of transverse volcanic vents which results in the construction of paired

volcanoes. Two of the paired volcanoes - Atitlan-Toliman and Fuego-Acatenango are

located away from the transverse boundaries and account for about 60 percent of the

total volcanic volume of the segment [Stoiber and Carr , 1973].

The Fuego-Acatenango pair has consisted of four active vents located north - south

[Halsor and Rose, 1988]. The Acatenango complex consists of Yepocapa and Acate-

nango vents and the Fuego complex consists of Meseta and Fuego vents. The activity

at Fuego has been more frequent with more than 60 eruptions consisting of Al2O3

rich, basaltic lava whereas Acatenango has been less frequent with only three his-

torical eruptions in the last century, consisting of andesitic rocks [Vallance et al.,

3



Figure 1.1: The figure shows the Central America Volcanic Arc System
(CAVAS) created by the subduction of Cocos plate under Caribbean plate.
The red symbols indicate the volcanic front extending from Guatemala in
the west to Costa Rica in the east.

2001]. The major rock composition of Fuego ranges between 45-55 percent of silica

whereas the composition of Acatenango is much more varied with 50-70 percent of

silica [Halsor and Rose, 1988].

Figure 1.2: The figure shows the four major vents of La Horquita complex.

Chesner and Rose [1984] proposed that Fuego consists of two magma chambers -
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a deep, primary magma chamber located between 8 km and 15 km at the base of

the crust and shallow, dike-like magma chambers located between 2 km and 8 km

below the surface. The primary magma chamber at the crustal base is shared by the

two volcanic complexes. The magma undergoes initial fractionation at this chamber

before starting its ascent towards the shallow magma chambers located beneath each

of the volcanic complexes. The changes in chemical composition of the two complexes

is attributed to the interaction between the primary magma and the country rock

before it reaches the shallow magma chambers. The age estimates show that the

Fuego complex is at least 17,000 years old with Fuego being the youngest vent and

the older rocks of Fuego are more silicic compared to the younger rocks suggesting

that the magma is trending towards mafic over time. This can be explained by

the changes in magma chamber geometry caused by the destruction of Meseta cone.

Although the major vents have been active coincidently, the activity seems to be

shifting towards south. This is consistent with the other paired volcanoes in the

region where the activity is younging towards the seaward volcanoes. This can be

explained by a shift in the location of primary magma chamber towards the oceanic

trench. As the magma chamber shifts, the seaward volcano, Fuego ”steals” magma

from the landward volcano, Acatenango thus diffusing its activity. This shift can be

explained by a change in convergence rate and dip angle of the Cocos plate [Halsor

and Rose, 1988].
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1.2 Eruptive History

Fuego volcano has produced more than 60 VEI 2 eruptions and multiple VEI 4 erup-

tions (Fig: 1.3) ranging from Strombolian to sub-Plinian activity accompanied by

occasional pyroclastic flows [Lyons et al., 2009]. Historical observations of the vol-

cano started after the Spanish settlement in 16th century. Prehistoric eruptive records

(before 1524) have been largely obtained through stratigraphic studies and carbon-

dating [Naismith et al., 2019]. Throughout history, the volcano has undergone several

eruptive cycles each lasting 20-70 years followed by periods of repose. Each cluster

is characterized by low-level, background Strombolian eruptions, multiple ash-laden

Vulcanian and sub-Plinian activity, and occasional pyroclastic flows. Several notable

eruptions (VEI 4) have occurred in the years of 1581, 1717, 1737, 1857, 1880, 1932 and

1974 [Martin and Rose, 1981]. Although scoring relatively low (VEI 3) in the Volcanic

Explosivity Index, the 2018 eruption is notorious due to its significant devastation

[BBC News, 2018].

Hutchison et al. [2016] translated a Spanish document, “Autos Hechos Sobre el Lasti-

moso, Estrago y Ruina que Padecio esta Ciudad de Guatemala. . . ” which catalogs first

account statements from several eye-witnesses during the 1717 eruption of Fuego. The

activity began on August 27 with small ash explosions that culminated in high plumes

and pyroclastic flows. One interesting aspect of this eruptive cycle is the mudflows
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Figure 1.3: The figures show eruptive clusters consisting of VEI 2 or more
eruptions recorded since 1524. The red line indicates cumulative VEI of the
explosions. Data collected from Global Volcanism Program (GVP).

of Volcan de Agua preceded by an earthquake occurred in September, 1717. They

hypothesized that it could have been influenced by Fuego’s activity resulting in a

collapse of Agua’s hydrothermal system. Martin and Rose [1981] has given a detailed

catalog of eruption intensities after 1932. Fuego erupted in 1932 after five decades of

quiescence and continued its activity well through 1979 interrupted by occasional pe-

riods of silence within clusters. The 1974 eruption produced more ash (0.2 km3) than

the previous eruptions that occurred in 20th century. Rose et al. [1978] conducted a

detailed study on the 1974 eruption using tephra deposits.The major activity occurred

between October 10 and October 23 in four pulses each lasting less than 24 hours.

They proposed a deep zone crystal fractionation possibly at depths greater than 5

km beneath the summit and suggested a shallow, dike-like conduit for the upward

movement of magma influenced by tidal accelerations. After two decades of almost
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no activity, the volcano entered its recent eruptive cycle in 1999 [Lyons and Waite,

2011; Naismith et al., 2019]. This cycle is characterized by continuous, background

lava effusion, intense explosive activity accompanied by ash fall, sustained plumes,

and paroxysmal eruptions followed by lava-less degassing explosions. Naismith et al.

[2019] used remote sensing data obtained from MODIS/MIROVA to demonstrate an

increase in eruption intensities after late 2015 and proposed a new eruptive regime for

the volcano. The most notable eruption in recent history occurred on June 3, 2018

producing multiple pyroclastic flows that inundated the Las Lajas ravine causing se-

vere damage to the communities of San Miguel Los Lotes and El Rodeo [Wallace,

2018]. INSIVUMEH reported at least 110 casualties and a significant damage to the

infrastructure [ GVP, 2018]; and the unofficial death toll may exceed 2000 fatalities

[ ctv news, 2018].

1.3 VLP Seismicity

Very Long Period (VLP) seismic signals are common occurences in volcanoes through-

out the world. These signals are generally repetitive and occur between 0.5 Hz and

0.01 Hz. These signals can be caused by agitations due to the movement of magma

or volatile towards the surface [Chouet and Matoza, 2013]. As such, these signals give

a glimpse into conduit geometries of volcanoes. Lyons and Waite [2011] used VLP

signals recorded from Fuego volcano that accompanied ash-rich explosions. They
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attributed the VLP to a decompression of the upper conduit following rupture of

a pressurized seal near the top of the conduit. Using full-waveform moment-tensor

inversion, they modelled the conduit geometry as a near vertical dike connected to a

shallower dipping sill. The events that produce VLP can also produce measurable tilt

below the low corner of instruments [Lyons et al., 2012] . Hence, a catalog of VLP

signals can provide a starting point to identify volcanic tilt events.

1.4 Unsupervised Learning

Volcano seismology is a data-driven field that relies on the ability to model and visu-

alize interior of the Earth through seismic signals. With the deployment of broadband

sensors all around the world, it is becoming increasingly possible to record these sig-

nals over a broad range of frequencies. Consequently, the plethora of information

coming from these instruments is becoming ever so difficult to process by human

expertise alone. To overcome this challenge, seismologists are actively co-opting and

adapting machine learning techniques initially used in robotics and natural language

processing [Fiorini et al., 2020; Nasukawa and Yi , 2003; Zagibalov and Carroll , 2008].

Supervised and unsupervised algorithms are subsets of machine learning techniques

that can be used to classify waveforms and identify new patterns respectively. Su-

pervised classification uses pre-labeled datasets as input to search and classify similar
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waveforms into their respective groups. This class of algorithms is more suitable

when datasets that have been previously processed and labeled by human experts

are available, whereas unsupervised classification does not require any pre-labeled

datasets and can be used in places where such information is readily unavailable.

Therefore, unsupervised learning is widely used to identify precursory patterns in

volcanic eruptions [Seydoux et al., 2020].

Seydoux et al. [2020] used deep scattering network in conjunction with Gaussian

mixture model to cluster seismic data recorded over a period of 24 hours before the

2017 Nugaatsiaq landslide. Their cluster analysis revealed a repeating, precursory

signal that started 9 hours before the landslide. Witsil and Johnson [2020] used

unsupervised clustering techniques to analyze infrasound data recorded over a period

of three daya at Stromboli volcano. Their analysis suggested an existence of common

plumbing system shared by the six active vents. Ren et al. [2020] studied seismic

signals recored at Piton de la Fournaise volcano over a long period of 6 years to

identify signals associated with different eruptive behavior. Anzieta et al. [2019] used

seismic records obtained over a period of nine months from Cotapaxi volcano. They

employed spectral analysis along with distance measures to identify a seismic pattern

associated with the upward movement of magma.

Following these studies, we have employed unsupervised clustering techniques on

seismically-derived tilt signals recorded in the east component of stations F900 and
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NW1 to identify precursors in an effort to better understand the mechanism of Fuego.

The station F900 was operating in 2009 whereas the station NW1 was operational

during 2012 and 2015.
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Chapter 2

Data Collection and Methods

2.1 Data

The data used in this study were collected from broadband seismometers - located

at F900 and NW1 - and a tiltmeter, installed towards north of the summit vent

(Fig: 2.2). The station F900 housed a Guralp CMG40T-30 sec seismometer which

was operating from January 10, 2009 to January 26, 2009. This station was recording

data at the rate of 100 samples per second or 100 Hz. The station NW1 contained a

Nanometric Trillium-120 sec seismometer and was functional from January 16, 2012

to February 02, 2012. This station was sampling the data at 100 Hz. The station

NW1 stationed a Guralp CMG3ESP-60sec seismometer was operating from February

13



12, 2015 to February 26, 2015 and was sampling at a rate of 50 samples per second or

50 Hz. The tiltmeter was operational over a period of 105 days from October 1, 2015

to January 13, 2016 and was sampling at a rate of 1 sample per minute. (Fig: 2.1).

Figure 2.1: The figure shows a schematic representation of data as well
as the operating time period of stations used in this study. The tiltmeter
was operating over a period of 105 days providing a relatively longer-term
record.

2.2 Methods

The analysis consists of six steps: (1) identifying VLP events from the seismic traces

using STA/LTA algorithm; (2) computing tilt values associated with the VLP events;

(3) creating a feature matrix using Dynamic Time Warping (DTW) distance mea-

sure; (4) applying clustering algorithms to identify meaningful groups; (5) identifying
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Figure 2.2: The figure shows the top view of Fuego volcano and the loca-
tions of stations F900 and NW1. F900 was operating during 2009 and NW1
was operational during 2012 and 2015. The tiltmeter was collocated with
the station F900 and was active during 2015 and 2016.

similar events in tiltmeter recorded tilt data using the meaningful groups for template

matching; and (6) statistical analysis on events obtained through template matching.

2.2.1 STA/LTA Algorithm

Automatic trigger algorithms are gaining importance particularly when the situation

demands dealing with large amounts of datasets. These algorithms range from simple

triggering mechanism such as detecting amplitudes over a user-specified threshold to

more advanced neural networks. The latter is widely used in studies that require high

sensitivity and low false triggers, and is usually specific to waveforms and study area.
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Therefore, the simple triggering algorithms are still widely used for their simplicity

and overall satisfactory performance.

These algorithms include simple amplitude threshold trigger which detects for ampli-

tude above a user-defined threshold, Root-Mean-Square (RMS) trigger which stores

events that are above a particular RMS value, and the Short Term Average (STA)/

Long Term Average (LTA) detection algorithm which detects events based on two

moving windows.

The STA/LTA trigger is suitable for both weak-motion and strong-motion seismology,

and is not sensitive to natural seimic noise such as those produced by ocean waves

as well as human-made seismic noise that are continuous. Hence, it is preferred over

the other two trigger detection algorithms [ Trnkoczy , 1970].

The STA/LTA detection algorithm keeps track of all the absolute amplitudes in two

moving windows and takes average over these values. The ratio of these two moving

windows is then calculated, and if the value exceeds a pre-defined threshold the trigger

mechanism is activated. This algorithm requires four inputs: (1) the length of the

STA window; (2) the length of the LTA window; (3) the upper threshold limit; and

(4) the lower threshold limit. Care should be taken to find a leverage between good

sensitivity and low false triggers.The trigger inputs are set following the procedure

outlined by Trnkoczy [1970].
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The STA gives the measure of instant amplitude within the specified window. The

trigger sensitivity to local earthquakes can be increased by decreasing the window

duration and to teleseismic earthquakes by increasing the duration parameter. In

general, the STA window should be a little longer than the minimum period of po-

tential earthquakes. Otherwise, the trigger will be influenced by individual periods

rather than the whole signal. At the same time, it should be shorter than the min-

imum duration of individual events so as to capture most of the events. The LTA

keeps track of amplitude of seismic noise. As such, it should be a little longer than

the expected noise variations. Otherwise, the LTA window will adjust itself to the

instant earthquakes thus decreasing the trigger sensitivity. At the same time, using

too long a window may potentially increase false triggers.

2.2.2 Calculation of Tilt

The horizontal components of seismometers consist of a long boom whose one end is

fixed while the other supports a mass. The length of the boom is long enough for

its motion to be considered as translation. But, several studies have showed that the

rotational effects produced by these sensors might not be as insignificant as previ-

ously thought [Rogers, 1968; Pillet and Virieux , 2007]. Rogers [1968] showed the re-

sponse of horizontal seismometers to surface waves and demonstrated that long-period

Rayleigh waves had significant tilting effects. Pillet and Virieux [2007] compared
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the response of horizontal and vertical seismometers, and showed that the former had

considerable tilt effects while the latter exhibited negligible influence. This tilting

effect pollutes the ideal response of seismometers and is undesirable in seismic stud-

ies. Recent studies have taken advantage of this ”noise” below corner frequency to

characterize the mechanism of magmatic processes.

Aoyama and Oshima [2008] conducted an experimental investigation on tilt records

and demonstrated similarity between the tilt measured from an actual tiltmeter and

derived values from a broadband seismometer. Genco and Ripepe [2010] used derived

tilt records of Stromboli volcano and identified inflation-deflation signals associated

with continuous magma discharge and replenishment. Ripepe et al. [2009] used tilt

records obtained from Stromboli volcano and identified a relationship between tilt

amplitude and explosion intensity. They developed an early warning system based on

their analysis which forecast a paroxysmal eruption and a tsunami successfully. Lyons

et al. [2012] used an array of broadband seismometers installed on Fuego volcano as

tiltmeters and modeled a pressure source with spherical geometry, located towards

120 m west and 40 m deep below the summit crater.

This study follows the procedure outlined by Lyons et al. [2012] to calculate tilt

output from broadband seismometers: (1) the mean of the seimic trace is removed; (2)

the demeaned trace is integrated with respect to time; (3) the trace is passed through

a low-pass filter to remove the frequencies above the low corner of the instrument;
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and (4) the trace is multiplied by the ratio of product of instrument sensitivity and

corner frequency to the gravitational acceleration.

2.2.3 Dynamic Time Warping

Dynamic Time Warping (DTW) is a distance measure that computes similarity be-

tween two or more waveforms (Fig: 2.3). This method gained importance in the

speech processing community in the 1960s. DTW minimizes the distance between

points of two time series in a non-linear fashion and computes a distance matrix with

quadratic complexity. This property reduces its susceptibility to pessimistic similar-

ity or time axis distortion unlike Euclidean Distance (ED) measure and allows for

comparing time series of similar shapes but different phases [Ratanamahatana and

Keogh, 2004]. In the last decade, DTW has gained popularity in various fields such

as data mining, chemical engineering, medical imaging, and geophysics. But due to

its computational complexity, the application of DTW is limited to small to medium

sized databases. To overcome this problem, several studies have introduced lower

bounding methods to limit the warping path such as Sakoe Chiba band, Itakura par-

allelogram, and LB Keogh [Ratanamahatana and Keogh, 2004; Salvador and Chan,

2007 ]. These warping windows not only reduce the computational time but also limit

pathological warping by constraining the number of samples to be mapped for each

distance calculation [Salvador and Chan, 2007].
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Figure 2.3: The DTW algorithm minimizes the distance between each
point on time series 1 (blue) with multiple points on time series 2 (red)
thus accounting for phase-shifts in time series data. Source: Wikimedia
Commons: Euclidean vs DTW.jpg

2.2.4 Volcanogenic Radiant Flux

Volcanogenic Radiant Flux (VRF) measures the thermal radiance emitted by lava

flows and therefore it is directly proportional to volcanic lava output. VRF is calcu-

lated and made available within a couple of hours of satellite over-passing by MOD-

VOLC using MODIS instrument. Moderate Imaging Spectroradiometer (MODIS)

consists of two sensors located each on National Aeronautical Space Administration’s

(NASA) Terra and Aqua satellites. These satellites together orbit the Earth every
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two days and record information in 36 spectral bands. MODVOLC algorithm utilizes

thermal infrared radiation (3.959 micrometer wavelength) captured by MODIS sen-

sors to monitor thermal anomalies produced by volcanic eruptions. This algorithm

calculates radiant flux for each hotspot by using equation 2.1 [Wooster , 2003].

φe = 1.87 ∗ 107 ∗ (L3.959 µm − L
3.959 µm, bg

) (2.1)

L3.959 µm = spectral radiance of each pixel; L3.959 µm, bg = spectral radiance of adjacent

pixels.

The radiant flux for each pixel identified at a particular time is summed up to calculate

the Volcanogenic Radiant Flux (VRF) for each observation time. Only the night time

images were used to avoid errors due to solar radiation [Wright et al., 2015].

2.2.5 Statistical Analysis

Statistical analyses can be used to identify underlying trends and patterns in partic-

ularly large datasets. The datasets can be divided into two types based on trends:

stationary and non-stationary datasets. The type of dataset to be used is highly

subjective and largely depends on the nature of data. In our study, we have used
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a non-stationary dataset which contains no trends but periodicity. Due to paroxys-

mal nature of Fuego volcano, we believe the periodicity of eruptions constitute an

important factor.

There are several methods to quantify randomness and clustering within datasets.

Coefficient of Variation (CoV) is a simple but effective tool which calculates the ratio

of standard deviation and mean of the data. A value of 1 indicates clustering whereas

a value less than 1 signifies Poissonian process [Bebbington and Lai , 1996]. Similarly

Auto-Correlation Function (ACF) is another statistical method commonly used in

forecasting to identify suitable time series models. One of the advantages of ACF

is that it can reveal periodicity within the time series data. It computes correlation

between each time series and time lagged version of itself called lags. The ACF is

usually represented using a plot between lags and ACF coefficient called correlogram.

The significance of each correlation is determined using a confidence interval of 95

percent. If the correlation value exceeds the confidence interval, it is considered to

be significantly larger than the mean value, otherwise the coefficient is considered

insignificant. If the deviation of ACF coefficient shows gradual variation, it is indica-

tive of periodicity or cyclicity in the data and an auto-regressive model (AR) can be

used in forecasting. On the other hand, if the coefficient has abrupt cut offs around

the mean, it is indicative of randomness and a moving-average (MA) method is best

suited for the forecasting [Varley et al., 2006]. The Probability Distribution Func-

tion (PDF) is commonly used to identify best fits for distribution of events within a
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dataset. Depending on the best fit, it might be possible to identify if the data follow

stochastic/renewal distributions or survival/failure models. The renewal process as-

sumes that the events are stationary, time independent, and the probability of future

eruption is dependent only on the time lapsed since the previous eruption (example:

exponential or Poissonian distributions). Therefore, it is suitable for volcanoes where

the magmatic system undergoes recharge between each eruption and no periodicity

exists. There are other set of distributions called survival/failure models which in-

corporates the periodicity/cyclicity and these include gamma, log-logistic, lognormal,

and Weibull distributions. The log-logistic distribution suggests that the data is dom-

inated by competing sources while the lognormal and Weibull distributions suggest

that the data exhibits quasi-periodic distribution [Bebbington and Lai , 1996]. In this

study, we have used Poissonian distributions such as Gaussian and exponential as well

as survival distributions to identify better fits for maximum amplitudes and repose

times. The goodness of the fits is determined using Kolmogorov-Smirnov test with a

95 percent confidence. The KS test rejects or accepts the hypothesis that a given set

of samples belongs to a particular distribution using a D-value and a P-value [Beb-

bington, 2013]. If the calculated D-value is less than the critical D-value (depends on

the number of samples) then the null hypothesis is accepted. The P-value is calcu-

lated from the observed D-statistic and gives the probability that the critical D-value

is larger than the observed. As such, for a good fit, the P-value should be as greater

as possible than the significance level.
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Chapter 3

Results

3.1 Tilt from Seismometers

The seismic records were collected over a period of several days during each year under

investigation (see Section: 2.1) (Note: not all stations were operating at the same

time). A previous study on Fuego volcano has showed that the tilt signals attenuate

more rapidly with distance and the magnitude is particularly stronger along east

channel [Lyons et al., 2012]. Therefore, only the east channel from stations closest to

the summit vent was taken for analysis.

The raw data were passed through a bandpass filter to limit the frequencies to VLP

bands of 10 s to 60 s. A STA/LTA trigger mechanism was applied to the filtered

25



data. The trigger ratio was limited to 10/350 while the amplitude range was limited

between 10 and 0.7 in order to capture maximum events with limited false triggers.

A standard 45 minute raw subset preceding each VLP onset time recorded in the

east component was taken for further analysis. The raw data were passed through a

lowpass filter to limit the frequencies higher than low corner of each instruments - data

from the stations NE1, and NW1 were passed through a 60 s lowpass filter whereas

that of station F900 was passed through a 30 s filter. Tilt records were calculated by

multiplying traces of each subset with the respective instrument sensitivity following

equation 3.1.

τ = −S ∗ ω2
0/g

∫
p(t)dt (3.1)

where τ is the tilt; S is the seismometer sensitivity; Ω0 is the natural or corner

frequency of the instrument; g is the gravitational acceleration, and p(t) is the seismic

trace.

Unsupervised classification yields better results when the dimensionality of datasets

is reduced. This can be achieved by extracting suitable features such as distance

matrices from data. This study utilized the DTW distance measure for creating a

distance matrix between each time series. This procedure has a quadratic complexity
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of A(n2) and therefore parallel processing in C was adopted to speed up the process

and a window constraint was applied to prevent pathological warping [Ratanama-

hatana and Keogh, 2004]. Finally, the calculated distance matrix was analyzed for

groups using a bottom-top approach of hierarchical clustering which assumes each

time series as initially independent and constantly groups the events until a prede-

fined distance threshold is reached.

The choice of distance threshold depends on the nature of data and various methods

are employed to select an appropriate value. In our analysis, we used cross-validation,

dendogram, and trial & error approach [ Kumarsagar and Sharma, 2014] to determine

appropriate distance threshold and found that trial & error method yielded better

results. This procedure yielded 5, 7, and 7 groups with distance thresholds of 1000,

600, and 1500 in data collected from 2009, 2012, and 2015 respectively. Further

analysis of all these groups revealed two meaningful patterns with opposite polarity in

each year (Fig: 3.4). The pattern 1 formed a well-defined, meaningful group that can

be easily distinguished from other groups, while the pattern 2 was hidden among noisy

time series (Fig: 3.1). The tilt is negligible on the vertical component of seismometers.

Therefore, the vertical component of pattern 2 events were analyzed to rule out

possible instrument errors and also the seismic traces of pattern 2 events were analyzed

in higher frequency bands between 0.5 Hz and 10 Hz.
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Figure 3.1: The figure shows the groups obtained through unsupervised
learning on 2009 data recorded in the east component of the F900 seismic
station. Figure A consists of 40 signals and shows well-defined pattern 1
while the figure E consists of only 4 signals and shows pattern 2 mixed with
noise. The figures B, C, and D are mostly comprised of noise with 22, 39,
and 53 signals.

3.2 Tilt from Tiltmeter

The tiltmeter was operating over a period of 105 days from October 1, 2015 to Jan-

uary 13, 2016 continuously and was sampling at a rate of one sample per minute.

Although this sampling rate was very low, it was adequate enough to record events

of longer duration. The tilt signals recorded in Fuego gradually vary over a period of

several minutes to less than an hour. Therefore, an STA/LTA window would slowly

adjust itself to the tilt signals thereby missing positive triggers. Hence, template-

matching was chosen over STA/LTA to analyze tilt obtained from tiltmeter. The

tiltmeter data was searched manually for an event that looked similar to the patterns
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Figure 3.2: The figure shows three components (vertical, north, and east)
containing tilt traces of a pattern 2 event. Instrument errors would affect all
the components equally whereas the tilt signals only affect horizontal com-
ponents. The very low amplitude signal in the vertical component confirms
that the pattern 2 events were indeed produced by tilt.

obtained through unsupervised learning. An event that resembled pattern 1 was used

as a template in the template-matching technique and we were unable to identify a

template that resembled pattern 2. The meaningful patterns obtained from seismic

derived tilt were not directly used as templates due to very low sampling rate of the
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Figure 3.3: The figure shows examples of seismic traces associated with
events of pattern 2 in higher frequency bands between 0.5 Hz and 10 Hz. All
the three components (vertical, east, and north) show tremor signals.

tiltmeter. The template-matching technique was carried out to identify similar look-

ing events with 75 percent similarity or above and this procedure yielded 268 events

of high signal-to-noise ratio. A catalog was created containing onset time, duration,

amplitude of inflation, amplitude of deflation, and repose interval between the events.

(Appendix: A).
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Figure 3.4: The figure shows examples of seismic traces associated with
events of pattern 1 in higher frequency bands between 0.5 Hz and 10 Hz.
All the three components (vertical, east, and north) show impulsive signals
associated with explosions accompanied by long codas.

Statistical analysis was carried out on the data obtained from the catalog. A prelim-

inary analysis of cumulative number of events (Fig: 3.6) revealed change in gradients

suggesting a clustering of events in time. This hypothesis was further corroborated by

a comparison between event onset time and number of events per day which revealed
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Figure 3.5: Examples of meaningful patterns - pattern 1 (top) and pattern
2 (bottom) recorded in the east component of the station F900 during 2009 -
with opposite polarities obtained through unsupervised learning carried out
on seismic derived tilt data.

seven individual clusters each lasting approximately 10 - 15 days (Fig: 3.7). A com-

parison with radiative power output obtained from MODVOLC revealed that these

clusters always preceded high VRF which is directly proportional to lava flows (see

subsection 2.2.4). Three of the seven clusters that occurred before October 28, 2015

were disregarded due to very low sampling size and only the remaining four clusters

were taken for further analysis (hereafter referred to as clusters 1 through 4).

An analysis on the duration of inflation revealed that the events varied in length

with a range of 32 minutes - the shortest event lasted up to 7 minutes while longest

persisted for 39 minutes (Fig: 3.8). In cluster 2, the events with longer duration

were distributed in the middle of the cluster while those with shorter duration were

distributed towards the beginning and end of the cluster. In all other clusters the

32



Figure 3.6: Cumulative number of tilt events recorded in tiltmeter, ob-
tained through template matching. The varying gradients suggest a change
in eruption frequency and coincide with eruptive clusters 1 to 4.

duration of events exhibited a random distribution.

The maximum amplitude of inflation within each clusters followed a waxing and

waning pattern similar to the number of events per day (Fig: 3.9). The maximum

amplitude increased gradually in the initial 3 - 5 days before culminating in the next

4 - 6 days and finally waning off. The Auto-Correlation Function (ACF) revealed

a gradual change in ACF coefficient calculated for each lag. The gradual change

suggests that the events exhibit clustering or periodicity. More than 5 percent of

lags exceed the 95 percent confidence interval in the clusters 1, 3, and 4. Therefore,
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Figure 3.7: The figure shows number of tilt events recorded per day from
October 1, 2015 to January 13, 2016. The red lines indicate Volcanic Radia-
tive Flux (VRF) measured from MODIS night time images (Source: MOD-
VOLC). The clusters 1 through 4 are represented by green, cyan, yellow,
and magenta dashed lines respectively.

higher order auto-regressive models can be used to forecast the time-series. Higher

order of the model suggests that the value of a future event depends on more than

one event that immediately precedes it, therefore suggesting a clustering process

(Fig: 3.10). The cluster 4 showed the highest correlation and periodicity while the

cluster 2 exhibited the least correlation and periodicity, suggesting that the former was
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Figure 3.8: The figure shows the cluster of events obtained between Octo-
ber 1, 2015 to January 13, 2016, and the inflation duration of tilt events in
each cluster. The duration is distributed randomly in all the clusters except
cluster 2 in which the longer duration events are distributed in the middle
while the events with shorter duration are spread towards the beginning and
end of the cluster.

much more clustered than the latter. The Probability Density Function (PDF) was

calculated for each cluster which showed that the clusters 3 and 4 exhibited gamma

distribution while the clusters 1 and 2 displayed a normal distribution (Fig: 3.11).

The gamma distribution belongs to the group of distributions called survival/failure
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distributions which may suggest a periodicity or cyclicity within a dataset. Although

first two clusters exhibit a normal distribution, we believe it might be caused by

incompleteness of the dataset as both the ACF (Fig: 3.10) and time vs amplitude plot

(Fig: 3.9) indicate clustering activity. The significant value of PDF is 0.05 for a 95

percent confidence interval. The P-value of distributions should be greater than this

significant value in order to be a good fit. The P-values of all the distributions exceed

0.05, therefore all the fitted distributions passed the goodness of fit test. (Table: 3.1)

.

Clusters Best Fit Parameters P value - KST

Shape Location Scale

Cluster 1 Norm 0.3695 0.171 0.46

Cluster 2 Norm 0.457 0.198 0.67

Cluster 3 Gamma 3.004 0.067 0.117 0.87

Cluster 4 Gamma 3.902 -0.028 0.083 0.51

Table 3.1
Parameters of Maximum Amplitude PDF

The repose times were calculated for events within each clusters. The repose times

for maximum amplitudes are randomly distributed for all the clusters except cluster

2 in which the events with maximum amplitude show lesser repose times (Fig: 3.12).

The ACF values calculated for repose times of each cluster hovered near zero with
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Figure 3.9: The figure shows the maximum amplitude of events in each
cluster. The clusters exhibit a waxing and waning pattern where the am-
plitude starts to increase after each paroxysm and culminate before waning
off to the original intensity. This is positively correlated with the number of
events per day.

abrupt cut offs, suggesting very little in-clustering activity. Therefore, a moving-

average (MA) model will better suit to forecast the future eruptions. This suggests

that the probability of a future eruption cannot be determined only using repose

times that immediately precede it (Fig: 3.14). The PDF calculated for clusters 1

and 3 exhibited exponential and gamma distributions while that of clusters 2 and 4
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Figure 3.10: The figure shows correlogram of maximum amplitude cal-
culated for each of the four clusters. The gradual variation of ACF and
significance of coefficient (values that exceed the 95 confidence range are
considered significant) suggest clustering of events.

exhibited a lognorm distribution, suggesting that the volcano goes through periods

of survival and failure i.e. cyclicity (Table: 3.2) (Fig: 3.13).

Clusters Best Fit Parameters P value - KST

Shape Location Scale

Cluster 1 Exponential 0.71 3 271 0.53
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Table 3.2 continued from previous page

Cluster 2 Lognorm 1.33 41.50 234.13 0.83

Cluster 3 Gamma 0.62 7 263.91 0.70

Cluster 4 Lognorm 1.31 -4.12 158.88 0.97

Table 3.2
Parameters of Repose Time PDF

Clusters Time Period Coefficient of variation

October 1, 2015 - January 13, 2016 2.51

Cluster 1 October 28, 2015 - November 7, 2015 1

Cluster 2 November 7, 2015 - December 1, 2015 1.21

Cluster 3 December 1, 2015 - December 15, 2015 1.25

Cluster 4 December 15, 2015 - January 5, 2016 1.40

Table 3.3
Coefficient of Variation of Repose Times
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Figure 3.11: The figure shows Probability Distribution Functions (PDF)
fitted for maximum amplitudes of inflation. The PDF fit shows variability
between clusters which could be due to incompleteness of data.

40



Figure 3.12: The figure shows maximum amplitude of events plotted
against repose times. The values are distributed randomly for all the clusters
except cluster 2 in which the events with maximum amplitude have lesser
repose times.
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Figure 3.13: The figure shows Probability Distribution Functions (PDF)
fitted for repose times of each of the four clusters. The clusters 2 through 4
follow survival/failure distributions suggesting a cyclic behaviour.
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Figure 3.14: The figure shows correlogram calculated for repose times of
each of the four clusters. The abrupt cut offs of coefficients around the mean
indicate randomness of data.
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Chapter 4

Discussion and Conclusion

4.1 Discussion

4.1.1 Unsupervised Learning on Seismically-Derived Tilt

The unsupervised learning applied to the seismically-derived tilt data revealed two

meaningful patterns with seemingly opposite polarity (Fig: 3.4). We found 129 high

signal-to-noise ratio events that resembled the pattern 1 whereas only 6 events showed

similarity to the pattern 2 forming a very small sample size.

We focused on the east-west component of tilt because the amplitude of the tilt signal

45



was largest in this direction. In the absence of topography, we would expect little to

no tilt on this component since it is nearly tangential to the source, and maximum tilt

on the north component, which is nearly radial. But the fact that the east component

has larger tilt reflects the influence of the north-south ridge that extends north from

Fuego’s summit.

The pattern 1 from the broadband data exhibited predominantly positive tilt in the

east direction therefore tilting down towards east whereas the pattern 2 exhibited tilt

down towards west. Predominant east and slight south downward tilt exhibited by

pattern 1 events would suggest that the events undergo deflation followed by infla-

tion just a few seconds prior to the eruptions. This behavior was observed in all the

three years under study, and was also noted by Lyons et al. [2012] during their 2009

investigation of Fuego using seismically-derived tilt records. This behavior is contra-

dictory to those observed in geophysical studies conducted on other basaltic as well

as silicic volcanoes where inflation precedes deflation[Maeda et al., 2017; Nishimura

et al., 2012; Ripepe et al., 2021] and Waite and Lanza [2016]. Lyons et al. [2012]

attribute this behavior to the shallow location of the source - source is located above

the sensors - along with steep and uneven topography of the volcano, creating an

illusion of reversed tilt (Fig: 4.1). The complex topography of the volcano especially

the north - south ridge might contribute to the particularly strong tilt along east-west

direction.
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Figure 4.1: The figure shows a schematic representation of the pressure
source located above the station location. The circle inset shows the pattern
1 events in the east component possibly associated with the above station
level source. The positive tilt in east corresponds to deflation whereas the
negative tilt corresponds to inflation. This seemingly reversed tilt might be
attributed to the location of pressure source above the station coupled with
irregular and steep topography.

Lyons et al. [2012] attribute these tilt signals to a pressurization/depressurization

mechanism below a crystallized plug. When the Fuego magma reaches the surface,

the water dissolved in it undergoes rapid exsolution leading to extensive plagioclase

crystallization[Lyons and Waite, 2011]. The volcano undergoes rapid pressurization
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beneath the plug until the overpressure exceeds the brittle strength of the plug re-

sulting in deflation caused by ash-rich explosions.

The events of pattern 2 exhibit inflation followed by deflation. This might suggest

that the source of these events is located below the level of stations and thereby

invoking a varying pressure source along the conduit. But this is highly unlikely due

to very low number of events. On the other hand, if the source location is assumed to

be stationary and same as that of the pattern 1 events (above the level of stations),

it would mean that the events of pattern 2 follow a deflation - inflation pattern. This

behavior of deflation followed by inflation has only been mentioned in Kilauea and

not in any other mafic or silicic systems. In Kilauea, this behavior is attributed to

the convective flux in the lava lake created by sinking of gas-poor magma beneath

gas-rich magma causing a blockage in the shallow conduit. The repeated creation

and destruction of blockage produces these so called DI or deflation-inflation events

[Anderson et al., 2015]. But this mechanism is very different from what we observe

in Fuego where the tilt events are caused by volatile overpressurization [ Lyons et al.,

2012]. Alternately, these events of pattern 2 might be artifacts created by instrument

errors. But we might expect this to reflect equally in all the three (vertical, north, and

east) components of the seismometers. An analysis of three component tilt revealed

no discernible tilt in the vertical (Fig: 3.2), therefore, we can rule out the possibility

of artifacts. No significant difference was found in the maximum amplitude of these

two patterns of events whereas the range of duration of pattern 2 events were slightly
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less than that of pattern 1 events. The seismic traces associated with the events of

patterns 1 and 2 were analyzed in higher frequency bands between 0.5 Hz and 10 Hz.

While the events of pattern 1 revealed impulsive signals with long codas, the events

of pattern 2 consist of tremor signals (Fig: 3.3, Fig: 3.4). Therefore, it is possible

that these patterns are produced by different mechanisms. Temporal analysis of

these pattern 2 events were not carried out due to very low sampling size and further

research is required.

4.1.2 Tilt from Tiltmeter

The tilt data obtained from the tiltmeter was examined for an event similar to that of

pattern 1 manually and this event was taken as a template for subsequent searching.

The template matching using this template produced 268 events similar to that of

pattern 1 but no events were identified similar to that of pattern 2. This could be

due to low sampling rate of the tilt records obtained from the tiltmeter, and/or lower

signal-to-noise ratio. The temporal distribution of the 268 events revealed seven

clusters out of which four clusters were taken for further analysis. Each of these four

clusters lasted for 10-15 days and exhibited a paroxysmal waxing and waning pattern

(Fig: 3.6).

INSIVUMEH reported explosions accompanied by ash-rich eruptive plumes during
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October 30, 2015 - November 3, 2015 which produced incandescent materials and

ashfall as far as 12 km from the volcano. These explosions coincided with the start of

cluster 1 marking the waxing period of the cycle. The number of explosions remained

high until November 3 and started to wane but the amplitude of explosions remained

high until November 5 (Fig: 3.8). By November 8, the explosive events subsided

drastically followed by a paroxysmal eruption on November 9 and an increase in

volcanic flux radiance indicative of new lava flows. This was further corroborated by

INSIVUMEH reports [ GVP, 2015].

The second cluster started immediately following the previous lava flow activity. The

activity peaked during November 19 - November 24 during which large number of ex-

plosions were recorded. The activity started to wane off after November 25 producing

a paroxysmal eruption on November 30, and new lava flows continued through Novem-

ber 29 and 30 indicated by high VRF and INSIVUMEH reports (Fig: 3.6) [ GVP,

2015].

The third cluster started on December 3 and the number of events per day continued

to increase up until December 6 but the maximum amplitude of inflation remained

high until December 11. During this period, INSIVUMEH reported explosive erup-

tions accompanied by ash plumes 450-950 m in height and travelled as far as 12 km

from the summit. The activity waned off after December 14 giving way to new lava

flows and a paroxysmal eruption accompanied by block avalanches (Fig: 3.6) [ GVP,
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2015].

The fourth cluster started on December 16 immediately following the lava flows. The

activity started to increase until December 18 and exhibited a decline for few days

before resuming the intensity on December 22. The explosions remained high until

December 25 and started to wane off giving rise to new lava flows. On December

30, INSIVUMEH reported that pyroclastic flows descended the SW drainages of Las

Lajas and El Jute, but the number of explosions catalogued remained low during

that time period whereas the maximum amplitude showed a relative increase. On

January 3, paroxysmal eruption was reported and new lava flows were identified by

high radiant flux which was also corroborated by INSIVUMEH reports (Fig: 3.6)

[ GVP, 2015].

The duration of these events showed a large variation ranging from 7 minutes to

39 minutes. But temporal variation of distribution within each cluster showed a

random distribution (Fig: 3.7). The difference in duration between each events may

be attributed to the rate of crystallization, extent of crystallization, and also the

brittle strength of the crystallized plug.

The maximum amplitude of inflation followed a similar waxing and waning pattern

and coincided with the number of events per day (Fig: 3.8). Several studies have

reported this cyclic waxing and waning activity in Fuego volcano [ Lyons et al., 2009;

Naismith et al., 2019]. Lyons et al. [2009] proposed two models for this cyclic behavior
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- collapsing foam model and magma rise-speed model. The collapsing foam model is

based on experimental work carried out by Jaupart and Vergniolle [1988] and they

showed that both effusive and explosive eruptions can be explained by the collapse

of foam layer accumulated on the roof of a feeder structure. In their experiment,

the authors noticed that the foam layer grew in response to increased gas flux and

eventually collapsed into a large gas slug. They suggest that the rise of gas slug

through the conduit could drive Strombolian like explosions. And if the viscosity of

magma is high enough, it would give rise to cyclic gas slugs which may explain the

explosive eruptions we see at Fuego. However, the increase in number of gas slugs and

thereby explosions would allow less time for crystallization to occur in the top of the

conduit. Therefore, we would observe lower amplitudes. But at Fuego, we observe

an opposite trend where the increase in number of explosions is also accompanied by

increase in amplitudes.

The magma rise-speed model was first proposed by Parfitt and Wilson [1995]. They

related the change in magma rise speed to the change in eruptive behavior of volca-

noes. When the magma speed is low, the bubbles formed would have more time to

coalesce, giving rise to Strombolian like explosions. On the other hand, if the magma

rise-speed is high enough, the speed differential between rising magma and volatile

would be very low preventing the bubbles from coalescing into each other. Therefore,

the ascending magma would reach the fragmentation threshold much earlier before it

reaches the surface. The amount of fragmentation is directly related to the amount of
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volatile present in the rising magma, and as the fragmentation increases so would the

pressure in the conduit giving way to more frequent and explosive eruptions. Since our

data shows a positive correlation between number of events and amplitudes indica-

tive of increase in eruption frequency and explosivity, we favor the magma rise-speed

model.

The distribution of amplitude showed wide variation similar to the duration of events

and ranged as low as 0.5 micro-radian to almost 1 micro-radian (Fig: 3.7). Varley

et al. [2006] analyzed the repose times of eruptions occured in Volcan de Colima dur-

ing 2003, 2004, and 2005. They used ACF correlograms and identified periodicity or

clustering of events in the volcano. A similar observation was made in Tungurahua

volcano during 2004 eruptions [ Varley et al., 2006]. Similarly, the correlograms of

each cluster showed a gradual decrease in ACF coefficient indicative of clustering

of activity. Moreover, the significance of coefficients suggest a higher-order auto-

regressive (AR) model. This suggests that a future eruption at Fuego is dependent

on more than one eruption that precede it. Although the PDF distributions fit both

gamma and normal distributions, we believe this variation might be due to incom-

pleteness of catalog. Therefore, the temporal distribution of amplitude, periodicity of

ACF coefficients, and PDF fit with a survival model such as gamma strongly suggest

a cyclic activity.

The ACF plot of repose time shows only minimal correlation and abrupt cut offs
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suggesting less clustering of data (Fig: 3.13). The coefficient of variability also hovers

a little over 1 for all the four clusters (Table: 3.3). The recorded number of events in

the catalog is lower for the activity usually observed in Fuego. Therefore, we believe

the incompleteness of data is masking the clustering of repose times. Varley et al.

[2006] used PDF distributions to come up with potential models for Volcan de Col-

ima and Tungurahua and found that none of the data fit renewal model but rather

showed good fit towards survival models such as gamma, Weibull, and log-logistic.

The repose times of Fuego volcano, although showing variability in fit between clus-

ters, generally follow survival/failure models of gamma and lognorm. These survival

models incorporate periodic behavior of the volcanoes and therefore is indicative of

cyclic activities where volcanoes undergo repeated waxing and waning.

4.2 Conclusion

Unsupervised learning using DTW distance measure was used on tilt records derived

from seismometers. This process revealed two meaningful patterns with opposite po-

larity. The seismic traces associated with pattern 1 tilt signals consist of impulsive,

explosive signals with long codas whereas the seismic traces associated with pattern

2 contain tremor signals. Therefore, it is possible that these two tilt patterns are

produced by different mechanisms. A template matching procedure was carried out

on tilt data obtained from tiltmeter which produced 268 events similar to pattern
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1. The temporal distribution of these events revealed four significant clusters each

lasting 10 - 15 days. The number of events per day and maximum amplitude of

inflation exhibited a positive correlation along with a waxing and waning pattern.

This supports magma rise-speed model which proposes that an increase in the speed

of ascending magma would give way to increased activity as well as intensity. The

Auto-correlation function and probability distribution functions of maximum ampli-

tude and repose times were calculated. The ACF coefficients of maximum amplitude

followed a gradual change indicative of clustering activity, while the ACF of repose

times exhibited abrupt cut offs around mean. We believe this variation might be

attributed to incompleteness of the data. The PDF distributions fitted for maximum

amplitude and repose times favored survival/failure distributions such as gamma and

lognormal. These distributions are indicative of periodic activity in volcanic systems.

The temporal and statistical analysis suggest that Fuego undergoes cyclic activity.
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Appendix A

Catalog of Events - 2015

*Amp = Amplitude

Start Time Inflation Duration Initial Amp* Max Amp* Deflation Amp*

10/2/15 13:20 20 -0.0278 0.1138 -0.0463

10/4/15 1:41 13 -0.0301 0.0702 -0.0326

10/4/15 2:32 13 -0.0134 0.0947 -0.0442

10/4/15 14:57 15 -0.0112 0.054 -0.0546

10/4/15 15:43 10 -0.0078 0.0908 -0.0642

10/5/15 15:08 20 -0.0208 0.0636 -0.0216

10/5/15 18:53 38 -0.0405 0.0699 -0.0683

10/6/15 5:10 34 -0.0358 0.0838 -0.0777

10/6/15 7:05 8 -0.0213 0.0821 -0.0928
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Table A.1 continued from previous page

10/6/15 8:20 30 -0.0549 0.0972 -0.0758

10/6/15 11:50 26 -0.0232 0.0922 -0.1236

10/6/15 12:52 23 -0.0111 0.0723 -0.0732

10/9/15 15:12 13 -0.0298 0.1134 -0.0451

10/9/15 22:55 8 -0.008 0.0908 -0.0358

10/15/15 21:00 25 -0.0465 0.144 -0.0804

10/15/15 21:28 32 -0.128 0.241 -0.209

10/16/15 11:22 17 -0.039 0.175 -0.021

10/16/15 12:26 24 -0.033 0.0969 -0.0284

10/16/15 18:23 22 -0.0318 0.1222 -0.0556

10/17/15 7:52 10 -0.0173 0.0729 -0.0247

10/17/15 10:13 37 -0.0261 0.0602 -0.0779

10/18/15 22:01 12 -0.0243 0.121 -0.0535

10/19/15 22:16 18 -0.045 0.159 -0.126

10/22/15 20:38 29 -0.027 0.0418 -0.0347

10/23/15 10:35 18 -0.0272 0.0921 -0.0685

10/23/15 14:46 28 -0.0291 0.1061 -0.0625

10/24/15 16:41 19 -0.0177 0.0781 -0.0409

10/25/15 13:19 17 -0.0195 0.0918 -0.0519

10/29/15 23:02 23 -0.0433 0.114 -0.0601
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Table A.1 continued from previous page

10/30/15 13:14 13 -0.0175 0.064 -0.0445

10/30/15 22:22 21 -0.043 0.208 -0.097

10/31/15 6:40 30 -0.093 0.232 -0.222

10/31/15 9:58 18 -0.0645 0.095 -0.0969

10/31/15 11:20 15 -0.0291 0.0838 -0.0606

10/31/15 18:57 33 -0.238 0.345 -0.266

10/31/15 20:35 12 -0.055 0.232 -0.137

10/31/15 21:08 22 -0.082 0.217 -0.168

10/31/15 23:11 39 -0.217 0.21 -0.384

11/1/15 1:20 24 -0.083 0.165 -0.138

11/1/15 2:45 38 -0.257 0.334 -0.419

11/1/15 4:25 35 -0.208 0.29 -0.415

11/1/15 6:04 26 -0.138 0.202 -0.316

11/1/15 8:12 22 -0.103 0.234 -0.115

11/1/15 17:58 36 -0.126 0.237 -0.216

11/1/15 19:25 17 -0.169 0.437 -0.243

11/1/15 20:11 17 -0.146 0.38 -0.332

11/1/15 21:41 10 -0.087 0.33 -0.159

11/1/15 23:31 29 -0.249 0.561 -0.519

11/2/15 5:30 20 -0.135 0.268 -0.207
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Table A.1 continued from previous page

11/2/15 6:05 30 -0.191 0.258 -0.272

11/2/15 7:10 13 -0.195 0.301 -0.236

11/2/15 7:26 20 -0.236 0.342 -0.275

11/2/15 14:36 24 -0.173 0.275 -0.489

11/2/15 15:13 31 -0.223 0.289 -0.251

11/2/15 17:57 25 -0.19 0.22 -0.088

11/2/15 20:34 18 -0.21 0.344 -0.434

11/2/15 21:50 25 -0.174 0.233 -0.494

11/2/15 22:55 23 -0.246 0.301 -0.224

11/2/15 23:40 24 -0.098 0.287 -0.245

11/3/15 5:00 30 -0.184 0.226 -0.575

11/3/15 5:52 38 -0.332 0.204 -0.397

11/3/15 8:37 39 -0.235 0.193 -0.39

11/3/15 9:49 38 -0.227 0.117 -0.327

11/3/15 11:37 30 -0.094 0.353 -0.149

11/3/15 13:47 17 -0.147 0.335 -0.271

11/3/15 14:34 30 -0.155 0.412 -0.379

11/3/15 19:19 31 -0.226 0.446 -0.345

11/4/15 0:42 18 -0.201 0.389 -0.293

11/4/15 1:06 33 -0.331 0.427 -0.395

70
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11/4/15 6:03 15 -0.211 0.375 -0.202

11/4/15 14:15 16 -0.111 0.317 -0.21

11/4/15 19:23 34 -0.16 0.34 -0.316

11/4/15 21:27 33 -0.154 0.409 -0.216

11/5/15 0:33 24 -0.115 0.324 -0.196

11/5/15 7:36 19 -0.071 0.152 -0.147

11/5/15 13:36 9 -0.049 0.212 -0.131

11/5/15 16:35 21 -0.075 0.196 -0.092

11/5/15 17:25 23 -0.099 0.174 -0.116

11/5/15 23:50 18 -0.0729 0.1455 -0.0864

11/6/15 3:49 38 -0.0484 0.1241 -0.0948

11/6/15 6:34 15 -0.07 0.167 -0.158

11/6/15 7:19 35 -0.0485 0.1427 -0.082

11/6/15 9:38 16 -0.027 0.234 -0.139

11/6/15 17:55 33 -0.0369 0.1125 -0.1323

11/6/15 23:08 27 -0.0266 0.0812 -0.0982

11/7/15 0:32 8 -0.007 0.142 -0.142

11/7/15 2:30 37 -0.095 0.178 -0.133

11/7/15 4:21 19 -0.0363 0.0834 -0.0988

11/7/15 8:44 28 -0.15 0.23 -0.159
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11/7/15 15:57 19 -0.031 0.179 -0.159

11/7/15 18:10 22 -0.02 0.217 -0.124

11/8/15 6:59 38 -0.047 0.145 -0.195

11/8/15 9:14 12 -0.0053 0.0686 -0.0661

11/8/15 10:10 14 -0.037 0.1524 -0.0398

11/8/15 21:21 14 -0.0367 0.1723 -0.0985

11/12/15 22:50 29 -0.0166 0.0934 -0.0394

11/13/15 2:33 14 -0.0221 0.091 -0.0487

11/13/15 19:11 18 -0.084 0.273 -0.24

11/14/15 13:38 39 -0.196 0.189 -0.306

11/14/15 17:28 30 -0.14 0.22 -0.277

11/15/15 1:48 38 -0.17 0.33 -0.408

11/15/15 3:24 26 -0.133 0.189 -0.324

11/17/15 10:23 35 -0.318 0.297 -0.566

11/17/15 13:10 29 -0.194 0.348 -0.54

11/17/15 19:32 25 -0.324 0.351 -0.593

11/18/15 4:49 28 -0.477 0.39 -0.525

11/18/15 11:52 34 -0.53 0.403 -0.568

11/18/15 23:13 37 -0.173 0.384 -0.474

11/19/15 8:15 29 -0.055 0.272 -0.278
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Table A.1 continued from previous page

11/19/15 13:57 32 -0.104 0.378 -0.461

11/19/15 17:11 38 -0.33 0.268 -0.347

11/19/15 20:38 19 -0.197 0.526 -0.395

11/19/15 22:28 16 -0.14 0.426 -0.286

11/20/15 4:43 17 -0.14 0.371 -0.378

11/20/15 12:01 15 -0.072 0.257 -0.142

11/21/15 2:01 19 -0.097 0.524 -0.278

11/21/15 5:39 17 -0.06 0.237 -0.22

11/21/15 10:57 19 -0.154 0.415 -0.42

11/22/15 7:38 21 -0.222 0.369 -0.268

11/22/15 9:14 35 -0.12 0.348 -0.425

11/22/15 10:57 12 -0.103 0.259 -0.207

11/22/15 12:03 13 -0.209 0.443 -0.421

11/23/15 2:51 14 -0.092 0.43 -0.224

11/23/15 4:09 18 -0.199 0.352 -0.309

11/23/15 9:17 19 -0.109 0.374 -0.227

11/23/15 18:07 17 -0.153 0.396 -0.313

11/23/15 21:12 20 -0.132 0.343 -0.257

11/23/15 22:58 10 -0.074 0.293 -0.24

11/24/15 13:44 13 -0.147 0.299 -0.178
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Table A.1 continued from previous page

11/24/15 16:29 15 -0.101 0.386 -0.273

11/25/15 9:10 23 -0.0181 0.0565 -0.0746

11/25/15 14:02 17 -0.019 0.241 -0.138

11/25/15 19:12 31 -0.0096 0.0674 -0.0412

11/27/15 12:48 7 -0.0062 0.0917 -0.0481

12/4/15 3:31 27 -0.0395 0.1375 -0.1053

12/4/15 17:14 38 -0.0835 0.1043 -0.1431

12/5/15 7:15 10 -0.0191 0.0857 -0.0879

12/5/15 9:18 18 -0.0366 0.1538 -0.0912

12/5/15 11:02 12 -0.025 0.185 -0.173

12/5/15 14:04 21 -0.0499 0.1049 -0.0861

12/5/15 14:37 32 -0.108 0.195 -0.212

12/5/15 21:33 24 -0.052 0.148 -0.134

12/6/15 1:22 34 -0.087 0.235 -0.068

12/6/15 8:45 38 -0.097 0.23 -0.26

12/6/15 9:45 37 -0.109 0.221 -0.236

12/6/15 11:40 20 -0.0423 0.1416 -0.1274

12/6/15 15:14 35 -0.113 0.181 -0.17

12/6/15 16:56 32 -0.096 0.154 -0.133

12/6/15 19:06 34 -0.138 0.188 -0.11
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Table A.1 continued from previous page

12/6/15 19:57 34 -0.106 0.329 -0.299

12/6/15 21:47 30 -0.069 0.274 -0.157

12/6/15 22:28 38 -0.128 0.206 -0.334

12/6/15 23:38 22 -0.073 0.19 -0.126

12/7/15 0:15 32 -0.154 0.261 -0.213

12/7/15 3:20 9 0.007 0.175 -0.1

12/7/15 4:48 18 -0.068 0.253 -0.38

12/7/15 5:20 34 -0.128 0.329 -0.261

12/7/15 6:02 31 -0.205 0.494 -0.421

12/7/15 9:32 27 -0.09 0.209 -0.228

12/7/15 10:12 28 -0.165 0.442 -0.365

12/7/15 15:39 20 -0.101 0.243 -0.235

12/7/15 18:32 23 -0.075 0.237 -0.337

12/7/15 23:28 31 -0.188 0.289 -0.428

12/8/15 0:07 32 -0.714 0.297 -0.301

12/8/15 2:40 22 -0.097 0.267 -0.296

12/8/15 4:19 26 -0.159 0.354 -0.333

12/8/15 5:34 30 -0.198 0.279 -0.203

12/8/15 9:14 38 -0.1 0.212 -0.225

12/8/15 10:16 38 -0.285 0.368 -0.382
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Table A.1 continued from previous page

12/9/15 8:41 38 -0.174 0.252 -0.321

12/9/15 9:32 38 -0.356 0.288 -0.605

12/9/15 12:30 26 -0.117 0.356 -0.292

12/9/15 15:54 34 -0.267 0.258 -0.364

12/9/15 16:39 38 -0.419 0.346 -0.737

12/10/15 6:37 33 -0.276 0.362 -0.523

12/10/15 12:43 39 -0.108 0.184 -0.473

12/10/15 14:35 32 -0.171 0.292 -0.594

12/10/15 18:38 28 -0.165 0.419 -0.489

12/10/15 19:37 38 -0.265 0.479 -0.697

12/10/15 20:35 34 -0.301 0.378 -0.595

12/10/15 23:52 27 -0.281 0.54 -0.617

12/11/15 4:39 22 -0.106 0.337 -0.34

12/11/15 5:08 27 -0.367 0.426 -0.533

12/11/15 5:43 36 -0.406 0.45 -0.494

12/11/15 10:47 27 -0.105 0.108 -0.199

12/11/15 13:19 27 -0.081 0.31 -0.235

12/11/15 22:42 24 -0.095 0.203 -0.136

12/12/15 12:45 27 -0.0459 0.1027 -0.1198

12/12/15 14:04 30 -0.162 0.337 -0.365

76



Table A.1 continued from previous page

12/13/15 4:54 37 -0.222 0.304 -0.527

12/13/15 12:40 37 -0.159 0.279 -0.376

12/13/15 18:38 23 -0.054 0.156 -0.268

12/13/15 21:07 36 -0.21 0.394 -0.485

12/13/15 22:23 31 -0.14 0.297 -0.429

12/13/15 23:18 36 -0.139 0.262 -0.408

12/14/15 1:06 31 -0.085 0.211 -0.259

12/14/15 8:53 35 -0.1272 0.101 -0.1687

12/14/15 17:21 26 -0.14 0.389 -0.256

12/14/15 19:06 24 -0.102 0.333 -0.187

12/17/15 8:14 36 -0.055 0.0729 -0.1017

12/17/15 9:49 37 -0.0374 0.0329 -0.0529

12/17/15 22:42 13 -0.0304 0.1387 -0.0394

12/18/15 4:22 25 -0.0197 0.0546 -0.0336

12/18/15 12:24 27 -0.0154 0.0463 -0.0282

12/18/15 16:08 31 -0.0121 0.0568 -0.0427

12/19/15 6:01 20 -0.0124 0.0565 -0.0406

12/19/15 7:10 16 -0.06 0.261 -0.164

12/19/15 7:53 13 -0.0233 0.0319 -0.0078

12/19/15 8:08 15 -0.007 0.0703 -0.0462
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Table A.1 continued from previous page

12/19/15 9:00 20 -0.0484 0.1535 -0.1194

12/20/15 16:12 10 -0.0188 0.1313 -0.047

12/20/15 21:18 36 -0.086 0.263 -0.399

12/21/15 7:04 39 -0.203 0.262 -0.505

12/21/15 23:00 29 -0.095 0.153 -0.223

12/22/15 17:34 29 -0.089 0.239 -0.314

12/23/15 2:21 21 -0.101 0.383 -0.417

12/23/15 10:36 22 -0.08 0.362 -0.3

12/23/15 16:51 16 -0.066 0.23 -0.134

12/23/15 22:01 38 -0.215 0.219 -0.38

12/23/15 23:18 22 -0.114 0.259 -0.244

12/24/15 5:37 29 -0.171 0.383 -0.341

12/24/15 9:03 29 -0.158 0.299 -0.535

12/24/15 10:38 17 -0.082 0.405 -0.376

12/24/15 11:50 27 -0.102 0.359 -0.364

12/24/15 13:35 38 -0.275 0.425 -0.615

12/24/15 16:16 33 -0.127 0.303 -0.329

12/24/15 20:53 37 -0.072 0.285 -0.424

12/24/15 22:35 38 -0.138 0.309 -0.351

12/24/15 23:52 37 -0.093 0.424 -0.453
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12/25/15 0:43 27 -0.103 0.327 -0.23

12/25/15 1:50 25 -0.093 0.371 -0.141

12/25/15 3:30 26 -0.088 0.467 -0.36

12/25/15 12:50 27 -0.048 0.264 -1.24

12/25/15 15:47 30 -0.063 0.183 -0.232

12/25/15 16:50 26 -0.087 0.381 -0.275

12/25/15 18:41 21 -0.1 0.358 -0.371

12/25/15 20:20 39 -0.081 0.25 -0.284

12/25/15 21:43 19 -0.172 0.291 -0.046

12/25/15 22:08 12 -0.054 0.307 -0.389

12/26/15 1:18 17 -0.15 0.184 -0.164

12/26/15 5:14 31 -0.045 0.0898 -0.1243

12/26/15 8:20 34 -0.0502 0.1319 -0.1155

12/26/15 9:34 23 -0.0829 0.0981 -0.143

12/26/15 15:23 7 -0.112 0.302 -0.162

12/26/15 19:27 38 -0.061 0.1165 -0.1295

12/26/15 20:39 37 -0.041 0.162 -0.146

12/27/15 0:08 27 -0.06 0.136 -0.14

12/27/15 9:10 25 -0.067 0.284 -0.218

12/27/15 11:46 32 -0.072 0.078 -0.206
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Table A.1 continued from previous page

12/27/15 12:44 17 -0.0091 0.1092 -0.1347

12/27/15 15:01 38 -0.0319 0.0661 -0.1262

12/27/15 19:30 23 -0.019 0.24 -0.173

12/28/15 0:30 32 -0.044 0.229 -0.175

12/28/15 3:20 8 -0.039 0.218 -0.191

12/28/15 16:11 23 -0.08 0.179 -0.087

12/28/15 16:39 10 -0.083 0.197 -0.188

12/28/15 22:53 26 -0.066 0.238 -0.13

12/29/15 0:30 32 -0.0677 0.1485 -0.1205

12/29/15 11:39 39 -0.0594 0.0964 -0.1417

12/30/15 5:50 9 -0.059 0.251 -0.09

12/30/15 10:04 25 -0.076 0.312 -0.227

12/30/15 11:07 29 -0.0661 0.12 -0.0708

12/31/15 20:50 37 -0.166 0.392 -0.452

1/2/16 15:04 38 -0.0604 0.0848 -0.0864

1/2/16 17:40 30 -0.0414 0.1303 -0.0757

1/2/16 22:14 36 -0.0331 0.0812 -0.0618

1/11/16 19:35 29 -0.0333 0.1183 -0.0771
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Appendix B

Groups from Unsupervised

Classification

Figure B.1: The figures show groups obtained through unsupervised clas-
sification of 2015 data. The group B shows events of pattern 1 whereas the
groups E and F consist of events of pattern 2 mixed with noise.
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Figure B.2: The figures show groups obtained through unsupervised classi-
fication of 2012 data. The group D contains events similar to that of pattern
1 although exhibiting more noisy signals compared to other years under
study. The events in group A contains events similar to that of pattern 2.
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