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Abstract

Distributed-volume atmospheric turbulence near the ground significantly limits the

performance of incoherent imaging and coherent beam projection systems operating

over long horizontal paths. Defense, military and civilian surveillance, border secu-

rity, and target identification systems are interested in terrestrial imaging and beam

projection over very long horizontal paths, but atmospheric turbulence can blur the

imagery and aberrate the laser beam such that they are beyond usefulness. While

many post-processing and adaptive optics techniques have been developed to mitigate

the effects of turbulence, many of these techniques do not work as expected in stronger

volumetric turbulence, or in many cases don’t work at all. For these techniques to be

effective or next generation techniques to be developed, a better theoretical under-

standing of deep turbulence is necessary. In an attempt to improve understanding of

deep turbulence, this work explores the saturation behavior of two features of deep

turbulence; the anisoplanatic error and the branch-point density.

In this work, the behavior of the anisoplanatic error over long horizontal and slant

paths, where the angular extent of the scene is many times greater than the iso-

planatic angle, is characterized by developing generalized expressions for the total,

piston-removed, and piston-and-tilt-removed anisoplanatic error in non-Kolmogorov

turbulence with a finite outer scale. As an outcome of this work it can be concluded

xxv



that in many cases the anisoplanatic error saturates to a value less than 1 rad2.

This means that while not actually infinite, the piston-removed and piston-and-tilt-

removed isoplanatic angle is often significantly larger than expected. Additionally,

power law exponent, outer scale size, scene geometry, and source model play a large

part in determining the effective isoplanatic angle. The limit imposed on the system

by the anisoplanatic error is much less severe than predicted by classical isoplanatic

angle expression, but only if we include the interplay of piston and/or global tilt re-

moval, a finite outer scale, accurate image formation models, and realistic turbulence

profiles.

Additionally, in this work wave-optics simulations are used to model the branch-

point density as a function of turbulence strength, sampling grid resolution, and

inner scale. Another outcome of this work is that increasing grid resolution and

turbulence strength cause the branch-point density to grow without bound, when no

inner scale is used. When a non-zero inner scale is used, via a Hill spectrum, the

growth of the branch-point density is significantly reduced as a function of increasing

Rytov variance and saturates as a function of increasing inner scale.

xxvi



Chapter 1

Introduction

It is well known that atmospheric turbulence limits the performance of imaging and

beam control systems. Atmospheric temperature differences cause movement of the

air mass and turbulent eddies. This results in randomly distributed differences in

the index of refraction, which lead to phase aberrations in the optical wavefront.

Additionally, light propagating through stronger turbulence or over longer distances

will cause incoherent imagery to suffer from anisoplanatic and scintillation effects. In

coherent beam projection these distortions lead to additional scintillation and wander.

Because these aberrations are not only near the system’s aperture, but distributed

throughout the turbulent volume, this type of turbulence is known as distributed-

volume turbulence. When this distributed-volume turbulence is especially strong,

it is known as ”deep” turbulence. In this case the resulting distortions will limit
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the performance of any optical system operating in such a turbulent atmosphere,

frequently causing the image to be so blurred or the laser beam to be so degraded

that they are beyond usefulness. Unless seeing conditions are very good, the effects

of deep turbulence will dominate most practical horizontal imaging situations.

A multitude of post-processing and Adaptive Optics (AO) techniques have been pro-

posed and are currently being developed to counteract turbulence effects in practical

horizontal imaging and beam control scenarios. These techniques have proven suc-

cessful many times in weaker turbulence, but in stronger turbulence their efficacy and

behavior often differ from what we expect to happen, or they fail to work altogether.

This is because the forward models that inform these techniques are based upon an-

alytical models built to describe the behavior of light propagating through weaker

turbulence or correction within the isoplanatic patch. Scenarios where imaging and

beam control systems are tasked with acquiring information about remote objects or

focusing energy on a distant target are often near to the ground, over bodies of wa-

ter, or in the upper atmosphere. In these cases, turbulence is often more severe than

expected by our analytical models. To build effective post-processing and adaptive

optics techniques in deep turbulence, this regime needs to be better characterized.

To accomplish this, a better understanding of two important phenomena that occur

in deep turbulence, anisoplanatism and branch points, is necessary.

The aim of this work is to examine the saturation behavior of the anisoplanatic error

2



and the behavior of the density of branch points that occur in deep turbulence. This

is an effort to develop more accurate theory and expressions for imaging and beam

control in deep turbulence. Efforts to better align theory with observed behavior

lead to a better understanding of deep turbulence and an increased effectiveness in

mitigated the effects of deep turbulence in imaging and beam control.

1.1 Deep Turbulence Problem

The impact of volumetric turbulence on imaging and beam control is governed by

the propagation geometry and the distribution of turbulence between the object and

the imaging system pupil; or, in the case of a laser beam, between the source and

the target. There are three parameters commonly used to characterize the severity

of turbulence, or conversely, the performance of imaging and beam control systems

in turbulence. The isoplanatic angle[2], θ0, the atmospheric coherence diameter, also

known as Fried’s parameter[2], r0, and the plane-wave Rytov variance, also commonly

known as the Rytov number, σ2
R[3] . The Rytov variance specifically is a useful mea-

sure when talking about deep turbulence, because it physically represents the irra-

diance fluctuations associated with an unbounded plane wave propagating through

a turbulent volume. Traditionally, studies of optical wave propagation are classified

as either weak or strong fluctuation theories. When using the Kolmogorov spectrum

definition of refractive index fluctuations, it is common to distinguish between weak

3



and strong fluctuation regimes with the Rytov variance. Weak fluctuations are as-

sociated with a Rytov variance σ2
R < 0.5, moderate fluctuations are characterized as

σ2
R = 0.5 −→ 1.0, and strong fluctuations are associated with σ2

R > 1. Deep turbulence

is most often defined as volumetric optical turbulence where σ2
R > 1[4]. In addition

to collected phase aberrations, strong volumetric turbulence gives rise to scintilla-

tion in the propagating optical wave front. Scintillation is a phenomenon caused by

constructive and destructive interference in the complex optical field that looks like

bright and dark spots in the irradiance of the wavefront after propagation. Due to

strong scintillation and the distributed nature of volumetric turbulence two impor-

tant phenomena are commonly encountered in deep turbulence: anisoplanatism and

branch points.

1.1.1 Anisoplanatism

When conditions are isoplanatic, the light coming from all points in a scene or on

an object can be assumed to experience similar turbulence induced changes in the

atmospheric refractive index. Therefore all points also experience similar phase aber-

rations and distortions are shift-invariant across the region. Fried[2] first defined the

isoplanatic angle θ0 as the angular separation between point sources for which the

phase changes at the aperture are considered significantly decorrelated and the dis-

tortions are now shift-variant across the region. However, in many horizontal and

4



Figure 1.1: Angular anisoplanatism over a horizontal path

slant path imaging scenarios, it is reasonable to assume that the field of view of the

imaging system will cover a wide enough angle to violate this assumption. In that

case, we refer to the scenario as anisoplanatic.

Figure 1.1 shows the effect of anisoplanatism on two separate points in an imaged ob-

ject, or in the case of AO an angularly separated source and reference beacon. As the

optical path becomes longer and the turbulence increases in strength, the aberrations

become more severe and the isoplanatic angle decreases. In guide star AO this means

that as the angular separation between the reference beacon and the object increases,

the performance of the AO system decreases[5]. In some cases to combat this, an

artificial guide star[6, 7] or reference beacon can be pointed within the isoplanatic

angle of the around the object to avoid the disadvantage of anisoplanatism. However,

the effects of anisoplanatism still often remain in horizontal incoherent imaging where

the object of interest often subtends an angle many times larger than the isoplanatic

angle. In fact, in many horizontal imaging scenarios the isoplanatic angle can be on

the order of the diffraction limit of the imaging system. Post-processing techniques
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such as Speckle Imaging (SI), have been shown to work over angular extents many

times the isoplanatic patch in highly anisoplanatic horizontal imaging scenarios. An

attempt to explain the efficacy of these techniques in horizontal imaging is presented

in Chapters 2 and 3.

1.1.2 Branch Points

Branch points traditionally arise when coherent light is propagated through dis-

tributed volume turbulence. Scintillation caused by optical turbulence produces small

scale perturbations in the irradiance of an optical disturbance propagating through

the atmosphere. These optical disturbances exist in two parts, both amplitude A and

phase φ. The log-amplitude variance, also referred to as the Rytov variance, gives

a measure of the strength of the scintillation experienced by coherent light. As the

log-amplitude variance grows above ≈ 0.1 (for a plane wave), total destructive in-

terference gives rise to corresponding discontinuities in the phase. This discontinuity

takes on a value known as a residue, singularity, screw dislocation, optical vortex,

or more commonly a branch point[8]. Branch points appear in pairs and result in

branch cuts which show up as ”cliffs” from −π to π in the wrapped phase. These

discontinuous changes in the phase due to branch cuts can’t be fully compensated

for by a continuous face-sheet deformable mirrors and thus pose a problem for AO

systems[9].
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Figure 1.2: An example of the hidden phase component containing branch
points and branch cuts. The hidden phase component is undetected by
a Shack-Hartmann WFS. The actual phase is the phase that needs to be
corrected for using phase compensation. The measured phase represents
the LS reconstructed phase that is measured and corrected for using an AO
system composed of a Shack-Hartmann WFS and a deformable mirror.

Using gradient-based wavefront sensing techniques like a Shack-Hartmann Wavefront

Sensor (WFS), the phase of a wavefront cannot be directly measured, so an indirect

reconstruction method must be used, such as least-squares (LS) reconstruction. When

LS reconstruction is used a portion of the phase is left undetected. This portion

is known as the hidden or rotational phase, seen in Fig. 1.2. The hidden phase

exists as a consequence of mapping the wrapped phase to the real domain using LS

reconstruction, which in turn maps the discontinuities to the null space[10]. Branch-

point tolerant phase reconstruction algorithms have been developed[11, 12, 13], but

the performance of these algorithms still needs to be quantified in hardware[14].
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Voitsekhovich et. al[15] show that as optical turbulence strength increases, the num-

ber of branch points increases accordingly. In weak to moderate turbulence conditions

branch points are minimal. However, in strong optical turbulence conditions consis-

tent with deep turbulence, branch-point density has been observed to grow linearly

without bound as a function of Rytov variance[16, 17]. If branch-points do grow

without bound as turbulence strength increases, this poses a significant challenge for

AO systems attempting beam control in deep turbulence. These works exclude the

affect of several factors like finite inner and grid resolution on the density of branch

points. An attempt to characterize the density of branch-points in deep turbulence

is presented in Chapter 4.

1.2 Atmospheric Turbulence

1.2.1 Kolmogorov Turbulence

As the Sun shines on the Earth, energy is imparted unevenly into the ground. This

uneven heating results in temperature inhomogeneities in the volume of air near the

ground. On a large-scale the temperature differences between the warm air volume

near the ground and the cooler air above it are resolved by convection. The convective

movement of air generates turbulent eddies that can be characterized by their inner
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Figure 1.3: Depiction of the Kolmogorov cascade theory of turbulence.
Here l0 denotes the inner scale and L0 denotes the outer scale. The eddies
between the scale sizes make up the inertial subrange.

and outer scale sizes[18]. This structure can be visualized via Richardson’s energy

cascade theory of turbulence[19], sen in Fig. 1.3. The outer scale L0 defines the

largest eddy size and the inner scale l0 defines the smallest eddy size. Eddies between

the inner and outer scale are within the inertial subrange[18]. Eddies smaller than the

inner scale are within the viscous dissipation range and become smaller and smaller

until they eventually dissipate via molecular friction. This dissipation increases the

temperature of the air volume. As the day progresses the Sun continually injects

energy into this process, which increases the turbulence strength near the ground.

This energy injection reaches a peak during midday and then decreases to a minimum

at sunset when dissipation due to molecular friction exceeds the rate of energy injected

into the system by solar heating. Over night turbulence conditions near the ground

become unstable due to large scale events in the troposphere and this instability

continues until sunrise when solar heating begins again and turbulence conditions
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can stabilize to a minimum.

Turbulence near to the ground affects the propagation of light by randomly refracting

said light as it travels through the volume of air. The temperature differences in the

eddies that create movement of the air mass and turbulence also create random vari-

ations in the atmospheric index of refraction. The fluctuations in index of refraction

are small, on the order of 10−6, but the accumulation of these fluctuations over a long

path can cause significant distortions on a propagating optical wave.

It is common to model the turbulence volume between a light source and a receiver

or target as a random medium modelled so that the distribution of energy at different

turbulence scale sizes reduces from outer scale sized inhomogeneities down to inner

scale where molecular friction dominates. Mediums that conform to this model are

referred to as power-law media. In the case where the roll-off in kinetic energy in the

turbulence spectrum as a function of wavenumber between l0 and L0 has a slope of

−11
3

[20], the medium is referred to as a Kolmogorov medium[21]. Because the spatial

power spectrum of refractive-index fluctuations is the same as that for temperature,

and by extension the same spectral laws as velocity fluctuations, the spatial distribu-

tion of the turbulent kinetic energy spectrum can be directly related to variations in

the index of refraction in the air. The well known Kolmogorov power-law spectrum
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can be written as

Φn(κ) = 0.033C2
nκ
−11/3, 1/L0 << κ << 1/l0, (1.1)

where C2
n is a structure function that describes the index of refraction with units of

m−2/3, κ is the scalar wave number[22].

1.2.2 Non-Kolmogorov Turbulence

To date, many works estimate the performance of imaging and laser systems assuming

a Kolmogorov model for atmospheric turbulence. While this model has shown good

agreement with experiments in the past, there is a growing body of work showing

significant deviations from the Kolmogorov model in the upper atmosphere[23, 24],

and near to the ground[25, 26, 27, 28]. Non-Kolmogorov turbulence is a turbulent

media defined by an arbitrary power law α, where α = 11/3 represents classical

Kolmogorov turbulence. From [29], the three-dimensional non-Kolmogorov power

spectrum for an arbitrary power law, α, can be defined as

Φn (κ, α, z) = A [α] C̃2
n(z)

(
κ2 + κ2

0

)−α/2
. (1.2)

In Eq. (1.2), A [α] = 1
4π2 cos(πα/2)Γ [α− 1] maintains consistency between the index

11



structure function and its power spectrum, C̃2
n(z) is the structure constant, similar to

C2
n(z), with units of m3−α, Γ [x] is Euler’s gamma function, and κ0 = 2π/L0. When

α = 11/3, Eq. (1.2) reduces to the well known Kolmogorov turbulence spectrum in

Eq. (1.1).

1.3 Summary of Key Results

In Chapter 2 expressions for the total, piston-removed, and piston-and-tilt-removed

anisoplanatic error in non-Kolmogorov turbulence with a finite outer scale are devel-

oped. When these expressions were evaluated for turbulence strength, infinite and

finite outer scale, and power-law exponents between 3 and 4 it was found that in many

cases the anisoplanatic error saturated to a value less than 1 rad2. As power-law in-

creases and outer scale decreases more energy is in the piston and tilt terms, such

that piston and tilt removal are likely to cause the anisoplanatic error to saturate as

both the number of coherence cells across the aperture and the ratio of outer scale to

aperture diameter approach unity.

In Chapter 3 the work in Chapter 2 was continued and the impact of a plane wave

versus a spherical wave source model were compared and three different looking ge-

ometries were evaluated. Using a wavefront with a non-zero radius of curvature over

a plane wavefront increased the effective isoplanatic angle for all cases by a factor of
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≈ 6 regardless of outer scale size, turbulence strength, or power-law exponent. For

the upward-looking slant path geometry the isoplanatic angle was 2-4 times larger

than the horizontal case and the isoplanatic angle in the downward-looking case was

40-60% smaller than the horizontal case.

In Chapter 4 the branch-point density was characterized as a function of Rytov vari-

ance, grid resolution, and inner scale size. Increasing Rytov variance and grid reso-

lution cause the branch-point density to increase without bound when no-inner scale

is used. The growth of branch-point density is significantly limited with the presence

of a finite inner scale.

1.4 Organization

The remainder of this dissertation is largely comprised of content from three journal

articles which have either been accepted for publication in The Journal of the Optical

Society of America A (JOSAA) or are in final preparation for submission at JOSA

A and SPIE Optical Engineering. Alterations to formatting and language in the

articles have been made where appropriate. Chapter 2 is derived from ”Angular

Anisoplanatism in Non-Kolmogorov Turbulence Over Horizontal Paths”[1], which

was published online on November 18, 2020 in Journal of the Optical Society of

America A (JOSA A). This paper provides an overview of the anisoplanatic error
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saturation problem in horizontal imaging and key derivations of the anisoplanatic

error used in Chapters 2 and 3. The content in Chapter 3 is in final preparation for

submission to JOSA A under the title ”Angular anisoplanatism over horizontal and

slant paths in non-Kolmogorov turbulence” This paper extends the work in Chapter

2 by investigating the source type and the turbulence profile used in the anisoplanatic

error expressions derived in Chapter 2. Characterization of the saturation behavior

of branch-point density as a function of turbulence strength and resolution is found

in Chapter 4. The content in Chapter 4 is in final preparation for submission to SPIE

Optical Engineering under the title ”Effect of finite inner scale on the saturation

behavior of branch-point density.” Chapter 5 contains a conclusion summarizing the

discoveries in this body of work, and direction for further research.
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Chapter 2

Angular Anisoplanatism in

Non-Kolmogorov Turbulence Over

Horizontal Paths

2.1 Introduction

In standoff imaging applications, image quality is reduced by atmospheric optical

turbulence. A great body of work has focused on mitigating the effects of turbulence

on imaging via Adaptive Optics (AO) and post-processing techniques. AO can provide

nearly diffraction-limited imagery in a region around a natural or artificial guide star
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referred to as the isoplanatic patch.

Techniques such as Speckle Imaging (SI) [30, 31, 32, 33], Multi-frame Blind Deconvo-

lution (MFBD) [34, 35, 36, 37, 38], and Phase Diversity [39, 40, 41, 42] have also been

used to correct imaging distortions within the isoplanatic patch. These techniques

have also been used successfully over multiple isoplanatic patches [43, 44, 45]. In [43],

Bos showed that these techniques can be used even when the isoplanatic angle is on

the order of the diffraction-limited sampling rate of the telescope, when the integrated

turbulence in terms of D/r0, the ratio of the aperture size, D, to the Fried parameter,

r0, is small.

One explanation for the success of these techniques is that the definition of anisopla-

natic error is overly pessimistic. Stone [46] argued that while piston and tilt contribute

to the anisoplanatic error, they do not have an effect on image degradation. They

show that if these contributions are removed, the anisoplanatic error often saturates.

Stone was concerned with astronomical imaging systems where typically D/ro > 10.

In previous work [47] we showed that this holds true in horizontal imaging scenarios

where typically for sub-meter class telescopes D/ro < 10. In this case the piston-

removed anisoplanatic error often saturates to a value less than 1 rad2. While the

isoplanatic patch size is small, this means the piston-removed isoplanatic angle may

be effectively infinite even though the imagery contains tip-tilt distortions.
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Another explanation may be that the use of an infinite outer scale is affecting the

anisoplanatic error expression. In many works [2, 48], including Stone’s analysis

[46], a Kolmogorov power spectrum with infinite outer scale and zero inner scale

is assumed. This idealized spectrum is often used because it can provide tractable

analytic solutions for quantities relevant to imaging and optical beam propagation.

In this work focus is placed specifically on the outer scale. This is done because inner

scale predominantly affects scintillation[49] and doesn’t influence phase perturbations

due to the filter function approach[50] removing small scale effects. However, outer

scale is not removed by these filter functions and is therefore of interest here. In

the idealized case, an infinite outer scale would need an infinite amount of energy

in the turbulent spectrum, which is unphysical. Many works have demonstrated the

impact of neglecting a finite outer scale in both theoretical and experimental settings

[51, 52, 53]. This discrepancy can be accounted for mathematically by using a von

Kármán spectrum [49], which includes the effect of a finite outer scale.

There is also a growing body of experimental observations of non-Kolmogorov turbu-

lence in both the upper atmosphere [23, 24] and near to the ground [25, 26, 27, 28].

Non-Kolmogorov turbulence is a turbulent media defined by an arbitrary power law

α, where α = 11/3 represents classical Kolmogorov turbulence. In light of growing

evidence of non-Kolmogorov turbulence, the behavior of anisoplanatism should be

reevaluated in this context.
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In this work, we reexamine Stone’s analysis for horizontal paths with respect to several

parameters. We investigate the effects of a finite outer scale and a non-Kolmogorov

power law on the anisoplanatic error for smaller apertures. In this case D/r0 is usually

small, D/r0 < 10, but it is common for imaging to be dominated by anisoplanatic

distortions. In this paper we present analytical expressions for total anisoplanatic

error in non-Kolmogorov turbulence with a finite outer scale and piston-removed

and piston-and-tilt-removed anisoplanatic error. We find that in the presence of a

finite outer scale, the piston-removed and piston-and-tilt-removed anisoplanatic error

saturates to less than 1 rad2 when L0/D −→ 1 and D/r0 < 10.

The remainder of this paper proceeds as follows. In Section 2.2 we derive three

general expressions for anisoplanatic error in non-Kolmogorov turbulence. The first

expression is the total anisoplanatic error in non-Kolmogorov turbulence with a finite

outer scale. The other two expressions are the anisoplanatic error due to piston

and tilt. We subtract the later two separately and together to find the value of the

piston-removed and piston-and-tilt-removed anisoplanatic error. All three expressions

include a finite outer scale. In Section 2.3 we evaluate the effects of power law on the

total and piston and tilt-removed anisoplanatic error expressions, along a horizontal

path, as the ratio of aperture diameter to the Fried parameter, D/r0 approaches

unity. This analysis is repeated for the inclusion of a finite outer scale. The behavior

of the anisoplanatic error is evaluated as the ratio of outer scale to aperture diameter,

L0/D, approaches unity. Conclusions and suggestions for future work are provided
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in Section 2.4.

2.2 Derivation of Anisoplanatic Error Expressions

Figure 2.1: Horizontal propagation geometry, as viewed from above. Two
wavefronts, the beacon and the object, are angularly separated. The angular
separation leads to differing paths traveled by each wavefront, degrading the
performance of phase correction.

In this section we develop an expression for the piston and tilt removed differential

phase variance between two wavefronts as they propagate over a horizontal path

from the imaging system at 0 to the target at a distance L, seen in Fig. 2.1. This

geometry is analogous to describing the anisoplanatic error encountered when imaging

a target along a horizontal path. The two beams are angularly separated by θ,

which leads to a difference in the turbulence-induced wavefront distortions. Here,
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the isoplanatic angle is the largest angular separation between the object and the

reference such that the anisoplanatic error is equal to 1 rad2. As the anisoplanatic

error increases, atmospheric distortions become independent across the scene. The

resulting wavefront error increases monotonically as a function of angle. The geometry

in Fig. 2.1 is analogous to describing the anisoplanatic error when imaging a target

along a long horizontal path.

Sasiela and Shelton [54] proposed that the effect of turbulence on imaging and beam

propagation can be described by the proper combination of transverse spectral filter

functions. Using this approach, we can begin with the general expression for angular

differential phase variance, or anisoplanatic error, σ2
φ, between two beams provided

by Sasiela[50, p. 50,Eq. 2.107,] as

σ2
φ = 2πk2

0

∫ L

0

dz

∫ ∞
0

d~κf (κ)

× (G1 (γ1~κ) cos [P1 (γ1, κ, z)]−H (~κ, z)G2 (γ2~κ) cos [P2 (γ2, κ, z)])

×G∗1 (γ1~κ) cos [P1 (γ1, κ, z)]−H∗ (~κ, z)G∗2 (γ2~κ) cos [P2 (γ2, κ, z)] ,

(2.1)

where f(κ) is the normalized three-dimensional turbulence spectrum, ~κ is the two

dimensional spatial frequency domain coordinate, L is the length of the propagation

path, and k = 2π/λ is the optical wavenumber. The Pn terms in Eq. (2.1) are the
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diffraction parameters for each wave defined for propagation from z = 0 to z = L as

Pn (γn, κ, z) =
γnκ

2 (L− z)

2k0

, (2.2)

where γ1 = γ2 = γ = 1 for two identical plane waves. Gn(γn~κ) is the complex

aperture filter function for each beam, and H(~κ, z) is the relative amplitude between

the two waves. Furthermore, we consider that a vector separation between beam

centers in real space, ~d, is equivalent to a phase shift in transform space, allowing us

to define the relative amplitude difference between waves for angular separation as

H [~κ, z] = exp
(
iγ~κ · ~d

)
. This can be used to simplify Eq. (2.1) as

σ2
φ = 2πk2

0

∫ L

0

dz

∫ ∞
0

d~κf (κ)

× (G1 (~κ) cos [P1 (1, κ, z)]− exp
(
iγ~κ · ~d

)
G2 (~κ) cos [P2 (1, κ, z)])

×G∗1 (~κ) cos [P1 (1, κ, z)]− exp
(
−iγ~κ · ~d

)
G∗2 (~κ) cos [P2 (1, κ, z)] ,

(2.3)

The three-dimensional non-Kolmogorov power spectrum for an arbitrary power law,

α, and a finite outer scale, L0 can be defined as

Φn (κ, α, z) = A [α] C̃2
n(z)

(
κ2 + κ2

0

)−α/2
. (2.4)

In Eq. (2.4), A [α] = 1
4π2 cos(πα/2)Γ [α− 1] maintains consistency between the index

structure function and its power spectrum, C̃2
n(z) is the structure constant, similar to
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C2
n(z), with units of m3−α, Γ [x] is Euler’s gamma function, and κ0 = 2π/L0. When

α = 11/3 and L0 = ∞, Eq. (2.4) reduces to the well known Kolmogorov turbulence

spectrum, Φn (κ, z) = 0.033C2
n(z)κ−11/3. Equation (2.4) can be substituted into Eq.

(2.3) to obtain

σ2
φ = 2πA [α] k2

0

∫ L

0

dzC̃2
n (z)

∫ ∞
0

d~κ
(
κ2 + κ2

0

)−α/2
× (G1 (~κ) cos [P1 (1, κ, z)]− exp

(
iγ~κ · ~d

)
G2 (~κ) cos [P2 (1, κ, z)])

× (G∗1 (~κ) cos [P1 (1, κ, z)]− exp
(
−iγ~κ · ~d

)
G∗2 (~κ) cos [P2 (1, κ, z)]).

(2.5)

For compactness, we define f (~κ, α) = (κ2 + κ2
0)
−α/2

moving forward. From Sasiela

[50] we can simplify Eq. (2.5) by defining the filter function as

F (~κ) = G (~κ)G∗ (~κ) . (2.6)

This filter function can be set to different values depending upon if the total phase

variance is of interest or if only the piston, tip/tilt, or greater order contributions are

desired. Equation (2.6) can now be used to reduce Eq. (2.5) to

σ2
φ (α) = 2πA [α] k2

0

∫ L

0

dzC̃2
n (z)

∫ ∞
0

d~κf (κ, α)

×
(

cos [P1 (1, κ, z)]− exp
(
i~κ · ~d

)
cos [P2 (1, κ, z)]

)2

F (~κ) .

(2.7)

We are interested only in finding the total phase variance so the filter function F (~κ)
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is set to one, reducing Eq. (2.7) to

σ2
φ(α, ~d) = 2πA [α] k2

0

∫ L

0

dzC̃2
n (z)

∫ ∞
0

d~κf (κ, α)

× cos2

[
κ2 (L− z)

2k0

]
2
[
1− cos

(
~κ · ~d

)] (2.8)

Here the cos2 term is the contribution of diffraction, which is very small for the

scenarios of interest in this work. Moving forward, this term is neglected simplifying

later evaluation. Assuming the turbulence is isotropic Eq. (2.8) can be rewritten in

polar coordinates ρ and ζ and integrated over ζ such that

σ2
φ (ρ, ζ, α) = 2 (2π) A [α] k2

0

∫ L

0

dzC̃2
n (z)

×
∫ ∞

0

∫ 2π

0

dκdζκf (κ, α) (1− cos (κρ cos (ζ))) .

(2.9)

Using the identity [55], 2πJ0 (κρ) =
∫ 2π

0
cos (κρ cos ζ) dζ, the result of the integration

is

σ2
φ (ρ, α) = 2 (2π)2 A [α] k2

0

∫ L

0

dzC̃2
n (z)

∫ ∞
0

dκκf (κ, α) (1− J0 (κρ)) . (2.10)

When investigating angular anisoplanatism we are interested in the angular separation

of the beams, θ. Replacing ρ with θz results in

σ2
φ (θ, α) = 2 (2π)2 A [α] k2

0

∫ L

0

dzC̃2
n (z)

∫ ∞
0

dκκf (κ, α) (1− J0 (κθz)) . (2.11)
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Under the assumption of a constant turbulence strength C̃2
n(z) along the path, we are

interested in examining the relationship between an arbitrary characteristic length,

r̂0, and the outer scale and their effect on the saturation of the anisoplanatic error.

To accomplish this we recast Eq. in terms of the non-Kolmogorov power spectrum

Φφ(κ, α) in Appendix A.2 to get

σ2
φ (θ, α) = 4B(α)c1(α)

∫ L

0

dz
r̂2−α

0

L

∫ ∞
0

dκκf (κ, α) (1− J0 (κθz)) . (2.12)

Equation (2.12) is the total anisoplanatic error between two plane waves propagating

through a turbulence volume of depth L with an arbitrary power law exponent α.

Using methods outlined in Appendix A.3, we arrive at an analytical solution for Eq.

(2.12) as

σ2
φ (θ, α) = 4B(α)c1(α)

∫ L

0

dz
r̂2−α

0

L

(
κ2−α

0

−2 + α
−

21−α
2

(
κ0
θz

)1−α
2 K1−α

2
[θzκ0]

Γ
[
α
2

] )
(2.13)

Equation (2.12) provides the total anisoplanatic error, including the effect of piston

and global tilt. In imaging scenarios we can ignore the effect of piston and global tilt

on turbulence induced image degradation. Thus, we wish to examine the behavior of

the anisoplanatic error with the effects of piston and tilt removed. We can calculate

the phase variance due to piston by substituting the piston filter function [50]

F (~κ) =

[
2J1 (κD/2)

κD/2

]2

, (2.14)
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into Eq. (2.7) and following the same derivation procedure to get

σ2
φ,P (θ, α) = 4B(α)c1(α)

∫ L

0

dz
r̂2−α

0

L

∫ ∞
0

dκκf (κ, α)

× (1− J0 (κθz))

[
2J1 (κD/2)

κD/2

]2

.

(2.15)

We can repeat this process using the tilt filter function [50]

F (~κ) =

[
4J2 (κD/2)

κD/2

]2

, (2.16)

such that the phase variance due to tilt is

σ2
φ (θ, α) = 4B(α)c1(α)

∫ L

0

dz
r̂2−α

0

L

∫ ∞
0

dκκf (κ, α)

× (1− J0 (κθz))

(
1−

[
2J1 (κD/2)

κD/2

]2

−
[

4J2 (κD/2)

κD/2

]2
)
.

(2.17)

To get the phase variance due to the removal of piston and/or tilt all that must be

done is to subtract Eqs. (2.15) and/or (2.17) from Eq. (2.13). We provide analytical

expressions for both Eq. (2.15) and (2.17) in Appendices A.4 and A.5 respectively.

If we compare Eq. (2.12) to Stone’s expression for anisoplanatic error between two

plane waves by setting α = 11/3 and neglecting outer scale, Eq. (2.12) reduces to

σ2
φ (θ, α) = 1.95935

∫ L

0

dz
r̂
−5/3
0

L

∫ ∞
0

dκκ−8/3 (1− J0 (κθz)) . (2.18)

25



From inspection it is obvious that this expression does not match Stone’s[46, Eq. 29],

but when numerically evaluated it provides identical results. From previous work [47]

we know that Stone’s expression, and by extension our expression, is valid for cases

of constant turbulence over a horizontal propagation path.

2.3 Results

Now we explore the effect of a change in power law on the anisoplanatic error for

a pair of horizontally propagating plane waves using the total and piston and tilt-

removed expressions from the previous section. For all scenarios in this section the

horizontal propagation distance L = 1 km and a wavelength of 500 nm was used.

First, we evaluate Eqs. (2.12), (2.15), and (2.17) in terms of the separation angle θ

for three values of the power law, α = 3.1, 11/3, and 3.9 and three values of r̂0 such

that D/r̂0 = 1, 3 and 9, seen in Fig. 2.2. The values of α = 3.1 and α = 3.9 were

chosen to represent extreme deviations from the Kolmogorov value of α = 11/3, as

they are close to the limits of α = 3 and α = 4. Figure 2.2 is ordered such that left to

right represents a change of α from 3.1 to 3.9 and top to bottom represents a change

of D/r̂0 from 1 to 9. The isoplanatic angles for all cases can also be seen in Table.

2.1. We note that for some cases, marked with a shaded cell, the anisoplanatic error

never reaches a value of 1 rad2 and instead saturates to the specified value.
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Figure 2.2: Anisoplanatic error as a function of θ for a fixed aperture size
D = 0.10m along a horizontal path. Sub-figures organized as follows: (A)
α = 3.1, D/r̂0 = 1 (B) α = 3.66, D/r̂0 = 1 (C) α = 3.9, D/r̂0 = 1 (D)
α = 3.1, D/r̂0 = 3 (E) α = 3.66, D/r̂0 = 3 (F) α = 3.9, D/r̂0 = 3 (G)
α = 3.1, D/r̂0 = 9 (H) α = 3.66, D/r̂0 = 9 (I) α = 3.9, D/r̂0 = 9.

From Fig. 2.2 it is evident that in all cases, removing contributions from piston

decreases the anisoplanatic error. The magnitude of these contributions varies de-

pending upon both the value of α and D/r̂0. In the case where the smallest change in

isoplanatic angle occurs, α = 3.1 and D/r̂0 = 9, the removal of piston only decreases

the isoplanatic angle by 0.5 µrads. The largest change in isoplanatic angle occurs

when α = 3.9 and D/r̂0 = 1. Here, piston removal increases the isoplanatic angle

from nearly 70 µrads to infinity, where the anisoplanatic error saturates to a value of
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D/r0

1 3 9
Total 57.78 19.26 6.41
Total-P 0.70 24.80 6.92

α
=

3.
1

Total-P-TLT 0.31 86.45 7.38
Total 62.5 20.82 6.90
Total-P 0.28 44.74 9.85

α
=

3.
66

Total-P-TLT 0.09 0.55 11.66
Total 68.09 22.67 7.53
Total-P 0.09 0.74 18.04

α
=

3.
9

Total-P-TLT 0.02 0.20 26.50

Table 2.1
Isoplanatic angles, in µradians, for varying power law and D/r0 values.

These results include the total isoplanatic angle, the piston-removed
isoplanatic angle, and the piston and tilt removed isoplanatic angle for all
cases of interest. The shaded box denotes a case where the anisoplanatic

error, measured in rad2, never reaches a value of 1 rad2 and here it
saturates to the specified anisoplanatic error.

0.09 rad2. For all cases the removal of piston contributions increases the isoplanatic

angle and as D/r̂0 approaches unity, it causes the anisoplanatic error to saturate to

a value less than 1 rad2.

The same trend continues when examining combined piston and tilt removal. When

both piston and tilt are removed the isoplanatic angle saturates to some value less

than 1 rad2 as D/r̂0 approaches unity.

The values ofD/r0 we use here were selected to demonstrate the range of anisoplanatic

error behavior when D/r0 < 10. When D/r̂0 = 1 the scenario is effectively a lower

limit where the coherence length is as large as the aperture diameter. In this case

turbulence has no effect on the image apart from tilt. When D/r̂0 = 3 the scenario
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represents a realistic imaging scenario with strong anisoplanatic turbulence, where

r̂0 ≈ 3cm (when D = 10 cm). Finally, when D/r̂0 = 9 regardless of piston or tilt

removal, the anisoplanatic error never saturates. This may represent a limiting value

on the value of D/r̂0 where anisoplanatism is more important than coherence.

Next, we again evaluate Eqs. (2.12), (2.15), and (2.17) in terms of the separation

angle θ, but we include the addition of a finite outer scale. The analysis in Fig. 2.2

is repeated in Figs. 2.3 and 2.4, with a finite outer scale where L0/D = 10 and

1 respectively. These outer scale values were selected to highlight behavior in two

interesting scenarios. First, the case where L0/D = 10 was chosen because here the

outer scale is 1 m, which is a common estimate of the outer scale at ≈ 1 m above

the ground. Secondly, the case where L0/D = 1 was chosen because it represents the

lower bound of behavior where the outer scale is on the order of the system’s aperture

diameter. This unity value allows us to look at the relationship between finite outer

scale and anisoplanatism in the extreme. In Figs. 2.3 and 2.4 we also include the

corresponding case where outer scale is infinite for comparison. The isoplanatic angles

for all cases can be seen in Table. 2.2.

Figure 2.3 shows that the behavior of the anisoplanatic error is much the same as

it is in the case of an infinite outer scale. The magnitude of the total anisoplanatic

error, in the case of D/r̂0 = 3, at 20 µrads is 90% of the infinite outer scale case when

α = 3.1 (A), meanwhile, this value shrinks to 20% when α = 3.9 (C). Comparing

29



0 5 10 15 20

 rad

0

0.2

0.4

0.6

0.8

1

2

A = 3.1 D/r
o
 = 1

Total

Piston

Tilt

Total

Piston

Tilt

0 5 10 15 20

 rad

0

0.2

0.4

0.6

0.8

1

2

B = 3.66 D/r
o
 = 1

Total

Piston

Tilt

Total

Piston

Tilt

0 5 10 15 20

 rad

0

0.2

0.4

0.6

0.8

1

2

C = 3.9 D/r
o
 = 1

Total

Piston

Tilt

Total

Piston

Tilt

0 5 10 15 20

 rad

0

0.2

0.4

0.6

0.8

1

2

D = 3.1 D/r
o
 = 3

Total

Piston

Tilt

Total

Piston

Tilt

0 5 10 15 20

 rad

0

0.2

0.4

0.6

0.8

1

2

E = 3.66 D/r
o
 = 3

Total

Piston

Tilt

Total

Piston

Tilt

0 5 10 15 20

 rad

0

0.2

0.4

0.6

0.8

1

2

F = 3.9 D/r
o
 = 3

Total

Piston

Tilt

Total

Piston

Tilt

0 5 10 15 20

 rad

0

0.2

0.4

0.6

0.8

1

2

G = 3.1 D/r
o
 = 9

Total

Piston

Tilt

Total

Piston

Tilt

0 5 10 15 20

 rad

0

0.2

0.4

0.6

0.8

1

2

H = 3.66 D/r
o
 = 9

Total

Piston

Tilt

Total

Piston

Tilt

0 5 10 15 20

 rad

0

0.2

0.4

0.6

0.8

1

2

I = 3.9 D/r
o
 = 9

Total

Piston

Tilt

Total

Piston

Tilt

Figure 2.3: Anisoplanatic error as a function of θ for a fixed aperture size
D = 0.10 m and values of D/r̂0 = 1, 3, and 9, along a horizontal path. A
finite outer scale of L0 = 1 m corresponding to L0/D = 10 is considered
for all cases (solid lines). Corresponding cases where L0 =∞ are included
for comparison (dashed lines). Sub-figures organized as follows:(A) α =
3.1, D/r̂0 = 1 (B) α = 3.66, D/r̂0 = 1 (C) α = 3.9, D/r̂0 = 1 (D) α =
3.1, D/r̂0 = 3 (E) α = 3.66, D/r̂0 = 3 (F) α = 3.9, D/r̂0 = 3 (G) α =
3.1, D/r̂0 = 9 (H) α = 3.66, D/r̂0 = 9 (I) α = 3.9, D/r̂0 = 9.

Tables 2.1 and 2.2, we see that for L0/D ≥ 10, at all values of α, with and without

piston removal and combined piston and tilt removal, the isoplanatic angle is widened

by several microradians at most. In the cases where the anisoplanatic error saturates

to a value less than 1 rad2 when L0 = ∞, the inclusion of an outer scale where

L0/D ≥ 10 has little impact on the magnitude of the saturation value.
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Figure 2.4: Anisoplanatic error as a function of θ for a fixed aperture size
D = 0.10 m and values of D/r̂0 = 3, 5, and 7, along a horizontal path. A
finite outer scale of L0 = 0.1 m corresponding to L0/D = 1 is considered
for all cases (solid lines). Corresponding cases where L0 =∞ are included
for comparison (dashed lines). Sub-figures organized as follows:(A) α =
3.1, D/r̂0 = 1 (B) α = 3.66, D/r̂0 = 1 (C) α = 3.9, D/r̂0 = 1 (D) α =
3.1, D/r̂0 = 3 (E) α = 3.66, D/r̂0 = 3 (F) α = 3.9, D/r̂0 = 3 (G) α =
3.1, D/r̂0 = 9 (H) α = 3.66, D/r̂0 = 9 (I) α = 3.9, D/r̂0 = 9.

In Fig. 2.4 a value of L0/D = 1 was used. Comparing Fig. 2.4 to Figs. 2.3 and 2.2

we see that the anisoplanatic error decreases in all cases as the outer scale becomes

smaller. From Table 2.2 we see that when L0/D −→ 1 the smaller outer scale has

a much larger impact on the isoplanatic angle when compared to the infinite outer

scale case. Additionally, we see that the cases where the anisoplanatic error doesn’t
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D/r0

L0/D = 1 L0/D = 10
1 3 9 1 3 9

Total 0.23 0.78 8.54 74.16 20.85 6.60
Total-P 0.21 0.70 8.59 0.60 27.69 6.96

α
=

3.
1

Total-P-T 0.18 0.59 8.87 0.30 46.63 7.40
Total 0.06 0.35 15.87 13.21 29.85 8.55
Total-P 0.10 0.30 15.35 0.29 47.85 10.01

α
=

3.
66

Total-P-T 0.04 0.23 18.05 0.09 0.54 11.73
Total 0.01 0.11 0.90 0.57 55.04 14.03
Total-P 0.01 0.09 0.75 0.10 0.78 18.62

α
=

3.
9

Total-P-T 0.01 0.07 0.55 0.02 0.19 26.95

Table 2.2
Isoplanatic angles, in µradians, for varying power law and L0/D values.

Similar to Table. 2.1, the shaded box denotes a case where the
anisoplanatic error never reaches a value of 1 rad2 and here it saturates to

the specified anisoplanatic error.

saturate occur when the power law exponent is smaller than α = 11/3 and there is

no piston or tilt removal. In all other cases, the anisoplanatic error saturates to a

value less than 1 rad2. In effect, these observations show that the piston-removed and

piston-and-tilt-removed anisoplanatic error saturates to a value less than 1 rad2 as

L0/D approaches unity and D/r0 approaches unity.

2.4 Conclusion

We have derived generalized expressions for the total and piston-and-tilt-removed

anisoplanatic error in the case of two angularly-separated, horizontally-propagating,

plane waves with identical circular apertures. While this expression is valid only for
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plane waves, in a standoff imaging scenario, we expect the results to hold for a more

realistic spherical wave case and apply broadly to imaging problems. We numerically

evaluated these expressions for changing power-law media with exponents between

3 and 4, for both finite and infinite outer scale. By evaluating these expressions we

found that the anisoplanatic error increases as power-law exponent increases. We also

found that the anisoplanatic error often saturates to a value less than 1 rad2 after

piston and tilt removal. Further, we found that as power law increases the contribu-

tion of piston and tilt dominate the anisoplanatic error expression. Relatedly, we saw

that the magnitude of the outer scale contributes mostly to the piston and tilt terms.

Together, we see that as power law increases and outer scale decreases it becomes less

likely that anisoplanatism will affect the imaging system. This can be seen when for

values of D/r0 < 10, as L0/D approaches unity, the anisoplanatic error saturates to

a value less than 1 rad2 even without piston or tilt removal. Under these conditions,

the isoplanatic angle is effectively infinite and image reconstruction can succeed even

though the field of view may be many times larger than the angular extent of the ob-

ject. These results extend the assertion that the classic expression for the isoplanatic

patch size is overly restrictive for cases when D/r0 < 10, looking along horizontal

paths in Kolmogorov turbulence. We also show that the isoplanatic patch size defini-

tion is overly restrictive in the same scenarios when non-Kolmogorov turbulence with

α ≥ 11/3 is present. This may also apply in situations with a pronounced Hill bump
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or where an inner scale term dominates. Lastly, these results also serve as an expla-

nation for the observed efficacy of post-processing image reconstruction algorithms

in horizontal imaging. We see that the removal of piston and tilt, along with the

inclusion of a finite outer scale cause the isoplanatic angle to be much greater than

the angle predicted by classical theory. In some cases the anisoplanatism is strong

enough that these factors lead to a saturation in the anisoplanatic error, meaning

the isoplanatic angle may be effectively infinite. Common reconstruction techniques

used in incoherent imaging, like MFBD or SI techniques using the bispectrum, are

insensitive to piston or are immune to variations in global tilt. The forward model

used to inform these techniques is limited by the isoplanatic angle. This work shows

that their effectiveness over scenes larger than the isoplanatic patch size may be due

to an incomplete definition of the isoplanatic angle for incoherent imaging, especially

in the case where the anisoplanatic error saturates when a practical outer scale and

piston and tilt removal are considered.

This work relies on the assumption of a constant turbulence strength along the path,

where in a real life scenario the turbulence strength may be weighted along the path.

In a future work we aim to extend these results to a slant-path imaging scenario near

the ground, where there is a height dependent C2
n(z) profile and a changing power-law

exponent. Another overlooked point is that for a daylight standoff imaging scenario at

1 km, we need to account for a spherical wavefront. This change is likely to cause an

increased isoplanatic angle and therefore a decreased saturation of the anisoplanatic
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error in all cases.
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Chapter 3

Angular Anisoplanatism Over

Horizontal and Slant Paths in

Non-Kolmogorov Turbulence

3.1 Introduction

Imaging over long horizontal and slant paths in the atmosphere differs from astro-

nomical imaging. While both scenarios involve imaging through turbulence and are

subject to blurring and distortion, many of the assumptions applied to astronomi-

cal imaging do not apply to imaging over long horizontal and slant paths. A very
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common assumption is that imaging always happens within the isoplanatic angle,

defined as the greatest angle between a point reference and an imaging target such

that the anisoplanatic error is equal to 1 rad2. In situations common to horizontal

and slant path imaging, the isoplanatic angle can regularly be on the order of, or

smaller than, the diffraction-limit of the system. The forward model used to inform

Adaptive Optics (AO) techniques and image recovery techniques like Speckle Imag-

ing (SI)[30, 31, 32, 33], Multi-frame Blind Deconvolution (MFBD)[34, 35, 36, 37, 38],

and Phase Diversity[39, 40, 41, 42] is limited by the isoplanatic angle. However, the

performance of SI techniques over scenes larger than the isoplanatic angle was first

noted by solar astronomers[44]. Since then these techniques have been successfully

used over extents ranging from several to many times the isoplanatic angle[43, 45, 56].

In [43], Bos showed that these techniques can be utilized even when the isoplanatic

angle is on the order of the diffraction-limited sampling rate of the system, when the

integrated turbulence in terms of D/r0, is small.

In previous works[1, 47, 57], we showed that the efficacy of these techniques may

be due to an incomplete definition of the isoplanatic angle for incoherent horizontal

imaging. Techniques like MFBD or SI techniques using the bispectrum are insensitive

to piston or are immune to variations in global tilt. We found that with the removal

of piston and tilt, along with the inclusion of a finite outer scale, L0, the effective

isoplanatic angle was often much greater than the angle predicted by theory. In

some cases these factors lead to a saturation in the anisoplanatic error, meaning that
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the isoplanatic angle may be effectively infinite. Further, we found that the power

law exponent, α, affects the anisoplanatic error expression. As the non-Kolmogorov

power-law exponent increases, the contributions due to piston and tilt dominate the

anisoplanatic error expression.

In our previous work[1], we made two simplifying assumptions. First, the anisopla-

natic error expressions we derived modelled the angularly separated wavefronts as

plane waves of infinite extent. In a daylight standoff imaging scenario at several hun-

dred meters to a few kilometers, this is an incomplete model. At these distances the

wavefront is correctly modelled as a spherical wavefront with a non-zero radius of

curvature. Second, we used a constant turbulence strength, C2
n, along the path. For

purely a purely horizontal path this is a fair assumption. But, for the same conditions

C2
n will vary with height when imaging along a slant path. This height dependence

leads to a scenario where turbulence strength is not constant and varies as a function

of height along the path.

In this work we examine the effect on the anisoplanatic error of using a wavefront

with non-zero curvature and realistic slanted-paths. First, the anisoplanatic error

is compared using plane wave and spherical wave source models in Kolmogorov and

non-Kolmogorov turbulence. We find that using a wavefront model with a non-zero

radius of curvature leads to a larger effective isoplanatic angle in all cases. This in-

crease in effective isoplanatic angle means that the effect of anisoplanatism on imaging
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is less severe in a more physical spherical wavefront scenario. Next, we compare a

purely horizontal imaging scenario to a downward-looking and upward-looking slant-

path imaging scenarios to investigate the effect that path-weighting plays on the

saturation behaviour of the total, piston-removed, and piston-and-tilt-removed aniso-

planatic error. We show that, compared to horizontal cases, upward looking cases

were less affected by anisoplanatism and downward-looking cases were more affected.

We also show that as the strength of the turbulence profile increases, the isopla-

natic angle decreases for all cases. Additionally, as the strength of the C2
n profile

increases, the isoplanatic angle decreases and the system is more likely to be affected

by anisoplanatism.

The remainder of this work is outlined as follows. In the next section we present ex-

pressions for anisoplanatic error in non-Kolmogorov turbulence for a spherical wave

model and a slanted-path respectively. The first expression in each is the total aniso-

planatic error in non-Kolmogorov turbulence with a finite outer scale. The other two

expressions are the anisoplanatic error due to piston and tilt. In Section 3.3.1 we

evaluate the effects of power law, finite outer scale, and changing D/r0 on the total,

piston-removed, and piston-and tilt removed anisoplanatic error over a purely hori-

zontal path for spherical and plane wave source models. In Section 3.3.2 we evaluate

the effects of power law, finite outer scale, and a path dependent C2
n profile on the

total, piston-removed, and piston-and-tilt-removed anisoplanatic error. Conclusions

are provided in Section 3.4.
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3.2 Background

In this section we provide the necessary expressions for total, piston-removed, and

piston-and-tilt-removed anisoplanatic error between two wavefronts as they propagate

over horizontal and slanted paths.

3.2.1 Horizontal path with a spherical wave model

Figure 3.1: Horizontal propagation geometry. Two wavefronts, the refer-
ence and the object, are angularly separated. The angular separation leads
to differing paths traveled by each wavefront, degrading the performance of
phase correction.
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Angular anisoplanatic error, when imaging along a purely horizontal path, can be

modeled as two angularly separated wavefronts traversing a path from an imaging

system at 0 to a target at a distance L, seen in Fig. 3.1. The two beams are angu-

larly separated by θ, which leads to different turbulence-induced wavefront distortions

for each wavefront. Here, the isoplanatic angle is the largest angular separation be-

tween identical points on each wavefront such that the anisoplanatic error is equal to

1 rad2. As the angular separation increases, the correlation between the two wave-

fronts decreases. When the anisoplanatic error is greater than 1 rad2, the wavefront

correlation is so different that the atmospheric distortions become independent across

the scene.

In a previous work[1] we derived an expression for the total differential phase variance

between two plane waves as they propagate over a horizontal path as [1, Eq. 12,]. In

this paper we are interested in investigating the effect of modelling the propagating

wavefronts as spherical waves instead of plane waves. By changing the propagation

parameter used previously to one for a spherical wave and following the same proce-

dure, we arrive at

σ2
φ (θ, α) = 4B(α)c1(α)

∫ L

0

dz
r̂0(α)2−α

L

×
∫ ∞

0

dκκf (κ, α)
(
1− J0

(
κθ
(
z − z2/L

)))
.

(3.1)
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Equation (3.1) is the total anisoplanatic error between two spherical waves propa-

gating through a turbulent volume of depth L with an arbitrary power law exponent

α. r̂0(α) is the generalized characteristic length, B(α) = Γ [α/2] / (22−απαΓ [−α/2])

is a parameter that maintains consistency between the structure function and PSD

descriptions of refractive index fluctuations, and c1(α) is a constant equal to the value

of the plane wave, wave structure function (WSF) at a separation equal to the charac-

teristic length, r̂0 as described by Stribling [29]. Equation (3.1) includes the effect of

piston and global tilt. Using the filter function expressions for piston [50], the phase

variance due to piston is found to be

σ2
φ,P (θ, α) = 4B(α)c1(α)

∫ L

0

dz
r̂0(α)2−α

L

∫ ∞
0

dκκf (κ, α)

×
(
1− J0

(
κθ
(
z − z2/L

))) [2J1 (κD/2)

κD/2

]2

.

(3.2)

Lastly, the expression for the phase variance due to tilt is.

σ2
φ,T (θ, α) = 4B(α)c1(α)

∫ L

0

dz
r̂0(α)2−α

L

∫ ∞
0

dκκf (κ, α)

×
(
1− J0

(
κθ
(
z − z2/L

)))
×

(
1−

[
2J1 (κD/2)

κD/2

]2

−
[

4J2 (κD/2)

κD/2

]2
)
.

(3.3)

To get the phase variance due to the removal of piston and/or tilt Eqs. (3.2) and/or

(3.3) are subtracted from Eq. (3.1). In Section 3.3.1 we compare the use of the above

spherical wave expressions with corresponding plane wave expressions. The plane
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wave expressions differ only in the content of the J0 functions in Eqs. (3.1), (3.2),

and (3.3). Full versions of the plane wave expressions and their derivations can be

found in [1].

3.2.2 Slanted-path with a plane wave model

When looking at slanted-paths, we chose to investigate three geometries: an upward-

looking, a downward-looking, and a purely horizontal case, all seen in Fig. 3.2. The

purely horizontal scenario function as a baseline case to compare the behavior of

the upward and downward-looking slanted path scenarios. In both slant path cases

the imaging system and the target are horizontally separated by
√
L2/2 m. In the

upward-looking case, the imaging system is at ground level, h = 0 m, and the target

is at h =
√
L2/2 m in elevation. In the downward-looking case the imaging system

is at h =
√
L2/2 m and the target is at h = 0 m. From Fig. 3.2 it can be seen that

the vertical and horizontal separations in each case were chosen such that the path

actually traversed by the wavefronts is always L m for all three geometries.

Previously, we presented a derivation for the total, piston-removed, and piston-and-

tilt-removed anisoplanatic error in the case of two horizontally propagating plane

waves in [1]. These expressions allow for a height dependent turbulence strength
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Figure 3.2: Horizontal and slanted propagation geometry for each of the
scenarios examined in Section 3.3.2

profile, C2
n(z) and can be leveraged again in this work. We provide only the final ex-

pressions here. First, the expression for the total anisoplanatic error for two angularly
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separated plane waves, including the effect of piston and global tilt,

σ2
φ,P (θ, α) = 4B(α)c1(α)

∫ L

0

dz
r̂0(α)2−α

L

∫ ∞
0

dκκf (κ, α)

× (1− J0 (κθz)) .

(3.4)

Equation (3.4) is identical to [1, Eq. 12,]. Here the generalized characteristic length,

r̂0(α) is derived from the power law exponent and the appropriate C2
n(z) profile for a

given power law exponent and scene geometry. Similarly, the expression for the phase

variance due to piston is

σ2
φ,P (θ, α) = 4B(α)c1(α)

∫ L

0

dz
r̂0(α)2−α

L

∫ ∞
0

dκκf (κ, α)

× (1− J0 (κθz))

[
2J1 (κD/2)

κD/2

]2

,

(3.5)

and the expression for the phase variance due to tilt is

σ2
φ,T (θ, α) = 4B(α)c1(α)

∫ L

0

dz
r̂0(α)2−α

L

∫ ∞
0

dκκf (κ, α)

× (1− J0 (κθz))

×

(
1−

[
2J1 (κD/2)

κD/2

]2

−
[

4J2 (κD/2)

κD/2

]2
)
.

(3.6)

Using Mellin transform techniques, we previously derived analytical expressions for

Eqs. (3.4), (3.5), and (3.6) in the appendices of [1].
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3.3 Results

3.3.1 Effect of spherical wave modelling on anisoplanatic er-

ror saturation

In this section we explore the effect of a change in power-law exponent, the inclusion of

a finite outer scale, and a changing turbulence strength via D/r̂0 on the total, piston-

removed, and piston-and-tilt-removed anisoplanatic error for two pairs of wavefronts

propagating along the same horizontal path. One pair are modelled as plane waves

and the other are modelled as spherical waves. In both cases the imaging system and

the target are horizontally separated by L = 1 km.

First, we investigate the behavior of the ansioplanatic error when using a plane wave

model or and a spherical wave model for a simple case. For the spherical wave

model, Eqns (3.1), (3.2), and (3.3) are evaluated in terms of separation angle θ, for

D/r̂0 = 1, 3, and 9, L0 =∞, and α = 11/3. Similarly, expressions for the plane wave

anisoplanatic error derived in [1] are evaluated over the same parameters and the

results for both can be seen in Table 3.1. Bold values denote when the anisoplanatic

error never reaches a value of 1 rad2 and instead saturates and approaches some

asymptotic value. In this case, the bold value is the angle at which the anisoplanatic
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error is equal to
(
1− 1

e

)
× asymptotic value. To avoid confusion, we refer to this angle

as the asymptotic isoplanatic angle for the remainder of the paper. The ansioplanatic

error for all the cases in Table 3.1 is plotted in Fig. 3.3, where solid lines represent

the plane wave cases and dashed lines are the corresponding spherical wave cases.

D/r̂0

1 3 9

Plane
Wave

Total 62.49 20.82 6.90
Total-P 60.76 44.74 9.85

Total-P-T 24.16 24.16 11.66

Spherical
Wave

Total 350.97 116.98 38.99
Total-P 285.28 275.44 57.04

Total-P-T 140.00 140.00 69.45

Table 3.1
Isoplanatic angles, in µradians, for plane and spherical wavefront models.

These results include the total, piston removed, and piston and tilt
removed isoplanatic angle for D/r̂0 = 1, 3, and 9, and all cases have a
α = 11/3 Kolmogorov power law exponent. Bold values indicate cases

where the anisoplanatic error never reaches 1 rad2 and instead saturates to
an indicated asymptotic isoplanatic angle.

From Toselli et. al[58] we can relate the plane wave and spherical wave r̂0, as

r0,spherical

r0,plane

= (α− 1)
1

α−2 (3.7)

If α = 3.1, 3.66, and 3.9 are substituted into Eqn. (3.7) we get values of 1.96, 1.80, and

1.75 for power law exponents 3.1, 3.66, and 3.9 respectively. If we use these ratios as

proportional estimates for change in isoplanatic angle, we expect the spherical wave

isoplanatic angles to be 1.96 to 1.75 times the plane wave values, depending upon the

value of α. However, from Table 3.1 we see that for all parameters, the isoplanatic
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Figure 3.3: Anisoplanatic error as a function of θ for a fixed aperture size
D = 0.10 m and values of D/r̂0 = 1, 3, and 9 in subfigures (a) , (b), and (c)
respectively, along a horizontal path. An infinite outer scale and a power
law exponent of α = 11/3 is used for all cases. Solid lines denote a plane
wave source model and dashed lines denote corresponding spherical wave
source models.
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angle is 5 to 7 times larger in the spherical wave case than its matching plane wave

case when α = 3.66. The removal of piston or piston and tilt increases the difference

between the spherical and plane wave isoplanatic errors.

Now we look at the effect of a finite outer scale, L0, and a changing power law

exponent, α on the anisoplanatic error. We evaluate Eqns. (3.1), (3.2), and (3.3) for

three values of α = 3.1, 3.66, and 3.9 and for four outer scale values of L0/D = 1/3,

1, 10, and ∞, seen in Table 3.2.

Looking at Table 3.2 we see several behaviors. First, the anisoplanatic error is more

likely to saturate as L0/D −→ 1 and D/r̂0 −→ 1. Second, as α increases the isoplanatic

angle and asymptotic isoplanatic angle increase as well. Lastly, the removal of piston

or piston and tilt causes an increase in isoplanatic angle and a decrease in asymptotic

isoplanatic angle. These behaviors are consistent with our previous work when a

plane wave source model was used [1].

There is one primary difference between the spherical and plane wave cases. The mag-

nitude difference between plane wave and spherical wave isoplanatic angle observed

in Table 3.1 is consistent for all values of α, when L0/D = ∞. The spherical wave

isoplanatic angle is consistently 5 to 7 times larger than the corresponding plane wave

case. Much work is concerned about the limit imposed on imaging reconstruction and

AO by the isoplanatic angle. From Table 3.2 we can see that this limit is significantly

less severe if we include the effects of piston and/or global tilt removal, a finite outer
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scale, and a more accurate spherical wave image formation model.

3.3.2 Evaluation of anisoplanatic error over slant paths

We now explore the effect of a change in power law, the inclusion of a finite outer

scale, and increasing C2
n(z) profiles on the anisoplanatic error for the one-way plane

wave case along two slant paths. We compare upward and downward-looking slant

path geometries and an equivalent horizontal geometry for two turbulence profiles.

In all three geometries, the path the wavefront traverses is L = 1 km. In both slant

path cases the imaging system and the target are horizontally separated by
√
L2/2

m. In the upward-looking case, the imaging system is at ground level, h = 0 m,

and the target is at h =
√
L2/2 m in elevation. In the downward-looking case the

imaging system is at h =
√
L2/2 m and the target is at h = 0 m. For all three

geometries, the generalized characteristic length, r̂0 is derived from the power law

exponent and the appropriate C2
n(z) profile for the given scene geometry. For the

upward and downward-looking cases r̂0 is derived from a Hufnagel-Valley 5-7 [59]

turbulence strength profile. In the horizontal case r̂0 is derived from a constant

value of C2
n, obtained from path averaging the upward and downward-looking C2

n(z)

profiles. This approach is useful because it evenly distributes the turbulence along

the horizontal path and weights the majority of the turbulence towards or away from

the aperture for upward and downward-looking slant paths respectively.
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Similarly to Section 3.3.1, values of α were chosen as α = 3.1, 11/3, and 3.9 and three

outer scales of L0/D = ∞, L0/D = 1 and L0/D = ∞ were investigated. We begin

by evaluating Eqs. (3.4), (3.5), and (3.6) in terms of separation angle θ for the above

parameters. The corresponding isoplanatic angle for each case can be seen in Table

3.3. We note that in some cases, denoted by a bold value, the anisoplanatic error

never reaches a value of 1 rad2 and so we list the asymptotic isoplanatic angle.

From Table 3.3 some behaviors emerge. When the total anisoplanatic error in the

horizontal and upward-looking cases are compared, where turbulence is more strongly

weighted closer to the aperture in the upward-looking case, the anisoplanatic error

is reduced. In the purely infinite outer scale case, the isoplanatic angles are 2-4

times larger for the upward looking case than the horizontal case, for all power law

exponents. With the removal of piston and tilt we see the same behavior when

comparing the upward and horizontal cases for all values of α. In the upward-looking

case the removal of piston and tilt is more likely to cause the anisoplanatic error to

saturate to a value less than 1 rad2 as α increases.

Similarly, when the horizontal and downward-looking cases are compared the same

patterns emerge. Here the turbulence is more strongly weighted away from the aper-

ture in the downward-looking case than the horizontal case. This leads to a 40-60%

reduction in isoplanatic angle in the downward case compared to the horizontal cases

and and a 10 times increase in the asymptotic isoplanatic error. When an infinite
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outer scale is used, anisoplanatism has the greatest effect on the downward-looking

case and the least effect on the upward-looking case with the horizontal case in be-

tween.

Looking again at Table 3.3, but to the cases with a finite outer scale of L0/D = 10

or L0/D = 1, we observe similar behavior to the infinite outer scale case. As L0/D

approaches unity, the anisoplanatic error saturates to a value < 1 rad2 for all values

of α and all geometries. However when we compare this to cases when L0/D = 10

and L0/D =∞ we see that the removal of piston and tilt play the largest role. When

piston and tilt are removed, the anisoplanatic error saturates for all outer scales, in all

geometries, when α ≥ 11/3. This is because increasing α increases the relative energy

in the piston and tilt terms. The fact remains that the piston and tilt components

dominate the anisoplanatic error expression.

While the HV 5-7 profile is used because of its relatively strong turbulence near the

ground, strongly anisoplanatic environments often have more severe C2
n(z) profiles.

To investigate the impact of stronger C2
n(z) profiles on anisoplanatic error saturation

behavior, the evaluation in Table 3.3 was repeated in Table 3.4. The characteristic

length profiles r̂0(α) for each power law exponent and scene geometry were doubled.

The results of the doubled profiles can be seen in Table 3.4.

When Table 3.4 is compared to Table 3.3 several behaviors emerge. In the cases where

the anisoplanatic error doesn’t saturate for both scenarios, as the turbulence strength
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profile increases the isoplanatic angle becomes smaller. The effect of increasing r̂0

however becomes most apparent when looking at the cases where the anisoplanatic

error saturates in Table 3.3. The anisoplanatic error is most likely to saturate in two

cases. First, as L0/D −→ 1 for all values of α. Second, the removal of piston and tilt

is likely to make the anisoplanatic error saturate for L0/D ≥ 10 for all geometries,

when α ≥ 3.66. When the turbulence strength profile is doubled, in Table 3.4, we see

that the anisoplanatic error no longer saturates when L0/D = 1 in the cases where

α = 3.1 for upward, downward, or horizontal-looking geometries. Additionally the

removal of piston and tilt only lead to anisoplanatic error saturation when α = 3.9.

As r̂0 increases, anisoplanatism is more likely to affect the system, for all outer scales

and power law exponents.

3.4 Conclusion

In this paper we evaluated expressions for the total, piston-removed, and piston-and-

tilt-removed anisoplanatic error for three different scene geometries and plane and

spherical models.

The total, piston-removed, and piston-and-tilt-removed anisoplanatic error for vary-

ing power law exponent, D/r̂0, and L0/D for a plane wave and a spherical wave model

were compared. We observed that the spherical wave isoplanatic angle was larger than
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its plane wave counterpart in all cases where the anisoplanatic error didn’t saturate.

In cases where the anisoplanatic error saturated, the asymptotic isoplanatic angle in-

creased for all cases when a wavefront with a non-zero radius of curvature was used.

The increase in actual and asymptotic isoplanatic angle for the sphere wave cases

shows the necessity of using a spherical wave source model when trying to determine

the effective isoplanatic patch size for a realistic horizontal imaging scenario.

The anisoplanatic error for an upward-looking and a downward-looking slanted-path

were modelled and compared to a comparable horizontal path. Upward looking slant-

path cases were less affected by anisoplanatism than a comparable horizontal scenario

regardless of piston and tilt removal, outer scale size, or power-law exponent. Con-

versely, downward looking slant-path cases were more affected by anisoplanatism than

a comparable horizontal scenario. Together, we saw that as turbulence was more

strongly weighted near the aperture, both the isoplanatic angle and the asymptotic

isoplanatic angle increased. In the presence of a finite outer scale the ansioplanatic

error was more likely to saturate as L0/D −→ 1 regardless of piston and tilt removal

or power-law exponent. Lastly, as the turbulence strength profile increased, the iso-

planatic angle became smaller and the anisoplanatic error is less likely to saturate

when α ≤ 11/3 for all outer scales, even with piston and tilt removal.

Much work is concerned with the limit imposed on imaging reconstruction and AO

by the isoplanatic angle. The motivation of this work, and our previous work, was to
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explore the effect of many different factors on the practical anisoplanatic error and

effective isoplanatic angle for realistic horizontal imaging scenarios. When imaging

over long horizontal and slant paths, where the isoplanatic angle is small and aniso-

planatism dominates we see that this limit is significantly less severe than predicted.

The limit imposed on the system by the anisoplanatic error is much less severe than

predicted by classical isoplanatic angle expression, but only if we include the interplay

of piston and/or global tilt removal, a finite outer scale, accurate image formation

models, and realistic turbulence profiles.

This work demonstrates many scenarios where the anisoplanatic error theoretically

saturates and the isoplanatic angle is effectively infinite. In practice there is likely an

angular separation at which techniques, that are limited by the isoplanatic angle, are

likely to break down. In future work we aim to evaluate common techniques like SI

or MFBD in situations where we find that the anisoplanatic error saturates.
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Chapter 4

Working Title: Effect of Finite

Inner Scale on the Saturation

Behavior of Branch-Point Density

4.1 Introduction

The branch-point problem is a multifaceted problem that ultimately degrades one’s

ability to perform phase compensation. In turn, researchers need to study all aspects

of the problem to quantify its limitations. This chapter, as a result, uses wave-optics

simulations to study the branch-point problem in earnest.
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The presence of distributed-volume atmospheric aberrations (aka deep turbulence)

presents unique challenges for beam-control applications, which look to sense and

correct for disturbances found along the laser-propagation path. In practice, deep-

turbulence conditions result in a phenomena known as scintillation (i.e., the con-

structive and destructive interference that manifests from coherent-light propagation

through distributed-volume atmospheric aberrations). The Rytov number, also re-

ferred to as the log-amplitude variance, gives a a gauge for the strength of the scin-

tillation experienced. As the scintillation becomes severe (e.g., for Rytov numbers

greater than 0.1), total-destructive interference gives rise to branch points in the

phase function; in particular, at points where the real and imaginary parts of the

complex-optical field equate to zero.

Branch points, at large, add a rotational component to the phase function that

traditional-least-squares phase reconstruction algorithms cannot account for. As such,

one often refers to the rotational component as the hidden phase, thanks to the foun-

dational work of Fried [60]. The existence of branch points then leads to unavoidable

2π phase discontinuities in the phase function known as branch cuts.

These branch cuts, in practice, become linked to positively and negatively charged

branch points. Because of inter-actuator coupling, continuous-face sheet deformable

mirrors (DMs) with high-power coatings are unable to fully compensate for the branch

cuts. Thus, in the presence of moderately deep turbulence, with Rytov numbers
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greater than ≈ 0.5, the corresponding branch-point problem tends to be the “Achilles’

heel” to current phase-compensation solutions [9].

In an effort to study the branch-point problem in earnest, this paper uses a metric

referred to as the branch-point density (i.e., the number of branch points contained

within the limiting aperture in a pupil plane). This metric is straightforward to

compute using wave-optics simulations. Thus, our work studies the branch-point

density as a function of the Rytov number, in addition to grid resolution and inner

scale. To our knowledge, such a study has never been performed, and the results

show that provided adequate grid resolution, the branch-point density grows without

bound as the Rytov number increases. The results also show that this growth becomes

limited with the presence of a finite inner scale. Such results will ultimately inform

future phase-compensation research efforts, so that researchers can develop novel

phase-compensation systems that sense and correct for the effects deep turbulence.

In what follows, Sec. 4.2 contains background material on the history of the branch-

point problem. Section 4.3 explores the trade space, and the results and discussion

follow in Sec. 4.4. We then provide a conclusion for this work in Sec. 4.5.
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4.2 Background

Until the early 1970’s there was a long history of studying phase, φ, distortions, where

the phase is a single-valued function of coordinates. Nye and Berry[61], however pro-

posed another type of phase distortion with singularities in the phase, which they

called phase dislocations. These are known commonly by several names: phase dis-

locations, screw dislocations, optical vortices, and branch points. In this paper this

phenomenon shall be referred to as branch points. Afterwards, many theoretical and

experimental investigations[62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76]

supporting the existence of branch points in optics were published. The primary char-

acteristic of a branch point is the existence of points where the field of the gradient

of phase becomes a vortex one, or mathematically ∇ × ∇φ = 0. For this to occur,

there must be a null in the wavefront amplitude, A, at this point.

Various applications of branch points in different areas of optics were then suggested.

Among them, the concept of turbulence-induced branch-points was first proposed and

proven by Fried and Vaughn[8]. When propagating light through a turbulent media,

the wavefront passes through refractive-index inhomogeneities that cause amplitude

and phase fluctuations at the observation plane. If the fluctuations are strong enough,

constructive and destructive interference occurs during propagation and points of zero

amplitude can form at the observation plane, leading to the creation of branch points
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in the phase function. Fried and Vaughn carried out a numerical simulation for a laser

beam propagating through Kolmogorov turbulence, which showed a number scenarios

in which branch points can be seen within the wavefront. The authors also suggested

a potential procedure of phase reconstruction in the presence of branch points, which

inspires a number of works discussed later.

The problem of turbulence-induced branch points was also discussed by Tartakovski

et al.[77], who analyzed the properties of the point-spread function (PSF) associated

with branch points[78]. Lukin and Fortes[79, 80] investigated the effect of branch

points on phase conjugation instability with thermal blooming compensation in Adap-

tive Optics (AO) systems.

Voitsekhovich et al.[15] were the first to investigate the density of branch point occur-

rence. The authors use numerical simulation and a theoretical treatment to provide

an estimation of branch point density for various turbulence parameters. Various tur-

bulence conditions, ranging from weak to strong scintillation, were considered as well

as the dependence on wavelength and various inner scales of turbulence for a fixed

grid resolution of 512×512. Voitsekhovich et al. identified four key regions where the

branch point behavior differs. First, a region where the log-amplitude statistics are

nearly Gaussian, associated with weak turbulence, where the branch point density is

small. Second, a region between weak and strong turbulence where the branch point

density grows rapidly. In the third region, where turbulence is strong the branch point

65



density is replaced by a slower but still nonlinear increase. Lastly, in the turbulence

strength saturation regime, the branch point density increases linearly.

In 1998 Fried[60] demonstrated the issues with using the common Least Mean Square

Error (LMSE) type of wave-front reconstructor to sense all of the turbulence-induced

phase perturbations. Fried began by explaining that the gradient of phase measured

by a sheering interferometer is not continuous. The measurement of the interferometer

must therefore be represented as the sum of the gradient of a scalar potential and the

curl of the gradient of some vector potential. This meant that a LMSE reconstruction

algorithm would neglect part of the phase known as the ”hidden phase.” Leaving the

hidden phase out means that the AO system would perform improper corrections. To

explore this phenomenon, Fried made the case that branch points could be represented

analytically. This was accomplished by starting with a contour integral around a point

in the gradient of the phase function where the contour integral does not equal zero

and instead equals ±2π. A hertz function could then be used to describe the hidden

phase. From this derivation Fried made two key assertions. One, the density of

branch points and the distance between branch point pairs both matter. This meant

that a weaker scintillation, produced by distant turbulence, with a greater distance

between positive and negative branch point pairs may pose a greater problem for

AO performance than stronger scintillation, produced by stronger turbulence, at a

shorter range where the branch point pairs are closer together. The second assertion

was that by analytically defining the value of the hidden phase based on branch point
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location, Fried set up a potential avenue to construct a branch point tolerant LMSE

reconstructor.

After Fried’s analytical characterization of branch points, work in the field can be

loosely categorized into two groups. Work on branch point tolerant phase reconstruc-

tion methods and further characterization of the existence and behavior of branch

points. With respect to the first category, there are many works[10, 11, 12, 13, 81, 82]

that have attempted to provide branch point tolerant LMSE reconstruction algo-

rithms with varying degrees of efficacy. Branchers et al. [9, 83] investigated the use

of both Shack-Hartmann sensors and shearing interferometers in strong scintillation,

where branch points are most likely to occur. They found, in the presence of branch

points, the Shack-Hartmann sensor performed poorly and the shearing-interferometer

performed much better. All branch point tolerant LMSE reconstructors rely on the

ability to detect branch points from wavefront sensor measurements. Different strate-

gies for detecting the location of branch points have been proposed by many authors.

[84, 85, 86]

A more recent effort has been made to describe the evolution of what are called

vortex beams in atmospheric optical turbulence. Vortex beams differ from imaging

discussions of branch points in that there is only one phase singularity which circu-

lates around an amplitude null centered within the laser beam and along the axis of

propagation. The study of this phenomena is known as singular optics.[87] Vortex
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beams have been investigated for use as information carriers in optical communication

[88] and as optical tweezers and spanners. [89] These potentially useful applications

are possible because vortex beams carry orbital angular momentum and topological

charge through atmospheric turbulence.[90] When propagated through turbulence,

work[91] has shown that while topological charge was conserved, which is useful for

applications like optical communication, the scintillation characteristics of the beam

were not as stable and were readily affected by atmospheric turbulence.

Most recently, work by members of the Starfire Air Force Research Laboratory has

investigated the aggregate behavior of branch points. The aggregate behavior is ex-

amined in an attempt to relate branch points measured in the pupil to the upstream

turbulence that created them. Sanchez and Oesch began by exploring the behavior of

branch point density as a characteristic of an atmospheric turbulence simulator.[92]

Here they showed that estimating the scintillation index for Rytov values above 0.4

does not provide accurate measurements for calibrating the atmospheric turbulence

simulator. Due to branch points appearing at Rytov values greater than 0.1, they

proposed that the density and distribution of branch points could be used to calibrate

an atmospheric turbulence simulator. They found that the branch point density sat-

urates for higher turbulence strengths and greater propagation distances, limiting

its usefulness as a calibration metric. Next, Oesch et al. investigated the creation

and evolution of branch points.[93] The authors mathematically proved that branch

points must always form in positive and negative pairs and that these pairs occur in
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a uniformly propagating wave in the atmosphere. They then used these results to

show that once branch points are created in the atmosphere, they are persistent when

uniformly propagated to a pupil. Due to branch points being uniformly persistent,

the branch cut linking two points must evolve uniformly as well. This means that

there is a smoothness to the mapping and that branch points must be a persistent

feature of the propagating wave.[94] The postulate here and then later confirmed

that atmospherically created branch point pairs separate as they propagate, and that

they carry both the velocity of, and the distance to the turbulence layer that created

them.[95, 96] This body of work culminated in a paper on characterizing the aggre-

gate behavior of branch points in wave optics simulations.[97] Through independent

wave optics simulation the authors demonstrated that the four properties of pupil

plane branch points: motion, density, separation, and persistence provide a means to

determine four terms for the layered atmospheric model: number, velocity, distance,

and strength of the layers. By demonstrating this relationship, they are able to show

that the four properties of branch points are actually properties of the travelling op-

tical wave. Since this publication several works[98, 99] have posited that because

branch-points are an enduring feature of the propagating wave they may also act

as markers for photons with Orbital Angular Momentum (OAM) in the propagating

beam.

Lastly, in biomedical optics speckle imaging techniques are often used to gain insight

about the internal characteristics of tissue and biological fluid samples. These speckle
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patterns are created by interference and, inherently, contain branch points. Recent

works[100, 101] have demonstrated that the changing behavior of branch points could

be used to determine the decorrelation behavior and scatterer dynamics in speckle-

imaged tissue. It has also been shown that the through Poincare analysis, the behavior

of branch points can be used to accurately estimate speckle sizes, even in cases with

heavy speckle degradation.[102]

4.3 Simulation Setup and Exploration

The desired setup is as follows. We wish to propagate a plane wave with a wavelength

of 1 µm along a propagation path with simulated deep turbulence. After propagation

we wish to characterize the population of branch points in each scene. To this end, we

briefly review the details associated with the necessary sampling and scene geometry,

deep turbulence conditions, a short exploration of spurious branch points, and a

characterization of the log-amplitude variance in deep turbulence.

4.3.1 Parameters of interest

To investigate and characterize branch-point density a testing scenario needs to be

defined. For propagation, a plane wave source was chosen. A plane wave is the
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simplest source model such that we can be sure that the target plane is illuminated,

without worrying about effects like beam wander if a narrow Gaussian beam is used.

Table 4.1 contains all the parameters of interest in the wave-optics simulations. It

is important to note that the wave-optics simulations used N × N grids. The side

length S was the same in both the source and target planes, allowing for unity scaling

within the wave-optics simulations. The simulation also satisfied Fresnel scaling, such

that N = S2/(λZ), where λ is the wavelength and Z is the propagation distance.

Satisfying this scaling determined the lowest resolution grid that could be used was

512× 512. We also define a Guard Band Ratio (GBR) as GBR = S/D.

Table 4.1
Parameters of interest in the wave-optics simulations.

Parameters (MKS units) Symbol Value(s)
Grid NxN 29 - 214

Side length (m) S 1.6
Wavelength (m) λ 1×10−6

Propagation distance (m) Z 5×103

Aperture diameter (m) D 0.20
Guard Band Ratio GBR 8

4.3.2 Deep turbulence conditions setup

While Table 4.1 contains all the parameters of interest in the wave-optics simulations,

Table 4.2 makes use of several closed-form expressions to define the turbulence sce-

narios that make up the trade space. The primary characteristic used to define the

turbulence scenarios in Table 4.2 is the plane-wave Rytov number, RPW . From the
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Table 4.2
Some of the Turbulence scenarios used in the wave-optics simulations.

Scenario RPW C2
n (m−2/3) D/r0,PW θ0/(λ/D)

1 0.1 6.31×10−16 2.15 2.10
2 0.2 1.26×10−15 3.26 1.38
3 0.3 1.89×10−15 4.16 1.09
4 0.4 2.53×10−15 4.94 0.91
5 0.5 3.16×10−15 5.65 0.80
6 0.6 3.79×10−15 6.30 0.72
7 0.7 4.42×10−15 6.91 0.65
8 0.8 5.05×10−15 7.48 0.60
9 0.9 5.68×10−15 8.03 0.56
10 1.0 6.31×10−15 8.56 0.53
20 2.0 1.26×10−14 12.97 0.35
30 3.0 1.89×10−14 16.54 0.27
40 4.0 2.53×10−14 19.66 0.23
50 5.0 3.16×10−14 22.47 0.20
60 6.0 3.79×10−14 25.07 0.18
70 7.0 4.42×10−14 27.50 0.16
80 8.0 5.05×10−14 29.80 0.15
90 9.0 5.68×10−14 31.98 0.14
100 10.0 6.31×10−14 34.06 0.13

Rytov approximation, the propagation of a plane wave through turbulence has an

associated path-integral expression that can be used as a metric for the amount of

scintillation.[18, 50, 103] This value is known as the plane-wave Rytov number, RPW ,

also often labelled as the plane-wave log-amplitude variance. This path-integral ex-

pression is written as,

RPW = 0.563k7/6

∫ Z

0

C2
n (z) (Z − z)5/6 dz, (4.1)

where k = 2π/λ is the angular wavenumber and C2
n(z) is the path-dependent refrac-

tive index structure coefficient. Given a propagation path with constant atmospheric
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conditions, the path-integral expression can be reduced to the well known closed-form

expression,

RPW = 0.307k7/6C2
nZ

11/6 (4.2)

When RPW = 0.1 branch points begin appearing in the phase function[8, 60], thus

the turbulence scenarios begin at this value and continue up to RPW = 10.0. For

completeness in defining the turbulence scenarios, Table 4.2 also makes use of the

plane-wave Fried parameter r0,PW (also known as the plane-wave coherence diameter

or length):

r0,PW =

[
0.423k2

∫ Z

0

C2
n(z)dz

]−3/5

, (4.3)

and the isoplanatic angle, θ0:

θ0 =

[
2.91k2

∫ Z

0

C2
n(z) (Z − z)5/3 dz

]−3/5

→ θ0 = 0.314
r0,PW

Z
. (4.4)

The turbulence scenarios in Table 4.2 are explored in Section 4.4 using both the well

known idealized Kolmogorov power spectrum and the Hill power spectrum. In wave-

optics work an idealized Kolmogorov spectrum with zero inner scale, l0 = 0 m, and an

infinite outer scale, L0 =∞ m is often used to reduce computation time and simplify

complex integral expressions often found in imaging and beam control. However this is

not an accurate representation of the energy distribution in a turbulent volume. This

can be remedied by using a modified spectrum like the Hill or Von-Karman spectrum.
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In this work the Hill spectrum is used, because it adds high spatial frequency content

to the power spectrum description of the turbulence. Branch points arise due to

scintillation such that using a spectrum that adds high spatial frequency content

increases the scintillation and should therefore increase the number of branch points

observed. We explore the effect of using a Hill spectrum in Section 4.4, where we

use four inner scales: 3.1 mm, 6.2 mm, 12.4 mm, and 24.8 mm. These values were

chosen because they represent inner scales equal to one, two, four, and eight grid

points respectively.

4.3.3 Spurious branch point exploration

It is useful to define here, mathematically, what a branch point is and how it is

detected. An arbitrary propagating optical wave U is represented as a phasor such

that,

U = A exp (−jφ) . (4.5)

If the log amplitude variance σ2
χ is large enough, large amplitude fluctuations caused

by atmospheric turbulence can result in total destructive interference, creating nulls

in the irradiance. This null in irradiance causes a discontinuity in the phase function

φ = Arg(U) = tan−1

[
Im(U)

Re(U)

]
, (4.6)
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known as a branch point, where Re(U) and Im(U) are the real and imaginary compo-

nents of the optical disturbance U . When Eq. (4.5) is substituted into Eq. (4.6), the

resulting value of φ is referred to as the wrapped phase. When the amplitude of the

phasor is equal to zero, the argument is indeterminate and therefore a multi-valued

function also known as a branch point.

To calculate the number of branch points in a given field we can use the following

relationship, ∮
C

∇φ (x, y, 0) · dr = ±2π (N+ −N−) , (4.7)

where N+ is the number of positive branch points and N− is the number of negative

branch points within the collimated phase function φ(x, y, 0). The relationship in Eq.

(4.7) says that we can determine the location of a branch point when the line integral

around the closed curve C of the gradient of the collimated phase function ∇φ(x, y, 0)

does not equal zero. More specifically, where ∇φ(x, y, 0) is a non-conservative vector

field. The sign of the closed-loop contour integration in the counter-clockwise direc-

tion determines the polarity of the branch points within Eq. (4.7). To implement

this relationship numerically, WavePlex discretely samples the continuous integral in

Eq. (4.7) by dividing the N ×N grid into many 2×2 sub-grids and summing up the

phase derivative around each point. A positive 2π value results in a positive branch

point and a negative 2π value results in a negative branch point. Finally, to calculate

the total number of branch points, the total number of positive and negative branch
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points associated with the pixels found within φ(x, y, 0) is summed.

The method used by WavePlex to detect branch points at the grid level can often

produce what are termed as spurious branch points. These are characterized as a pair

(positive and negative) branch points which are centered on immediately adjacent

grid points. To address this WavePlex has an algorithm that can be used to identify

spurious branch points and remove them from the final count. The impact of these

spurious branch points can be seen in Fig. 4.1. From c and d in Fig. 4.1 we can

see that spurious branch points make up a significant portion of the branch points

identified by WavePlex initially are spurious. In Section 4.4 we present results with

spurious branch points included and removed.

From Fig. 4.1 we can see that spurious branch points make up a significant portion

of the branch points identified by WavePlex initially are spurious. In Section 4.4 we

present results with spurious branch points included and removed.

4.3.4 Log-amplitude variance exploration

With respect to scintillation, turbulence is often split into two regimes based upon the

Rytov approximation. When the plane-wave Rytov number, RPW < 0.25, we call this

the weak scintillation regime. Here, the Rytov number and the log-amplitude variance

σ2
χ can be used interchangeably. In contrast, when the plane-wave Rytov number,
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Figure 4.1: This figure provides a demonstration of WavePlex’s branch
point detection algorithm. (a) is the irradiance at the target plane of a plane
wave after being propagated through ≈ 4 km of Kolmogorov turbulence, (b)
is the associated phase at the target plane , (c) is the total number of branch
points detected by WavePlex in the phase function, and (d) is the number
of branch points in the target plane after removing spurious branch points.

RPW ≥ 0.25, the Rytov approximation begins to break down in what is known as

the strong scintillation regime. This behavior can be seen in Fig. 4.2, where the log-

amplitude variance is numerically calculated as a function of the plane-wave Rytov

variance for two different screen resolutions, N = 512 and N = 16, 384. The black

line denotes where σ2
χ = RPW . For both resolution cases, the log-amplitude variance

and the plane-wave Rytov number are almost identical up until around RPW = 0.4.
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After that the log-amplitude variance begins to quickly saturate.
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Figure 4.2: The Log-amplitude variance, σ2
χ as a function of the plane

wave Rytov number, RPW , and the screen resolution, N . In each sub-
figure a different inner scale, `o, value was used as follows: (a) Kolmogorov
spectrum where `o = 0 mm, (b) Hill spectrum where `o = 3.1 mm, (c)
`0 = 6.2 mm, (d) `o = 12.4 mm, and (e) `o = 24.8 mm. Here the curves
represent the averages and the error bars represent the standard deviations
associated with 100 Monte Carlo realizations. Note that the solid black line
in each sub-figure denotes where σ2

χ = RPW .

In Fig. 4.2 (b) through (e) the same comparison between log-amplitude variance

and plane-wave Rytov number is made, the only change is the use of a Hill spectrum

with a practical inner scale of 3.1 mm through 24.8 mm. From these graphs we can

see that the inclusion of a finite inner scale causes a difference in RPW and σ2
χ even

in the weak scintillation regime. However, with or without a finite inner scale, it is

clear that there is a mismatch between RPW and σ2
χ, especially when RPW ≥ 0.4.

This mismatch indicates that if we want to investigate branch point density in the
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deep turbulence regime, where RPW ≥ 1.0, we cannot use σ2
χ to describe turbulence

strength.

4.4 Results

In this section, we make use of the wave-optics simulations setup in Sec. 4.3 to explore

the trade space. In particular, Fig. 4.3 shows the results for the total branch-point

density, DBP , as a function of plane-wave Rytov number, RPW and resolution N ,

for inner scale values of `0 = 0, 3.1, 6.2, 12.4, and 24.8 mm. For reference, branch-

point density is defined as DBP = NBP
π(D/2)2

. We note that in Fig. 4.3 the curves

report the averages and the error bars represent the standard deviations associated

with 100 Monte Carlo realizations. Also note that the widths of the error bars are

reasonably small and thus we believe that 100 Monte Carlo realizations are adequate

in quantifying the behavior of DBP .

From Fig. 4.3, we can see that DBP increases without bound as a function of both

resolution and RPW when `0 = 0 mm. Relatedly in Fig. 4.3, graphs (b) through (e)

show that when a finite inner scale is introduced the growth of DBP as a function of

RPW decreases as the finite inner scale grows. As larger inner scales are introduced,

such as in Fig. 4.3 (d) or (e), DBP for resolutions greater than N = 512 saturate

closer and closer to N = 512. This means that when modelling the behavior of branch
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Figure 4.3: Total branch point density as a function of spherical-wave
Rytov number, RPW for grid resolutions N = 512, 1024, 2048, 4096, 8192,
and 16,384. In each sub-figure a different inner scale was used such that,
a Kolmogorov power spectrum with l0 = 0 mm, (b) Hill spectrum with
l0 = 3.1 mm, (c) l0 = 6.2 mm, (d) l0 = 12.4 mm, and (e) l0 = 24.8 mm.
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points in a wave-optics simulation, a mismatch in DBP for different values of N may

indicate that the simulation is being undersampled.

Figure 4.4 are the same simulation results found in Fig. 4.3, except the spurious

branch-points have been removed using WavePlex’s circulations function. If we com-

pare the `0 = 0 mm case in Figs. 4.3 and 4.4, we see that the removal of spurious

branch points causes DBP to begin saturating for N = 512 and N = 1024. Compar-

ing Figs. 4.3 and 4.4 we see that the inclusion of finite inner scale causes the growth

of DBP as a function of RPW to decrease, but not saturate, regardless of spurious

branch point removal.

4.5 Conclusions

In this paper we used wave-optics simulations to look at the effect of finite inner

scale and grid resolution on branch-point density in deep turbulence. Overall the

results showed that increasing grid resolution and plane-wave Rytov variance cause

the branch-point density to increase without bound if an ideal, 0 mm inner scale is

used. When a non-zero inner scale is used, via a hill spectrum, the growth of the

branch-point density as a function of Rytov number is significantly reduced.

Looking to the future, an expanded investigation of branch-point density may be
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Figure 4.4: Total branch point density, with spurious branch points
removed, as a function of spherical-wave Rytov number, RPW for grid
resolutions N = 512, 1024, 2048, 4096, 8192, and 16,384. In each sub-figure
a different inner scale was used such that, a Kolmogorov power spectrum
with l0 = 0 mm, (b) Hill spectrum with l0 = 3.1 mm, (c) l0 = 6.2 mm, (d)
l0 = 12.4 mm, and (e) l0 = 24.8 mm.
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useful to characterize its behavior. Modelling branch-point density as a function of

several other factors, such as aperture size, propagation distance, wavelength and

more may allow for a closed-form expression to be developed for branch-point den-

sity. Another angle of investigation could be to investigate branch-point density for

different source models, like a spherical wave or for a Gaussian beam. A plane wave

was used in this work for its simplicity, but a spherical wave or a Gaussian beam

would be a more accurate source model in the context of real world beam control

applications.
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Chapter 5

Conclusions

In Chapter 2 Mellin-transform techniques were used to derive generalized expressions

for the total, piston-removed, and piston-and-tilt-removed anisoplanatic error in non-

Kolmogorov turbulence with a finite outer scale. These expressions were used to

investigate the behavior of the anisoplanatic error when imaging over long horizontal

paths where the angular extent of the scene was often many times the isoplanatic

angle. By evaluating these expressions it was found that in many cases the anisopla-

natic error saturated to a value less than 1 rad2. This means that, while not actually

infinite, the piston-removed and piston-and-tilt-removed isoplanatic angle is often

significantly larger than expected. Next it was found that as power-law exponent α

increases, the contributions due to piston and tilt dominated the anisoplanatic error

expression. Lastly, the size of the outer scale contributed primarily to the piston and
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tilt terms. Together, those behaviors imply that when piston and tilt are removed,

anisoplanatism was as much as 60% less severe than the classic anisoplanatic error ex-

pression predicted for small apertures imaging over long horizontal paths in moderate

to strong turbulence.

In Chapter 3, two assumptions made in Chapter 2 were examined. The effects of

non-Kolmogorov turbulence and a finite outer scale on angular anisoplanatism in

incoherent imaging over long horizontal and slanted-paths was investigated. General-

ized expressions for the anisoplanatic error in non-Kolmogorov turbulence were devel-

oped from expressions fully derived in Section 2.2 for spherical and plane wave source

models. Then the behavior of the anisoplanatic error was compared for upward-

looking and downward-looking geometries to a purely horizontal geometry. It was

found that using a wavefront with a non-zero radius of curvature increased the ef-

fective isoplanatic angle for all cases, regardless of power-law exponent, outer scale

size, or turbulence strength. It was also found that anisoplanatism was most severe

in the downward-looking case and was least severe in the upward-looking case with

the horizontal case in between.

In Chapter 4 wave-optics simulations were used to model the density of branch points

as a function of grid resolution and plane-wave Rytov variance in deep turbulence over

a long horizontal path. For all cases the branch-density was modelled for five different

inner scale values. Overall the results showed that the branch-point density increased
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without bound as Rytov variance increased if an ideal, 0 mm inner scale is used. When

a non-zero inner scale is used, via a hill spectrum, the growth of the branch point

density as a function of increasing plane-wave Rytov variance is significantly reduced.

Both of these results counteract the initial hypothesis in[104], that the inclusion of

finite inner scale would cause the branch-point density to saturate, because growth

without bound seemed unphysical.

This dissertation makes several important contributions to characterizing the be-

havior of the anisoplanatic error and the branch-point density in deep turbulence.

Both of these phenomena can have significant deleterious effects on reconstruction

and phase-compensation efforts in incoherent imaging and coherent beam control

systems. Because these phenomena are features of deep turbulence, characterizing

their behavior is tantamount to better characterizing deep turbulence itself. With a

better understanding of deep turbulence, next-generation post-processing and adap-

tive optics techniques can be developed to counteract turbulence effects in horizontal

imaging and beam control scenarios.

5.1 Suggestions for Future Work

The completion of this work does not close the door on any of the problems dis-

cussed here and provides several unanswered questions that may be of interest for
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future work. Most obviously, it would be valuable to compare the performance of

post-processing techniques in scenarios that match the anisoplanatic error saturation

regimes observed in Chapters 2 and 3. Simulation could be used to generate im-

ages aberrated by deep turbulence over a horizontal path, where traditional theory

predicts the isoplanatic angle approaches the diffraction limited sampling rate of the

system and therefore recovery techniques should be unsuccessful. Speckle imaging or

other post-processing techniques could then be attempted on these images to deter-

mine how well these recovery techniques work in cases where the anisoplanatic error

saturates and the isoplanatic angle may effectively be infinite.

Other ideas for future work in this area include a larger scale branch point trade space

study with the goal of creating a closed-form expression for branch point density.

The work here neglects factors like wavelength, aperture size, propagation distance,

and source modelling. The first effort to model the branch point density used a

propagating Gaussian beam instead of a plane wave, because it is more physically

accurate. The Gaussian was unused due to a number of unexplained issues in sampling

and beam wander. If these issues could be addressed, along with modelling the effect

of wavelength, aperture size, and propagation distance, then it is likely that a closed-

form expression or at least a rudimentary scaling law could be developed to predict

the density of branch points in a given beam control scenario.
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Appendix A

Mellin Transform Expressions for

Plane Wave Angular Anisoplanatic

Error

A.1 Some Useful Mellin Transform Expressions

Below are some Mellin Transforms and useful properties used throughout this work

relating to Bessel function of the first kind Jv(x) and modified Bessel functions of the
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second kind Kv(x),

Jv(x) −→ 2s−1Γ

 s/2 + v/2

v/2 + 1− s/2

 ,−Re{v} < Re{s} < 3/2 (A.1.1)

J2
v (x) −→ 1

2
√
π

Γ

 s/2 + v, 1/2− s/2

v + 1− s/2, 1− s/2

 ,−2Re{v} < Re{s} < 1 (A.1.2)

(1 + x)−p −→ Γ [s, p− s]
Γ [p]

, 0 < Re{s} < Re{p} (A.1.3)

Kv(x) =
1

4

1

2πj

∫
C

dsΓ [s/2 + v/2, s/2− v/2] (x/2)−s

× 1

2

∞∑
n=0

(−1)n

n!

((x
2

)2n+v

Γ[−n− v] +
(x

2

)2n−v
Γ [−n+ v]

) (A.1.4)

A.2 Relating the Index of Refraction Spectrum

and the Phase Spectrum

The phase PSD, Φφ(κ), can be expressed in terms of its refractive index spectrum,

Φn(κ), transverse dimension, L, and wavenumber k0, as

Φφ(κ) = 2π2k2LΦn(κ). (A.2.1)
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In both Eqs. (A.2.1) and (2.4) κ is the PSD spatial frequency and has units of radians

per meter. We wish to describe the refractive index spectrum, Φn(κ), in Eq. (2.11)

in terms of a characteristic length, r̂0. From Bos[105] we can write the generalized

model for the phase PSD, under the assumption of constant turbulence along the

path, in a non-Kolmogorov power law medium as

Φφ (κ, α) = B(α)c1(α)r̂2−α
0

(
κ2 + κ2

0

)−α/2
(A.2.2)

where

B(α) =
Γ
[α

2

]
22−απαΓ

[
−α

2

] (A.2.3)

is a parameter that maintains consistency between the structure function and PSD

descriptions and

c1(α) = 2

(
8

α− 2
Γ

[
2

α− 2

])α− 2

2
, (A.2.4)

is a constant equal to the value of the plane wave, wave structure function (WSF)

at a separation equal to the characteristic length, r̂0. c1(α) was previously obtained

by Stribling [29]. Substituting Eq. (A.2.2) into Eq. (A.2.1) and solving for Φn(κ, α)

provides

Φn(κ, α) =
B(α)c1(α)r̂2−α

0 (κ2 + κ2
0)
−α/2

2π2k2
0L

. (A.2.5)

Equation (A.2.5) can now be used to rewrite Eq. (2.11) as Eq. (2.12).
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A.3 Analytic Expression for Plane Wave Phase

Variance with a Finite Outer Scale

An analytic solution to Eq. (2.12) is readily available using Mellin transforms. We

begin by expanding the term in the second integral to arrive at the intermediate

result:

IA (α) =

∫
κ
(
κ2 + κ2

0

)−α/2
dκ−

∫
κ
(
κ2 + κ2

0

)−α/2
J0 (κθz) dκ (A.3.1)

The solution to the first integral is trivial to evaluate with integral tables and can be

found to be

I1(α) =
κ2−α

0

−2 + α
. (A.3.2)

The solution to the second integral is accomplished by exploiting the convolution

property of Mellin transforms. We begin by substituting ω = κθz into the second

equation to get

I2(α) =
κ−α0

(θz)2

∫ ∞
0

dω

ω
ω−αJ0(ω)

[
1 +

(
κθz

ω

)−2
]−α/2

. (A.3.3)

The expression is now in the general form of a Mellin convolution integral. The Mellin

transforms of each function can be found from Eqs. (A.1.1) and (A.1.3) and these
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can be used to recast Eq. (A.3.3) into an integral in the complex plane as

I2(α) =
−κ−α0

2(θz)2Γ
[
α
2

] 1

2πj

∫
C

ds

(
κ0θL

2

)−s
× Γ

[s
2

+ 1,
α

2
+
s

2

]
,

(A.3.4)

To perform the pole residue integration, we must determine which direction to close

the path of integration. This is accomplished by finding the sum of coefficients of

s in the denominator and subtracting that from the sum of coefficients of s in the

numerator. In this case ∆ = 1, which means the integration path can be closed to the

left and the pole residues can be found for the poles s = −2n− 2 and s = −2n− α.

This can be simplified if we recognize that the integral is actually just the inverse

Mellin transform, given in Eq. (A.1.4), of K1−α
2
(κ0θz) when s −→ s − α

2
+ 2, which

gives

I2 (α) =
21−α

2

(
κ0
θz

)1−α
2 K1−α

2
[θzκ0]

Γ
[
α
2

] . (A.3.5)

Lastly, Eq. (A.3.2) and Eq. (A.3.5) can be substituted into Eq. (A.3.1) to provide

an expression for IA(α) as

IA (α) =
κ2−α

0

−2 + α
−

21−α
2

(
κ0
θz

)1−α
2 K1−α

2
[θzκ0]

Γ
[
α
2

] (A.3.6)

Using Eq. (A.3.6), we can now rewrite Eq. (2.12) as Eq. (2.13).
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A.4 Analytic Expression for Plane Wave Piston

Phase Variance with a Finite Outer Scale

An analytic solution to Eq. (2.15) is available using the properties of the Mellin

convolution theorem and the process outlined in [50]. We begin by restating the

integral of interest

IP =

∫ ∞
0

dκκ
(
κ2 + κ2

0

)−α/2
(1− J0 (κθz))

[
2J1 (κD/2)

κD/2

]2

. (A.4.1)

By making the variable substitutions d = θL, ω = κd, 2πd/L0, and x = 2d/D Eq.

(A.4.1) can be recast in terms of three variables,

IP =
−16dα

D2

∫ ∞
0

dω

ω
ω−α (J0 (ω)− 1) J2

1 (ω/x)

[
1 +

( y
ω

)2
]−α

2

. (A.4.2)

From inspection we can see that Eq. (A.4.2) is in now in the general form of a Mellin

convolution integral of three functions in two planes. We identify each of the three

functions and their Mellin transforms , denoted by M [h(x)] −→ H (s), below. From

[50] we substitute s with s + t for the first function’s transform and s with t for the

third function’s transform.

h0(ω) = ω−α (J0(ω)− 1) (A.4.3)
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H0 (s+ t) =
2s2t

21+α

Γ [s/2 + t/2− α/2∗]
Γ [−s/2− t/2 + α/2 + 1]

(A.4.4)

h1(ω) =

[
1 +

( y
ω

)2
]α/2

(A.4.5)

H1(s) =
y−s

2

Γ [s] Γ [α/2− s]
Γ[α/2]

(A.4.6)

h2(ω) = J2
1(ω/x) (A.4.7)

H2(t) =
x−t

2
√
π

Γ[−t+ 1]Γ[1/2 + t]

Γ[2 + t]Γ[1 + t]
(A.4.8)

Using these transforms and substituting s −→ 2s and t −→ 2t, Eq. (A.4.2) can be

converted into an integral in two complex planes as

IP = IPA
1

(2πj)2

∫
C1

∫
C2

dsdt

(
πd

L0

)−2s(
d

D

)−2t

× Γ

 s+ t− α
2
∗,−t+ 1, 1

2
+ t, s, α

2
− s

2 + t, 1 + t,−s− t+ α
2

+ 1

 ,
(A.4.9)

where

IPA =
−16dα(2)(2)

D221+α(2)(2)Γ[α/2]
=
−23−αdα

D2Γ[α/2]
, (A.4.10)

and the Γ function is a ratio of the product of γ functions at each of the comma

separated values. The asterisk denotes that the path of integration passes between

the first and second pole of the Gamma function at that value. Next, the are eight
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possible two poles are:

(1)− s+
α

2
= −m; t+

1

2

(2)− s+
α

2
= −m;−t+ 1 = −n

(3)− s+
α

2
= −m; s+ t− α

2
= −n∗

(4)s = −m;
1

2
+ t = −n

(5)s = −m;−t+ 1 = −n

(6)s = −m; s+ t− α

2
= −n∗

(7)t+
1

2
= −n; s+ t− α

2
= −m∗

(8)− t+ 1 = −n; s+ t− α

2
= −m ∗ .

(A.4.11)

The m and n terms are integers that vary from 0 to ∞, while the asterisk after a

term means that the index varies from 1 to ∞ on one side of the path of integration,
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and is 0 on the other. We list the general terms of the possible series as:

(1)

(
d

D

)2n(
L0

πd

)2m

F (0, 2),

(2)

(
D

d

)2n(
L0

πd

)2m

F (0, 2),

(3)

(
d

D

)2n∗(
L0

πd

)2m

F (0, 2),

(4)

(
d

D

)2n(
πd

L0

)2m

F (0,−2),

(5)

(
D

d

)2n(
πd

L0

)2m

F (0,−2),

(6)

(
d

D

)2n∗(
πD

L0

)2m

F (0,−2),

(7)

(
L0

πD

)2n(
πd

L0

)2m∗

F (2,−2), and

(8)

(
πD

L0

)2n(
πd

L0

)2m∗

F (−2,−2).

(A.4.12)

Here the F (Ωn,Ωm) = (n!)Ωn(m!)Ωm function denotes the factorial behavior of series

terms of the summation indices. This above list produces the parameters relevant

to the problem. The new parameter above is πD/L0. To determine which pole

residues should be applied, we apply the convergence range rule given by Sasiela [50]

to produce Table A.1. From the numeric evaluation in Sections 2.3 we recognize we

are only interested in the case where d/D < 1, where θ < 100µrads when L = 1000m.

This allows us to ignore asymptotic series 2 and Taylor series 5. From here we divide

our evaluation into two regimes. In the first regime πd/L0 > 1, and asymptotic series
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Table A.1
Series ranges of applicability for most rapid convergence for piston phase

variance with outer scale present.

2-Pole Set Solution Type Parameter Range
1 Asymp πd/L0 > 1 d < D
2 Asymp πd/L0 > 1 d > D
3 Asymp πD/L0 > 1 d < D
4 Taylor πd/L0 < 1 d < D
5 Taylor πd/L0 < 1 d > D
6 Taylor πD/L0 < 1 d < D
7 Asymp πD/L0 > 1 πd/L0 < 1
8 Taylor πD/L0 < 1 πd/L0 < 1

1 and 3 and a steepest descent contribution apply. In the second regime πd/L0 < 1

and Taylor 4, 6, 7 and asymptotic series 8 plus a steepest descent contribution apply.

The series that result from the evaluation of the residues at 2-poles 1, 3, 4, 6, 7, and

8 are given as:

IP,1 =IPAS(0, 0a)

(
d

D

)2n+1(
L0

πd

)2m+α

× Γ

 1
2

+m− n, 3
2

+ n, α
2

+m

3
2
− n, 1

2
− n, 3

2
−m+ n



IP,3 =IPA

(
L0

πd

)α
S(1, 0a)

(
d

D

)2n(
L0

πD

)2m

× Γ

 n+m+ 1, 1
2
− n−m, α

2
+m

2− n−m, 1− n−m, 1 + n
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IP,4 =IPAS(0, 0)

(
d

D

)2n+1(
πd

L0

)3m

× Γ

 −m− n− 1
2
− α

2
, n+ 3

2
, α

2
+m

−n+ 3
2
,−n+ 1

2
,m+ n+ α

2
+ 3

2


IP,6 =IPAS(1, 0)

(
d

D

)2n−α(
πD

L0

)2m

× Γ

 n− α
2
−m+ 1,−n+m+ α

2
+ 1

2
, α

2
+m

2− n+ α
2

+m, 1− n+ α
2

+m, 1 + n


IP,7 =IPA

(
d

D

)
S(0a, 1)

(
L0

πD

)2n(
πd

L0

)2m−α−1

× Γ

 n+ 3
2
,−m+ α

2
+ n+ 1

2
,m− n− 1

2

−n+ 3
2
,−n+ 1

2
, 1 +m


IP,8 =IPAS(0, 1)

(
πD

L0

)2n+4(
πd

L0

)2m−α

× Γ

 n+ 3
2
,−m+ α

2
− 1− n,m+ 1 + n

3 + n, 2 + n, 1 +m

 .
In the above series,

S (p1, p2) =
∞∑

n=p1

∞∑
m=p2

(−1)n+m

n!m!
,

and the a value placed next to the limit indicates that the series is asymptotic so

only a finite number of terms should be summed for that series. From inspection of

the series, we also recognize that in the πd/L0 > 1 regime the seventh and eighth
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two-poles provide series of type C3. These terms are given by

C3,7 = IPA

(
d

D

)(
L0

πd

)α+1

S(0a)

(
L0

πD

)2n

Γ

 n+ 3
2
, α

2
+ n+ 1

2
,−n− 1

2

−n+ 3
2
,−n+ 1

2
, 1

 ,
(A.4.13)

and

C3,8 = IPA

(
L0

πd

)α
S(0)

(
πD

L0

)2n+4

Γ

 n+ 3
2
, α

2
− 1− n, 1 + n

3 + n, 2 + n, 1

 . (A.4.14)

The series of type C3 simply means that because the summation in m in a particular

two-pole starts at 1 when πd/L0 < 1, then an identical series where m = 0 must be

included when πd/L0 > 1.

Next we find the steepest descent contributions in each regime. For the first regime

where πd/L0 > 1 we find that the ratio of s-poles, ∆s and ∆t are both negative, which

makes evaluating Eq. (A.4.1) for a steepest descent contribution difficult. From [50]

we know that this can be remedied by substituting s −→ −s and t −→ −t in Eq.

(A.4.9), which leads to

IPSD = IPA
1

(2πj)2

∫
C1

∫
C2

dsdt

(
πd

L0

)2s(
d

D

)2t

× Γ

 −s− t− α
2
∗, t+ 1, 1

2
− t,−s, α

2
+ s

2− t, 1− t, s+ t+ α
2

+ 1

 ,
(A.4.15)
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where ∆s = 0 and ∆t = 1 now and the integral can be evaluated sequentially.

Accordingly, Eq. (A.4.15) is rewritten as

IPSD1
= IPA

1

2πj

∫
C2

dsΓ
[
−s, α

2
+ s
](L0

πd

)−2s

IPSD2
, (A.4.16)

where

IPSD2
=

1

2πj

∫
C1

dtΓ

 −s− t− α
2
∗, t+ 1, 1

2
− t

2− t, 1− t, s+ t+ α
2

+ 1

(Dd
)−2t

. (A.4.17)

Using the steepest descent equation from Sasiela[50, p. 141,Eq. 5.94,] Eq. (A.4.17)

is found to be

IPSD2
≈ −1√

π

(
d

D

)−1
2

sin

[
2

(
d

D

) 1
2

]
(A.4.18)

Here, IPSD2
does not depend upon s and the evaluation of Eq. (A.4.16) becomes

trivial. Because ∆s = 0 and L0/πd < 1, the contour is closed to the left and the pole

residues are evaluated at the point s = −m− α
2
, which gives

IPSD(L0/πd < 1) ≈−IPA√
π

sin

[
2

(
d

D

) 1
2

](
d

D

)−1
2
(
L0

πd

)α
× S(0)Γ

[
m+

α

2

](L0

πd

)2m

,

(A.4.19)

For the other regime where L0/πd > 1 the procedure from Eq. (A.4.15) to (A.4.19) is

identical, except the contour is closed to the right and the pole residues are evaluated
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at the point s = m to give

IPSD(L0/πd > 1) ≈−IPA√
π

sin

[
2

(
d

D

)−1
2

](
d

D

) 1
4
(
L0

πd

)α
× S(0)Γ

[
m+

α

2

](L0

πd

)2m

.

(A.4.20)

All of the above can be put together with Eq. (2.15)to acquire the final expressions

for plane wave piston phase variance with outer scale as follows,

σ2
φ,P (θ, α) = 4B(α)c1(α)

∫ L

0

dz
r̂2−α

0

L
× IP (A.4.21)

where

IP = −


IP,1 + IP,3 + IPSD [L0/πd < 1] + C3,7 + C3,8

πd
L0
> 1

IP,4 + IP,6 + IP,7 + IP,8 + IPSD [L0/πd > 1] πd
L0
< 1.

(A.4.22)

There are several things to note about this equation. First, the sets of summations in

each of the IP equations must be carried out for each equation until desired accuracy

is achieved. This can result in very long equations, even when only a few terms of

each series are wanted, but can remain relatively compact when evaluated via software

like Mathematica. In this case, five terms of each series provided accuracy within 1%

of the results achieved through numerical integration. Second, while the equations

corresponding to Taylor series can be evaluated for as many terms as desired, the

asymptotic series should only be evaluated for several terms. As the number of terms
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increase, the error in the value of the integral decreases and then at some point it

begins to increase. This point, no is defined from the location of the steepest-descent

path for a given parameter value. In practice, a few terms of the asymptotic series

are sufficient to give accurate results. Lastly, the negative factor applied to IP is to

account for flipping the order of 1 and J0(κθL) in Eq. (A.4.2).

A.5 Analytic Expression for Plane Wave Tilt

Phase Variance with a Finite Outer Scale

Much like Appendix A.4 an analytic solution for Eq. (2.17) is readily available using

the Mellin convolution theorem. We begin here by restating the original integral for

plan wave tilt phase variance as

IT =

∫ ∞
0

dκ
(
κ2 + κ2

0

)−α/2
(1− J0 (κθL))

[
4J2 (κD/2)

κD/2

]2

. (A.5.1)

By making the variable substitutions d = θL, ω = κd, 2πd/L0, and x = 2d/D Eq.

(A.4.1) can be recast in terms of three variables,

IT =
−64dα

D2

∫ ∞
0

dω

ω
ω−α (J0 (ω)− 1) J2

2 (ω/x)

[
1 +

( y
ω

)2
]−α

2

. (A.5.2)
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We immediately recognize that the only difference between Eq. (A.5.2) and Eq.

(A.4.2) is that of a second order Bessel function versus a first order Bessel function,

both of the first kind. Looking at Eq. (A.1.2), it is apparent that there is no difference

in the number or sign of the poles and zeroes when using a J2(x) versus a J1(x)

function. When fully evaluated, both the integral for tilt and the one for piston

require series that are nearly identical in identical regions. For brevity we show only

the series that result from the evaluation of the residues at relevant two-poles, the

steepest descent contributions, the series of type C3 that contribute, and the final

expression for the integral. Equation (A.5.2) after substituting s −→ 2s and t −→ 2t is

IT = ITA
1

(2πj)2

∫
C1

∫
C2

dsdt

(
πd

L0

)−2s(
d

D

)−2t

× Γ

 s+ t− α
2
∗,−t+ 2, 1

2
+ t, s, α

2
− s

3 + t, 1 + t,−s− t+ α
2

+ 1

 .
(A.5.3)

where

ITA =
−64dα(2)(2)

D221+α(2)(2)Γ[α/2]
=
−25−αdα

D2Γ[α/2]
, (A.5.4)

The series that result from evaluation of the residues at relevant two poles are

IT,1 = ITAS(0, 0a)

(
d

D

)2n+1(
L0

πd

)2m+α

Γ

 −1
2

+m− n, −5
2

+ n, α
2

+m

5
2
− n, 1

2
− n, 3

2
−m+ n
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IT,3 = ITA

(
L0

πd

)α
S(1, 0a)

(
d

D

)2n(
L0

πD

)2m

Γ

 n+m+ 2, 1
2
− n−m, α

2
+m

3− n−m, 1− n−m, 1 + n



IT,4 = ITAS(0, 0)

(
d

D

)2n+1(
πd

L0

)3m

Γ

 −m− n− 1
2
− α

2
, n+ 5

2
, α

2
+m

−n+ 5
2
,−n+ 1

2
,m+ n+ α

2
+ 3

2


IT,6 =ITAS(1, 0)

(
d

D

)2n−α(
πD

L0

)2m

× Γ

 n− α
2
−m+ 2,−n+m+ α

2
+ 1

2
, α

2
+m

3− n+ α
2

+m, 1− n+ α
2

+m, 1 + n


IT,7 =ITA

(
d

D

)
S(0a, 1)

(
L0

πD

)2n(
πd

L0

)2m−α−1

× Γ

 n+ 5
2
,−m+ α

2
+ n+ 1

2
,m− n− 1

2

−n+ 5
2
,−n+ 1

2
, 1 +m



IT,8 = ITAS(0, 1)

(
πD

L0

)2n+4(
πd

L0

)2m−α

Γ

 n+ 5
2
,−m+ α

2
− 2− n,m+ 2 + n

5 + n, 3 + n, 1 +m

 .
The seventh and eighth two-poles provide series of type C3 in the same regime, given

by

C3,7 = ITA

(
d

D

)(
L0

πd

)α+1

S(0a)

(
L0

πD

)
Γ

 n+ 5
2
, α

2
+ n+ 1

2
,−n− 1

2

−n+ 5
2
,−n+ 1

2
, 1

 , (A.5.5)
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and

C3,8 = ITA

(
L0

πd

)α
S(0)

(
πD

L0

)2n+4

Γ

 n+ 5
2
, α

2
− 2− n, 2 + n

5 + n, 3 + n, 1

 . (A.5.6)

The steepest-descent contribution for L0/πd < 1 is found to be

ITSD(L0/πd < 1) ≈IPA√
π

sin

[
2

(
d

D

) 1
2

](
d

D

)−1
2
(
L0

πd

)α
× S(0)Γ

[
m+

α

2

](L0

πd

)2m

,

(A.5.7)

and the steepest-descent contribution for L0/πd > 1 is

ITSD(L0/πd > 1) ≈IPA√
π

sin

[
2

(
d

D

)−1
2

](
d

D

) 1
4
(
L0

πd

)α
× S(0)Γ

[
m+

α

2

](L0

πd

)2m

.

(A.5.8)

The above expressions can be assembled in the same way as in Section A.4 to give

the final expression for plane wave tilt phase variance with outer scale as

σ2
φ,T (θ, α) = 4B(α)c1(α)

∫ L

0

dz
r̂2−α

0

L
× IT (A.5.9)
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where

IT = −


IT,1 + IT,3 + ITSD [L0/πd < 1] + C3,7 + C3,8

πd
L0
> 1

IT,4 + IT,6 + IT,7 + IT,8 + ITSD [L0/πd > 1] πd
L0
< 1,

(A.5.10)

and the same limitations of Eqs. (A.4.22) apply here as well.
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Appendix B

Letters of Permission

B.1 OSA Letter of Permission

The content in Chapters 2 and 3 has been published or is in final preparation for

submission in the Journal of the Optical Society of America A (JOSA A). OSA has

the following policy regarding republication of this material.

As stated in the OSA Copyright Transfer Agreement, OSA grants to the Author(s)

(or their employers, in the case of works made for hire) the following rights:
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† The right, after publication by OSA, to use all or part of the Work without re-

vision or modification, including the OSA formatted version, in personal com-

pilations or other publications consisting solely of the Author(s’) own works,

including the Author(s’) personal web home page, and to make copies of all or

part of the Work for the Author(s’) use for lecture or classroom purposes.

† All proprietary rights other than copyright, such as patent rights.

† If the Work has been prepared by an employee within the scope of his or her

employment or as a work made for hire, the right to make copies of the Work

for the employer’s internal use.

Thus, authors may reproduce figures and text in new publications. The OSA source

publication should be referenced.

B.2 SPIE Letter of Permission

The content in Chapter 4 is in final preparation for submission in SPIE Optical

Engineering. Optical Engineering has the following policy regarding republication of

this material:

As stated in the SPIE Transfer of Copyright agreement, authors, or their employers

in the case of works made for hire, retain the following rights: All proprietary rights
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other than copyright, including patent rights.

† The right to make and distribute copies of the Paper for internal purposes.

† The right to use the material for lecture or classroom purposes.

† The right to prepare derivative publications based on the Paper, including books

or book chapters, journal papers, and magazine articles, provided that publi-

cation of a derivative work occurs subsequent to the official date of publication

by SPIE.

Thus, authors may reproduce figures and text in new publications. The SPIE source

publication should be referenced.
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