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Abstract 

We sought to quantify the fire regimes of peatlands in the hemi-boreal zone of 

North America, and to understand the qualities of their peat. We used infrared 

spectrometry to accomplish both goals by gathering spectral information about the 

organic matter in each sample. We used a series of mixtures of natural peat and natural 

peat charcoal to isolate the spectral components associated with charcoal concentration. 

We built a multiple linear regression model which predicts the charcoal concentration in 

peat samples. We validated our data using nuclear magnetic resonance spectrometry. As a 

result, we can accurately predict the charcoal concentration of peat samples using only 

their infrared spectra. Applying this method, we analyzed the charcoal concentration 

throughout the peat profile in 29 sites in the hemi-boreal region of North America. These 

sites fell into four peatland ecotypes common in the hemi-boreal region, three types of 

poor fens, differing by tree cover, and forested rich fens. We found that the poor fen 

ecotypes had a mean fire return interval of 480 years, while the forested rich fens usually 

had no evidence of fire. We also found that fire frequency was negatively correlated with 

carbon accumulation in the poor fen ecotypes. These findings indicate that fire is a 

normal part of poor fen ecosystems but is rare in forested rich fens. Significant changes to 

these norms could have deleterious consequences for these ecosystems. We also 

performed analyses to compare the peat quality of these same ecotypes to one another. 

Peat quality refers to molecular lability. We were able to consider peat quality throughout 

each core. We identified that forested peatlands had more consistent, lower peat quality 

than open fens, which had high quality surface peat that declined in quality rapidly. 



ix 

Overall open poor fens had the highest peat quality, followed by forested poor fens, and 

finally forested rich fens. This implies that open poor fens are more vulnerable to both 

short- and long-term disturbances to temperature or water levels. Our research contributes 

knowledge that equips ecologists, managers, and policy makers to better understand, plan 

for, and conserve peatlands in our changing world. 
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1 Dissertation Introduction 

1.1 Overview 

This dissertation is composed of 3 chapters concerning methods applicable to 

peatland research and characteristics of peatlands in the hemi-boreal region of North 

America. Chapter 1 describes novel method development for estimation of peat charcoal 

content through infrared spectrometry. Chapter 2 describes the application of this method 

to define historical fire occurrence in hemi-boreal North American peatlands and the 

associated long-term carbon cycle effects of peatland fire. Chapter 3 describes the peat 

chemical properties in hemi-boreal peatlands, elaborating on their trends with depth and 

across some of the ecotypes prevalent in this region. 

1.2 Background 

Fire is an important abiotic disturbance feature of virtually all terrestrial ecosystems. 

The frequency, intensity, and duration of fire are defining characteristics to which 

ecosystems and species adapt over varying timescales. These characteristics are 

encompassed by the term “fire regime.” Because ecosystems adapt to fire regimes, 

maintenance of this regime is a part of maintaining ecosystem resilience. However, 

peatland fire regimes are relatively understudied, and methods of determining aspects of 

fire regimes in peatlands are underdeveloped.  

The fire frequency aspect of a fire regime can be determined by direct observation of 

fires on the landscape over time, historical accounts, or fire scar dendrochronology. 

These options are limited by the capacity to monitor landscapes, and the period of record 
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keeping provided by historical documents or tree relics. The nature of peatlands as 

wetland systems precludes these options due to long fire intervals, limited records, and 

lack of suitable tree species for dendrochronology. However, as carbon-accumulating 

systems, peatlands provide possibility of direct observation of evidence of past fires in 

the form of charcoal trapped within the peat profile. However, charcoal detection and 

isolation methods have been developed primarily for mineral soil ecosystems, and the 

high organic matter content of peat soil interferes with many of the more economical 

methods.  

The typical method of charcoal detection in peat cores is optical microscopy and 

direct observation and counting of charcoal particles. This method is labor-intensive, as 

cores must be cut into thin slices and each one manually inspected. Studies utilizing this 

method are typically limited to between 1 to 5 peat cores, and/or are limited in depth 

considered. While this method also allows identification of additional properties, such as 

histological information relevant to the history of the neighboring or immediate 

ecosystems, the limitation on sample size reduces confidence and limits the development 

of peatland historical knowledge. 

1.3 Research 

We sought to free ourselves and our peers from the limitations imposed by the 

microscopic method by developing a new one. Chapter 1 describes the development of an 

infrared spectrometric method for estimating charcoal concentration in peat. Using this 

method, charcoal concentration can be estimated rapidly. We estimate that 

conservatively, each sample takes only 10 minutes of work to process from core to 
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completion, including cutting, determination of bulk density, grinding, determination of 

organic content, preparation for spectroscopy, and scanning. Of this processing time, only 

about 3 minutes are required per sample for spectroscopy only. The only requirements are 

the spectrometer and accessories, a balance, mortar and pestle for preparation, sample 

containers, and about ½ gram of potassium bromide (KBr) per sample. We paid about 

$0.64 per g of KBr. Ignoring equipment and validation costs associated with setting up 

the lab and verifying the model, and the minimal cost for sample containers, the marginal 

cost of each sample processed with infrared spectroscopy is $1.07, $0.32 for KBr and 

$0.75 for labor at $15 per hour.  

Due to the efficiency of this method, we were able to analyze over 2,000 samples for 

char content for chapter 2. This allowed us to study 29 sites instead of the 1-5 typical for 

peatland fire history work. This makes chapter 2 a comprehensive analysis of peatland 

fire history in the hemi-boreal region. In combination with traditional bulk density, 

organic matter content, and radiocarbon data, we were also able to evaluate the net long-

term effect of fire on carbon cycling. 

While using spectrometry does not allow for histological identifications to be made, 

as traditional microscopy does, auxiliary data beyond the charcoal concentration can be 

derived from the infrared spectrum of each sample. This data formed the basis for chapter 

3. Using spectral indices, we were able to extensively evaluate peat properties in 3 

different peatland ecotypes throughout the depth profile. 
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1.4 Summary 

Collectively, these 3 chapters each represent important steps forward in the 

understanding of peatland ecosystems. Chapter 1 paves the way for more plentiful and 

thorough fire history studies through the application of the method described there. 

Chapter 2 describes the fire history of 29 peatland sites in the hemi-boreal region and 

may be the most extensive single primary study of peatland fire history produced thus far. 

Furthermore, the effects of fire on peatland carbon services are quantified. Chapter 3 

describes the peat properties in the same hemi-boreal peatland sites with a resolution and 

depth span that stand out in the field. 
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2 FTIR Spectrometry Estimates Pyrogenic Carbon 

Content of Peat Soils 

2.1 Abstract 

Quantifying historical patterns of fire regimes in peatlands can help contextualize current 

fire behavior and aid in planning on multiple scales. However, current methods for 

detecting the evidence of past fires in peat soils are laborious or expensive. Our goal was 

to develop an effective and inexpensive method for detecting pyrogenic carbon (PyC) 

concentration in peat, which could be used to estimate the occurrence of fires by analysis 

of discrete soil samples. We correlated Fourier-transform infrared spectrometry (FTIR) 

measurements of peat, and admixtures of peat and PyC to nuclear magnetic resonance 

spectrometry (NMR) estimates of PyC concentrations. Analyses of FTIR spectra isolated 

15 unique spectral features within the peat matrices, of which 5 were statistically relevant 

to PyC detection. Models incorporating FTIR components reliably predicted peat sample 

PyC concentrations, and therefore could be used to detect the presence of past fire events 

within peat soil profiles with relatively low cost and time investment.   
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2.2 Introduction 

Peatlands represent a globally significant carbon (C) stock containing 545 to 1055 Pg C 

(Nichols and Peteet, 2019). While these stores generally accumulate over long periods of 

time, changes in climate and disturbance regimes, including increases in the extent and 

severity of wildfires, threaten the stability of peatland C stocks (Turetsky et al., 2015; 

Goldstein et al., 2020). Wildfires are also important in structuring plant communities in 

peatlands and fires have been used as a management tool in these ecosystems (Farage et 

al., 2009). Despite the importance of fire in peatlands there is little information available 

due to the difficulties of discerning fire frequencies in peatlands (cf., Kasin et al., 2013). 

Therefore, a quick and affordable method of quantifying historical fire patterns in 

peatlands would be beneficial to expand the depth and scope of fire research in these 

ecosystems. 

The basic method for discerning fire frequencies in peatlands is to identify the occurrence 

of pyrogenic carbon (PyC), also called char or black carbon (BC), in accumulated strata 

within a peat soil profile or nearby sediments (cf., Clark and Hussey, 1995).  Pyrogenic C 

encompasses a range of organic compounds which range from barely altered organic 

matter to completely condensed graphitic carbon (Goldberg, 1985; Masiello, 2004). 

There are many techniques that have been used for identifying PyC, with varying degrees 

of specificity and resource requirements (Schmidt et al., 2001; Hammes et al., 2007). 

Organic soils offer a particular challenge in PyC detection because of chemical 

similarities between peat and the products of burning (Hedges et al., 2000), though some 
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chemo-oxidative methods such as the modified weak nitric acid and peroxide method and 

the dichromate oxidation + Soxhlet extraction methods have had success in isolating PyC 

in organic horizons (Kaal et al., 2007; Knicker et al., 2007; Hatten and Zabowski, 2009; 

Maestrini and Miesel, 2017). However, it is difficult to quantify artifacts from chemically 

and/or thermally oxidizing methods for PyC detection in organic matrices (Hammes et 

al., 2007), and time-consuming laboratory procedures with toxic or otherwise dangerous 

reagents are still required. Microscopy is often used in paleoecology to identify pollen 

and PyC particles in organic soils, but such studies are typically limited to only a few 

cores due to the time it takes to use this technique (Markgraf and Huber, 2010; Gałka et 

al., 2015; Crausbay et al., 2017). Microscopic methods have limited potential for analysis 

beyond evaluating particle morphology and color, neither of which are exclusive to, nor 

necessarily consistent in PyC (but see Crausbay et al., 2017).  Nuclear magnetic 

resonance (NMR) spectrometry is a useful method for identifying and quantifying PyC in 

organic matrixes, such as peat (Baldock et al., 2004; Kaal et al., 2007; Ding and Rice, 

2012; Leifeld et al., 2018). However, NMR is expensive and time-consuming, which 

greatly limits the number of samples that can be processed. Benzene polycarboxylic acid 

(BPCA) and hydrogen pyrolysis (hypy) both have potential to work in peat soils, but, like 

NMR and microscopy, have limited application due to long processing times (Cotrufo et 

al., 2016, and references within). 

In contrast to these methods, Fourier-transform infra-red (FTIR) spectrometry is 

relatively inexpensive to run, does not involve caustic reagents or complex laboratory 

procedures and can have higher sample throughput. FTIR has been used to study a 
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variety of organic materials and processes including wood decay (Pandey and Pitman, 

2003), soil organic matter (Chen et al., 2002; Demyan et al., 2012; Margenot et al., 2017; 

Matamala et al., 2017), peat decomposition, humification, and recalcitrance (Prasad et al., 

2000; Artz et al., 2006, 2008; Hodgkins et al., 2018), pyrolysis (Guo and Bustin, 1998; 

Merino et al., 2015), and PyC in upland soils (Nocentini et al., 2010; Cotrufo et al., 2016; 

Hardy et al., 2017). FTIR was recently used to detect PyC in wetland lagoon sediments 

(Cadd et al., 2020), which has promise for employing this method in other matrices. 

Despite these advancements, to our knowledge FTIR has not yet been applied to 

identifying PyC in peat. In this study, we evaluated the efficacy of FTIR spectrometry to 

quantify admixtures of PyC generated in peatland wildfires and hemic and sapric peat, as 

validated with NMR spectrometry.   

2.3 Methods 

2.3.1 Admixture Preparation  

We produced six sets of admixtures using three different sources of naturally produced 

PyC (to capture real-world PyC variability) and two peat sources representing shallow 

(recently living and senescent moss, 0-40 cm) and deep (humified peat, >40 cm) depth 

classes taken from Sphagnum peatlands. Both types of peat were composites made from 

Sphagnum peat of the appropriate depth. The surface peat was a composite of surficial 

Sphagnum that was harvested from peatlands in central Alberta (Bourgeau-Chavez et al., 

2020). The deep peat was a composite of hemic to sapric Sphagnum peat that was 
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harvested from peatlands in the Upper Peninsula of Michigan (Chimner et al., 2014). We 

dried the peat samples at 60º C before grinding them in a Wiley mill. We then ground 

subsamples of the peat in a ball mill until the peat was pulverized. We acquired the three 

samples of naturally produced PyC from peat using forceps and a dissecting microscope 

to obtain material visually apparent as PyC from recent fire events. We did not further 

isolate the PyC. The three PyC samples come from evident char layers found in 

northwestern Canadian peatlands (Bourgeau-Chavez et al., 2020), Minnesota (Potvin et 

al., 2014), and Michigan (Bess and Chimner, 2014) peatland sites. We ground the PyC 

using a mortar and pestle and mixed it with the previously ball-milled peat to make 

admixture series with every combination of PyC and peat matrix. The admixture intervals 

were 0, 5, 15, 30, 50, 75, and 100% (visually) apparent PyC by mass fraction. We did not 

produce admixtures containing 75% PyC for the Canadian char due to lack of material. 

We did not duplicate endmembers of 0 or 100% PyC to avoid skewing the regression. 

Furthermore, we used 8 naturally occurring char layers from three different field sites in 

the Upper Peninsula of Michigan. The total number of samples we have is (2 peats 

(shallow, deep)) x (3 PyC sources) x (5 rates (5, 15, 30, 50, 75)) + (5 analyses, (2 for peat 

depths and 3 PyC) - (2 analyses for the two peats with no 75% PyC Canadian char) = 31 

admixtures + 8 field samples = n = 41. 

We analyzed all 3 natural char endmembers and 6 of the additional naturally occurring 

char layers for C, H, N, and O using a Costech 4010 Elemental Analyzer calibrated to 

atropine standard. Only 6 of the 8 natural char layer samples had sufficient sample mass 

for elemental analysis. The values presented reflect the elemental composition of these 
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samples as mixtures of char and peat. The elemental composition is intermediate between 

condensed hydrocarbon and lignin-like biomolecules (Kim et al., 2003), which reflects 

the products of smoldering combustion in a peat matrix (Figure 1). These values are 

similar to those of macroscopic char particles found in the mineral/organic soil interface 

of boreal spruce forest sites in interior Alaska (Kane et al., 2007). 

2.3.2 FTIR Spectra Handling 

We prepared all samples for FTIR by mixing with FTIR-grade KBr to 10% sample by 

mass. We mixed samples using a small agate mortar and pestle to further break down the 

KBr crystals and mix them with the sample. We dried samples at 60º C for >24 hours 

before subjecting them to diffuse reflectance FTIR (DRIFT) using a Thermo Scientific 

Nicolet iS5 spectrometer, equipped with a standard fast recovery deuterated triglycine 

sulfate (DTGS) detector, and an iD Foundation – Diffuse accessory (Thermo Fisher 

Scientific, Ann Arbor, MI). We chose the DRIFT method due to the ease of sample 

preparation and its effectiveness on heterogenous samples such as peat (Niemeyer et al., 

1992). The DRIFT method allows the beam to contact more of the sample than attenuated 

total reflectance (ATR), which is beneficial for increasing the probability of detecting 

PyC particles. We produced spectra of the 4000-400 cm-1 range with resolution of 4 cm-1 

and a data interval of 0.5 cm-1 by averaging 64 scans. We used ultrapure N2 purge to 

further reduce the interference of humidity and to improve spectral fidelity. Automatic 

background correction built into the software further eliminated remaining atmospheric 

effects. We acquired background spectra by scanning KBr blank samples, at least once 
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every two hours when running samples to account for changing atmospheric ([CO2], 

relative humidity) conditions.  

We used custom code written in Python to baseline correct and standardize the spectra to 

compare relative peak areas, rather than absolute data, which was variable due to sample 

properties, dilution factors, and atmospheric conditions during testing. Recognizing that 

peaks often overlap, we used the peak fitting function in Origin (Origin 2019b 64-bit, 

OriginLab Corporation, Northampton, MA) to condense the volume of data per sample 

by fitting 15 gaussian peaks to the spectral features, summarizing those peak areas for use 

in modeling. This is an elaboration of the peak derivative measurement methods used by 

Pandey and Pitman (2003). Whereas that method measures peaks by drawing a line 

connecting the “bottom” sides of each peak and integrating the area between the line and 

the peak, in contrast, peak fitting allows overlapping of peaks. Identification of 

overlapping peaks has been identified as particularly important (see Heller et al., 2015) in 

the densely packed “fingerprint region” of the spectra (850-1875 cm-1).  Peak fitting also 

reduces the number of factors that must be considered in model building, allowing more 

parsimonious statistical methods to be used.  

Peak fitting has been used to good effect for FTIR in multiple applications (Zhang et al., 

2013; Gaffney et al., 2015; Belton et al., 2018; Gardegaront et al., 2018; Sadat and Joye, 

2020). Reggente et al. (2019) have also shown excellent agreement between peak fitting 

and partial least squares models for FTIR data on atmospheric aerosols. We achieved 

stability by carefully controlling both the number of peaks to fit and the allowed range of 

variation in peak location, area, and width. This limitation ensured repeatability and 
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stability but sacrificed perfect line fitting in the region between 3800 and 2000 cm-1 

where the shape of the spectrum was skewed with few distinct peaks (Figure 2). The 3 

peak areas fitted in the 3800 to 2000 cm-1 region correlated well with their respective 

peak heights, despite the imperfect line fitting. 

2.3.3 NMR 

We used NMR data to ensure accurate PyC estimates for model fitting and to validate our 

FTIR models. The molecular mixing model developed by Baldock et al. (2004) is a 

widely accepted method of PyC quantification based on NMR spectrometry (Miesel et 

al., 2015; Leifeld et al., 2018). We selected the three “pure” char and two “pure” peat 

admixture endmembers, and a series of 8 putative no char to putative high char unknown 

samples taken from 3 peat cores harvested from peatlands in the Upper Peninsula of 

Michigan for NMR analysis. In reality, all 8 unknown samples were determined by NMR 

to contain some amount of naturally produced char. 13C solid state NMR experiments 

were performed on a Varian Infinity-Plus NMR spectrometer equipped with a 6 mm 

MAS broadband probe operating at 399.75 MHz for 1H to determine the mass fraction of 

each sample that was composed of PyC. For each sample, both cross polarization with 

total sideband suppression (CPTOSS, or CP for brevity) and direct polarization (DP) 

were acquired under 6 kHz magic angle spinning. The CPTOSS data were acquired with 

16,000 scans and a recycle delay of 3 s while the DP data were acquired with 3000 scans 

and a recycle delay of 100 s using a standard one-pulse experiment with 1H decoupling 

during acquisition. All data were processed with a 100 Hz Gaussian line broadening and 
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baseline correction. The 13C chemical shifts were referenced against an external standard 

of adamantane. Background signal subtraction was performed to remove the signal from 

the rotor for the DP spectra (there was no background signal from the rotor for the 

CPTOSS spectra).  We determined total organic C and total N content via dry 

combustion on an elemental analyzer (EHS 4010 gas chromatograph, Costech, Valencia, 

CA). The NMR spectra and C and N results were used to calculate the composition of 

each sample using the modified Baldock molecular mixing model (Baldock et al., 2004). 

The output of this regression includes a char (PyC) fraction, which we used to validate 

the accuracy of our model estimates. The admixture PyC contents were corrected based 

on the original mixing ratio and the NMR-determined PyC contents of the admixture 

endmembers.  

The direct polarization NMR method requires long recycle delays due to the slow 

relaxation of 13C, as opposed to the CPTOSS method which uses a much shorter recycle 

delay since the relaxation is dependent on 1H and the relaxation time of 1H is much 

shorter than that of 13C (Mao et al., 2000). Another advantage of CPTOSS over DP is that 

the 13C signals in CPTOSS are enhanced by 1H via 1H-13C dipolar couplings and the 

enhancement is different for each 13C since the dipolar coupling is different for each 13C, 

as a result, the 13C signals in CPTOSS are not quantitative (Smernik et al., 2002a). As 

opposed to CPTOSS, DP is a more quantitative method to detect the more condensed 

PyC, routinely detecting >90% of PyC (Skjemstad et al., 1999; Baldock and Smernik, 

2002; Smernik et al., 2002b). Both the CPTOSS and DP methods have been employed to 

produce different perspectives on the continuum of PyC, with CPTOSS measurements 
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being considered representative of less condensed material and DP measurements 

representative of more condensed material (Kane et al., 2010). To facilitate this potential 

use, we evaluated the correlations of both methods to our FTIR data through independent 

models. 

2.3.4 Model Building 

Initial modeling attempts indicated heteroscedasticity within the data, so a base 10 

logarithmic transformation was applied to our known PyC values given by NMR. Using 

the NMR-validated PyC contents for our 33 admixtures and 8 field samples, (n=41), six 

final models were fit to all combinations of conditions, predicting both DP and CP NMR 

estimates, and integrating either all matrices, only surface peat matrices (depth interval 0-

40 cm, n=18, surface admixtures only), or only deep peat matrices (depths > 40 cm, 

n=26, deep admixtures + field samples). We first evaluated a partial least squares 

regression (PLSR) approach for FTIR peak assessments, as was used in a similar 

approach for mineral soils (Sanderman et al., 2020), but determined that the limitations of 

sample size imposed by the expense of NMR spectrometry made PLSR unsuitable. 

Future work to increase sample size to be suitable for PLSR could yield a more broadly 

applicable model. Instead, we used mixed direction, stepwise parameter selection in JMP 

(JMP Pro 14, SAS, Cary, NC), to determine the peaks of greatest importance to predicting 

PyC. The selected parameters were fit to the data using standard least squares regression. 

We used variance inflation factors (VIFS) to eliminate parameters that exhibited 

multicollinearity. We used PRESS statistics to evaluate a model’s suitability for 
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prediction by testing the model accuracy using leave-one-out cross-validation. Having 

PRESS values similar to their corresponding normal values indicates the model is not 

overfit to the training data.  

2.4 Results 

2.4.1 Correlation between FTIR and both DP and CP NMR 

methods 

While some characteristics (R2, RMSE, PRESS RMSE) of the depth-specific models 

were in some cases better than the generalized models, their slopes were similar (Table 1 

and Figure 3). We therefore focused on the two overall models correlating FTIR spectra 

with NMR measures of peat PyC content, one for DP NMR, and one for CP NMR. Using 

overall models also removes the need to differentiate between deep and surface peat, a 

boundary that can be difficult to locate in practice, simplifying future application. The 

overall DP predicting model had similar or better PRESS values to depth-specific models 

predicting DP; given the difference in matrix composition this is remarkable (Table 1). In 

comparison, the CP predicting overall model was similar in PRESS statistics to the deep 

peat-specific model but explained less of the variance than the surface peat-specific 

model (Table 1).  

DP NMR measures were consistently higher than CP NMR measures of PyC, which is 

reflected by the difference in model slopes between the two (Table 1 and Figures 3 and 

4). Both DP and CP models tended to overestimate PyC when PyC concentration was 
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low and underestimate it when PyC concentration was high (Figure 4). The DP model 

positively correlated PyC mass fraction with peak 12 (mean peak location ± standard 

deviation) (1720 cm-1 ± <0.01) and peak 3 (1160 cm-1 ± 1). These peaks are associated 

with a wide variety of organic moieties, notably for peak 3, aromatics, and for peak 12, 

anhydrides (Table 2). The DP model negatively correlated PyC mass fraction with three 

other peaks, peak 14 (2921 ± 2), peak 7 (1381 ± 0.02), and peak 4 (1229 ± 2.77 cm-1). 

These peaks correlated with other, mostly non-aromatic organic moieties not strongly 

associated with PyC (Table 2). The predictive equation for this model is presented in 

equation 1: 

[1]  

Y =  0.0009601 +  P3 ∗  0.0184174 –  P4 ∗  0.002144676 –  P7 ∗  0.02146913 

+  P12 ∗  0.0124995933 –  P14 ∗  0.007019469 

The CP model positively correlated PyC mass fraction with the same two peaks, 12 (1720 

cm-1 ± <0.01) and 3 (1160 cm-1 ± 1), which are associated with a wide variety of organic 

moieties, notably for peak 3, aromatics, and for peak 12, anhydrides (Table 2). It 

negatively correlated PyC mass fraction with two other peaks, peak 4 (1229 ± 2.77 cm-1) 

and peak 7 (1381 ± 0.02 cm-1). These peaks were related to other, mostly non-aromatic 

organic moieties not strongly associated with PyC (Table 2). The predictive model for 

this is reflected in equation 2: 

[2] 

Y = 0.775340741 + P3 * 0.0279113645 – P4 * 0.003161707 – P7 * 0.022494595 + P12 * 

0.007968334 
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In both equations 1 and 2, predicted sample PyC mass percent equals 10Y+1, and PX 

refers to the area under the peak with the given identification number. 

2.5 Discussion 

2.5.1 Model Components 

We determined that FTIR can be used to make useful predictions of the PyC content of 

peat soil. The aromatic structures of char may not interact as strongly with infrared light 

as other, more polar, non-char moieties, but we were still able to predict the char content 

of peat samples with accuracy (Table 1). Ultimately, model associations were chosen 

statistically rather than a priori based on their actual correlation in our sample set with 

the PyC concentrations of 11 different naturally produced peatland chars.  

Both the DP and CP models correlated positively with peaks 3 and 12. Peak 3 is 

associated with C-O and R-O-R bonds (Skoog, 2014), and -C-OH bonds (Niemeyer et al., 

1992), though contributions may also come from aromatic moieties (Colthup, 1950), 

which are common in PyC. Colthup (1950) associates the region around peak 12 with 

anhydrides, a class of molecules which can be formed through pyrolysis of cellulose and 

hemicellulose (Simoneit et al., 1999; Nolte et al., 2001). Another possibility is that the 

peak 12 signal represents aged PyC, which becomes “enriched in oxygen-containing 

functional groups such as carboxylic acid, esters, aldehydes and ketones,” [emphasis 

added] eventually causing reversion of PyC to humic OM or mineralization (Preston and 

Schmidt, 2006). The latter three moieties are all represented under peak 12, and could 
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explain its strong relationship to PyC, particularly to aged PyC. Whether this results in 

overrepresentation of PyC that is older or was more oxidized is unclear and warrants 

further study.  

Both models negatively correlated PyC with peaks representing more common moieties, 

particularly alkanes. The negative relationship of our models with alkanes and other 

uncondensed moieties likely has less to do with these moieties being unable to coexist 

with PyC, and more to do with the fact that the predictions are measured in mass fraction. 

Therefore, any increase in the mass percent contribution from other moieties must result 

in a decrease in percent PyC. These other moieties represent other constituents of peat, 

with which PyC, if present, must share space, including aliphatics, lignin, cellulose, and 

others. Comparison of our PyC – component relationships to those of a similar study 

investigating lagoon sediments (Cadd et al., 2020) show little agreement. These 

differences could be explained by differences in site characteristics; their site was an 

emergent marsh which introduces differences in fuels and burn characteristics. Moreover, 

the sediment matrix for their study was mineral lacustrine deposits, which could change 

the spectral representation of the components relative to PyC.  

2.5.2 Model Application 

For determination of historical fire regimes of peat soil profiles, the FTIR method must 

be applied to small enough depth intervals to capture PyC layers with minimal dilution by 

unaltered peat. Changes in the patterns of burning with fuel type (surficial vegetation vs. 

peat burning) or wildfire intensity may not produce a detectable PyC layer, either due to 
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most C being combusted rather than pyrolyzed, or due to little C being affected. Such a 

scenario is unlikely in a peat wildfire but may be possible in a vegetation fire where fuel 

can be finer and drier, and thus more susceptible to flaming vs. smoldering. The threshold 

for detectability largely depends on the thickness of each sample and the calibration of 

the model. Layers of PyC may overlap one another, or an antecedent layer could be 

consumed by one or more succeeding fires, so estimates of fire regimes must consider 

these complications. Moreover, in wetlands with lateral flow (such as fens), recent PyC 

may simply be translocated (cf., Masiello and Berhe, 2020), but this is less likely in more 

ombrotrophic peatlands. We suggest that PyC layers could be distinguished when a spike 

in predicted PyC exists within the profile, where the lower prediction interval(s) of the 

sample(s) composing the spike deviate from a baseline minimum PyC content determined 

by the researchers. Layers of PyC may bridge multiple samples in a vertical sequence if 

the sampling increment is thick enough or if there is vertical movement of PyC, so we 

recommend that spikes in the profile be counted rather than individual samples within the 

spike with significant PyC, to avoid overestimating fire occurrence. Using these methods 

and keeping in mind these considerations should help produce conservative minimum fire 

return intervals for a given peat profile.  These techniques in combination with 

radiocarbon dating should be useful tools in deriving minimum fire frequencies or 

maximum average fire return intervals in peatlands. 
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2.5.3 Model Limitations 

While the models shown here show promise for evaluating the fire histories of peatlands, 

they were fit to a limited range of real PyC contents, so samples exceeding this range 

may not be accurately predicted by the models. Notwithstanding, we highlight here that 

our models identified natural PyC with likely variable burn conditions and time since fire, 

which suggests our models are robust within this ecosystem type. We chose this approach 

over one including “pure” graphitic PyC because this would not be representative of 

natural chars, particularly in peatlands.  We fit our models on peat representative of 

Sphagnum-dominated northern peatlands, so different peat sources (and changes in burn 

conditions) may reduce the accuracy of the model in other ecosystems. However, the 

peaks used in each model are related to moieties present in a broad range of peat types 

(cf., Hodgkins et al., 2018), suggesting our models may be broadly applicable within this 

ecosystem type.  Applying this model would require accepting the assumptions that the 

peat and char being measured fall within the range of variation of the samples used to fit 

this model. In which case, the PRESS statistics for the models would give the best 

indication of the appropriate level of certainty. Therefore, we recommend validation 

measures be taken for individual studies, particularly on peats that are significantly 

different, such as those from tropical peatlands. We invite further study of this method to 

validate the method and broaden the peat, char, and instrumental datasets available to the 

research community. 
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2.6 Conclusion 

Fourier-transform infra-red spectrometry has shown to be an effective and relatively 

inexpensive method for detecting char in peat soils. We suggest this method can be used 

to detect the presence of past fire events in discrete samples within a peat soil profile. 

This enables researchers and land managers to interpret peatland-specific fire history 

data, something previously not possible without great investment. We suggest that the 

procedures and equations provided herein are broadly suitable for northern poor-fen or 

bog ecosystems but recommend calibration for other ecosystems (such as those with 

different parent materials or climates).  

2.7 Acknowledgments 

We acknowledge support and funding received from the USDA Forest Service, Hiawatha 

National Forest, and in-kind support from the USDA Forest Service, Northern Research 

Station. Funding from the National Institute of Food and Agriculture, USDA, McIntire-

Stennis program, Michigan Tech graduate school, and the Ecosystem Science Center 

(Michigan Tech) also supported this study. 

2.8 Conflict of Interest 

The authors declare no conflict of interest. 



 

22 

 

2.9 Tables and Figures 

 

Figure 1. The van Krevelen diagram of 9 of the 11 total natural char samples used to fit 

our models. Gray circles are natural char layers, the black symbols represent the three 

char endmembers used in making the admixtures. The diamond is the Michigan char, the 

triangle is the Minnesota char, and the square is the Canadian char.  
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Figure 2. Plot A shows the FTIR spectra of three prototypical samples. The PyC layer is 

from the Sleeper Lake peatland fire in Michigan, USA. The surface and deep samples are 

without added PyC; their origins are explained in the admixture preparation subsection of 

the methods. Plots B and C show the peak fitting results for the PyC sample. Plot B 

shows the whole spectrum. Plot C shows a detail view of the fingerprint region. In both B 
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and C, the blue line is the original spectrum and the black line is the best fit line built by 

summing the values of all gaussian peaks (colored peaks) fitted to the original. 

 

Figure 3. Plots showing the predicted vs. actual slopes of all models on the log scale, 

with 1:1 (y = x) line in dotted gray line, for direct polarization (A) and cross polarization 

(B) models.  Model statistics are as presented in Table 1.  
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Figure 4. A plot showing the predicted v. actual values for the overall direct polarization 

(A) and overall cross polarization (B) models. Depicted are sample points, mean (solid 

black line), confidence interval (dark gray zone), prediction interval (light gray zone), 

and 1:1 (y = x) line (dotted gray line). Filled symbols are deep samples, open symbols are 

surface samples. Squares are Canadian char admixtures, triangles are Minnesota char 

admixtures, circles are Michigan char admixtures, and diamonds are NMR-validated 

natural char layers. 

Table 1. Summary data for direct polarization and cross polarization models 

incorporating different depth intervals (0-40 cm, > 40 cm). The models predict the mass 

percent of PyC in a sample on the log 10 scale, therefore RMSE values are given in the 

log 10 transformed scale. Bolded rows indicate the overall models that are the focus of 

analysis. 
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MODEL DATA STANDARD TERMS PRESS STATS 

Matrix Predicting n Slope R2 Adj. 

R2 

RMSE PRESS 

RMSE 

PRESS 

R2 

Overall DP 41 0.85 0.855 0.834 0.185 0.209 0.781 

Surface DP 18 0.773 0.773 0.743 0.215 0.241 0.658 

Deep DP 26 0.873 0.883 0.861 0.173 0.199 0.808 

Overall CP 41 0.7 0.703 0.669 0.233 0.259 0.583 

Surface CP 18 0.804 0.804 0.778 0.196 0.204 0.745 

Deep CP 26 0.672 0.725 0.673 0.243 0.280 0.548 
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Table 2. Depicted are the roster of peaks fit to each sample spectrum, their identifier (Peak), wavenumber (WN), associated 

moieties and bonds, according to (Colthup, 1950; Sekiguchi et al., 1983; Niemeyer et al., 1992; Cocozza et al., 2003; Skoog, 

2014), and how they were considered by models fit for both DP and CP estimations. Superscripts indicate bonds and moieties 

supported by Niemeyer et al., 1992 (1) and Cocozza et al., 2003 (2), which concern themselves specifically with peat samples. 

Gray cells indicate when a peak was used as a parameter in an overall model. P values and LogWorths are indicated in the 

context of the overall models. Relationships between peaks not included in the model selection procedure and sample PyC 

concentrations are available in supplemental materials. 
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Peak Peak WN 

(cm-1) 

Relation 

w/ PyC 

(DP) 

Relation 

w/ PyC 

(CP) 

P value 

(Log 

Worth) 

(DP) 

P value 

(Log 

Worth) 

(CP) 

Associated Moieties Associated 

Bonds 

1 1054 ± 1.84 0 0     Aromatics, Ethyl & propyl alkanes, Primary alcohols, 

Aliphatic aldehydes, Polysaccharides2 

C-C, C-O2,    

C-N,  

2 1116 ± 1.29 0 0     Aromatics, Anhydrides, Isopropyl alkanes, Aliphatic 

ethers, Secondary alcohols, Amides, Amines, Benzoate / 

phyhalate esters 

C-C, C-O,     

C-N,  

3 1160 ± 0.94 + + 0.0016 

(2.796) 

<0.0001 

(5.959) 

Aromatics, Aliphatics1, Amides, Amines, Esters, 

Ketones, Iso-propyl and Tertiary butyl alkanes 

C-C, C-O,     

C-N, -C-OH1 

4 1229 ± 2.77 - - 0.0065 

(2.185) 

0.0009 

(3.048) 

Acetate, Cyclic anhydrides, Aromatic alcohols, 

Aromatic ketones, ethers2, carboxyls1,2  

C-O1,2, C-N, 

O-H, -CH1 

5 1267 ± 1.45 0 0     Cyclic anhydrides, Aromatic ethers, Aromatic alcohols, 

Aromatic ketones, Esters, Tertiary butyl alkanes, 

Phenolic OH1, ethers2, carboxyls2  

C-O2, C-N,   

O-H,-C-OH1 

6 1326 ± 0.77 0 0     Alkanes, Alkenes, Alcohols, Amines C-H, O-H 



 

 

 

2
9
 

7 1381 ± 0.02 - - <0.0001 

(5.956) 

<0.0001 

(4.700) 

Alkanes, Tertiary alcohols, Aromatic alcohols, 

Aldehydes, Phenolic OH2, Aliphatic OH2 

C=S, C-H,     

O-H2 

8 1431 ± 0.76 0 0     Alkanes, Alkenes, Carboxylic acids, Alcohols, Phenolic 

OH2, Aliphatic OH2 

C-H, O-H2 

9 1460 ± 0.68 0 0 
  

Alkanes, Primary Alcohols, Vicinal trisubstituted 

aromatics, Methyl1, Methylene1 

C-H1 

10 1512 ± 3.30 0 0     Aromatics2, Amides2, Amines2, Imines2 N-H, C=C1,2, 

C=N2 

11 1615 ± 1.19 0 0     Alkenes, Aromatics2, Ionized carboxyl2, Amides, 

Amines, HCl, Covalent nitrate, Covalent nitrite 

C=N, C=C2,  

N-H, -COO-

1,2 

12 1720 ± 

9.10E-13 

+ + <0.0001 

(14.953) 

<0.0001 

(8.200) 

Anhydrides, Esters, Aldehydes2, Ketones2, Covalent 

carbonates, Carboxyl2, Carbonyl2 

C=O1,2 

13 2852 ± 1.78 0 0     Alkanes, Aldehydes, Aliphatic CH2 C-H1,2 

14 2921 ± 1.65 - 0 0.0004 

(3.405) 

  Alkanes, Alkenes, Carboxylic acids, Aliphatic CH2 C-H2 

15 3425 ± 

2.27E-12 

0 0     Alcohols, Amines, Amides O-H2, N-H 
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3 Reconstructing Fire History in Hemi-boreal 

Peatlands: Implications for Long-term Carbon 

Accumulation 

3.1 Abstract 

 Peatlands are crucial carbon storing ecosystems, but this function is vulnerable to 

changes to disturbance regimes. Baseline disturbance data on fire history is lacking in the 

hemi-boreal region. We use peat core records, radiocarbon dating, and infrared 

spectrometry to identify and date past fire events from 29 peatlands in 4 major hemi-

boreal peatland ecotypes including: open poor fens, treed poor fens, forested poor fens, 

and forested rich fens AKA rich conifer swamps, in the hemi-boreal region. In this region 

poor fens experienced 2.1 fires ka-1 or once every 480 years on average, and the rich fens 

experienced almost no fire. We found a significant negative relationship between fire 

frequency and long-term apparent rate of carbon accumulation. This work indicates that 

fire is a natural occurrence in poor fen peatlands in the hemi-boreal region of North 

America, a context important to land managers and ecologists working in these systems. 

3.2 Introduction 

Peatlands have been recognized for decades to be important long-term carbon (C) 

sinks, containing vast amounts of C, between 545 to 1055 Pg C globally (Nichols and 

Peteet, 2019). However, there is concern that this C sink has or will soon weaken or 
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reverse primarily due to climate change, land conversion, or change to disturbance 

regimes, such as fire (Goldstein et al., 2020). Most threats to peatland stability will come 

from perturbations of established regimes, either in climate, land use, or disturbance 

regimes (Loisel et al., 2021). 

Fire is a significant disturbance driver in peatlands globally. However, due to 

difficulty in detecting peat fires, it is difficult to estimate the extent of peat burning 

(Turetsky et al., 2015). These fires can burn down meters deep into peat soils depending 

on hydrologic conditions, but boreal peatlands typically burn ~13 cm, releasing ~3.4-3.6 

kg of C per m2 (Turetsky et al., 2011). This naturally has at least a transient negative 

impact on C storage which is multiplied by each fire, so frequency is important. 

Estimates of fire frequencies (FF) for peatlands can range widely from 5 to 12.5 fires ka-

1, or 0.59 to 2.2 fires ka-1, and fire regimes can vary significantly between regions 

(Wieder and Vitt, 2010; Walker et al., 2020). 

Changes in the fire frequency in boreal ecosystems exert considerable control 

over many ecosystem processes, which ultimately govern carbon storage (Johnstone et 

al., 2010; Walker et al., 2019, 2020). While fire regimes are comparatively well 

quantified in uplands, much less is known of FF in peatlands (Johnstone et al., 2010; 

Larson and Green, 2017). Only a few studies in other, nearby regions have estimated 

peatland FF, one in Quebec (7.7 fires ka-1) (Cogbill, 1985), and one in Western Canada 

(range from 0-5.3 fires ka-1) (Kuhry, 1994). With so little available data, the effects of 

peatland fire on C are also poorly understood. The long-term apparent rate of carbon 

accumulation (LARCA) in peatlands generally ranges from 0 to 60 g*m-2*yr-1 (Clymo et 
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al., 1998; Pitkänen et al., 1999). Pitkänen et al. noted a relationship between the spacing 

of char layers (implicitly related to FF) and LARCA in Finland (Pitkänen et al., 1999). A 

similar finding relating FF to LARCA was also shown in a discontinuous permafrost 

region in Northwest Territories, Canada (Robinson and Moore, 2000). Together, these 

findings agree with research in upland boreal systems suggesting that an increased fire 

return interval reduces long-term C accumulation, but to our knowledge this has not been 

replicated in the hemi-boreal peatlands of North America.  

 There are several types of peatlands present in the hemi-boreal zone, each of 

which, due to differences in hydrology, vegetation, or other factors, could have distinct 

fire regimes. Our goal was to quantify the fire regimes of some of the most plentiful 

hemi-boreal peatland ecotypes, poor fens and rich conifer swamps. We hypothesized that 

peatland ecotypes would be susceptible to wildfire to different degrees, specifically, we 

suspected that the rich conifer swamps would experience significantly less wildfire than 

other peatland ecotypes, due to a fire-resistant overstory, relative lack of understory, and 

consistent water table. This is supported by multiple studies which describe a negative 

association between northern white cedar and wildfire disturbance (Fenton and Bergeron, 

2008; Taylor and Chen, 2011; Apfelbaum et al., 2017; Jules et al., 2018; Rayfield et al., 

2021). We hypothesized that LARCA would be negatively related to fire frequency, as 

hinted at by Pitkänen et al., because of the consumption of sequestered carbon during 

combustion. Robinson and Moore compared recent apparent C accumulation rates in 

Northwestern Canada, finding that rich fens accumulated C significantly slower than poor 

fens (Robinson and Moore, 1999); we hypothesized that we would find that when using 
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LARCA as our measure we would be able to confirm this observation of greater C 

accumulation in poor fens than rich fens.  

3.3 Methods 

3.3.1 Sample Locations  

We analyzed 29 soil cores from peatlands across the Upper Peninsula of 

Michigan, northern Wisconsin, and northern Minnesota (Fig. 1). The boreal zone of 

North America is typically considered to reach its southernmost extent along the north 

shore of Lake Superior, with a hemi-boreal zone that encompasses the Upper Peninsula, a 

small part of northern Wisconsin, and much of northern Minnesota (Langor et al., 2014, 

see Fig. 13). Our sampling locations were all within this hemi-boreal zone. All sites also 

fell within the Northern Forests (I) > Mixed Wood Shield (II) > Northern Lakes and 

Forests (III) Ecoregion as defined by the US EPA (U.S. Environmental Protection 

Agency, 2013). This ecoregion is described as “humid continental, marked by warm 

summers and severe winters, with no pronounced dry season,” with a mean annual 

temperature ranging from ~2°C to ~6°C, and mean annual precipitation ranging from 500 

to 960 mm (Wiken et al., 2011).  

The hemi-boreal peatlands that we sampled can be described as fens. Both the 

poor fens and rich conifer swamps sampled are peat bearing and groundwater fed. We 

therefore refer to the rich conifer swamps as forested rich fens (FRFs) for here on to 

avoid confusion with mineral wetlands. These fen ecotypes are common and may be 
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isolated, coastal, or part of large upland-peatland complexes (Bourgeau-Chavez et al., 

2017, see Fig. 10). The poor fens are dominated by typical vegetation such as Sphagnum 

(L.) mosses, black spruce (Picea mariana (Mill.) Britton, Sterns & Poggenb.), tamarack 

(Larix laricina (Du Roi) K. Koch), sedges (Carex spp. L.), Labrador tea (Rhododendron 

groenlandicum (Oeder) Kron & Judd), bog rosemary (Andromeda polifolia L.), 

leatherleaf (Chamaedaphne calyculata L.), etc. (Kost et al., 2007). The FRFs that we 

sampled were silvic and dominated by northern white cedar (Thuja occidentalis L.) with 

presence of balsam fir (Abies balsamea (L.) Mill.), white spruce (Picea glauca (Moench) 

Voss), hemlock (Tsuga canadensis L.) with a sparse understory due to heavy shading and 

deer herbivory (Kost et al., 2007). 

3.3.2 Sampling 

We avoided coring in laggs or ecotones which have variable hydrology. At each 

site where a moss layer was present, we inserted PVC tubes into the peat to a depth of 50 

cm to collect the low bulk density surficial moss and peat. The surficial sample was 

carefully removed and cut into 10 cm depth increments. We then used a Russian peat 

corer to sample the peat profile down to the mineral soil. We immediately froze all 

samples upon return to the lab. We logged location data on a per site basis, using a 

Garmin eTrex 20. We classified our sample sites by peatland ecotype following the 

Kudray method used in the Hiawatha National Forest where many of our core samples 

were taken (Kudray, 2019). This resulted in 4 classes, open poor fens (OPF) (<10% tree 

cover, acidic) (n=16), treed poor fens (TPF) (>10% tree cover with mean height <10 m, 
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acidic) (n=6), forested poor fens (FPF) (>10% tree cover with mean height >10 m, acidic) 

(n=1), and forested rich fens (FRF) (>10% tree cover, circumneutral) (n=6). 

3.3.3 Sample Processing 

In the lab, we cut the still-frozen peat into 2 cm increments before drying at 60° C 

to constant mass, and then weighed the samples to determine bulk density. We ground 

and homogenized the samples using a Wiley mill equipped with a 40 mesh screen. This 

resulted in a powdered sample with a maximum particle size of 425 microns. We 

combusted a subsample of each peat sample at 500° C for at least 12 hours to establish 

the fraction organic matter (OM) by mass. We then diluted a subsample with potassium 

bromide (KBr) salt to 10% peat by mass in preparation for FTIR spectrometry. 

3.3.4 Spectrometry 

We followed the methodology outlined in section 2 to prepare our peat samples 

for FTIR. In brief, we collected the FTIR spectra of the samples using a Thermo 

Scientific Nicolet iS5 spectrometer, equipped with a standard fast recovery deuterated 

triglycine sulfate (DTGS) detector, and an iD Foundation – Diffuse accessory (Thermo 

Fisher Scientific, Ann Arbor, MI). We baseline corrected and standardized each spectrum 

before using the peak fitting function in Origin (Origin 2019b 64-bit, OriginLab 

Corporation, Northhampton, MA) to condense the volume of data per sample by fitting 

15 gaussian peaks to the spectral features. We used the peak areas fitted using this 

method as inputs to the char prediction model outlined in section 2. 
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The model outlined in section 2 was optimally suited for the samples in this study 

because we developed them in parallel using peats and chars from the same region and 

even some of the same cores. In brief, the model predicts the mass fraction of char in 

each sample from the peak areas identified from its unique FTIR spectrum. The char 

concentration was validated by direct polarization NMR using the Nelson and Baldock 

molecular mixing model. Using this model, we can make good estimates of char 

concentration throughout the peat column and use those estimates to detect fire events. 

3.3.5 Fire counting 

For each core, individual fire events were inferred from char concentrations 

determined by FTIR spectrometry (Section 2). When char content exceeded 11.37% we 

concluded that this likely reflected a fire event. We chose this threshold because it was 

the average of the 3 NMR-validated char endmembers used to build the model (Section 

2). In addition, we only indicated the presence of fire on the local maximum, so each 

spike was only counted once, even when it spanned multiple samples. Furthermore, each 

spike in char concentration had to be 5% higher than the local minima both above and 

below it to avoid minor fluctuations being considered separate events. The only 

exceptions to these rules were in cases where there were no samples either above or 

below the sample in question due to coinciding with the top or bottom of a core. These 

rules ensure that our estimates are conservative, uniform, and repeatable. We know that 

fire evidence can be erased by subsequent fires burning antecedent char layers, and low-

severity fires may only burn vegetation without leaving detectable traces. As a result, our 
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estimates of fire frequency (FF) are minima and likely represent the more severe, 

impactful fires.  

We determined the approximate age of each sample within our cores by using 

linear depth-age interpolation between samples with verified ages. Ages were verified by 

radiocarbon dating or assumption of modernity for surface samples. For OPF and TPF 

cores with surface samples present, the surficial moss layer samples were assigned ages 

incrementally from the top down, using observed surface peat accumulation rates for 

poor fens in the hemi-boreal region (Potvin et al., 2015, see Fig. 7). We determined the 

location of the boundary between surficial (acrotelmic) and deeper (catotelmic) peat by 

interpreting bulk density; we defined the border to be above the sample that displayed a 

sudden relative increase in BD, sensu. (Malmer and Wallén, 1993).  

We calculated the C content of our peat using LOI to determine %OM and 

applied a conversion factor of 0.53 to estimate C mass from BD and %OM. We 

calculated the long-term rate of carbon accumulation (LARCA) for each core by 

integrating the carbon content of each sample between the top and bottom of each FRF 

and FPF core and the age range of those samples. For OPF and TPF, we used the same 

procedure, but limited minimum depth to 50 cm to avoid surficial bias due to more rapid 

and variable accumulation of undecomposed C in surficial moss (Clymo et al., 1998; 

Young et al., 2021). 
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3.3.6 Radiocarbon Dating 

Samples were graphitized in preparation for 14C abundance measurement at the 

Carbon, Water & Soils Research Lab in Houghton, Michigan. Peat samples were dried, 

weighed into quartz tubes, and sealed under vacuum. Samples were combusted at 900°C 

for 6 hours with cupric oxide (CuO) and silver (Ag) in sealed quartz test tubes to form 

CO2 gas. The CO2 was then reduced to graphite through heating at 570°C in the 

presence of hydrogen (H2) gas and an iron (Fe) catalyst (Vogel et al., 1987). Graphite 

targets were then analyzed for radiocarbon abundance by Accelerator Mass Spectrometry 

at either the Keck Carbon Cycle AMS Facility, Earth System Science Dept., University 

of California Irvine or at the DirectAMS facility in Bothell, WA (Zoppi et al., 2007) 

(Supplementary Table 1). Radiocarbon measurements were corrected for mass-dependent 

fractionation using AMS inline measurements of δ13C following Stuiver and Polach, 

1977.  Sample preparation backgrounds were subtracted, based on measurements of 14C-

free wood. Calibrated ages were calculated with OxCal v.4.4 (Bronk Ramsey, 2009) 

using the IntCal20 calibration curve. Calibrated median ages were used to determine peat 

initiation date and calculate LARCA and FF (Table 2). Basal peat was differentiated from 

mineral substrate by sample %OM. In some cases, the peat–mineral boundary was not 

captured so initiation dates may be more recent than reality.  
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3.3.7 Statistics 

We used mean separation on FF and LARCA to test our hypotheses about 

variance across peatland ecotypes, and linear regression to test our last hypothesis about 

the relationship between LARCA and FF. For any analysis relating to LARCA two 

samples, from the Sleeper Lake location (Table 2), were excluded due to insufficient 

depth to integrate over. For data analysis we used JMP Pro 14.0.0 (SAS Institute Inc.). 

We used non-parametric tests because of data heteroscedasticity. We began by running 

Levine’s unequal variance test to determine whether to use Wilconxin or Welch’s test for 

significance testing, if significant, we proceeded to use Steel-Dwass for mean separation 

(Fujiwara et al., 2014). Before modeling the relationship between fire and LARCA, we 

limited our cores to those younger 4000 years (see Fig. 2)) based on peatland age to avoid 

the known issues related to peatland age affecting LARCA results (Clymo et al., 1998; 

Yu, 2012; Young et al., 2021). We checked for normality in our data before modeling 

and used linear regression. 

3.4 Results 

  It is notable that there are a few waves of nearly simultaneous peatland 

establishment, which can be perceived clearly in Figure 2. These coincidences occur ca. 

7000-8000, 5000-6000, 2000-3000, and 1000-1500 years before 2021. The time span 

from 2500 to 3500 years before 2021 was particularly active. There is no discernable 

relationship between initiation date and ecotype. 
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 We can observe that there are distinctly fewer fire observations in FRF peatlands 

compared to the poor fen peatlands (Fig. 3). There is considerable heterogeneity in fire 

occurrence within ecotypes, and even within cores. Poor fen sites do not have 

significantly different fire frequencies from one another. The mean FF of FRFs is 0.18 

fires ka-1, with 4 out of 6 cores having no fire observations, and the most frequently 

burning core having 0.37 fires ka-1 (Table 1). This is significantly lower than the mean FF 

of the OPFs, which was 2.0 fires ka-1 (Table 1, Fig. 4). Interestingly, the mean FF of the 

OPFs did not differ significantly from that of the TPFs (2.6 fires ka-1) or the FPF (1.9 fire 

ka-1) (Table 1, Fig. 4). The three poor fen classes did not differ significantly from one 

another, and their medians and ranges were notably similar (Fig. 4).  

Despite the differences in FF between the rich and poor fen ecotypes, we 

observed no significant LARCA differences between any of the four ecotypes (Fig. 5). 

All peatland types with sufficient sample size (OPF, TPF, and FRF) had wide ranges 

(~10 to ~45 g m-2 yr-1). In descending order of LARCA the order is TPF, OPF, and FRF 

(notably medians, quartiles, minima, and maxima all follow the same trend).  

We also found support for a negative relationship between fire frequency and C 

accumulation. Our model (based on a subsample of sites younger than 4000 yrs to avoid 

previously-mentioned issues with LARCA, and excluding the largely non-burning FRFs) 

showed a significant (p=0.013, r2=0.41, n=14) negative relationship between FF and 

LARCA (Figs. 6 & 7). The modelled relationship is presented in (Eq. 1).  

Equation 1: 

𝐿𝐴𝑅𝐶𝐴 (𝑔 𝑚−2𝑦𝑟−1) = 44.84 − (7.31 × 𝐹𝐹(𝑓𝑖𝑟𝑒𝑠 𝑘𝑎−1))
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3.5 Discussion 

3.5.1 Peatland initiation patterns 

The majority of peatlands in this study initiated between 2500 to 3500 years 

before 2021. This notable pulse of peatland initiation coincides with a marked decrease in 

both North American and global temperature anomalies (Viau et al., 2006; Marcott et al., 

2013). This period of global cooling is the likely cause for this pulse of peatland 

initiation. The fact that we are now experiencing an opposite, increasing, rapid, 

anthropogenic trend in global temperature anomaly is therefore alarming with regard to 

hemi-boreal peatlands. 

3.5.2 Fire frequency of different hemi-boreal peatland types  

We were able to produce fire histories for 29 sites in the hemi-boreal zone of 

North America. This represents the first comprehensive evaluation of regional peatland 

fire frequency. Our data suggest that, within this region, rich forested fen peatlands 

dominated by northern white cedar experience very little fire, with only 3 total fires 

observed in over 18,000 collective recorded years. In comparison, the Sphagnum 

dominated poor fen peatlands shows evidence of 2.1 fires ka-1. This is less frequent than 

the 7.7 fires ka-1 estimated in Quebec (Cogbill, 1985), but the range of our observations 

(0-5.8 fires ka-1) fell nearly exactly in into the range of observations published for 

peatlands in western Canada (0-5.3 fires ka-1) (Kuhry, 1994). This supports our 

hypothesis that forested rich fens experience fire significantly less than poor fens in the 
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same region. Though we have not established the cause, we suspect this to be due to a 

combination of stable water tables and a closed canopy reducing ground cover capable of 

carrying a fire. 

 The poor fens are represented in this study by 3 ecotypes, OPFs, TPFs, and the 

FPF. The OPFs and TPFs do not differ significantly in FF. While we do not have the 

sample size to draw conclusions about the fire regime of FPFs broadly, the FPF site that 

we sampled appears to follow this same broad pattern of poor fen FF homogeneity. The 

implication of this finding is that poor fen ecotypes have comparable fire regimes 

regardless of tree cover, which was the main differentiator between these 3 ecotypes. The 

large ranges observed in OPF and TPF FF imply that within the poor fen group, and even 

within ecotype, the fire regime of each peatland is unique and one or more unaccounted-

for variables is responsible for explaining FF with greater accuracy. Since tree cover can 

change and is not expected to stay constant through millennia, the lack of differentiation 

in fire history by tree cover is unsurprising.  

 There is considerable heterogeneity in the timing of fires within a given core (Fig. 

3). Some cores appear to have relatively uniform fire histories, while others have notable 

“boom and bust” periods. Some cores have long time spans post initiation without fire 

observations, while others burned frequently from the start. Synchronization of fire 

events, presumably due to regional drought, appears to have occurred at least once, 

around 1500 years ago, but this has not been verified by radiocarbon dating of all relevant 

char layers. For reasons explained below, in the Methodological Considerations 

subsection, we were unfortunately unable to compare recent fire history to the fire history 
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of the deep past. Due to this, and the aforementioned heterogeneities, we are unable to 

discern any consistent pattern of fire through time. 

3.5.3 Fire frequency and carbon accumulation in hemi-boreal 

peatlands 

 We were able to support our hypothesis and Kuhry’s and Robinson and Moore’s 

observation of a negative relationship between fire and carbon accumulation (Kuhry, 

1994; Robinson and Moore, 2000). This indicates that the fire can lower peatland C 

stocks. Based on our model, LARCA approaches 0 when the FF approaches 6.15 fires ka-

1, implying more frequent large fires would result in extirpation of the peatland. More 

likely, hydrology begins to limit fire before reaching this point. We have already seen the 

result of severe hydrological disturbance on peatland fire regimes and C cycling in 

Indonesia (Sazawa et al., 2018; Vetrita and Cochrane, 2020). 

 While we found a significant negative relationship between fire frequency and 

LARCA, we were not able to support our hypothesis that FRFs would have lower 

LARCAs than other peatland ecotypes. This is counterintuitive to our findings of higher 

FF in poor fen ecotypes compared to the FRFs. While we found no significant difference 

in LARCA between ecotypes, the weak trend was for FRFs to have slightly lower 

LARCA than the poor fens despite having much fewer fire observations, which does 

agree with Robinson and Moore’s findings (Robinson and Moore, 1999). The great 

variability that we found in LARCA within ecotypes rather than across them leads us to 

conclude that LARCA values are mostly unique to each specific peatland. The range of 
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LARCAs we observed span the range of observations in the literature (Pitkänen et al., 

1999; Robinson and Moore, 1999, 2000). 

3.5.4 Methodological Considerations 

The model that we developed in section 2 was fit to admixtures composed of 

Sphagnum peat. As such, the model predictions are not necessarily accurate in cedar peat 

matrices. This may account for the paucity of char detections in cedar peat, and therefore 

this research should not be construed as evidence that cedar-dominated FRFs do not 

experience wildfire. 

It is important to note that we took a conservative approach to our fire counts. We 

set a high bar for char content to even consider a fire may be present, and additionally 

required that there be a prescribed decline in char content in surrounding samples to 

count a spike in concentration as a fire event. It is possible that fires could have occurred 

without being counted by our method for several reasons. Fires may burn only surficial 

material like shrubs or sedges, resulting in little char production, smoldering peat fires 

may consume much of the char produced, peatland fires are known to be spatially 

heterogeneous on a microtopographic scale (Benscoter and Vitt, 2008; Benscoter et al., 

2015). Furthermore, subsequent fires could consume antecedent char layers, erasing them 

from the record, or the char layers of two or more fires could merge by proximity. These 

occurrences would result in either too little or no char left to detect or, in the latter case, 

result in multiple fires being counted as one.  
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Additionally, the resolution of our sampling (in 2 or 10 cm depth increments) 

could have implications for fire detection. Since the entire sample for a given increment 

was homogenized, the char concentration of any assumed discrete char layer is diluted by 

the mass of the surrounding sample. In 2 cm depth increments, this is not much, perhaps 

enough to miss subtle char signatures, such as those produced from low severity fires. 

Unfortunately, our method does not allow for fire severity to be quantified, but we most 

likely identify the most severe and C-relevant fires. In the 10 cm surficial samples from 

OPF and TPF sites, the dilution effect would be much stronger. Therefore, we cannot 

confidently say that a lack of fire observations in these samples represents a real absence, 

and we cannot draw conclusions about fire from the time periods integrated in these 

samples. For example, figure 2 may imply that there has been a lack of fire in near 

present times, but this conclusion is neither supported nor refuted by our methods, we 

simply cannot say. These considerations mean that our fire counts and fire frequencies 

are best considered as minima. Furthermore, the relationship of our model of fire 

frequency to LARCA is fit based on these minima, so the true slope of the relationship 

may in fact be shallower than we observed here, which could explain the difference in 

slope between our model and that of (Kuhry, 1994). 

 Our methods are conservative when it comes to identifying fire events, so we are 

unlikely to identify introduction of allogenic char, such as from atmospheric deposition, 

and we avoided coring in peatland margins to minimize the chances of capturing 

allogenic char that was transported from uplands. Taking the totality of these 
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methodological considerations into account, we believe that our records, while 

conservative, do accurately represent the presence of fire within the peatland itself. 

3.5.5 Implications for Fire in Hemi-boreal peatlands 

 Our findings show that poor fens in this hemi-boreal region experience around 2.1 

fires ka-1, or approximately once every 480 years. As outlined above, these data are most 

likely based upon severe peat fires, so more frequent, less severe fire is a possible feature 

of these poor fen systems. In contrast, we found very little evidence of fire in the cedar 

dominated FRFs, implying that fire is rare or even abnormal in this ecotype. However, 

low-severity fires may be a feature which we were simply unable to detect.  

The black spruce present, if not dominant, in many poor fens in the hemi-boreal 

region are fire-dependent species, which indicates that fire is ecologically necessary for 

maintenance of treed poor fen ecotypes. However, established fire regimes for boreal 

black spruce dominated forests indicate more frequent fire (2.5-20 fires ka-1 (Zackrisson, 

1977; Carcaillet et al., 2007; Brown and Giesecke, 2014; Drobyshev et al., 2014)) than 

we found for our peatlands. One readily available explanation is that the nature of the 

hydric peatland environment acts to both slow the growth of trees and reduce fire 

frequency in comparison to upland or mesic black spruce forests.  

One study modeling climate change in North America predicted moderate 2-4° C 

increase in both summer and winter temperatures in our study region and 0-40% change 

in winter precipitation and ±20% change in summer precipitation from 2071 to 2100 

compared to early 2000s (Šeparović et al., 2013). Another study on relative regional 
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climate change vulnerability showed our region straddling two of their regions, both of 

which had moderate vulnerability based on temperature and precipitation change and 

interannual variation (Giorgi, 2006). In comparison to late 20th century climate, 

interannual variability in precipitation was predicted to be much higher in summer and 

elevated to a lesser degree in winter. Interannual variability in temperature was predicted 

to be higher in summer and lower in winter.  

Higher summer temperatures would increase evapotranspiration while higher 

winter temperatures would have a negative impact on snowpack, which is important to 

water provisioning in this region. More winter precipitation could have a positive impact 

on snowpack; however, the risk of fires is highest during the summer, particularly in 

drought years, and the prediction for slight increase or decrease in precipitation during 

summer is inconclusive. Severe peat fires are dependent on drought conditions to occur, 

so the predicted increases to interannual variation in summer are concerning. More 

frequent and/or more severe drought in this region would increase the vulnerability of 

peatlands to severe fire, with consequent impacts on the C cycle within them. 

3.6 Conclusion 

 We established conservative fire frequencies for peatlands in the Upper Peninsula 

and hemi-boreal region, with the median poor fen experiencing 2.1 fires ka-1, and the 

median rich fen experiencing no fire. We found a significant negative relationship 

between fire frequency and long-term apparent rate of carbon accumulation. Within our 

regional focus, we observed a wide range of LARCAs. Despite the difference in 
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vegetation and fire regimes between poor and rich fen classes, their LARCAs did not 

differ significantly from one another. Our work provides vital context to land managers 

and ecologists working in the hemi-boreal region of North America. Our findings imply 

that fire is a natural part of poor fen peatlands in the hemi-boreal region, but that severe 

fire is infrequent. Further work to confirm or expand upon these findings would benefit 

from consideration of fire heterogeneity, increased depth resolution, particularly near the 

surface, and measurement of hydrology. 

3.7 Tables and Figures 
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Figure 1: This map indicates the locations and ecotypes of all sampling locations used in this study. 
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Figure 2: This histogram indicates the time since 2021 of peatland initiation for each 

core. The box and whisker plot depicts quartiles. 

 



 

 

 

6
1
 

 



 

 

 

6
2
 

Figure 3: This chart indicates the estimated age of each fire identified in each core. Cores are represented by colored lines, red, 

OPF = open poor fens, green, TPF = treed poor fens, yellow, FPF = forested poor fen, purple, FRF = forested rich fens. Open 

circles represent tops of cores with modern material present, triangles represent radiocarbon dated samples between which 

dates are interpolated, filled symbols indicate fires. Note section 3.5.4: Methodological Considerations contains relevant 

details, most importantly that FRF data is uncertain. 
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Figure 4: These box-and-whisker charts show the quartiles of the mean fire frequency 

estimates for the 4 ecotype classes examined. OPF = open poor fens, TPF = treed poor 

fens, FPF = forested poor fen, FRF = forested rich fens. Note section 3.5.4: 

Methodological Considerations contains relevant details, most importantly that FRF data 

is uncertain. 
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Figure 5: This box-and-whisker plot indicates the quartiles for the LARCA of the 

ecotypes. They vary widely within ecotypes, but we found no significant difference 

between classes (p=0.298). OPF = open poor fens, TPF = treed poor fens, FPF = forested 

poor fen, FRF = forested rich fens. 
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Figure 6: The predicted v actual plot for the linear regression model of LARCA and fire 

frequency for peatlands younger than 4000 years old. ο symbols are open poor fens 

(OPFs) and + symbols are treed poor fens (TPFs). Forested rich fen (FRF) sites are 

omitted due to lack certainty. 
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Figure 7: This plot shows the fitted relationship between LARCA and FF for peatlands 

younger than 4000 years old. ο symbols are open poor fens (OPFs) and + symbols are 

treed poor fens (TPFs). Forested rich fen (FRF) sites are omitted due to lack of fire.
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Table 1: This table summarizes our findings regarding FF and LARCA. OPF = open poor fens, green, TPF = treed poor fens, 

yellow, FPF = forested poor fen, purple, FRF = forested rich fens. 

 
OVERALL  

(N=29) 

OPF  

(N=16) 

FRF  

(N=6) 

TPF  

(N=6) 

FPF  

(N=1) 

 
FF 

(Fires 

ka-1) 

LARCA  

(g m-2 

yr-1) 

FF 

(Fires 

ka-1) 

LARCA  

(g m-2 

yr-1) 

FF 

(Fires 

ka-1) 

LARCA  

(g m-2 

yr-1) 

FF 

(Fires 

ka-1) 

LARCA  

(g m-2 

yr-1) 

FF 

(Fires 

ka-1) 

LARCA  

(g m-2 

yr-1) 

Maximum 5.9 43.0 4.6 43.0 5.9 35.4 1.9 9.0 0.7 37.1 

3rd 

Quartile 

2.4 29.5 3.1 24.0 4.0 32.2 1.9 9.0 0.3 32.6 

Mean 1.7 20.1 2.0 17.6 2.6 26.0 1.9 9.0 0.2 22.7 

Median 1.2 19.5 1.9 16.2 2.2 24.8 1.9 9.0 0.0 21.0 

1st 

Quartile 

0.4 10.8 1.0 8.8 1.1 20.0 1.9 9.0 0.0 13.9 

Minimum 0.0 0.8 0.0 0.8 0.0 18.2 1.9 9.0 0.0 9.1 
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Table 2: Summary data for the 29 peat cores evaluated in this study. OPF = open poor fens, green, TPF = treed poor fens, 

yellow, FPF = forested poor fen, purple, FRF = forested rich fens. Names go by the convention Location.Core#. This is useful 

when cross-referencing with Appendix 2 

Ecot

ype 

Name Lat (dd) 

(WGS84) 

Long (dd) 

(WGS84) 

Depth 

(cm) 

Calibrated 

Age (Cal 

yr 

BCE/CE)  

Lower 

95.7% CI 

(Cal yr 

BCE/CE) 

Upper 

95.7% CI 

(Cal yr 

BCE/CE) 

# 

Fires 

FF 

(Fires 

ka-1) 

 

Mean 

Peat Acc. 

(g m-2 yr-

1) 

LARCA 

(g m-2 yr-

1) 

Mean 

BD (g 

cm-3) 

Mean 

%OM 

Mean 

%C 

OPF Betchler 

Lake.2001 

46.302510 -84.910710 71 798 688 878 4 3.3 9.8 12.0 0.1 88.6 47.0 

OPF Betchler 

Lake.2011 

46.314020 -84.955690 247 -3444 -3519 -3372 0 0.0 43.2 27.1 0.1 88.3 46.8 

OPF Betchler 

Lake.2021 

46.303450 -84.960460 55 1462 1422 1621 1 1.8 3.6 14.5 0.0 84.5 44.8 

OPF Betchler 

Lake.2031 

46.279850 -84.924260 149 -680 -789 -568 11 4.1 26.0 16.2 0.1 94.4 50.0 

OPF Bete 

Grise.1 

47.381900 -87.973601 71 652 610 666 1 0.7 27.8 35.4 0.2 92.4 49.0 

OPF Bete 

Grise.14 

47.376510 -87.979389 93 -122 -193 -50 0 0.0 37.4 42.6 0.2 93.0 49.3 
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OPF Elmer, 

MN.1001 

47.116033 -92.796300 147 -302 -354 -168 7 3.0 62.6 45.6 0.1 90.3 47.9 

OPF Hedmark 

Pines, 

WI.4001 

45.761210 -88.560040 447 -637 -786 -541 1 0.4 81.1 44.8 0.1 92.0 48.8 

OPF Hedmark 

Pines, 

WI.4021 

45.765060 -88.568460 223 -8254 -8284 -8225 11 1.1 18.9 12.2 0.1 88.2 46.7 

OPF Painesdale

.12 

47.022795 -88.719401 238 -5476 -5535 -5380 9 1.2 51.7 33.9 0.2 93.7 49.7 

OPF Ramsey 

Lake.3011 

45.970990 -86.771700 247 -3454 -3516 -3365 25 4.6 71.2 40.8 0.1 95.4 50.6 

OPF Ramsey 

Lake.3021 

45.983670 -86.759490 95 -380 -401 -232 5 2.1 33.2 12.0 0.1 92.0 48.7 

OPF Ramsey 

Lake.3031 

45.984300 -86.758090 99 -539 -750 -412 6 2.3 20.3 12.5 0.1 92.2 48.8 

OPF Seney.16 46.186584 -86.020793 86 -483 -734 -403 6 2.4 36.8 25.7 0.3 89.7 47.6 

OPF Sleeper 

Lake.3 

46.449698 -85.474701 53 152 81 210 7 3.7 - - 0.2 91.8 48.7 
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OPF Sleeper 

Lake.4 

46.450797 -85.475000 51 -652 -753 -423 3 1.1 - - 0.2 79.4 42.1 

TPF Alt Sph 

Lake.8001 

46.275058 -86.627725 489 -5334 -5376 -5224 16 2.2 37.7 24.0 0.1 92.9 49.2 

TPF Betchler 

Lake.2041 

46.276960 -84.922150 91 -275 -388 -206 5 2.2 37.8 40.1 0.1 92.4 49.0 

TPF Bete 

Grise.2 

47.383634 -87.977336 84 1007 977 1025 0 0.0 55.7 65.0 0.2 92.7 49.1 

TPF Hedmark 

Pines, 

WI.4011 

45.759110 -88.563520 413 -485 -746 -397 2 0.8 66.8 39.1 0.1 93.8 49.7 

TPF Peck 

Lake.8002 

46.281630 -86.647683 167 -387 -401 -235 11 4.6 34.4 20.3 0.1 95.4 50.6 

TPF Ramsey 

Lake.3001 

45.982170 -86.777370 249 -3448 -3622 -3371 32 5.9 62.5 37.9 0.1 94.8 50.3 

FPF Seney 

Forested. 

7000 

46.334880 -85.855840 184 -3869 -3951 -3797 11 1.9 17.1 12.2 0.1 87.5 46.3 

FRF Bob's 

Lake.21 

46.210278 -87.509721 94 -3868 -3978 -3794 0 0.0 26.3 13.9 0.3 83.4 44.2 
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FRF Eagle 

Harbor.10 

47.452501 -88.151389 140 -652 -758 -416 1 0.4 52.8 43.6 0.2 88.1 46.7 

FRF Eagle 

Harbor.26 

47.451385 -88.151669 144 -1059 -1197 -933 0 0.0 70.1 37.1 0.2 87.5 46.4 

FRF Marsin 

Core.19 

47.183333 -88.642780 74 -413 -513 -396 0 0.0 64.5 34.2 0.3 83.3 44.1 

FRF Rexton. 

5001 

46.137160 -85.263730 49 -831 -900 -807 2 0.7 17.2 9.1 0.2 72.8 38.6 

FRF Whitney. 

22 

45.811943 -87.422222 99 -5756 -5829 -5721 0 0.0 26.4 14.0 0.4 77.9 41.3 
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4 Is Woody Peat More Recalcitrant than Sphagnum 

Peat? 

4.1 Abstract 

Peatlands contain enormous carbon stocks, but their peat quality, and therefore 

lability, is variable. Determining the drivers of variance in peat molecular quality helps us 

to understand the peat formation process and to predict how changes could affect the 

carbon balance of peatland systems. Like upland systems, peatlands can vary in tree 

cover from completely open to forested. We compared open peatlands dominated by 

Sphagnum mosses to forested, or silvic, peatlands dominated by black spruce and 

tamarack or northern white cedar to understand the effect of forestation on peat quality. 

We used FTIR spectrometry to semi-quantitatively analyze peat properties throughout the 

depth profile in silvic and Sphagnum moss fen peatlands across the hemi-boreal Upper 

Great Lakes region. We found that tree cover was associated with differences in both 

surficial peat, largely though exclusion of moss species, and deep peat. Silvic, or forested, 

rich fens had lower molecular lability peat than Sphagnum poor fens as shown by 

Fourier-transform infrared spectral indices. This research identifies key differences 

between silvic and Sphagnum peatlands with implications for future assessments, 

predictions, and conservation. 
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4.2 Introduction 

Peatlands are critical long-term carbon (C) sinks, yet there is much uncertainty 

concerning global C stocks within peatlands, with estimates ranging from 545 to 1055 Pg 

C (Nichols and Peteet, 2019). The C storage function of peatlands primarily occurs 

through the production, accumulation, and storage of C-rich peat, in excess of 

decomposition. However, there is concern that the C sink provided by peatlands has or 

will soon weaken or reverse, releasing C stored in peat through decomposition driven by 

climate change and land conversion, among other drivers (Goldstein et al., 2020). 

Peat differs in vulnerability to decomposition based on its biochemical 

composition (molecular lability/recalcitrance) and environment (environmental 

lability/recalcitrance). This inherent molecular potential for decomposition is referred to 

hereafter as peat quality, “lability,” and “recalcitrance” should be understood to refer to 

the concentration of labile (alkane, alcohol) or recalcitrant (phenolic, aromatic) molecular 

components of peat. Environmental lability/recalcitrance refers to the biophysical 

environment for decomposition. Because decomposition occurs on a molecular level, this 

environment includes the physical, chemical, and biological setting for the molecules in 

question from the nanoscopic level up. The peat quality is therefore just one small, but 

important, part required to understand organic matter decomposition. Having a higher 

composition of labile components means this peat is higher quality (best thought of from 

the perspective of decomposers), and therefore it is more susceptible to mineralization 

and consequent loss of C, given a conducive environment. The initial composition of 



 

85 

 

organic matter inputs dictates the materials available for decomposition and conversion to 

peat. A common input for peat formation in boreal and hemi-boreal peatlands are peat 

mosses in the Sphagnum genus. Sphagnum moss-dominated peatlands produce peat that 

is visibly different from the rarer (in the hemi-boreal region) tree-dominated peatlands, 

which produce silvic peat. However, these different initial producers of peat substrates 

are not the sole cause of differences in peat (Laiho, 2006). Labile components are 

preferentially consumed during decomposition, leaving behind waste products and more 

recalcitrant components, reducing peat quality, and increasing its resistance to 

degradation overall. In this way, past decomposition is a major driver of current peat 

quality. Differences in peat inputs likely result in peat with different peat qualities, even 

after significant decomposition has occurred. However, disentangling the effects of input 

type from covarying biophysical environmental constraints to decomposition, such as 

climate and hydrology, has not been well elucidated (Bridgham et al., 1998). However, 

the peatland environment is broadly unfavorable for decomposition, primarily due to 

inundation, and in northern peatlands low temperatures also reduce the rate of 

decomposition. Many peatlands also have low nutrient availability, due variously to 

unfavorable pH, low nutrient input, and/or high nutrient demand, which limits the 

effectiveness of decomposers because nutrients are required to carry out the work of 

decomposition.  

Peatlands are often delineated by their vegetation communities and hydrology 

(pH) (Kudray, 2019), but it is not yet established how these factors delineate changes in 

peat biochemical properties. Numerous studies have used mesocosms or incubations to 
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compare the C cycling response of different peat types and sometimes depths (Blodau et 

al., 2007) to changes in environmental conditions, including temperature (Updegraff et 

al., 1995), hydrology (Updegraff et al., 2001; Keller et al., 2004), and nutrient loading 

(Keller et al., 2006). These studies generally refer to 2-pool methods for estimating C 

fluxes, with a small labile pool which is responsible for most of the mineralization 

potential, and a large recalcitrant pool which is reactive to a much lower degree. 

Collectively, these experiments paint a complex picture of decomposition in peatlands, 

with environmental factors including temperature, hydrology, aeration, and duration of 

incubation all having significant effects on peat C cycling. In particular, extensive study 

employing incubations to assess peat quality has shown Sphagnum peat to have more 

labile organic matter than forest peat derived from cedar trees (Bridgham et al., 1998). 

However, how these changes in inherent molecular quality vary with other wood-derived 

peat (such as spruce or tamarack), or with depth in the peat profile, has not been 

investigated for hemi-boreal peatlands. 

We investigated changes in quality of silvic peat (cedar derived and 

spruce/tamarack derived) and Sphagnum moss peat across the entire depth profile. These 

ecotypes are directly comparable to the “cedar swamps” and “acidic fens,” respectively, 

from Bridgham et al., 1998. While studies already exist comparing peat quality 

throughout depth across latitudes as a proxy for climate (Hodgkins et al., 2018; Verbeke, 

2018), we elected to make our comparison within one region to reduce confounding 

effects relating to climate. We hypothesized that the silvic peat was significantly lower in 

quality than Sphagnum peat, containing a lower concentration of labile molecules, in 
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other words a smaller labile C pool, and therefore being more recalcitrant overall, 

following the findings of Bridgham et al., 1998. We expect that this difference will be 

most apparent near the surface and will decrease, but not disappear completely, with 

depth. 

4.3 Methods 

4.3.1 Sample Locations  

We sampled peatlands across the Upper Peninsula of Michigan, northern 

Wisconsin, and northern Minnesota (Fig. 1). The boreal zone of North America is 

typically considered to reach its southernmost extent along the north shore of Lake 

Superior, with a hemi-boreal zone that encompasses the Upper Peninsula of Michigan, a 

small part of northern Wisconsin, and much of northern Minnesota (Langor et al., 2014). 

Our sampling locations were all within this hemi-boreal zone. All sites also fell within 

the Northern Forests (I) > Mixed Wood Shield (II) > Northern Lakes and Forests (III) 

Ecoregion as defined by the US EPA (U.S. Environmental Protection Agency, 2013). 

This ecoregion is described as “humid continental, marked by warm summers and severe 

winters, with no pronounced dry season,” with a mean annual temperature ranging from 

~2°C to ~6°C, and mean annual precipitation ranging from 500 to 960 mm (Wiken et al., 

2011).  

The peatlands studied are best described as fens. Both poor fens and rich fens are 

common within the hemi-boreal region. These fens are extensive and may be isolated, 
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coastal, or part of large upland-peatland complexes (Bourgeau-Chavez et al., 2017, see 

Fig. 10). The poor fens sampled for this study are dominated by Sphagnum (L.) mosses 

with additional typical species being black spruce (Picea mariana (Mill.) Britton, Sterns 

& Poggenb.), tamarack (Larix laricina (Du Roi) K. Koch), sedges (Carex spp. L.), 

Labrador tea (Rhododendron groenlandicum (Oeder) Kron & Judd), bog rosemary 

(Andromeda polifolia L.), leatherleaf (Chamaedaphne calyculata L.), etc. (Kost et al., 

2007). The forested rich fens that we sampled are silvic and dominated by northern white 

cedar (Thuja occidentalis L.) with presence of balsam fir (Abies balsamea (L.) Mill.), 

white spruce (Picea glauca (Moench) Voss), hemlock (Tsuga canadensis L.) with a 

sparse understory due to heavy shading and deer herbivory (Kost et al., 2007). The 

forested poor fen site is unique in that densely forested peatlands with low pH are not 

common in this region. It follows the same pattern of the poor fens but with much greater 

canopy cover dominated by black spruce and tamarack with additional bog birch (Betula 

pumila L.). This site was included as it offered a unique opportunity to investigate the 

effects of woody spruce vegetation in poor fens, which contrasts with the cedar 

dominating the forested rich fen sites.   

4.3.2 Field Sampling 

We collected 30 peat cores from across the Upper Peninsula of Michigan, 

northern Wisconsin, and northern Minnesota.  Fourteen cores were collected in 2012 for 

a related study (Chimner et al. 2014) and were stored dried and ground until analyzed for 

this project. We collected 15 new peat cores the exact same way as the earlier peat cores 
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by using the following methods. At each poor fen site, a sharpened PVC tube was 

inserted into precut peat to a depth of 50 cm. The surficial peat was carefully removed 

from the tube, cut into 10 cm depth increments, and stored in sealed plastic bags. We then 

used a Russian peat corer (Aquatic Research Instruments, Hope, ID, USA) to core the 

remaining deeper peat in 50 cm segments. We avoided coring in laggs or ecotones to get 

the most representative samples possible. Peat samples were stored in a freezer 

immediately upon return to the lab, usually within hours of extraction.  We logged 

location data using a Garmin eTrex 20.  

4.3.3 Sample Processing 

In the lab, we cut the still-frozen peat into ~2 cm increments with a hand saw and 

dried them to constant weight in an oven at 60°C. Samples were weighed to measure bulk 

density. Samples were then ground and homogenized using a Wiley mill equipped with a 

40 mesh screen. This resulted in a powdered sample with a maximum particle size of 425 

microns. A subsample of each ~2 cm peat increment was combusted at 500°C for 12 

hours to obtain % organic matter by mass.  

4.3.4 Spectrometry 

We used Fourier-transform infrared spectrometry (FTIR) to analyze the peat 

quality throughout the depth profile for each core. Preparation and analyses were 

conducted as described in detail in section 2. Briefly, we prepared samples for FTIR by 

mixing milled peat with FTIR-grade KBr to 10% sample by mass. We dried samples at 
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60º C for >24 hours before subjecting them to diffuse reflectance FTIR (DRIFT) using a 

Thermo Scientific Nicolet iS5 spectrometer with an iD Foundation – Diffuse accessory 

(Thermo Fisher Scientific, Ann Arbor, MI). We produced spectra of the 400-4000 cm-1 

range with resolution of 4 cm-1 and a data interval of 0.5 cm-1 by averaging 64 scans. 

We used ultrapure N2 purge and automatic background correction to minimize the 

interference of humidity and to improve spectral fidelity. 

We used custom code written in Python to baseline correct and standardize the 

spectra to compare relative peak heights, rather than absolute data, which was variable 

due to sample properties, dilution factors, and atmospheric conditions during 

spectrometry. We used several indices previously applied to evaluating peat properties 

(Hribljan et al. 2017, Flanagan et al. 2020). These included two substrate quality indices, 

a lignin index, and a humification index (cf., Table 1).  The carbonyl/lignin ratio (C/L 

index) (1725/1620) is an index of the humification of fulvic acids (Kalbitz et al., 1999). 

The lipid/polysaccharide ratio (L/P index) (2920/1060) measures the peat composition, 

representing mainly waxes vs cellulose and hemicellulose (Hribljan et al., 2017). The 

lignin index (1265, 1515, 1620) simply averages three lignin peaks on the FTIR spectra, 

and represents lignin concentration (Hribljan et al., 2017). The humification index 

(1630/1030) compares aromatics to carbohydrates, and indicates recalcitrance (Flanagan 

et al., 2020). It is important to note that all these FTIR indices are semi-quantitative 

(relative) measures. These FTIR indices represent the relative abundance of different 

biomolecules in peat, which relate to lability, and inversely recalcitrance, by the 

resistance of these biomolecules to degradation. For simplicity, we consider the C/L 
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index positively related to lability, the lignin and humification indices negatively related 

to lability, and the L/P index related to botanical origin. The Python script and further 

index details are available in the supplemental. 

4.3.5 Statistics 

We binned vertical profile data into 25-cm depth increments to average out fine-

scale peat heterogeneity. Sample bins 0-25 and 25-50 cm were considered surface 

samples for our purposes and all deeper bins were considered deep. We did not require a 

depth bin to be fully populated by samples, we produced bins if there was one or more 

sample within the depth range of the bin. When samples would have crossed bin 

boundaries they were included only in the upper bin. Due to these considerations, bins 

were not entirely uniform in number of samples included or mean depth due to missing 

samples or imperfect division of subsamples. 

We used principal components analysis (PCA) of index results to identify 3 

groups of samples a posteriori, open poor fens, OPF, forested poor fens, FPF, and 

forested rich fens, FRF. Open sites were characterized by a lack of tree cover, either 

devoid of trees or with sparse, stunted trees. Open poor fens possess Sphagnum peat. 

Forested sites were characterized by dense stands of high stature trees. These were 

primarily black spruce (Picea mariana) and tamarack (Larix laricina) in the FPF and 

northern white cedar (Thuja occidentalis) in the FRFs. The FRFs possess silvic peat. The 

forested poor fen was an anomaly which is shown as an example of an intermediate 

between Sphagum and silvic peat. By using these group divisions, we focused on tree 
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cover as the most potentially impactful difference in vegetation. We produced separate 

surficial (0-50 cm) and full (0 cm - base) PCAs to focus on the differences in 

contemporary ecosystems (surface peat) and the properties of peat profiles overall.  

For analysis of individual FTIR indices, we used nonparametric mean separation 

to compare across peat types but within peat depth categories, and within peat types but 

across peat depth categories. Initial analysis of each FTIR index indicated that some were 

not normally distributed. We elected to use nonparametric statistics in all cases for the 

sake of consistency and simplicity (Fujiwara et al., 2014). We used Welch’s ANOVA for 

means testing before proceeding to perform all pairs comparisons via Steel-Dwass 

method in JMP v14. We considered means and pairs significantly different at α = 0.05. 

4.4 Results 

4.4.1 Surficial PCA 

Principal components analysis on surface peat samples (0-25 cm and 25-50 cm), 

which we expect to best reflect the contemporary ecosystem, resulted in principal 

component one explaining 80.8% of the variance (Figure 2). Component two explained 

13.4%. Component one was driven by the humification, lignin, carbonyl/lignin (C/L) and 

lipid/polysaccharide (L/P) substrate quality indices, in order of importance (Table 1). 

Component two was mainly composed of the L/P substrate quality index, with lesser 

contributions from the C/L quality index and the lignin index.  



 

93 

 

The principal components analysis of surface peat samples delineated three 

distinct groups (Fig. 2, Table 1). There is a distinct separation between the OPFs, in one 

group, and the FPF and FRF sites, in two other groups, similarly positioned along the axis 

of component 1. Component 1 appears to be reflective of the relative degree of tree cover 

and is associated with both humification and lignin. Component 2 appears to separate 

sites by lignin concentration and other subtle variances in peat quality, namely 

lipid/polysaccharide ratio. The separation on this axis appears to distinguish the forested 

rich and the poor fens from one another.  

4.4.2 Whole Core PCA 

The PCA of all peat depths binned into 25 cm depth intervals produces a similar 

output to the surface peat analysis (Fig. 3, Table 2). The major loadings remain the same, 

but there is more of a balance between components 1 and 2, which explain 64.8 and 26.1 

% of the variance, respectively. In this PCA there are only two groups that can be clearly 

interpreted, rich fens and poor fens, including the FPF. Notably, there is less separation in 

quality indices across peat types. The trend with depth is that near surface samples in the 

poor fen have negative loadings on component 1, while deeper peat samples cluster more 

around the center of the plot. Conversely, the position of cedar samples in the ordination 

space did not change much with depth.  

4.4.3  Individual Indices 

Our three groupings showed distinctive differences in peat qualities (Figure 4). 

Open poor fens showed significant differences between peat depth bins, with their 
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surface samples being significantly higher than their deep peat on the carbonyl/lignin 

index, and significantly lower than their deep peat on the lipid/polysaccharide, lignin, and 

humification indices. In comparison, the FPF and FRFs showed no significant difference 

with depth in any indices. Open poor fens also differed significantly within depth classes 

from the other peat types; they are significantly higher than FRFs in C/L index and lower 

in L/P, lignin, and humification indices. Open poor fens were significantly lower in L/P 

indices and humification indices than FPF at depth (Figure 4). These results are reiterated 

in a continuous, unbinned, manner in figure 5, which shows a continuous mean and 

confidence interval for each ecotype for each index (Figure 5). Notably, most changes 

with depth, when present, within ecotype and index, occur between 25 and 75 cm.  

4.5 Discussion 

We defined changes in peat chemistry that occurred with differences in tree cover 

and the role played by depth in two common types of hemi-boreal peatlands. We found 

that rich fens have silvic peat that is more recalcitrant by all metrics than open poor fens 

and remained more recalcitrant throughout the peat profile. Extensive tree cover was 

associated with low peat quality at the surface, and more homogeneity across the depth 

profile. As peat depth increased, peat became more humified, and the distinction between 

the open poor fens and the FPF was lessened, though they still differed in L/P and 

humification indices. These findings suggest that FRF peat is more recalcitrant both at the 

surface and at depth than poor fen peat, even in the FPF.  

The PCA of all depth increments and comparison of individual indices reflected 

the tendency of peat to humify with age and depth, resulting in a concentration of 
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recalcitrant peat components and therefore a tendency toward chemical homogeneity and 

resistance to further degradation as substrates are processed down toward states of 

minimal accessible energy. The forested sites, FPF and FRF, both had little understory 

vegetation, due to shading from the canopy. As a result, they both had surface peats 

which were highly recalcitrant and not significantly different from their deep peat, in 

contrast to the OPFs. This observation of high surface humification confirms our 

hypotheses and matches observations of high surficial decomposition in cedar peatlands 

using the von Post decomposition scale (Bridgham et al., 1998; Kolka et al., 2016). This 

also agrees with the labile C pool estimates from Bridgham et al. 1998. The open poor 

fens showed equivalent or greater differences with depth as observed between peatland 

classes. This is reflective of the large difference in peat properties between the fibric to 

hemic surface samples of the poor fens and their hemic to sapric deeper peat samples. 

The gradual increase in humification with depth in OPFs, which never reaches parity with 

humification in other ecotypes implies that in OPFs the decomposition process is slower 

and lability higher. 

4.5.1 Implications 

We established that there are distinct differences in peat properties which vary 

with tree cover, even within the same region. The trends we found across peatland 

ecosystem biomarkers are similar to those found by (Hodgkins et al., 2018), who 

investigated peat properties across latitude. Their low latitude peatlands, particularly the 

American Pocosin sites, which were shrub-dominated, and Bruneian Mendaram sites, 

which were tree-dominated, resembled our FRF sites, with lower lability at the surface, 
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which decreased little with depth. Meanwhile, their high latitude peatlands were much 

like our poor fen peatlands, Sphagnum-dominated, with higher relative lability at the 

surface, which decreased to be similar to the more recalcitrant peatland at depth. These 

similarities make sense, as the sites selected by Hodgkins et al., had a covariance of 

vegetation with latitude: their high latitude peat was from sites similar to our poor fens, 

and their sites became increasingly tree dominated with decreasing latitude, similar to our 

FRFs. Another recent study by Verbeke et al. replicated the latitudinal gradient and 

explicitly attempted to separate the effect of latitude and vegetation (Verbeke, 2018). 

They claim to have found effects of latitude separate from those of vegetation. One 

implication of the similarity between our findings is that forested boreal peatlands and 

forested tropical peatlands are similar in peat humification trends, if not species 

composition. Treed peatlands producing silvic peat follow similar trends with depth in 

vastly different latitudes. Open Sphagnum and cushion plant peatlands of Patagonia also 

follow similar patterns of humification as our OPFs (Broder et al., 2012). This implies 

that in peatlands plant functional type (e.g. tree, shrub, or moss) may be more important 

to peat lability than species identity.  

We established that FRF sites had more recalcitrant peat than poor fen sites, 

which indicates greater molecular resilience to decomposition. Temperature, hydrology, 

and chemistry have important roles in peat formation and C cycling along site vegetation, 

and these factors feed back on one another (Updegraff et al., 1995, 2001; Bridgham et al., 

1998, 2008; Keller et al., 2004, 2006; Blodau et al., 2007). The stability of these 

peatlands depends not only on the recalcitrance of their peat but also on the 

environmental conditions in which it is stored. While poor fen peat may be more labile 



 

97 

than rich fen peat this difference will likely not be consequential unless the 

environmental factors limiting decomposition, namely inundation, acidity, and 

oligotrophy, are altered (Laiho, 2006). Bridgham et al. 2008 states that peat exhibits rapid 

homeostatic response to hydrological alterations, as exhibited with land subsidence 

following drainage. The above-mentioned studies described a rapid, labile pool-related 

decrease in C flux over the period of incubation. However, Bridgham et al. 1998 

describes total C mineralization on a mass-mass basis over 59-week incubations as 

equivalent between OPF and FRF-equivalent ecotypes. The implication is that small 

labile pools are rapidly exhausted under ideal environmental conditions and subsequent 

decomposition occurs at lower, similar rates in peat from both ecotypes. Therefore, under 

sustained disruptions, both peatland ecotypes will find new, likely more recalcitrant and 

less C-negative, stable states. Since the lability of poor fen peat, and OPF peat in 

particular, is greater than that of FRF peat, the poor fens will experience greater change 

in peat properties under sustained drying. Furthermore, poor fens, with greater lability, 

will likely release more C to the atmosphere during brief, seasonal disruptions than FRFs. 

The depth data presented here indicate that deeper peat, in addition to being protected 

through insulation provided by overhead layers and requiring greater hydrological 

disruption to effect, also are more recalcitrant, making disruptions that do occur less 

impactful. However, OPFs lability is mostly present near the surface, and even at depth, 

OPFs are still more labile than FRFs. Disruptions that do occur to deep peat would likely 

still be relatively more impactful in OPFs than FRFs. One advantage that OPFs have over 

FRFs is that they are generally deeper, and therefore more of their C is protected from 

disruption simply by depth. 
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There was insufficient power to draw conclusions on surface differences in the 

FPF. The surface peat lignin index is apparently lower in the open poor fens than the 

FPF, implying a difference that cannot be verified presently. The deep peat found in the 

FPF had significantly higher L/P ratio, and a significantly lower lignin index than the 

deep peat found in FRFs. This, combined with the similarity in lignin concentration 

between OPF and FPF deep peat lignin content indicates that there may have been less 

forest cover at the FPF site in the past. This implies that FPF sites may be more labile 

than FRF sites, which are remarkably consistent in peat qualities with depth within their 

group.  

4.6 Conclusion 

We found silvic peat in FRFs to be generally more recalcitrant than Sphagnum peat in 

poor fens, particularly at the surface. Peat in all systems converges in quality at greater 

depths, or greater age, but FRFs were the most similar across depths while open poor fens 

were the most dissimilar across depths, indicating a slower degradation process in poor 

fens than rich fens. We found that the patterns in peat quality observations with depth 

were comparable to previously published patterns in equivalent peat types regardless of 

location; silvic peat followed the same pattern of high surface humification that does not 

change much with depth in Brunei as we observed in Michigan, and moss peat followed 

the same pattern of low surface humification with gradual increase with depth in 

Patagonia as in Michigan. Michigan OPFs will likely be more impacted by climate 

change perturbations to temperature and water table, particularly seasonal perturbations, 

because their surficial labile carbon stocks are higher than FRFs. Differences in the plant 
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functional types providing peat inputs, in this case trees and mosses, drive significant 

differences in peat quality throughout the peat column, with trees producing more 

recalcitrant peat than mosses, with implications for C cycling and resilience to 

disturbance. 

4.7 Tables and Figures 
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Figure 1: This map shows the location and ecotype of our sample sites. 
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Figure 2: The PCA chart and loading vectors, indicating the distribution of peat types for 

the surface peat (0-25 cm and 25-50 cm). Colors indicate distinct groups of samples, 

circles indicate open poor fen (OPF) samples, triangles (∆) indicate forested poor fen 

(FPF) samples, and Ys indicate forested rich fen (FRF) samples. 
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Figure 3: The PCA chart and loading vectors, indicating the distribution of peat types for 

all 25 cm peat depth bins. Colors indicate depth, surface samples being light green and 

transitioning with increasing depth to dark red at 225 cm bins while all bins 250 cm and 

deeper are black. Circles indicate open poor fen samples (OPF), triangles indicate 

forested poor fen (FPF) samples, and Ys indicate forested rich fen (FRF) samples. 
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Figure 4: Bar charts indicating the significant differences in peat qualities between peat 

types within depth bins (A, B, C) and between surface and deep peat bins within the same 

peat type (X, Y, Z). Error bars indicate standard deviation. A. Carbonyl/Lignin Index B. 

Lipid/Polysaccharide Index C. Lignin Index D. Humification Index. Difference codes are 

not present between depths for the FPF or between peats for the FPF surface samples due 

to insufficient sample size.
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Figure 5: This figure illustrates the relationship of each index with each ecotype and depth. All indices were multiplied by 40 

for clarity.  Trends for open poor fens (OPF; which extend to 500 cm) were truncated to 200 cm depth to highlight differences 

among the three sites. Dotted lines indicate means, colored zones indicate 95% confidence intervals. OPF = open poor fens, 

FPF = forested poor fen, FRF = forested rich fens. 
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Table 1: The PCA loading matrix for the surface two 25 cm peat depth bins (0-25 cm 

and 25-50 cm). 

 

PC1 PC2 

CARBONYL/LIGNIN INDEX -0.89264 0.37118 

LIPID/POLYSACCHARIDE INDEX 0.80110 0.59471 

LIGNIN INDEX 0.90839 -0.20728 

HUMIFICATION INDEX 0.98427 0.04389 

 

Table 2: The PCA loading matrix for all 25 cm peat depth bins. 

 
PC1 PC2 

CARBONYL/LIGNIN INDEX -0.82702 0.43058 

LIPID/POLYSACCHARIDE INDEX 0.61040 0.78067 

LIGNIN INDEX 0.79239 -0.43708 

HUMIFICATION INDEX 0.95214 0.23727 
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5 Dissertation Conclusion 

In chapter 1 we pioneered a novel method of peatland charcoal detection and 

quantification. The speed and cost efficiency of this method allows more extensive, 

intensive, and/or numerous studies of peatland fire history. This should enable a marked 

increase in the productivity of peatland fire history research.  

In chapter 2 we exercised this novel method to analyze the fire histories of 29 

peatland sites and correlate them with carbon storage and accumulation data. We 

established the fire frequency for hemi-boreal poor fens and the negative relationship 

between fire frequency and long-term apparent rate of carbon accumulation. The natural 

fire regimes of peatlands need to be understood if managers desire to take informed 

action for the conservation of these ecosystems. Further, we have shown that fire has 

substantial impacts on the carbon cycling and storage of peatland ecosystems, 

emphasizing the importance of fire to modeling scenarios, and making the required data 

available for the purpose of ecosystem and global modeling.  

In chapter 3 we leveraged the spectral data already gathered for char quantification in 

chapter 2 to describe the trends in peat properties throughout entire peat profile for 3 

different hemi-boreal peatland ecotypes. This research has implications for peatland 

resilience to the rapidly changing climate at northern latitudes. With both climate change 

and direct anthropogenic modifications affecting water tables, and increasing will to act 

in response, this depth spanning information comes at a pivotal time. 

With climate change altering temperature and precipitation patterns, and wildfire 

patterns changing, data on normal fire regimes is more important than ever. The vast 

stores of carbon present in peatland soils needs to be understood to be protected. 
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Knowledge of the disturbance regimes and peat properties are crucial to promoting 

peatland resilience. Future work to adapt our charcoal quantification method to different 

peat matrices to replicate and expand on the success of chapter 2 would be beneficial. In 

particular, gathering fire history data in understudied peatland ecotypes such as mountain 

and tropical peatlands would greatly assist in the advancement of the field. Being able to 

consider other peat properties, as we did in chapter 3, with the same spectral data should 

also bolster our understanding of peatlands.  
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A Appendix 
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A.1 Supplementary Radiocarbon Data 

 

Site Name Profile 

Name 

Sample 

ID 

Year of 

sampling 

Layer 

Top 

Layer 

Bottom 

Bulk 

Density 

Organic 

Matter 

Radiocarbon 

Analysis 

Year 

Bulk 

Layer 

Δ14C 

Bulk Layer 

Δ14C 

Standard 

Deviation 

(AMS 

analytical) 

Bulk Layer 

Fraction 

Modern 

Bulk Layer 

Fraction 

Modern 

Standard 

Deviation 

(AMS 

analytical) 

      yyyy cm cm g cm-3 % YYYY ‰ ‰     

Bete Grise 1 310 

2011-

2012 40.3 42.3 0.091 93.671 2021 -56.5348 1.244128241 0.951602919 0.001244128 

Bete Grise 1 323 

2011-

2012 69.9 71.9 0.206 93.478 2020 -165.21 1.393032942 0.841888582 0.001393033 

Bete Grise 2 334 
2011-
2012 48.9 50.9 0.068 91.209 2021 -56.5839 1.244026528 0.9515534 0.001244027 

Bete Grise 2 349 

2011-

2012 83.4 85.4 0.212 92.121 2020 -130.235 1.519975696 0.877161316 0.001519976 

Sleeper Lake 3 282 
2011-
2012 22 24 0.216 91.241 2019 -178.039 2.8 0.82885 0.0028 

Sleeper Lake 3 287 

2011-

2012 33.5 35.5 0.217 75.159 2019 -228.516 2.6 0.77795 0.0026 

Sleeper Lake 3 291 
2011-
2012 42.7 44.7 0.223 82.775 2019 -199.856 2.9 0.80685 0.0029 

Sleeper Lake 3 295 

2011-

2012 51.9 53.9 0.212 91.818 2019 -217.013 1.4 0.78955 0.0014 

Sleeper Lake 4 560 
2011-
2012 49.6 51.6 0.216 79.412 2020 -269.966 1.247286993 0.736241333 0.001247287 

Eagle harbor 10 436 

2011-

2012 138.6 140.6 0.189 84.483 2013     0.736212283   

Painesdale 11 456 
2011-
2012 66.5 68.5 0.049 100.000 2019 -22.1458 2.9 0.98605 0.0029 

Painesdale 11 491 

2011-

2012 142.4 144.4 0.056 97.561 2019 -47.4338 2.6 0.96055 0.0026 

Painesdale 11 507 
2011-
2012 193 195 0.046 94.872 2019 -94.539 3.4 0.91305 0.0034 

Painesdale 11 523 

2011-

2012 241.3 243.3 0.133 93.103 2019 -115.662 3.3 0.89175 0.0033 
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Painesdale 12 169 
2011-
2012 89.7 91.7 0.230 94.118 2020 -385.798 1.148212535 0.619424438 0.001148213 

Painesdale 12 185 

2011-

2012 126.5 128.5 0.190 94.915 2020 -351.201 1.196619038 0.654316005 0.001196619 

Painesdale 12 199 
2011-
2012 158.7 160.7 0.230 95.890 2020 -474.851 1.035987768 0.529614864 0.001035988 

Painesdale 12 233 

2011-

2012 236.9 238.9 0.230 91.489 2020 -559.439 1.135982176 0.444307385 0.001135982 

Bete Grise 14 573 
2011-
2012 48.3 50.3 0.147 93.636 2021 -139.689 1.141244287 0.86773186 0.001141244 

Bete Grise 14 592 

2011-

2012 92 94 0.185 94.000 2020 -237.31 1.492858537 0.76917543 0.001492859 

Seney 16 46 
2011-
2012 34.3 36.3 0.051 91.667 2021 -21.1448 1.286801449 0.987298188 0.001286801 

Seney 16 47 

2011-

2012 36.6 38.6 0.047 91.667 2021 -20.6232 1.366520805 0.987824271 0.001366521 

Seney 16 49 
2011-
2012 41.2 43.2 0.114 88.889 2019 -27.7984 2.7 0.98035 0.0027 

Seney 16 50 

2011-

2012 43.5 45.5 0.164 85.897 2021 -17.9643 1.413910195 0.990506146 0.00141391 

Seney 16 52 
2011-
2012 48.1 50.1 0.199 91.000 2021 -40.4176 1.532222021 0.967859167 0.001532222 

Seney 16 53 

2011-

2012 50.4 52.4 0.305 91.000 2019 -82.2421 2.7 0.92545 0.0027 

Seney 16 54 
2011-
2012 52.7 54.7 0.323 86.875 2021 -97.0718 1.351690825 0.91071625 0.001351691 

Seney 16 57 

2011-

2012 59.6 61.6 0.300 87.912 2019 -157.214 1.9 0.84985 0.0019 

Seney 16 58 

2011-

2012 61.9 63.9 0.273 89.362 2021 -164.876 1.231586362 0.8423275 0.001231586 

Seney 16 59 

2011-

2012 64.2 66.2 0.300 89.362 2021 -176.226 1.125912303 0.830879271 0.001125912 

Seney 16 60 

2011-

2012 66.5 68.5 0.322 84.977 2019 -199.658 2.7 0.80705 0.0027 

Seney 16 61 

2011-

2012 68.8 70.8 0.307 84.977 2021 -210.067 1.082764463 0.79674625 0.001082764 

Seney 16 63 

2011-

2012 73.4 75.4 0.265 91.837 2021 -234.514 1.355706642 0.772088854 0.001355707 

Seney 16 64 

2011-

2012 75.7 77.7 0.255 94.611 2019 -243.986 2.1 0.76235 0.0021 

Seney 16 67 

2011-

2012 82.6 84.6 0.256 91.111 2021 -256.03 1.149388116 0.750387083 0.001149388 

Seney 16 68 

2011-

2012 84.9 86.9 0.164 91.111 2019 -265.804 2.2 0.74035 0.0022 



 

 

1
2
3
 

Marsin 19 354 
2011-
2012 24.3 26.3 0.090 77.670 2021 -69.5051 1.225635285 0.93852077 0.001225635 

Marsin 19 375 

2011-

2012 72.6 74.6 0.351 85.385 2013     0.480955475   

Bob's Lake 21 250 
2011-
2012 44.3 46.3 0.106 85.106 2021 -150.399 1.30068114 0.85692935 0.001300681 

Bob's Lake 21 271 

2011-

2012 92.6 94.6 0.325 72.254 2013     0.416803643   

Whitney 22 376 
2011-
2012 49.3 51.3 0.126 83.217 2021 -262.43 0.998449416 0.74393162 0.000998449 

Whitney 22 397 

2011-

2012 97.6 99.6 0.329 96.909 2021 -579.4 0.7 0.4243 0.0007 

Eagle Harbor 26 104 
2011-
2012 48.3 50.3 0.148 86.667 2021 -130.72 1.149510241 0.876777755 0.00114951 

Eagle Harbor 26 145 

2011-

2012 142.6 144.6 0.199 88.618 2013     0.698708883   

Elmer, MN 1001 1152 2018 146 148 0.068 88.985 2020 -243.649 1.238801863 0.76278269 0.001238802 

Betchler Lake 2001 1223 2018 70 72 0.107 91.187 2020 -149.609 1.717693896 0.857621989 0.001717694 

Betchler Lake 2011 1331 2018 246 248 0.056 86.462 2020 -446 1.085603506 0.558711059 0.001085604 

Betchler Lake 2021 1339 2018 54 56 0.052 85.599 2020 -59.6627 3.7 0.948333333 0.0037 

Betchler Lake 2031 1412 2018 148 150 No Data No Data 2020 -276.816 1.2 0.729333333 0.0012 

Betchler Lake 2041 1457 2018 90 92 0.124 88.567 2020 -250.143 2.2 0.756233333 0.0022 

Ramsey Lake 3001 1562 2018 248 250 0.147 87.871 2020 -447.168 2.3 0.557533333 0.0023 

Ramsey Lake 3011 1664 2018 246 248 0.094 88.879 2020 -444.193 2.2 0.560533333 0.0022 

Ramsey Lake 3021 1692 2018 94 96 0.137 80.093 2020 -254.308 1.6 0.752033333 0.0016 

Ramsey Lake 3031 1712 2018 72 74 0.094 91.705 2020 -111.353 1.571759466 0.896203654 0.001571759 

Ramsey Lake 3031 1717 2018 82 84 0.115 93.440 2020 -161.143 1.490053626 0.845989684 0.001490054 

Ramsey Lake 3031 1725 2018 98 100 0.103 91.373 2020 -268.487 1.6 0.737733333 0.0016 

Hedmark Pines, WI 4001 1957 2018 446 448 0.031 93.874 2020 -274.337 2.3 0.731833333 0.0023 

Hedmark Pines, WI 4011 1989 2018 104 106 0.061 93.637 2020 -128.235 1.659454183 0.879177604 0.001659454 

Hedmark Pines, WI 4011 1994 2018 114 116 0.063 91.777 2020 -115.217 1.891354954 0.892306756 0.001891355 

Hedmark Pines, WI 4011 2118 2018 372 374 0.060 93.019 2020 -267.921 1.319278931 0.738303957 0.001319279 

Hedmark Pines, WI 4011 2124 2018 384 386 0.065 95.643 2020 -268.318 1.122734157 0.737903515 0.001122734 
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Hedmark Pines, WI 4011 2138 2018 1412 1414 0.070 92.698 2020 -264.818 3.2 0.741433333 0.0032 

Hedmark Pines, WI 4021 2259 2018 144 146 0.184 68.474 2020 -520.022 0.905704486 0.484059882 0.000905704 

Hedmark Pines, WI 4021 2288 2018 202 204 0.113 91.521 2021 -654.051 0.794861482 0.348932927 0.000794861 

Hedmark Pines, WI 4021 2298 2018 222 224 0.098 94.507 2021 -676.819 0.755177467 0.325968333 0.000755177 

Rexton 5001 3022 2019 48 50 0.143 68.380 2021 -290.987 1.02668589 0.715128229 0.001026686 

Seney Forested 7001 3069 2019 92 94 0.063 89.166 2021 -416.657 0.972758764 0.588374266 0.000972759 

Seney Forested 7001 3120 2019 183 185 0.066 86.505 2021 -472.112 0.774449481 0.532441563 0.000774449 

Alt Sph Lake 8001 897 2018 112 114 0.086 96.924 2021 -323.738 1.103168932 0.682095301 0.001103169 

Alt Sph Lake 8001 993 2018 304 306 0.057 96.671 2021 -375.469 0.933726173 0.62991745 0.000933726 

Alt Sph Lake 8001 1085 2018 488 490 0.059 80.067 2020 -550.662 1.025421746 0.453158575 0.001025422 

Peck Lake 8002 1096 2018 14 16 0.076 98.194 2021 35.10312 1.405986335 1.04403125 0.001405986 

Peck Lake 8002 742 2018 50 52 0.006 95.475 2021 21.53773 1.397436567 1.030348854 0.001397437 

Peck Lake 8002 755 2018 76 78 0.048 97.395 2021 281.9934 1.757012202 1.293051042 0.001757012 

Peck Lake 8002 757 2018 80 82 0.051 96.536 2021 36.26704 1.417742023 1.045205208 0.001417742 

Peck Lake 8002 761 2018 88 90 0.049 96.740 2021 -10.6329 1.355007185 0.997900729 0.001355007 

Peck Lake 8002 763 2018 92 94 0.080 96.529 2021 -26.9801 1.330816974 0.9814125 0.001330817 

Peck Lake 8002 767 2018 100 102 0.061 96.408 2021 -29.6498 1.334068079 0.978719792 0.001334068 

Peck Lake 8002 772 2018 110 112 0.096 95.266 2021 -83.9247 1.300696444 0.923976771 0.001300696 

Peck Lake 8002 774 2018 115 117 0.101 94.450 2021 -106.524 1.244081929 0.901182188 0.001244082 

Peck Lake 8002 775 2018 117 119 0.105 94.497 2021 -110.422 1.22022699 0.897251146 0.001220227 

Peck Lake 8002 780 2018 127.5 129.5 0.104 94.772 2021 -150.562 1.540331137 0.856764792 0.001540331 

Peck Lake 8002 781 2018 130 132 0.102 93.770 2021 -163.626 1.152725224 0.843588333 0.001152725 

Peck Lake 8002 783 2018 134 136 0.113 87.643 2021 -174.506 1.139171696 0.832614583 0.001139172 

Peck Lake 8002 796 2018 160 162 0.088 96.082 2021 -247.213 1.044900695 0.759280208 0.001044901 

Peck Lake 8002 800 2018 168 170 0.084 97.704 2021 -258.131 1.120296032 0.748267708 0.001120296 

Peck Lake 8002 799 2018 166 168 0.095 94.385 2020 -254.979 1.225056409 0.751355744 0.001225056 
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A.2 Char Concentration Profiles 

These charts indicate the model-predicted char concentrations throughout the depth profile for each of our 29 cores. Locations 

and ecotypes are included for reference purposes. Listed in ascending numerical order by core ID. 
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