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Abstract Abstract 
Clustering models are regularly used to construct meaningful groups of observations within complex 
datasets, and they are an exceptional tool for spatial exploratory analysis. The clusters detected in a 
recent spatio-temporal cluster analysis of leaf area index (LAI) in the Columbia River Basin (CRB) require 
further investigation since they are only derived using a single greenness metric. It is of great interest to 
further understand how greening indices can be used to determine separation of sites across an array of 
remotely sensed environmental attributes. In this prior work, there are highly localized minority clusters 
that were detected to be most dissimilar from the remaining clusters as determined by annual variation in 
remotely sensed LAI. The objective of this study is to discern what other environmental factors are 
important predictors of cluster allocation from the mentioned cluster analysis, and secondarily, to 
construct a predictive model that prioritizes minority clusters. A random forest classification is 
considered to examine the importance of various site attributes in predicting cluster allocation. To satisfy 
these objectives, I propose an application-specific process that integrates spatial sub-sampling and 
cross-validation to improve the interpretability and utility of random forests for spatially autocorrelated, 
highly-localized, and unbalanced class-size response variables. The final random forest model identifies 
that the cluster allocation, using only LAI, separates sites significantly across many other environmental 
attributes, and further that elevation, slope, and water storage potential are the most important predictors 
of cluster allocation. Most importantly, the class errors rates for the clusters that are most dissimilar, as 
detected by the cluster model, have the best misclassification rates which fulfills the secondary objective 
of aligning the priorities of a predictive model with a prior cluster model. 
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1.Introduction: The need for further validation of a clustering model 
 

The general objective of cluster analysis models is to group observations as 
determined by some measure of dissimilarity across a collection of explanatory 
variables. In standard models, such as k-means or k-mediods cluster analysis, the 
optimization of clusters is done by allocating observations to the nearest measure of 
center for a cluster, which is then adjusted recursively until the optimization criteria is 
satisfied, namely that within-group variance is minimized while across group variance 
is maximized (Hastie et al. 2009).  If a homogenous group of observations has dramatic 
separation from the remaining observations, as measured by the input explanatory 
variables, then it follows intuition to expect a stable cluster to form even for a low 
number of clusters.  It would not be alarming for this cluster to remain as such with 
minimal perturbations as the number of clusters permitted in the model increases. 

The k-mediod functional cluster analysis performed in the paper, Detection of 
Multidecadal Changes in Vegetation Dynamics and Association with Intra-annual 
Climate Variability in the Columbia River Basin, is characterized in this way (Whetten 
Demler 2021).  As demonstrated in the supplementary applet (refer to S1 Applet 
Access), a small but substantial coastal evergreen cluster of sites is separated from the 
remaining sites with k=2 clusters, and as the number of sites increases, this cluster 
remains intact.  In the final cluster model (with k=5), this is Cluster 4 labeled in purple 
in Figure 1. 

 

 
Figure 1. The Clustering Model. K-mediod cluster analysis of the pairwise correlation 

matrix of the 27191 B-spline smoothed LAI profiles (Whetten Demler 2021, Cheng et. al. 2019) 
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The Columbia River Basin (CRB) is located in the north-western United States 
and south-western British Columbia, Canada.  The drainage basin is bounded by the 
Rocky Mountains to the east and the Cascade and Coast ranges to the west and covers 
an area of 670,000  km : 568,000 km of which are spread across the US states of 
Washington, Oregon, Idaho, Montana, Wyoming, Utah, and Nevada. Climate in the 
CRB varies from humid and maritime along the western parts of the basin to semi-arid 
and arid in the southeast. The CRB hosts a range of diverse natural ecosystems as well 
as large agricultural regions consisting largely of forestry, dairy and cattle farming, and 
production of apples, potatoes, wheat, and other small grains (USGS River Basins of 
the United States Columbia Report). The diversity of this region prompted an 
exploration of regions that have similar annual trends in greening with the objective 
of detecting multidecadal shifts in plant phenology in these regions.  Many studies of 
environmental change have been performed using greenness indices although there 
are few pertaining to the assessment of regional level phenological and atmospheric 
(such as temperature and precipitation) shifts in the CRB (Berner et. al. 2020; 
Tawatchai et. al. 2017; Queen et. al. 2021; Hopkinson et.al 2020; Hamlet et. al. 2013; 
Knowles et. al. 2006). 

Phenology refers to periodic and seasonal reproductive events in biological life 
cycles. Vegetative phenological phenomena are sensitive to annual climate conditions 
and therefore changes in phenology, such as the timing, rate, duration, and magnitude 
of annual vegetative growth, can signal important effects of climate change on plants 
(Piao 2019).  Leaf Area Index (LAI), a widely utilized measure of plant growth and 
activity, is a unit-less measurement of leaf area (m ) per ground area (m ). LAI provides 
a key measure of plant cover in a given area and is defined as an essential climate 
variable (ECV) by the Global Climate Observing System (GCOS) due to its critical 
contribution to the characterization of Earth's climate (Bojinski 2014).  Satellite-
derived LAI products offer multidecadal records of terrestrial plant cover around the 
world, allowing for analysis of inter-annual variability in vegetation dynamics which 
provides key insight to how plants respond to global change. 

This clustering model, used to investigate changes in phenology in the CRB,  is 
derived solely from spline smoothed multidecadal NOAA AVHRR Leaf-Area Index (LAI) 
curves, a single spatio-temporal attribute measured across the 27,191 sites, and, as 
opposed to the traditional approach of constructing a dissimilarity matrix of sites 
across an array of variables, the vast number of replications at each site is 
advantageously used to measure dissimilarity using pairwise temporal correlations of 
LAI between sites. As illustrated in the supplementary Figure S2, Cluster 4 is 
distinguished from the other clusters across all of these attributes.  More specifically 
these sites experience “double-peaks” in LAI in the Spring and Fall seasons, and they 
have smaller annual variation in temperature and higher cumulative precipitation.  
Since sites that are spatially closer to each other tend to have stronger correlations in 
LAI, the cluster model indirectly retains some information about spatial proximity of 
sites. Figure 1 reveals that the Cluster 2 and Cluster 3 follow major river ways in the 
CRB, dominantly the Snake and Columbia Rivers, and since Cluster 1 and Cluster 5 
comprise of many sites in the mountainous regions of Eastern Idaho and the Western 
regions of Montana and Wyoming, it was a preliminary hypothesis that elevation may 
implicitly play a large role in the separation of sites.  Most of these described features 
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are best to observe in the previously mentioned applet (S1 Applet Access).  This work 
ultimately confirmed that the detected clusters had clear differences in timing and 
magnitude of peak seasonal LAI as well as temperature and precipitation profiles, but 
most importantly across all clusters, the majority of variance in regionally averaged 
LAI was characterized by earlier and higher peaks in LAI as time progressed from 1996 
to 2017. 

The objective of this work is to justify that clustering using a greenness index, 
such as LAI, should also involve a follow-up assessment to identify which other 
remotely sensed environmental factors are strong predictors of cluster allocation of a 
remotely sensed site.  Although, it may appear unnecessarily retrospective or 
unconventional to study a set of detected clusters, it is crucial to confirm that 
clustering solely by a single attribute, such as LAI, meaningfully distinguishes the sites 
across a larger set of attributes.  Each site is characterized by a complex set of dynamic 
and static (or mostly static) attributes, and reporting only difference in clusters across 
LAI, temperature, and precipitation is an unsatisfying simplification. Clear trends have 
been detected across clusters towards earlier and higher regional/cluster average 
annual LAI profiles. However, the trends for annual temperature and precipitation 
profiles and their associative relationships are not homogenous (Whetten Demler 
2021). Further characterization of each cluster will aid in the interpretation of these 
results. In particular, the secondary objective of this work is to ensure that the clusters 
which are previously identified to be most dissimilar have the best misclassification 
rates.  Harmonizing the objectives of a cluster analysis and a predictive model is 
essential in this work in order to correctly interpret the result of the first objective 
which rely on the predictive model correctly classifying as many sites as possible in 
highly dissimilar minority clusters. 

The characterization of cluster allocation in the cluster model lends naturally to 
standard machine learning classification methods, such as random forests (Breiman 
2001; Kiely et. al. 2020). The use of random forest for spatial data is of growing interest 
and several adaptations have been developed in recent years (Stefanos et. al. 2021; 
Hengl et. al. 2018; Geremia et. al. 2013; Hee et. al. 2006).  To address the challenges 
of spatial-autocorrelated, highly localized, and unbalanced class sizes, several 
techniques for subsampling (Khalilia et. al. 2011; O’Brien et. al. 2019; Chen et. al. 2004) 
and spatial cross-validation (Adams et. al. 2020; Meyer et. al. 2019; Ramenzan et. al. 
2019; Valavi et. al. 2019; Brenning 2012; Stum 2010) of predictive models have been 
proposed.  I rely on many of these techniques and methods in the construction of the 
proposed model. 

I accomplish the outlined objective by proposing a field-subfield spatial cross-
validation subsampling procedure (FSSCV) applied to random forest classification that 
addresses spatial autocorrelation and improves the classification of localized and high-
priority minority clusters (which are the smallest class sizes of the response variable 
used in a random forest model).  The choice of prioritizing minority classes in a 
response variable is application-specific, but generalizable to any problem where the 
minority class is of great importance or is known to be substantially different from 
other classes. 

Spatial cross-validation and sub-sampling methods are generally implemented 
disjointly to handle issues of spatial autocorrelation and unbalanced class response 
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levels since in many applications one of these issues may not be substantial. The FSSCV 
algorithm proposed in this work combines the subsampling and spatial cross-
validation processes by ensuring that within any collection of locations that could be 
removed during cross-validation, an appropriate distribution of the response variable 
is preserved in the removed fold and remaining training folds. This approach is a 
natural choice for increasing the the value of prediction highly localized minority 
classes since the subsampling requires consideration of spatial distribution of the 
response variable across each fold in the cross-validation procedure. 

 Of the site attributes considered for predictors in the final random forest model 
(elevation, slope, aspect, water storage potential, soil hydrologic unit, and land cover), 
the FSSCV random forest results indicate that the cluster model separates sites 
significantly across many of these attributes and further that elevation, slope and 
water storage potential are the most important predictors of cluster allocation. Most 
importantly, the class errors rates for the most dissimilar clusters, as detected by the 
cluster model, have the best misclassification rates.  This work provides a foundation 
for developing methods to assess clustering model results from remote-sensing 
derived data, and further, provides evidence of the need to holistically consider spatial 
autocorrelation and unbalanced class levels within an integrated process. 

 

2. Materials and Methods 
 
2.1. Data Products 
 
A general exploration of most of these data products is provided in our applet (refer 
to S1), and the use of this applet alongside this manuscript is strongly encouraged. 
 
2.1.1. LAI AVHRR Climate Data Record 
 
The LAI Climate Data Record (LAI CDR) produces a daily product on a 0.05   0.05 degree 
grid dating back to 1981 derived from Advanced Very High Resolution Radiometer 
(AVHRR) sensors using data from eight NOAA polar orbiting satellites: NOAA -7, -9, -
11, -14, -16, -17, -18 and -19. The highest resolution of AVHRR sites is approximately 
1km per pixel (Claverie et. al. 2016, Claverie et. Al. 2014).  In this analysis, the data is 
subset from January 1st, 1996, until December 31st, 2017, and the spatial domain is 
restricted to 37,110 sites in the US portion of the CRB. In this 22-year period, daily LAI 
measurements are summarized on a weekly resolution, by taking weekly average LAI 
across a 7-day period.  The resulting data product has 1,152 weeks.  In this product, 
there are thousands of sites that report high volumes of missing values.  

The LAI CDR required some further pre-processing steps in order to construct 
the presented cluster model.  The construction of spline smoothed curves on the 22-
year period required a maximum missing value threshold: 28 percent of weeks in the 
22-year period needed to have at least one weekly recording of LAI. This filtering 
process leaves 27,196 sites.  By inspection, it was clear that many of the removed sites 
are barren/sparsely vegetated regions and high-altitude sites, and there are some 
systematic errors in the data product that inhibit the detection of LAI readings across 
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large sections of the high mountain ranges in the region. From these results, the 
previous work identified that the smoothing process implemented was robust enough 
to handle sites with higher occurrences of missing values (towards a threshold of 15 
to 20 percent), although this was left to future work (Whetten Demler 2021). The 
functional clustering model used in the previous work is constructed solely from this 
data product. The results of the cluster analysis prompted further investigation into 
site characteristics that may be driving factors in the separation of clusters, and the 
following data products are used in this work to explore this objective. 

 
2.1.2. BaseVue 2013 Land Cover Product 
 
BaseVue 2013 Land Cover, which is a commercial global, land-use/land cover product 
developed by MDA. BaseVue is independently derived from roughly 9,200 Landsat 8 
images and has a spatial resolution of 30 meters. The capture dates for the Landsat 8 
imagery range from April 11, 2013, to June 29, 2014, and contain 16 classes of land 
use/land cover (MacDonald 2014). 
 
2.1.3. USGS National Elevation Product 
 
Site elevations, slopes, and aspects were extracted at each site using the USGS 
National Elevation product. This dynamic image service provides numeric values on a 
30-meter resolution representing orthometric ground surface heights (sea level = 0) 
which are based on a digital terrain model (DTM) (National Elevation Dataset 2002). 
 
2.1.4. USA Soils Hydrologic Group Product 
 
The value for hydrologic group is derived from the 30-meter resolution (contiguous 
U.S.) produced by the Natural Resources Conservation Service (NRCS) using the 
gSSURGO map unit aggregated attribute table field Hydrologic Group - Dominant 
Conditions (Soil Service Staff 2020). 
The seven classes of hydrologic soil group followed by definitions: 

1. Group A - Group A soils consist of deep, well drained sands or gravelly sands 
with high infiltration and low runoff rates. 

2. Group B - Group B soils consist of deep well drained soils with a moderately 
fine to moderately coarse texture and a moderate rate of infiltration and 
runoff. 

3. Group C - Group C consists of soils with a layer that impedes the downward 
movement of water or fine textured soils and a slow rate of infiltration. 

4. Group D - Group D consists of soils with a very slow infiltration rate and high 
runoff potential. This group is composed of clays that have a high shrink-swell 
potential, soils with a high-water table, soils that have a clay pan or clay layer 
at or near the surface, and soils that are shallow over nearly impervious 
material. 

5. Group A/D - Group A/D soils naturally have a very slow infiltration rate due to 
a high-water table but will have high infiltration and low runoff rates if 
drained. 
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6. Group B/D - Group B/D soils naturally have a very slow infiltration rate due to 
a high-water table but will have a moderate rate of infiltration and runoff if 
drained. 

7. Group C/D - Group C/D soils naturally have a very slow infiltration rate due to 
a high-water table but will have a slow rate of infiltration if drained. 

 
2.1.5. USA Soils Available Water Storage 
 
The amount of water in soil is dependent on rainfall volume, proportion of rain 
infiltration into the soil, and the soil storage capacity.  Available water storage is the 
maximum amount of plant available water a soil can provide, and it is an indicator of 
a soil’s ability to retain water and make it sufficiently available for plant use.  Available 
Water Storage capacity estimate for the top 150 centimeters of soil is calculated from 
the difference between soil water content at field capacity and the permanent wilting 
point adjusted for salinity and fragments.  Data from the gNATSGO database was used 
to create this product for the contiguous United States and is derived from the 30-
meter resolution raster produced by the Natural Resources Conservation Service 
(NRCS) (Soil Service Staff 2020). 
 
2.2. Spatial Classification with Random Forests 
 
2.2.1. Baseline RF Model 
 
To assess the importance of site attributes in the prediction of cluster allocation, a 
baseline multinomial random forest classification is implemented on the entire 
dataset of 27196 sites (Liaw 2002).  Using a basic grid search for optimal parameters 
for “Number of variables randomly sampled as candidates at each split” (mtry) and 
“Number of Trees” (ntree) with mtry = 2,3,4, ntree = 100, 250, 500, 1,000, the results 
expose several issues that must be addressed.  The training set accuracy in all 
considered modifications of the tuning parameters yields alarmingly high in-bag error 
rate of 0.00 to 0.25 with an out-of-bag (OOB) error rate of 0.37-0.45.  In Table 1, I 
report the results of the OOB confusion matrix 500 tree model with mtry = 2.  There is 
an over-prioritization of classifying majority cluster correctly at the expense of dismal 
prediction performance of the minority classes.  With such high OOB error and a 
complete disregard for classifying minority sites, significant adjustments to the 
modeling process are required before moving to any further interpretation.  
Altogether these results are not surprising, and I outline the major issues that must be 
addressed. 
 
2.2.2 Spatial Autocorrelation 
 
In Figure 2, I present an entropy-based local indicator of spatial association (ELSA) plot 
of the cluster response variable.  The ELSA statistic is a measure of the magnitude of 
spatial association of a variable at each location relative to its neighboring locations 
(Naimi et. al. 2019).  This indicator simultaneously incorporates both spatial and 
attribute aspects of spatial association into account for both categorical and 
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continuous data.  The following explanation of the measure focuses on the categorical 
setting.  Assume X = (x1, …, xn) are a list of n-observations realized from a spatial 

process at n-locations U = (u1, …, un).   For a given categorical variables, such as cluster 
allocation, A=(α1, …, α2) represents the possible values of observation xi (Naimi et. al. 
2019). The dissimilarity between a site and its neighboring sites is quantified with the 
ELSA statistic which is defined by 
 

 
where wij is a binary (0 or 1) weight defining the neighborhood size, and it specifies 
whether the site j is within a specified distance of site i. The value of m denoted the 
number of categories of the variables of interest, dij is the dissimilarity between 
categories at two sites i and j which is binary metric for nominal categorical variables 
or for ordinal variables it is the difference in rank. The value pk is the probability that 
the kth category from the mω categories within the neighborhood distance from site 
i, and mi is the possible number of categories in this same neighborhood.  The value 

Eai is the attribute dissimilarity of the ith from all sites in its neighborhood, and Eci is 
the normalized Shannon Entropy of the neighborhood (Naimi et. al. 2019).  The 
product of these two measures is a measure of entropy-weighted dissimilarity within 
a neighborhood of the site. 

It is clear from Figure 2, that large swaths of the CRB region have high spatial 
autocorrelation. Spatial autocorrelation in regression models (including random 
forest) tends to yield over-fitted and poor performing models, and jeopardized model 
interpretation (Sinha2019, Dubin 1998).  In this analysis, a spatial lag term for the 
response variable is incorporated as a predictor variable in the final RF procedure 
proposed in the following sections.  The spatial lag terms are derived using row 
standardized weight matrices of the euclidean distances between all sites. High spatial 
autocorrelation is present for elevation, slope, and water storage potential, and spatial 
lag terms for each of these respective variables are incorporated in the RF procedure. 
 
2.2.3. Unbalanced response class levels 
 
The frequency of site cluster allocation is provided in Table 2.  The disparity of cluster 
size between Cluster 1 (n=12,545) and Cluster 4 (n=742) yields challenges for random 
forest models.  The random forest approach although boasting numerous advantages 
over other predictive models is considered a “greedy” algorithm since by default the 
objective of a random forest classification is to minimize overall misclassification 
errors.  This inherently places greater emphasis on correctly placing most of the 12,545 
sites in Cluster 1 (error = 0.123) while sacrificing the placement of Cluster 4 sites (error 
= 0.701). 
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Figure 2. Spatial Autocorrelation of Cluster Allocation. Measure of Spatial 

autocorrelation in LAI cluster allocation shown in Figure 1 using the ELSA Statistic. A Satellite 

view is used as the background map layer in this image to increase contrast with the gradient 

scale of autocorrelation. 

 

Cluster 

 

1 

 

2 

 

3 

 

4 

 

5 

Class 

Error 

Class 

Total 

1 11,010 689 719 105 25 0.1226 12,548 

2 3,389 1,711 1,562 71 4 0.7460 6,737 

3 925 684 3,973 11 0 0.2896 5,593 

4 307 80 131 222 2 0.7008 742 

5 1,422 56 44 8 41 0.9739 1,571 

Table 1. Baseline RF Performance. OOB Confusion Matrix for our standard 

tuned RF model with numbers of variables tried at each split set to 2 and the 

number of trees set to 500. 
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Cluster 1 2 3 4 5 

Frequency 12,548 6,737 5,593 742 1,571 

Table 2. Site distribution by cluster allocation. 

This prioritization is the antithesis of our research objectives in this analysis.  

The sites in Cluster 4 are identified in previous work to be the most distinguished 

sites by multidecadal vegetation dynamics and annual climate profiles.  Cluster 3 also 

has substantially different characteristics from most of the other clusters. Further, 

although there are differences between the other Clusters, they are not as dissimilar 

from each other, and as such, it is a lower priority to correctly classify these sites. 

This work is aimed at exploring what site attributes are driving the effective 

detection of sites that are previously known to be different with respect to the prior 

attribute, LAI.  More simply, the objective is to harmonize the construction predictive 

model and the prior cluster analysis so that the most dissimilar sites, by some 

previous metric, have prioritized classification.  This priority will assist in indicating 

which site attributes are most important in predicting the differences detected in the 

prior cluster analysis. 

2.2.4. Highly-localized spatial grouping of minority Clusters 
 
In Figure 1, Cluster 4’s sites are exclusive to the narrow region paralleling the Oregon 
and Washington coast.  Additionally, Cluster 3’s sites closely follow the major river 
ways.  This phenomenon causes issues with standard cross-validation procedures as 
well as generic spatial cross-validation procedures. Spatial cross-validation is 
performed by dividing the data spatially into a collection of n regions and recursively 
removing one of the n regions as a test set while training on the n-1 regions.  The 
choice of spatial sampling in this application must be carefully considered to avoid 
complete or “near-complete" removal an entire subgroup of the response variable in 
the cross-validation process, especially when the classification of these sites is of such 
great importance. 
 
2.2.5. Transition and Adjacent Classes 
 
Although this is not a primary focus of this manuscript, it is appropriate to mention the 
misclassification “transition classes.”  Transition classes are class-level responses that 
are in some way “in-between" two other classes by some measure of ordinality, and 
as such, they are prone to misclassification in the adjacent class-levels.  This problem 
is apparent in Table 2. The sites allocated to Cluster 2 in the 5-cluster model were 
dominantly grouped with Cluster 1 and Cluster 3 for preliminary cluster models of 
smaller size.  Refer to S1 for a visualization of this in the supplementary applet.  It is 
shown that Cluster 2 has one of the worst class error rates of 0.746 and the 
misclassification of these sites is primarily Clusters 1 and 3. 

Adjacent classes simply refer to a class that is similar to another class (and are 
not necessarily between two classes).  Cluster 5 and Cluster 1 are adjacent classes, and 

9

Whetten: Field-subfield Spatial Cross-validated Random Forests

Published by UWM Digital Commons, 2021



   
 

   
 

Cluster 5 sites were almost exclusively grouped with the Cluster 1 sites for candidate 
models with lower numbers of clusters. Refer to the applet again to see this 
phenomenon.  In this work, it is not a top priority to correctly classify transition classes 
since they may inherently have strong similarities and overlapping site characteristics 
with other classes. 
 
2.3. Proposed FSSCV RF Model 
 
I propose a spatial subsampling cross validation procedure for the random forest 
algorithm that addresses the issues listed in the last section.  This procedure is referred 
to as field-subfield spatial cross validation (FSSCV).  The steps of this procedure are as 
follows: 

1. Divide the geographic region using k-means clustering on the coordinates of 
the 27191 sites in the data.  We call these groups fields to reduce confusion, 

and refer to them also by  F1, …, Fn where n is the number of fields that the 
k-means algorithm is set to detect. 

2. For levels of the categorical response variable that do NOT span all fields, 

randomly sub-sample a proportion of these sites,  plc, from the data.  The 
purpose of this is to permit some of the data to be left as a test set if further 
model validation is desired.  This also prevents over-representation of 
minority clusters. 

3. For levels of the categorical response variable that have sites distributed 
across all fields, sub-sample a collection of sites from each field.  If the 
minimum number of sites in a given field is less than 1/3 the number of sites 
sampled from the minority cluster in step (2), then sample the minimum 
number of sites present from any field.  The result is an equal amount of 
randomly selected sites from a single cluster across each field.  Otherwise, 

sample a proportion of the minimum number of sites, pgc, in a field across all 
fields. 

4. Divide the subsamples of the fields F1, …, Fn into h-subfields referred to as 

S1i, …,Sni where  i = 1,…, n. The combinations of field-subfield indices yield 
(n × h) folds that are used for spatial cross-validation. 
 

The steps of the FSSCV procedure are also visualized as a flowchart in Figure 
3. This subsampling procedure can be tuned in several ways: the number of fields 

n, the percentage of sampled local cluster sites plc, the percentage of sampled 
global cluster sites pgc, and the 1/3 cutoff defined in step (3) of the algorithm. The 
parameters chosen in our sub-sampling procedure are selected based on 
application-specific objectives of this analysis, but the following general goals are 
met: (1) Sub-sampled cluster sizes are more balanced, but the sub-sampling 
prevents over-representation of highly localized minority clusters, (2) adequate 
number of sites from each cluster are sampled from each field except for highly 
localized clusters (where this is not necessarily possible). Over-representation here 
refers to the risk of losing model interpretability by excessively down-sampling of 
majority classes while retaining a large quantity of minority classes. This approach, 
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although relatively simple, has potential adaptations to improve flexibility which 
are mentioned in the discussion section. 

 

 
Figure 3. FSSCV Process Map 

 
Figure 4 provides a visualization of our sub-sampling procedure where n=5 and 

h=3.  The specific sizes of the subfield and folds used are provided in the results 
section.  The sub-fields are not shown in this figure to avoid over-complicating the 
image, but the sub-field sampling would divide each field into 3 (not necessarily equal) 
parts of which representation from most clusters (response variable classes) in this 
application is observed.  For other applications, the choice of subfield may require 
adjustment to get desired diversity within subfields.Standard subsampling is not 
considered here because of the highly localized nature of the clusters and the 
implications of using generic leave-one-field-out cross-validation. When simple 
subsampling is used, it is possible to acquire a subsample with adequate 
representation and spatial distribution across the levels of the response, but it still 
leaves the problem of removing a field that may have all or almost all of an important 
minority cluster which is the case in this application.  It is cumbersome to subsample 
and then find appropriate fields to meet these circumstances, and as such the FSSCV 
method proposed here is intended to “unify the process” so that the sub-fields defined 
have good subsampling properties. 
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Figure 4. FSSCV Visualization. Example of Geographical field construction for 

the FSSCV procedure, with an illustration of potential localization of clusters within 

a sub-group of fields. 

 

3. Results 
 
3.1. Site Attribute exploration by cluster and Field Sub-field Sampling of Site 
 
Since the LAI CDR is the only thoroughly explored data product used in this work, it is 
instructive to visually explore the spatial distribution and autocorrelation of all 
variables used in the model.  The magnitude of separation of the explanatory variables 
induced the cluster model is assessed since this will be strongly tied to the 
classification model to distinguish clusters successfully.  In Figure 5 and 6, the box plots 
of elevation, slope, aspect and water storage potential and the bar charts of 2013 Land 
Cover and Soil Hydrologic Unit characterize the distribution of these predictors by 
cluster (Wickam 2016, Baptiste 2015).  Significant differences in these distributions are 
detected across all variables using 1-way ANOVA and non-parametric ANOVA (Kruskal-
Wallis) models with Tukey-adjusted comparison of multiple group means and Chi-
square goodness of fit tests for Land Cover and Soil Hydrologic unit. It is important to 
emphasize the drastically lower elevations levels found in Cluster 4 and the lower 
slopes found in Cluster 3.  Visually these differences lend to the intuition that the 
model should be able to get the most accurate predictions for these clusters in a global 
RF model (as opposed to performing localized RF models) even though this is not 
accomplished in the original RF model. 
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Figure 5. Continuous Site Attributes (A) Elevation, (B) Slope, (C) Aspect, (D) Water 

Storage Potential. Site Attribute Distributions by Cluster. Boxplots are colored to match the 

cluster model results in Figure 1. 

 
Figure 6. Categorical Site Attributes. Site Attribute Distributions by Cluster. Barcharts 

are colored to match the cluster model results in Figure 1. The barcharts are scaled to assess 

the proportion of (A) Land Cover and (B) Soil Hydrologic attribute by cluster. Any collection of 

bars from the same cluster will have a net area   1 since not all values of each predictor variable 

are depicted in the picture. 
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In Figure 7, the fields are shown for the FSSCV procedure using k-means 
clustering on the latitude and longitude coordinates.  The left-most field almost 
completely contains Cluster 4 and the three left-most fields contain almost sites from 
Cluster 3.  Although this work does not define a measure of localization, it is evident 
that these clusters are moderately or highly localized in the geographic domain.  The 
full FSSCV procedure subsamples 3,590 sites from the data and the distribution of the 
fields by cluster is shown in Table 3.  Table 4 and Table 5 reports the sub-field 
distribution of sites by cluster and field respectively.  The subsampling and sub-field 
site selection procedure achieves well-balanced folds to use in the cross-validation of 
the random forest model.  The distribution of all subfield selected sites is visualized 
Figure 7. 

In the construction of our final RF model, spatial lag terms are incorporated for 
the response variable, as well as elevation, slope, and water storage potential.  Spatial 
lag terms are utilized to account for the spatial autocorrelation in our response 
variable, and although similar information is contained in the Latitude and Longitude 
as predictors are shown to improve prediction rates, but these geo-spatial attributes 
are removed since previous work has shown that highly auto-correlated predictors 
(such as geolocation variables, e.g. latitude, longitude) can lead to considerable 
overfitting and result in models that can reproduce the training data but fail in making 
spatial predictions (Kiely 2020).  This was not apparent this application, but these 
guidelines are followed to avoid complicating the interpretation of this model. 

 

 Cluster 

1 

Cluster 

2 

Cluster 

3 

Cluster 

4 

Cluster 

5 

Total 

Field 1 187 137 278 0 158 760 

Field 2 187 137 170 4 158 656 

Field 3 187 137 0 9 158 491 

Field 4 187 137 24 6 158 512 

Field 5 187 137 154 535 158 1,171 

Table 3. Sub-sampled site distribution by field and cluster allocation. 

 Cluster 

1 

Cluster 2 Cluster 3 Cluster 4 Cluster 

5 

Total 

Sub-field 1 302 254 187 182 272 1,197 

Sub-field 2 340 212 206 190 249 1,197 

Sub-field 3 293 219 197 218 269 1,196 

Table 4: Sub-sampled site distribution by sub-field and cluster allocation. Sites were 

assigned randomly to temporary subfields 1, 2, and 3. Then the division of the final subfields 
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as subregions of each of the fields is done by collecting all of the sites with the same subfield 

values within a respective field. 

 Field 1 Field 2 Field 3 Field 4 Field 5 Total 

Sub-field 1 241 214 177 186 379 1,197 

Sub-field 2 262 233 158 171 373 1,197 

Sub-field 3 257 209 156 155 419 1,196 

Table 5. Sub-sampled site distribution by field and sub-field allocation. The cells of this 

table are the folds used in the FSSCV procedure. 

 
Figure 7. Field Selection. The FSSCV subsampled distribution of sites used in our final RF 

model as colored by cluster.  The polygons are the k-mean selected fields used in this analysis. 

K-means is a common choice for field generation in spatial cross-validation. 

 
 

3.2. FSSCV RF Performance Summary 
 

The (n × h) FSSCV procedure constructs 15 folds that divide the 3590 sampled sites 

using n=5, plc = 0.80, pgc = 0.20, and the RF performance summary is provided in Figure 
8.  Although the global mean FSSCV error is not exceptional, the misclassification error 
by class confirms that the objectives have been satisfactorily fulfilled.  The 
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misclassification rates of Cluster 4 and Cluster 3 sites across the 15 folds are centered 
at 0.15 and 0.20 respectively.  The variable importance across all 15 folds shown Figure 
8 identifies that site elevation is the most important predictor of cluster allocation in 
the model. The spatial lag term for water storage potential is the second most 
important predictor, and the second and third most important non-lag term predictors 
are slope and water storage potential.  Since there is a clear relationship between 
water storage and the spatial lag for water storage, it is evident that some predictive 
information is shared between these attributes, but it is noteworthy that the 
geographic information implicitly contained in the lag term made this attribute a highly 
important predictor. I hypothesize that this is because there are climatic differences 
across the region, which are geographically dependent, that have effects on the type 
of vegetation at a site. 
 

 
 

Figure 8. FSSCV General Model Assessment. (A) FSSCV RF performance summary. The 

misclassification rates for cluster allocation are plotted using boxplots that show the 

misclassification rates for the removed fold across all 15 folds. (B) FSSCV RF variable importance 

plot. The distribution of an attribute’s predictive performance across all 15 folds is plotted as a 

boxplot. 

 
The relationships of the previously mentioned attributes to the probability of 

prediction of sites to the Cluster 3 and Cluster 4 allocation are explored using partial 
dependence plots (PDPs).  Since the final model is effectively making predictions for 
these attributes, it is of interest to understand further how their attributes increase or 
decrease the probability of being classified in these clusters.  In Figure 9, the PDPs for 
Elevation, Slope, and Water Storage Potential are presented. Sites with elevation less 
than 1000m have higher probability of a Cluster 4 site prediction, and sites with 
elevation approximately between 0 to 1700m have higher probability of a Cluster 3 
site prediction.  The clear overlap between elevation classification probability is not 
surprising as both clusters have the lowest elevation distributions of the 5 clusters. 
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It is across slope and water storage potential that the greatest disparities are 
observed between the prediction probabilities for these clusters.  Sites with slopes 
closer to 0 degrees have a high probability of a Cluster 3 prediction, and the probability 
of a Cluster 3 prediction declines drastically as the slope of the site increases.  Sites 
that have slopes between 5 and 25 degrees have the highest probability of a Cluster 4 
prediction.  For water storage potential, sites with observations greater than 150mm 
had the highest probability of a Cluster 4 prediction whereas site observations less 
than 200m have a higher predicted probability of a Cluster 3 prediction. 

 

 
Figure 9. Probabilistic Relationship of Cluster Allocation to sight attributes. PDPs for 

Elevation (A), Slope (B), and Water Storage (C): We emphasize that the interpretation of the 
magnitude of classification probability is not to be interpreted directly since PDPs by 
construction assess the changes in prediction probability across changes in the variables of 
interest while all others are held constant at their average. Although Elevation is the most 
important predictor of cluster allocation, Slope and Water Storage Potential are vital in correct 
Cluster 3 and Cluster 4 model predictions (Wickam 2016, Baptiste 2015, Greenwell 2017). The 
partial dependence is evaluated for each fold, and the average partial dependence across all 
folds is plotted as the solid line in each of these plots. The colored ribbon marked   standard 
error of folds from the average partial dependence line. 

 

The magnitude of classification probability is not to be interpreted directly since 
PDPs by construction assess the changes in prediction probability across changes in 
the variables of interest while all others are held constant at their average.  The 
differences in Cluster 3 and Cluster 4 classification probabilities highlight that a clear 
interaction exists between these attributes in order to make cluster allocation 
predictions. In this case, it is clear that although elevation is the most important 
predictor in the model, the magnitude of water storage potential and slope are driving 
factors in the correct classification of Cluster 3 and Cluster 4 sites, namely that Cluster 
4 sites generally have higher water storage potential and higher slopes, which are 
characteristic of coastal evergreen forests, and Cluster 3 sites have lower water 
storage potential and lower slopes, which are characteristics of major river valleys in 
the CRB dominantly covered by scrub, grasslands, and agriculture.  Interactions can be 
investigated further using various methods, but this is left to future work. 
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It is also of interest to assess which regions these predictors are providing the 
greatest aid to cluster allocation predictions.  Geographical local variable importance 
plots (LIMPs) are examined in Figures 10 through 13.  In Figure 10, the explanation of 
high misclassification rates for Clusters 1,2 and 5 is apparent. Site elevation is highly 
important for classifying coastal site cluster allocation, river way cluster allocation and 
pockets of the national park region of Western Wyoming.  The importance of elevation 
in other regions, that are dominantly characterized by these cluster assignments, is 
notably lower.  In Figure 11, the slope of a site is highly important for classifying sites 
in the Magic Valley of region of Southern, Idaho, and some other small pockets of sites 
along the Snake and Columbia Rivers.  In Figure 12 and 13, the joint role that water 
storage potential and the spatial lag term for water storage potential play in making 
cluster allocation predictions is identified.  The spatial lag term for water storage is 
important for classifying coastal sites and sites along the lower Columbia River, while 
the original water storage variable is important for classifying sites along the entire 
Idaho border and large sections of the Snake River in Southern Idaho.  This provides 
meaningful insight into the cluster allocation since most sites neighboring the Pacific 
Coast and lower Columbia River have similar water storage properties in spite of many 
clusters being present across these areas.  The spatial weighting of this attribute aids 
in making prediction in this region, whereas across a large swath of the CRB, the cluster 
allocation has a remarkably similar shape to the spatial distribution of water storage 
potential which is a driving factor in the predictive importance of water storage in 
these areas. 

 

 
Figure 10. Local Importance of Elevation in the FSSCV random forest model. Similar to 

our visualization of partial dependence in Figure 9, local importance is averaged across all 15 

folds. Variability from the average local importance for each site is not provided. 
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Figure 11. Local Importance of Slope in the FSSCV random forest model.Similar to our 

visualization of partial dependence in Figure 9, local importance is averaged across all 15 folds. 

Variability from the average local importance for each site is not provided. 

 
Figure 12. Local Importance of Water Storage Spatial Lag Term in the FSSCV random 

forest model.Similar to our visualization of partial dependence in Figure 9, local importance is 

averaged across all 15 folds. Variability from the average local importance for each site is not 

provided. 
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Figure 13. Local Importance of Water Storage in the FSSCV random forest model.Similar 

to our visualization of partial dependence in Figure 9, local importance is averaged across all 

15 folds. Variability from the average local importance for each site is not provided. 

 

4. Discussion 
 
This work, motivated by the need to explore cluster analysis results, provides a 
foundational method for combining the sub-sampling and spatial cross-validation 
procedures. The focus of this work was to prioritize highly localized minority clusters 
that are known by some other metric to be the most different from the other clusters.  
The derived exploratory classification model agrees with the objectives of the cluster 
analysis, and further, the model accounts for spatial autocorrelation, has acceptable 
misclassification rates for high-priority minority clusters. Consequentially, the 
examination of site attribute importance in predicting cluster allocation is more 
interpretable.  The use of information from each fold also improves our interpretation 
of variable importance and probabilistic relationships of site attributes to cluster 
allocation. 

There are multiple disadvantages to this approach that should be 
acknowledged, and potential improvements to the subsampling and modeling 
procedure are mentioned here.  As currently presented, the proposed approach is only 
considering 1/9 of sites using the FSSCV subsampling.  This was strategic, but a 
somewhat arbitrary choice.  For this data product and approach, it is plausible that this 
approach could incorporate to 1/3 to 1/2 of sites, and this would need to be shown in 
future work. This subsampling procedure also has the capability in its current form to 
account for more sites using a recursive subsampling strategy.  As an example, the 
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results of our analysis are from a single subsample of 3,590 sites.  This could repeat 
times with replacement of the sites, and the variable importance and partial 
dependence can be averaged and visualized across the realized subsamples. Since the 
model only considers 3590 sites, it is also of great interest to utilize the extensive 
supply of test set data not considered in the subsample of 3590 to assess the stability 
and performance of our model further. 

As mentioned in the Proposed FSSCV section, this approach can be tuned across 
several parameters to balance the clusters to the preference and judgement of the 
user.  Beyond the scope of this work is the fascinating question of grid-searching for 
the optimal parameters to improve accuracy of all classes.  It is apparent when 
comparing the baseline RF to the FSSCV RF used for this application that our sub-
sampling choice has “reversed" the priority of cluster classification to the point of 
poorly classifying the Cluster 1 and Cluster 2 sites.  This is shown in Table 6. For this 
application, this is expected and appropriate since it is known from previous work that 
these clusters are two of the most similar clusters.  The grouping of these two clusters 
into a single cluster would eliminate substantial cross-misclassification of these 
clusters and improve global accuracy, although this is not of primary interest here.  
There is no current way of optimizing error rates of majority and minority classes 
across all folds of such an approach. 

 

Cluster Baseline RF Class 

Error 

FSSCV RF Class 

Error 
Class Total 

  1 0.1226 0.4611 +/- 0.0125 12,548 

  2 0.7460 0.5574 +/- 0.0098 6,737 

  3 0.2896 0.2063 +/- 0.0155 5,593 

4 0.7008 0.1525 +/- 0.0222 742 

5 0.9739 0.2812 +/- 0.0078 1,571 

Table 6. Performance summary of Baseline and FSSCV random forests models. 
 
There is also no explicit assessment of interactions shown in this analysis.  This 

is left to future work using essential random forest packages such as the 
randomForestSRC package, and it is considered out of the scope of this project 
(Ishwaran 2021).  Although the response variable in this analysis is a dynamic variable, 
meaning that it has grouped sites using a temporal measure of association, all 
predictors in this model are considered static for this work.  This assumption is not free 
of flaws, since attributes such as land cover are known to change over time.  However, 
the inclusion of dynamic variables is ultimately of great interest and could be 
performed using difference indices marking the change in an attribute over time.  As 
a result of the unique characteristics of a dynamic variable, there are several 
possibilities, and for brevity, they are not discussed further here. 

I advocate for more complex techniques for detecting highly localized and 
minority clusters.  This is done strictly by inspection in our work, as the application and 
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geographical visualizations lends naturally to this simple approach, but important 
future work lies in detecting locality using some measure of geographic entropy and 
relative frequency of site cluster allocation (Leibovici 2009). 

 

5. Conclusion 
 
This work is a furthers the ongoing discussion of spatially conscious machine learning 
models that celebrate and account for the phenomena of Tobler’s Law of Geography.  
Clustering models are generally used as a means to study structure in the data, but it 
is less common to study the detected structure with the use of predictive modeling. A 
cluster analysis naturally requires careful selection of method, cluster size, numbers 
of clusters, and, in most cases, a careful choice of dissimilarity measure. The 
development of application-specific assessments for validating clustering model 
quality and interpretability are important, and this work outlines such an approach for 
high-dimensional remotely sensed gridded or ungridded data, and the results of this 
work justify future work in improving spatial cross-validation strategies for machine 
learning models. 
 
 

Supporting Information 
 
S1 Applet Access: CRB Exploratory Applet  
Use https://abwhetten.shinyapps.io/CRB_LAI_1996_2017/ to access the 
supplementary applet. 
 
S2: Supplementary Figure 
Interannual profiles of regional average weekly maximum LAI, maximum Temp, and 
cumulative precipitation. The curves are colored on a gradient scale where greener 
curves are closer to 1996 and pinker curves are closer to 2017. Noticeable time-
dependent changes in LAI were identified where no clear trend in temperature and 
precipitation is visually observed. 
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Figure S2: This is a supplementary figure since it is only used to briefly summarize the evidence 

found in prior work that this cluster model is effectively separately sites beyond differences in 

NOAA AVHRR satellite measured LAI. 
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