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Abstract Abstract 
Flooding is a serious form of natural hazard in Alaska, USA. Two of Alaska’s biggest cities, Anchorage and 
Fairbanks, have experienced flooding of varying magnitude since the cities were first settled in the early 
20th century. Although flood mitigation measures such as blue-green infrastructure (BGI) are rising in 
prominence, the spatial relationship of BGI, urban pluvial flood (UPF) zone, and social vulnerability 
remains understudied. This study delineates the UPF zone of Anchorage and Fairbanks using the Blue 
Spot modeling and correlates it with the distribution of BGI at Census Block Group (CBG) scale, focusing 
on underlying social vulnerability using a set of indicators. Anchorage shows a positive correlation (r = 
0.53, p < 0.01) between percentage of UPF area and density of BGF, whereas Fairbanks shows an 
insignificant negative correlation. In Anchorage, more socially vulnerable CBGs (n = 10) intersect with high 
blue spot CBGs (n = 33), compared to Fairbanks where those numbers are 1:6. The results indicate that 
while BGI is equitably and proportionally distributed within the Anchorage UPF zone, the same is not true 
in Fairbanks, where distribution is equitable, but not proportionate to pluvial flood risk. The study 
emphasizes that both types of distribution present their unique challenges and opportunities, but the 
relative absence of BGI increases flood risk for residents. The results are useful for spatial planners to 
better inform flood mitigation strategies in urban areas, especially to reduce the gap between equitable 
and proportional distribution of BGI. 
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1. Introduction  

     Floods triggered by rainfall referred to as pluvial flooding (Falconer et al., 
2009) have increased due to climate change (Dong et al., 2020). On the other hand, 
rapid urban growth is also intensifying the frequency of flooding in urban areas by 
reducing green spaces and impeding the flow of water into impervious surfaces (Cutter 
et al., 2018). Impervious surfaces have a major effect on the hydrological cycle; as 
evapotranspiration decreases, rainwater surface penetration increases with the 
amount of runoff peak (Vamvakeridou-lyroudia et al., 2020; La Rosa & Pappalardo, 
2020). In many parts of the world, including the United States, urban infrastructure is 
aging and inadequate to alleviate these increases in rainfall and subsequent flooding. 
For example, the stormwater system in the United States earned a condition status of 
"D+" according to the American Society of Civil Engineering (ASCE, 2017). Current flood 
management programs have underestimated the impact of urban growth and climate 
change (i.e., severe and regular flooding triggered by rainfall) on the flood management 
infrastructure degradation (Amador et al. 2019). To prepare for future climate change, 
flood risk management strategies need to be appropriately analyzed both for their 
long-term impacts and capacity to minimize frequent flood occurrences due to 
unpredictable future amounts of rainfall (Chang et al. 2021a). A well-designed flood-
risk management plan would ideally focus on resilience rather than resistance (Liao, 
2012). While resistance refers to a system's capacity to withstand a disaster, resilience 
encompasses both resistance and adaptability (Adger et al., 2005; Folke, 2006). 

In recent decades, rainfall patterns have become increasingly erratic and 
concentrated within a short period of time, causing pluvial flooding around urban 
areas, leading to death, property loss, and damage to physical infrastructure (Kunkel et 
al., 2013; Rosenzweig et al., 2019). Furthermore, extreme rainfall is expected to affect 
conventional stormwater management procedures, exceeding the current optimal 
management systems. In severe circumstances,      pluvial flooding can destroy urban 
green runoff (Voskamp & Van de Ven, 2015), making presence or absence of green 
spaces in different neighborhoods an important element in stormwater runoff 
management. The green spaces mostly affected by flood alteration are parks, public 
space, green corridors, streets trees, forests in urban areas, vertical roof greenings, and 
private greens (Gunnell et al., 2019). However, many innovators and sustainability 
enthusiasts have been increasingly attentive to green space approaches to effectively 
reduce the impacts of changes in the hydrological cycle especially those caused by 
urbanization processes (Munyaneza, 2014). Urban green space helps to intercept water 
drops from the canopy and stem area of infiltration to enhance soil and root capacity 
(Aronson et al., 2017). For this reason, there is a need for urban green space 
conservation, rehabilitation, and restoration of the degraded spaces to reduce urban 
flood risks and its effects (Kim et al., 2016). Over the years, urban planning has grown 
to consider blue and green infrastructure as a combined design for flood management 
(CNT, 2010). Typically, blue infrastructure includes ponds, canals, and wetlands, 
whereas green infrastructure includes bioswales, trees, parks, and other urban green 
landscapes that facilitate water flow (Thorne et al., 2015). 
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In the United States, about 83% of the population lives in urban areas (United 
Nations, 2018). Socio-economic inequities such as gentrification and redlining have 
resulted in systemic obstacles to urban flood management strategies (NCRC, 2020). 
Years of research in environmental justice has shown that high-polluting forms of land 
uses, such as hazardous waste sites and power plants, are often sited near marginalized 
and impoverished neighborhoods (Anguelovski et al., 2016; Mohai, Pellow, and Roberts 
2009; Walker & Bullard, 1992). There is also substantial evidence that flood-induced 
damages and displacements mostly affect low-income population groups (Flyvbjerg et 
al., 2003; Bararu, 2013; Chen et al., 2013; Fahy et al. 2019), especially with the growing 
number of private property development in vulnerable floodplains. Thus, consideration 
of social vulnerability is key to understanding potential losses from environmental 
hazards. Cutter (1996) describes social vulnerability as including “the susceptibility of 
social groups or society at large to potential losses (structural and nonstructural) from 
hazard events and disasters”. In recent years, indicator-based approaches such as SOVI, 
SETS, etc. are increasingly being used to assess flood risk (Chang et al., 2021b; Müller 
et al.,2011; Nasiri et al.,2019; Sterzel et al., 2020). 

Ongoing research in distribution of urban green spaces indicates that urban 
green spaces are often not distributed equally (Immergluck & Balan, 2018; Nesbitt et 
al., 2019). In many cases, the access to urban green spaces has shown to be skewed in 
the favor of those with greater incomes and higher levels of education (Nesbitt et al., 
2019). Since studies have also shown that green infrastructure is crucial in combating 
climate change impacts on the urban environment (Apreda et al., 2019; Oliveira, 
Andrade, & Vaz, 2011; Rosenzweig et al., 2006) as well as maintaining social and 
economic wellbeing, it is important to acknowledge the need for equitable distribution 
of green infrastructure (Baker et al. 2019). Equity, by definition, means a fair and just 
distribution of resources between or among persons, considering their needs and 
disadvantages in society (Rice & Smith, 2001; Gooden & Portillo, 2010).  

The main objective of the study is to examine (i) whether BGI is equitably and 
proportionally distributed within the Blue Spot zones within cities in Alaska, and (ii) 
whether CBGs within the Blue Spot zones are socially vulnerable to pluvial flooding. The 
proportional distribution aspect in this study refers to BGI spatial distribution in terms 
of flood risk, while equitable distribution aspect refers to BGI distribution in terms of 
social vulnerability to flood risk and flooding (Blue Spot areas) combined. Government 
Reports and City Assessments in Alaska (MUNI, 2018; University of Alaska Fairbanks, & 
U.S. Army Corps of Engineers, 2019) have highlighted the issue of pluvial flooding and 
measures taken, including the development of BGI across the cities, but its 
distributional pattern has received insufficient coverage. Additionally, the comparison 
of the major cities in Alaska is also an understudied subject from a pluvial flooding 
perspective. Our analysis would also help increase the current understanding of the 
Social-Ecological-Technological-Systems (SETS) flood vulnerability of cities (Chang et 
al., 2021a; Chang et al., 2021b), and thus offer decision-relevant information for 
improved policy making to ensure social inclusion and resilience against flood disasters 
within cities.   
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This study employed the Blue Spots model (Balstrøm et al., 2018), which relies 
on Geographic Information System (GIS), to map the flood risk areas on the surface. 
Most of the studies that have analyzed the flood risks and flood management did not 
employ integrated methods of calculating Blue Spots to model urban Blue-Green 
Infrastructure (BGI) and associated social vulnerability indicators (Berndtsson et al., 
2019; Hosseinzadehtalaei et al., 2020; Rakib et al., 2017; Zhou et al.,2012). Berndtsson 
et al. (2019), for example, classified the drivers of urban flood risk into three groups - 
physical environment, public awareness, and long-term policy changes - to rank risk 
perception. However, the study does not focus on CBG-scale phenomena and 
overlooks the flood vulnerability which may or may not exist in every neighborhood. 
Hosseinzadehtalaei et al. (2020) quantified the future pluvial flood risk in Europe on 
various scales — continental, regional, and national — using intensity–duration–
frequency (IDF) curves. The study provides an extensive understanding of how future 
flood risk is projected to be in Europe, but quantification of results using the same 
methods at local scale has not been given. Zhou et al. (2012) provided an insight into 
understanding the economic assessment of flood adaptation measures within fluvial 
boundaries, but the framework does not specifically address pluvial flooding, which 
may occur beyond fluvial flood boundaries.  

This paper was structured to offer flood risk analysis and compare their spatial 
distribution between neighborhoods of Anchorage and Fairbanks; section 1 provides 
background to various concepts explored in this study, while section 2 presents the 
study area and context. Section 3 focuses on data and methods, while results in section 
4 explore how green infrastructure relate to pluvial flood risk in Alaskan communities. 
The discussion section i.e., section 5 analyzes the results in the context of research 
questions and future research scope; section 6 summarizes the study and its findings. 
The framework (Fig. 1) presented in this paper integrates both the problem (pluvial 
flood risk) and the solution (BGI) into an interconnected process aimed at resolving 
urban flooding and structural inequalities.  
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Figure 1. Conceptual Framework describing the integrated objectives of urban pluvial 
flooding (challenge) and feasible solutions (opportunity) 

2. Study Area 

The study area consists of two major cities in the Alaskan mainland—
Anchorage and Fairbanks. The two cities exhibit distinct subarctic characteristics 
(Table 1).  The municipality of Anchorage, which includes the urbanized sections, 
has nearly 40.5 km2 of floodplain. Rainfall-induced runoff is a major contributor to 
urban flooding in the Anchorage municipality, and a strong atmospheric river (AR) 
called the Pineapple Express—characterized by warm weather and heavy 
precipitation—caused notable floods in the area during the fall months of 1995, 
1997, 2002 and 2005 (MUNI, 2018).   

Fairbanks experienced heavy rains in the summer of 1967, which caused 
great damage of more than $80 million in 1967 dollars (NWS, 2017). Fairbanks 
experienced another flood event in 2008 due to excessive precipitation; estimated 
damage stood at $10 million dollars (NWS, 2017). From a demographic perspective, 
both cities have similar racial composition with a substantial presence of Native 
American or Alaskan Native population groups (Table 1). 
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Table 1. Anchorage and Fairbanks physical and social characteristics 

City Anchorage Fairbanks 

Climate (Koppen)  Subarctic (Dfc) Subarctic (Dfc) 

Latitude 610 N 650 N 

Mean Sea Level (Meters) 31 136 

Population (2010) 293,310 31,760 

% White Population 63% 65.7% 

% Racial Minority Population 
(Significant) 

Native 8%, Asian 8%, Black 6%  Native 10%, Black, 9%, Asian 
4%,   

BGI Density (Sq.Km)  64 160 

Major Flood Years and causes 
 
AR* = Atmospheric River 

1995 - Fall Rainstorm (AR) 
1997 - Rain and Snowmelt (AR) 
2002 - Fall Rainstorm (AR) 
2005 - Fall Rainstorm (AR) 

1967 - Summer Rainstorm 
2008 - Summer Rainstorm 

 

The experience of floods over several decades has made the city of Anchorage 
require a Flood Hazard Permit prior to construction of all new buildings (MUNI, 2018). 
The buildings are required to be at least one foot above the elevation of the 100-year 
flood. In Fairbanks, the city has institutionalized structural and non-structural Best 
Management Practices (BMPs). Structural BMPs include erosion control, sediment 
control, velocity control, and treatment practices, while non-structural BMPs include 
project design, housekeeping, and phasing. Although many of the efforts of both cities 
go towards fluvial flood mitigation, pluvial flooding remains a major policy concern for 
urban planners and residents.  

Due to climate change, Alaska has warmed by about 2.5o F (1.4o C) since the 
1970s, compared to about 1.5o F (0.8o C) for the contiguous US as a whole (Stewart el 
al., 2017). Further, by the middle of the 21st century, average annual precipitation is 
expected to rise by 10 % or more across all of Alaska under a higher emission pathway 
(Stewart et al. 2017, NASEM, 2019). The floods associated with this climate change 
scenario could adversely impact high population centers. The floods associated with 

5

Pallathadka et al.: Pluvial Flood Risk and Blue-Green Infrastructure in Alaska

Published by UWM Digital Commons, 2021



 

 

this climate change scenario could adversely impact high population centers, such as 
Anchorage and Fairbanks (Fig. 2). These cities could face loss of life, damages to 
property, infrastructure, livelihoods as well as disruption of essential services due to 
flood impacts.  

 

 

Figure 2. Land cover classes in Anchorage and Fairbanks, Alaska 

As a response to climate change, cities in Alaska have begun to implement Blue-
Green space in most of their streets (UAF & USACE, 2019). The green infrastructure 
performance and maintenance are limited in scope when comparing the relationship 
between green spaces and flood mitigation in Alaska. BGI contributes to more benefits 
than negative effects, such as mitigation of pluvial floods, promotion of urban cooling, 
conservation of biodiversity and boosting urban agriculture (Voskamp & Van de Ven, 
2015). Therefore, BGI should integrate urban landscapes that give multiple benefits and 
minimize the amount of land required (Dawson et al., 2020; Krivtsov et al., 2020). In 
the context of social vulnerability to flood exposure, the integration of BGI in Alaskan 
cities remains largely understudied; an integrated model with various aspects and 
patterns of reducing the extent of damage is needed. However, the urban planning 
system would require integrating social, environmental, technical, institutional, and 
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legal aspects, as well as economic benefits (Lindberg et al., 2016); therefore, 
understanding the social vulnerability of Alaska's major cities is critical for mitigating 
urban floods through the development of an integrated urban green space. 

3. Data and Methods  

3.1 Data collection 

We collected data from three major sources: US Geological Survey (USGS), US 
Census Bureau, and City GIS Department (Table 2). Digital Elevation Model (DEM) data 
of 5-meter resolution is available in the USGS catalog for Alaska. The US Census Bureau 
publishes American Community Survey (ACS) on its website, which is also easily 
accessible. We used 2010 ACS data because some of the variable data for Alaska is 
incomplete for later years. Municipality of Anchorage hosts an open GIS data portal, 
which carries an extensive set of spatial data in a well-organized manner. Fairbanks-
area GIS data is available for educational use on request.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Elevation, sociodemographic and BGI data used for analysis 
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Data Digital Elevation Model 
(DEM) 

American Community Survey 
(ACS) 

Blue-Green 
Infrastructure Layer 

Year (s) 2015 2010 (5 Year Estimates) 2010 – 2015 

Type (s) Raster Survey Vector 

Variable (s) 5-Meter ● Population 

● Population Density 

● % Single Largest 
Minority Group 

● % Renters 

● % Poverty 

● % College and Advanced 
Degree Holders 

● Basic Storm 
Infrastructure 
(drains, inlets, etc.) *  

● Green Facilities (Rain 
Gardens, Bioswales, 
etc.) 

● Parks 

● Wetlands 

● Ponds and Lakes 

Purpose Derive Blue Spots using 
surface elevation 
variation 

Calculate Social Vulnerability Combine and Calculate 
BGI Density 

Source US Geological Survey 
(USGS) 

US Census Bureau City GIS Department 

*Gray infrastructure count incorporated to provide comprehensive picture as typically Green 
Infrastructure and Blue Infrastructure incorporate some element of Gray Infrastructure in cities in the 
form of drainage outlets, catch basins, and pipes; general manholes excluded 

 

3.2 Methods  

To delineate a pluvial flood zone, we used the Malstrøm method for identifying 
networks of depressions in the topography of the study areas, known as conducting 
Blue Spot modeling (Balstrøm et al., 2018). This method delineates flood sensitive 
areas, where the likelihood of flooding is relatively high and where its consequences on 
populations are significant (Climate-ADAPT, 2015). Through the Blue Spot analysis with 
the 5-meter DEM data, we identified low-lying areas in the landscape (census block 
groups). The low-lying areas are possibly pluvial flood zones under 10-year return 
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period storm conditions, for which stormwater management infrastructure is typically 
designed. We processed the DEM in ArcGIS 10.7 (ESRI, 2019) model builder to identify 
the bluespot areas of at least 5 cm (0.05 meter) depth within the city. The processing 
included running ArcGIS tools fill, fill, con, and raster to polygon to extract the output.  

We then summarized the area of the pluvial floodplain (Blue Spots) by the unique 
census identifier known as GEOID and divided it by the total area of GEOID (of each 
CBG). Next, we multiplied the result by 100 to derive the total % of Blue Spot area per 
CBG. Also, we created a BGI layer by combining parks and wetlands layers. For 
additional precision, we added the stormwater infrastructure layer. We then 
summarized the combined BGI layer at CBG-scale and divided by the total area (Km2) 
of each CBG to obtain the density of BGI. We used demography data from the American 
Community Survey (Census) five-year estimates in 2010 to determine social 
implications of the results (Cutter & Finch, 2008; Rufat et al., 2015). All three data, Blue 
Spots, BGI, and social vulnerability indicators, were summarized using the following 
formula (Eq. 1):  
 

𝑉𝑖 =  
𝑋𝑖− 𝑋𝑖𝑚𝑖𝑛

𝑋𝑖𝑚𝑎𝑥− 𝑋𝑖𝑚𝑖𝑛
 (1)  

Where Vi = normalized value of indicator Xi, Ximin, and Ximax represent the minimum and 
maximum values of a specific indicator i, respectively. 

First, using normalized values of % Blue Spots and Density of BGI, all the Blue 
Spots and BGS were sorted in a descending order. Top 25% CBGs were identified for 
each variable and labeled as High Blue Spots and High BGI, respectively. The remaining 
CBGs that do not fall into these two groups (the remaining 75% each) were labeled as 
Low Blue Spots and Low BGI, respectively.  By combining these top quartiles and the 
remaining three quartiles, four new classes of CBGs were created (Table 3).  

 

 

 

 

 

 

 

Table 3. Classification of CBGs based on the combination of Blue Sport and BGI density  
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  Blue Spot (%)  

  Top quartile  Remaining quartiles 

BGI 
density 

Top quartile High Blue Spot, 
High BGI 

Low Blue Spot, High BGI 

Remaining 
quartiles 

High Blue Spot, 
Low BGI 

Low Blue Spot, Low BGI 

 
 
 Second, social flood vulnerability was calculated using a set of indicators 
(Cutter et al., 2003, Chang et al., 2021b) to identify the underlying social vulnerability 
patterns (Table 4). Each indicator was normalized on a scale of 0-1 using the minimum-
maximum rescaling formula described above. The social vulnerability of a CBG is the 
sum of all the normalized social indicators for the CBG. 

For indicators that are inversely related to pluvial flood vulnerability, the formula 
shown below was used for standardization (e.g., higher % educated population reduces 
vulnerability; Eq. 2). For top quartile Blue Spots that intersected with top quartile BGI, 
we interpreted those CBGs as having proportionate distribution to flood risk, whereas 
top quartile Blue Spots that fall in socially vulnerable CBGs and share top quartile BGI 
were interpreted as having equitable distribution.  

𝑉𝑖 =  
𝑋𝑖𝑚𝑎𝑥− 𝑋𝑖

𝑋𝑖𝑚𝑎𝑥− 𝑋𝑖𝑚𝑖𝑛
 (2) 

 

 

 

 

 

 

 

 

Table 4. Social vulnerability indicators relationship to pluvial flood vulnerability 
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Indicator Hypothesized 
relation 

Justification Reference 

Population 
SV1 

+ More people living in a place, more people are 
exposed to floods 

Rufat et al., 
2015; Cutter, 
2016 

Population 
Density 
SV2 

+ High Population Density makes a place more 
vulnerable 

Cutter, 2016; 
Tate et al., 
2011; Khan, 
2012 

Racial Minority 
Group 
(Significant) 
SV3 

+ Minorities form disadvantaged groups socially 
and economically, so they are more vulnerable 

Anguelovski et 
al., 2016; 
Schmidtlein et 
al., 2011 

Educational 
Attainment 
SV4 

- Higher education (Bachelor’s or higher) is 
associated with better standards of living and 
safety, making them less vulnerable 

Douglas et al., 
2012 

Renters 
SV5 

+ Renters have less flexibility and financial 
independence during flood events, making them 
more vulnerable 

Rufat et al., 
2015 

Poverty Based 
on Income 
SV6 

+ Poor people are less mobile; more likely to be 
homeless, and more exposed to floods 

Nesbitt et al., 
2019;  
Schmidtlein et 
al., 2011 

 

(SV1N+SV2N+SV3N+SV4N+SV5N+SV6N) = Social Vulnerability 

 

 

 

4. Results 
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The Blue Spots in Anchorage range from 0 - 60 %, with an average of 5 %. The 
BGI density in Anchorage is 64/Km2. In Anchorage, high % Blue Spots are located in the 
northeast, west, and central neighborhoods (Fig. 3).  

 

Figure 3. Anchorage social vulnerability, Blue Spot & BGI distribution map 

 

Neighborhoods such as Russian Jack Spring and Spenard have both high % Blue 
Spots and high density of BGI. Other neighborhoods such as Fairview and Taku / 
Campbell have high density of BGI, but low % Blue Spots. The neighborhoods with low 
density of BGI, but high % Blue Spots are primarily South Addition and Downtown 
Anchorage. In Anchorage, overall, Blue Spots and BGI show positive correlation (r = 
0.53, p < 0.01). The neighborhoods with high social vulnerability, among others, are 
Downtown Anchorage, Fairview, Government Hill, Mountain View, North Star, Russian 
Jack Park, and Spenard (Fig. 4). 

 
 

12

International Journal of Geospatial and Environmental Research, Vol. 8, No. 3 [2021], Art. 2

https://dc.uwm.edu/ijger/vol8/iss3/2



 

 

 

Figure 4. Neighborhoods of Anchorage, Alaska 

In Anchorage, 55 % of CBGs (33 of 59 significant CBGs) show high Blue Spots and 
high BGI and 20 % of CBGs (12 of 59 significant CBGs) show high Blue Spots and low 
BGI. The remaining 25 % of CBGs (14 of 59) display low Blue Spots and high BGI. In 
Anchorage, 10 socially vulnerable CBGs intersect with high Blue Spots and high BGI 
CBGS (Table 5), whereas no socially vulnerable CBGs directly intersect with high Blue 
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Spots and low BGI CBGs (n = 12), and two socially vulnerable CBGs intersect with low 
Blue Spots and high BGI CBGs (n = 14). 

The Blue Spots in Fairbanks range from 0 - 84 %, with an average of 35 %. 
Fairbanks boasts an impressive BGI of 160/Km2. In Fairbanks, socially vulnerable 
neighborhoods generally have low % Blue Spots with low BGI for the top quartile (Fig. 
5).  

 

Figure 5. Fairbanks Blue Spots – BGI distribution map 

Fairbanks has only one CBG where a high density of BGI intersects with high % 
Blue Spots. Other neighborhoods have low % Blue Spots and low concentration of BGI. 
In Fairbanks, Blue Spots and BGI show negative correlation (r = -0.021). We note some 
of the neighborhoods with high social vulnerability, among others, are Aurora / Totem 
Park, South Van Horn and Tovey Dr / Birch Ln. Low social vulnerability is found in 
neighborhoods such as Hamilton, Richardson Hwy / Old Richardson Hwy, and Lemeta. 
In Fairbanks, 9 % of CBGs (1 of 11 significant CBGs) show high Blue Spots and high BGI, 
about 45 % of CBGs (5 of 11 significant CBGs) show high Blue Spots and low BGI (Table 
5). The remaining CBGs (5 of 11 significant CBGs) show low Blue Spots and high BGI. In 
Fairbanks, one socially vulnerable CBGs intersects with high Blue Spots and high BGI 
CBGS (n = 1), whereas no socially vulnerable CBGs directly intersect with either high 
Blue Spots and low BGI CBGs (n = 5) or with low Blue Spots and high BGI CBGs (n = 5). 
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Figure 6. Neighborhoods of Fairbanks, Alaska 
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Table 5. Classification of social vulnerability and its overlap with Blue Spots and BGI 

City Classification 
of Social 
Vulnerability 
(SoV) 

Number 
of CBGs 

Number of 
CBGs that 
intersect 
with High 
Blue Spots 
and Low BGI 

Number of 
CBGs that 
intersect 
with High BGI 
and Low Blue 
Spots 

Number of 
CBGs that 
intersect 
with High 
Blue Spots 
and High BGI 

Number of 
CBGs that 
that intersect 
with Low 
Blue Spots 
and Low BGI 

Anchorage  
(n = 187) 

High Sov 43 0 3 10 30 

 
Medium-High 
SoV 

31 0 1 5 25 

Medium SoV 35 0 2 7 26 

Low SoV 78 12 8 11 47 

Fairbanks 
(n = 23) 

High SoV 6 0 1 1 4 

Medium-High 
SoV 

6 2 2 0 2 

Medium SoV 6 0 1 0 5 

Low SoV 5 2 2 1 0 

 

5. Discussion 

5.1. Equitable and Proportional Distribution: Challenges and Opportunities 

The Anchorage spatial analysis results suggest that (i) BGI is relatively 
proportional to pluvial flood risk, and (ii) BGI is equitably present from a pluvial flood 
risk perspective in that no socially vulnerable hotspot CBG (top quartile CBG) lacks 
adequate BGI (top quartile BGI) protection. Several natural disasters such as blizzards, 
earthquakes, floods, and wildfires have affected downtown Anchorage and its 
surrounding neighborhoods over the past several decades. Because the majority of 
Anchorage municipality, outside of the core urban neighborhoods, is largely forested 
terrain, historically there has been very little green space in the city. Anchorage City 
Stormwater Manual and state government recommendations show extensive research 
into how BGI is distributed in the city, with emphasis on past flood experiences. 
Although no specific research into pluvial flood vulnerability is available now, these 
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policies are a result of decades of observation of increasing flood trends in Anchorage 
neighborhoods, (Anchorage Watershed Management Services, 2019), suggesting that 
social learning might have played a role in reducing flood risk in the city (Chang et al. 
2021a) and improving BGI coverage. 

The Fairbanks spatial analysis results suggest that (i) BGI is relatively not 
disproportional to pluvial flood risk, but (ii) BGI is equitably present from a pluvial flood 
risk perspective, in that no socially vulnerable hotspot CBG (top quartile CBG) lacks 
adequate BGI (top quartile BGI) protection. Fairbanks historically benefited from 
nearby mining and oil activity. Fairbanks' economy grew as a result, and it is reflected 
in its image as a much safer university town (The National Campus Safety Summit, 
2020). These factors may have contributed to the overall low level of social vulnerability 
and the equitable distribution of BGI. The disproportional BGI distribution may have 
resulted from Fairbanks’ city area being much smaller (85 km2), compared to the 
Anchorage city area (287 km2). The flood mitigation efforts have shown to face 
proportional distribution challenges in a smaller geographic area (Liu & Jensen, 2018). 
Because of their limited geographic area, smaller cities often find it difficult to find the 
balance between basic infrastructure and sufficient BGI. With a framework like the one 
described here; it is still possible to achieve balance. 

It is worth noting that the intervention, i.e., BGI, does not completely prevent 
storm runoff on the surface in all zones during rainfall events. Therefore, a 
neighborhood’s capacity to store and convey storm runoff requires more intervention 
than that of either proportional or equitable distribution of BGI; however, the 
expansion and conservation of green urban spaces has potential benefits for livability 
and social wellbeing (Donovan & Butry, 2010; Foster, Lowe, & Winkelman, 2011; 
Jennings, Larson, & Yun, 2016; Moudrak et al., 2018). Green spaces are not only 
economical but also an environmentally friendly approach to address storm runoff and 
pluvial flooding. Enhanced understanding of ecosystem services and the benefits they 
generate across diverse urban landscapes could therefore help to inform flood-related 
policy and decision making. 

5.2 Social Vulnerability Context in Spatial Planning 

In Anchorage, socially vulnerable areas have a higher proportion of Blue Spots, 
suggesting that socially vulnerable groups tend to live around flood risk zones 
(Kawasaki, Kawamura, & Zin, 2020; Frank, 2020). The frequent floods often keep the 
affluent home buyers away, likely contributing to underdevelopment of such 
neighborhoods. Anchorage ranked average on a list of cities with gentrified 
neighborhoods (Guerrieri, Hartley & Erik, 2013), and there is evidence to suggest that 
gentrification impacts both homeowners and renters but threatens renters with 
displacement more often than homeowners (Martin & Beck, 2016). In Anchorage, we 
observed that the percentage of renters is high in certain neighborhoods, but there is 
no concrete evidence to suggest that these neighborhoods have already undergone 
gentrification. The overall social vulnerability pattern in Anchorage, however, tends to 
be embedded in concerns unique to Anchorage because of chronic challenges such as 
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homelessness, mental illness, crime, and drug abuse happening in certain 
neighborhoods (Dobbyn, 2020). Over time, this contributes to a phenomenon 
comparable to Broken Windows Theory, which suggests that visible signs of disorder in 
a neighborhood encourages further disorder (Kelling, 2020). 

In Fairbanks, however, the top socially vulnerable populations do not directly 
intersect with top flood-risk CBGs; the middle and lower socially vulnerable populations 
do. BGI is equitably distributed here but is not proportional to flood risk. Hence, the 
social characteristics of neighborhoods exposed to flooding need to be considered in 
flood management planning (Kok et al., 2014). Such considerations may reduce gaps in 
equitable and proportional distribution of BGI. Today, a growing number of researchers 
are embracing the idea that there are important links between social equity and 
economic growth (Eberts, Erickcek, & Kleinhenz, 2006; Benner & Pastor, 2016; 
Fitzgibbons & Mitchell, 2020). In cities like Salt Lake City and San Antonio, a deliberate 
consensus-oriented regional planning process has contributed to a long and sustained 
record of both above average employment growth and improvement in social equity 
(Benner & Pastor, 2016).  

5.3 Multidimensional Spatial Planning of BGI as a priority 

The study demonstrates that success of BGI acting as a pluvial flood 
management strategy requires more than instituting urban policies. A 
multidimensional approach, which involves understanding social vulnerability with 
inputs from stakeholders such as industry experts, public advocacy groups, and the 
general public, may be necessary in urban spatial planning to focus on areas of high 
Blue Spots and low BGI (Woltjer, 2005). The social variations within this wide spectrum 
opens numerous opportunities for urban planners to improve their spatial planning 
priorities. Some CBGs with low Blue Spots containing high BGI further underline the 
fact that situating BGI is often done for reasons other than flood mitigation alone. The 
critical analysis of such policies facilitates the implementation of flood management 
strategies for all social, economic, and environmental prosperity in flood catchment 
areas (La Rosa & Pappalardo, 2020), which benefit the city's flood management (Ferrati 
et al., 2005). Exploring the multidimensional nature of urban spatial distribution of BGI 
helps to yield a better understanding of the local factors that drive or shape pluvial 
flood vulnerability. The successful implementation of BGI implementation is likely to 
occur when partnering with interdisciplinary scientists and local community members. 
Thus, multidimensional spatial planning directly involving all stakeholders is a priority 
that will gradually impact community livelihoods against pluvial flood damage.          

5.4 Study Implications and Future Research 

          This study reveals the importance of geographical context for long term 
priorities of policymakers and planners in flood resilience planning. In addition, this 
research also highlights the considerations of state and federal agencies. Thus, it is 
important to acknowledge that cities will always differ from each other in how policies 
are implemented, even within the same state. This is a subsequent research direction 
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that can be pursued to analyze how local / regional / federal decision-making impacts 
social vulnerability in urban pluvial floodplains. Future researchers may benefit from 
analyzing BGI distribution patterns from other cities to better understand flood 
management practices and priorities that reduce both flood risk and social 
vulnerability. Other research scope exists in reviewing how cities of different sizes (by 
area and population) present different or similar results in how their UPF zones 
intersect with BGI and socially vulnerable areas. Future research should explore how 
spatial planning impacts cities to have varied distribution patterns of social vulnerability 
and BGI according to their history, geography, and policy goals.  

5.5 Limitations  

The study uses the Blue Spot model, which has certain inherent limitations. First, 
the model is indicative in nature and helps researchers identify areas of flood risk. The 
results should be interpreted with caution and after considering the surface 
characteristics such as pre-existing infrastructure to mitigate risk and the natural 
absorptive capacity of the land. The model is not a replacement for professional 
hydrologic studies, especially because the model uses only one type of data i.e., high-
resolution digital elevation model, along with a city boundary for reference. The model 
does not consider data about the sewer system or any other underground or surface 
drainage channels (Hansson et al.,2010). Second, the BGI data used in this study 
assumes optimal performance of infrastructure. It does not consider real world issues 
like poor maintenance, lack of access for water flow, and the presence of other natural 
vulnerabilities such as fluvial flooding, extreme cold, and thawing permafrost, which 
may significantly impact the performance of BGI (Semadeni-Davies, 2004). Finally, we 
acknowledge that there are different indicators of social vulnerability, as there are 
different ways of calculating the same issues, which may yield slightly or vastly different 
results. For example, crime rate, homelessness, tax assessed value, and language 
proficiency may also be useful indicators in the context of this study. 

 6. Conclusions 

This study examined the relationship between pluvial flood exposure and the 
distribution of BGI (BGI) in Alaska at CBG scale. We used a Blue Spot model to analyze 
the areas of flood risk in Anchorage and Fairbanks. Further, we measured social 
vulnerability using a set of indicators to capture the underlying socioeconomics as they 
relate to pluvial flooding. Our results highlight that the urban distribution of BGI can be 
equitable, proportionate, or both. BGI is distributed equitably and proportionately in 
Anchorage, while it is only distributed equitably, not proportionally in Fairbanks. A just 
resilient city would ensure both types of distribution to mitigate the effects of pluvial 
flooding as well as improve socioeconomic conditions, guaranteeing environmental 
equity. Hence, the employed Blue Spot analysis can help to strengthen the planning 
activities within urban centers. The BGI with well-designed and managed grey 
infrastructure is likely to ensure urban management that contributes to social 
development, economic prosperity, environmental integrity, and community 
resilience. The green space’s role is not limited to planning cities but extends to 
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ecological production and benefits such as wildlife conservation and aesthetic beauty 
for landscape orientation.  

This study's outcome provides an approach that obtains a diverse quality 
framework that integrates vulnerabilities of flood risk and feasible solutions for 
meeting practical objectives of communities, urban planners, and policymakers.  This 
study’s conclusions provide better information and management for city practitioners 
and policymakers in Alaska, and other parts of the United States where pluvial flooding 
risk may exist. Drawing on the results of these studies, we recommend that better 
planning and resource allocation in cities with green spaces would help to foster 
sustainability by reducing economic loss and social inequities, while ensuring 
protection and integrity of the environment.  The study emphasizes considering any 
local social factors and variations for equitable and proportionate distribution of BGI. 
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