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Abstract

Wound Image Classification using Deep Convolutional
Neural Networks

by

Behrouz Rostami

The University of Wisconsin–Milwaukee, 2021
Under the Supervision of Professor Zeyun Yu

Artificial Intelligence (AI) includes subfields like Machine Learning (ML) and Deep

Learning (DL) and discusses intelligent systems that mimic human behaviors. ML

has been used in a wide range of fields. Particularly in the healthcare domain, med-

ical images often need to be carefully processed via such operations as classification

and segmentation. Unlike traditional ML methods, DL algorithms are based on deep

neural networks that are trained on a large amount of labeled data to extract features

without human intervention. DL algorithms have become popular and powerful in

classifying and segmenting medical images in recent years. In this thesis, we shall

study the image classification problem in smartphone wound images using deep learn-

ing. Specifically, we apply deep convolutional neural networks (DCNN) on wound

images to classify them into mutiple types including diabetic, pressure, venous, and

surgical. Also, we use DCNNs for wound tissue classification. First, an extensive

review of existing DL-based methods in wound image classification is conducted and

comprehensive taxonomies are provided for the reviewed studies. Then, we use a

DCNN for binary and 3-class classification of burn wound images. The accuracy was
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considerably improved for the binary case in comparison with previous work in the

literature. In addition, we propose an ensemble DCNN-based classifier for image-wise

wound classification. We train and test our model on a new valuable set of wound

images from different types that are kindly shared by the AZH Wound and Vascu-

lar Center in Milwaukee. The dataset has been shared for researchers in the field.

Our proposed classifier outperforms the common DCNNs in classification accuracy

on our own dataset. Also, it was evaluated on a public wound image dataset. The

results showed that the proposed method can be used for wound image classification

tasks or other similar applications. Finally, experiments are conducted on a dataset

including different tissue types such as slough, granulation, callous, etc., annotated

by the wound specialists from AZH Center to classify the wound pixels into different

classes. The preliminary results of tissue classification experiments using DCNNs

along with the future directions have been provided.
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Chapter 1

Introduction

1.1 AI and Machine Learning in Healthcare

Artificial Intelligence (AI) is a field of computer science which discusses intelligent

systems that mimic human behavior and includes a wide vriety of subfields and

branches [2]. In recent years, AI algorithms have evolved into so-called data-driven

techniques without human or expert intervention as opposed to the early genera-

tions of AI that were rule-based relying largely on an expert’s knowledge [3]. As a

potential solution for a wide range of human life problems, AI and its subbranches

like Machine Learning (ML) have been used in different areas from banking and fi-

nance to manufacturing, policing, and marketing [4, 5]. Specifically, healthcare can

be named as an important field in which AI and ML footprint can be found fre-

quently [3]. Cancer, neurology, cardiology, radiology, ophthalmology, immunology,

genetics, and wound care are just a few examples in healthcare that benefited from

AI and ML in the recent years [6, 4, 7, 8, 9, 10, 11, 3]. Moreover, recent advances

in computer vision techniques including object classification, detection, and segmen-

tation has been resulted in using ML widely in some healthcare subfields such as

medical imaging [12]. Also, ML has enabled many image analysis applications of

Computer-Aided Detection (CAD) systems. Such systems have shown remarkable
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results when applied to different fields including healthcare [13]. CAD systems built

for medical image analysis, assist medical care providers and radiologists with deci-

sion making to improve the detection of abnormalities by reducing the false negative

rate [14, 15]. Lung nodule detection [16], skin cancer classification [17, 18], Diabetic

retinopathy detection [19, 20], and breast cancer analysis are a few out of many CAD

systems from the literature.

Traditional machine learning algorithms are mostly knowledge-driven techniques

in which an expert should define ad-hoc features to be used for training the algo-

rithm. On the other hand, Deep learning (DL) methods which are a subset of ML,

are trained to extract hierarchy of features out of large volumes of data usually

without any need for extensive image pre-processing or hand-crafting features (i. e.,

data-driven techniques) [21]. In fact, by using several hidden layers, deep networks

are able to capture and model very complex relationships between the system’s in-

put and output [22]. Since 2012 that a deep learning model, AlexNet, showed a

superior performance in image analysis over traditional machine learning techniques,

several deep learning approaches proposed for data analysis in different fields [2].

Furthermore, Transfer Learning (TL) accelerates model training significantly as well

as improving the model’s performance [23, 24]. In fact, TL is a technique that en-

ables researchers to apply a knowledge which was learned on a different domain into

a new problem [25]. It became more popular in deep learning algorithms as training

these networks require tremendous amount of data. Therefore, utilizing a pre-trained

model can surmount the difficulties of training models from scratch resulting in a

more efficient model training. This is critical for the medical image analysis appli-
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cations due to the data leakage problem as a usual issue in the field [26].

1.2 Wound Management - Medical Background

As one of the most important organs in human body, skin has several vital roles

including protecting the internal body organs from external harmful factors [27]. If

this important organ is damaged, its functions will be affected significantly [27]. Con-

sidering the origin for this damage, wounds are classified under two main categories:

acute or chronic. In fact, acute group includes those wounds which are caused by an

external agent, while chronic wounds are originated from an internal cause [28]. The

external cause includes agents like bites, burns, and minor cuts [28]. Also, agents

such as neoplasm, impaired venous drainage, and some metabolic deseases including

diabetes can be named as internal causes [28]. Each of acute and chronic category

includes different types of wound. For example, acute group include types like sur-

gical and burn wounds and chronic group includes types such as venous, arterial,

pressure, and diabetic [28].

Acute and chronic wounds are a challenge and burden to healthcare systems world-

wide. In the United States alone, acute wounds affect 11 million people and chronic

wounds influence more than 6 million humans annually with an estimated medicare

burden of $28.1 billion to $96.8 billion (US) [29, 30, 31]. Also, in Europe, based

on estimations, 1.5 to 2 million people are affected by acute or chronic wounds [32].

Moreover, it has been estimated that there are nearly 3500 people in a population

of 1 million, will experience having a wound [32]. From this affected population, for

3



525 people it takes more than 1 year for the wound to be healed [32]. In addition,

estimations show that 14-24% of diabetic patients that developed foot ulcers will

experience an amputation [33]. Specifically, it has been shown that chronic wounds

have many mental effects including patient’s depression and social separation in ad-

dition to physical problems [34]. This information, in addition to other risks like

wound infection show that how having an efficient wound management plan is criti-

cal for both patients and physicians and may result in a better wound treatment and

healing process. Early diagnosis is an important step in wound detection and may

result in having faster healing process [35]. Visual investigations and evaluations are

currently the most common approaches for wound assessment and analysis. However,

these methods are prone to human errors [35]. In the recent years, many researchers

used AI and its subbranches to solve the mentioned issues. Next subsection discuss

advances in one of the most common areas in wound management, wound image

analysis.

1.3 Wound Image Analysis

The characterization of a wound is a key step in wound diagnosis that would help

clinicians to identify an optimal treatment procedure and assess the efficacy of the

treatment [36]. Many studies proposed wound image-based analysis approaches to

make the wound diagnosis more efficient. Wound image analysis includes different

tasks such as classification, segmentation, and tissue analysis. Wound classification

is an important step of wound image anlysis and defines as classifying a wound as
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a whole into different types (e.g., venous, diabetic, pressure) or different conditions

(e.g., ischemia vs. non-ischemia, infection vs. non-infection) and constitutes an

essential part of wound assessment [37]. Moreover, in some cases visual analysis of

the wound is the approach usually used for wound analysis which is not accurate

and may result in human errors [38]. Therefore, having an efficient wound classifier

with a reliable classification performance will result in saving time and money [36].

Also, having a tool that is able to specify and separate different wound tissue types

automatically, helps the wound specialists to have better wound healing monitoring

and more precise measurments [39].

Many papers have been published in the wound care field within the recent years.

Some of them discussed the wound classification problem using a traditional machine

learning algorithm [40, 41] and part of the researches studied the wound classifica-

tion problem using more modern techniques like DCNN-based methods [42, 43, 44].

However, only a few papers were identified that discussed wound analysis from the

wound type classification point of view. Also, most of the publications on wound

type classification topic, discussed only the binary classification problems such as

classifying the samples into normal and abnormal cases. Having difficulties to access

a reliable dataset can be mentioned as a reason for this issue.

In the wound analysis part of this thesis we will use deep convolutional neural

networks for wound image analysis including wound type and tissue classification.

The first phase of our wound image analysis project is wound type classification.

Initially, we do the classification for burn wound images and then study the classfi-

cation of chronic wounds. In more detail, by collaborating with a well known wound
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clinic in Milwaukee, AZH Wound and Vascular Center, we obtained a valuable set of

wound images from different types including diabetic, venous, pressure, and surgical.

We propose a DCNN-based classifier to classify the wound images into two or mul-

tiple classes. The second phase would be the tissue type classification or semantic

segmentation of the wound tissues. In this step, we use DCNNs for classifying each

pixel of the input wound image into one of the predefined tissue types including

granulation, necrotic, slough, callous, and so on.

1.4 Contribution and organization

In this thesis, (1) we review the existing deep learning-based acute and chronic

wound image classification studies extensively and suggest a comprehensive taxon-

omy of existing works in burn and chronic wound classification. To the best of our

knowledge these are the first taxonomy in the literature. (2) We use a deep convo-

lutional neural network for classifying burn wound images into 2 and 3 classes. We

test our classifier using a bublicaly available burn wound image dataset and compare

our results with one of the previous works in the literature. Our results showed a

considerable improvement on the classification accuracy for the binary classification

problem. (3) We introduce a new dataset of real wound images, collected by AZH

Wound and Vascular Center, containing image data with more wound types than

those considered in the prior publications including diabetic, pressure, venous, and

surgical wound types. All these images along with their types and corresponding

extracted ROIs will be made publicly available. (4) Numerous experiments were
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conducted for patch-wise wound image classification and the prformance of differ-

ent patch classifiers were evaluated to be used as a building block of a whole image

wound classifier. (5) As the main contribution of this thesis, we propose an end-

to-end ensemble DCNN-based classifier to classify the entire wound images. To the

best of our knowledge, this research is the first study in which an ensemble deep

learning-based method used for image-wise classification of the wound images into

multiple types. We have proposed an innovative combining strategy to combine a

patch classification-based classifier and a common DCNN, AlexNet to classify the

wound images. Transfer learning technique is utilized and the pretrained deep con-

volutional neural networks are fine-tuned by our own wound image dataset to provide

a more efficient classification performance. By accepting the entire wound image as

the input for the model, our proposed approach is able to generate the wound type

as the output. (6) The performance of the proposed model is evaluated by testing on

our own wound image dataset as well as comparing with some common deep convo-

lutional neural networks used in the literature and testing on a publically available

wound image dataset. (7) We review comprehensively the recent articles in the filed

wound tissue classification and analysis and provide an extensive taxonomy for the

reviewed suties. To the best of our knowledge, this is the first taxonomy in the liter-

ature. (8) We introduce a new wound image dataset including different tissue types

annotated by the AZH Center’s specialists. The dataset will be made publically

available after collecting more images and getting the required permissions from the

clinic. (9) We use deep convolutional neural networks along with SLIC superpixel

generation method for classifying the wound image pixels into different tissue types
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including slough, granulation, callous, etc.

The rest of this thesis is organized as follows: In chapter 2, an introduction to deep

learning is provided. Also, we discuss some of the most common deep architectures

that were used in the literature in detail. At the end of this chapter, we discuss

some applications of deep learning in healthcare and wound care. In chapter 3,

first we discuss the burn wound image classification topic which includes reviewing

the previous works, the utilized dataset, our method, and the results. Chapter 4 is

dedicated to the multiclass wound image classification topic which is the core part

of this thesis. This chapter includes a comprehensive review on the recent studies

in the literature, as well as talking about our dataset, the proposed method, and

the results. Chapter 5 discusses the pixel-level classification of wound images which

is the next step in wound image classification task. Finally, this thesis included in

Chapter 6 along with talking about the future directions.
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Chapter 2

Deep Learning

2.1 Introduction

In its early stages, Artificial Intelligence (AI) was used to solve the problems that were

hard for human but easy for computers. An example for these problems is defeating

a chess champion by a computer that was happened in 1997 [45]. Gradually, humans

started to use AI to do tasks that are hard for computers, but easy for people. In

fact, people can do these tasks easily, but explaning them formally and by using a

set of rules is hard. In order to use computers for solving the mentioned problems,

human needed to find a way to transfer knowledge to them [45]. In Machine learning,

computer can extract these knowledge from the raw data. By finding the relation

between some manually extracted features and the system’s output, computer is

be able to detect the outcome for a new input. The fact that how we define the

features to the system has an important role in its performance. Also, there are

many problems in which knowing about what features are the best for that specific

task, is difficult [45]. In representation learning, the feature extraction step is done

automatically which is resulted in saving time. Also, the system is able to define the

best features by its own. However, simple or classic machine learning tools are not

able to extract very high-level features that are needed for more complex tasks [45].
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Deep learning has solved this issue by extracting different levels of features and

constructing the higher level complex features on top of the early stage simpler

features. Deep learning models are advanced version of simple Multilayer Perception

(MLP) [45]. In spite of their anticedents that had only a few hidden layers, deep

networks include several sequential hidden layers that make it possible to extract

more informative features [45, 6]. In fact, deep learning is a representative of the

data-driven developments, which is able to analyze complicated data automatically

and extract the needed information, relationships, and patterns [46, 4].

2.2 Deep Convolutional Neural Networks (DCNN)

Deep convolutional neural networks are one of the most common deep learning mod-

els with a varying number of hidden layers. They are different from the classical

neural networks that have a limited number of layers between the network’s input

and output [6]. In a DCNN, convolution is the main mathematical operation to pro-

cess the network’s input [21]. In more detail, Convolutional Networks (ConvNet) are

usually built from layers of convolution, sub-sampling, and optional fully connected

layers [47]. Unique characteristics of ConvNets such as weight sharing and transition

invariance that result in reduced number of parameters and simplify calculations

have transformed them to one of the most popular deep learning architectures [21].

In the rest of this chapter, we introduce some of the most famous DCNNs and dis-

cuss their structure in more detail. Most of the reviewed deep architectures in this

section are winner algorithms of ImageNet Large Scale Visual Recognition Challenge
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(ILSVRC) [48]. ILSVRC is an annual competition which evaluates the object de-

tection and image classification performance of different methods in large scale. By

holding the competition researchers can compare detection methods in a wider range

of objects and measure the advancement of machine vision based approaches in large

scale image tasks such as annotation. We refer the interested readers to a very good

survey on deep learning approaches [49] to get a more detailed summary of each of

the described networks.

2.2.1 AlexNet

AlexNet is a deep CNN architecture proposed in 2012 as the winner of ILSVRC.

It was able to beat all of the traditional machine learning methods [1, 49]. This

network has 8 layers with 60 million parameters. The first five layers of the network

are convolutional layers and the last three layers are fully-connected layers. The last

fully connected layer is connected to a softmax that generates 1000 probability values

for 1000 class labels [1]. Figure 2.1 shows the AlexNet architecture.

Figure 2.1: AlexNet architecture [1].
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2.2.2 VGGNet

This deep CNN which proposed in 2014 by Visual Geomtry Group, indicated that

by increasing the netwrok’s depth, higher accuracy values can be achieved in some

task such as classification [50]. Three VGGNet models proposed with the names

VGG-11, VGG-16, and VGG-19 which the numbers at the end of the names shows

the number of layers in the network. VGG-19 has 138 million parameters [49].

2.2.3 GoogLeNet

GoogLeNet is another deep convolutional neural network proposed in 2014 [51]. This

network is a particular shape of the Inception architecture and includes 22 layers. The

important feature of this network is dimension reduction. Comparing with AlexNet

and VGGNet, the number of parameters are considerably lower in GoogLeNet which

reduces the complexity of calculations [49]. Specifically, in comparison with the

AlexNet architecture proposed in 2012 [1], GoogLeNet provides 12 times fewer pa-

rameters [51].

2.2.4 ResNet

This residual learning-based deep convolutional neural network proposed in 2015 in

different versions such as ResNet18, ResNet34, ResNet101, ResNet152 which have

different number of layers [52]. ResNet50 is one of the must popular ResNet models

with 50 convolution layers and 25.5 million parameters [49]. Despite of being deeper

in comparison with some networks like VGGs, ResNet has lower complexity [52]. In
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2015 an ensemble of ResNet architectures outperformed the other methods on the

ILSVRC classification task and won the first place [52].

2.2.5 InceptionV3

InceptionV3 is a deep architecture proposed in 2014 as one of the versions of the

Inception network [53]. There are different versions for the Inception network such

as InceptionV1 , InceptionV2, and InceptionV3 [53]. Having 42 layers, InceptionV3

network utilized factorization concept to decrease the number of parameters of the

networks and computational complexity. Also, InceptionV3 is faster than its coun-

terparts because of its parallel network implementation [54].

2.3 Deep learning in healthcare

Deep Learning has been utilized widely in various fields including healthcare and

generated considerable outcomes, especially in medical image analysis domain. In

fact, the increasing growth of the data complexity and volume in the medical imaging

realm has resulted in broadly utilization of deep learning in areas like image classi-

fication, segmentation, and detection [6, 2]. Detection of organs and body parts in

MR or CT images, cell detection in histopathological images, and computer-aided

detection and diagnosis are health care examples in which researchers used DL and

its derivatives such as Deep Convolutional Neural Networks (DCNN)[55]. However,

one of the challenges in using deep learning in healthcare is data limitation problem.

Most of the deep learning models need a huge number of data to be trained well and
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for some clinical applications it is not easy to provide this volume of data [56]. In

addition, being not interpretable is another challenge about DCNNs. In fact, DCNNs

are black boxes and there is not the possibility to explain why they are generating

good or bad results [57].

2.4 Deep learning in wound care

At prersent, physicians perform visuall investigations and analysis to obtain some

wound measurements such as area and depth [36, 43]. Many studies have been

conducted by reaserchers in the wound care field recently in which they proposed

automated DL [58, 59, 60] and DCNN-based approches for wound assessment. These

studies cover a wide range of wound image analysis tasks like segmentation [61, 38]

and classification [62, 63, 64]. Diabetic foot ulcer classification, classification of burns

and pressure ulcer, and dermatological image classification are examples of these

studies in wound classification domain. Also, there are some studies in the literature

in which the authors used DCNNs for wound tissue classification [65, 66, 67]. In these

studies, the goal is to classify the wound pixels in the image into different tissue types

like granulation, fibrin, necrosis, etc. [65]. All of the mentioned studies, have clearly

shown the effectiveness and efficiency of deep convolutional neural networks in wound

diagnosis and analysis.
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2.5 Performance Metrics

In this subsection we provide the equations we used in this thesis for investigating the

performance of the classifiers. The performance metrics formulae have been provided

below. More derails about the equations 2.1 to 2.4 can be found in [68]. In addition

to these metrics, we used the Area Under the ROC Curve (AUROC or AUC) metric

in binary classification problems.

Accuracy =
TP + TN

TP + TN + FP + FN
(2.1)

Precision =
TP

TP + FP
(2.2)

Recall(TPR) =
TP

TP + FN
(2.3)

F1 − Score = 2 × Precision×Recall

Precision + Recall
(2.4)
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Loss = −
N∑
i=1

K∑
j=1

(ti,j ln yi,j) (2.5)

In these equations, TP, TN, FP and FN represent True Positive, True Negative,

False Positive, and False Negative measures respectively. Also, the equation 2.5

shows the cross entropy formula used for calculating the Loss function value in clas-

sifiers in this thesis [69].

16



Chapter 3

Burn Wound Image Classification

In this chapter we discuss wound image classification using deep convolutional neu-

ral networks. In wound classification task, the goal is to classify the input wound

image into two or multiple classes. This chapter has been organized under two main

subsections: burn wound image classification and multiclass wound image classifica-

tion. In each subsection, we discuss the previous works in the literature as well as

implemented models and their corresponding results. The chapter is concluded in

Section 4.6.

3.1 Related works

In this subsection, some of the recent publications in burn wound image classification

have been reviewed and categorized under two main subbranches: feature extraction

methods along with an SVM, and end-to-end DCNN-based approaches. Figure 3.1

displays the complete organization chart for the studied papers.

3.1.1 End-to-end DCNN-based approaches

Chauhan et al. used deep learning approaches to classify burn images based on the

part of the body recognized in the image [70]. The proposed method used ResNet-
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Figure 3.1: Organization chart for the burn wound classification papers.

50 architecture to categorize the input burn images into the face, hand, back, and

inner arm classes. The utilized dataset included 109 burn images collected from the

web as well as 4981 non-burnt images obtained from some available datasets. Two

dependent (which used leave-one-out cross-validation) and independent (which used

an independent deep learning model) approaches were tested in this research. The

second strategy generated a better classification performance with an accuracy value

of higher than 93%.

In another article, Cirillo et al. applied deep convolutional neural networks on

burn images to predict the wound depth [71]. The goal was to classify the burn im-

ages into four classes: deep partial-thickness and full-thickness depth, intermediate

to deep partial thickness, superficial to intermediate partial thickness, and the super-

ficial partial thickness. A total of 23 burn images collected by a hospital in Sweden

were used for training the models. 676 extracted ROIs from six classes (four burn-

depth classes as well as normal skin and background categories) were augmented

to overcome the overfitting problem. Four pre-trained deep architectures includ-
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ing VGG-16, GoogleNet, ResNet-50, and ResNet-101 were tested as classifiers. The

ResNet-101 generated the best classification performance with the average classifi-

cation accuracy of 91%. Moreover, the authors claimed that the data augmentation

improved the classification accuracy.

3.1.2 Feature extraction + SVM

Yadav et al. suggested a machine learning-based approach for binary classification

of burn wound images [40]. A traditional color-based feature extraction method

was used in company with a support vector machine to classify the images into two

classes (grafted and non-graft). The utilized dataset contained 94 images from three

burn types including full-thickness, deep dermal, and superficial dermal. The first

two types constituted the ”grafted” class while the ”non-graft” category consisted of

the superficial dermal images. The reported classification accuracy was 82.43%.

Abubakar et al. used DCNNs for binary classification of pressure and burn

wound images [72]. Different deep architectures including VGG-face, ResNet101,

and ResNet152 were applied for feature extraction followed by an SVM to classify

the images into burn or pressure categories. The dataset was collected from the inter-

net as well as a hospital source and contained 29 pressure and 31 burn wound images.

Cropping, rotation, and flipping transformations were utilized for data augmentation.

Also, several binary (burn or pressure) and 3-class (burn, pressure, or normal skin)

classification experiments were conducted. For both classification problems, the best

performance was related to ResNet152 which resulted in classification accuracy of

99.9%.In a second study, Abubakar et al. proposed a classification method based on
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deep learning to classify burn wound images into Caucasian and African patient cate-

gories [73]. Three pre-trained deep convolutional neural networks including VGG-16,

VGG-19, and VGG-Face, were used for feature extraction from the input images. In

the next step, an SVM classified the extracted features into one of the healthy or

burn classes. For each of the deep architectures, three different datasets including

African patients, Caucasian patients, and a combination of them were utilized to

train the SVM. The intent was to study how the combination of the images from

different skin colors affects the classifier’s performance. The dataset consisted of 32

Caucasian and 60 African cases. During the patch generation step, 1360 and 700

patches were extracted from the two groups, respectively. The authors mentioned

that the classification accuracy was higher for Caucasian patients in comparison to

the African patients or to the hybrid group. The combination of VGG-16 and SVM

was reported as the best classification strategy with an accuracy of 99.286% for Cau-

casian patients, 98.869% for African patients, and 98.750% for the hybrid dataset.

ResNet101 architecture followed by an SVM classifier was used in another research

by Abubakar et al. to classify burn wound images into one of the two classes, burn or

normal [62]. A pre-trained ResNet101 architecture was utilized as a feature extrac-

tor and then an SVM was applied for classification. The dataset was collected from

the internet and after augmentation included 1360 images. The reported accuracy

and precision values were 99.49% and 99.56%, respectively. Also, the outcomes were

compared with LeNet’s performance in a similar article which presented 81.81% for

the precision metric.

Table 3.1 summarizes the reviewed papers. Based on this literature review, only
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a few articles studied the burn wound image classification problem and most of them

only discussed the binary classification task. Additionally, it is important to note

that only a limited number of researches used an automatic end-to-end deep learning-

based method for classification. Instead, at the final stage they utilized a traditional

ML tool as the classifier. To address this research gap, we propose an end-to-end

DCNN-based approach to perform binary and 3-class classification of burn wound

images.

3.2 BIP US dataset

In this research, the same dataset that was utilized in a prior investigation [40]

was used for comparing our results with those previously reported. This dataset,

BIP US, contains 94 images from three burn wound types including full-thickness,

deep dermal, and superficial dermal [74]. There are 20, 32, and 42 samples in each

class, respectively. The images have jpg and bmp formats and they are in different

sizes. Figure 5.2 shows some sample images from the dataset.

3.3 Methods

3.3.1 Preprocessing

Data splitting:

In the 3-class classification problem we split the data into train, validation, and test

sets with 76, 9, and 9 images, respectively. For the binary classification experiment,
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Table 3.1: Summary of burn wound image classification works.

Work/Research Classification Methods Dataset

Yadav et al. [40]

Binary classification
of burn images into
wounds that needs
graft and the non-graft
wounds

Support Vector Ma-
chine (SVM).

Burns BIP US
Database.

Abubakar et al. [72]

Binary Classification
of wound images into
burn wounds or pres-
sure wounds.

VGG-face,
ResNet101, and
ResNet15 networks
with SVM classifier

A dataset with 29
pressure wound im-
ages and 31 burn
wound images.

Abubakar et al. [73]

Binary Classifica-
tion of input images
into healthy or burn
wounds.

VGG-16, VGG-19,
and VGG-Face with
SVM classifier

A dataset with 32
wound images from
Caucasians and 60
wound images from
Africans

Abubakar et al. [62].
Binary Classification of
input images into burn
skin or normal skin.

ResNet101 architec-
ture and SVM classi-
fier

An unknown number
of burn wound im-
ages collected from
the internet

Chauhan et al. [70].

Classifying the body
part of burn images into
four classes: back, face,
hand, and inner forearm

ResNet-50 architec-
ture

109 burn images col-
lected from the web
as well as 4981 non-
burnt image

Cirillo et al. [71].

Classifying the burn
images into four classes:
deep partial-thickness
and full-thickness,
intermediate to deep
partial thickness, su-
perficial to intermediate
partial thickness, and
superficial partial
thickness

VGG-16, GoogleNet,
ResNet-50, and
ResNet-101

23 burn images col-
lected by a hospital
in Sweden
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Figure 3.2: BIP US database sample images. The rows from top to bottom display
full-thickness, deep dermal, and superficial dermal samples, respectively.
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since the goal was to compare our method with the approach used in [40], we followed

the same data splitting strategy and put 74 images into the test set and the rest of

the data samples into the train and validation sets.

Data Augmentation:

The training set was augmented using transformations such as rotating, flipping,

cropping, and mirroring and 16 images were generated from each image after augmen-

tation. Therefore, for the 3-class classification experiment, the number of training

samples in the classes deep dermal, full-thickness, and superficial dermal increased

to 416, 224, and 576 after augmentation. For the binary classification case, we ended

up with 128 images in the non-grafted class and 144 images in the grafted category.

3.3.2 Training the DCNN using transfer learning

Due to the limited number of the images in the dataset and the complexity level of the

classification problem, the AlexNet architecture was used in this research. AlexNet is

a deep convolutional neural network proposed in 2012 as the winner of ILSVRC which

outperformed all traditional machine learning methods [1, 49]. AlexNet consists

of 8 layers, including 3 convolution and 2 fully connected layers, with 60 million

parameters. This network is one of the most popular deep architectures in computer

vision applications such as classification tasks [49]. We trained AlexNet using the

transfer learning strategy. By using this method, an AlexNet that was pre-trained

on ImageNet [75], was fine-tuned using the BIP US dataset samples. ImageNet is a

huge dataset that includes more than 14 million general images. All the experiments
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in this study were implemented in version R2020a of MATLAB software. We used

an Intel(R) Core (TM) i7-8565U CPU @1.80GHz 1.99 GHz and NVIDIA GEFORCE

MX 150 GPU with 2GB of memory to run the experiments.

3.4 Results and discussion

Machine learning and deep learning have been used widely in the literature to solve

healthcare problems including wound care challenges. Different DL-based methods

were proposed for wound image analysis recently. However, the number of studies

that cover the burn wound challenges including wound classification is limited. Also,

in most cases the researchers discussed only the binary classification problem of burn

wound images. In this article, we proposed an end-to-end DCNN-based strategy to

classify the burn wound images into two and three categories. For the binary classifi-

cation problem, we implemented the same experiment that was described in [40] for

planned comparison. In this problem, the goal was to classify an input image into

one of the two classes: the first class includes the burn wound images that required

a grafting, and the second class included the non-grafted wound samples. Figure 3.3

shows the classification process in this experiment. The obtained results for this ex-

periment have been summarized in Table 3.2 and Figure 3.4. We selected 0.0001 as

the learning rate and trained the network for 10 epochs with the mini-batch size of

64. As we observe in Table 3.2, the test accuracy is 90.5%. Also, the recall, precision,

F1-score, and AUC values are 87.9%, 90.6%, 0.8922, and 0.913, respectively.

For the 3-class classification experiment, the intent was to classify the input image
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Figure 3.3: Binary classification process.

Table 3.2: Binary classification results

Classification Accuracy (%) Precision (%) Recall (%) F1-score AUC

Graft/nonGraft 90.5 90.6 87.9 0.8922 0.913

Figure 3.4: ROC plot for binary classification.

into one of the three classes: full-thickness, deep dermal, and superficial dermal.

Figure 3.5 displays the classification process for this experiment. We used 1e-6 as
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the learning rate value and trained the network for 5 epochs with the mini-batch size

of 10. From the confusion matrix displayed in Figure 3.6, we observe that the test

accuracy is 77.8%.

Regarding the results discussed above, we find that by increasing the number of

classes from two to three, the classification accuracy decreased considerably. The

justification is that by increasing the number of classes the number of network pa-

rameters will grow. It means that the network needs more data for training the new

parameters, otherwise the classifier’s performance will drop. Based on the reported

results in [40] on binary classification, the authors obtained an accuracy value of

82.43% along with the precision, recall, and F1-score amount of 0.82, 0.88, and 0.85,

respectively. As a conclusion, our designed classifier improved the binary classifica-

tion accuracy by more than 8%. By considering all the reported metrics, we claim

that our classifier generated better performance for the binary classification problem.

For the 3-class classification case, the confusion matrix shows that the deep dermal

is the easiest wound class to be classified by the network. The other two classes

show the same difficulty level of classification. Currently no existing work has been

seen on 3-class classification of burn wound images for comparison with the proposed

work.

3.5 Conclusion

Wound image classification is one of the most important stages during the treatment

process and a precise classifier can help the clinicians to have more efficient diagno-
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Figure 3.5: 3-class classification process.

Figure 3.6: Confusion matrix for 3-class classification problem.
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sis. Many machine learning and deep learning-based methods have been presented

in recent years to design high-performance burn wound image classifiers. However,

most of the previous studies discussed only the binary classification problem. To fill

this gap, in this research we presented a deep learning-based method for end-to-end

classification of burn wound images into two and three classes. We used a pre-trained

AlexNet and fine-tuned it using a burn wound image dataset, BIP US. The results

showed that our proposed approach can classify the burn wound images into two cat-

egories, grafted or non-grafted, satisfyingly. Also, our results display a considerable

improvement over similar works in the literature. Moreover, despite having a very

limited number of samples in the dataset, the proposed method provided a decent

performance for classification of the burn wound samples into three categories: deep

dermal, full-thickness, and superficial dermal. Both experiments in this study were

limited by a small number of images and we expect that by using a larger dataset the

results would be significantly improved. Our findings demonstrate that deep convo-

lutional neural networks can be used successfully for burn wound image classification

tasks or other similar clinical applications to improve the prognosis and treatment

procedure.
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Chapter 4

Wound Image Classification Using an Ensemble

Classifier

4.1 Related works

In this section, we review the previous studies in wound image classification focusing

on chronic wounds. We have organized the articles under two main subcategories:

the papers which used a feature extraction method followed by an SVM, and the

articles in which an end-to-end DCNN-based classification approach was proposed.

The complete organization chart for the reviewed studies can be found in Figure 4.1.

4.1.1 Feature generation + SVM

Traditional ML algorithm + SVM

Yadav et al. proposed a method for binary classification of burn wound images using

machine learning tools [40]. The authors classified the images into the two categories,

grafting and non-grafted wounds, using a classic color-based feature extraction ap-

proach followed by an SVM. The dataset included 94 images with different burn

depths including full-thickness, deep dermal, and superficial dermal. A classification

accuracy of 82.43% was reported. Testing the proposed method on a very small
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dataset is the weakness of this research.

Goyal et al. suggested detection and localization methods for Diabetic Foot

Ulcer (DFU) on mobile devices [41]. For the classification part, they tried both

conventional and DCNN-based methods. A dataset with 1775 DFU images was used

and the ground truth generated by creating bounding boxes around the ROI using an

annotation software. For the traditional machine learning techniques, patches were

extracted from normal skin and abnormal areas and the number of samples increased

by utilizing data augmentation methods. Different traditional feature extraction

algorithms were applied, and the best three methods were selected. Then they

extracted 209 features from each patch which were used for training a Quadratic

SVM classifier. Finally, for a new image, sliding window technique was used for

classifying each patch of the image as normal or abnormal by utilizing the trained

SVM.

Figure 4.1: Organization chart for the wound classification papers.
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Deep CNN + SVM

In another study, Abubakar et al. proposed a machine learning-based approach to

distinguish between burn wounds and pressure ulcers [72]. Pre-trained deep architec-

tures like VGG-face, ResNet101, and ResNet152 were utilized for feature extraction.

The features were fed into an SVM for the classification task. The dataset included

29 pressure and 31 burn images which were augmented using cropping, rotation, and

flipping transformations. After augmentation, they performed binary and 3-class

classification experiments. In binary classification experiment, the images were clas-

sified into burn or pressure categories and in 3-class classification problem the goal

was to classify the images into the labels burn, pressure, or healthy skin. ResNet152

architecture generated the best results for both classification problems with an ac-

curacy value of 99.9%.

Goyal et al. predicted the presence of infection or ischemia in DFUs using a deep

learning-based classification method [76]. A new dataset with 1459 DFU images

was introduced and the samples were augmented using Faster-RCNN and Inception-

ResNetV2 networks. Binary classification experiments were performed to classify the

samples into infection or non-infection, and ischemia or non-ischemia classes. In more

detail, some color-based descriptors were extracted from each patch before classifi-

cation. ResNet50, InceptionV3, and InceptionResNetV2 architectures were used in

this study. Besides, the authors used an ensemble CNN approach for combining the

outputs of the three deep networks and fed it into an SVM for classification. They

used MATLAB and TensorFlow frameworks. In both binary classification problems,

the deep learning-based methods showed a better performance than the traditional
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classifiers. The authors reported the accuracy values of 90% for ischaemia and 73%

for infection experiments.

4.1.2 End-to-end deep CNN-based methods

In [41], for the deep learning-based classification methods, two-tier transfer learning

approach was utilized for training the deep architectures including MobileNet, In-

ceptionV2, ResNet101, and InceptionResNetV2. This method uses both partial and

full transfer learning which means transferring only the lower level features or the

whole features from a pre-trained model to the new model. Tensorflow was used as

the framework. Object localization algorithms like R-FCN and Faster R-CNN were

utilized followed by the trained deep architectures for tasks like classification. The

combination of Faster R-CNN and InceptionV2 reported as the best model.

In another research, Goyal et al. used convolutional neural networks to classify

diabetic foot ulcers [42]. A DFU image dataset with 397 images was presented. Data

augmentation techniques were utilized to increase the number of samples. They pro-

posed DFUNet, a deep neural network, for patch-wise classification of the foot ulcers

into either normal or abnormal classes. DFUNet utilized the idea of concatenating

the outputs of three parallel convolutional layers which used different filter sizes.

The authors claimed that using this idea, multiple-level features were extracted from

the input which resulted in having a network with higher discriminative strength.

An accuracy value of 92.5% was reported for the proposed method. The main issue

about this research is that the authors proposed a patch classifier which is not very

helpful in medical image classification tasks. Indeed, it makes more sense to the
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clinicians and is more useful, to work with a whole-image classifier instead of a patch

classification model.

Nilsson et al. proposed a CNN-based method for venous ulcer image classifica-

tion [43]. The utilized dataset included 300 samples and a VGG-19 network was

used to classify the images into venous or non-venous categories. The methodology

included pre-training of the VGG-19 network using another dataset of Dermoscopic

images and then, fine-tuning the network utilizing their related dataset. The val-

ues obtained for accuracy, precision, and recall reported as 85%, 82%, and 75%,

respectively. Caffe, TensorFlow, and keras were used as the frameworks.

Alaskar et al. applied deep convolutional neural networks for intestinal ulcer

detection in wireless capsule endoscopy images [44]. AlexNet and GoogleNet archi-

tectures were utilized to classify the input images into ulcer (abnormal) or non-ulcer

(normal) categories. The dataset consisted of 1875 images obtained from wireless

capsule endoscopy video frames and the experiments implemented in MATLAB en-

vironment. The authors reported classification accuracy of 100% for both networks.

In another research, Shenoy et al. proposed a method for binary classification of

wound images using deep CNNs [36]. A dataset with 1335 wound images collected

via smartphones as well as the internet, was used in this study. After pre-processing

and augmentation, nine different labels were created and for each label two positive

and negative subcategories were considered. The authors created a modified form

of VGG16 network, WoundNet, and three different versions of WoundNet were pre-

trained on the ImageNet dataset. Besides, another network named Deepwound,

which was an ensemble model was designed for averaging of the outcomes from
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the three individual WoundNet architectures. The algorithms were implemented in

Keras. Also, an application was created for mobile phones to facilitate patient to

physician consultation and wound healing evaluation.

Alzubaidi et al. presented a DCNN for binary classification of diabetic foot ul-

cers [77]. A new dataset consisting of 754 smartphone-captured foot images was

introduced in this study. The goal was to classify the samples into normal or abnor-

mal (DFU) skin categories. Normal and abnormal patches were extracted from the

images and number of samples increased using data augmentation techniques. The

proposed network, DFU QUTNet, is a deep architecture with 58 layers including 17

convolutional layers. In comparison with the common DCNNs, the width of the pro-

posed model has been increased without adding computational complexities. Then

the network would be able to extract more information from the input which results

in higher classification accuracy. In one experiment, DFU QUTNet was applied for

an end-to-end classification task and in another one, it was utilized as a feature

extractor along with SVM and KNN classifiers. The maximum reported F1-Score

was 94.5% obtained from combining DFU QUTNet and SVM. Although designing

a high-performance patch classifier can be a good achievement, but in clinical envi-

ronments it would be more useful to have a whole image classification system and it

is the weakness of this research.

Table 4.1 summarizes the reviewed studies. Only a few papers were identified that

discuss wound analysis from the wound type classification point of view. Also, most

of the publications on wound type classification, discuss only the binary classification

problems such as classifying the samples into normal and abnormal cases. Having
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Table 4.1: Summary of Wound Image Classification Works.

Ref Classification Feature(s) Methods Dataset Limitation(s)

[42]
Binary
(DFU/normal
skin).

N/A

A novel CNN
architecture
named DFU-
Net.

DFU dataset
with 397 images
(292 abnormal,
105 normal
cases).

For small DFUs and DFUs hav-
ing similar color like surrounding
skins is hard to classify by this
network. This also goes for nor-
mal skins with wrinkle and high
red tones.

[40]

Binary
(graft/non-
graft burn
wound)

color, texture,
and depth.

Support Vec-
tor Machine
(SVM).

Burns BIP US
Database.

Very small evaluation set (74 im-
ages) was used.

[43]
Binary
(venous/non-
venous)

N/A
A pre-trained
VGG-19 net-
work.

A dataset with
300 images with
specialist anno-
tation.

Classification accuracy depends
on camera distance from the ul-
cer surface.

[44]

Binary
(ulcer/non-
ulcer endoscopy
image)

N/A
AlexNet and
GoogleNet.

1875 images
obtained from
wireless capsule
endoscopy video
frames.

An unbalanced test set (3:1 ra-
tio) has been used.

[36]

Binary (consid-
ered pos/neg
cases for dif-
ferent labels
like wound,
infection, gran-
ulation, etc.

N/A

WoundNet
(modified
version of
VGG-16) and
Deepwound
(an ensemble
model).

1335 wound
images collected
via smartphones
and internet.

As accuracy varies from 72% to
97% for different binary classes,
for some specific classes (like:
drainage (72%)) this model does
not work well.

[72]

Binary
(burn/pressure),
3-class
(burn/pressure/healthy
skin)

Feature ex-
tracted from
VGG-face,
ResNet101, and
ResNet152.

Support Vec-
tor Machine
(SVM).

29 pressure and
31 burn images.

Very small dataset used.

[77]

Binary (nor-
mal/abnormal
skin (diabetic
ulcer)).

N/A
A novel
deep CNN
(DFU QUTNet).

754 foot images.

Only use precision, recall and
f1-score as evaluation matrices,
which may not reflect all the
evaluations clearly.

[76]

Binary
(infection/non-
infection,
ischemia/non-
ischemia)

Bottleneck fea-
tures extracted
from Inception-
V3, ResNet50,
and Inception-
ResNetV2.

Support Vec-
tor Machine
(SVM).

1459 DFU im-
ages.

Depending on lighting conditions
(shadow), marks, and skin tone
their model can show poor per-
formance.

[41]
Binary (nor-
mal/abnormal
skin (DFU))

209 features
extracted using
LBP, HOG, and
color descrip-
tors.

Quadratic
SVM, In-
ceptionV2,
MobileNet,
ResNet101,
Inception-
ResNetV2

1775 DFU im-
ages collected
from a hospi-
tal within five
years.

No evaluation of their classifica-
tion task has been given.
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difficulties to access a reliable dataset can be mentioned as a reason for this issue.

Providing data to fill this gap in the literature was one of the motivations for our

research. Moreover, many papers discussed only the patch-wise or ROI classification

instead of the image-wise wound classification. In the rest of this section, we propose

an ensemble classifier for image-wise multi-class wound type classification using deep

convolutional neural networks.

4.2 AZH dataset

In this research, we used a new wound image dataset collected over a two-year clinical

period at the AZH Wound and Vascular Center in Milwaukee, Wisconsin. The

dataset includes 400 wound images in jpg format and various sizes in the range 240×

320 to 525×700 and bit depth of 24 from four different wound types: venous, diabetic,

pressure, and surgical (100 images per class). The images were captured using an

iPad Pro (software version 13.4.1) and a Canon SX 620 HS digital camera and were

labeled by a wound specialist from the AZH Wound and Vascular Center. Except

than a few cases, each wound image is from a separate patient. For those exceptional

cases we took more than one image of the same patient but from different parts of

the body or in different healing stages. The dataset can be accessed on GitHub with

this link [https://github.com/uwm-bigdata/wound classification]. Figure 4.2 shows

some sample images from different classes of the dataset.
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Figure 4.2: Sample images from the AZH Wound and Vascular Center database. The
rows from top to bottom display diabetic, venous, pressure, and surgical samples,
respectively.
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4.3 Method

This subsection describes the method we used in this research. Figure 4.3 displays

how the proposed ensemble classifier works. As it can be found from this figure,

the proposed classifier utilizes two different whole image classifiers (A and B) at the

same time which work using two different classification strategies: patch-wise and

image-wise classification. In this figure, C 1 to C n show Class 1 to Class n in which

n is the number of classes. For the binary and three-class classification problems, n

would be 2 and 3, respectively. The input image is fed into both classifiers A and

B. Then the output of these classifiers are combined and fed into a MLP classifier to

predict the class of the whole input wound image. It is important to mention that

the idea behind combining the Classifier A and B is to consider both patch level and

whole image level information for classification. In the next two subsections, we have

provided the details for different components of the proposed algorithm.

4.3.1 Patch-wise classification

Pre-processing-ROI Extraction

We selected 100 images for each wound type and manually extracted 100 unique Re-

gions of Interest (ROI) out of them per class, representing each of the six categories:

diabetic, venous, pressure, surgical, background, and normal skin. The ROIs are

rectangular and have different sizes. Figure 4.4 displays some of the extracted ROIs

from different classes of the dataset.

39



Figure 4.3: Whole image classification process using our proposed ensemble classifier.
The classifier accepts the wound image as the input and predicts the wound type as
the output.

Pre-processing-Data splitting

After extracting the ROIs, we put them randomly into training (70% samples), test-

ing (15% samples), and validation (15% samples) sets. None of the training images,

was used in the test set and vice versa.

Pre-processing-Patch generation

In this step, 17 patches were generated from each ROI. The patches were extracted in

a way that covers between 75% to 85% of the original ROI. These are rectangular area

extracted from different regions of ROI using cropping. The patches were extracted

in a way that cover different regions of the ROI including center region, up-left region,

down-left region, up-right region, down-right region, and so on. By try and error, it
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Figure 4.4: Sample ROIs. The columns from left to right display diabetic, venous,
pressure, surgical, normal skin, and background ROIs, respectively.

41



was found that by generating patches from 17 different regions of each ROI we can

have better training results for the classifier B. After this step, for each class we had

1190, 255, and 255 patches in the train, validation, and test set, respectively.

Pre-processing-Data Augmentation

Augmentation of the training set samples was performed by generating 16 samples

from each one using image transformation methods like rotating, flipping, cropping,

and mirroring. Following augmentation, there were 19040 training samples in each

class.

Figure 4.5: Training process of the patch classifier.

Training

Following the pre-processing step, we trained a deep convolutional neural network

using the training samples. After studying various networks, since our training set

is small and the more modern CNNs need extensive number of samples and are

computationally expensive, we selected AlexNet as the classifier. Due to its simplicity

and effectiveness, AlexNet is still one of the most common deep networks used by
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researchers [78]. As it’s mentioned in the literature [79], AlexNet’s training time is

considerably lower than other complex architectures. Moreover, using more complex

networks needs more memory [79] which is an important factor in choosing the proper

network. AlexNet is a deep CNN architecture proposed in 2012 and was the winner

of ILSVRC in comparison to other traditional machine learning methods [1, 49]. This

network contains eight layers including five convolutional and three fully connected

layers and has 60 million parameters. Also, max-pooling layers have been used after

the first, second, and fifth convolutional layer. A modified version of the original

AlexNet described above was utilized in this research to suit for our classification

problems. We changed the last fully connected layer in a way that its output size,

matches the number of classes in our data. We used this modified version of AlexNet

for all of our experiments and classifiers in this study. In addition, we utilized

the transfer learning technique to increase the training accuracy while reducing the

training time. It means that the AlexNet architecture was pre-trained on a massive

dataset of general images called ImageNet and fine-tuned using our wound image

patches. Figure 4.5 shows the described steps for training the patch classifier.

4.3.2 Image-wise classification using an ensemble classifier

Several DCNN-based ensemble classification methods were proposed for medical or

non-medical image classification tasks in the literature [80, 81, 82]. Various strategies

were used by the researchers to construct the ensemble classifier such as voting, con-

catenating, averaging, etc. [83, 84, 85, 86]. In all of these studies, the final conclusion

was that the ensemble model outperformed the individual classifiers in performance.

43



To this end, we designed an ensemble classifier in which the trained patch classi-

fier described in Section 4.3.1 is used as a building block. In fact, the classification

scores acquired from two classifiers (patch-wise and image-wise) are fed into a Multi-

layer Perceptron (MLP) classifier to obtain a better classification performance. Our

hypothesis is that the proposed ensemble classifier will outperform each of the in-

dividual classifiers in terms of classification accuracy. Different components of the

proposed classifier will be explained individually below.

Classifier A - Whole image classifier

This classifier is a pre-trained AlexNet architecture that we fine-tuned using our own

dataset. Figure 4.6 displays the training phase for this classifier.

Figure 4.6: Training process of Classifier A.

Classifier B - Sliding window + Patch classifier

This classifier applies the sliding window technique on the input wound image to

extract 9 patches of equal size along with patch classification step to predict their

wound type. The wound type for the whole image will then be predicted by majority
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voting on the predicted label of the patches detected as wound. Figure 4.7 describes

the entire process for this classifier.

Figure 4.7: Classifier B. The first step is extracting equal size patches out of the
input image using the sliding window technique. Then the patch classifier is used for
detecting the patch labels. The final step is majority voting for predicting the whole
image label.

Classification scores

For every input image, each of the classifiers A and B generate classification scores

for all classes. For example, for the surgical vs venous classification problem, they

generate S and V scores which stand for classification scores of the surgical and venous

labels, respectively (see Table 4.2 for abbreviations). For the classifier B, these scores

are calculated by averaging over S and V scores of all the patches detected as wounds

by the patch classifier. In the end, for the binary classification case, we create a three-

element feature vector including SA, SB, and VB in which the subscripts A and B

show the related classifier. It is important to note that we did not include VA in

the feature vector, because of the correlation between SA and VA. Finally, we feed
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the feature vector into the MLP classifier for the final classification task as described

below.

MLP Classifier

The MLP classifier is a four-layer MLP with two hidden layers that have 8 and

7 neurons, respectively. The number of nodes in the input and output layers are

determined based on the type of the classification problem. The output of the MLP

classifier is the wound type of the input image.

4.3.3 Performance metrics

In this research we used accuracy, precision, recall, and F1-score metrics to investigate

the performance of the classifiers. Equations 2.1 to 2.4 show the related formulae

for these evaluation metrics. In the binary classification problem, we used Area

Under the ROC Curve (AUROC or AUC) metric as well. TP, TN, FP and FN in

the mentioned equations stand for True Positive, True Negative, False Positive, and

False Negative measures, respectively. More details about these equations and the

related concepts can be found in [68].

4.4 Results

This subsection presents the results obtained from the patch-wise and image-wise

classification experiments. The classifiers were implemented in MATLAB R2019b

and R2020a using an NVIDIA GEFORCE RTX 2080 Ti GPU with 11GB of memory.
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Abbreviation Description
BG Background
N Normal skin
V Venous
D Diabetic
P Pressure
S Surgical

Table 4.2: Class label abbreviations

In the diagrams and tables presented in this section, the following abbreviations D,

V, P, S, BG, and N represent the classes diabetic (D), venous (V), pressure (P),

surgical (S), background (BG), and normal skin (N) (Table 4.2). Several experiments

were conducted to find the optimum training parameters of the deep networks. The

optimum epoch number obtained was 20 and we used a learning rate value of 10e-6.

Also, Adam was utilized as the optimization algorithm [87]. Further details for each

experiment are provided below.

4.4.1 Patch classification

To evaluate the patch classifier’s performance for patch-wise classification, we used

255 test patches per class. For 4-class classification experiments, the goal was to

classify the wound patches into one of the four classes: BG, N, and two wound

labels. In the 5-class classification problem, we had three wound labels as well as

the BG and N classes. The last group of the patch-wise classification experiments is

related to the 6-class classification case in which the wound patches are classified into

one of the six classes diabetic, venous, pressure, surgical, BG, and N. Table 4.3 shows

the test accuracy values for all the experiments mentioned above. Figures 4.8 to 4.15
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display some sample confusion matrices for patch-wise classification experiments.

It should be noted that we performed and compared all the experiments with and

without data augmentation. As data augmentation always resulted in better results,

we only show our experiments with data augmentation.

Num of Classes Classes Test accuracy (%)
BGNVD 89.41
BGNVP 86.57

4-class BGNVS 92.20
BGNDP 80.29
BGNDS 90.98
BGNPS 84.12

BGNDVP 79.76
5-class BGNDVS 84.94

BGNDPS 81.49
BGNVPS 83.53

6-class BGNDVPS 68.69

Table 4.3: Patch-wise classification results.

4.4.2 Whole image classification

To assess our proposed ensemble classifier’s efficiency, we performed two types of

experiments: binary classification and 3-class classification. With the patch classifi-

cation results presented in subsection 4.4.1, surgical vs venous and surgical vs venous

vs diabetic classifiers were selected which showed the best binary and 3-class classi-

fication outcomes. For the rest of the chapter, we name the whole image classifier

(trained AlexNet on the whole wound images) as Classifier A, and the other classifier

which uses patch classification strategy (sliding window + trained AlexNet on the

wound patches) as Classifier B. We also obtained 138 extra wound images from three
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Figure 4.8: Confusion matrix for 4-class classification (BGNVD) experiment.

classes surgical (28 samples), diabetic (54 samples), and venous (56 samples) from

the AZH wound and vascular center to be used as the test images. Table 4.4 shows

the binary classification results obtained from applying the Classifier A, Classifier B,

and the proposed ensemble classifier on the test set which included 84 wound images.

Also, the 3-class classification results for the three classifiers have been provided in

Table 4.5. The superiority of our proposed ensemble classifier over the other two clas-

sifiers can be detected from these results for both binary and 3-class classification

problems.
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Figure 4.9: Confusion matrix for 4-class classification (BGNDS) experiment.

Classifier Accuracy Precision Recall F1-Score
(%) (%) (%) (%)

A 83.3 76.9 71.4 74.04
B 82.1 71 78.6 74.60

Our
ensemble
classifier

96.4 93.1 96.4 94.72

Table 4.4: Whole image binary classification (surgical vs venous) results obtained
from applying the classifiers on the test set images.

4.5 Discussion

In the patch classification, by looking at Table 4.3 and Figures 4.13 and 4.14 as we

expected, by increasing the number of classes from four to five and six, the classifica-
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Figure 4.10: Confusion matrix for 4-class classification (BGNPS) experiment.

Classifier Class Precision Recall F1-score ACC
(%) (%) (%) (%)

A
D 88 81.5 84.62
S 67.9 67.9 67.9 83.3
V 86.7 92.9 89.69

B
D 70.9 72.2 71.54
S 42.1 28.6 34.06 67.4
V 71.9 82.1 76.66

Our
ensemble
classifier

D 86.2 92.6 89.28
S 81.5 78.6 80.02 89.1
V 96.2 91.1 93.58

Table 4.5: Whole image 3-class classification results obtained from applying the
classifiers on the test set images.
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Figure 4.11: Confusion matrix for 5-class classification (BGNDPS) experiment.

tion accuracy decreased. The justification for this phenomenon is that increasing the

number of classes accordingly increases the number of network parameters, which

would make it more challenging for the deep architecture to train all the parameters

to the same standard as before, using the same number of training samples. Another

interesting observation is that in the 4-class and 5-class classification experiments,

the lowest classification accuracy is related to the diabetic and pressure wounds. It

shows that these two wound types are very similar in appearance. The confusion

matrices confirm this fact by showing that many diabetic wounds were classified into

pressure class and vice versa. As another observation, we see that the surgical and

venous wounds are distinguishable with an acceptable accuracy level. In addition,

we see that in most of the experiments, the pressure wound is the most challenging
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Figure 4.12: Confusion matrix for 5-class classification (BGNVPS) experiment.

wound type to classify. By looking closely at the confusion matrices, we find that the

low recall value for this wound type often comes from misclassifying the wound into

the venous or diabetic instead of the pressure class. Another observation is that the

venous wounds typically show the highest recall values among all of the wound types.

This phenomenon could be related to having samples from a wider variability and

consequently better training of the classifier for this wound type. We expect that in-

creasing the number of samples for dataset categories would improve the recall value

for all the wound types. Recall is an important factor when we are investigating

the performance of a classifier. In all of the patch classification experiments, the

background and normal skin classes have the highest recall values. This is important

because in our proposed ensemble classifier we need to have a patch classifier with
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Figure 4.13: Confusion matrices of the best (left) and worst (right) case in 4-class
classification experiments.

Figure 4.14: Confusion matrices of the best (left) and worst (right) case in 5-class
classification experiments.
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Figure 4.15: Confusion matrix for the 6-class classification experiment.

the ability to distinguish background and normal skin parts from the wound tissue

with a high accuracy value.

About the image-wise classification experiments, by looking at the Tables 4.4 and

4.5 we see that for the binary case, both Classifier A and B generate almost similar

results while our proposed ensemble classifier showed an accuracy value of 96.4%

which is 13.1% higher than the Classifier A and 14.3% higher than the Classifier

B. Also, for the 3-class classification case, the accuracy of the ensemble classifier is

higher than the other two classifiers. This last observation is very interesting because

the Classifier B displays a low classification performance specifically for the surgical

wounds, but after combining with the Classifier A, improves its accuracy value by

5.8%.
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4.5.1 Robustness experiments

To investigate the robustness of our proposed classifier, we used 5-fold cross-validation

as a standard evaluation method. For these experiments, we added the test set (84

images for binary and 138 images for 3-class classification experiment) to our training

set (200 images for binary and 300 images for 3-class classification case). Thereafter,

for each of the classes we partitioned the images into five folds randomly. Then we

selected the first fold (20% of the samples) as the test set and the rest as the training

samples. We trained our classifier using the training samples and tested it on the

test set. Next time, we selected the second fold as the test samples and trained the

network on the remaining folds, and so on. Tables 4.6 to 4.10 display the classifi-

cation accuracy, AUC, precision, recall, and F1-score values obtained for the binary

classification problem. Figures 4.16 and 4.17 compares the classifiers in accuracy

and AUC metrics. The ROC plots are presented in Figure 4.18. Also, 3-class classi-

fication results have been summarized in Table 4.11 to 4.14 and Figure 4.19. In all

tables, R1 to R5 display the round number of the experiments.

Table 4.6: Whole image binary classification (S vs V) accuracy percentages obtained
from 5-fold cross-validation.

Classifier R 1 R 2 R 3 R 4 R 5
A 91.1 89.3 87.5 85.7 85.7
B 67.9 69.6 73.2 83.9 75

Our ensemble
classifier

94.6 94.6 96.4 92.9 92.9

Regarding the reported results, we find that our proposed ensemble classifier beats

both Classifiers A and B with displaying better classification performance. This find-
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Table 4.7: Whole image binary classification (S vs V) AUC values obtained from
5-fold cross-validation.

Classifier R 1 R 2 R 3 R 4 R 5
A 0.9497 0.9677 0.9548 0.9548 0.9303
B 0.7806 0.7716 0.7677 0.8439 0.7084

Our ensemble
classifier

0.9806 0.9845 0.9613 0.9561 0.9535

Figure 4.16: Accuracy values obtained from 5-fold cross-validation for the binary
classification problem.

Table 4.8: Whole image binary classification (S vs V) Precision percentages obtained
from 5-fold cross-validation.

Classifier R 1 R 2 R 3 R 4 R 5
A 91.7 91.3 100 84 87
B 65.2 68.2 77.8 83.3 76.2

Our ensemble
classifier

95.8 89.3 100 86.2 92

57



Figure 4.17: AUC values obtained from 5-fold cross-validation for the binary classi-
fication problem.

Table 4.9: Whole image binary classification (S vs V) Recall percentages obtained
from 5-fold cross-validation.

Classifier R 1 R 2 R 3 R 4 R 5
A 88 84 72 84 80
B 60 60 56 80 64

Our ensemble
classifier

92 100 92 100 92

Table 4.10: Whole image binary classification (S vs V) F1-score percentages obtained
from 5-fold cross-validation.

Classifier R 1 R 2 R 3 R 4 R 5
A 89.81 87.49 83.72 84 83.35
B 62.49 63.83 65.12 81.61 69.56

Our ensemble
classifier

93.86 94.34 95.83 92.58 92
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(a) Round 1 (b) Round 2

(c) Round 3 (d) Round 4

(e) Round 5

Figure 4.18: ROC plots obtained from 5-fold cross-validation experiments.
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Table 4.11: Whole image 3-class classification (S vs V vs D) accuracy percentages
obtained from 5-fold cross-validation.

Classifier R 1 R 2 R 3 R 4 R 5
A 79.1 76.7 82.6 83.7 81.4
B 68.6 55.8 64 72.1 61.6

Our ensemble
classifier

84.9 81.4 88.4 91.9 91.9

Figure 4.19: Accuracy values obtained from 5-fold cross-validation for the 3-class
classification problem.

ing confirms our initial theory that combining two individual classifiers that one of

them includes the patch-level information, and the other one contains the image-wise

information will result in a stronger classifier with higher classification accuracy and

better performance. Figure 4.20 presents some of the samples that were classified

wrongly by Classifier A or B, but the proposed ensemble classifier assigned them to
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Table 4.12: Whole image 3-class classification (S vs V vs D) precision percentages
obtained from 5-fold cross-validation.

Classifier Class R 1 R 2 R 3 R 4 R 5

A
D 80 80 83.3 81.3 78.8
S 73.9 76.2 84.2 94.7 80
V 81.8 74.3 81.1 80 84.8

B
D 63.6 70.6 68 67.7 56.7
S 65 41.4 44 66.7 63.2
V 75.8 60 75 79.4 64.9

Our ensemble
classifier

D 81.8 92.6 84.4 89.7 85.3
S 85.7 70.4 90.5 100 91.7
V 87.5 81.3 90.9 87.9 100

Table 4.13: Whole image 3-class classification (S vs V vs D) recall percentages
obtained from 5-fold cross-validation.

Classifier Class R 1 R 2 R 3 R 4 R 5

A
D 80 80 83.3 86.7 86.7
S 68 64 64 72 64
V 87.1 83.9 96.8 90.3 90.3

B
D 70 40 56.7 70 56.7
S 52 48 44 56 48
V 80.6 77.4 87.1 87.1 77.4

Our ensemble
classifier

D 90 83.3 90 86.7 96.7
S 72 76 76 96 88
V 90.3 83.9 96.8 93.5 90.3

the correct class. The interesting observation was that the major part of the samples

miss-classified by Classifier A, were the images in which the wound consists a small

proportion of the entire image. On the other hand, Classifier B missed the samples

in which the wound occupies a large part of the image. These observations show

that how the two weak classifiers cooperate to fix each other’s shortcomings which

resulted in producing a superior classifier. Indeed, having objects from different

scales in the dataset has always been one of the challenges in deep learning-based
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Table 4.14: Whole image 3-class classification (S vs V vs D) F1-score percentages
obtained from 5-fold cross-validation.

Classifier Class R 1 R 2 R 3 R 4 R 5

A
D 80 80 83.3 83.91 82.56
S 70.82 69.56 72.72 81.80 71.11
V 84.36 78.80 88.25 84.83 87.46

B
D 66.64 51.06 61.83 68.83 56.7
S 57.77 44.45 44 60.88 54.56
V 78.12 67.59 80.59 83.07 70.60

Our
ensemble
classifier

D 85.70 87.70 87.11 88.17 90.64
S 78.25 73.09 82.61 97.95 89.81
V 88.87 82.57 93.75 90.61 94.90

tasks as discussed in several studies [88, 89, 90]. Specifically, in the field of wound

care it is not guaranteed to take high quality images from an optimal view point

and desired distance to the wound surface because of medical concerns like infection

control as well as the patient’s easement [42]. Our results show that the Classifier B

can overcome partially the scale problem for those images which were taken from a

further distance to the wound. It of course loses this power for the photos zoomed

on the wound area. It should be mentioned that we conducted the experiments for

4-class whole image classification problem as well and obtained average and maxi-

mum accuracy percentages of 65.48 and 68.9, respectively. Regarding these results

and the results presented in Figure 11, we didn’t continue our experiments with this

classification case as the final accuracy value would be low. We believe that having

a limited number of data samples can be an important factor to get worst perfor-

mance for four classes. Then we limited this study to only binary and three class

classification and left the higher number of classes for a future study with a larger

dataset.
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Figure 4.20: Some of the miss-classified samples. The top row shows the samples
miss-classified by Classifier B, and the bottom row displays the images which were
wrongly classified by Classifier A.

4.5.2 Comparison with other models

For further investigation of our proposed model, we compared its performance with

some of the models that people used in the literature. ResNet architecture is one

of the common networks used in the wound image classification field in the recent

years [71, 72, 76, 41]. We selected ResNet101 and ResNet50 as two different deeper

and shallower versions of the ResNet family. Also, we compared our model with

SqueezeNet architecture which generated the similar accuracy level of AlexNet on

ImageNet dataset [91]. Table 4.15 shows the comparison results for both binary and

3-class classification experiments on our own dataset. For each classifier in the table,

Avg and Max show the average and maximum accuracy values obtained from 5-fold

cross validation experiments. Also, time column, displays the approximate training

time for each model. For our model, this time is related to the Classifier B that

takes longer time to be trained. As it can be found from these results, our proposed
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ensemble classifier showed a better performance in both Avg and Max accuracy

values.

4.5.3 Applying on Medetec dataset

As an additional evaluation, we applied our proposed ensemble classifier on Medetec

images which is a famous public available wound image dataset [92]. For the binary

classification experiment we classified the pressure wounds versus venous-arterial

ulcers and in 3-class classification case, we added the diabetic category as well. The

dataset includes 177 images in pressure class, 136 images in venous-arterial category,

and 49 diabetic images. After pre-processing and removing some of the images, we

ended up with 110, 110, and 45 images in each class, respectively. The removed

samples included images in which the wound area was totally or partially covered by

the bandage, noisy images, duplicate images, etc. 15% of the images were selected

randomly as test set and the remaining images were used for training. Table 4.16

displays the results of applying our proposed model on this dataset. As we see in the

table, for both binary and 3-class classification experiments, our proposed classifier

shows a superior performance in comparison with the classifier A and B. Since the

size of the images in Medetec dataset was larger than ours, we splitted the input

images into different number of slices during sliding window part of the classifier B,

to find the optimum number of slices. The best results obtained when we used a four

by four grid in sliding window technique. We can conclude that for larger images we

need to cut them into more slices when we use sliding window method, while for the

smaller images, the best accuracy can be achieved using a lower number of slices.
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Table 4.15: Performance comparison of different classifiers on our own dataset. All
values are in percentage.

Classifier
Binary

classification
3-class

classification

Avg Max
Training

time
Avg Max

Training
time

ResNet101 90.35 94.60 ˜50 min 84.88 88.40 ˜75 min
ResNet50 85.34 92.86 ˜17 min 80.94 82.60 ˜26 min

SqueezeNet 78.58 89.30 ˜5 min 70.00 76.70 ˜6 min
Our ensemble

classifier
94.28 96.40 ˜20 min 87.70 91.90 ˜28 min

Table 4.16: Medetec dataset results. All values are in percentage.

Classifier
Binary

classification
3-class

classification
A 82.40 75.60
B 73.50 63.40

Our ensemble
classifier

91.20 82.9

4.6 Conclusion

Acute and chronic wounds are a challenge and burden to healthcare systems in all

countries. The wound diagnosis and treatment process can be facilitated using an

efficient classification method. Machine learning and deep learning have a good po-

tential to be used as powerful algorithms for wound image analysis tasks such as

classification. Prior works in the literature mainly dealt with binary classification

or studied only specific types of wounds like diabetic ulcers. Additionally, the ma-

jor part of the previous studies classified extracted ROIs or wound patches, rather

than the whole wound images. Also, most of them had difficulties accessing valid,
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reliable, and high-quality images as some of them collected their data from the web.

To fill these gaps, we proposed an end-to-end novel ensemble deep learning-based

classification method for classifying the chronic wounds into multi categories based

on their type.

In this chapter, we proposed an end-to-end ensemble deep CNN-based classifier

for classification of wound images into multiple classes based on the type of the

wound. To the best of our knowledge, our proposed classifier is the first model

that classifies the wound images into more than two types. We initially designed

patch classifiers with fine-tuned AlexNet architecture to efficiently classify the wound

patches into different wound types. Influence of different wound types on the clas-

sification accuracy was investigated by running numerous experiments and testing

different combinations of the wound types. For image-wise classification task, for

each input image, first a feature vector created using the designed patch classifier

and another AlexNet that was trained on the whole images. Then the feature vector

fed into an MLP to obtain an ensemble image-wise classifier with a higher accuracy

and better performance. The obtained resutls showed that the combination of the

two classifiers, resulted in a more strong classifier with a superior performance that

outperforms each of the combined classifiers individually. This outcome confirms

our hypothesis that combination of both patch level and whole image level informa-

tion generates better classification results. Also, the results show that our proposed

ensemble classifier can be used successfully as a decision support system in wound

image classification tasks to assist the physicians in related clinical applications. We

have made available the dataset we used for the current research.
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4.6.1 Future directions

As a future study, we plan to improve the performance and classification accuracy of

our proposed classifier by trying different combinations of the patch-wise and image-

wise classifiers. Besides, testing the proposed approach to classify the images into

more classes by working on a larger dataset of wound images would be one of the

subsequent steps of this research.
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Chapter 5

Wound Tissue Classification

In this chapter, we have a quick review on some of the researches in the literature

in the field wound image tissue classification and analysis using traditional machine

learning-based methods or deep convolutional neural networks. At the end, we dis-

cuss the gaps in this field as well as the weaknesses of the reviewed works as clues

for our future steps in this thesis.

5.1 Related Works

In this section, we review the recent studies in wound tissue analysis field from the

literature. We have organized the reviewed works under two main subbranches:

superpixel generation-based methods and approaches that are based on analysis of

the whole image. Each cagetory has been splitted into smaller groups considering

the method that was used in the articles. Figure 5.1 displays the categorization chart

for the reviewed papers.
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Figure 5.1: Organization chart for the wound tissue analysis papers.

5.1.1 Superpixel generation-based approaches

Classification-based methods

Zahia et al. proposed a method for tissue analysis of pressure wound images using

deep CNNs [63]. The dataset they used in this research includes 22 pressure wound

images. For each image, the ground truth labels for pixels specified by specialists. As

a pre-processing task, the authors extracted the ROI from the original wound image

and then removed the flash light from the images as well as extracting 5 × 5 patches

from each one. At the next step, these patches along with their ground truth labels,

fed into the CNN for training the network. The output of the network would be one of

the labels granular, slough, and necrotic that shows the wound tissue type of the input

image. In detail, during test phase, the input image is partitioned into several 5 × 5

patches. By classifying each patch, the whole segmented image will be generated.
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The CNN used in this study is a 9-layer network with 3 convolutional layer which

proposed by the authors. The authors used classification accuracy, Dice similarity

coefficient, precission per class, sensitivity, and specificity metrics for reporting their

results. Based on the results reported in the paper, the slough tissue is the hardest

tissue to classify.

In another research, Rajathi et al. proposed a CNN-based method for tissue

classification of varicose ulcer wound images [60]. The dataset used in this study

included around 1250 varicose ulcer images collected by a medical college in India

and a web page. Also, the images was leballed by specialists. Their method is similar

to the approach used in [63]. Their approach includes three phases: data pre-

processing, active contour segmentation for departing the wound area from the skin,

and using a CNN to classify the input image. In pre-processing step they removed

the flash light from the images using some simple image processing techniques like

thresholding. In the second step, using the active contour segmentation method the

ROI was extracted. In the final step, they used a CNN with 4 layers for classification

that proposed by the authors. They generated 5 × 5 patches from the ground truth

and the segmented wound image to feed into the network for training. The output

would be the segmented wound image in which four different tissues of the wound

have been classified: Granulation, Slough, Epithelial, and Necrotic.

In a recently published paper, G. Blanco et al. [65] proposed a method for der-

matological wound image analysis named it QTDU that is a combination of deep

learning models and superpixel-driven segmentation methods. In this study they

used a dataset with 217 arterial and venous wound images from lower limbs. The
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method proposed in this research includes three main steps. The first step is data

pre-paration and region segmentation that includes labeling the images, constructing

the superpixels, and augmentation of the superpixels. In this step they selected 40

images out of the total number of the images and extracted superpixels from each

image. The superpixels were selected in a way to have 550 pixels each one. Finally,

they provided 44893 superpixels and labeled them in a way that each one belongs to

one of these classes: fibrin, granulation, necrosis, and and not wound. The second

step is data processing and training stage in which two deep CNNs, Resnet and In-

ceptionv3 were trained by the data samples as well as 6 additional layers added to

the end of these deep architectures. The output of the final layer is the label. Doing

some experiments they also consluded that networks which have been pre-trained on

ImageNet dataset were trained faster in compare to the architectures with random

weights. In the final step, the pixelwise wound quantification masks are generated.

In addition, the authors said that their proposed method generated better results

when they used Resnet architecture in comparison with the case they utilized Incep-

tionv3. Also, testing the proposed method on 179572 superpixels, the results showed

the QTDU method outperformed the machine learning approaches.

Segmentation-based methods

In another research, Niri et al. proposed a method for tissue classification of dia-

betic ulcers using superpixel generation and fully convolutional neural networks [39].

The goal was to classify the wound pixels into three different tissue types including

necrotic, granulation, and slough. The method consists of two stages: automatic
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wound segmentation and tissue classification. The dataset used in this study in-

cluded 219 ulcer images which were captured using smartphone camera. At the first

stage, wound segmentation was performed using U-Net architecture. Then, some

morphological operations followed by ROI extraction phase, generated the desired

wound area to be used in the next step. At the second stage, superpixels were gen-

erated using SLIC algorithm from the ROIs. Then 5000 superpixels along with their

corresponding labels were utilized for training fully convolutional network like FCN-

32. The proposed method was compared with some fully convolutional networks as

well as SegNet and U-Net architectures and outperformed all of them in both ac-

curacy and DICE index. The FCN-32 network that was trained using superpixels,

showed the best performance among all networks.

5.1.2 Whole image analysis-based approaches

Feature extraction-based methods

ML-based methods In 2015, F. Veredas and the coauthors published a paper in

which proposed a machine learning based approach for wound segmentation and clas-

sification of the tissue in pixel level [38]. In more detail, they used k-means clustering

method for the segmentation part and then utilized three different classifiers includ-

ing neural networks, SVM, and random forest decision trees for the classification

part. They used a dataset including 113 pressure wound images. After preprossing

and segmentation, the researchers extracted some features from the segmented areas

of the wounds to feed into the classifiers. Before training the classifiers, some experts

labeled the segmented wound-bed and peri-ulcer regions using four and two labels
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respectively. They reported high accuracy rates for the classifiers specifically SVM

and random forest trees. Also, the lowest accuracy belong to neural network in this

study.

DL-based methods In another study, H. Nejati et al. proposed a deep learning

based method to analysis chronic wound tissue and classifying it into one of the seven

described classes mentioned in their paper [93]. Based on their claim, this paper is

the first article for classifying wound tissue into more than four classes. The authors

said that the previously published papers in the literature for wound tissue analysis

can not be used for the clinical application because of considering only three types of

tissue in chronic wounds. In this study, they used a pretrained AlexNet architecture

for feature extraction from the wound tissue and then fed them into an SVM patch-

level classifier for classification. The dataset they used in this study includes only

350 images. This is one of the limitations in their work. Also, the authors said

that having an scarce dataset was one of the reasons that they couldn’t use transfer

learning to improve the network’s performance. For the feature extraction part, they

used two traditional feature extractors as well as AlexNet for comparison. Based on

the reported results in the paper, the best results obtained when they used AlexNet

along with the SVM classifier. The highest accuracy was related to the Infected

category (95.54%) and the total accuracy is 86.40%.

In another study, Zapirain et al. utilized 3D convolutional neural networks for

tissue classification of pressure wounds [94]. The goal in this research was to classify

the wound pixels in the input image into one of the three tissue types: necrotic,

granulation, and slough. The utilized dataset included 193 pressure wound images.
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The first step was ROI extraction in which HSI color images obtained from the

original RGB images along with gaussian smoothing of the original images were used

as the input of a 3D DCNN to extract the ROI. At the second step, the extracted

ROI along with LCDG model of the original image, HSI image, GS image, and a

prior model are fed into another 3D DCNN for wound tissue segmentation. The

3D CNNs include 4 and 8 convolutional neural networks, respectively. After the

convolutional layers there are two fully connected layers in both architecture. The

authors compared their proposed method with some segmentation approaches in the

literature and claimed that the results were promising.

End-to-end segmentation methods

In another article, Wang et al. proposed a method for wound region segmentation

using deep convolutional neural networks [58]. Also, they used the features gen-

erated by the CNN for infection detection and healing status prediction. For the

segmentation task a convolutional encoder-decoder used in this study. Also, for the

infection detection part they designed a binary classifier in which fed the extracted

features by the ConvNet into a SVM classifier. The output of the SVM classifier

shows if the wound is infected or not. Finally, in the third part by having the previ-

ous wound surface area over the past N time units and the present image, they used

a Gaussian process regression to predict the wound area for the future. Using this

prediction they can estimate the healing time of the wound. The authors used the

NYU Wound Database in their paper which includes more than 8000 wound images

as well as some useful medical records like clinic visit dates and wound surface area
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for each patient. Also, the researchers preprocessed the dataset images by cropping

them into smaller sizes. In addition, they created wound segment annotations as

well as binary infection labels to the images. To make the training easier and faster

they utilized an NVIDIA Telsa K40 GPU in their research.

In [35] the authors proposed a deep learning based method for burn depth prognosis.

Also, in this study they proposed a new wound dataset including 929 images most

of them obtained from a medical center and the rest collected from the internet. For

each image the burn area specified by three surgeons. Then each image labeled by

three randomly selected surgeons. They defined four labels for the dataset images:

superficial, superficial/deep partial thickness, full thickness, and undebrided. In the

first step of their study, the authors classified the images into burn or no burn cate-

gories. The second step is related to separating the wound area from the rest of the

image. In the final step they classify the burn wound into different classes which show

depth levels of each one. The authors used a FCN (Fully Convolutional Network) for

the network proposed in the paper. Also, they said that this network is based on the

VGG-16 network. The authors used pixel accuracy and mean intersection over-union

(IOU) as the metrics for evaluating the network performance of segmentation.

Godeiro et al. proposed an approach in which CNNs were used for wound tis-

sue classification [66]. The goal was to classify the wound tissue into one of the

three classes necrotic, granulation, and slough. The utilized dataset included 30

wound images that were captured by different smartphones and iPhone camera and

were splitted into the three classes mentioned earlier. The proposed method con-

sisted of four steps: preprocessing and noise reduction, wound segmentation, color
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space reduction, and tissue classification using a DCNN. After noice reduction, a

traditional image processing technique, Watershed algorithm, was used for segment-

ing the wound area. Then, the images were converted from RGB color space into

CIELab domain. Finally, using different deep convolutional networks including U-

Net, SegNet, FCN8, and FCN32, the method was evaluated. U-Net along with the

color space reduction approach, generated the best classification results.

In another research, Goyal et al. used fully convolutional neural networks for

semantic segmentation of skin lesions [95]. In more detail, and end-to-end multiclass

semantic segmentation approach presented to segment three different skin lesions

including melanoma, seborrhoeic keratosis, and naevus. The authors used a two-

tier transfer learning method along with a hybrid loss function for training the deep

architectures. A publicly available dataset including 2750 dermoscopy images was

used in this study. Different FCNs including FCN-AlexNet, FCN-32s, FCN-16s,

and FCN-8s were used for comparison. At the final step, a priority based post-

processing algorithm was utilized to assign a single label to the detected lesion.

FCN-8s generated the best outcome for the first two classes, while FCN-AlexNet

showed the better performance for naevi category.

In another study, Goyal et al. proposed a method for diabetic foot ulcer seg-

mentation using fully convolutional neural networks [96]. The authors presented a

new dataset of foot images including 705 images which were captured by a Nikon

camera. The goal in this research was to segment the wound and its surrounding

skin automatically using FCNs. A two-tier transfer learning strategy was utilized for

training of the deep networks. In this transfer learning strategy, first the network
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was trained on ImageNet dataset and the first five convolutional layers transfered

to the second step. Then, the network was trained on another large dataset, Pascal

VOC. After pretraining on this dataset, all the layers transfered to the third step

which was fine-tuning using the new wound image dataset. Different varients of

FCNs such as FCN-AlexNet, FCN-32s, FCN-16s, and FCN-8s were utilized in this

research. FCN-32s and FCN-16s showed a better performance in comparison with

the other networks.

Wagh et al. compared a deep learning approach with a non-deep learning method

for semantic segmentation of smartphone wound images [97]. In more detail, in the

first strategy which is based on AHRF algorithm, they extracted features from the

images and used traditional machine learning tools for classification. The AHRF

approach considers the neighborhood pixels of a target pixel to assign it to the

correct class. In the second approach, an end-to-end DCNN-based method was

utilized for ulcer semantic segmentation. The dataset includes 1758 wound images

from three different resources. Three different deep structures including FCN, U-Net,

and DeepLabV3 were utilized in this study. The conclusion was that for datasets with

less than 300 images, the AHRF based method showed better outcome in comparison

with the U-Net architecture. The authors claimed that for larger datasets, all of the

deep networks outperform the AHRF method.

In another research, Pholberdee et al. proposed a method which combines image

processing techniques with deep learning methods for wound tissue semantic seg-

mentation [98]. The proposed approach was utilized for semantic segmentation of

the wound pixels into granulation, necrosis, and slough tissue types. Regarding the
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obtained results, slough tissue was the most difficult tissue type for classification.

The proposed convolutional network in this study, includes three convolution layers

followed by two fully connected layers. Also, a color augmentation method was uti-

lized for improving the segmentation accuracy. In comparison with an end-to-end

segmentation method from the literature, the authors claimed that their proposed

method generated better performance. This result was interesting as the structure

of the deep network that was used in this study was much simpler than the previous

work from the literature.

5.2 Dataset

For this project we obtained 110 images from different types of wounds collected by

the AZH Wound and Vascular Center in Milwaukee. The images were captured using

an iPad Pro (software version 13.4.1) and a Canon SX 620 HS digital camera. Most

of them have the size of 320×427 and a few images have the size of 320×240 and all

of them are in jpg format. The groundtruth was provided by three wound specialists

from the clinic. The images were labeled in a way that each tissue type was identified

with a specific color. Figure 5.2 shows sample images from the dataset beside their

corresponding groundtruth. In these images, colors brown, red, yellow, green, and

blue stand for callous and maceration, granulation, fibrin and slough, necrotic, and

neodermis tissues, respectively.
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Figure 5.2: Some of the samples from our dataset. The top row shows the original
images and the bottom row displays their corresponding groundtruth.

5.3 Method

This section describes our wound tissue classification method. Figure 5.3 shows an

overview of the whole process. Looking at Figure 5.1, our method goes under the

superpixel generation-based approaches, as we splitt the input image into superpixels

and then feed them into the DCNN-based classifier. Next subsections, describe each

step in detail.

5.3.1 Preprocessing

ROI extraction

After investigaion of the dataset images, we removed some images because of some

quality related issues like having very small size of the wound in the original image.

Then we ended up with 73 images. At the next step, the Region of Interest ( ROI)
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Figure 5.3: Overview for the wound tissue classification project.

was extracted manualy from each of the images.

Data splitting

In this step, we splitted the extracted ROIs into train and test sets, randomly. The

train and test sets included 59 and 14 images, respectively. None of the training

samples was used in the test set and vice versa.

Superpixel generation

After splitting the data samples, superpixels were generated from each ROI. For each

superpixel, we defined the label using majoriy voting on the pixels in the correspond-

ing region of the groundtruth. Simple Linear Iterative Clustering (SLIC) method was

used for superpixel generation. The number of superpixels was identified based on

the size of ROI. For larger ROIs, we increased the number of extracted superpixls.
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Data augmentation

In data augmentation step, 16 samples generated from each superpixel in the train-

ing set using image transformation methods like rotating, flipping, cropping, and

mirroring. Therefore, the number of superpixels that will be used for training of the

classifier increases significantly and prevents the overfitting problem.

5.3.2 Training a DCNN

In this step, the extracted superpixels along with their labels are fed into a Deep

Convolutional Neural Network (DCNN) for training. We used GoogLeNet archi-

tectures as one of the most common deep architectures that generated outstanding

outcomes in different research area. We fine-tuned the network which was pretrained

on ImageNet dataset, using the superpixels extracted from our own dataset. The

maximum number of epochs was set to 20, the learning rate value was 1e-4, and the

Adam optimization algorithm was used for training the network.

5.4 Results and discussion

In this research, MATLAB 2019b and 2020b versions were used for implementing the

models. After training the model, it was applied on the test set images. Figure 5.4

shows some of the primitive results we obtained by applying the trained network on

the test images. In this figure, the red collor shows granulation tissue, the yellow

color displays the fibrin tissue, and the brown color shows callous tissue. As can be

found from these primitive outcomes, the network couldn’t detect the superpixels’
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label in an efficient way and the results are not good visually. The justification for

this outcome could be the fact that regarding the size of the images, the generated

superpixels have very low resolution and are not informative to train the DCNN very

well. We expect that by increasing the number of training samples and resolution of

the original images, the issue would be solved.

Figure 5.4: Some of the primitive results obtained from applying the trained model on
the test set images. Each row shows the original images along with its corresponding
groundtruth and output.

In this chapter, we reviewed some recent studies in the field wound tissue analysis

that most of them used deep neural networks in their works. Also, a taxonomy

was presented for the reviewed papers. By looking at the papers reviewed in the

Section 5.1, it can be realized that there are some gaps in this area in the literature
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as well as some weaknesses for the papers published in the field. First of all, in most

of these reviewed papers the researchers worked on only a specific type of wound like

diabetic, pressure, varicose and so on. The principal reason for this issue could be

the fact that they did not access to a large and reliable dataset of different types

of wounds. In addition, most of them classified the wound tissue to four classses

and only one of them categorized the tissue into more than 4 categories. As a final

note, in the reviewed works the researchers used AlexNet, Inceptionv3, ResNet, and

VGG-16 networks or modified versions of these architectures. Filling these gaps in

the literature was our main motivation for this research. In the future, we will collect

more data samples and continue our experiments using different DCNNs to classify

the wound tissues into more than four tissue types.
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Chapter 6

Conclusion

6.1 Conclusion

In this thesis we studied medical image analysis task using convolutional neural net-

works which are one of the most common shapes of deep learning models. In chapter

2, we introduced deep learning in brief and discussed some of the most common

DCNN architectures in detail. Also, we realized how useful deep learning models

are in healthcare and wound care. In chapter 3, we studied burn wound image clas-

sification problem and used a deep convolutional neural network for classifying the

burn wound images into two and three classes. For the binary classification case, our

classifier showed a considerable improvement over the previous work in the literature.

Moreover, despite of having a limited number of images we obtained an acceptable

accuracy level for the 3-class classification problem. In chapter 4, we discussed mul-

ticlass wound image classification task using deep convolutional neural networks.

At the first part of this chapter, we reviewed the existing wound image classification

studies extensively and provided a comprehensive taxonomy for the reviewed papers.

Then, as the main contribution of this thesis, we proposed an ensemble deep convolu-

tional neural network-based classifier for classification of wound images into multiple

categories based on the wound type. The ensemble classifier included two separate
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classifiers worked in parallel on the same input. The output of these two classifiers

combined to generate a higher classification accuracy. The proposed classifier was

constructed based on this hypothesis that combining a patch level and whole image

level information may result in a better classification performance. The performed

experiments confirmed the hypothesis as the ensemble classifier outperformed both

classifiers individually. Various experiments were conducted to find the best patch

classifiers and whole image classifiers and then we constructed the ensemble classi-

fier using a path-wise and image-wise classification strategy. The ensemble classifier’s

performance was tested using several experiments and the resutls outperformed some

of the most common deep architetures. Moreover, its performance was further eval-

uated by testing on a publically wound image dataset. In addition, we introduced

a new valuable wound image dataset collected by AZH Wound and Vascular Center

in Milwaukee. Collaborating with the AZH Center, we labeled and processed the

images to make them ready to use. We have already published the dataset online

and it can be accessed using the link mentioned in Chapter 4. We claim that our

proposed classifier can be used successfully for the wound image classification tasks

or similar applications to help the physicians and wound specialists as a decision sup-

port system. Chapter 5, was about wound tissue classification using the superpixel

generatin method and DCNNs. In this part, we first reviewed some of the recently

published papers in the field and then described our method for classifying wound

pixels into different tissues along with some of initial results.

85



6.2 Future Directions

The future directions for this thesis are:

• Completing labeling and pre-processing task of the high-resolution AZH Dataset

images for the wound tissue analysis project.

• Classifying the wound tissue pixels into multiple classes using different deep

convolutional neural networks.

• Proposing an ensemble classification method for classification of wound tissue

pixels into multiple classes.

• Developing and publishing the AZH Wound Center Database. Doing this item

is highly dependent on getting the required permissions from the AZH Wound

and Vascular Center.
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