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ABSTRACT

TWO COUNTING PROBLEMS IN GEOMETRIC
TRIANGULATIONS AND PSEUDOLINE ARRANGEMENTS

by

Ritankar Mandal

The University of Wisconsin-Milwaukee, 2021
Under the Supervision of Professor Adrian Dumitrescu

The purpose of this dissertation is to study two problems in combinatorial geometry
in regard to obtaining better bounds on the number of geometric objects of interest: (i)
monotone paths in geometric triangulations and (ii) pseudoline arrangements.

(i) A directed path in a graph is monotone in direction of u if every edge in the path
has a positive inner product with u. A path is monotone if it is monotone in some
direction. Monotone paths are studied in optimization problems, specially in classical
simplex algorithm in linear programming. We prove that the (maximum) number of
monotone paths in a geometric triangulation of n points in the plane is O(1.7864n).
This improves an earlier upper bound of O(1.8393n); the current best lower bound is
Ω(1.7003n) (Dumitrescu et al., 2016).

(ii) Arrangements of lines and pseudolines are fundamental objects in discrete and com-
putational geometry. They also appear in other areas of computer science, for instance in
the study of sorting networks. Let Bn be the number of nonisomorphic arrangements of
n pseudolines and let bn = log2 Bn. The problem of estimating Bn was posed by Knuth in
1992. Knuth conjectured that bn ≤

�
n
2

�
+ o(n2) and also derived the first upper and lower

bounds: bn ≤ 0.7924(n2+n) and bn ≥ n2/6−O(n). The upper bound underwent several
improvements, bn ≤ 0.6974n2 (Felsner, 1997), and bn ≤ 0.6571n2 (Felsner and Valtr,
2011), for large n. Here we show that bn ≥ cn2−O(n log n) for some constant c > 0.2083.
In particular, bn ≥ 0.2083n2 for large n. This improves the previous best lower bound,
bn ≥ 0.1887n2, due to Felsner and Valtr (2011). Our arguments are elementary and
geometric in nature. Further, our constructions are likely to spur new developments and
improved lower bounds for related problems, such as in topological graph drawings.

Developing efficient algorithms and computer search were key to verifying the validity
of both results.
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1. Introduction

The purpose of this dissertation is to study two problems in combinatorial geometry in

regard to obtaining better bounds on the number of geometric objects of interest: (i)

monotone paths in geometric triangulations and (ii) pseudoline arrangements.

1.1. Monotone paths in geometric triangulations

In Chapter 2 we obtain a new lower bound on the maximum number of monotone paths

in plane geometric graphs (also referred to as plane straight-line graphs) with n vertices.

A directed path in a graph is monotone in direction of u (u-monotone) if every edge in

the path has a positive inner product with u. A path is monotone if it is monotone in

some direction. Examples of monotone and non-monotone paths are depicted in Fig. 1.1.

Study of monotone paths is used in optimization specially in classical simplex algorithm

in linear programming.

u

w1

w2

w3

p1

u

w1

w2

w3

w4

p2

u

w1

w2

w3

w4

v5

p3

Figure 1.1.: Left: p1 is u-monotone path. Center: p2 is not u-monotone path since w3w4 has a
negative inner product with u. Right: p3 is non-monotone path.

A graph is a plane geometric graph where the vertices are points in the plane and

the edges are line segments between these points where no two edges intersect except at

the vertices. In extremal graph theory, we study the minimum or maximum number of

certain subgraphs, e.g., perfect matchings, spanning trees, spanning cycles contained in

1



1. Introduction

a graph. The monotonicity of a path is defined geometrically, i.e., membership in the

class depends on the coordinates of the vertices. Since adding edges only increase the

number of monotone paths, we consider only fully triangulated graphs [18, Lemma 3.1]. A

triangulation of ten points is shown in Fig. 1.2. Two paths w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

and w1 w3 w5 w4 w2 are monotone with respect to the positive direction of the x-axis and

y-axis, respectively.

w1

w2

w3

w4

w5

w6

w7

w8

w9

w10

w1 w2 w3
w4 w5

w6 w7
w8 w9 w10

Figure 1.2.: Left: G = (W,E) is a geometric graph with ten vertices. Two paths (i) w1w2w3w4

w5w6w7w8w9w10 (in red) and (ii) w1w3w5w4w2 are monotone with respect to the positive
direction of the x-axis and the y-axis, respectively. Right: An isomorphic plane monotone
directed graph where corresponding vertices are in the same order by x-coordinate.

Let G = (W,E) be a plane geometric graph which is a triangulation of n points. Since

a triangulation has at most 3n − 6 edges for n ≥ 3, it is enough to consider monotone

paths in at most 2(3n − 6) = 6n − 12 directions i.e., one direction between any two

consecutive unit normal vectors of the edges. Therefore in this section and in Chapter 2

we study the upper bound on the number of monotone paths in a fixed direction, which

we may assume to be the positive direction of the x-axis.

Our results. We first show that the number of monotone paths (over all directions) in a

triangulation of n points in the plane is O(1.8193n), using groups of 8 vertices. We then

give a sharper bound of O(1.7864n) analyzing groups of 11 vertices using a computer

program1.

Theorem. The number of monotone paths in a geometric triangulation on n vertices in

the plane is O(1.7864n).

1Refer to the Appendix or the .c file at arXiv:1608.04812.
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1. Introduction

Previous works. Dumitrescu et al. [5] gave an upper and lower bound of O(1.8393n)

and Ω(1.7003n), respectively. We provide a brief review of their proof. Assume that

all the vertices have distinct x-coordinates and the vertices lie on the x-axis. Label the

vertices as w1, w2, . . . , wn sorted by their x-coordinates and orient each edge wiwj ∈ E

from wi to wj, if i < j. G contains a Hamiltonian path ξ0 = (w1, w2, . . . , wn) since wiwi+1

is in E for all 1 ≤ i ≤ n− 1 by [5, Lemma 3]. Fig. 1.2 shows this process of transforming

a plane geometric graph to such an isomorphic plane monotone directed graph. Let T (i)

denote the number of maximal (with respect to inclusion) x-monotone paths starting at

wn−i+1.

wn−i+1
wn−i+2

wn−i+3

wn−i+4

Figure 1.3.: Every vertex has at most three outgoing edges to the next three vertices.

Observe Fig. 1.3. Every vertex wn−i+1 has at most three outgoing edges to vertices at

distance at least 1, 2, and 3 from wn−i+1, obtaining the recurrence

T (i) ≤ T (i− 1) + T (i− 2) + T (i− 3) ∀i ≥ 4

with initial values T (1) = T (2) = 1 and T (3) = 2. The recurrence solves to T (n) = O(αn)

where α = 1.8392 . . . is the unique real root of x3−x2−x−1 = 0. So the maximum number

of x-monotone paths in plane monotone graph is O(n3 T (n)) = O(1.8393n). Continuing

in this direction we improve this bound to O(1.7864n). Table 1.1 summarizes the latest

results [5].

Configurations Lower bound Upper bound

Convex polygons Ω(1.5028n) O(1.5029n)
Star-shaped polygons Ω(1.70n) O(n3αn) = O(1.8393n)
Directed simple paths Ω(αn) = Ω(1.8392n) O(n23n)
Monotone paths Ω(1.70n) O(1.7864n)

Table 1.1.: Upper and lower bounds for the maximum number of configurations in an n-vertex
plane graph. Here α = 1.8392 . . . is the real root of x3 − x2 − x− 1 = 0.
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1. Introduction

A divide and conquer technique (fingerprinting technique). Here we have used a

divide and conquer technique to count the maximum number of x-monotone paths. An

x-monotone path can be represented uniquely by the subset of vertices in the path. A

trivial upper bound of 2n can be deduced just from this representation. For V ⊆ W ,

a set of k consecutive vertices of ξ0, an incidence pattern of V is a subset of V that is

in a monotone path ξ. I(V ) denotes the set of all incidence patterns of V . Therefore

|I(V )| ≤ 2k.

wi−2 wi−1 wi wi+1 wi+2
wi+3 wi+4 wi+5

(v1) (v2) (v3) (v4)

Figure 1.4.: V = {v1, v2, v3, v4}, where v1 = wi for some i.

Observe Fig. 1.4. Let V = {v1v2v3v4} be a group of four consecutive vertices of

ξ0, where v1 = wi for some i. All vertices preceding and succeeding V are mapped

to new vertices v0 and v5 respectively, see Fig. 1.5 (left). The vertices v2v4 are in the

path wi−2 v2 v4 wi+5 (i.e., wi−2 wi+1 wi+3 wi+5). So v2v4 ∈ I(V ). Carefully observing all

the monotone paths passing through V , we get I(V ) = {∅, v1v2, v1v2v3, v1v2v3v4, v1v2v4,

v1v3, v1v3v4, v2, v2v3, v2v3v4, v2v4, v3, v3v4}. Here |I(V )| = 13 < 16 as the incidence pat-

terns v1, v4 and v1v4 are not in I(V ).

v0 v1 v2 v3 v4 v5 v1 v2 v3
v4

Figure 1.5.: Left: All vertices preceding and succeeding V are mapped to new vertices v0 and
vk+1 (here k = 4) respectively. Right: The fingerprint of the group V .

We now describe the fingerprinting technique that forms the base of our proof. Fol-

lowing are the few important terms that are used in our proof.

• pk = max|V |=k |I(V )| denotes the maximum number of incidence patterns for V , a

4



1. Introduction

set of k consecutive vertices of ξ0, in a plane monotone triangulation.

• µn denotes themaximum number of maximal x-monotone paths in a plane geometric

graph with n vertices. If n is a multiple of k, the product rule yields µn ≤ p
n/k
k .

For an arbitrary n and constant k, we obtain

µn ≤ p
�n/k�
k 2n−k�n/k� ≤ p

�n/k�
k 2k = O

�
p
n/k
k

�
.

• λn denotes the maximum number of monotone paths in an n-vertex triangulation.

Recall that it is enough to consider paths in at most 6n− 12 directions. Also every

x-monotone path in G contains at most n vertices, hence it contains at most
�
n
2

�

x-monotone subpaths. Therefore, we have

λn ≤ (6n− 12)

�
n

2

�
· µn = O(n3µn) = O

�
n3 p

n/k
k

�
.

Observe Fig. 1.6. Let V = {1, 2} be a group of two consecutive vertices of ξ0. I(V )

always contains the two incidence patterns ∅ and 12. Since adding more edges to a group

increases the number of monotone paths we can ignore the group with I(V ) = {∅, 12}

from our analysis. If two groups are reflections of each other around the x-axis then we

only consider one of them to keep our analysis simple. Note that two groups can be

reflections of each other around the y-axis e.g., V 2 and V 3, and we’ll keep them both in

our analysis. Therefore the following are the only three groups of two vertices that we

consider in our analysis. These groups are sorted in decreasing order according to the

number of the incidence patterns. The incidence patterns are

I(V 1) = {∅, 12, 1, 2},

I(V 2) = {∅, 12, 2},

I(V 3) = {∅, 12, 1}.

Therefore p2 = |I(V 1)| = 4 which yields the upper bounds µn = O(4n/2) and consequently

5



1. Introduction

λn = O(n34n/2) = O(2n) which is trivial.

1 2

V 1

1 2

V 2

1 2

V 3

Figure 1.6.: Three groups of two vertices.

For groups of three vertices the following are the only 52 groups that we consider in

our analysis, see Fig. 1.7. The first three groups G1, G2 and G3 are the only groups with

seven incidence patterns which is the maximum number of patterns among groups of three

vertices. The incidence patterns of G1, G2 and G3 are I(G1) = {∅, 123, 12, 1, 23, 2, 3}.

I(G2) = {∅, 123, 12, 13, 23, 2, 3}. I(G3) = {∅, 123, 12, 13, 1, 23, 2}.

Therefore p3 = 7 which yields the upper bounds µn = O(7n/3) and consequently

λn = O(n37n/3) = O(1.913n). Observe G2 and G3 among many others are reflections of

each other around the y-axis.

1 2 3

G1

1 2 3

G2

1 2 3

G3

1 2 3

G4

1 2 3

G5

1 2 3

G6

1 2 3

G7

1 2 3

G8

1 2 3

G9

1 2 3

G10

1 2 3

G11

1 2 3

G12

1 2 3

G13

1 2 3

G14

1 2 3

G15

1 2 3

G16

1 2 3

G17

1 2 3

G18

1 2 3

G19

1 2 3

G20

1 2 3

G21

1 2 3

G22

1 2 3

G23

1 2 3

G24

1 2 3

G25

1 2 3

G26

1 2 3

G27

1 2 3

G28

1 2 3

G29

1 2 3

G30

1 2 3

G31

1 2 3

G32

1 2 3

G33

1 2 3

G34

1 2 3

G35

1 2 3

G36

1 2 3

G37

1 2 3

G38

6



1. Introduction

1 2 3

G39

1 2 3

G40

1 2 3

G41

1 2 3

G42

1 2 3

G43

1 2 3

G44

1 2 3

G45

1 2 3

G46

1 2 3

G47

1 2 3

G48

1 2 3

G49

1 2 3

G50

1 2 3

G51

1 2 3

G52

Figure 1.7.: 52 groups of three vertices.

In Section 2.3, by analysis we show that the groups A and AR (see Fig. 1.8) are the

only groups with 13 incidence patterns which is the maximum number of patterns among

groups of four vertices. The incidence patterns are:

I(A) = I(AR) = {∅, 12, 123, 1234, 124, 13, 134, 2, 23, 234, 24, 3, 34}.

Threfore p4 = 13 which yields the upper bounds µn = O(13n/4) and consequently λn =

O(n313n/4) = O(1.8989n).

1 2 3 4

A

1 2 3 4

AR

Figure 1.8.: A and AR are the only groups of four vertices with 13 incidence patterns and they
are reflections of each other around the y-axis.

In Section 2.4, further analysis shows that p8 = 120, hence µn = O(120n/8) and λn =

O(n3120n/8) = O(1.8193n). In Section 2.5, Computer search shows that p11 = 591, and

so µn = O(591n/11); thus providing our final result λn = O(n3591n/11) = O(1.7864n).

Relevant paper. A. Dumitrescu, R. Mandal, and Cs. D. Tóth, Monotone Paths in

Geometric Triangulations, in Theory Comput. Syst. 62(6): 1490–1524 (2018).
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1. Introduction

1.2. Pseudoline arrangements

In Chapter 3 we study the lower bounds on the number of pseudoline arrangements.

Arrangements of pseudolines is an important topic in combinatorial geometry. Such ar-

rangements are a generalized way of studying straight line arrangements. Grünbaum’s

monograph Arrangements and Spreads [42] is one of the first to present a collection of

problems, solutions and conjectures on arrangements of pseudolines and lines. Later the

relation between arrangements and oriented matroids was found which led to develop-

ment of various combinatorial results. Generally pseudoline arrangements are studied in

projective plane, we studied them in the Euclidean plane.

1

2
3

4
1

2

3

4

A 1

2
3

4
1

2

3

4

5

5A�

Figure 1.9.: Two arrangements A and A� with 4 and 5 pseudolines respectively.

A pseudoline is an x-monotone curve in the Euclidean plane. An (Euclidean) arrange-

ment of pseudolines is a collection of pseudolines where each pair intersects each other

exactly once, see Fig. 1.9. Such intersections are called vertices. The size of an arrange-

ment is the number of pseudolines in it. Given an arrangement A of size n we label the

pseudolines so that they cross a vertical line left of all vertices in increasing order from

bottom to top. Note that these pseudolines cross a vertical line right of all vertices in

decreasing order from bottom to top. An arrangement is simple if no three pseudolines

have a common point of intersection. In this section the term arrangement always means

simple arrangement if not specified otherwise.

There are several combinatorial representations (and encodings) of pseudoline arrange-

ments. These representations help one count the number of arrangements. Three classic

representations are allowable sequences (introduced by Goodman and Pollack [40, 41]),

wiring diagrams [38], and zonotopal tilings [37].

A simple allowable sequence is a sequence Σ of
�
n
2

�
+1 permutations of {1, 2, . . . , n} sat-

isfying two properties: (i) The first element of Σ is the identity permutation (1, 2, . . . , n)

8



1. Introduction

and the last element of Σ is the reverse permutation (n, . . . , 2, 1); and (ii) Two consecutive

permutations in Σ differ by the reversal of an adjacent pair ij, where i < j [36]. A wiring

diagram is a Euclidean arrangement of pseudolines consisting of piece-wise linear ‘wires’,

each horizontal except for a short segment where it crosses another wire. Each pair of

wires cross exactly once; see Fig. 3.1 (center). Wiring diagrams are also known as reflec-

tion networks, i.e., networks that bring n wires labeled from 1 to n into their reflection

by means of performing switches of adjacent wires; see [45, p. 35]. Lastly, they are also

known under the name of primitive sorting networks ; see [46, Ch. 5.3.4].

Number of allowable sequences. An denotes the number of simple allowable sequences

on 1, 2, . . . , n. The following closed formula for An was established by Stanley [53]:

An =

�
n
2

�
!

�n−1
k=1(2n− 2k − 1)k

.

From this formula we can derive that the asymptotic growth of An is 2Θ(n2 logn); see

sequence A005118 in [52] for more.

Arrangements with 3 and 4 pseudolines. The following are the two arrangements with

3 pseudolines, i.e., A3 = 2.

1 3

2 2

3 1

1

1 3

2 2

3 1

2

Figure 1.10.: 1 & 2 are the only two arrangements with 3 pseudolines.

The following are the sixteen arrangements with 4 pseudolines, i.e., A4 = 16.

1 4

2 3

3 2

4 1

A1

1 4

2 3

3 2

4 1

A2

1 4

2 3

3 2

4 1

A3

1 4

2 3

3 2

4 1

A4

1 4

2 3

3 2

4 1

A5

1 4

2 3

3 2

4 1

A6

1 4

2 3

3 2

4 1

A7

1 4

2 3

3 2

4 1

A8
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1 4

2 3

3 2

4 1

A9

1 4

2 3

3 2

4 1

A10

1 4

2 3

3 2

4 1

A11

1 4

2 3

3 2

4 1

A12

1 4

2 3

3 2

4 1

A13

1 4

2 3

3 2

4 1

A14

1 4

2 3

3 2

4 1

A15

1 4

2 3

3 2

4 1

A16

Figure 1.11.: A1 −A16 are the only sixteen arrangements with 4 pseudolines.

Isomorphism of arrangements. Two arrangements are isomorphic, i.e., considered the

same, if they can be mapped onto each other by a homeomorphism of the plane [39].

Equivalently, two arrangements are isomorphic if there is an isomorphism between the

induced cell decomposition [37, Ch. 6]. Observe Fig. 1.12 for an illustration of this concept

and the correspondence with allowable sequences. A1 and A2 are isomorphic where A3 is

nonisomorphic to A2 and A1. Note that the relative position of two vertices from distinct

pairs of pseudolines is irrelevant. A1 and A2 are isomorphic since the positions of the

vertices 23 (in red) and 14 (in cyan) can be switched. A3 is nonisomorphic to A2 (and

A1) since the positions of the vertices 23 (in red) and 34 (in green) can not be switched

because they have a common pseudoline.

1 4

2 3

3 2

4 1

A1

1 4

2 3

3 2

4 1

A2

1 4

2 3

3 2

4 1

A3

Figure 1.12.: A1, A2 and A3 are three arrangements with four pseudolines. A1 and A2 are
isomorphic where A3 is nonisomorphic to A2 and A1.

Since A1 and A2 are the same (isomorphic) arrangement, they (and their allowable

sequences) can be represented by a canonical arrangement B1, see Fig. 1.13. The allowable

sequence for B1 is

1234
12−→ 2134

13−→ 2314
23,14−−−→ 3241

24−→ 3421
34−→ 4321.

10
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B1

1 4

2 3

3 2

4 1

Figure 1.13.: B1 is the canonical arrangement representing A1 and A2.

Clearly the isomorphism is an equivalence relation which provides a partition of disjoint

equivalence classes. The eight equivalence classes from the sixteen arrangements (from

Fig. 1.11) are presented in the Table 1.2. Observe that not all the classes contain same

number of elements. A canonical arrangement can be drawn to represent an equivalence

class of isomorphic arrangements. Eight canonical arrangements with four pseudolines

are shown in Fig. 1.14).

B1 B2 B3 B4 B5 B6 B7 B8

A1,A2 A3 A4,A5,A12,A13 A6 A7,A8,A9,A10 A11 A14 A15,A16

Table 1.2.: Eight equivalence classes from the sixteen arrangements with 4 pseudolines.

The number of nonisomorphic arrangements of n pseudolines is denoted by Bn (se-

quence A006245 in [52]); this is the number of equivalence classes of all arrangements

of n pseudolines; see [45, p. 35]. So Bn ≤ An, we will show that Bn is asymptotically

smaller than An. Unlike An, an exact enumeration of Bn is not found yet, but asymptotic

bounds have been established. Here we study the growth rate of Bn; so let bn = log2 Bn.

Nonisomorphic arrangements with 3 and 4 pseudolines. There are two nonisomor-

phic arrangements with 3 pseudolines, i.e., B3 = 2. They are the same as shown in

Fig. 1.10. There are eight nonisomorphic arrangements with 4 pseudolines, i.e., B4 = 8

(see Fig. 1.14).

B1

1 4

2 3

3 2

4 1

B2

1 4

2 3

3 2

4 1

B3

1 4

2 3

3 2

4 1

B4

1 4

2 3

3 2

4 1
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B5

1 4

2 3

3 2

4 1

B6

1 4

2 3

3 2

4 1

B7

1 4

2 3

3 2

4 1

B8

1 4

2 3

3 2

4 1

Figure 1.14.: B1 − B8 are the only eight nonisomorphic arrangements with 4 pseudolines.

Previous works. Knuth [45, p. 37] used a recursive construction of reflection networks.

The number of nonisomorphic arrangements of n pseudolines in his construction, T (n),

yields T (n) ≥ 2n
2/6−5n/2, therefore Bn ≥ 2n

2/6−5n/2.

n
3 = m

n
3 = m

n
3 = m

n = 3m

Figure 1.15.: Grid construction for a lower bound on Bn.

Observe Fig. 1.15. Matoušek provided a new recursive construction [49, Sec. 6.2]. Let

n be a multiple of 3 and m = n
3
(assume that m is odd). The 2m lines in the two extreme

bundles form a regular grid of m2 points and the lines in the central bundle are incident

to 3m2+1
4

of these grid points. At each such point, there are 2 choices; going below it or

above it, thus creating at least 3m2

4
= 3(n/3)2

4
= n2

12
binary choices. So T (n) obeys the

recurrence

T (n) ≥ 2n
2/12 · (T (n/3))3,

which by induction yields T (n) ≥ 2n
2/8, implying Bn ≥ 2n

2/8.

n
3 = m

n
3 = m

n
3 = m

Figure 1.16.: The hexagon H(5, 5, 5) with one of its rhombic tilings and a consistent partial
arrangement corresponding to the tiling. This figure is reproduced from [39].
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Felsner and Valtr [39] used rhombic tilings of a centrally symmetric hexagon in a

recursive construction for a lower bound on Bn. This construction yields the lower bound

bn ≥ 0.1887n2 for large n; this is the previous best lower bound, see Fig. 1.16.

Our results. We extend the method of recursive grid construction used by Matoušek to

establish sharper lower bounds. We present a family of constructions, gradually increasing

the number of slopes, providing sharper bounds. With the increase in the number of

slopes, the complexity of the corresponding proofs increases too. Our main result [33] is

summarized in the following.

Theorem. Let Bn be the number of nonisomorphic arrangements of n pseudolines.

Then Bn ≥ 2cn
2−O(n logn), for some constant c > 0.2083. In particular, Bn ≥ 20.2083n

2
for

large n.

Relevant paper. A. Dumitrescu, R. Mandal, New lower bounds for the number of

pseudoline arrangements, in Journal of Computational Geometry 11(1): 60–92 (2020).
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2. Monotone Paths in Geometric

Triangulations

2.1. Introduction

A directed polygonal path ξ in Rd is monotone if there exists a nonzero vector u ∈ Rd

that has a positive inner product with every directed edge of ξ. The study of combi-

natorial properties of monotone paths is motivated by the classical simplex algorithm

in linear programming, which finds an optimal solution by tracing a monotone path in

the 1−skeleton of a d-dimensional polytope of feasible solutions. It remains an elusive

open problem whether there is a pivoting rule for the simplex method that produces a

monotone path whose length is polynomial in d and n [1].

w1

w2

w3

w4

w5

w6

w7

w8

w9

w10

Figure 2.1.: G = (W,E) is a geometric graph with ten vertices. Two paths (i) w1w2w3w4

w5w6w7w8w9w10 (shown in red) and (ii) w6w1w5w9w4 (shown in blue) are monotone with
respect to the positive direction of the x-axis and the y-axis, respectively.

Let S be a set of n points in the plane. A geometric graph G is a graph drawn in the

plane so that the vertex set consists of the points in S and the edges are drawn as straight

line segments between the corresponding points in S. A plane geometric graph is one in

14



2. Monotone Paths in Geometric Triangulations

which edges intersect only at common endpoints. In this chapter, we are interested in the

maximum number of monotone paths over all plane geometric graphs with n vertices. It

is easy to see that triangulations maximize the number of such paths since adding edges

can only increase the number of monotone paths.

Our results. We first show that the number of monotone paths (over all directions) in

a triangulation of n points in the plane is O(1.8193n), using a fingerprinting technique

in which incidence patterns of 8 vertices are analyzed. We then give a sharper bound of

O(1.7864n) using the same strategy, by enumerating fingerprints of 11 vertices using a

computer program1.

Theorem 2.1. The number of monotone paths in a geometric triangulation on n vertices

in the plane is O(1.7864n).

Related previous work. We derive a new upper bound on the maximum number of

monotone paths in geometric triangulations of n points in the plane. Analogous prob-

lems have been studied for cycles, spanning cycles, spanning trees, and matchings [4]

in n-vertex edge-maximal planar graphs, which are defined in purely graph theoretic

terms. In contrast, the monotonicity of a path depends on the embedding of the point

set in the plane, i.e., it is a geometric property. The number of geometric configurations

contained (as a subgraph) in a triangulation of n points have been considered only re-

cently. The maximum number of convex polygons is known to be between Ω(1.5028n)

and O(1.5029n) [9, 16]. For the number of monotone paths, Dumitrescu et al. [5] gave an

upper bound of O(1.8393n); we briefly review their proof in Section 2.2. A lower bound

of Ω(1.7003n) is established in the same paper. It can be deduced from the following

construction illustrated in Fig. 2.2. Let n = 2� + 2 for an integer ℓ ∈ N; the plane graph

G has n vertices W = {w1, . . . , wn}, it contains the Hamiltonian path ξ0 = (w1, . . . , wn),

and it has edge (wi, wi+2k), for 1 ≤ i ≤ n− 2k, iff i− 1 or i− 2 is a multiple of 2k.

Every n-vertex triangulation contains Ω(n2) monotone paths, since there is a monotone

path between any two vertices (by a straightforward adaptation of [6, Lemma 1] from

1Refer to the Appendix or the .c file at arXiv:1608.04812.
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2. Monotone Paths in Geometric Triangulations

w1

w2

w3

w4

w5

w6

w7

w8

w9

w10

w1 w2 w3 w4 w5 w6 w7 w8 w9w10

Figure 2.2.: Left: A graph on n = 2� + 2 vertices (here � = 3) that contains a Hamiltonian
path ξ0 = (w1, . . . , wn) shown in red. Right: An isomorphic plane monotone graph where
corresponding vertices are in the same order by x-coordinate; and edges above (resp., below)
ξ0 remain above (resp., below) ξ0. For n sufficiently large, a graph in this family contains
Ω(1.7003n) x-monotone paths.

convex subdivisions to triangulations). The minimum number of monotone paths in an

n-vertex triangulation lies between Ω(n2) and O(n3.17) [5].

The number of several common crossing-free structures (such as matchings, spanning

trees, spanning cycles, triangulations) on a set of n points in the plane is known to be

exponential [2, 7, 10, 19, 22, 23, 24, 25]; see also [8, 26]. Early upper bounds in this area

were obtained by multiplying an upper bound on the maximum number of triangulations

on n points with an upper bound on the maximum number of desired configurations in

an n-vertex triangulation; valid upper bounds result since every plane geometric graph

can be augmented into a triangulation.

For a polytope P ⊂ Rd, let G(P ) denote its 1-skeleton, which is the graph consisting

of the vertices and edges of P . The efficiency of the simplex algorithm and its vari-

ants hinges on extremal bounds on the length of a monotone paths in the 1-skeleton

of a polytope. For example, the monotone Hirsch conjecture [29] states that for every

u ∈ Rd \ {0}, the 1-skeleton of every d-dimensional polytope with n facets contains a

u-monotone path with at most n− d edges from any vertex to a u-maximal vertex (i.e.,

a vertex whose orthogonal projection onto u is maximal). Klee [15] verified the conjec-

ture for 3-dimensional polytopes, but counterexamples have been found in dimensions

d ≥ 4 [27] (see also [20]). Kalai [13, 14] gave a subexponential upper bound for the length

of a shortest monotone path between any two vertices (better bounds are known for the

diameter of the 1-skeleta of polyhedra [28], but the shortest path between two vertices
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2. Monotone Paths in Geometric Triangulations

need not be monotone). However, even in R3, no deterministic pivot rule is known to find

a monotone path of length n − 3 [12], and the expected length of a path found by ran-

domized pivot rules requires averaging over all u-monotone paths [11, 17]. See also [21]

for a summary of results of the polymath 3 project on the polynomial Hirsch conjecture.

2.2. Preliminaries

A polygonal path ξ = (v1, v2, . . . , vt) in Rd is monotone in direction u ∈ Rd \ {0}

(u-monotone, for short) if every directed edge of ξ has a positive inner product with u,

that is, �−−−→vivi+1,u� > 0 for i = 1, . . . , t− 1; here 0 is the origin. A path ξ = (v1, v2, . . . , vt)

is monotone if it is monotone in some direction u ∈ Rd \ {0}. A path ξ in the plane is

x-monotone, if it is monotone with respect to the positive direction of the x-axis, i.e.,

monotone in direction u = (1, 0).

Let S be a set of n points in the plane. A (geometric) triangulation of S is a plane

geometric graph with vertex set S such that the bounded faces are triangles that jointly

tile of the convex hull of S. Since a triangulation has at most 3n − 6 edges for n ≥ 3,

and the u-monotonicity of an edge (a, b) depends on the sign of �−→ab,u�, it is enough to

consider monotone paths in at most 2(3n−6) = 6n−12 directions (one direction between

any two consecutive unit normal vectors of the edges). In the remainder of this chapter,

we obtain an upper bound on the number of monotone paths in a fixed direction, which

we may assume to be the positive direction of the x-axis.

w1
w2

w3w4

Figure 2.3.: G is a triangulation of four points. There are 7 x-monotone paths in G : w1w2,
w1w2w3, w1w3, w1w4, w1w4w3, w2w3, w4w3. These are also y-monotone in this example.

Let G = (S,E) be a plane geometric graph with n vertices. An x-monotone path ξ

in G is maximal if ξ is not a proper subpath (consisting of consecutive vertices) of some

x-monotone path in G. Every x-monotone path in G contains at most n vertices, hence

it contains at most
�
n
2

�
x-monotone subpaths. Conversely, every x-monotone path can be
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2. Monotone Paths in Geometric Triangulations

extended to a maximal x-monotone path.

• Let λn denote the maximum number of monotone paths in an n-vertex triangulation

(summed over all directions u).

• Let µn denote the maximum number (over all directions u) of maximal u-monotone

paths in an n-vertex triangulation.

Therefore we have

λn ≤ (6n− 12)

�
n

2

�
· µn = O(n3µn). (2.1)

We prove an upper bound for a broader class of graphs, plane monotone graphs, in

which every edge is an x-monotone Jordan arc. Consider a plane monotone graph G on n

vertices with a maximum number of x-monotone paths. We may assume that the vertices

have distinct x-coordinates; otherwise we can perturb the vertices without decreasing the

number of x-monotone paths. Since inserting new edges can only increase the number

of x-monotone paths, we may also assume that G is fully triangulated [18, Lemma 3.1],

i.e., it is an edge-maximal planar graph. Conversely, every plane monotone graph is

isomorphic to a plane geometric graph in which the x-coordinates of the corresponding

vertices are the same [18, Theorem 2]. Consequently, the number of maximal x-monotone

paths in G equals µn.

Denote the vertex set of G by W = {w1, . . . , wn}, ordered by increasing x-coordinates;

and direct each edge wiwj ∈ E(G) from wi to wj if i < j; we thereby obtain a directed

graph G. By [5, Lemma 3], all edges wiwi+1 must be present, i.e., G contains a Hamilto-

nian path ξ0 = (w1, w2, . . . , wn). If T (i) denotes the number of maximal (w.r.t. inclusion)

x-monotone paths in G starting at vertex wn−i+1, it was shown in the same paper that

T (i) satisfies the recurrence T (i) ≤ T (i− 1) + T (i− 2) + T (i− 3) for i ≥ 4, with initial

values T (1) = T (2) = 1 and T (3) = 2 (one-vertex paths are also counted). This recur-

rence solves to T (n) = O(αn), where α = 1.8392 . . . is the unique real root of the cubic

equation x3−x2−x− 1 = 0. Consequently, any n-vertex geometric triangulation admits

at most O(n3 T (n)) = O(1.8393n) monotone paths. Theorem 2.1 improves this bound to

O(1.7864n).
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2. Monotone Paths in Geometric Triangulations

Fingerprinting technique. An x-monotone path can be represented uniquely by the

subset of visited vertices. This unique representation gives the trivial upper bound of

2n for the number of x-monotone paths. For a set of k vertices V ⊆ W , an incidence

pattern of V (pattern, for short) is a subset of V that appears in a monotone path ξ

(i.e., the intersection between V and a monotone path ξ). Denote by I(V ) the set of all

incidence patterns of V ; see Fig. 2.5. For instance, v1v3 ∈ I(V ) implies that there exists

a monotone path ξ in G that is incident to v1 and v3 in V , but no other vertices in V .

The incidence pattern ∅ ∈ I(V ) denotes an empty intersection between ξ and V , i.e., a

monotone path that has no vertices in V .

We now describe a divide & conquer application of the fingerprinting technique we

use in our proof. For k ∈ N, let pk = max|V |=k |I(V )| denote the maximum number of

incidence patterns for a set V of k consecutive vertices in a plane monotone triangulation.

We trivially have pk ≤ 2k, and it immediately follows from the definition that pk ≤ pipj

for all i, j ≥ 1 with i + j = k; in particular, we have p2k ≤ p2k. Assuming that n is a

multiple of k, the product rule yields µn ≤ p
n/k
k . For arbitrary n and constant k, we

obtain

µn ≤ p
�n/k�
k 2n−k�n/k� ≤ p

�n/k�
k 2k = O

�
p
n/k
k

�
. (2.2)

Combining the results from Equations (2.1) and (2.2), we have

λn = O(n3 p
n/k
k ) (2.3)

Given V = {v1}, it is clear that p1 = 2 with I(V ) = {∅, v1}. Similarly given V =

{v1, v2}, we have p2 = 4 with I(V ) = {∅, v1, v2, v1v2}. It is not difficult to see that p3 = 7

(note that p3 < p1p2).

The two groups of vertices U and V with two vertices have each 4 patterns; I(U) = {∅,

u1, u2, u1u2}, I(V ) = {∅, v1, v2, v1v2}, see Fig. 2.4 (left). Using these two groups, a new

group UV with four vertices can be constructed having 13 patterns, see Fig. 2.4 (right).

For example patterns u1u2 and v2 in I(U) and I(V ) respectively, constitute the pattern

u1u2v2 in I(UV ). Similarly patterns ∅ and v1 in I(U) and I(V ) respectively, constitute

19



2. Monotone Paths in Geometric Triangulations

the pattern v1 in I(UV ). Observing UV , we can find that I(UV ) = {∅, u1u2, u1u2v1,

u1u2v1v2, u1u2v2, u1v1, u1v1v2, u2, u2v1, u2v1v2, u2v2, v1, v1v2}. Note that the three

patterns u1, v2, u1v2 are not in I(UV ).

u1 u2

U

v1 v2

V

u1 u2 v1 v2

UV

Figure 2.4.: Left: Two groups U and V with two vertices. Right: UV with four vertices.

• We prove p4 = 13 (and so p4 < p22 = 16) by analytic methods (Section 2.3).

Using Equations. (2.2) and (2.3), this yields the upper bounds µn = O(13n/4) and

consequently λn = O(n3 13n/4) = O(1.8989n).

• A careful analysis of the edges between two consecutive groups of 4 vertices shows

that p8 = 120, and so p8 is significantly smaller than p24 = 132 = 169 (Lemma 2.10),

hence µn = O(120n/8) and λn = O(n3 120n/8) = O(1.8193n).

• Computer search shows that p11 = 591, and so µn = O(591n/11) and

λn = O(n3 591n/11) = O(1.7864n) (Section 2.5). Efficient algorithms and computer

search were important in verifying that no pattern was missed.

Table 2.1 summarizes the upper bounds obtained by this approach.

k pk µn = O
�
p
n/k
k

�
λn = O(n3µn)

2 4 2n O(n3 2n)

3 7 O(7n/3) O(n3 7n/3) = O(1.913n)

4 13 O(13n/4) O(n3 13n/4) = O(1.8989n)

5 23 O(23n/5) O(n3 23n/5) = O(1.8722n)

6 41 O(41n/6) O(n3 41n/6) = O(1.8570n)

7 70 O(70n/7) O(n3 70n/7) = O(1.8348n)

8 120 O(120n/8) O(n3 120n/8) = O(1.8193n)

9 201 O(201n/9) O(n3 201n/9) = O(1.8027n)

10 346 O(346n/10) O(n3 346n/10) = O(1.7944n)

11 591 O(591n/11) O(n3 591n/11) = O(1.7864n)

Table 2.1.: Upper bounds obtained via the fingerprinting technique for k ≤ 11.

20



2. Monotone Paths in Geometric Triangulations

The analysis of pk, for k ≥ 12, using the same technique is expected to yield further

improvements. Handling incidence patterns on 12 or 13 vertices is still realistic (although

time consuming), but working with larger groups is currently prohibitive, both by analytic

methods and with computer search. Significant improvement over our results may require

new ideas.

Definitions and notations for a single group. Let G be a directed plane monotone tri-

angulation that contains a Hamiltonian path ξ0 = (w1, w2, . . . , wn). Denote by G− (resp.,

G+) the path ξ0 together with all edges below (resp., above) ξ0. Let V = {v1, . . . , vk} be

a set of k consecutive vertices of ξ0. For the purpose of identifying the edges relevant for

the incidence patterns of V , the edges between a vertex vi ∈ V and any vertex preced-

ing V (resp., succeeding V ) are equivalent since they correspond to the same incidence

pattern. We therefore apply a graph homomorphism ϕ on G− and G+, respectively, that

maps all vertices preceding V to a new node v0, and all vertices succeeding V to a new

node vk+1. The path ξ0 is mapped to a new path (v0, v1, . . . , vk, vk+1). Denote the edges

in ϕ(G− \ ξ0) and ϕ(G+ \ ξ0), respectively, by E−(V ) and E+(V ); they are referred to

as the upper side and the lower side; and let E(V ) = E−(V ) ∪ E+(V ). The incidence

pattern of the vertex set V is determined by the triple (V,E−(V ), E+(V )). We call this

triple the group induced by V , or simply the group V .

u1 u2 u3 u4

U

v1 v2 v3 v4

V

Figure 2.5.: Left: A group U with incidence patterns I(U) = {∅, u1u2, u1u2u3, u1u2u3u4,
u1u2u4, u2, u2u3, u2u3u4, u2u4, u3, u3u4}. Right: A group V with I(V ) = {∅, v1v2, v1v2v3,
v1v2v3v4, v1v2v4, v1v3, v1v3v4, v2, v2v3, v2v3v4, v2v4, v3, v3v4}.

Observe Fig. 2.6. Now we define a few important terms related to our proof. Note that

v0 and vk+1 are not in V .

• The edges vivj ∈ E(V ), 1 ≤ i < j ≤ k, are called inner edges. e.g.v2v4.

• The edges v0vi, 1 ≤ i ≤ k, are called incoming edges of vi ∈ V . e.g.v0v2.
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2. Monotone Paths in Geometric Triangulations

• the edges vivk+1, 1 ≤ i ≤ k, are outgoing edges of vi ∈ V . e.g.v3v5.

v0 v1 v2 v3 v4 v5

Figure 2.6.: All vertices preceding and succeeding V are mapped to new vertices v0 and vk+1

(here k = 4) respectively.

An incoming edge v0vi for 1 < i ≤ k (resp., and outgoing edge vivk+1 for 1 ≤ i < k)

may be present in both E−(V ) and E+(V ). Denote by In(v) and Out(v), respectively,

the number of incoming and outgoing edges of a vertex v ∈ V ; and note that In(v) and

Out(v) can be 0, 1 or 2.

For 1 ≤ i ≤ k, let V∗i denote the set of incidence patterns in the group V ending at

i. For example in Fig. 2.5 (right), V∗3 = {v1v2v3, v1v3, v2v3, v3}. By definition we have

|V∗i| ≤ 2i−1. Similarly Vi∗ denotes the set of incidence patterns in the group V starting

at i. In Fig. 2.5 (left), U2∗ = {u2, u2u3, u2u3u4, u2u4}. Observe that |Vi∗| ≤ 2k−i. Note

that

|I(V )| = 1 +
k�

i=1

|V∗i| and |I(V )| = 1 +
k�

i=1

|Vi∗|. (2.4)

Reflecting all components of a triple (V,E−(V ), E+(V )) with respect to the x-axis gen-

erates a new group denoted by (V,E−(V ), E+(V ))R, or V R for a shorthand notation. By

definition, both V and V R have the same set of incidence patterns.

Remark. Our counting arguments pertain to maximal x-monotone paths. Suppose that

a maximal x-monotone path ξ has an incidence pattern in V∗i, for some 1 ≤ i < k. By

the maximality of ξ, ξ must leave the group after vi, and so vi must be incident to an

outgoing edge. Similarly, the existence of a pattern in Vi∗ for 1 < i ≤ k, implies that vi

is incident to an incoming edge.
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2. Monotone Paths in Geometric Triangulations

2.3. Groups of 4 vertices

In this section we analyze the incidence patterns of groups with 4 vertices. We prove that

p4 = 13 and find the only two groups with 4 vertices that have 13 patterns (Lemma 2.5).

We also prove important properties of groups that have exactly 11 or 12 patterns, respec-

tively (Lemmata 2.2, 2.3 and 2.4).

Lemma 2.1. Let V be a group of 4 vertices with at least 10 incidence patterns. Then

there is

(i) an outgoing edge from v2 or v3; and

(ii) an incoming edge into v2 or v3.

v1 v2 v3 v4

V

Figure 2.7.: v1 cannot be the last vertex with an outgoing edge from a group V = {v1, v2, v3, v4}
with at least 10 incidence patterns.

Proof. (i) There is at least one outgoing edge from {v1, v2, v3}, since otherwise V∗1 =

V∗2 = V∗3 = ∅ implying |I(V )| = |V∗4| + 1 ≤ 9. Assume there is no outgoing edge from

v2 and v3; then V∗1 = {v1} and V∗2 = V∗3 = ∅. From (2.4), we have |V∗4| = 8 and this

implies {v1v3v4, v2v4, v3v4} ⊂ V∗4. The patterns v1v3v4 and v2v4, respectively, imply that

v1v3, v2v4 ∈ E(V ). The patterns v2v4 and v3v4, respectively, imply there are incoming

edges into v2 and v3. Refer to Fig. 2.7. Without loss of generality, an outgoing edge from

v1 is in E+(V ). By planarity, all incoming edges into v2 or v3 have to be in E−(V ). Then

v1v3 and v2v4 both have to be in E+(V ), which by planarity is impossible.

(ii) By symmetry in a vertical axis, there is an incoming edge into v2 or v3.

Lemma 2.2. Let V be a group of 4 vertices with at least 11 incidence patterns. Then

there is

(i) an incoming edge into v2; and

(ii) an outgoing edge from v3.
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2. Monotone Paths in Geometric Triangulations

Proof. (i) Assume In(v2) = 0. Then |V2∗| = 0. By Lemma 2.1 (ii), we have In(v3) > 0.

By definition |V3∗| ≤ 2. We distinguish two cases.

Case 1: In(v4) = 0. In this case, |V4∗| = 0. Refer to Fig. 2.8 (left). By planarity,

the edge v1v4 and an outgoing edge from v2 cannot coexist with an incoming edge into

v3. So either v1v4 or v1v2 is not in V1∗, which implies |V1∗| < 8. Therefore, (2.4) yields

|I(V )| = |V1∗|+ |V3∗|+ 1 < 8 + 2 + 1 = 11, which is a contradiction.

Case 2: In(v4) > 0. In this case, |V4∗| = 1. If the incoming edges into v3 and v4

are on opposite sides (see Fig. 2.8 (center)), then by planarity there are outgoing edges

from neither v1 nor v2, which implies that the patterns v1 and v1v2 are not in V1∗, and

so |V1∗| ≤ 8 − 2 = 6. If the incoming edges into v3 and v4 are on the same side (see

Fig. 2.8 (right)), then by planarity either the edges v1v4 and v2v4 or an outgoing edge

from v3 cannot exist, which implies that either v1v4 and v1v2v4 are not in V1∗ or v1v3 and

v1v2v3 are not in V1∗. In both cases, |V1∗| ≤ 8− 2 = 6.

v1 v2 v3 v4

V

v1 v2 v3 v4

V

v1 v2 v3 v4

V

Figure 2.8.: Left: an incoming edge arrives into v3, but not into v4. Center and right: incoming
edges arrive into both v3 and v4; either on the same or on opposite sides of ξ0.

Therefore, irrespective of the relative position of the incoming edges into v3 and v4

(on the same side or on opposite sides), (2.4) yields |I(V )| = |V1∗| + |V3∗| + |V4∗| + 1 ≤

6 + 2 + 1 + 1 = 10, which is a contradiction.

(ii) By symmetry in a vertical axis, Out(v3) > 0.

Lemma 2.3. Let V be a group of 4 vertices with exactly 11 incidence patterns. Then the

following hold.

(i) If In(v3) = 0, then all the incoming edges into v2 are on the same side of ξ0,

|V1∗| ≥ 5, and |V2∗| ≥ 3.

(ii) If In(v3) > 0, then all the incoming edges into v3 are on the same side of ξ0,

|V1∗| ≥ 4, |V2∗| ≥ 2, and |V3∗| = 2.
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Proof. By Lemma 2.2, In(v2) �= 0 and Out(v3) �= 0. Therefore {v2v3, v2v3v4} ⊆ V2∗,

implying |V2∗| ≥ 2. By definition |V4∗| ≤ 1.

(i) Assume that In(v3) = 0. Then we have |V3∗| = 0. By (2.4), we obtain |V1∗|+ |V2∗| ≥

9. By definition |V2∗| ≤ 4, implying |V1∗| ≥ 5. All incoming edges into v2 are on the

same side, otherwise the patterns {v1, v1v3, v1v3v4, v1v4} cannot exist, which would imply

|V1∗| < 5. If |V2∗| < 3, then v2 and v2v4 are not in V2∗ implying that v1v2 and v1v2v4

are not in V1∗; hence |V1∗| ≤ 6 and thus |V1∗| + |V2∗| < 9, which is a contradiction. We

conclude that |V2∗| ≥ 3.

(ii) Assume that In(v3) > 0. Then we have {v3, v3v4} ⊆ V3∗, hence |V3∗| = 2. By (2.4),

we obtain |V1∗|+|V2∗| ≥ 7. If |V1∗| < 4, then |V2∗| ≥ 4 and so {v2, v2v3, v2v4, v2v3v4} ⊆ V2∗.

This implies {v1v2, v1v2v3, v1v2v4, v1v2v3v4} ⊆ V1∗, hence |V1∗| ≥ 4, which is a contradic-

tion. We conclude that |V1∗| ≥ 4. All incoming edges into v3 are on the same side,

otherwise the patterns {v1, v1v2, v1v2v4, v1v4, v2, v2v4} cannot exist, and thus |I(V )| ≤ 10,

which is a contradiction.

Lemma 2.4. Let V be a group of 4 vertices with exactly 12 incidence patterns. Then the

following hold.

(i) For i = 1, 2, 3, all outgoing edges from vi, if any, are on the same side of ξ0.

(ii) If V has outgoing edges from exactly one vertex, then this vertex is v3 and we have

|V∗3| = 4 and |V∗4| = 7. Otherwise there are outgoing edges from v2 and v3, and we

have |V∗2| = 2, |V∗3| ≥ 3 and |V∗4| ≥ 5.

(iii) For i = 2, 3, 4, all incoming edges into vi, if any, are on one side of ξ0.

(iv) If V has incoming edges into exactly one vertex, then this vertex is v2 and we have

|V2∗| = 4 and |V1∗| = 7. Otherwise there are incoming edges into v3 and v2, and we

have |V3∗| = 2, |V2∗| ≥ 3 and |V1∗| ≥ 5.

Proof. (i) By Lemma 2.2 (i), there is an incoming edge into v2. So by planarity, all

outgoing edges from v1, if any, are on one side of ξ0.
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If there are outgoing edges from v2 on both sides, then by planarity the edges v1v3,

v1v4 and any incoming edge into v3 cannot exist, hence the five patterns {v1v3, v1v3v4,

v1v4, v3, v3v4} are not in I(V ) and thus |I(V )| ≤ 16− 5 = 11, which is a contradiction.

If there are outgoing edges from v3 on both sides (see Fig. 2.9 (a)), then by planarity

the edges v1v4, v2v4 and an incoming edge into v4 cannot exist, hence the four patterns

{v1v2v4, v1v4, v2v4, v4} are not in I(V ). Without loss of generality, an incoming edge into

v2 is in E+(V ). Then by planarity, any outgoing edge of v1 and the edge v1v3 (which

must be present) are in E−(V ). Also by planarity, either an incoming edge into v3 or

an outgoing edge from v2 cannot exist. So either the patterns {v3, v3v4} or the patterns

{v1v2, v2} are not in I(V ). Hence |I(V )| ≤ 16 − (4 + 2) = 10, which is a contradiction.

Consequently, all outgoing edges of vi are on the same side of ξ0, for i = 1, 2, 3.

v1 v2 v3 v4

V

v1 v2 v3 v4

V

v1 v2 v3 v4

V

v1 v2 v3 v4

V

Figure 2.9.: (a) Having outgoing edges from v3 on both sides is impossible. (b) Existence of
outgoing edges only from {v1v3} is impossible. (c) |V∗3| ≥ 3. (d) |V∗4| ≥ 5.

(ii) If V has outgoing edges from exactly one vertex, then by Lemma 2.2 (ii), this vertex

is v3. Consequently, V∗1 = V∗2 = ∅. Using (2.4), |V∗3|+ |V∗4| = 11. So |V∗4| ≥ 7, since by

definition |V∗3| ≤ 4. If |V∗4| = 8, then {v1v2v3v4, v1v3v4, v2v3v4, v3v4} ⊂ V∗4. Existence of

these 4 patterns along with an outgoing edge from v3 implies {v1v2v3, v1v3, v2v3, v3} ⊆ V∗3

and thus |V∗3| + |V∗4| = 4 + 8 = 12, which is a contradiction. Therefore |V∗4| = 7 and

|V∗3| = 4.

If V has outgoing edges from more than one vertex, the possible vertex sets with

outgoing edges are {v1, v3}, {v2, v3}, and {v1, v2, v3}. We show that it is impossible that

all outgoing edges are from {v1, v3}, which will imply that there are outgoing edges from

both v2 and v3.

If there are outgoing edges from {v1, v3} only, we may assume the ones from v1 are in

E+(V ) and then by planarity all incoming edges into v2 are in E−(V ), see Fig. 2.9 (b).

Then by planarity, either v1v3 or v2v4 or an incoming edge into v3 cannot exist implying
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that {v1v3, v1v3v4} or {v1v2v4, v2v4} or {v3, v3v4} is not in I(V ). By the same token,

depending on the side the outgoing edges from v3 are on, either the edge v1v4 or an

incoming edge into v4 cannot exist, implying that either v1v4 or v4 is not in I(V ). Since

V∗2 = ∅, {v1v2, v2} are not in I(V ). So |I(V )| ≤ 16 − (2 + 1 + 2) = 11, which is a

contradiction. Therefore the existence of outgoing edges only from v1 and v3 is impossible.

If there are outgoing edges from (precisely) {v2, v3} or {v1, v2, v3}, then we have {v1v2,

v2} ⊆ V∗2 and {v1v2v3, v2v3} ⊆ V∗3, since In(v2) �= 0 and Out(v3) �= 0 by Lemma 2.2.

Therefore |V∗2| = 2 and |V∗3| ≥ 2. If |V∗3| < 3, then v1v3, v3 /∈ V∗3, which implies that

v1v3 and an incoming edge into v3 are not in E(V ). So, v1v3v4, v3v4 /∈ I(V ). Observe

Fig. 2.9 (c). By planarity the edge v1v4, an incoming edge into v4 and an outgoing edge

from v1 cannot exist together with an incoming edge into v2 and an outgoing edge from v3.

So at least one of the patterns {v1, v1v4, v4} is missing implying |I(V )| ≤ 16−(2+2+1) =

11, which is a contradiction. So |V∗3| ≥ 3. If |V∗4| < 5, then (2.4) yields |V∗3| = 4,

|V∗2| = 2 and |V∗1| = 1. We may assume that all outgoing edges from v1 are in E+(V );

see Fig. 2.9 (d). By planarity, the incoming edges into v2 are in E−(V ). Depending

on the side the outgoing edges from v2 are on, either v1v3 or an incoming edge into v3

cannot exist, implying that either v1v3 or v3 is not in V∗3, therefore |V∗3| < 4, creating a

contradiction. We conclude that |V∗4| ≥ 5.

(iii) By symmetry, (iii) immediately follows from (i).

(iv) By symmetry, (iv) immediately follows from (ii).

Lemma 2.5. Let V be a group of 4 vertices. Then V has at most 13 incidence patterns.

If V has 13 incidence patterns, then V is either A or AR in Fig. 2.10. Consequently,

p4 = 13.

1 2 3 4

A

1 2 3 4

AR

Figure 2.10.: I(A) = I(AR) = {∅, 12, 123, 1234, 124, 13, 134, 2, 23, 234, 24, 3, 34}. A and AR are
the only groups with 13 incidence patterns.
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Proof. Observe that group A in Fig. 2.10 has 13 patterns. Let V be a group of 4 vertices

with at least 13 patterns.

We first claim that V has an incoming edge into v3 and an outgoing edge from v2. Their

existence combined with Lemma 2.2 implies that {v3v4, v3} ⊂ I(V ) and {v1v2, v2} ⊂ I(V ),

respectively. At least one of these two edges has to be in E(V ), otherwise V has at most

16 − (2 + 2) = 12 patterns. Assume that one of the two, without loss of generality,

the outgoing edge from v2 is not in E(V ). Then {v1v3, v2v4} ⊆ E(V ), otherwise either

patterns {v1v3, v1v3v4} or {v1v2v4, v2v4} are not in I(V ) and there are at most 16−(2+2) =

12 patterns. By Lemma 2.2, there is an incoming edge into v2 and an outgoing edge from

v3. Without loss of generality, the outgoing edge from v3 is in E−(V ). So by planarity

v2v4 is in E+(V ), which implies that v1v3 and the incoming edge into v3 are in E−(V ).

By the same token, the incoming edge into v2 is in E+(V ). So by planarity the edge v1v4

and an outgoing edge from v1 cannot be in E(V ). Then the patterns {v1v4, v1} are not

in I(V ), thus V has at most 16 − (2 + 2) = 12 patterns, which is a contradiction. This

completes the proof of the claim.

We may assume without loss of generality (by applying a reflection in the x-axis if

necessary) that the incoming edge into v3 is in E−(V ). By planarity, the outgoing edge

from v2 is in E+(V ). By the same token the edge v1v4 cannot be in E(V ), which implies

that v1v4 /∈ I(V ). So I(V ) ≤ 16 − 1 = 15. By Lemma 2.2, there is an incoming edge

into v2 and an outgoing edge from v3. By planarity, if the incoming edge into v2 is in

E+(V ) then the outgoing edge from v1 cannot be in E(V ), therefore the pattern v1 is not

in I(V ). But if the incoming edge into v2 is in E−(V ) then the edge v1v3 cannot be in

E(V ) therefore neither v1v3 nor v1v3v4 is in I(V ). By a similar argument, if the outgoing

edge from v3 is in E−(V ) then the incoming edge into v4 cannot be in E(V ), therefore

the pattern v4 is not in I(V ). But if the outgoing edge from v3 is in E+(V ) then the edge

v2v4 cannot be in E(V ), therefore neither v2v4 nor v1v2v4 is in I(V ). Since I(V ) ≥ 13,

the only solution is v1 /∈ I(V ) and v4 /∈ I(V ). Therefore V induces the group A and has

exactly 13 patterns. If the incoming edge into v3 is in E+(V ), then V induces AR (with

exactly 13 patterns).
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2.4. Groups of 8 vertices

In this section, we analyze two consecutive groups, U and V , each with 4 vertices, and

show that p8 = 120 (Lemma 2.10). Let U = {u1, u2, u3, u4} and V = {v1, v2, v3, v4}, and

put UV = U ∪V for short. We may assume that |I(V )| ≤ |I(U)| (by applying a reflection

about the vertical axis if necessary), and we have |I(U)| ≤ 13 by Lemma 2.5. This yields

a trivial upper bound |I(UV )| ≤ |I(U)| · |I(V )| ≤ 132 = 169. It is enough to consider

cases in which 10 ≤ |I(V )| ≤ |I(U)| ≤ 13, otherwise the trivial bound is already less than

120.

In all cases where |I(U)| · |I(V )| > 120, we improve on the trivial bound by finding

edges between U and V that cannot be present in the group UV . If edge uivj is not in

E(UV ), then any of the |U∗i| · |Vj∗| patterns that contain uivj is excluded. Since every

maximal x-monotone path has at most one edge between U and V , distinct edges uivj

exclude disjoint sets of patterns, and we can use the sum rule to count the excluded

patterns. We continue with a case analysis.

Lemma 2.6. Consider a group UV consisting of two consecutive groups of 4 vertices,

where |I(U)| ≥ 10 and |I(V )| = 10. Then UV allows at most 120 incidence patterns.

Proof. If U has at most 12 patterns, then UV has at most 12 × 10 = 120 patterns, and

the proof is complete. We may thus assume that U has 13 patterns. By Lemma 2.5,

U is either A or AR. We may assume, by reflecting UV about the horizontal axis if

necessary, that U is A. Refer to Fig. 2.11 (left). Therefore |U∗2| = 2, |U∗3| = 4 and

|U∗4| = 6, according to Fig. 2.10. The cross product of the patterns of U and V produce

13 × 10 = 130 possible patterns. We show that at least 10 of them are incompatible in

each case. It follows that |I(UV )| ≤ 130− 10 = 120. Let vi denote the first vertex with

an incoming edge in E(V ), where i �= 1. By Lemma 2.1 (ii), i = 2 or 3.

Case 1: (u4, vi) ∈ E(UV ). We first show that |V1∗| ≥ 3. By definition |V3∗| ≤ 2 and

|V4∗| ≤ 1. By (2.4), |V1∗|+ |V2∗| ≥ 9− (2+ 1) = 6. If |V2∗| ≤ 3, then |V1∗| ≥ 3. Otherwise

|V2∗| = 4 implying V2∗ = {v2v3v4, v2v3, v2v4, v2}. This implies there are outgoing edges

from v2 and v3 in E(V ). Therefore {v1v2v3v4, v1v2v3, v1v2} ⊂ V1∗ and |V1∗| ≥ 3.
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Case 1.1: (u4, vi) ∈ E−(UV ); see Fig. 2.11 (right). As i = 2 or 3, by planarity

(u3, v1) /∈ E(UV ). Hence at least |U∗3| |V1∗| ≥ 4× 3 = 12 combinations are incompatible.

u1 u2 u3 u4

U

v1 v2 v3 v4

V

u1 u2 u3 u4 v1 v2 v3 v4

UV

Figure 2.11.: Left: |I(U)| = 13 and |I(V )| = 10. Right: (u4, vi) ∈ E−(UV ); i = 2 here.

Case 1.2: (u4, vi) ∈ E+(UV ); see Fig. 2.12 (right). Then by planarity (u2, v1) /∈ E(UV )

and |U∗2||V1∗| ≥ 2× 3 = 6 combinations are incompatible.

u1 u2 u3 u4

U

v1 v2 v3 v4

V

u1 u2 u3 u4 v1 v2 v3 v4

UV

Figure 2.12.: Left: |I(U)| = 13 and |I(V )| = 10. Right: (u4, vi) ∈ E+(UV ); i = 2 here.

An incoming edge into vi in E(V ) implies |Vi∗| ≥ 1. If u3vi /∈ E(UV ), then |U∗3||Vi∗| ≥

4×1 = 4 combinations are incompatible. Hence there are at least 6+4 = 10 incompatible

patterns. If u3vi ∈ E(UV ), then by planarity an incoming edge into v1 in E(UV ) cannot

exist and |{∅}||V1∗| ≥ 1 × 3 = 3 combinations are incompatible. If u2vi ∈ E(UV ),

then by planarity an outgoing edge from u4 cannot exist. So |U∗4||{∅}| ≥ 6 × 1 = 6

combinations are incompatible. So there are at least 6+3+6 = 15 incompatible patterns.

If u2vi /∈ E(UV ), then |U∗2||V1∗| ≥ 2×1 = 2 combinations are incompatible. Hence there

are at least 6 + 3 + 2 = 11 incompatible patterns.

Case 2: (u4, vi) /∈ E(UV ). By showing |Vi∗| ≥ 2 for all possible values of i (i.e., 2 and

3), we can conclude that at least |U∗4||Vi∗| ≥ 6× 2 = 12 combinations are incompatible.

If i = 2, then v2v3v4 ∈ V2∗. By Lemma 2.1 (i), there is an outgoing edge from v2 or v3

in E(V ), which implies v2 ∈ V2∗ or v2v3 ∈ V2∗. Hence |V2∗| ≥ 2.

If i = 3 and there is no outgoing edge from v3 in E(V ), then by Lemma 2.1 (i), there is

an outgoing edge from v2. In that case by planarity, there are only 7 possible incidence
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patterns {∅, v1v2v3v4, v1v2v4, v1v3v4, v1v2, v3v4, v4} in V , which is a contradiction. So if

i = 3, then there is an outgoing edge from v3 in E(V ), which implies {v3v4, v3} ⊂ V3∗

therefore |V3∗| ≥ 2.

Lemma 2.7. Consider a group UV consisting of two consecutive groups of 4 vertices,

where |I(U)| ≥ 11 and |I(V )| = 11. Then UV allows at most 120 incidence patterns.

Proof. We distinguish three cases depending on |I(U)|.

Case 1: |I(U)| = 11. Since |I(UV )| ≤ |I(U)|·|I(V )| = 11×11 = 121, it suffices to show

that at least one of these patterns is incompatible. By Lemma 2.2, there is an outgoing

edge from u3 in E(U) and an incoming edge into v2 in E(V ). Therefore u1u2u3 ∈ U∗3

and v2v3v4 ∈ V2∗. Refer to Fig. 2.13 (left). If (u3v2) /∈ E(UV ), then u1u2u3v2v3v4 is

not in I(UV ). If (u3v2) ∈ E(UV ), then by planarity either an outgoing edge from u4

w.r.t. UV , or an incoming edge into v1 w.r.t. UV , cannot be in E(UV ), implying that

either u1u2u3u4 or v1v2v3v4 is not in I(UV ).

u1 u2 u3 u4 v1 v2 v3 v4

UV

u1 u2 u3 u4 v1 v2 v3 v4

UV

Figure 2.13.: Left: |I(U)| = |I(V )| = 11. Right: outgoing edge from u3 is in E−(UV ) and
outgoing edge from u2 is in E+(UV ).

Case 2: |I(U)| = 12. By Lemma 2.4 (ii), if U has outgoing edges from exactly one

vertex, then they are from u3 and we have |U∗3| = 4, |U∗4| = 7, otherwise |U∗3| ≥ 3 and

|U∗4| ≥ 5. By Lemma 2.4 (i), all the outgoing edges from u3 in E(U) are on one side of U .

For simplicity assume those are in E−(U). Since |I(UV )| ≤ |I(U)|·|I(V )| = 12×11 = 132,

it suffices to show that at least 132− 120 = 12 of these patterns are incompatible.

Case 2.1: There is no incoming edge into v3 in E(V ). Then by Lemma 2.3 (i), all the

incoming edges into v2 in E(V ) are on one side of V and we have |V1∗| ≥ 5 and |V2∗| ≥ 3.

Case 2.1.1: The incoming edges into v2 w.r.t. V are in E+(V ). So by planarity

u3v2 /∈ E(UV ) and at least |U∗3||V2∗| patterns are incompatible. If U has outgoing edges
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from exactly one vertex, then |U∗3||V2∗| ≥ 4× 3 = 12 and we are done. Otherwise U has

outgoing edges from u2, where |U∗2| = 2 and at least |U∗3||V2∗| ≥ 3× 3 = 9 patterns are

incompatible. Also by Lemma 2.4 (i), all the outgoing edges from u2 in E(U) are on one

side of U . If the outgoing edges from u2 w.r.t. U are in E+(U), see Fig. 2.13 (right), then

u2v1 and u4v2 can only be in E+(UV ); by planarity both edges cannot be in E(UV ) and

thus at least min(|U∗2||V1∗|, |U∗4||V2∗|) ≥ min(2×5, 5×3) = 10 patterns are incompatible.

If the outgoing edges from u2 w.r.t. U are in E−(U), then by planarity u2v2 /∈ E(UV )

and thus at least |U∗2||V2∗| ≥ 2× 3 = 6 patterns are incompatible. Therefore irrespective

of the relative position of the outgoing edge from u2 in E(U), at least 9+min(10, 6) = 15

patterns are incompatible and we are done.

Case 2.1.2: The incoming edges into v2 w.r.t. V are in E−(V ). Therefore u3v1 and u4v2

can only be in E−(UV ). By planarity both edges cannot be in E(UV ). Hence at least

min(|U∗3||V1∗|, |U∗4||V2∗|) = min(3× 5, 5× 3) = 15 patterns are incompatible.

Case 2.2: There is an incoming edge into v3 in E(V ). By Lemma 2.3 (ii), all the

incoming edges into v3 in E(V ) are on one side of V , |V1∗| ≥ 4, |V2∗| ≥ 2 and |V3∗| = 2.

Case 2.2.1: The incoming edges into v2 in E(V ) are on both sides of V .

If the incoming edges into v3 w.r.t. V are in E+(V ), see Fig. 2.14 (left), then by planarity

u3v3 /∈ E(UV ). So at least |U∗3||V3∗| ≥ 3 × 2 = 6 patterns are incompatible. By

planarity an outgoing edge from u4 w.r.t. UV , an incoming edge into v3 w.r.t. UV and

u3v2 cannot coexist in E(UV ). Therefore at least min(|{∅}||V3∗|, |U∗4||{∅}|, |U∗3||V2∗|) ≥

min(1× 2, 5× 1, 3× 2) = 2 patterns are incompatible. By the same argument, the edges

u3v2, u4v2 and an incoming edge into v1 w.r.t. UV cannot be in E(UV ) together. Hence

at least min(|U∗3||V2∗|, |U∗4||V2∗|, |{∅}||V1∗|) = min(3 × 2, 5 × 2, 1 × 4) = 4 patterns are

incompatible. Therefore at least 6 + 2 + 4 = 12 patterns are incompatible.

If incoming edges into v3 w.r.t. V are in E−(V ), see Fig. 2.14 (right), then either an

outgoing edge from u3 w.r.t. UV or an incoming edge into v3 w.r.t. UV cannot be in

E(UV ). So at least min(|U∗3||{∅}|, |{∅}||V3∗|) ≥ min(3 × 1, 1 × 2) = 2 patterns are

incompatible. Also u3v1 and u4v3 can only be in E−(UV ). By planarity both edges

cannot be in E(UV ). Hence at least min(|U∗3||V1∗|, |U∗4||V3∗|) ≥ min(3 × 4, 5 × 2) = 10
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u1 u2 u3 u4 v1 v2 v3 v4

UV

u1 u2 u3 u4 v1 v2 v3 v4

UV

Figure 2.14.: Left: incoming edges into v2 are in both E+(V ) and E−(V ) and incoming edge
into v3 is in E+(V ). Right: incoming edges into v2 are in both E+(V ) and E−(V ) and incoming
edge into v3 is in E−(V ).

patterns are incompatible. Therefore at least 2 + 10 = 12 patterns are incompatible.

Case 2.2.2: All the incoming edges into v2 in E(V ) are on one side of V and the

incoming edges into v2 and v3 in E(V ) are on same side of V .

If the incoming edges into v2 and v3 w.r.t. V are in E+(V ), see Fig. 2.15 (left), then by

planarity u3v2 and u3v3 are not in E(UV ). So at least |U∗3||V2∗|+|U∗3||V3∗| ≥ 3×2+3×2 =

12 patterns are incompatible.

u1 u2 u3 u4 v1 v2 v3 v4

UV

u1 u2 u3 u4 v1 v2 v3 v4

UV

Figure 2.15.: Left: both incoming edges into v2 and v3 are in E+(V ). Right: both incoming
edges into v2 and v3 are in E−(V ).

If the incoming edges into v2 and v3 w.r.t. V are in E−(V ), see Fig. 2.15 (right), then

u3v1 and both u4v2 and u4v3 can only be in E−(UV ). By planarity either u3v1 or both u4v2

and u4v3 are not in E(UV ). Consequently, at least min(|U∗3||V1∗|, |U∗4||V2∗|+|U∗4||V3∗|) =

min(3× 4, 5× 2 + 5× 2) = 12 patterns are incompatible.

Case 2.2.3: All the incoming edges into v2 in E(V ) are on one side of V and all the

incoming edges into v3 in E(V ) are on the opposite side of V . Let the incoming edges

w.r.t. V in E+(V ) are into vi and the incoming edges w.r.t. V in E−(V ) are into vj.

So either i = 2, j = 3 or i = 3, j = 2, see Fig. 2.16. Therefore |Vi∗|, |Vj∗| are at

least min(|V2∗|, |V3∗|) = 2. By planarity u3vi /∈ E(UV ). So at least |U∗3||Vi∗| ≥ 3× 2 = 6

patterns are incompatible. Also u3v1 and u4vj can only be in E−(UV ). By planarity both
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u1 u2 u3 u4 v1 v2 v3 v4

UV

u1 u2 u3 u4 v1 v2 v3 v4

UV

Figure 2.16.: Left: incoming edge into v2 is E+(V ) and incoming edge into v3 is in E−(V ).
Right: incoming edge into v2 is in E−(V ) and incoming edge into v3 is in E+(V ).

edges cannot be in E(UV ). Hence at least min(|U∗3||V1∗|, |U∗4||Vj∗|) = min(3×4, 5×2) =

10 patterns are incompatible. Therefore at least 6 + 10 = 16 patterns are incompatible.

Case 3: |I(U)| = 13. By Lemma 2.5, U is either A or AR. We may assume, by

reflecting UV about the horizontal axis if necessary, that U is A. Therefore |U∗2| = 2,

|U∗3| = 4 and |U∗4| = 6, see Fig. 2.10. Since |I(UV )| ≤ |I(U)| · |I(V )| = 13 × 11 = 143,

it suffices to show that at least 143− 120 = 23 of these patterns are incompatible.

Case 3.1: There is no incoming edge into v3 in E(V ). Then by Lemma 2.3 (i), all the

incoming edges into v2 in E(V ) are on one side of V , |V1∗| ≥ 5 and |V2∗| ≥ 3.

If the incoming edges into v2 w.r.t. V are in E−(V ), see Fig. 2.17 (left), by planarity

u2v2 /∈ E(UV ). So at least |U∗2||V2∗| ≥ 2 × 3 = 6 patterns are incompatible. Also u4v2

and u3v1 can only be in E−(UV ). By planarity both edges cannot be in E(UV ). Hence

at least min(|U∗4||V2∗|, |U∗3||V1∗|) = min(6 × 3, 4 × 5) = 18 patterns are incompatible.

Therefore at least 6 + 18 = 24 patterns are incompatible.

u1 u2 u3 u4 v1 v2 v3 v4

UV

u1 u2 u3 u4 v1 v2 v3 v4

UV

Figure 2.17.: Left: incoming edge into v2 is in E−(V ). Right: incoming edge into v2 is in E+(V ).

Similarly if the incoming edges into v2 w.r.t. V are in E+(V ), cf. Fig. 2.17 (right), by

planarity u3v2 /∈ E(UV ). So at least |U∗3||V2∗| ≥ 4 × 3 = 12 patterns are incompatible.

Also u4v2 and u2v1 can only be in E+(UV ). By planarity both edges cannot be in

E(UV ). If u4v2 /∈ E(UV ), then at least |U∗4||V2∗| ≥ 6×3 = 18 patterns are incompatible.

Otherwise u2v1 /∈ E(UV ) and either an incoming edge into v1 w.r.t. UV or an outgoing
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edge from u3 w.r.t. UV cannot be in E(UV ). Hence at least

|U∗2||V1∗|+min(|{∅}||V1∗|, |U∗3||{∅}|) ≥ 2× 5 + min(1× 5, 4× 1) = 14

patterns are incompatible. Therefore at least 12 + min(18, 14) = 26 patterns are incom-

patible.

Case 3.2: There is an incoming edge into v3 in E(V ). By Lemma 2.3 (ii), all the

incoming edges into v3 are on one side of V , |V1∗| ≥ 4, |V2∗| ≥ 2 and |V3∗| = 2.

Case 3.2.1: The incoming edges into v2 in E(V ) are on both sides of V .

If the incoming edges into v3 w.r.t. V are in E+(V ), see Fig. 2.18 (left), then by planarity

u3v3 /∈ E(UV ). So at least |U∗3||V3∗| ≥ 4 × 2 = 8 patterns are incompatible. Also u2v1

and u4v3 can only be in E+(UV ). By planarity both edges cannot be in E(UV ). Hence

at least min(|U∗2||V1∗|, |U∗4||V3∗|) = min(2× 4, 6× 2) = 8 patterns are incompatible. By

the same token, an outgoing edge from u4 w.r.t. UV and the edges u2v3 and u3v2 cannot

exist together in E(UV ). Therefore at least

min(|U∗4||{∅}|, |U∗2||V3∗|, |U∗3||V2∗|) = min(6× 1, 2× 2, 4× 2) = 4

patterns are incompatible. Similarly, by planarity, an incoming edge into v1 w.r.t. UV

and the edges u3v2 and u4v3 cannot coexist in E(UV ). Therefore at least

min(|{∅}||V1∗|, |U∗3||V2∗|, |U∗4||V3∗|) = min(1× 4, 4× 2, 6× 2) = 4

patterns are incompatible. Hence at least 8 + 8 + 4+ 4 = 24 patterns are incompatible.

If the incoming edges into v3 w.r.t. V are in E−(V ), see Fig. 2.18 (right), then by

planarity u2v3 /∈ E(UV ). So at least |U∗2||V3∗| ≥ 2×2 = 4 patterns are incompatible. Also

u3v1 and u4v3 can only be in E−(UV ). By planarity both the edges cannot be in E(UV ).

Hence at least min(|U∗3||V1∗|, |U∗4||V3∗|) = min(4× 4, 6× 2) = 12 edges are incompatible.

By planarity an outgoing going edge from u3 w.r.t. UV and an incoming edge into v3

w.r.t. UV cannot exist together in E(UV ). Therefore at least min(|U∗3||{∅}|, |{∅}||V3∗|) =
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u1 u2 u3 u4 v1 v2 v3 v4

UV

u1 u2 u3 u4 v1 v2 v3 v4

UV

Figure 2.18.: Left: incoming edges into v2 are on both sides and incoming edges into v3 are
in E+(V ). Right: incoming edges into v2 are on both sides and incoming edges into v3 are in
E−(V ).

min(4 × 1, 1 × 2) = 2 patterns are incompatible. By the same token, an outgoing edge

from u4 w.r.t. UV and the edges u2v1 and u3v1 cannot be together in E(UV ). Hence

at least min(|U∗2||V1∗|, |U∗3||V1∗|, |U∗4||{∅}|) = min(2 × 4, 4 × 4, 6 × 1) = 6 patterns are

incompatible. So at least 4 + 12 + 2 + 6 = 24 patterns are incompatible.

Case 3.2.2: All the incoming edges into v2 in E(V ) are on one side of V and all the

incoming edges into v2 and v3 in E(V ) are on the same side of V .

If the incoming edges into v2 and v3 w.r.t. V are in E+(V ), see Fig. 2.19 (left), by

planarity u3v2 and u3v3 are not in E(UV ). So at least |U∗3||V2∗| + |U∗3||V3∗| = 4 × 2 +

4 × 2 = 16 patterns are incompatible. Also u2v1 and u4v2 can only be in E+(UV ). By

planarity both the edges cannot be in E(UV ). Hence at least min(|U∗2||V1∗|, |U∗4||V2∗|) =

min(2× 4, 6× 2) = 8 patterns are incompatible. Therefore at least 16 + 8 = 24 patterns

are incompatible.

u1 u2 u3 u4 v1 v2 v3 v4

UV

u1 u2 u3 u4 v1 v2 v3 v4

UV

Figure 2.19.: Left: incoming edges into v2, v3 are in E+(V ). Right: incoming edges into v2, v3
are in E−(V ).

If the incoming edges into v2 and v3 w.r.t. V are in E−(V ), see Fig. 2.19 (right), by

planarity u2v3 /∈ E(UV ). So at least |U∗2||V3∗| ≥ 2 × 2 = 4 patterns are incompatible.

Also u3v1, u3v2 u4v2, u4v3 can only be in E−(UV ). By planarity either u3v1 or u4v2 and
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either u3v2 or u4v3 can be in E(UV ). Hence at least

min(|U∗3||V1∗|, |U∗4||V2∗|) + min(|U∗3||V2∗|, |U∗4||V3∗|)

=min(4× 4, 6× 2) + min(4× 2, 6× 2) = 20

combinations are incompatible. Therefore at least 4+20 = 24 patterns are incompatible.

Case 3.2.3: All the incoming edges into v2 are on one side of V and all the incoming

edges into v3 are on the opposite side of V . Let the incoming edges w.r.t. V in E+(V )

u1 u2 u3 u4 v1 v2 v3 v4

UV

u1 u2 u3 u4 v1 v2 v3 v4

UV

Figure 2.20.: Left: incoming edge into v2 is in E−(V ) and into v3 is in E+(V ). Right: Incoming
edge into v2 is in E+(V ) and into v3 is in E−(V ).

are into vi and the incoming edges w.r.t. V in E−(V ) are into vj. So either i = 2, j = 3

or i = 3, j = 2, see Fig. 2.20. Therefore |Vi∗|, |Vj∗| are at least min(|V2∗|, |V3∗|) = 2. By

planarity u3vi /∈ E(UV ). So at least |U∗3||Vi∗| ≥ 4 × 2 = 8 patterns are incompatible.

Also u2v1 and u4vi can only be in E+(UV ). By planarity both edges cannot be in E(UV ).

Hence at least min(|U∗2||V1∗|, |U∗4||Vi∗|) = min(2×4, 6×2) = 8 patterns are incompatible.

Similarly both u3v1 and u4vj can only be in E−(UV ). By planarity both edges cannot

be in E(UV ). Hence at least min(|U∗3||V1∗|, |U∗4||Vj∗|) = min(4× 4, 6× 2) = 12 patterns

are incompatible. Therefore at least 8 + 8 + 12 = 28 patterns are incompatible.

Lemma 2.8. Consider a group UV consisting of two consecutive groups of 4 vertices,

where |I(U)| ≥ 12 and |I(V )| = 12. Then UV allows at most 120 incidence patterns.

Proof. We distinguish two cases depending on |I(U)|.

Case 1: |I(U)| = 12. Then by Lemma 2.4 (i) & (ii), for each vertex ui, all the outgoing

edges from ui, if any, are on one side of U . Since |I(UV )| ≤ |I(U)|·|I(V )| = 12×12 = 144,

it suffices to show that at least 144 − 120 = 24 of these patterns are incompatible. We
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distinguish three cases depending on which vertex in U have outgoing edges and which

sides are containing those outgoing edges.

Case 1.1: U has outgoing edges from exactly one vertex. By Lemma 2.4 (ii), they are

from u3 and we have |U∗3| = 4 and |U∗4| = 7. For simplicity assume they are in E−(U).

Case 1.1.1: V has incoming edges into exactly one vertex. By Lemma 2.4 (iv), they

are into v2 and we have |V2∗| = 4 and |V1∗| = 7.

If the incoming edges into v2 w.r.t. V are in E−(V ), see Fig. 2.21 (left), then u3v1 and

u4v2 can only be in E−(UV ). By planarity both edges cannot be in E(UV ). So at least

min(|U∗3||V1∗|, |U∗4||V2∗|) = min(4× 7, 7× 4) = 28 patterns are incompatible.

u1 u2 u3 u4 v1 v2 v3 v4

UV

u1 u2 u3 u4 v1 v2 v3 v4

UV

Figure 2.21.: Left: the incoming edges into v2 w.r.t. V are in E−(V ). Right: the incoming edges
into v2 w.r.t. V are in E+(V ).

If the incoming edges into v2 w.r.t. V are in E+(V ), see Fig. 2.21 (right), then by

planarity u3v2 is not in E(UV ). So |U∗3||V2∗| = 4×4 = 16 patterns are incompatible. By

planarity the edge u3v1, an outgoing edge from u4 w.r.t. UV and an incoming edge into

v2 w.r.t. UV cannot be in E(UV ) together. Therefore at least

min(|U∗3||V1∗|, |U∗4||{∅}|, |{∅}||V2∗|) = min(4× 7, 7× 1, 1× 4) = 4

patterns are incompatible. By the same token, the edge u4v2, an incoming edge into v1

w.r.t. UV and an outgoing edge from u3 w.r.t. UV cannot coexist in E(UV ). Therefore

at least

min(|U∗4||V2∗|, |{∅}||V1∗|, |U∗3||{∅}|) = min(7× 4, 1× 7, 4× 1) = 4

patterns are incompatible. So 16 + 4 + 4 = 24 patterns are incompatible. Observe that

this group, UV , has 120 patterns, which is the maximum number of patterns.
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Case 1.1.2: V has incoming edges into more than one vertex. Then by Lemma 2.4 (iv),

there are incoming edges into v3 and v2 and we have |V3∗| = 2, |V2∗| ≥ 3 and |V1∗| ≥ 5. We

distinguish four scenarios based on which sides of V are containing the incoming edges

into v2 and v3.

If the incoming edges into v2 and v3 w.r.t. V are in E−(V ), see Fig. 2.22 (left), then both

u3v1 and u4v2 can only be in E−(UV ). By planarity both the edges cannot be in E(UV ).

So at least min(|U∗3||V1∗|, |U∗4||V2∗|) = min(4× 5, 7× 3) = 20 patterns are incompatible.

By the same token, both u3v2 and u4v3 can only be in E−(UV ). By planarity both edges

cannot be in E(UV ). So at least min(|U∗3||V2∗|, |U∗4||V3∗|) = min(4× 3, 7× 2) = 12 other

patterns are incompatible. Overall, at least 20 + 12 = 32 patterns are incompatible.

u1 u2 u3 u4 v1 v2 v3 v4

UV

u1 u2 u3 u4 v1 v2 v3 v4

UV

Figure 2.22.: Left: the incoming edges into v2 and v3 w.r.t. V are in E−(V ). Right: the incoming
edges into v2 and v3 w.r.t. V are in E+(V ).

If the incoming edges into v2 and v3 w.r.t. V are in E+(V ), see Fig. 2.22 (right), then

by planarity both u3v2 and u3v3 are not in E(UV ). So at least |U∗3||V2∗| + |U∗3||V3∗| =

4 × 3 + 4 × 2 = 20 patterns are incompatible. By planarity incoming edges into v2 and

v3 w.r.t. UV cannot coexist with outgoing edges from u4 w.r.t. U and the edge u3v1. So

at least

min(|{∅}||V2∗|+ |{∅}||V3∗|, |U∗4||{∅}|, |U∗3||V1∗|) = min(1× 3 + 1× 2, 7× 1, 4× 5) = 5

patterns are incompatible. So at least 20 + 5 = 25 patterns are incompatible.

If the incoming edges into v2 w.r.t. V are in E−(V ) and the incoming edges into v3

w.r.t. V are in E+(V ), see Fig. 2.23 (left), then by planarity u3v3 is not in E(UV ). So

at least |U∗3||V3∗| = 4 × 2 = 8 patterns are incompatible. Also both u3v1 and u4v2

can only be in E−(UV ). By planarity both edges cannot be in E(UV ). So at least

min(|U∗3||V1∗|, |U∗4||V2∗|) = min(4× 5, 7× 3) = 20 patterns are incompatible. So at least
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8 + 20 = 28 patterns are incompatible.

u1 u2 u3 u4 v1 v2 v3 v4

UV

u1 u2 u3 u4 v1 v2 v3 v4

UV

Figure 2.23.: Left: the incoming edges into v2 w.r.t. V are in E−(V ). Right: the incoming edges
into v2 w.r.t. V are in E+(V ).

If the incoming edges into v2 w.r.t. V are in E+(V ) and the incoming edges into v3

w.r.t. V are in E−(V ), see Fig. 2.23 (right), then by planarity u3v2 is not in E(UV ). So

at least |U∗3||V2∗| = 4 × 3 = 12 patterns are incompatible. Also, both u3v1 and u4v3

can only be in E−(UV ). By planarity both edges cannot be in E(UV ). So at least

min(|U∗3||V1∗|, |U∗4||V3∗|) = min(4× 5, 7× 2) = 14 patterns are incompatible. So at least

12 + 14 = 26 patterns are incompatible.

Case 1.2: U has outgoing edges from u2 and u3 and both are on the same side. By

Lemma 2.4 (ii), |U∗2| = 2, |U∗3| ≥ 3 and |U∗4| ≥ 5. For simplicity assume that the

outgoing edges are in E−(U).

Case 1.2.1: V has incoming edges into exactly one vertex. By Lemma 2.4 (iv), these

are into v2 and we have |V2∗| = 4 and |V1∗| = 7.

If the incoming edges into v2 are in E−(V ), see Fig. 2.24 (left), then both u3v1 and

u4v2 can only be in E−(UV ). By planarity both edges cannot be in E(UV ). So at least

min(|U∗3||V1∗|, |U∗4||V2∗|) = min(3×7, 5×4) = 20 patterns are incompatible. By planarity

an outgoing edge from u4 w.r.t. UV , an incoming edges into v1 w.r.t. UV and the edge

u2v2 cannot coexist in E(UV ). So at least

min(|U∗4||{∅}|, |{∅}||V1∗|, |U∗2||V2∗|) = min(5× 1, 1× 7, 2× 4) = 5

patterns are incompatible. So in total at least 20 + 5 = 25 incidence patterns are incom-

patible.

If the incoming edges into v2 are in E+(V ), see Fig. 2.24 (right), then by planarity u2v2

and u3v2 are not in E(UV ). So at least |U∗2||V2∗|+ |U∗3||V2∗| = 2×4+3×4 = 20 patterns
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u1 u2 u3 u4 v1 v2 v3 v4

UV

u1 u2 u3 u4 v1 v2 v3 v4

UV

Figure 2.24.: Left: the incoming edges into v2 w.r.t. V are in E−(V ). Right: the incoming edges
into v2 w.r.t. V are in E+(V ).

are incompatible. By planarity an outgoing edge from u4 w.r.t. UV , an incoming edges

into v2 w.r.t. UV and the edge u3v1 cannot exist together in E(UV ). So at least

min(|U∗4||{∅}|, |{∅}||V2∗|, |U∗3||V1∗|) = min(5× 1, 1× 4, 3× 7) = 4

patterns are incompatible. So in total at least 20 + 4 = 24 incidence patterns are incom-

patible.

Case 1.2.2: V has incoming edges into more than one vertex. Then by Lemma 2.4 (iv),

there are incoming edges into v3 and v2 and we have |V3∗| = 2, |V2∗| ≥ 3 and |V1∗| ≥ 5. We

distinguish four scenarios based on which sides of V are containing the incoming edges

into v2 and v3.

If the incoming edges into v2 and v3 w.r.t. V are in E−(V ), see Fig. 2.25 (left), then both

u3v1 and u4v2 can only be in E−(UV ). By planarity both the edges cannot be in E(UV ).

So at least min(|U∗3||V1∗|, |U∗4||V2∗|) = min(3× 5, 5× 3) = 15 patterns are incompatible.

By the same token, both u2v1 and u4v3 can only be in E−(UV ). By planarity both the

edges cannot be in E(UV ). So at least min(|U∗2||V1∗|, |U∗4||V3∗|) = min(2×5, 5×2) = 10

patterns are incompatible. So at least 15 + 10 = 25 patterns are incompatible.

u1 u2 u3 u4 u5 u6 u7 u8

UV

u1 u2 u3 u4 v1 v2 v3 v4

UV

Figure 2.25.: Left: the incoming edges into v2 and v3 w.r.t. V are in E−(V ). Right: the incoming
edges into v2 and v3 w.r.t. V are in E+(V ).

If the incoming edges into v2 and v3 w.r.t. V are in E+(V ), see Fig. 2.25 (right), then
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by planarity u2v2, u2v3, u3v2 and u3v3 are not in E(UV ). So at least

|U∗2||V2∗|+ |U∗2||V3∗|+ |U∗3||V2∗|+ |U∗3||V3∗| = 2× 3 + 2× 2 + 3× 3 + 3× 2 = 25

patterns are incompatible.

If the incoming edges into v2 w.r.t. V are in E−(V ) and the incoming edges into v3

w.r.t. V are in E+(V ), see Fig. 2.26 (left), then by planarity u2v3 and u3v3 are not in

E(UV ). So at least |U∗2||V3∗|+ |U∗3||V3∗| = 2× 2+3× 2 = 10 patterns are incompatible.

Both u3v1 and u4v2 can only be in E−(UV ). By planarity both edges cannot be in E(UV ).

So at least min(|U∗3||V1∗|, |U∗4||V2∗|) = min(3× 5, 5× 3) = 15 patterns are incompatible.

So at least 10 + 15 = 25 patterns are incompatible.

u1 u2 u3 u4 v1 v2 v3 v4

UV

u1 u2 u3 u4 v1 v2 v3 v4

UV

Figure 2.26.: Left: the incoming edges into v2 w.r.t. V are in E−(V ). Right: the incoming edges
into v2 w.r.t. V are in E+(V ).

If the incoming edges into v2 w.r.t. V are in E+(V ) and the incoming edges into v3

w.r.t. V are in E−(V ), see Fig. 2.26 (right), then by planarity u2v2 and u3v2 are not in

E(UV ). So at least |U∗2||V2∗|+ |U∗3||V2∗| = 2× 3+3× 3 = 15 patterns are incompatible.

Both u3v1 and u4v3 can only be in E−(UV ). By planarity both the edges cannot be

in E(UV ). So at least min(|U∗3||V1∗|, |U∗4||V3∗|) = min(3 × 5, 5 × 2) = 10 patterns are

incompatible. So at least 15 + 10 = 25 patterns are incompatible.

Case 1.3: U has outgoing edges from u2 and u3 and both are on opposite sides. By

Lemma 2.4 (ii), |U∗2| = 2, |U∗3| ≥ 3 and |U∗4| ≥ 5. For simplicity assume that the

outgoing edges from u3 w.r.t. U are in E−(U).

Case 1.3.1: V has incoming edges into exactly one vertex. By Lemma 2.4 (iv), they

are into v2 and we have |V2∗| = 4 and |V1∗| = 7.

If the incoming edges into v2 w.r.t. V are in E−(V ), see Fig. 2.27 (left), then by planarity

u2v2 is not in E(UV ). So at least |U∗2||V2∗| = 2× 4 = 8 patterns are incompatible. Also
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both u3v1 and u4v2 can only be in E−(UV ). By planarity both edges cannot be in E(UV ).

So at least min(|U∗3||V1∗|, |U∗4||V2∗|) = min(3× 7, 5× 4) = 20 patterns are incompatible.

So at least 8 + 20 = 28 patterns are incompatible.

u1 u2 u3 u4 v1 v2 v3 v4

UV

u1 u2 u3 u4 v1 v2 v3 v4

UV

Figure 2.27.: Left: the incoming edges into v2 w.r.t. V are in E−(V ). Right: the incoming edges
into v2 w.r.t. V are in E+(V ).

If the incoming edges into v2 w.r.t. V are in E+(V ), see Fig. 2.27 (right), then by pla-

narity u3v2 is not in E(UV ). So at least |U∗3||V2∗| = 3×4 = 12 patterns are incompatible.

Also both u2v1 and u4v2 can only be in E+(UV ). By planarity both edges cannot be

in E(UV ). So at least min(|U∗2||V1∗|, |U∗4||V2∗|) = min(2 × 7, 5 × 4) = 14 patterns are

incompatible. So at least 12 + 14 = 26 patterns are incompatible.

Case 1.3.2: V has incoming edges into more than one vertex. Then by Lemma 2.4 (iv),

there are incoming edges into v3 and v2 and we have |V3∗| = 2, |V2∗| ≥ 3 and |V1∗| ≥ 5. We

distinguish four scenarios based on which sides of V are containing the incoming edges

into v2 and v3.

If the incoming edges into v2 and v3 w.r.t. V are in E−(V ), see Fig. 2.28 (left), then by

planarity u2v2 and u2v3 are not in E(UV ). So at least |U∗2||V2∗| + |U∗2||V3∗| = 2 × 3 +

2× 2 = 10 patterns are incompatible. Also both u3v1 and u4v2 can only be in E−(UV ).

By planarity both edges cannot be in E(UV ). So at least min(|U∗3||V1∗|, |U∗4||V2∗|) =

min(3 × 5, 5 × 3) = 15 patterns are incompatible. So at least 10 + 15 = 25 patterns are

incompatible.

u1 u2 u3 u4 v1 v2 v3 v4

UV

u1 u2 u3 u4 v1 v2 v3 v4

UV

Figure 2.28.: Left: the incoming edges into v2 and v3 w.r.t. V are in E−(V ). Right: the incoming
edges into v2 and v3 w.r.t. V are in E+(V ).

If the incoming edges into v2 and v3 w.r.t. V are in E+(V ), see Fig. 2.28 (right), then
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by planarity u3v2 and u3v3 are not in E(UV ). So at least |U∗3||V2∗|+ |U∗3||V3∗| = 3× 3+

3× 2 = 15 patterns are incompatible. Also both u2v1 and u4v2 can only be in E+(UV ).

By planarity both edges cannot be in E(UV ). So at least min(|U∗2||V1∗|, |U∗4||V2∗|) =

min(2 × 5, 5 × 3) = 10 patterns are incompatible. So at least 15 + 10 = 25 patterns are

incompatible.

If the incoming edges into v2 w.r.t. V is in E−(V ) and the incoming edges into v3

w.r.t. V are in E+(V ), see Fig. 2.29 (left), then both u2v1 and u4v3 can only be in E+(UV ).

By planarity both edges cannot be in E(UV ). So at least min(|U∗2||V1∗|, |U∗4||V3∗|) =

min(2 × 5, 5 × 2) = 10 patterns are incompatible. By similar token both u3v1 and u4v2

can only be in E−(UV ). By planarity both edges cannot be in E(UV ). So at least

min(|U∗3||V1∗|, |U∗4||V2∗|) = min(3× 5, 5× 3) = 15 patterns are incompatible. So at least

10 + 15 = 25 patterns are incompatible.

u1 u2 u3 u4 v1 v2 v3 v4

UV

u1 u2 u3 u4 v1 v2 v3 v4

UV

Figure 2.29.: Left: the incoming edges into v2 w.r.t. V are in E−(V ). Right: the incoming edges
into v2 w.r.t. V are in E+(V ).

If the incoming edges into v2 w.r.t. V is in E+(V ) and the incoming edges into v3

w.r.t. V are in E−(V ), see Fig. 2.29 (right), then both u2v1 and u4v2 can only be in

E+(UV ). By planarity both edges cannot be in E(UV ). So at least

min(|U∗2||V1∗|, |U∗4||V2∗|) = min(2× 5, 5× 3) = 10

patterns are incompatible. Also both u3v1 and u4v3 can only be in E−(UV ). By planarity

both edges cannot be in E(UV ). So at least

min(|U∗3||V1∗|, |U∗4||V3∗|) = min(3× 5, 5× 2) = 10

patterns are incompatible. By planarity an outgoing edge from u4 w.r.t. UV , the edge
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u2v2 and the edge u3v3 cannot exist together in E(UV ). So at least

min(|U∗4||{∅}|, |U∗2||V2∗|, |U∗3||V3∗|) = min(5× 1, 2× 3, 3× 2) = 5

patterns are incompatible. So in total at least 10 + 10 + 5 = 25 incidence patterns are

incompatible.

Case 2: |I(U)| = 13. By Lemma 2.5, U is either A or AR. If U is AR, then after

reflecting UV about the horizontal axis, U is A. We analyze the cases based on this

assumption. Since |I(UV )| ≤ |I(U)| · |I(V )| = 13× 12 = 156, it suffices to show that at

least 156− 120 = 36 of these patterns are incompatible.

Case 2.1: V has incoming edges into exactly one vertex. Then by Lemma 2.4 (iv), they

are into v2 and we have |V2∗| = 4 and |V1∗| = 7.

If the incoming edges into v2 w.r.t. V are in E−(V ), see Fig. 2.30 (left), then by planarity

u2v2 is not in E(UV ). So at least |U∗2||V2∗| = 2× 4 = 8 patterns are incompatible. Both

u3v1 and u4v2 can only be in E−(UV ). By planarity both edges cannot be in E(UV ). So

at least min(|U∗3||V1∗|, |U∗4||V2∗|) = min(4× 7, 6× 4) = 24 patterns are incompatible. By

planarity an outgoing edge from u4 w.r.t. UV , the edge u2v1 and the edge u3v2 cannot

exist together in E(UV ). So at least

min(|U∗4||{∅}|, |U∗2||V1∗|, |U∗3||V2∗|) = min(6× 1, 2× 7, 4× 4) = 6

patterns are incompatible. So in total at least 8 + 24 + 6 = 38 incidence patterns are

incompatible.

u1 u2 u3 u4 v1 v2 v3 v4

UV

u1 u2 u3 u4 u5 u6 u7 u8

UV

Figure 2.30.: Left: the incoming edges into v2 w.r.t. V are in E−(V ). Right: the incoming edges
into v2 w.r.t. V are in E+(V ).

If the incoming edges into v2 w.r.t. V are in E+(V ), see Fig. 2.30 (right), then by
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planarity u3v2 is not allowed. So at least |U∗3||V2∗| = 4×4 = 16 patterns are incompatible.

Both u2v1 and u4v2 can only be in E+(UV ). By planarity both edges cannot be in E(UV ).

So at least min(|U∗2||V1∗|, |U∗4||V2∗|) = min(2× 7, 6× 4) = 14 patterns are incompatible.

By planarity an outgoing edge from u4 w.r.t. UV , the edge u2v2 and the edge u3v1 cannot

exist together in E(UV ). So at least

min(|U∗4||{∅}|, |U∗2||V2∗|, |U∗3||V1∗|) = min(6× 1, 2× 4, 4× 7) = 6

patterns are incompatible. So at least 16 + 14 + 6 = 36 patterns are incompatible.

Case 2.2: V has incoming edges into more than one vertex. By Lemma 2.4 (iv), there

are incoming edges into v3 and v2 and we have |V3∗| = 2, |V2∗| ≥ 3 and |V1∗| ≥ 5. We

distinguish four scenarios based on which sides of V are containing the incoming edges

into v2 and v3.

If the incoming edges into v2 and v3 w.r.t. V are in E−(V ), see Fig. 2.31 (left), then

by planarity u2v2 is not in E(UV ). So at least |U∗2||V2∗| = 2 × 3 = 6 patterns are

incompatible. Both u3v1 and u4v2 can only be in E−(UV ). By planarity both edges

cannot be in E(UV ). So at least min(|U∗3||V1∗|, |U∗4||V2∗|) = min(4 × 5, 6 × 3) = 18

patterns are incompatible. Similarly both u3v2 and u4v3 can only be in E−(UV ). By

planarity both edges cannot be in E(UV ). So at least min(|U∗3||V2∗|, |U∗4||V3∗|) = min(4×

3, 6 × 2) = 12 patterns are incompatible. So at least 6 + 18 + 12 = 36 patterns are

incompatible.

u1 u2 u3 u4 v1 v2 v3 v4

UV

u1 u2 u3 u4 v1 v2 v3 v4

UV

Figure 2.31.: Left: the incoming edges into v2 and v3 w.r.t. V are in E−(V ). Right: the incoming
edges into v2 and v3 w.r.t. V are in E+(V ).

If the incoming edges into v2 and v3 w.r.t. V are in E+(V ), see Fig. 2.31 (right), then
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2. Monotone Paths in Geometric Triangulations

by planarity both u3v2 and u3v3 are not in E(UV ). So at least

|U∗3||V2∗|+ |U∗3||V3∗| = 4× 3 + 4× 2 = 20

patterns are incompatible. Also both u2v1 and u4v2 can only be in E+(UV ). By planarity

both edges cannot be in E(UV ). So at least

min(|U∗2||V1∗|, |U∗4||V2∗|) = min(2× 5, 6× 3) = 10

patterns are incompatible. Similarly both u2v2 and u4v3 can only be in E+(UV ). By

planarity both edges cannot be in E(UV ). So at least

min(|U∗2||V2∗|, |U∗4||V3∗|) = min(2× 3, 6× 2) = 6

patterns are incompatible. So at least 20 + 10 + 6 = 36 patterns are incompatible.

If the incoming edges into v2 w.r.t. V is in E−(V ) and the incoming edges into v3

w.r.t. V are in E+(V ), see Fig. 2.32 (left), then by planarity u3v3 is not in E(UV ).

So at least |U∗3||V3∗| = 4 × 2 = 8 patterns are incompatible. Both u2v1 and u4v3

can only be in E+(UV ). By planarity both edges cannot be in E(UV ). So at least

min(|U∗2||V1∗|, |U∗4||V3∗|) = min(2 × 5, 6 × 2) = 10 patterns are incompatible. Similarly

both u3v1 and u4v2 can only be in E−(UV ). By planarity both edges cannot be in E(UV ).

So at least min(|U∗3||V1∗|, |U∗4||V2∗|) = min(4× 5, 6× 3) = 18 patterns are incompatible.

So at least 8 + 10 + 18 = 36 patterns are incompatible.

u1 u2 u3 u4 v1 v2 v3 v4

UV

u1 u2 u3 u4 v1 v2 v3 v4

UV

Figure 2.32.: Left: the incoming edges into v2 w.r.t. V are in E−(V ). Right: the incoming edges
into v2 w.r.t. V are in E+(V ).

If the incoming edges into v2 w.r.t. V is in E+(V ) and the incoming edges into v3

w.r.t. V are in E−(V ), see Fig. 2.32 (right), then by planarity both u2v3 and u3v2 are not
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in E(UV ). So at least |U∗2||V3∗|+|U∗3||V2∗| = 2×2+4×3 = 16 patterns are incompatible.

Both u2v1 and u4v2 can only be in E+(UV ). By planarity both edges cannot be in E(UV ).

So at least min(|U∗2||V1∗|, |U∗4||V2∗|) = min(2× 5, 6× 3) = 10 patterns are incompatible.

Similarly both u3v1 and u4v3 can only be in E−(UV ). By planarity both edges cannot

be in E(UV ). So at least min(|U∗3||V1∗|, |U∗4||V3∗|) = min(4× 5, 6× 2) = 12 patterns are

incompatible. So at least 16 + 10 + 12 = 38 patterns are incompatible.

Lemma 2.9. Consider a group UV consisting of two consecutive groups of 4 vertices,

where |I(U)| = |I(V )| = 13. Then UV allows at most 120 incidence patterns.

Proof. By Lemma 2.5, U is either A or AR. We may assume, after reflecting UV about

a horizontal axis, that U is A. Therefore |U∗2| = 2, |U∗3| = 4 and |U∗4| = 6, see

Fig. 2.10. Similarly, Lemma 2.5 implies that V is either A or AR. We distinguish two

cases depending on whether V is A or AR. The cross product of I(U) and I(V ) yields

13× 13 = 169 possible patterns. It suffices to show that at least 169− 120 = 49 of these

patterns are incompatible.

Case 1: V is A, see Fig. 2.33 (left). By planarity u2v3 and u3v2 are not in E(UV ). So

at least |U∗2||V3∗|+|U∗3||V2∗| = 2×2+4×4 = 20 patterns are incompatible. Further, u2v1

and u4v2 can only be in E+(UV ). By planarity both edges cannot be in E(UV ). Hence

at least min(|U∗2||V1∗|, |U∗4||V2∗|) = min(2 × 6, 6 × 4) = 12 patterns are incompatible.

Similarly u3v1 and u4v3 can only be in E−(UV ). By planarity both edges cannot be in

E(UV ). Therefore at least min(|U∗3||V1∗|, |U∗4||V3∗|) = min(4 × 6, 6 × 2) = 12 patterns

are incompatible. By planarity an outgoing edge from u4 w.r.t. UV and the edges u2v2

and u3v1 cannot exist together in E(UV ). So at least

min(|U∗4||∅|, |U∗2||V2∗|, |U∗3||V3∗|) = min(6× 1, 2× 4, 4× 2) = 6

patterns are incompatible. Overall, at least 20+12+12+6 = 50 patterns are incompatible.

Case 2: V is AR, see Fig. 2.33 (right). By planarity u2v2 and u3v3 are not in E(UV ).

So at least |U∗2||V2∗|+ |U∗3||V3∗| = 2×4+4×2 = 16 patterns are incompatible. Also u2v1
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u1 u2 u3 u4 v1 v2 v3 v4

UV

u1 u2 u3 u4 v1 v2 v3 v4

UV

Figure 2.33.: Left: V is A. Right: V is AR.

and u4v3 can only be in E+(UV ). By planarity both edges cannot be in E(UV ). Hence

at least min(|U∗2||V1∗|, |U∗4||V3∗|) = min(2 × 6, 6 × 2) = 12 patterns are incompatible.

Similarly u3v1 and u4v2 can only be in E−(UV ). By planarity both edges cannot be in

E(UV ). Hence at least min(|U∗3||V1∗|, |U∗4||V2∗|) = min(4 × 6, 6 × 4) = 24 patterns are

incompatible. Overall, at least 16 + 12 + 24 = 52 patterns are incompatible.

1 2 3 4

B2

1 2 3 4

B3

u1 u2 u3 u4 u5 u6 u7 u8

U

Figure 2.34.: U has 120 patterns. The 24 missing patterns are 123678, 12367, 12368, 1236, 123,
13678, 1367, 1368, 136, 13, 23678, 2367, 2368, 236, 23, 3678, 367, 368, 36, 3, 678, 67, 68, 6.

Lemma 2.10. Every group on 8 vertices has at most 120 incidence patterns, and this

bound is the best possible. Consequently, p8 = 120.

Proof. A group of 8, denoted by UV , where U and V are the groups induced by the first

and last four vertices of UV , respectively. If |I(U)| ≤ 9 or |I(V )| ≤ 9, then |I(UV )| ≤

|I(U)| · |I(V )| ≤ 9 × 13 = 117 by Lemma 2.5. Otherwise, Lemmas 2.6–2.9 show that

|I(UV )| ≤ 120.

Consider the group (U,E−(U), E+(U)) of 8 vertices depicted in Fig. 2.34 (right). The

first and second half of U are the groups B2 and B3 in Fig. 2.34 (left), each with 12

patterns. Observe that exactly 24 patterns are incompatible, thus U has exactly |I(B2)| ·

|I(B3)| − 24 = 12× 12− 24 = 120 patterns. Aside from reflections, the extremal group

of 8 vertices in Fig. 2.34 (right) is unique.
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2. Monotone Paths in Geometric Triangulations

2.5. Groups of 9, 10, and 11 vertices via computer search

The application of the same fingerprinting technique to groups of 9, 10, and 11 vertices

via a computer program2 shows the following.

A group of 9 vertices allows at most 201 incidence patterns; the extremal configuration

appears in Fig. 2.35. This yields the upper bound of O(n3 201n/9) = O(1.8027n) for

the number of monotone paths in an n-vertex triangulation. Aside from reflections, the

extremal group of 9 vertices in Fig. 2.35 (left) is unique.

u1 u2 u3 u4 u5 u6 u7 u8 u9

U

v1 v2 v3 v4 v5 v6 v7 v8 v9

V

Figure 2.35.: Groups U and V (hence also UR and V R) are the only groups of 9 vertices with
201 incidence patterns. Observe that V is the reflection of U in the y-axis.

A group of 10 vertices allows at most 346 incidence patterns; the extremal configuration

appears in Fig. 2.36. This yields the upper bound of O(n3 346n/10) = O(1.7944n) for the

number of monotone paths in an n-vertex triangulation, as given in Theorem 2.1. Aside

from reflections, the extremal group of 10 vertices in Fig. 2.36 is unique.

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10

U

Figure 2.36.: Group U (hence also UR) is the only group of 10 vertices with 346 incidence
patterns. Observe that the reflection of U in the y-axis is UR.

A group of 11 vertices allows at most 591 incidence patterns; the extremal configuration

appears in Fig. 2.37. This yields the upper bound of O(n3 591n/11) = O(1.7864n) for the

2Refer to the Appendix or the .c file at arXiv:1608.04812.
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number of monotone paths in an n-vertex triangulation. Aside from reflections, the

extremal group of 11 vertices in Fig. 2.37 (left) is unique.

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11

U

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

V

Figure 2.37.: Groups U and V (hence also UR and V R) are the only groups of 11 vertices with
591 incidence patterns. Observe that V is the reflection of U in the y-axis.

To generate all groups of k vertices, the program first generates all possible sides of k

vertices, essentially by brute force. A side of k vertices V = {v1, . . . vk} is represented by

a directed planar graph with k+2 vertices, where the edges v0vi and vivk+1, for 1 ≤ i ≤ k,

denote an incoming edge into vi and an outgoing edge from vi, respectively. The edge

v0vk+1 represents the ∅ pattern. Note that ξ0∪v0vk+1 forms a plane cycle on k+2 vertices

in the underlying undirected graph. Therefore, E+(V ) and E−(V ) can each have at most

(k+2)−3 = k−1 edges. After all possible sides are generated, the program combines all

pairs of sides with no common inner edge to generate a group (V,E−(V ), E+(V )). For

each generated group, the program calculates the corresponding number of patterns and

in the end returns the group with the maximum number of patterns.

Remark. It is interesting to observe how the structure of the unique extremal groups

of 9, 10 and 11 vertices (depicted in Figs. 2.35, 2.36 and 2.37) match that of the current

best lower bound construction illustrated in Fig. 2.2 (right).

51



2. Monotone Paths in Geometric Triangulations

2.6. Conclusion

A path is simple if it has no repeated vertices; obviously every monotone path is simple.

A directed polygonal path ξ = (v1, v2, . . . , vt) in Rd is weakly monotone if there exists a

nonzero vector u ∈ Rd that has a nonnegative inner product with every directed edge of

ξ, that is, �−−−→vivi+1,u� ≥ 0 for i = 1, . . . , t− 1. In many applications such as local search,

a weakly monotone path may be as good as a monotone one, since both guarantee that

the objective function is nondecreasing.

It therefore appears as a natural problem to find a tight asymptotic bound on the

maximum number of weakly monotone simple paths over all plane geometric graphs

with n vertices. As for monotone paths, it is easy to see that triangulations maximize the

number of such paths. Recall that µn denotes the maximum number (over all directions u)

of maximal u-monotone paths in an n-vertex triangulation. Let βn denote the maximum

number (over all directions u) of maximal weakly u-monotone simple paths in an n-vertex

triangulation.

1 2

3

4

Figure 2.38.: A triangulation of 4 points: the vertices and the center of an equilateral triangle.
Note that any two nonadjacent edges are orthogonal.

We clearly have βn ≥ µn, and so βn = Ω(1.7003n). However, βn could in principle grow

faster than µn. Let n = 4 and consider the three vertices and the center of an equilateral

triangle, and the unique triangulation of these four points; shown in Fig 2.38. Observe

that: (i) the 5 paths 132, 1342, 142, 1432, and 12 are weakly u-monotone and maximal,

where u = (1, 0) and yield β4 = 5; (ii) the 4 paths 143, 142, 12, and 13 are u-monotone

and maximal, where u = (cos π/6, sin π/6) and yield µ4 = 4; and so β4 > µ4.

We conclude with the following open problems.

1. What upper and lower bounds can be derived for βn? Is βn = ω(µn)?

2. What can be said about counting and enumeration of weakly monotone paths in a

given plane geometric graph?
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2.7. Extremal configurations

The groups of 4 vertices with 12 and 11 patterns. There are exactly 4 groups with

exactly 12 incidence patterns (modulo reflections about the x-axis); see Fig. 2.39.

1 2 3 4

B1

1 2 3 4

B2

1 2 3 4

B3

1 2 3 4

B4

Figure 2.39.: B1–B4 are the only four groups with 12 incidence patterns.

I(B1) = {∅, 1234, 123, 12, 134, 13, 234, 23, 2, 34, 3, 4}.

I(B2) = {∅, 1234, 123, 124, 134, 13, 234, 23, 24, 34, 3, 4}.

I(B3) = {∅, 1234, 123, 124, 12, 134, 13, 1, 23, 234, 24, 2}.

I(B4) = {∅, 1234, 123, 124, 12, 1, 23, 234, 24, 2, 34, 3}.

There are exactly 20 groups with exactly 11 incidence patterns (modulo reflections

about the x-axis); see Fig. 2.40.

1 2 3 4

C1

1 2 3 4

C2

1 2 3 4

C3

1 2 3 4

C4

1 2 3 4

C5

1 2 3 4

C6

1 2 3 4

C7

1 2 3 4

C8

1 2 3 4

C9

1 2 3 4

C10

1 2 3 4

C11

1 2 3 4

C12

1 2 3 4

C13

1 2 3 4

C14

1 2 3 4

C15

1 2 3 4

C16
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1 2 3 4

C17

1 2 3 4

C18

1 2 3 4

C19

1 2 3 4

C20

Figure 2.40.: C1–C20 are the only 20 groups with 11 incidence patterns.

I(C1) = {∅, 1234, 123, 134, 13, 1, 234, 23, 34, 3, 4}.

I(C2) = {∅, 1234, 123, 12, 1, 234, 23, 2, 34, 3, 4}.

I(C3) = {∅, 1234, 123, 12, 134, 13, 234, 23, 2, 34, 3}.

I(C4) = {∅, 1234, 123, 134, 13, 14, 234, 23, 34, 3, 4}.

I(C5) = {∅, 1234, 123, 12, 134, 13, 14, 234, 23, 2, 4}.

I(C6) = {∅, 1234, 123, 134, 13, 14, 1, 234, 23, 34, 3}.

I(C7) = {∅, 1234, 123, 12, 134, 13, 14, 1, 234, 23, 2}.

I(C8) = {∅, 1234, 123, 124, 134, 13, 234, 23, 24, 34, 3}.

I(C9) = {∅, 1234, 123, 124, 134, 13, 1, 234, 23, 24, 4}.

I(C10) = {∅, 1234, 123, 124, 12, 1, 234, 23, 24, 2, 4}.

I(C11) = {∅, 1234, 123, 124, 14, 234, 23, 24, 34, 3, 4}.

I(C12) = {∅, 1234, 123, 124, 12, 14, 234, 23, 24, 2, 4}.

I(C13) = {∅, 1234, 123, 124, 14, 1, 234, 23, 24, 34, 3}.

I(C14) = {∅, 1234, 123, 124, 12, 14, 1, 234, 23, 24, 2}.

I(C15) = {∅, 1234, 123, 12, 134, 13, 234, 23, 2, 34, 3}.

I(C16) = {∅, 1234, 123, 124, 12, 234, 23, 24, 2, 34, 3}.

I(C17) = {∅, 1234, 123, 124, 12, 234, 23, 24, 2, 34, 3}.

I(C18) = {∅, 1234, 123, 124, 12, 234, 23, 24, 2, 34, 3}.

I(C19) = {∅, 1234, 123, 124, 12, 134, 13, 234, 23, 24, 2}.

I(C20) = {∅, 1234, 123, 12, 134, 13, 234, 23, 2, 34, 3}.
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[10] A. Garćıa, M. Noy and A. Tejel, Lower bounds on the number of crossing-free sub-

graphs of KN , Comput. Geom. 16(4) (2000), 211–221.
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3. Pseudoline Arrangements

3.1. Introduction

Arrangements of pseudolines. A pseudoline in the Euclidean plane is an x-monotone

curve extending from negative infinity to positive infinity. An (Euclidean) arrangement

of pseudolines is a family of pseudolines where each pair of pseudolines has a unique point

of intersection (called ‘vertex ’). An arrangement is simple if no three pseudolines have

a common point of intersection, see Fig. 3.1 (left). Throughout this chapter the term

arrangement always means simple arrangement if not specified otherwise.

1

2
3

4
1

2

3

4
1 4

2 3

3 2

4 1

1

2
3

4 1
2

3

4

Figure 3.1.: Left: A simple arrangement A. Center: Wiring diagram of A. Right: An arrange-
ment A� that is not isomorphic to the arrangement A on the left.

Topological sweep of an arrangement. A pseudoline is swept over the plane visiting

all the vertices and pseudoline segments. This sweeping movement is called a topolog-

ical sweep (sweep, for short). Formally, a sweep of an arrangement A, is a sequence

c0, c1, . . . , cr of curves (where r =
�
n
2

�
) with same end points and following properties, see

Fig. 3.2 (right).

1. Each curve ci has exactly one point of intersection with each pseudoline of A and

does not contain any vertices of A.
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1

2
3

4
1

2

3

4

A
1

2
3

4
1

2

3

4

c0 c6

Figure 3.2.: Left: A simple arrangement A. Right: A topological sweep for A.

2. Any two curves ci and cj are interiorly disjoint. The interior of the region made by

two consecutive curves contain exactly one vertex of A. Hence, the interior of the

closed curve c0 ∪ cr contains all vertices of A.

There is a sweep sequence for every arrangement [37, Lemma 6.1]. If c0, c1, . . . , cr is a

sweep then the reverse cr, cr−1, . . . , c1 is also a topological sweep. Here we only consider

left to right sweeps.

Representations related to arrangements. There are several combinatorial represen-

tations and encodings of pseudoline arrangements. These representations help one count

the number of such arrangements.

A wiring diagram is a Euclidean arrangement of pseudolines consisting of piece-wise

linear ‘wires’, each horizontal except for a short segment where it crosses another wire.

Each pair of wires cross exactly once; see Fig. 3.3 (left).

1 4

2 3

3 2

4 1

1 4

2 3

3 2

4 1

Figure 3.3.: Left: Wiring diagram of A. Right: Reflection network of A.

A reflection network is a sequence of adjacent transpositions [i : i+ 1], which changes

an array (x1, x2, . . . , xn) into its reflection (xn, xn−1, . . . , x1); see Fig. 3.3 (right).

A 2-dimensional zonotope is the Minkowski sum of a set of n line segments in R2,

therefore a centrally symmetric 2n-gon. A simple zonotopal tiling T is a tiling of a
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centrally symmetric 2n-gon with rhombi; see Fig. 3.4. Simple zonotopal tillings are

normalized drawings of the duals of arrangements.

1

2
3

4
1

2

3

4

Figure 3.4.: Left: The dual of arrangement A. Right: The zonotopal tiling of A.

A simple allowable sequence is a sequence Σ = π0, . . . , πr (where r =
�
n
2

�
) of permuta-

tions satisfying the following two properties [36]:

1. π0 is the permutation (1, 2, . . . , n) and πr is the permutation (n, n− 1, . . ., 1).

2. Each πi is obtained by the reversal of an adjacent pair xy from πi−1, where x < y.

1

2

3

4

2

1

3

4

2

1

4

3

2

4

1

3

4

2

1

3

4

2

3

1

4

3

2

1

Figure 3.5.: An allowable sequence obtained from the arrangement A.

Observe a sweep of A (Fig. 3.5) generates the following allowable sequence where each

dashed vertical line represents a permutation;

1234
12−→ 2134

34−→ 2143
14−→ 2413

24−→ 4213
13−→ 4231

23−→ 4321.

The pair of indices written above the arrow between permutations πi−1 and πi denote the

adjacent pair whose reversal generates πi from πi−1.

The number of (simple) allowable sequences is denoted by An (sequence A005118

in [52]). Stanley [53] established the following closed formula for An.

An =

�
n
2

�
!

�n−1
k=1(2n− 2k − 1)k

.

Values of An for small n are shown Table 3.1.

60



3. Pseudoline Arrangements

n An
logAn

n2

1 1 0
2 1 0
3 2 0.1111
4 16 0.25
5 768 0.3833
6 292, 864 0.5044
7 1, 100, 742, 656 0.6129
8 48, 608, 795, 688, 960 0.7104
9 29, 258, 366, 996, 258, 488, 320 0.7983
10 273, 035, 280, 663, 535, 522, 487, 992, 320 0.8781

Table 3.1.: Values of An and
logAn

n2
for n = 1 to 10.

Isomorphism of arrangements. Two arrangements are isomorphic, i.e., considered the

same, if they can be mapped onto each other by a homeomorphism of the plane [39]; see

Figures 3.1 and 3.6. Equivalently, two arrangements are isomorphic if there is an isomor-

phism between the induced cell decomposition [37, Ch. 6]. The number of nonisomorphic

arrangements of n pseudolines is denoted by Bn (sequence A006245 in [52]); this is the

number of equivalence classes of all arrangements of n pseudolines; see [45, p. 35]. It is

worth pointing out that for An, the left to right order of the vertices in the arrangement

plays a role while for Bn only the order of vertices along each particular pseudoline is

important, i.e., the relative position of two vertices from distinct pairs of pseudolines

does not matter. Many allowable sequences may correspond to the same arrangement.

See Fig. 3.6 for an illustration of this concept. A1, A2 and A3 are three arrangements

with four pseudolines. A1 and A2 are isomorphic since the positions of the vertices 23

(in red) and 14 (in blue) can be switched. A3 is nonisomorphic to A2 (and A1) since the

positions of the vertices 23 (in red) and 34 (in green) can not be switched because they

have a common pseudoline. The corresponding allowable sequences are:

A1 : 1234
12−→ 2134

13−→ 2314
23−→3214

14−→3241
24−→ 3421

34−→ 4321.

A2 : 1234
12−→ 2134

13−→ 2314
14−→2341

23−→3241
24−→ 3421

34−→ 4321.

A3 : 1234
12−→ 2134

13−→ 2314
14−→ 2341

34−→2431
24−→ 4231

23−→4321.
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1 4

2 3

3 2

4 1

A1

1 4

2 3

3 2

4 1

A2

1 4

2 3

3 2

4 1

A3

Figure 3.6.: A1, A2 and A3 are three arrangements with four pseudolines. A1 and A2 are
isomorphic where A3 is nonisomorphic to A2 (and A1).

Since A1 and A2 are the same (isomorphic) arrangement, they (and their allowable

sequences) can be represented by a canonical arrangement B1, see Fig. 3.7. The allowable

sequence for B1 is 1234
12−→ 2134

13−→ 2314
23,14−−−→ 3241

24−→ 3421
34−→ 4321.

B1

1 4

2 3

3 2

4 1

Figure 3.7.: B1 is the canonical arrangement representing A1 and A2.

There is a bijection between simple zonotopal tilings to classes of simple allowable

sequences; an elaborate proof has been provided in [37, Lemma 6.13]. So Bn is also the

number of simple zonotopal tilings of a centrally symmetric 2n-gon.

B7

1 4

2 3

3 2

4 1

O1

1

2

3

4

Figure 3.8.: A canonical arrangement B7, the corresponding rhombic tiling of an octagon O1

and the allowable sequence B7 : 1234
34−→ 1243

24−→ 1423
14−→ 4123

12−→ 4213
13−→ 4231

23−→ 4321.

Here we study the growth rate of Bn; so let1 bn = logBn. Knuth [45] conjectured that

bn ≤
�
n
2

�
+ o(n2); see also [38, p. 147] and [36, p. 259]. This conjecture is still open.

Upper bounds on the number of pseudoline arrangements. In his seminal paper

on the topic, Knuth [45] took a vertical approach for encoding arrangements. Let A be

an arrangement of n pseudolines {ℓ1, . . . , ℓn}, see Fig. 3.9. By adding pseudoline ℓn+1

1Throughout this chapter, log x and lnx are the logarithms of x in base 2 and e, respectively.
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to A, we get A�, an arrangement of (n + 1) pseudolines. The course of ℓn+1 describes

a vertical cutpath from top to bottom. The number of cutpaths of A is exactly the

number of arrangements A� such that A� \ {ℓn+1} is isomorphic to A. Let γn denote the

maximum number of cutpaths in an arrangement of n pseudolines. Therefore, one has

Bn+1 ≤ γn · Bn; and B3 = 2. Knuth proved that γn ≤ 3n, concluding that Bn ≤ 3(
n+1
2 )

and thus bn ≤ 0.5 (n2 + n) log 3 ≤ 0.7924 (n2 + n); this computation can be streamlined

so that it yields bn ≤ 0.7924n2, see [39]. Knuth also conjectured that γn ≤ n · 2n, but

this was refuted by Ondřej B́ılka in 2010 [39]; see also [38, p. 147].

1

2
3

4
1

2

3

4

5

5A 1 4

2 3

3 2

4 1

Figure 3.9.: Left: The 5th pseudoline is represented as a cutpath in A. Right: The cutpath in
the wiring diagram of A.

Felsner [36] used a horizontal encoding of an arrangement in order to estimate Bn.

An arrangement can be represented by a sequence of horizontal cuts. The ith cut is

the list of pseudolines crossing the ith pseudoline in the order of the crossings. Let Tn

be the set of n-tuples (τ1, τ2, . . . , τn) with τi = (ti1, t
i
2, . . . , t

n−1
1 ) a binary vector and for

all i
�n−1

j=1 t
i
j = n − i. Then a mapping Φ can be defined from arrangements of size

n to Tn. Let A be an arrangement of size n. Then τi describes the crossings between

pseudoline i and the other pseudolines as follows. If the jth crossing on pseudoline

i is with a pseudoline that has index greater than i then tij = 1 otherwise tij = 0.

Pseudoline i has exactly one crossing with each of the other n− 1 pseudolines and n− i

pseudolines of them have index greater than i. This shows (τ1, τ2, . . . , τn) = Φ(A) is in

Tn. For example the arrangement in Fig. 3.1 (left) corresponds to the following element

of T4. T = ((1, 1, 1), (0, 1, 1), (1, 0, 0), (0, 0, 0)). Not all elements of Tn correspond to an

arrangement. The element T = ((1, 1, 1), (1, 0, 1), (0, 1, 0), (0, 0, 0)) of T4 does not have

any pre-image in Φ.
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Felsner [36, Thm. 1] showed that the mapping Φ is injective. Therefore,

Bn ≤ |Tn| =
�
n− 1

0

��
n− 1

1

��
n− 1

2

�
· · ·

�
n− 1

n− 1

�

Let f(n) =
�
n−1
0

�
· · ·

�
n−1
n−1

�
, so f(n) =

(n− 1)n−1

(n− 1)!
f(n−1). Using Stirling’s approximation

we get log f(n) = (n−1) log e+log f(n−1). This concludes bn = logBn ≤ �n−1
k=1 k log e =

0.7213(n2 − n).

Felsner [36, Thm. 2] further refined this bound by using replace matrices. A replace

matrix is a binary n × n matrix M with the properties
�n

j=1 mij = n − i for all i

and mij ≥ mji for all i < j. Using this technique the upper bound bn ≤ 0.6974n2 is

established. The current best estimates on γn are 2.076n ≤ γn ≤ 4n · 2.487n, see [39].

The latter inequality yields bn ≤ 0.6571n2, which is the current best upper bound.

Lower bounds on the number of pseudoline arrangements. Knuth [45, p. 37] gave a

recursive construction in the setting of reflection networks. The number of nonisomorphic

arrangements of n pseudolines in his construction, T (n), obeys the recurrence

T (n) ≥ 2n
2/8−n/4 · T (n/2).

By induction this yields T (n) ≥ 2n
2/6−5n/2, therefore Bn ≥ 2n

2/6−5n/2.

n
3 = m

n
3 = m

n
3 = m

n = 3m

n
3 = m

n
3 = m

n
3 = m

n = 3m

Figure 3.10.: Grid construction for a lower bound on Bn.

Matoušek sketched another recursive construction [49, Sec. 6.2], see Fig. 3.10 (left). Let

n be a multiple of 3 and m = n
3
(assume that m is odd). The 2m lines in the two extreme

bundles form a regular grid of m2 points. The lines in the central bundle are incident

to 3m2+1
4

of these grid points, shown in Fig. 3.10 (right). At each such point, there are
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2 choices; going below it or above it, thus creating at least 3m2

4
= 3(n/3)2

4
= n2

12
binary

choices. Thus T (n) obeys the recurrence

T (n) ≥ 2n
2/12 · (T (n/3))3,

which by induction yields T (n) ≥ 2n
2/8, implying Bn ≥ 2n

2/8.

Felsner and Valtr [39] used rhombic tilings of a centrally symmetric hexagon in an

elegant recursive construction for a lower bound on Bn. Consider a set of i + j + k

pseudolines partitioned into the following three parts: {1, . . . , i}, {i+ 1, . . . , i+ j}, {i+

j + 1, . . . , i+ j + k}, see Fig. 3.11. A partial arrangement is called consistent if any two

pseudolines from two different parts always cross but any two pseudolines from the same

part never cross.

n
3 = m

n
3 = m

n
3 = m

Figure 3.11.: The hexagon H(5, 5, 5) with one of its rhombic tilings and a consistent partial
arrangement corresponding to the tiling. This figure is reproduced from [39].

The zonotopal duals of consistent partial arrangements are rhombic tilings of the cen-

trally symmetric hexagon H(i, j, k) with side lengths i, j, k. The enumeration of rhombic

tilings of H(i, j, k) was solved by MacMahon [48] (see also [35]), who proved that the

number of tilings is

P (i, j, k) =
i−1�

a=0

j−1�

b=0

k−1�

c=0

a+ b+ c+ 2

a+ b+ c+ 1
. (3.1)

An approximation using integral calculus [39] shows that

lnP (n, n, n) ≈
�
9

2
ln 3− 6 ln 2

�
n2. (3.2)

Assuming n to be a multiple of 3 in the recursion step, the construction yields the
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recurrence

T (n) ≥ P
�n
3
,
n

3
,
n

3

�
·
�
T
�n
3

��3

. (3.3)

By induction, formula (3.2) together with the recurrence (3.3) yield the lower bound

bn ≥ 0.1887n2 for large n; this is the previous best lower bound.

Table 3.2 shows the exact values of Bn, and it’s growth rate (up to four digits after

the decimal point) with respect to n, for small values of n. The values of Bn for n = 1

to 9 are from [45, p. 35] and the values of B10, B11, and B12 are from [36], [54], and [52],

respectively; the values of B13, B14, and B15 have been added recently, see [44, 52].

n Bn
logBn

n2

1 1 0
2 1 0
3 2 0.1111
4 8 0.1875
5 62 0.2381
6 908 0.2729
7 24, 698 0.2977
8 1, 232, 944 0.3161
9 112, 018, 190 0.3301
10 18, 410, 581, 880 0.3409
11 5, 449, 192, 389, 984 0.3496
12 2, 894, 710, 651, 370, 536 0.3566
13 2, 752, 596, 959, 306, 389, 652 0.3624
14 4, 675, 651, 520, 558, 571, 537, 540 0.3672
15 14, 163, 808, 995, 580, 022, 218, 786, 390 0.3713

Table 3.2.: Values of Bn for small n = 1 to 15.

Our results. Here we extend the method used by Matoušek in his grid construction;

observe that it uses lines of 3 slopes. In Sections 3.2 (the 2nd part) and 3.5, we use

lines of 6 and 12 different slopes in hexagonal type constructions; yielding lower bounds

bn ≥ 0.1981n2 and bn ≥ 0.2083n2 for large n, respectively. In Sections 3.3 and 3.4, we

use lines of 8 and 12 different slopes in rectangular type constructions; yielding the lower

bounds bn ≥ 0.1999n2 and bn ≥ 0.2053n2 for large n, respectively. For each of the two

styles, rectangular and hexagonal,the constructions are presented in increasing order of

complexity. Our main result (appeared in [33]) is summarized in the following.
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Theorem 3.1. Let Bn be the number of nonisomorphic arrangements of n pseudolines.

Then Bn ≥ 2cn
2−O(n logn), for some constant c > 0.2083. In particular, Bn ≥ 20.2083n

2
for

large n.

Outline of the proof. We construct a line arrangement using lines of k different slopes

(for a small k). The final construction will be obtained by a small clockwise rotation,

so that there are no vertical lines. Let m = �n/k� or m = �n/k� − 1 (whichever is

odd). Each bundle consists of m equidistant parallel lines in the corresponding strip;

remaining lines are discarded, or not used in the counting. An i-wise crossing is an

intersection point of exactly i lines. Let λi(m) denote the number of i-wise crossings in

the arrangement where each bundle consists of m lines. Our goal is to estimate λi(m)

for each i. Then we can locally replace the lines around each i-wise crossing with any

of the Bi nonisomorphic pseudoline arrangements; and further apply recursively this

construction to each of the k bundles of parallel lines exiting this junction. This yields a

simple pseudoline arrangement for each possible replacement choice. Consequently, the

number of nonisomorphic pseudoline arrangements in this construction, denoted by T (n),

satisfies the recurrence:

T (n) ≥ F (n)
�
T
�n
k

��k
, (3.4)

where F (n) is a multiplicative factor counting the number of choices in this junction:

F (n) ≥
k�

i=3

B
λi(n)
i . (3.5)

Estimation of the number of i-crossings. To estimate λi(m), the number of i-crossings

in an arrangement where each bundle consists ofm lines, we use the following steps. First,

two (or three) bundles of lines are chosen to create a rectangular (or hexagonal) grid based

on a rectangle (or hexagon) of unit length. To estimate the number of such grid points,

we calculate the area of the regions covered by exactly i strips and the area of a grid

cell. Ratio of these two are areas provides us an estimate of the number of i-crossings.
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n
4 = m

n
4 = m

n
4 = m

n
4 = m

T (n4)

T (n4)

T (n4)

T (n4)

F (n)

Figure 3.12.: A recursive construction with k = 4 showing the concept presented in Eqn. (3.4).

There are m parallel lines in each bundle. So the distance between two consecutive lines

in the bundles of horizontal (also vertical) lines is 1
m−1

. So the area of a grid cell is

( 1
m−1

)2 ≈ ( 1
m
)2. It should be noted that using this technique, the i-crossings on the

boundaries of the regions are not counted which is of O(m) (therefore O(n)). After the

induction, this amounts to only O(n log n).

1
m−11

1
m−1

1

4

3

3

3

3

1

1

Figure 3.13.: Left: Construction with 4 slopes; here m = 9. Right: The regions covered by
exactly three and four of the four strips are shown in cyan and magenta colors respectively.

Related work. In a comprehensive recent paper, Kynčl [47] obtained estimates on the

number of isomorphism classes of simple topological graphs that realize various graphs.

The author remarks that it is probably hard to obtain tight estimates on this quantity,

“given that even for pseudoline arrangements, the best known lower and upper bounds

on their number differ significantly”. The techniques we used here can be employed to

obtain improved lower bounds for topological graph drawings too.

68



3. Pseudoline Arrangements

Notations and formulas used. For a figure F , let per(F ) denote its perimeter, i.e., the

length of its boundary. For two similar polygonal figures F, F �, let ρ(F, F �) denote their

similarity ratio, i.e., the ratio between the lengths of corresponding sides of F and F �

(which is equal to per(F )/per(F �)). For a planar region R, let area(R) denote its area.

By slightly abusing notation, let area(i, j, k) denote the area of the triangle made by three

lines ℓi, ℓj and ℓk.

• The area of an equilateral triangle of side s is s2
√
3

4
.

• The area of a regular hexagon of side s is s23
√
3

2
.

• Assume that the equations of the three lines are αsx+ βsy + γs = 0, for s = 1, 2, 3,

respectively. Then the respective triangle area can be computed as follows (for

instance, see [50] or [51, pp. 27–28]:

area(i, j, k) =
A2

2|C1C2C3|
, where A =

����������

α1 β1 γ1

α2 β2 γ2

α3 β3 γ3

����������

,

C1 = (α2β3 − β2α3),

C2 = −(α1β3 − β1α3),

C3 = (α1β2 − β1α2).

• Let P (i, j, g, h) denote the parallelogram made by the pairs of parallel lines ℓi � ℓj

and ℓg � ℓh. A strip is the set of points in between two parallel lines.

3.2. Preliminary constructions

A rectangular construction with 4 slopes. We start with a simple rectangular con-

struction with 4 bundles of parallel lines whose slopes are 0,∞,±1; see Fig. 3.14 (left).

Let U = [0, 1]2 be the unit square we work with. The axes of all four strips are incident

to the center of U .

For i = 3, 4, let ai denote the area of the region covered by exactly i of the 4 strips. It

is easy to see that a3 = a4 = 1/2, and obviously a3 + a4 = area(U) = 1. Observe that
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4

3

3

3

3

Figure 3.14.: Construction with 4 slopes; here m = 9. The unit square U = [0, 1]2.

λi(m) is proportional to ai, for i = 3, 4; taking the boundary effect into account, we have

λ3(m) = a3 m
2 −O(m) =

m2

2
−O(m), and λ4(m) = a4 m

2 −O(m) =
m2

2
−O(m).

Since m = n/4, λi can be also viewed as a function of n. Therefore

λ3(n) = n2/32−O(n), and λ4(n) = n2/32−O(n),

and so the multiplicative factor in Eq. (3.4) is bounded from below as follows:

F (n) ≥
4�

i=3

B
λi(n)
i ≥ 2n

2/32−O(n) · 8n2/32−O(n) = 2n
2/8−O(n). (3.6)

Applying (3.4) for k = 4 yields

T (n) ≥ F (n) · (T (n/4))4 ≥ 2n
2/8−O(n) · (T (n/4))4.

By induction on n, the resulting lower bound is T (n) ≥ 2n
2/6−O(n logn); this matches the

constant 1/6 in Knuth’s lower bound described in Section 3.1.

Hexagonal construction with 6 slopes. We next describe and analyze a hexagonal

construction with lines of 6 slopes, namely 6 bundles of parallel lines whose slopes are 0,

∞, ±1/
√
3, ±

√
3. LetH be a regular hexagon whose side has unit length. The axes of the
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6 strips containing the bundles of lines are incident to the center of H; see Fig. 3.15 (left).

This construction yields the lower bound bn ≥ 0.1981n2 for large n.

6

5
4

4

4

4

4

3

3

3

3

3

3

ℓ12 ℓ9
ℓ8

ℓ10 ℓ11

ℓ1 ℓ2
ℓ3

ℓ4

ℓ5

ℓ6

ℓ7

4

55

5

5 5

i αi βi γi

1
√
3 1 0

2
√
3 1 −2

√
3

3 1
√
3 −1

4 1
√
3 −3

5 0 1 0

6 0 1 −
√
3

7 −1
√
3 0

8 −1
√
3 −2

9 −
√
3 1

√
3

10 −
√
3 1 −

√
3

11 −1 0 1
12 −1 0 0

Figure 3.15.: Left: The six strips and covering multiplicities of the respective regions. These
numbers only show incidences at the 3-wise crossings made by primary lines. Right: Coefficients
of the lines �i for i = 1, . . . , 12.

Let L =
�6

i=1 Li be the partition of the lines into six bundles of parallel lines. The m

lines in Li are contained in the strip bounded by the two lines ℓ2i−1 and ℓ2i, for i = 1, . . . , 6.

We refer to lines in L1 ∪ L3 ∪ L5 as the primary lines, and to lines in L2 ∪ L4 ∪ L6 as

secondary lines. Three strips are bounded by the pairs of lines supporting opposite sides

of H, while the other three strips are bounded by the pairs of lines supporting opposite

short diagonals of H.

Assume a coordinate system where the lower left corner of H is at the origin, and the

lower side of H lies along the x-axis. The equation of line ℓi is αix + βiy + γi = 0, with

αi, βi, γi, for i = 1, . . . , 12, given in Fig. 3.15 (right).

Note that the distance between consecutive lines in any of the bundles of

• primary lines is
√
3

m

�
1−O

�
1
m

��
;

• secondary lines is 1
m

�
1−O

�
1
m

��
.

Let σ0 = σ0(m) and δ0 = δ0(m) denote the basic parallelogram and triangle, respec-

tively, determined by consecutive lines in L1∪L3∪L5 (in all three possible orientations).
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The side length of σ0 and δ0 is 2
m

�
1−O

�
1
m

��
. Let H � be the smaller regular hexagon

bounded by the short diagonals of H; the similarity ratio ρ(H �, H) is equal to 1√
3
. H is

the intersection of all three primary strips and H � is the intersection of all three secondary

strips. Recall that (i) the area of an equilateral triangle of side s is s2
√
3

4
; and (ii) the area

of a regular hexagon of side s is s23
√
3

2
; as such, we have

area(H) =
3
√
3

2
,

area(H �) =
area(H)

3
=

√
3

2
,

area(δ0) =
4

m2

√
3

4

�
1−O

�
1

m

��
=

√
3

m2

�
1−O

�
1

m

��
,

area(σ0) = 2 · area(δ0) =
2
√
3

m2

�
1−O

�
1

m

��
.

For i = 3, 4, 5, 6, let ai denote the area of the (not necessarily connected) region covered

by exactly i of the 6 strips. The following observations are in order: (i) the six isosceles

triangles based on the sides of H inside H have unit base and height 1
2
√
3
; (ii) the six

smaller equilateral triangles incident to the vertices of H have side-length 1√
3
. These

observations yield

a3 = area(H) =
3
√
3

2
,

a4 = 6 · area(3, 5, 7) = 6 · 1

4
√
3
=

√
3

2
,

a5 = 6 · area(3, 7, 11) = 6 · 1
3

√
3

4
=

√
3

2
,

a6 = area(H �) =

√
3

2
.

Observe that a4 + a5 + a6 = area(H). Recall that λi(m) denote the number of i-wise

crossings where each bundle consists of m lines. Note that λi(m) is proportional to ai, for

i = 4, 5, 6. Indeed, λi(m) is equal to the number of i-wise crossings of lines in L1∪L3∪L5

that lie in a region covered by i strips, which is roughly equal to the ratio ai
area(σ0)

, for

i = 4, 5, 6. More precisely, taking also the boundary effect of the relevant regions into
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account, we obtain

λ4(m) =
a4

area(σ0)
−O(m) =

√
3

2

m2

2
√
3
−O(m) =

m2

4
−O(m),

λ5(m) =
a5

area(σ0)
−O(m) =

m2

4
−O(m),

λ6(m) =
a6

area(σ0)
−O(m) =

m2

4
−O(m).

For estimating λ3(m), the situation is little bit different; see Fig. 3.16. In addition to

considering 3-wise crossings of the primary lines (drawn as the crossings of 3 black lines),

we also observe 3-wise crossings of the secondary lines (drawn as the crossings of 3 red

lines at the centers of the small equilateral triangles contained in H �). It follows that

λ3(m) =
a3

area(σ0)
+

area(H �)

area(δ0)
−O(m) =

3m2

4
+

m2

2
−O(m) =

5m2

4
−O(m).

Figure 3.16.: Triple incidences of primary lines and triple incidences of secondary lines are drawn
in black and red, respectively.
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The values of λi(m), for i = 3, 4, 5, 6, are summarized in Table 3.3; for convenience the

linear terms are omitted. Since m = n/6, λi can be also viewed as a function of n.

i 3 4 5 6

λi(m) 5m2

4
m2

4
m2

4
m2

4

λi(n)
5n2

4·36
n2

4·36
n2

4·36
n2

4·36

Table 3.3.: The asymptotic values of λi(m) and λi(n) for i = 3, 4, 5, 6.

The multiplicative factor in Eq. (3.4) is bounded from below as follows:

F (n) ≥
6�

i=3

B
λi(n)
i ≥ 25n

2/144 · 8n2/144 · 62n2/144 · 908n2/144 · 2−O(n).

We prove by induction on n that T (n) ≥ 2cn
2−O(n logn) for a suitable constant c > 0. It

suffices to choose c (using the values of Bi for i = 3, 4, 5, 6 in Table 3.2) so that

8 + log 62 + log 908

144
≥ 5c

6
.

The above inequality holds if we set c =
log(256 · 62 · 908)

120
> 0.1981, and the lower bound

follows.

3.3. Rectangular construction with 8 slopes

We describe and analyze a rectangular construction with lines of 8 slopes. Consider 8

bundles of parallel lines whose slopes are 0,∞,±1/2,±1,±2. The axes of all strips are

incident to the center of U . This construction yields the lower bound bn ≥ 0.1999n2 for

large n.

Let L = L1 ∪ . . . ∪ L8 be the partition of the lines into eight bundles of parallel lines.

The m lines in Li are contained in the strip Γi bounded by the two lines ℓ2i−1 and ℓ2i, for

i = 1, . . . , 8. The equation of line ℓi is αix+ βiy + γi = 0, with αi, βi, γi, for i = 1, . . . , 16

given in Fig. 3.17 (right). Observe that U = Γ4 ∩ Γ8.

We refer to lines in L4 ∪ L8 (i.e., axis-aligned lines) as the primary lines, and to rest
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7

7 7
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7
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55 5

5

5

55

5

5

5

4

4 4

4

4

44

4

3 3

3

3

3

3

3 3 �6

�7

�8

�9

�10

�11

�4

�5

i αi βi γi

1 2 1 −1
2 2 1 −2
3 1 1 −0.5
4 1 1 −1.5
5 1 2 −1
6 1 2 −2
7 0 1 0
8 0 1 −1
9 1 −2 0
10 1 −2 1
11 1 −1 −0.5
12 1 −1 0.5
13 2 −1 −1
14 2 −1 0
15 1 0 −1
16 1 0 0

Figure 3.17.: Left: The eight strips and the corresponding covering multiplicities. These numbers
only reflect incidences at the grid vertices made by axis-aligned lines. Right: Coefficients of the
lines �i for i = 1, 2, . . . , 16.

of the lines as secondary lines. We refer to the intersection points of the primary lines as

grid vertices. The slopes of the primary lines are in {0,∞}. The slopes of the secondary

lines are in {±1/2,±1,±2}. Note that the distance between consecutive lines

• in L4 or L8 is 1
m

�
1−O

�
1
m

��
;

• in L2 or L6 is 1
m
√
2

�
1−O

�
1
m

��
;

• in L1, L3, L5, or L7 is 1
m
√
5

�
1−O

�
1
m

��
.

Let σ0 = σ0(m) denote the basic parallelogram (here, square) determined by consecu-

tive axis-aligned lines (i.e., lines in L4 ∪ L8); the side length of σ0 is 1
m

�
1−O

�
1
m

��
. We

refer to these basic parallelograms as grid cells. Let U � be the smaller square made by

ℓ5, ℓ6, ℓ13, ℓ14, i.e., U
� = Γ3 ∩ Γ7; the similarity ratio ρ(U �, U) is equal to 1√

5
. We have

area(U) = 1,

area(U �) =
area(U)

5
=

1

5
,

75



3. Pseudoline Arrangements

area(σ0) =
1

m2

�
1−O

�
1

m

��
.

For i = 3, 4, . . . , 8, let ai denote the area of the (not necessarily connected) region

covered by exactly i of the 8 strips. Recall that area(i, j, k) denotes the area of the

triangle made by ℓi, ℓj and ℓk. We have

a3 = 8 · area(3, 7, 15) = 1,

a4 = 8 · area(5, 7, 11) = 1

3
,

a5 = 4 (2 · area(5, 11, 13) + area(2, 5, 11)) =
7

30
,

a6 = 4 (area(6, 11, 13)− 2 · area(2, 11, 9)− area(2, 9, 13)) =
1

5
,

a7 = 8 · area(5, 9, 13) = 1

15
,

a8 = area(U �)− 4 · area(5, 9, 13) = 1

5
− 1

30
=

1

6
.

Observe that a4+a5+a6+a7+a8 = area(U) = 1. Recall that λi(m) denote the number

of i-wise crossings where each bundle consists of m lines. Note that λi(m) is proportional

to ai, for i = 4, 5, 6, 7, 8. Indeed, λi(m) is equal to the number of grid points that lie in a

region covered by i strips, which is roughly equal to the ratio ai
area(σ0)

, for i = 4, 5, 6, 7, 8.

More precisely, taking also the boundary effect of the relevant regions into account, we

obtain

λ4(m) =
a4

area(σ0)
−O(m) =

m2

3
−O(m),

λ5(m) =
a5

area(σ0)
−O(m) =

7m2

30
−O(m),

λ6(m) =
a6

area(σ0)
−O(m) =

m2

5
−O(m),

λ7(m) =
a7

area(σ0)
−O(m) =

m2

15
−O(m),

λ8(m) =
a8

area(σ0)
−O(m) =

m2

6
−O(m).

For estimating λ3(m), in addition to considering 3-wise crossings in the exterior of U ,
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we also observe 3-wise crossings on the boundaries or in the interior of the small grid

cells contained in some regions of U . Specifically, we distinguish exactly four types of

3-wise crossings, as illustrated and specified in Fig. 3.18. For j = 1, 2, 3, 4, let wj denote

the weighted area containing all crossings of type j, where the weight is the number of

3-wise crossings per grid cell. To complete the estimate of λ3(m), we calculate wj for all

j, from the bundles intersecting at crossings of type j; listed in Fig. 3.18 (right).

type 1 type 2 type 3 type 4

j Bundles intersect-
ing at vertices of
type j

1 L4,L1,L7

2 L8,L3,L5

3 L6,L1,L3

4 L2,L5,L7

Figure 3.18.: Left: Other types of 3-wise crossings. Right: Intersecting bundles for these cross-
ings.

Observe that Γi∩Γj is a parallelogram defined by the two pairs of parallel lines ℓ2i−1, ℓ2i

and ℓ2j−1, ℓ2j, respectively, thus area(Γi ∩ Γj) = area(P (2i− 1, 2i, 2j − 1, 2j)). For types

1 and 2, there is one crossing per grid cell and for types 3 and 4, there are two crossings

per grid cell. Therefore we have,

w1 = area(Γ4 ∩ Γ1 ∩ Γ7) = area(Γ1 ∩ Γ7) = area(P (1, 2, 13, 14)) = 1/4,

w2 = area(Γ8 ∩ Γ3 ∩ Γ5) = area(Γ3 ∩ Γ5) = area(P (5, 6, 9, 10)) = 1/4,

w3 = 2 · area(Γ1 ∩ Γ3 ∩ Γ6) = 2 · (area(P (1, 2, 5, 6))− 2 · area(2, 5, 11))

= 2 · (1/3− 1/12) = 1/2,

w4 = 2 · area(Γ2 ∩ Γ5 ∩ Γ7) = 1/2.

It follows that

λ3(m) =
a3 +

�4
j=1 wj

area(σ0)
−O(m) =

�
1 +

1

4
+

1

4
+

1

2
+

1

2

�
m2 −O(m) =

5m2

2
−O(m).

The values of λi(m), for i = 3, 4, . . . , 8, are summarized in Table 3.4; for convenience

the linear terms are omitted. Since m = n/8, λi can be also viewed as a function of n.
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i 3 4 5 6 7 8

λi(m) 5m2

2
m2

3
7m2

30
m2

5
m2

15
m2

6

λi(n)
5n2

2·64
n2

3·64
7n2

30·64
n2

5·64
n2

15·64
n2

6·64

Table 3.4.: The asymptotic values of λi(m) and λi(n) for i = 3, 4, . . . , 8.

The multiplicative factor in Eq. (3.4) is bounded from below as follows:

F (n) ≥
8�

i=3

B
λi(n)
i ≥ 2

5n2

2·64 · 8 n2

3·64 · 62 7n2

30·64 · 908 n2

5·64 · 24698 n2

15·64 · 1232944 n2

6·64 · 2−O(n).

We prove by induction on n that T (n) ≥ 2cn
2−O(n logn) for a suitable constant c > 0. It

suffices to choose c (using the values of Bi for i = 3, . . . , 8 in Table 3.2) so that

1

64

�
5

2
+

1

3
log 8 +

7

30
log 62 +

1

5
log 908 +

1

15
log 24698 +

1

6
log 1232944

�
≥ 7c

8
.

The above inequality holds if we set

c =
1

56

�
5

2
+ 1 +

7

30
log 62 +

1

5
log 908 +

1

15
log 24698 +

1

6
log 1232944

�
> 0.1999, (3.7)

and this yields the lower bound Bn ≥ 2cn
2−O(n logn), for some constant c > 0.1999. In

particular, we have Bn ≥ 20.1999n
2
for large n.

3.4. Rectangular construction with 12 slopes

We next describe and analyze a rectangular construction with lines of 12 slopes. Consider

12 bundles of parallel lines whose slopes are 0,∞,±1/3,±1/2,±1,±2,±3. The axes of

all strips are incident to the center of U = [0, 1]2. Refer to Fig. 3.19. This construction

yields the lower bound bn ≥ 0.2053n2 for large n.

Let L = L1∪ . . .∪L12 be the partition of the lines into twelve bundles of parallel lines.

The m lines in Li are contained in the strip Γi bounded by the two lines ℓ2i−1 and ℓ2i, for

i = 1, . . . , 12. The equation of line ℓi is αix+βiy+γi = 0, with αi, βi, γi, for i = 1, . . . , 24
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given in Table 3.5. Observe that U = Γ6 ∩ Γ12.
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Figure 3.19.: Construction with 12 slopes. The twelve strips and the corresponding covering
multiplicities. These numbers only reflect incidences at the grid vertices made by axis-aligned
lines.

We refer to lines in L6 ∪ L12 (i.e., axis-aligned lines) as the primary lines, and to rest

of the lines as the secondary lines. We refer to the intersection points of the primary

lines as grid vertices. The slopes of the primary lines are in {0,∞}, and the slopes of

the secondary lines are in {±1/3,±1/2,±1,±2,±3}. Note that the distance between

consecutive lines
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• in L6 or L12 is 1
m

�
1−O

�
1
m

��
;

• in L3 or L9 is 1
m
√
2

�
1−O

�
1
m

��
;

• in L2, L4, L8, or L10 is 1
m
√
5

�
1−O

�
1
m

��
;

• in L1, L5, L7, or L11 is 1
m
√
10

�
1−O

�
1
m

��
.

i αi βi γi

1 3 1 −1.5
2 3 1 −2.5
3 2 1 −1
4 2 1 −2
5 1 1 −0.5
6 1 1 −1.5
7 1 2 −1
8 1 2 −2

i αi βi γi

9 1 3 −1.5
10 1 3 −2.5
11 0 1 0
12 0 1 −1
13 −1 3 −0.5
14 −1 3 −1.5
15 −1 2 0
16 −1 2 −1

i αi βi γi

17 −1 1 0.5
18 −1 1 −0.5
19 −2 1 1
20 −2 1 0
21 −3 1 1.5
22 −3 1 0.5
23 −1 0 1
24 −1 0 0

Table 3.5.: Coefficients of the 24 lines.

Let σ0 = σ0(m) denote the basic parallelogram (here, square) determined by consecu-

tive axis-aligned lines (i.e., lines in L6 ∪L12); the side length of σ0 is
1
m

�
1−O

�
1
m

��
. We

refer to these basic parallelograms as grid cells. Let U1 = Γ1 ∩ Γ7, be the square made

by ℓ1, ℓ2, ℓ13, ℓ14, and let U2 = Γ2 ∩Γ8, be the smaller square made by ℓ3, ℓ4, ℓ15, ℓ16. Note

that ρ(U1, U) = 1√
10

and ρ(U2, U) = 1√
5
. We also have

area(U) = 1,

area(U1) =
area(U)

10
=

1

10
,

area(U2) =
area(U)

5
=

1

5
,

area(σ0) =
1

m2

�
1−O

�
1

m

��
.

Estimating the number of crossings at grid vertices. For i = 3, . . . , 12, let ai denote

the area of the (not necessarily connected) region covered by exactly i of the 12 strips.

Recall that area(i, j, k) denotes the area of the triangle bounded by ℓi, ℓj and ℓk. Efficient

algorithms and computer search were important in verifying the areas of various regions
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that are unions of cells in a line arrangement, and in verifying the coordinates and number

of certain points of multiple line incidence, etc. We have

a3 = 8 · (area(2, 11, 13) + area(3, 5, 23)) = 8 ·
�
1

8
+

1

24

�
=

4

3
,

a4 = 8 · (area(2, 5, 11) + area(2, 7, 11)) = 8 ·
�

1

12
+

1

120

�
=

11

15
,

a5 = 4 · (area(11, 17, 23)− 2 · area(2, 7, 11)− 2 · area(2, 7, 17))

= 4

�
1

8
− 2

120
− 2

120

�
=

11

30
,

a6 = 4 · (2 · area(7, 17, 19) + 2 · area(2, 7, 17)) = 4 ·
�

2

120
+

2

120

�
=

2

15
,

a7 = 4 · (2 · area(7, 19, 21) + 2 · (area(9, 17, 19)− area(7, 17, 19)))

= 4 ·
�

1

140
+ 2 ·

�
1

56
− 1

120

��
=

11

105
,

a8 = 8 · (area(9, 19, 21)− area(7, 19, 21)) + 4 · (area(2, 9, 15)− area(9, 15, 19))

+ 8 · area(7, 21, 25) = 13

105
,

a9 = 8 · (area(7, 15, 21) + area(9, 15, 19)) = 8 ·
�

1

280
+

1

840

�
=

4

105
,

a10 = 4 · ((area(7, 13, 15)− area(9, 13, 15)) + (area(13, 19, 21)− area(15, 19, 21)))

= 4 ·
��

1

40
− 1

60

�
+

�
1

80
− 1

120

��
= 4 ·

�
1

120
+

1

240

�
=

1

20
,

a11 = 8 · area(2, 13, 21) = 8

240
=

1

30
,

a12 = area(U1)− 4 · area(9, 13, 21) = 1

10
− 4

240
=

1

12
.

The region whose area is
�12

i=4 ai consists of U and 8 triangles outside U . Therefore,

�12

i=4
ai = area(U) + 8 · area(2, 5, 11) = 1 + 2/3 = 5/3.

Recall that λi(m) denote the number of i-wise crossings where each bundle consists

of m lines. Note that λi(m) is proportional to ai, for i = 7, 8, . . . , 12. Indeed, λi(m)

is equal to the number of grid vertices, i.e., intersection points of the axis-parallel lines

that lie in a region covered by i strips, which is roughly equal to the ratio ai
area(σ0)

, for

i = 7, 8, . . . , 12. More precisely, taking also the boundary effect of the relevant regions
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into account, we obtain

λ7(m) =
a7

area(σ0)
−O(m) =

11m2

105
−O(m),

λ8(m) =
a8

area(σ0)
−O(m) =

13m2

105
−O(m),

λ9(m) =
a9

area(σ0)
−O(m) =

4m2

105
−O(m),

λ10(m) =
a10

area(σ0)
−O(m) =

m2

20
−O(m),

λ11(m) =
a11

area(σ0)
−O(m) =

m2

30
−O(m),

λ12(m) =
a12

area(σ0)
−O(m) =

m2

12
−O(m).

Estimating the number of crossings that are not at grid vertices. For i = 3, 4, 5, 6,

not all the i-wise crossings are at grid vertices. It can be exhaustively verified (by hand)

that there are 29 types of such crossings in total; see Figs. 3.20 to 3.22. To list the

coordinates of crossing points, we rescale the grid cells to the unit square [0, 1]2. The

bundles intersecting at each of these 29 types of vertices are listed in Table 3.6. For

j = 1, 2, . . . , 29, let wj denote the weighted area containing all crossings of type j; where

the weight is the number of crossings per grid cell. To complete the estimates of λi(m)

for i = 3, 4, 5, 6, we calculate wj for all j from the bundles intersecting at type j crossings.

The values are listed in Table 3.9.

j Bundles intersecting
at type j vertices

1 L2,L6,L10

2 L4,L8,L12

3 & 4 L1,L6,L11

5 L3,L7,L9

6 L3,L5,L9

7 L3,L9,L11

8 L1,L3,L9

9 & 10 L5,L7,L12

11 L2,L4,L9

j Bundles intersecting
at type j vertices

12 L3,L8,L10

13 L2,L8,L11

14 L1,L4,L10

15 L2,L5,L8

16 L4,L7,L10

17 L1,L5,L9

18 L3,L7,L11

19 L3,L5,L7,L9

20 L1,L3,L9,L11

j Bundles intersecting
at type j vertices

21 L3,L7,L9,L11

22 L1,L3,L5,L9

23 L1,L4,L7,L10

24 L2,L5,L8,L11

25 L1,L3,L7,L9,L11

26 L1,L3,L5,L9,L11

27 L3,L5,L7,L9,L11

28 L1,L3,L5,L7,L9

29 L1,L3,L5,L7,L9,L11

Table 3.6.: Bundles intersecting at type j vertices for j = 1, 2, . . . , 29.

For λ6(m), all the 6-wise crossings that are not at grid vertices, are at the centers of
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grid cells, see Fig. 3.20; we have

w29 = area(Γ1 ∩ Γ3 ∩ Γ5 ∩ Γ7 ∩ Γ9 ∩ Γ11) = area(Γ1 ∩ Γ5 ∩ Γ7 ∩ Γ11) = a12.

It follows that

λ6(m) =
a6 + w29

area(σ0)
−O(m) =

a6 + a12
area(σ0)

−O(m) =
2m2

15
+

m2

12
−O(m) =

13m2

60
−O(m).

type 25 type 26 type 28type 27 type 29

Figure 3.20.: Types 25 through 28 are 5-wise crossings that are not at grid vertices. Similarly
type 29 is the only type of 6-wise crossings that are not at grid vertices.

Similarly for λ5(m), all the 5-wise crossings that are not at grid vertices, i.e., types

25 through 28, are at the centers of grid cells (see Fig. 3.20) contained in eight small

triangles inside U . For example,

w28 = area(Γ1 ∩ Γ3 ∩ Γ5 ∩ Γ7 ∩ Γ9 − Γ11) = area(1, 14, 22) + area(2, 13, 21) = 1/120.

Observe that sum of the areas of these eight small triangles equals to a11. It follows that

λ5(m) =
a5 +

�28
j=25 wj

area(σ0)
−O(m) =

a5 + a11
area(σ0)

−O(m) =
11m2

30
+
m2

30
−O(m) =

2m2

5
−O(m).

type 19 type 20 type 21 type 22 type 23 type 24

Figure 3.21.: Types 19 through 24 are 4-wise crossings that are not at grid vertices.
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To estimate λ4(m), note that besides 4-wise crossings at grid vertices, there are six types

of 4-wise crossings i.e., types 19 through 24, in the interiors of grid cells, see Fig. 3.21.

• For types 19 and 20, there is one crossing per grid cell, are at the centers of grid

cells; and

w19 = area(Γ3 ∩ Γ5 ∩ Γ7 ∩ Γ9 − Γ1 − Γ11)

= (area(2, 10, 13)− area(2, 10, 21)) + (area(9, 14, 22)− area(1, 14, 22)) = 1/15.

Type 20 is a 90◦ rotation of type 19; therefore by symmetry,

w19 = w20 = 1/15.

• For types 21 and 22, there is one crossing per grid cell, are at the centers of grid

cells; and

w21 = area(Γ3 ∩ Γ7 ∩ Γ9 ∩ Γ11 − Γ1 − Γ5)

= (area(2, 14, 21)− area(2, 10, 21)) + (area(1, 13, 22)− area(1, 9, 22)) = 1/40.

Type 22 is the reflection in a vertical line of type 21; therefore by symmetry,

w21 = w22 = 1/40.

• For types 23 and 24, there are four crossings per grid cell. So

w23 = 4 · area(Γ1 ∩ Γ4 ∩ Γ7 ∩ Γ10) = 4 · area(Γ1 ∩ Γ7) = 4 · area(U1) = 2/5.

Type 24 is the reflection in a vertical line of type 23; therefore by symmetry,

w23 = w24 = 2/5.

84



3. Pseudoline Arrangements

Type Co-ordinates of the crossings

23

�
1

5
,
2

5

�
,

�
2

5
,
4

5

�
,

�
4

5
,
3

5

�
,

�
3

5
,
1

5

�

24

�
1

5
,
3

5

�
,

�
3

5
,
4

5

�
,

�
4

5
,
2

5

�
,

�
2

5
,
1

5

�

Table 3.7.: Co-ordinates of types 23 and 24 crossings.

Consequently, we have

λ4(m) =
a4 +

�24
j=19 wj

area(σ0)
−O(m) =

�11
15

+
2

15
+

1

20
+

4

5

�
m2 −O(m) =

103m2

60
−O(m).

Lastly, we estimate λ3(m). Besides 3-wise crossings at grid vertices, there are 18 types

of 3-wise crossings i.e., types 1 through 18, in the interior of grid cells, see Fig. 3.22.

type 1 type 2 type 3

type 11 type 12 type 13 type 14 type 15 type 16 type 17

type 4 type 5 type 6 type 7 type 8 type 9 type 10

type 18

Figure 3.22.: Types 1 through 18 are 3-wise crossings that are not at grid vertices.

• For types 1 and 2, there is one crossing per grid cell at the midpoint of the horizontal

and the vertical grid edges respectively; and

w1 = area(Γ2 ∩ Γ6 ∩ Γ10) = area(Γ2 ∩ Γ10) = area(P (3, 4, 19, 20)) = 1/4.

Type 2 is a 90◦ rotation of type 1; therefore by symmetry,

w1 = w2 = 1/4.

• For types 3, 4, 9, 10, there is one crossing on the boundary of each grid cell. For
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types 3 and 4, the crossings are on horizontal grid edges at distance 1/3 and 2/3

from the vertical line on the left, respectively. For types 9 and 10, the crossings

are on vertical grid edges at height 1/3 and 2/3 from the horizontal line below,

respectively; and

w3 = area(Γ1 ∩ Γ6 ∩ Γ11) = area(Γ1 ∩ Γ11) = area(P (1, 2, 21, 22)) = 1/6.

Type 4 is the reflection in a horizontal line of type 3, and types 9 and 10 are 90◦

rotations of types 3 and 4, respectively. Therefore by symmetry,

w3 = w4 = w9 = w10 = 1/6.

• For types 5, 6, 7, 8, there is one crossing at the centers of grid cells per grid cell; and

w5 = area(Γ3 ∩ Γ7 ∩ Γ9 − Γ1 − Γ5 − Γ11) = area(5, 9, 22) + area(6, 10, 21)) = 1/20.

Type 6 is the reflection in a vertical line of type 5, and types 7 and 8 are 90◦

rotations of types 6 and 5, respectively. Therefore by symmetry,

w5 = w6 = w7 = w8 = 1/20.

• For types 11 and 12, there are two crossings per grid cell. Type 11 crossings are at

(1/3, 1/3) and (2/3, 2/3), type 12 crossings are at (1/3, 2/3) and (2/3, 1/3); and

w11 = 2 · (area(Γ2 ∩ Γ4 ∩ Γ9))

= 2 · (area(P (3, 4, 7, 8))− area(3, 8, 18)− area(4, 7, 17)) = 1/2.

Type 12 is the reflection in a vertical line of type 11; therefore by symmetry,

w11 = w12 = 1/2.
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• For types 13, 14, 15, and 16, there are four crossings per grid cell. Thus

w13 = 4 · (area(Γ2 ∩ Γ8 ∩ Γ11 − Γ5)) = 4 · (area(3, 9, 13) + area(4, 10, 16)) = 1/5.

Type 14 is the reflection in a vertical line of type 13, and types 15 and 16 are 90◦

rotations of types 13 and 14, respectively. Therefore by symmetry,

w13 = w14 = w15 = w16 = 1/5.

Type Co-ordinates of the crossings

13

�
1

5
,
3

5

�
,

�
3

5
,
4

5

�
,

�
4

5
,
2

5

�
,

�
2

5
,
1

5

�

14

�
1

5
,
2

5

�
,

�
2

5
,
4

5

�
,

�
4

5
,
3

5

�
,

�
3

5
,
1

5

�

15

�
1

5
,
3

5

�
,

�
3

5
,
4

5

�
,

�
4

5
,
2

5

�
,

�
2

5
,
1

5

�

16

�
1

5
,
2

5

�
,

�
2

5
,
4

5

�
,

�
4

5
,
3

5

�
,

�
3

5
,
1

5

�

Table 3.8.: Co-ordinates of types 13, 14, 15, and 16 crossings.

• For types 17 and 18, there are two crossings per grid cell. Type 17 crossings are at

(1/4, 1/4), (3/4, 3/4), and type 18 crossings are at (1/4, 3/4), (3/4, 1/4); and

w17 = 2 · (area(Γ1 ∩ Γ5 ∩ Γ9)) = 2 · (area(Γ1 ∩ Γ5)) = 2 · area(P (1, 2, 9, 10)) = 1/4.

Type 18 is the reflection in a vertical line of type 17; therefore by symmetry,

w17 = w18 = 1/4.

Consequently, we have

λ3(m) =
a3 +

�18
j=1 wj

area(σ0)
−O(m) =

�4
3
+

1

2
+

2

3
+

1

5
+ 1 +

4

5
+

1

2

�
m2 −O(m)

= 5m2 −O(m).
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j wj

1 1/4
2 1/4
3 & 4 1/3
5 1/20
6 1/20
7 1/20
8 1/20

j wj

9 & 10 1/3
11 1/2
12 1/2
13 1/5
14 1/5
15 1/5
16 1/5

j wj

17 1/4
18 1/4
19 1/15
20 1/15
21 1/40
22 1/40
23 2/5

j wj

24 2/5
25 1/120
26 1/120
27 1/120
28 1/120
29 1/12

Table 3.9.: Values of wj for j = 1, . . . , 29.

Figure 3.23.: These incidence patterns cannot occur.

The values of λi(m), for i = 3, 4, . . . , 12, are summarized in Table 3.10; for convenience

the linear terms are omitted. Since m = n/12, λi can be also viewed as a function of n.

i 3 4 5 6 7 8 9 10 11 12

λi(m) 5m2 103m2

60
2m2

5
13m2

60
11m2

105
13m2

105
4m2

105
m2

20
m2

30
m2

12

λi(n)
5n2

144
103n2

60·144
2n2

5·144
13n2

60·144
11n2

105·144
13n2

105·144
4n2

105·144
n2

20·144
n2

30·144
n2

12·144

Table 3.10.: The asymptotic values of λi(m) and λi(n) for i = 3, 4, . . . , 12.

The multiplicative factor in Eq. (3.4) is bounded from below as follows:

F (n) ≥
12�

i=3

B
λi(n)
i ≥ 2

5n2

144 · 8 103n2

60·144 · 62 2n2

5·144 · 908 13n2

60·144 · 24698 11n2

105·144

· 1232944 13n2

105·144 · 112018190 4n2

105·144 · 18410581880 n2

20·144

· 5449192389984 n2

30·144 · 2894710651370536 n2

12·144 · 2−O(n).

We prove by induction on n that T (n) ≥ 2cn
2−O(n logn) for a suitable constant c > 0. It
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suffices to choose c (using the values of Bi for i = 3, . . . , 12 in Table 3.2) so that

1

144

�
5 +

103

60
log 8 +

2

5
log 62 +

13

60
log 908 +

11

105
log 24698 +

13

105
log 1232944

+
4

105
log 112018190 +

1

20
log 18410581880 +

1

30
log 5449192389984

+
1

12
log 2894710651370536

�
≥ 11c

12
.

The above inequality holds if we set

c =
1

132

�
5 +

103

60
log 8 +

2

5
log 62 +

13

60
log 908 +

11

105
log 24698

+
13

105
log 1232944 +

4

105
log 112018190 +

1

20
log 18410581880

+
1

30
log 5449192389984 +

1

12
log 2894710651370536

�
> 0.2053.

(3.8)

3.5. Hexagonal construction with 12 slopes

We next describe and analyze a hexagonal construction with lines of 12 slopes, which

provides our main result in Theorem 3.1. Consider 12 bundles of parallel lines whose

slopes are 0,∞,±
√
3/5, ±1/

√
3,±

√
3/2,±

√
3,±3

√
3. Let H be a regular hexagon whose

side has unit length. The axes of the 12 strips containing the bundles of lines are incident

to the center of H; see Figs. 3.24 and 3.25. This construction yields the lower bound

bn ≥ 0.2083n2 for large n.

i αi βi γi

1 3
√
3 1 −

√
3

2 3
√
3 1 −3

√
3

3
√
3 1 0

4
√
3 1 −2

√
3

5
√
3 2 −

√
3

6
√
3 2 −2

√
3

7 1
√
3 −1

8 1
√
3 −3

i αi βi γi

9
√
3 5 −2

√
3

10
√
3 5 −4

√
3

11 0 1 0

12 0 1 −
√
3

13 −
√
3 5 −

√
3

14 −
√
3 5 −3

√
3

15 −1
√
3 0

16 −1
√
3 −2

i αi βi γi

17 −
√
3 2 0

18 −
√
3 2 −

√
3

19 −
√
3 1

√
3

20 −
√
3 1 −

√
3

21 −3
√
3 1 2

√
3

22 −3
√
3 1 0

23 −1 0 1

24 −1 0 0

Table 3.11.: Coefficients of the 24 lines.
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33

3

3

3

3

3 3

3

3

3

3
5

5

5

5

5

5

4 4

4

4

4

4

44

4

4

4

4

�20 �19

�24 �23

�3 �4 �5

�7

�6

�9

�8

�11

�10

�13

�12
�15

�14

�17

�16

�18
�21�22

�2�1

Figure 3.24.: Construction with 12 slopes shows the twelve strips and the corresponding covering
multiplicities. These numbers only reflect incidences at the grid vertices made by the primary
lines. The numbers inside the hexagon H (drawn in black lines) are shown in Fig. 3.25.

Assume a coordinate system where the lower left corner of H is at the origin, and the

lower side of H lies along the x-axis. Let L = L1 ∪ . . . ∪ L12 be the partition of the

lines into twelve bundles of parallel lines. The m lines in Li are contained in the strip

Γi bounded by the two lines ℓ2i−1 and ℓ2i, for i = 1, . . . , 12. The equation of line ℓi is

αix+ βiy + γi = 0, with αi, βi, γi, for i = 1, . . . , 24, given in Table 3.11.

Γ2, Γ6 and Γ10 are bounded by the pairs of lines supporting opposite sides of H, while

Γ4, Γ8 and Γ12 are bounded by the pairs of lines supporting opposite short diagonals
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of H. Therefore H = Γ2 ∩ Γ6 ∩ Γ10. We refer to lines in L2 ∪ L6 ∪ L10 as the primary

lines, to lines in L4 ∪ L8 ∪ L12 as the secondary lines, and to the rest of the lines as the

tertiary lines. Note that the distance between consecutive lines in any of the bundles of

• primary lines is
√
3

m

�
1−O

�
1
m

��
;

• secondary lines is 1
m

�
1−O

�
1
m

��
;

• tertiary lines is
�

3
7

1
m

�
1−O

�
1
m

��
.

11

l5 l7l3 l1

l24 l20 l22

l2

l4

l23 l21 l16

l19

l18

l12

l15

l13

l10

l8

l11

l6

l9

l14

l17

11

11

11

11

11 11

11

11

11

11

11

12

10
10 10

10

10

10

10
10

10

10

10

10

9

9

9

9

9

9 9

9

9

9

9

9

8

8

8

8

8

88 8

8

8

8

8

88

8

8

8

8

77

7

7 7

7

7

7 7

7

7

7

7

77

7

7

7

6
6 6

6

6

6

6

6

6

6
66

6

6

6

6

6

6

5 5

5

5

5

5

55

5

5

5

5

3

4 5 4

3

3

4

5

4 3

3

4

5

4
3

3
4

5

4

3

3

4 5 4

3

3

4

5

4
3

Figure 3.25.: Detail of the construction with 12 slopes depicts the covering multiplicities inside
the hexagon H. These numbers only reflect incidences at the grid vertices made by the primary
lines.

We refer to the intersection points of the primary lines as grid vertices. There are two

types of grid vertices: the grid vertices in H are intersection of 3 primary lines and the

ones outside H are intersection of 2 primary lines.

Let σ0 = σ0(m) and δ0 = δ0(m) denote the basic parallelogram and triangle respec-

tively, determined by the primary lines (i.e., lines in L2 ∪ L6 ∪ L10) in all three possible
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orientations. The side length of σ0(m) and δ0 is 2
m

�
1−O

�
1
m

��
. We refer to these basic

parallelograms as grid cells. Recall that (i) the area of an equilateral triangle of side s is

s2
√
3

4
; and (ii) the area of a regular hexagon of side s is s23

√
3

2
; as such, we have

area(H) =
3
√
3

2
,

area(δ0) =
4

m2

√
3

4

�
1−O

�
1

m

��
=

√
3

m2

�
1−O

�
1

m

��
,

area(σ0) = 2 · area(δ0) =
2
√
3

m2

�
1−O

�
1

m

��
.

Estimating the number of crossings at grid vertices. For i = 3, . . . , 12, let ai denote

the area of the (not necessarily connected) region covered by exactly i of the 12 strips.

Recall that area(i, j, k) denotes the area of the triangle made by ℓi, ℓj and ℓk.

Observe that a12 is the area of the 12-gon
�12

i=1 Γi. This 12-gon is not regular, since

consecutive vertices lie on two concentric cycles of radii 1
3
and

√
3
5

centered at (1
2
,
√
3
2
). So

a12 is the sum of the areas of 12 congruent triangles; each with one vertex at the center

of H and other two as the two consecutive vertices of the 12-gon. Each of these triangles

has area
√
3

60
. Therefore,

a12 = 12 ·
√
3

60
=

√
3

5
,

a11 = 12 · area(1, 5, 9) = 12 · 1

140
√
3
=

√
3

35
,

a10 = 6 · (area(1, 5, 13)− area(1, 5, 9)) + 6 · (area(5, 9, 22)− area(1, 5, 9))

= 6 ·
�√

3

70
− 1

140
√
3

�
+ 6 ·

�
1

56
√
3
− 1

140
√
3

�
=

13
√
3

140
,

a9 = 12 · (area(1, 7, 22)− area(1, 9, 22)) = 12 ·
�

1

20
√
3
− 1

56
√
3

�
=

9
√
3

70
,

a8 = 6 · (area(9, 22, 24)− area(7, 22, 24)) + 12 · area(7, 13, 22)

= 6 ·
�√

3

40
− 1

20
√
3

�
+ 12 ·

√
3

140
=

19
√
3

140
,

a7 = 12 · (area(7, 22, 24)− area(13, 22, 24)) + 6 · (area(1, 17, 22)− area(1, 13, 22))
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= 12 ·
�

1

20
√
3
−

√
3

140

�
+ 6 ·

�
5

28
√
3
− 1

14
√
3

�
=

23
√
3

70
,

a6 = 12 · (area(13, 22, 24)) + 6 · (area(7, 11, 15)− 2 · area(1, 11, 15))

= 12 ·
√
3

140
+ 6 ·

�
1

4
√
3
− 2 · 1

20
√
3

�
=

27
√
3

70
,

a5 = 12 · (area(1, 11, 15)) + 6 · (area(1, 11, 21)) = 12 · 1

20
√
3
+ 6 · 1

4
√
3
=

7
√
3

10
,

a4 = 12 · (area(1, 3, 11)) = 12 · 1

4
√
3
=

√
3,

a3 = 12 · (area(4, 7, 11)) = 12 ·
√
3

4
= 3

√
3.

The region whose area is
�12

i=5 ai consists of the hexagon H and 6 triangles outside H.

Therefore,

�12

i=5
ai = area(H) + 6 · area(1, 11, 21) = 3

√
3

2
+ 6 · 1

4
√
3
= 2

√
3.

Recall that λi(m) denotes the number of i-wise crossings where each bundle consists of

m lines. Note that λi(m) is proportional to ai, for i = 5, 6, . . . , 12. Indeed, λi(m) is equal

to the number of grid vertices that lie in a region covered by i strips, which is roughly

equal to the ratio ai
area(σ0)

, for i = 5, 6, . . . , 12. More precisely, taking also the boundary

effect of the relevant regions into account, we obtain

λ12(m) =
a12

area(σ0)
−O(m) =

√
3

5

m2

2
√
3
−O(m) =

m2

10
−O(m),

λ11(m) =
a11

area(σ0)
−O(m) =

m2

70
−O(m),

λ10(m) =
a10

area(σ0)
−O(m) =

13m2

280
−O(m),

λ9(m) =
a9

area(σ0)
−O(m) =

9m2

140
−O(m),

λ8(m) =
a8

area(σ0)
−O(m) =

19m2

280
−O(m),

λ7(m) =
a7

area(σ0)
−O(m) =

23m2

140
−O(m),

λ6(m) =
a6

area(σ0)
−O(m) =

27m2

140
−O(m),
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λ5(m) =
a6

area(σ0)
−O(m) =

7m2

20
−O(m).

Estimating the number of crossings that are not at grid vertices. For i = 3, 4, not

all the i-wise crossings are at grid vertices. It can be exhaustively verified (by hand)

that there are 21 types of crossings; see Figs. 3.26–3.31. Types 1 through 3 are 4-wise

crossings and types 4 through 21 are 3-wise crossings. The bundles intersecting at each

of these 21 types of vertices are listed in Table 3.12. The relative positions of all these

crossings are shown in Fig. 3.32. For j = 1, 2, . . . , 21, let wj denote the weighted area

containing all the crossings of type j; where the weight is the number of crossings per

grid cell. To complete the estimates of λi(m) for i = 3, 4, we calculate wj for all j from

the bundles intersecting at type j crossings. The values are listed in Table 3.16. Observe

that Γi ∩ Γj is a parallelogram defined by the two pairs of parallel lines ℓ2i−1, ℓ2i and

ℓ2j−1, ℓ2j, respectively, thus area(Γi ∩ Γj) = area(P (2i− 1, 2i, 2j − 1, 2j)).

j Bundles intersect-
ing at type j ver-
tices

1 L6,L12,L3,L9

2 L2,L8,L11,L5

3 L10,L4,L1,L7

4 L2,L7,L9

5 L6,L11,L1

6 L10,L3,L5

7 L12,L5,L7

j Bundles intersect-
ing at type j ver-
tices

8 L4,L11,L9

9 L8,L1,L3

10 L1,L5,L9

11 L11,L3,L7

12 L12,L3,L9

13 L4,L1,L7

14 L8,L11,L5

j Bundles intersect-
ing at type j ver-
tices

15 L4,L8,L12

16 L6,L12,L3

17 L6,L12,L9

18 L2,L8,L11

19 L2,L8,L5

20 L10,L4,L1

21 L10,L4,L7

Table 3.12.: Bundles intersecting at type j vertices for j = 1, 2, . . . , 21.

• To estimate λ4(m), note that all the 4-wise crossings that are not at grid vertices,

are at the centers of the grid cells (see Fig. 3.26); we have

w1 = area(Γ6 ∩ Γ12 ∩ Γ3 ∩ Γ9) = area(Γ3 ∩ Γ9) = area(P (5, 6, 17, 18)) =

√
3

4
.

Types 2 and 3 are 120◦ and 240◦ rotations of type 1, respectively; therefore by symmetry,

w1 = w2 = w3 =

√
3

4
.
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Type 1 Type 2 Type 3

Figure 3.26.: Types 1–3 are incidences of 4 lines (4-wise crossings) that are not at grid vertices.

Consequently, we have

λ4(m) =
a4 +

�3
j=1 wj

area(σ0)
−O(m) =

�
1

2
+

3

8

�
m2 −O(m) =

7m2

8
−O(m).

Lastly, we estimate λ3(m). Besides 3-wise crossings at grid vertices inH (whose number

is proportional to a3), there are 18 types of 3-wise crossings i.e., types 4 through 21, on

the boundary or in the interior of the grid cells in H. To list the coordinates of the

crossing points (shown as blue dots), we set the leftmost vertex of the grid cell (shown in

blue lines) at (0, 0) and the length of the sides of each grid cell as 1.

• For types 4, 5, and 6, there are two crossings per grid cell at 1
3
rd and 2

3
rd of the

short diagonal (see Fig. 3.27); and

Type 4 Type 5 Type 6

Figure 3.27.: Types 4–6 are incidences of 3 lines (3-wise crossings) that are not at grid vertices.

w4 = 2 · area(Γ2 ∩ Γ7 ∩ Γ9)

= 2 · (area(P (3, 4, 17, 18))− area(3, 13, 17)− area(4, 14, 18))

= 2 ·
�

2√
3
− 1

4
√
3
− 1

4
√
3

�
=

√
3.

Types 5 and 6 are 120◦ and 240◦ rotations of type 4, respectively; therefore by symmetry,

w4 = w5 = w6 =
√
3.
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• For types 7, 8, and 9, there are four crossings per grid cell, see Fig. 3.28.

Type 7 Type 8 Type 9

Figure 3.28.: Types 7–9 are incidences of 3 lines (3-wise crossings) that are not at grid vertices.

Type Co-ordinates of the crossings

7

�
1

2
,
−
√
3

10

�
,

�
1

2
,
−3

√
3

10

�
,

�
1,

−
√
3

5

�
,

�
1,

−2
√
3

5

�

8

�
2

5
,

√
3

5

�
,

�
7

10
,

√
3

10

�
,

�
4

5
,
2
√
3

5

�
,

�
11

10
,
3
√
3

10

�

9

�
3

10
,

√
3

10

�
,

�
2

5
,
−
√
3

5

�
,

�
3

5
,

√
3

5

�
,

�
7

10
,
−
√
3

10

�

Table 3.13.: Co-ordinates of types 7, 8, and 9 crossings.

w7 = 4 · area(Γ12 ∩ Γ5 ∩ Γ7)

= 4 · (area(P (9, 10, 13, 14))− area(10, 13, 23)− area(9, 14, 24))

= 4 ·
�
2
√
3

5
−

√
3

20
−

√
3

20

�
=

6
√
3

5
.

Types 8 and 9 are 120◦ and 240◦ rotations of type 7, respectively; therefore by symmetry,

w7 = w8 = w9 =
6
√
3

5
.

• For types 10, 11, there are six crossings per grid cell, (see Fig. 3.29); and

w10 = 6 · area(Γ1 ∩ Γ5 ∩ Γ9)

= 6 · (area(P (1, 2, 17, 18))− area(1, 9, 17)− area(2, 10, 18))

= 6 ·
�
2
√
3

7
−

√
3

28
−

√
3

28

�
=

9
√
3

7
.
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Type Co-ordinates of the crossings

10
�

5
14
, −

√
3

14

�
,
�

5
7
, −

√
3

7

�
,
�

15
14
, −3

√
3

14

�
,
�

3
7
, −2

√
3

7

�
,
�

11
14
, −5

√
3

14

�
,
�

8
7
, −3

√
3

7

�

11
�

8
7
, 3

√
3

7

�
,
�

11
14
, 5

√
3

14

�
,
�

3
7
, 2

√
3

7

�
,
�

15
14
, 3

√
3

14

�
,
�

5
7
,
√
3
7

�
,
�

5
14
,
√
3

14

�

Table 3.14.: Co-ordinates of types 10 and 11 crossings.

Type 10 Type 11

Figure 3.29.: Types 10, 11 are incidences of 3 lines (3-wise crossings) that are not at grid vertices.

Type 11 is the reflection in a vertical line of type 10; therefore by symmetry,

w10 = w11 =
9
√
3

7
.

• For types 12, 13, and 14, there are two crossings per grid cell.

Type 12 Type 13 Type 14

Figure 3.30.: Types 12–14 are incidences of 3 lines (3-wise crossings) that are not at grid vertices.

w12 = 2 · area(Γ12 ∩ Γ3 ∩ Γ9) = 2 · area(Γ3 ∩ Γ9) = 2 · area(P (5, 6, 17, 18)) =

√
3

2
.

Types 13 and 14 are 120◦ and 240◦ rotations of type 12, respectively; therefore by sym-

metry,

w12 = w13 = w14 =

√
3

2
.

• For type 15, there are two crossings at 1
3
rd and 2

3
rd of the long diagonal per grid
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Type Co-ordinates of the crossings

12

�
1

2
,
−
√
3

4

�
,

�
1,

−
√
3

4

�
.

13

�
5

8
,

√
3

8

�
,

�
7

8
,
3
√
3

8

�
.

14

�
3

8
,

√
3

8

�
,

�
5

8
,
−
√
3

8

�

Table 3.15.: Co-ordinates of types 12, 13, and 14 crossings.

cell (see Fig. 3.31); and

w15 = 2 · area(Γ4 ∩ Γ8 ∩ Γ12)

= 2 · (area(P (15, 16, 23, 24))− area(7, 15, 24)− area(8, 16, 23))

= 2 ·
�

2√
3
− 1

4
√
3
− 1

4
√
3

�
=

√
3.

Type 15 Type 16 Type 17 Type 18 Type 19 Type 20 Type 21

Figure 3.31.: Types 15–21 are incidences of 3 lines (3-wise crossings) that are not at grid vertices.

• For types 16 through 21, there is one crossing per grid cell at the center of the

parallelogram and can be obtained from types 1 through 3 by losing one of the tertiary

bundles (see Fig. 3.31); and

w16 = area(Γ6 ∩ Γ12 ∩ Γ3 − Γ9) = area(Γ12 ∩ Γ3)− area(Γ12 ∩ Γ3 ∩ Γ9)

= area(P (5, 6, 23, 24))− area(P (5, 6, 17, 18)) =

√
3

2
−

√
3

4
=

√
3

4
.

Type 17 is the reflection in a vertical line of type 16, types 18 and 20 are 120◦ and 240◦

rotations of type 16, respectively. Types 19 and 21 are 120◦ and 240◦ rotations of type
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17, respectively. Therefore by symmetry,

w16 = w17 = w18 = w19 = w20 = w21 =

√
3

4
.

Consequently, we have

λ3(m) =
a3 +

�21
j=4 wj

area(σ0)
−O(m) =

�
3

2
+

3

2
+

9

5
+

9

7
+

3

4
+

1

2
+

3

4

�
m2 −O(m)

=
283

35
m2 −O(m).

j 1 2 3 4 5 6 7 8 9 10 11

wj

√
3
4

√
3
4

√
3
4

√
3

√
3

√
3 6

√
3

5
6
√
3

5
6
√
3

5
9
√
3

7
9
√
3

7

j 12 13 14 15 16 17 18 19 20 21

wj

√
3
2

√
3
2

√
3
2

√
3

√
3
4

√
3
4

√
3
4

√
3
4

√
3
4

√
3
4

Table 3.16.: Values of wj for j = 1, . . . , 21.

The values of λi(m), for i = 3, . . . , 12, are summarized in Table 3.17; for convenience

the linear terms are omitted. Since m = n/12, λi can be also viewed as a function of n.

i 3 4 5 6 7 8 9 10 11 12

λi(m) 283m2

35
7m2

8
7m2

20
27m2

140
23m2

140
19m2

280
9m2

140
13m2

280
m2

70
m2

10

λi(n)
283n2

35·144
7n2

8·144
7n2

20·144
27n2

140·144
23n2

140·144
19n2

280·144
9n2

140·144
13n2

280·144
n2

70·144
n2

10·144

Table 3.17.: The asymptotic values of λi(m) and λi(n) for i = 3, . . . , 12.

The multiplicative factor in Eq. (3.4) is bounded from below as follows:

F (n) ≥
12�

i=3

B
λi(n)
i ≥ 2

283n2

35·144 · 8 7n2

8·144 · 62 7n2

20·144 · 908 27n2

140·144 · 24698 23n2

140·144

· 1232944 19n2

280·144 · 112018190 9n2

140·144 · 18410581880 13n2

280·144

· 5449192389984 n2

70·144 · 2894710651370536 n2

10·144 · 2−O(n).
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Figure 3.32.: In the 12-gon in the middle of H, all the triangular grid cells contain 3-crossings
and 4-crossings of all types 1 through 15. In other grid cells of the construction only some of
these types appear.

We prove by induction on n that T (n) ≥ 2cn
2−O(n logn) for a suitable constant c > 0. It

suffices to choose c (using the values of Bi for i = 3, . . . , 12 in Table 3.2) so that

1

144

�283
35

+
7

8
log 8 +

7

20
log 62 +

27

140
log 908 +

23

140
log 24698

+
19

280
log 1232944 +

9

140
log 112018190 +

13

280
log 18410581880

+
1

70
log 5449192389984 +

1

10
log 2894710651370536

�
≥ 11c

12
.

The above inequality holds if we set

c =
1

132

�283
35

+
7

8
log 8 +

7

20
log 62 +

27

140
log 908 +

23

140
log 24698

+
19

280
log 1232944 +

9

140
log 112018190 +

13

280
log 18410581880

+
1

70
log 5449192389984 +

1

10
log 2894710651370536

�
> 0.2083,

(3.9)

and the lower bound in Theorem 3.1 follows.

3.6. Conclusion

We analyzed several recursive constructions derived from arrangements of lines with 3,

4, 6, 8, and 12 distinct slopes; in two different styles (rectangular and hexagonal). The
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hexagonal construction with 12 slopes yields the lower bound bn ≥ 0.2083n2 for large n.

We think that increasing the number of slopes will further increase the lower bound, and

likely the proof complexity at the same time. The questions of how far can one go and

whether there are other more efficient variants remain. We conclude with the following

questions.

1. What lower bounds on Bn can be deduced from line arrangements with a higher

number of slopes? In particular, hexagonal and rectangular constructions with 16

slopes seem to be the most promising candidates. Note that the value of B16 is

currently unknown.

2. What lower bounds on Bn can be obtained from rhombic tilings of a centrally

symmetric octagon (see 3.33)? Or from those of a centrally symmetric 2k-gon for

some other even k ≥ 5? No closed formulas for the number of such tilings seem to

be available at the time of this writing. However, suitable estimates could perhaps

be deduced from previous results; see, e.g., [30, 31, 34, 43].

n
4 = m

n
4 = m

n
4 = m

n
4 = m

Figure 3.33.: Estimating Bn using the rhombic tilings of a centrally symmetric octagon.

Assuming n to be a multiple of 4 in the recursion step (similar to Eq. (3.3)), this

construction yields the recurrence

T (n) ≥ P oct
�n
4
,
n

4
,
n

4
,
n

4

�
·
�
T
�n
4

��4

.
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where Poct(n, n, n, n) denotes the number of rhombic tilings of a centrally symmetric

octgon with side lengths n of each side. As per our knowledge, the exact solution of

Poct(n, n, n, n) is still unknown. An exact solution or a good estimate could lead to a

sharper lower bounds of the number of pseudoline arrangements.
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A. Source code for monotone paths

The following C code was compiled with gcc 4.7.1 in Windows 8.1 in a quad core

processor. Following is a correct way of compiling the program.

gcc path.c

Following is the output from the program.

Maximum number of patterns in a group is 201

/**

* Input: n (type: Integer) number of vertices in the group

* Output: Maximum number of patterns in groups of size n

* This program

* 1. generates all sides of sizes from 0 to n-1 using divide and conquer

and stores them in files

* 2. combine all these pairs of sides to generate all the groups of size n

* 3. computes number of patterns each group has and output the maximum

number of patterns

* @authr: Ritankar Mandal

* @date: Sep 30, 2016

*/

#define MAXNSQUARE 400
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#define MAXN 20

#include<stdio.h>

#include<math.h>

#include<stdlib.h>

#include<string.h>

#include<time.h>

/// Variables

long long int numSidesOfSize[MAXN];

/// Structures

/// contains a graph in an adjacency matrix

typedef struct _group

{

long long int index;

int adjMat[MAXN][MAXN];

int numV;

} group;

group groupWithMaxNumPaths[500];

int groupWithMaxNumPathsCounter;

int maxNumPathsOfGroupsOfSizen;

/// Functions

void introduction();

long long int generateSidesOfSize(int, int);

long long int generateSidesOfSizeBruteForce(int);

long long int nextPermutaion(long long int);
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int checkPlanarity(group);

long long int generateSidesOfSizeDandC(int, int);

long long int combineSidesOfSize(long long int, FILE*, int, int, int);

long long int generateGroupsOfSize(int);

int checkCompatibility(group, group);

group createTempGroup(group, group);

int computeNumPaths(group);

group reverseSideWithYAxis(group);

void drawMaxGroups(int);

void drawGraph(FILE *fp, group);

void printGraph(FILE *fp, group);

void writePaths(FILE *fp, group);

long long int binCoeff(int, int);

int min(int, int);

void checkSides(int);

int main()

{

char timebuffStart[100], timebuffFinish[100];

double timeDiff;

/// Log the starting time of the experiment

time_t start = time (0);

strftime (timebuffStart, 100, "%H:%M:%S on %m-%d-%Y", localtime (&start));

printf("Experiment started at %s. \n", timebuffStart);

int n, i;

long long int numGroupsOfSize;

printf("Enter the number of vertices in a group: ");

scanf("%d", &n);

108



A. Source code for monotone paths

introduction();

for(i=2 ; i<=n-1 ;i++)

numSidesOfSize[i] = generateSidesOfSize(i, 0);

numSidesOfSize[n] = generateSidesOfSize(n, 1);

printf("Number of sides of size %d is %lld.\n", n, numSidesOfSize[n]);

numGroupsOfSize = generateGroupsOfSize(n);

printf("Number of groups of size %d is %lld.\n", n, numGroupsOfSize);

printf("Maximum number of patterns in a group of size %d is %d.\n", n,

maxNumPathsOfGroupsOfSizen);

printf("Number of groups of size %d with maximum number of patterns is

%d.\n", n, groupWithMaxNumPathsCounter);

/// Log the finishing time of the experiment

time_t finish = time (0);

strftime (timebuffFinish, 100, "%H:%M:%S on %m-%d-%Y", localtime

(&finish));

printf("Experiment started at %s. \n", timebuffStart);

printf("Experiment finished at %s. \n", timebuffFinish);

timeDiff = difftime(finish, start);

printf("The experiment takes %f seconds to execute.\n", timeDiff);

drawMaxGroups(n);

return 0;

}

void introduction()
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{

int i, j;

group tempSide;

FILE *fpSides;

//fpSides = fopen("./OutputFiles/sides_0.txt", "w");

if((fpSides = fopen("./OutputFiles/sides_0.txt", "w")) == NULL)

{

printf("Can’t open the file ./OutputFiles/sides_0.txt\n");

exit(1);

}

tempSide.index = 0;

tempSide.numV = 0;

for(i = 0 ; i <= tempSide.numV+1 ; i++)

for(j = 0 ; j <= tempSide.numV+1 ; j++)

tempSide.adjMat[i][j] = 0;

fwrite(&tempSide, sizeof(tempSide), 1, fpSides);

fclose(fpSides);

numSidesOfSize[0] = 1;

//fpSides = fopen("./OutputFiles/sides_1.txt", "w");

if((fpSides = fopen("./OutputFiles/sides_1.txt", "w")) == NULL)

{

printf("Can’t open the file ./OutputFiles/sides_1.txt\n");

exit(1);

}

tempSide.index = 0;

tempSide.numV = 1;

for(i = 0 ; i <= tempSide.numV+1 ; i++)

for(j = 0 ; j <= tempSide.numV+1 ; j++)

tempSide.adjMat[i][j] = 0;
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fwrite(&tempSide, sizeof(tempSide), 1, fpSides);

fclose(fpSides);

numSidesOfSize[1] = 1;

}

long long int generateSidesOfSize(int sideSize, int last)

{

long long int numPlanarSides = 0;

if(sideSize <= 8)

numPlanarSides = generateSidesOfSizeBruteForce(sideSize);

else

numPlanarSides = generateSidesOfSizeDandC(sideSize, last);

return numPlanarSides;

}

/**

* Input: sideSize (type: int).

* Output: Number of sides of size sideSize (type: long long int).

* This function generates all sides of sideSize using brute force.

*/

long long int generateSidesOfSizeBruteForce(int sideSize)

{

printf("sideSize is %d.\n", sideSize);

int j, k, l, m, numChords, numPossibleEdges = 0;

int possibleEdgesSource[MAXNSQUARE], possibleEdgesDestination[MAXNSQUARE];

group tempSide;

int sideStructSize = sizeof(tempSide);
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long long int i, v, numSides, numPlanarSides = 0;

for(l = 0 ; l <= sideSize-1 ; l++)

for(m = l+2 ; m <= sideSize+1 ; m++)

if( ( ( (m-l) >= 2 ) || (l==0) || ( m==(sideSize+1) ) ) &&

!((l==0) && ( m==(sideSize+1) )) )

{

possibleEdgesSource[numPossibleEdges] = l;

possibleEdgesDestination[numPossibleEdges] = m;

numPossibleEdges++;

}

/// numPossibleEdges = (sideSize^2 + sideSize - 2)/2

printf("For sideSize %d, numPossibleEdges is %d.\n", sideSize,

numPossibleEdges);

/// Opening the file "./OutputFiles/sides_<sideSize>.txt" to write the

sides

char sideFileName[100];

FILE *fpSides;

sprintf(sideFileName, "./OutputFiles/sides_%g.txt", (double) sideSize);

//fpSides = fopen(sideFileName, "w");

if((fpSides = fopen(sideFileName, "w")) == NULL)

{

printf("Can’t open the file %s\n", sideFileName);

exit(1);

}

/// Generating all planar sides

/// Generate the empty side
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tempSide.index = numPlanarSides;

tempSide.numV = sideSize;

for(l = 0 ; l <= sideSize+1 ; l++)

for(m = 0 ; m <= sideSize+1 ; m++)

tempSide.adjMat[l][m] = 0;

fwrite(&tempSide, sideStructSize, 1, fpSides);

if(numPlanarSides%100 == 0)

printf("%lld th planar side of size %d has been generated.\n",

numPlanarSides, sideSize);

numPlanarSides++;

/// Generate the non-empty sides

for(numChords = 1; numChords <= sideSize-1; numChords++)

{

numSides = binCoeff(numPossibleEdges, numChords);

v = pow(2, numChords) - 1;

/// Generating all planar sides with numChords chords

for(i = 0 ; i < numSides ; i++)

{

tempSide.numV = sideSize;

for(l = 0 ; l <= sideSize+1 ; l++)

for(m = 0 ; m <= sideSize+1 ; m++)

tempSide.adjMat[l][m] = 0;

for(j = 0 ; j < numPossibleEdges ; j++)

{

k = v >> j;

tempSide.adjMat[possibleEdgesSource[j]][possibleEdgesDestination[j]]

= (k & 1);
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}

/// Checks planarity of tempSide

if(checkPlanarity(tempSide) == 1)

{

tempSide.index = numPlanarSides;

fwrite(&tempSide, sideStructSize, 1, fpSides);

if(numPlanarSides%500 == 0)

printf("%lld th planar side of size %d has been

generated.\n", numPlanarSides, sideSize);

numPlanarSides++;

}

/// Generate the next subset (bit permutation)

v = nextPermutaion(v);

}

}

printf("Total number of planar sides of size %d is %lld.\n", sideSize,

numPlanarSides);

fclose(fpSides);

return numPlanarSides;

}

/**

* Input 1: parameter1 (type: int).

* Input 2: parameter2 (type: int).

* Output: Binomial Coefficient C(parameter1, parameter2) (type: long long

int)

*/

long long int binCoeff(int parameter1, int parameter2)

114



A. Source code for monotone paths

{

long long int C[100][100];

int i, j;

/// Calculates the value of Binomial Coefficient in bottom up manner

for (i = 0; i <= parameter1; i++)

{

for (j = 0; j <= min(i, parameter2); j++)

{

/// Base Cases

if (j == 0 || j == i)

C[i][j] = 1;

/// Calculate value using previously stored values

else

C[i][j] = C[i-1][j-1] + C[i-1][j];

}

}

return C[parameter1][parameter2];

}

/**

* Input: v (type: long long int)

* Output: next pattern of bits after v (type: long long int).

* It has same number of 1’s in binary as the input.

* It is taken from the website

http://graphics.stanford.edu/~seander/bithacks.html#NextBitPermutation

*/

long long int nextPermutaion(long long int v)
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{

//long long int v; // current permutation of bits

long long int w; // next permutation of bits

long long int t = (v | (v - 1)) + 1;

w = t | ((((t & -t) / (v & -v)) >> 1) - 1);

return w;

}

int min(int parameter1, int parameter2)

{

return (parameter1 < parameter2) ? parameter1: parameter2;

}

/**

* Input: tempGraph (type: group).

* Output: if the input is planar then returns 1, otherwise returns 0.

*/

int checkPlanarity(group tempSide)

{

int j, k, l, m, status = 1;

for(j = 0 ; j <= tempSide.numV ; j++)

for(k = j+1 ; k <= tempSide.numV+1 ; k++)

for(l = 0 ; l <= tempSide.numV ; l++)

for(m = l+1 ; m <= tempSide.numV+1 ; m++)

if( (tempSide.adjMat[j][k] == 1) && (tempSide.adjMat[l][m]

== 1))
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if( ( (j<l) && (l<k) && (k<m) ) || ( (l<j) && (j<m) &&

(m<k) ) )

status = 0;

return status;

}

/**

* Input: sideSize (type: int).

* Output: Number of sides of size sideSize (type: long long int).

* This function uses all sides of sizes smaller than sideSize,

* places them side by side and combines to generate all sides of size

sideSize

*/

long long int generateSidesOfSizeDandC(int sideSize, int last)

{

int i;

long long int numPlanarSides = 0;

/// Opening the file "./OutputFiles/sides_<sideSize>.txt" to write the

sides

char sideFileName[100];

FILE *fpSides;

sprintf(sideFileName, "./OutputFiles/sides_%g.txt", (double) sideSize);

//fpSides = fopen(sideFileName, "w");

if((fpSides = fopen(sideFileName, "w")) == NULL)

{

printf("Can’t open the file %s\n", sideFileName);

exit(1);

}
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/// Combine sides

//for(i=0; i<= sideSize/2; i++)

//numPlanarSides = combineSidesOfSize(numPlanarSides, fpSides, i,

sideSize-i-1, last);

numPlanarSides = combineSidesOfSize(numPlanarSides, fpSides, 5, 5, last);

numPlanarSides = combineSidesOfSize(numPlanarSides, fpSides, 4, 6, last);

numPlanarSides = combineSidesOfSize(numPlanarSides, fpSides, 3, 7, last);

numPlanarSides = combineSidesOfSize(numPlanarSides, fpSides, 2, 8, last);

//numPlanarSides = combineSidesOfSize(numPlanarSides, fpSides, 1, 9, last);

//numPlanarSides = combineSidesOfSize(numPlanarSides, fpSides, 0, 10,

last);

fclose(fpSides);

return numPlanarSides;

}

long long int combineSidesOfSize(long long int numPlanarSides, FILE* fpSides,

int leftSideSize, int rightSideSize, int last)

{

long long int i, j;

long long int numLeftSides = numSidesOfSize[leftSideSize];

long long int numRightSides = numSidesOfSize[rightSideSize];

char leftSideFilename[200], rightSideFilename[100];

FILE *fpLeftSides, *fpRightSides;

group tempLeftSide, tempRightSide, tempSide;

int l, m, cntr;

int sideSize = leftSideSize + rightSideSize + 1;

int sideStructSize = sizeof(tempSide);
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/// Opening the files "./OutputFiles/sides_<leftSideSize>.txt" to read the

left sides

sprintf(leftSideFilename, "./OutputFiles/sides_%g.txt", (double)

leftSideSize);

//fpLeftSides = fopen(leftSideFilename, "r");

if((fpLeftSides = fopen(leftSideFilename, "r")) == NULL)

{

printf("Can’t open the file %s\n", leftSideFilename);

exit(1);

}

for(i = 0; i < numLeftSides ; i++)

{

/// Read the left side

fread(&tempLeftSide, sideStructSize, 1, fpLeftSides);

/// Opening the file "./OutputFiles/sides_<rightSideSize>.txt" to read

the right sides

sprintf(rightSideFilename, "./OutputFiles/sides_%g.txt", (double)

rightSideSize);

//fpRightSides = fopen(rightSideFilename, "r");

if((fpRightSides = fopen(rightSideFilename, "r")) == NULL)

{

printf("Can’t open the file %s\n", rightSideFilename);

exit(1);

}

for(j = 0; j < numRightSides ; j++)

{

/// Read the right side

fread(&tempRightSide, sideStructSize, 1, fpRightSides);
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/// Combine left and right sides

tempSide.numV = sideSize;

/// reset the adjacency matrix

for(l = 0 ; l <= sideSize+1 ; l++)

for(m = 0 ; m <= sideSize+1 ; m++)

tempSide.adjMat[l][m] = 0;

/// Copy the left adjacency matrix to the left

for(l = 0 ; l <= leftSideSize+1 ; l++)

for(m = 0 ; m <= leftSideSize+1 ; m++)

tempSide.adjMat[l][m] = tempLeftSide.adjMat[l][m];

/// Copy the right adjacency matrix to the right

for(l = 0 ; l <= rightSideSize+1 ; l++)

for(m = 0 ; m <= rightSideSize+1 ; m++)

tempSide.adjMat[l + leftSideSize + 1][m + leftSideSize +1]

= tempRightSide.adjMat[l][m];

/// Add the incoming and outgoing edges incident to vertex at

leftSideSize+1

for(cntr = 3*last ; cntr < 4 ; cntr++)

{

if( (cntr == 0) || (cntr == 1) )

tempSide.adjMat[0][leftSideSize+1] = 1;

else if( (cntr == 2) || (cntr == 3) )

tempSide.adjMat[0][leftSideSize+1] = 1;

if( (cntr == 0) || (cntr == 2) )

tempSide.adjMat[leftSideSize+1][sideSize+1] = 1;

else if( (cntr == 1) || (cntr == 3) )
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tempSide.adjMat[leftSideSize+1][sideSize+1] = 1;

/// Store the side

tempSide.index = numPlanarSides;

fwrite(&tempSide, sideStructSize, 1, fpSides);

if(numPlanarSides%500 == 0)

printf("%lld th planar sides of size %d has been

generated.\n", numPlanarSides, sideSize);

numPlanarSides++;

}//for(cntr) loop ends

}//for(j) loop ends

fclose(fpRightSides);

}//for(i) loop ends

fclose(fpLeftSides);

return numPlanarSides;

}

long long int generateGroupsOfSize(int groupSize)

{

long long int i, j, numGroups = 0;

int numPaths, maxnumPaths = 0;

group tempUpperSide, tempLowerSide, tempGroup;

int sideStructSize = sizeof(tempUpperSide);

long long int numPlanarSides = numSidesOfSize[groupSize];

/// Opening the file "./OutputFiles/sides_<sideSize>.txt" to read the

upper sides

FILE *fpUpperSides, *fpLowerSides;
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char sideFileName[100];

sprintf(sideFileName, "./OutputFiles/sides_%g.txt", (double) groupSize);

//fpUpperSides = fopen(sideFileName, "r");

if((fpUpperSides = fopen(sideFileName, "r")) == NULL)

{

printf("Can’t open the file %s\n", sideFileName);

exit(1);

}

groupWithMaxNumPathsCounter = 0;

for(i = 0 ; i < numPlanarSides ; i++)

{

fread(&tempUpperSide, sideStructSize, 1, fpUpperSides);

if(i%100 == 0)

printf("Upper side is (%lld/%lld), with so far maxnumPaths is

%d.\n", tempUpperSide.index, numPlanarSides-1, maxnumPaths);

/// Opening the file "./OutputFiles/sides_<sideSize>.txt" to read the

lower sides

//fpLowerSides = fopen(sideFileName, "r");

if((fpLowerSides = fopen(sideFileName, "r")) == NULL)

{

printf("Can’t open the file %s\n", sideFileName);

exit(1);

}

for(j = 0 ; j < i ; j++)

fread(&tempLowerSide, sideStructSize, 1, fpLowerSides);

for(j = i ; j < numPlanarSides ; j++)
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{

fread(&tempLowerSide, sideStructSize, 1, fpLowerSides);

//printf("Upper and lower sides are (%lld,%lld) of %lld, with so

far maxnumPaths is %d\n", tempUpperSide.index,

tempLowerSide.index, numPlanarSides-1, maxnumPaths);

if(checkCompatibility(tempUpperSide, tempLowerSide) == 1)

{

tempGroup = createTempGroup(tempUpperSide, tempLowerSide);

tempGroup.index = numGroups;

/// calculates total number of paths in tempGroup

numPaths = computeNumPaths(tempGroup);

if(maxnumPaths < numPaths)

{

maxnumPaths = numPaths;

groupWithMaxNumPathsCounter = 0;

groupWithMaxNumPaths[groupWithMaxNumPathsCounter] =

tempGroup;

groupWithMaxNumPathsCounter++;

}

else if(maxnumPaths == numPaths)

{

groupWithMaxNumPaths[groupWithMaxNumPathsCounter] =

tempGroup;

groupWithMaxNumPathsCounter++;

}

numGroups++;

}//if(checkCompatibility) ends
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/// reverse the lower side around Y axis

tempLowerSide = reverseSideWithYAxis(tempLowerSide);

if(checkCompatibility(tempUpperSide, tempLowerSide) == 1)

{

tempGroup = createTempGroup(tempUpperSide, tempLowerSide);

tempGroup.index = numGroups;

/// calculates total number of paths in tempGroup

numPaths = computeNumPaths(tempGroup);

if(maxnumPaths < numPaths)

{

maxnumPaths = numPaths;

groupWithMaxNumPathsCounter = 0;

groupWithMaxNumPaths[groupWithMaxNumPathsCounter] =

tempGroup;

groupWithMaxNumPathsCounter++;

}

else if(maxnumPaths == numPaths)

{

groupWithMaxNumPaths[groupWithMaxNumPathsCounter] =

tempGroup;

groupWithMaxNumPathsCounter++;

}

numGroups++;

}//if(checkCompatibility) ends

}//for(j) for lowerside ends

fclose(fpLowerSides);
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}//for(i) for upperside ends

fclose(fpUpperSides);

maxNumPathsOfGroupsOfSizen = maxnumPaths;

printf("Maximum number of patterns in a group of size %d is %d.\n",

groupSize, maxnumPaths);

printf("There are total %lld groups of size %d.\n", numGroups, groupSize);

return numGroups;

}

/**

* Input 1: tempUpperSide (type: group).

* Input 2: tempLowerSide (type: group).

* Output: If both sides have no common inner edge means they are compatible

returns 1,

* otherwise returns 0.

*/

int checkCompatibility(group tempUpperSide, group tempLowerSide)

{

int l, m, status = 1, groupSize = tempUpperSide.numV;

for(l = 1 ; l <= groupSize+1 ; l++)

for(m = l+2 ; m <= groupSize ; m++)

if( (tempUpperSide.adjMat[l][m] == 1) &&

(tempLowerSide.adjMat[l][m] == 1) )

status = 0;

return status;

}
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/// returns a group generated from two sides

group createTempGroup(group tempUpperSide, group tempLowerSide)

{

int l, m;

group tempGroup;

tempGroup.numV = tempUpperSide.numV;

for(l = 0 ; l <= tempGroup.numV+1 ; l++)

for(m = 0 ; m <= tempGroup.numV+1 ; m++)

tempGroup.adjMat[l][m] = 0;

for(l = 0 ; l <= tempGroup.numV ; l++)

tempGroup.adjMat[l][l+1] = 1;

tempGroup.adjMat[0][tempGroup.numV+1] = 1;

for(m = 2 ; m <= tempGroup.numV ; m++)

{

if( (tempUpperSide.adjMat[0][m] == 1) && (tempLowerSide.adjMat[0][m]

== 0) )

tempGroup.adjMat[0][m] = 1;

if( (tempUpperSide.adjMat[0][m] == 0) && (tempLowerSide.adjMat[0][m]

== 1) )

tempGroup.adjMat[0][m] = -1;

if( (tempUpperSide.adjMat[0][m] == 1) && (tempLowerSide.adjMat[0][m]

== 1) )

tempGroup.adjMat[0][m] = 2;

}

for(l = 1 ; l <= tempGroup.numV-1 ; l++)

{
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if( (tempUpperSide.adjMat[l][tempGroup.numV+1] == 1) &&

(tempLowerSide.adjMat[l][tempGroup.numV+1] == 0) )

tempGroup.adjMat[l][tempGroup.numV+1] = 1;

if( (tempUpperSide.adjMat[l][tempGroup.numV+1] == 0) &&

(tempLowerSide.adjMat[l][tempGroup.numV+1] == 1) )

tempGroup.adjMat[l][tempGroup.numV+1] = -1;

if( (tempUpperSide.adjMat[l][tempGroup.numV+1] == 1) &&

(tempLowerSide.adjMat[l][tempGroup.numV+1] == 1) )

tempGroup.adjMat[l][tempGroup.numV+1] = 2;

}

for(l = 1 ; l <= tempGroup.numV ; l++)

for(m = l+2 ; m <= tempGroup.numV+1 ; m++)

{

if( (tempUpperSide.adjMat[l][m] == 1) &&

(tempLowerSide.adjMat[l][m] == 0) )

tempGroup.adjMat[l][m] = 1;

if( (tempUpperSide.adjMat[l][m] == 0) &&

(tempLowerSide.adjMat[l][m] == 1) )

tempGroup.adjMat[l][m] = -1;

}

return(tempGroup);

}

/// calculates total number of paths in tempGroup

int computeNumPaths(group tempGroup)

{

int numVisited[MAXN];

int j, k;
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numVisited[0] = 1;

for(j = 1 ; j <= tempGroup.numV+1 ; j++)

numVisited[j] = 0;

for(j = 0 ; j <= tempGroup.numV ; j++)

for(k = j+1 ; k <= tempGroup.numV+1 ; k++)

if(tempGroup.adjMat[j][k] != 0)

numVisited[k] += numVisited[j];

return(numVisited[tempGroup.numV+1]);

}

group reverseSideWithYAxis(group tempSide)

{

int l, m;

group reverseTempSide;

reverseTempSide.numV = tempSide.numV;

/// reverse the adjacency matrix

for(l = 0 ; l <= tempSide.numV+1 ; l++)

for(m = 0 ; m <= tempSide.numV+1 ; m++)

reverseTempSide.adjMat[l][m] =

tempSide.adjMat[tempSide.numV+1-m][tempSide.numV+1-l];

return reverseTempSide;

}

void drawMaxGroups(int groupSize)

{

char textFilename[100], latexFilename[100], timebuff[100],
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systemCommand[100];

FILE *fptext, *fplatex;

int i;

group tempGroup;

/// Get current time of the experiment

time_t now = time (0);

strftime (timebuff, 100, "\\texttt{%H:%M:%S} on \\texttt{%m-%d-%Y}",

localtime (&now));

sprintf(latexFilename, "./OutputFiles/Max_Groups_latex_%g.tex", (double)

groupSize);

//fplatex = fopen(latexFilename, "w");

if((fplatex = fopen(latexFilename, "w")) == NULL)

{

printf("Can’t open the file %s.\n", latexFilename);

exit(1);

}

fprintf(fplatex, "\\documentclass[12pt]{article} \n");

fprintf(fplatex, "\\usepackage{tikz} \n");

fprintf(fplatex, "\\usepackage[landscape]{geometry} \n");

fprintf(fplatex, "\\begin{document} \n");

fprintf(fplatex, "The number of vertices is {\\color{red} $%d$}.\\\\ \n",

groupSize);

fprintf(fplatex, "\\hrule \n\\vspace{2mm} \n");

sprintf(textFilename, "./OutputFiles/Max_Groups_text_%g.txt", (double)

groupSize);

//fptext = fopen(textFilename, "w");

if((fptext = fopen(textFilename, "w")) == NULL)

{
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printf("Can’t open the file %s.\n", textFilename);

exit(1);

}

for(i = 0 ; i < groupWithMaxNumPathsCounter ; i++)

{

tempGroup = groupWithMaxNumPaths[i];

drawGraph(fplatex, tempGroup);

writePaths(fplatex, tempGroup);

fprintf(fplatex, "\\hrule \n\\vspace{2mm} \n");

printGraph(fptext, tempGroup);

}

fprintf(fplatex,"File generated at %s.\\\\ \n", timebuff);

fprintf(fplatex, "\\end{document} \n");

fclose(fplatex);

fclose(fptext);

sprintf(systemCommand, "pdflatex -output-directory=./OutputFiles

./OutputFiles/Max_Groups_latex_%g.tex > log", (double) groupSize);

system(systemCommand);

sprintf(systemCommand, "gnome-open ./OutputFiles/Max_Groups_latex_%g.pdf",

(double) groupSize);

system(systemCommand);

}

/// draws the tempGroup in latex file pointed by FILE pointer fp

void drawGraph(FILE *fp , group tempGroup)

{

int j,l,m;
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double r;

double leftBoundary, rightBoundary, upBoundary, downBoundary;

leftBoundary = 1 - 0.2;

rightBoundary = tempGroup.numV + 0.2;

upBoundary = ( tempGroup.numV - 1 ) / 2.0 + 0.2;

downBoundary = - ( ( tempGroup.numV - 1 ) / 2.0 + 0.5) ;

fprintf( fp ,"\\begin{tikzpicture} \n");

fprintf( fp ,"\\draw [white] [thick] (%f,%f) -- (%f,%f); \n",

leftBoundary, upBoundary, rightBoundary, upBoundary);

fprintf( fp ,"\\draw [white] [thick] (%f,%f) -- (%f,%f); \n",

rightBoundary, upBoundary, rightBoundary, downBoundary);

fprintf( fp ,"\\draw [white] [thick] (%f,%f) -- (%f,%f); \n",

rightBoundary, downBoundary, leftBoundary, downBoundary);

fprintf( fp ,"\\draw [white] [thick] (%f,%f) -- (%f,%f); \n",

leftBoundary, downBoundary, leftBoundary, upBoundary);

fprintf( fp ,"\\draw [black] [thick] (1,0) -- (%d,0); \n", tempGroup.numV);

for(j = 1 ; j<= tempGroup.numV ; j++)

fprintf( fp ,"\\draw [fill] (%d,0) circle [radius=0.05]; \n", j);

for(j = 1 ; j<= tempGroup.numV ; j++)

fprintf( fp ,"\\node at (%d,-.25) {$u_{%d}$};\n", j, j);

for(m = 2 ; m <= tempGroup.numV ; m++)

{

r = ( m - 1 ) / 2.0;

if(tempGroup.adjMat[0][m] == 1)
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fprintf( fp ,"\\draw [black] [thick] [latex-] (%d,0) to

[out=90,in=0] (1,%f); \n", m, r);

else if(tempGroup.adjMat[0][m] == -1)

fprintf( fp ,"\\draw [black] [thick] [latex-] (%d,0) to

[out=270,in=0] (1,%f); \n", m, -r);

else if(tempGroup.adjMat[0][m] == 2)

{

fprintf( fp ,"\\draw [black] [thick] [latex-] (%d,0) to

[out=90,in=0] (1,%f); \n", m, r);

fprintf( fp ,"\\draw [black] [thick] [latex-] (%d,0) to

[out=270,in=0] (1,%f); \n", m, -r);

}

}

for(l = 1 ; l <= tempGroup.numV-1 ; l++)

{

r = ( tempGroup.numV - l ) / 2.0;

if(tempGroup.adjMat[l][tempGroup.numV+1] == 1)

fprintf( fp ,"\\draw [black] [thick] [-latex] (%d,0) to

[out=90,in=180] (%d,%f); \n", l, tempGroup.numV, r);

else if(tempGroup.adjMat[l][tempGroup.numV+1] == -1)

fprintf( fp ,"\\draw [black] [thick] [-latex] (%d,0) to

[out=270,in=180] (%d,%f); \n", l, tempGroup.numV, -r);

else if(tempGroup.adjMat[l][tempGroup.numV+1] == 2)

{

fprintf( fp ,"\\draw [black] [thick] [-latex] (%d,0) to

[out=90,in=180] (%d,%f); \n", l, tempGroup.numV, r);

fprintf( fp ,"\\draw [black] [thick] [-latex] (%d,0) to

[out=270,in=180] (%d,%f); \n", l, tempGroup.numV, -r);

}

}
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for(l = 1 ; l <= tempGroup.numV-1 ; l++)

for(m = l+2 ; m <= tempGroup.numV ; m++)

{

if(tempGroup.adjMat[l][m] == 1)

fprintf( fp ,"\\draw [black] [thick] [-latex] (%d,0) to

[out=90,in=90] (%d,0); \n", l, m);

else if(tempGroup.adjMat[l][m] == -1)

fprintf( fp ,"\\draw [black] [thick] [-latex] (%d,0) to

[out=270,in=270] (%d,0); \n", l, m);

}

fprintf( fp ,"\\end{tikzpicture} \n\n");

}

/// writes all the paths of the tempGroup in the FILE pointed by pointer fp

void writePaths(FILE *fp, group tempGroup)

{

int i, j, k, status;

int temp[20];

int prev, next, pathCount = 1;

int t = pow(2, tempGroup.numV);

fprintf( fp, "The paths are\\\\\n");

fprintf( fp, "{\\color{red} $1$}: $\\emptyset$ ");

for(i = t-1 ; i >= 1 ; i--)

{

status = 1;

for(j = tempGroup.numV-1 ; j >= 0 ; j--)
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{

k = i >> j;

temp[tempGroup.numV-j] = (k & 1);

}

prev = 0;

j = 1;

while(j <= tempGroup.numV)

{

if(temp[j] == 1)

{

next = j;

if(tempGroup.adjMat[prev][next] != 0)

prev = next;

else

status = 0;

}

j++;

}

if(tempGroup.adjMat[prev][tempGroup.numV+1] == 0)

status = 0;

if(status == 1)

{

pathCount++;

fprintf( fp, "\\hspace{5mm} ");

fprintf( fp, "{\\color{red} $%d$}: ", pathCount);

for(j = 1 ; j <= tempGroup.numV ; j++)

if(temp[j] == 1)
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fprintf( fp, "%d ", j);

}

}

fprintf( fp ,"\\\\ \n");

}

/// Prints the tempGroup in a text file pointed by FILE pointer fp

void printGraph(FILE *fp , group tempGroup)

{

int l , m;

fprintf( fp, " ");

for(l = 0 ; l <= tempGroup.numV+1 ; l++)

fprintf( fp, "v%d, ", l);

fprintf( fp, "\n");

fprintf( fp, " ");

for(l = 0 ; l <= tempGroup.numV+1 ; l++)

fprintf( fp, "-----");

fprintf( fp, "\n");

for(l = 0 ; l <= tempGroup.numV+1 ; l++)

{

fprintf( fp, "v%d | ", l);

for(m = 0 ; m <= tempGroup.numV+1 ; m++)

fprintf( fp, "%d, ", tempGroup.adjMat[l][m]);

fprintf( fp, "\n");

}

}
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void checkSides(int sideSize)

{

group tempSide;

FILE *fp;

char sideFileName[100];

sprintf(sideFileName, "./OutputFiles/sides_%g.txt", (double) sideSize);

fp = fopen(sideFileName, "r");

int sideStructSize = sizeof(tempSide);

long long int i, numSides = numSidesOfSize[sideSize];

for(i = 0; i < numSides ; i++)

{

fread(&tempSide, sideStructSize, 1, fp);

}

fclose(fp);

printf("checked all sides of size %d.\n", sideSize);

}
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path has a positive inner product with u. A path is monotone if it is monotone
in some direction. We prove that the (maximum) number of monotone paths
in a geometric triangulation of n points in the plane isO (1.7864n ). �e journal
paper is available here.

Polygon reconstruction from point sets
Advisor: Professor B. B. Bha�acharya (ISI)
Algorithm for generating points on an arrangement of axis-parallel polygons
to reconstruct each polygon separately using nearest point rule. �e journal
paper is available here.
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Implementation three modules in NGS Genespring for statistical modeling and
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Skills Programming
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