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ABSTRACT 

 

 

PREDICTING FACTORS OF RE-HOSPITALIZATION AFTER MEDICALLY MANAGED 

DETOXIFICATION IN OPIOID USE DISORDER 

 

by 

 

Brian Kay 

 

The University of Wisconsin-Milwaukee, 2021 

Under the Supervision of Professor Jake Luo 

 

Introduction 

Opioid use disorder has continued to rise in prevalence across the United States, with an estimated 

2.5 million Americans ailing from the condition (NIDA, 2020). Medically managed detoxification 

incurs substantial costs and, when used independently, may not be effective in preventing relapse 

(Kosten & Baxter, 2019). While numerous studies have focused on predicting the factors of 

developing opioid use disorder, few have identified predictors of readmission to medically 

managed inpatient level of care. Utilizing a high-fidelity dataset from a large multi-site behavioral 

health hospital, these predictors are explored.  

 

Methods 

Patients diagnosed with Opioid Use Disorder and hospitalized in the inpatient level of care were 

analyzed to identify readmission predictors. Factors include patient demographics, patient-

reported outcome measures, and post-discharge treatment interventions. Patients re-hospitalized 

to the inpatient level of care were binary labeled in the dataset, and various machine learning 

algorithms were tested and evaluated for performance. Methods include random forest, gradient 

boosting, and deep learning techniques. Evaluation statistics include specificity, accuracy, 

precision, and Matthew's Coefficient. 

 

Results 

Overall, there was a wide variation in correctly predicting the class of patients that would readmit 

to a medically managed level of inpatient detoxification. Out of the six models evaluated, three of 

the six did not converge, thus not producing a viable feature ranking. However, of the other three 

models that did converge, the deep learning model produced almost perfect classification, 

producing an accuracy of 98%. AdaBoost and the logistic regression model produced an accuracy 

of 97% and 61%, respectively. Each of these models produced a similar set of features that were 

important to predicting which patient profile would readmit. 

 

Conclusions 

The results indicate that overall reduction in the Quick Inventory of Depressive Symptomology, 

discharge disposition, age, length of stay, and a patient's total number of diagnoses were important 

features at predicting readmission. Additionally, deep learning algorithms vastly outperformed 

other machine learning algorithms and traditional statistical methods.  
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Introduction 

 

 

Opioid use disorder has continued to rise in prevalence across the United States, with an 

estimated 2.5 million Americans ailing from the disease in 2020 alone (NIDA, 2020). In addition 

to the Coronavirus 2019 (COVID-19) pandemic proliferating across the United States, there are 

indications that there will be a surge of opioid use throughout the pandemic and afterward 

(Wakeman et al., 2020). With cases continuing to increase, not only may there be a lack of 

treatment facilities to handle the influx of patients, but an economic burden on individuals and 

healthcare payers if the cost of care is not effectively managed. With medically managed 

detoxification incurring substantial costs for a single episode of care, and when used 

asynchronously, it may not effectively prevent relapse (Kosten & Baxter, 2019). One strategy to 

reduce these costs would be to reduce the probability that an individual readmits to the same care 

post-discharge level.  

 Previously, insights for a whole episode of care were difficult to ascertain; however, it is now 

more plausible through the increased systematic collection of healthcare data and advanced data 

analytics. Using machine learning techniques, researchers can better identify factors that 

precipitate health outcome states leading to better long-term health conditions. In addictions 

research, a myriad studies have focused on predicting the characteristics of developing opioid use 

disorder; however, few have identified predictors of readmission to medically managed 

withdrawal at a medically managed inpatient level of care. The lack of information represents a 

gap in the literature and valuable insights into individuals suffering from opioid use disorder while 

enhancing long-term positive outcomes.  

 Utilizing a high-fidelity dataset from a large multi-site behavioral health hospital, these 

predictors are explored. This work seeks to apply advanced data analytic techniques such as 
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supervised machine learning to effectively predict which factors may lead to more intensive levels 

of care in individuals with opioid use disorder. Furthermore, these predictions can serve as 

practical decision support to reduce the overall spend associated with opioid use disorder. Finally, 

this work seeks to evaluate different machine learning types and advanced analytics to garner 

insight into predictors of readmission. Further evaluating the use and application of machine 

learning algorithms in healthcare, specifically mental and behavioral health.  

 

Epidemiological perspective of opioid use disorder 

 

 

Opioids are natural or synthetic chemicals that interact with particular parts of one's brain 

chemistry. Opioids are known for reducing the feeling of pain in one's body, hence the use 

traditionally as pain relievers (Rosenblum et al., 2008). Opioids, in their chemical form, have 

been used extensively post-surgery, through cancer treatment, or in palliative care. While 

effective for reducing pain in many individuals, opioids can produce many side effects, such as 

nausea, euphoria, and drowsiness. Many times, these side effects are managed using added 

prescription medications. Opioids as a drug class are extensive and varied, with many opioids 

having differences in their chemical composition. The chemical composition differences can also 

affect the potency of the opioid, producing a range of effects— with one of the most potent 

opioids being Fentanyl. Overarchingly, opioids fall into the Schedule II drug class as 

characterized by the Federal Drug Administration (FDA). Meaning they have a high potential of 

abuse or physical dependence.  

Even though opioids can be used therapeutically in the aforementioned cases, opioids have 

highly addictive properties. Many individuals find themselves addicted to opioids after being 

legally prescribed opioids for therapeutic intent. When an individual uses opioids in a 
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problematic fashion, they may be diagnosed with opioid use disorder. Opioid use disorder is 

typically a lifelong chronic disorder and is managed using treatment, medications, and behavioral 

therapy. According to the Diagnostic and Statistical Manual of Mental Health Disorder 5th 

Edition (DSM-5), the gold standard for diagnosing mental and behavioral disorders (American 

Psychiatric Association, 2013). An individual need to meet two of the following criteria in order 

to be diagnosed with opioid use disorder:  

• Taking larger amounts or taking drugs over a longer period than intended. 

• Persistent desire or unsuccessful efforts to cut down or control opioid use. 

• Spending a great deal of time obtaining or using the opioid or recovering from its effects. 

• Craving, or a strong desire or urge to use opioids 

• Problems fulfilling obligations at work, school, or home. 

• Continued opioid use despite having recurring social or interpersonal problems. 

• Giving up or reducing activities because of opioid use. 

• Using opioids in physically hazardous situations. 

• Continued opioid use despite ongoing physical or psychological problem likely to have 

been caused or worsened by opioids. 

• Tolerance (i.e., need for increased amounts or diminished effect with continued use of the 

same amount) 

• Experiencing withdrawal (opioid withdrawal syndrome) or taking opioids or a closely 

related substance) to relieve or avoid withdrawal symptoms. 
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The DSM-5 allows for clear criteria of individuals who meet the criteria for opioid use 

disorder. Furthermore, these diagnostic criteria are considered the gold standard, which allows a 

diagnosis to be consistent between location and provider.  

 

Treatment of Opioid Use Disorder 

 

The treatment of opioid use disorder (OUD) differs by level of treatment intensity and 

may include different levels of care. The American Society of Addiction Medicine (ASAM) has 

defined criteria for which level of care an individual should be placed to manage their treatment 

of opioid use disorder. This criterion is referred to ASAM criteria. ASAM criteria are multi-

dimensional which seek to have a holistic assessment of the intensity of services required by an 

individual. The ASAM criteria are composed of six distinct dimensions, which include the 

following, acute intoxication and/ withdrawal potential, biomedical conditions and 

complications, emotional, behavioral, or cognitive conditions, readiness to change, relapse, 

continued use, or continued problem potential, and recovery living environment. The severity 

and ranking of each of these levels drive treatment intensity, and individuals should be placed. 

With “level 1" being outpatient services and “level 4" medically managed intensive inpatient 

services (About the ASAM Criteria).  

 When an individual is classified at “level 4" for ASAM criteria, they need the most 

intensive addiction treatment. ASAM “level 4” is a medically managed intensive inpatient 

services are a 24-hour treatment that offers nursing care, a daily session with a medical provider, 

and at least 16 hours of counseling. The intensity of this level of care is intended to help manage 

much of the medical components associated with detoxification from opioids. The length of stay 

varies due to the severity of one's symptoms but typically ranges from three days to seven days. 
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Given that an individual is in a monitored facility, there is a multitude of information collected 

through their treatment, including a comprehensive psychosocial assessment, a thorough nursing 

assessment, and a social and familial assessment. These assessments supply a base of 

information for the treatment team to properly treat all aspects of one's condition. 

This includes comprehensive demographic information, diagnosis following the DSM-5, 

medication history, current medications, and socioeconomic traits. Additionally, much of the 

data is temporal, with values changing throughout their treatment in the intensive level of care.  

The cost of medically managed detoxification may incur high costs throughout the course 

of one's treatment. In an ASAM “level 4" inpatient, costs per stay are significant, with the 

average stay totaling approximately $4,500 (Substance Abuse and Mental Health Services 

Administration 2006). With a high rate of relapse for OUD, it is possible that over the course of 

one's lifetime, they accumulate significant costs associated with readmitting to medically 

managed detoxification.  

The use of FDA-approved recovery medications is also a significant next step in the long-

term treatment of OUD and is becoming a critical component of medically managed 

detoxification. Currently, in the United States, there are three FDA approved recovery 

medications, Methadone, buprenorphine, and naltrexone. All of the medications work by 

targeting the μ-opioid receptor. Both Methadone and buprenorphine are considered agonists in 

the treatment of OUD, which reduce cravings for use and are typically prescribed for long-term 

use. Naltrexone, on the other hand, is an antagonist, extinguishing the effects of opioids rapidly. 

Due to this, naltrexone is typically one of the first responses to overdose, as it is broadly used in 

emergency services. With Methadone and buprenorphine increasing in utilization for long-term 
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treatment of OUD, many medically managed detoxification programs are initiating these 

medications during a patient's treatment (Volkow, 2018).  

 

Measurement-based care in Behavioral Health 

 

An essential step at improving the efficacy of behavioral health treatment and increasing 

data collection in behavioral health is through the use of measurement-based care. The use of 

measurement-based care in the psychiatric setting is considered a best practice but is limited in 

the field due to implementation challenges and providers' willingness to incorporate 

measurement-based care in their workflow. It is estimated that only 17.9% of psychiatrists and 

11.1% of psychologists in the United States routinely administer symptom rating scales to their 

patients (Zimmerman & McGlinchey, 2008).  

Measurement-based care is the systematic administration of symptom rating scales to 

drive clinical decision-making at the level of the individual patient. It is ultimately constructed to 

increase efficiency, accuracy, and consistency of symptom assessment and allow the provider to 

detect signals of non-response better. These clinical measures are well-validated and 

psychometrically sound, allowing the identification of behavioral health conditions and tracking 

treatment process over time. These measures may also be employed to assess if treatment 

interventions effectively treat a patient's symptoms. Providers of behavioral health treatment 

have constructed protocols to administer these measures systematically, with patients receiving a 

battery of assessments at admission, at defined intervals within treatment, and discharge. This 

systematic remeasurement is critical for guiding interventions, and the measures utilized have 

been designed to be clinically actionable. This provides direct benefit to patients who are 

completing these measures as it guides the interventions in their treatment.  It also allows 

clinicians to detect better if a patient is experiencing worsening symptoms; typically, mental 



 7 

health providers only detect symptom regression 21.4% in their patients without the aid of 

clinical assessments (Hatfield et al., 2010). Additionally, measurement-based care sets the 

foundation for robust outcome reporting, the ability to aggregate patients' treatment response not 

only over a single episode of time but aggregated across a location or treatment service.  

Typically, measures administered in a psychiatric population may include a quality-of-

life measure and depression inventories. Given that there is a high comorbidity of depression 

with opioid use disorder, many inpatient psychiatric providers choose to measure this construct 

over treatment systematically. The quality-of-life enjoyment and satisfaction scale (QLESQ) is a 

16-item measure that quantifies an individual's quality of life in 16 different domains. The 

measure is self-report, psychometrically valid, and short of administering (Endicott et al., 1993). 

The quick inventory of depressive symptomology (QIDS) is a 16-item depression inventory that 

is self-reported. The inventory allows the patient to endorse symptoms of hopelessness, weight 

loss, fatigue, sleep disturbance, and suicidal ideation. This assessment is psychometrically sound, 

easy to administer, and as well published in the field. Additionally, the assessment allows an 

individual to rate their depression symptoms over time, quantifying depression symptomology 

over time (Rush et al., 2003). 

 

Data analytics in healthcare 

 

 

With the increase of data being collected through the use of EHR's and the ability for 

more advanced data analysis to better predict disease, outcomes, and the optimal treatments, the 

use of data analytics has proliferated in healthcare. Additionally, the amount of data within the 

healthcare setting has continued to increase exponentially year over year. In 2013, it was 

estimated that 153 exabytes of health care data were collected, with 2021 collecting more than 
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2,314 exabytes (Banks, 2020). Furthermore, it is anticipated that in 2022, there will be a 

zettabyte of healthcare data collected. One zettabyte of data is equivalent to 152 million years of 

Ultra High Definition 8k video. This the sheer volume of data collected and large datasets 

amassing, healthcare is primed for applying advanced analytic techniques to aid in the analysis 

and uncover new insights at a rate that has not been encountered before.  

The application of data analytics can be grounded in the types of analytics. There are 

three major types of analytic categories: descriptive analytics, predictive analytics, and 

prescriptive analytics. Where descriptive analytics is inferencing information from a sample or a 

dataset, these inferences typically summarize the data through means, medians, or mode to 

provide a representation of the sample or a larger population. Predictive analytics is the 

extraction of information from a dataset and predicting trends and behavioral patterns. This helps 

understand the historical patterns and perspectives that lie in datasets and how they can predict 

future events. Predictive analytics can use various techniques from regression analysis, machine 

learning, and time series forecasting. Finally, prescriptive analytics aim to predict and determine 

the optimal decision based on a set of business rules. Prescriptive analytics is considered a 

category of advanced analytics given the level of sophistication and application.  

The aforementioned analytic categories are prevalent in healthcare, however, in different 

frequencies. Where descriptive analytics is widespread, through day-to-day healthcare 

operations, predictive and prescriptive analytics are seen less commonly. However, there has 

been an increase in prescriptive analytics, particularly in the radiological space, in recent years to 

aid in the identification of diseases (Choy et al., 2018). Despite the increase of these analytics in 

medical-surgical applications in the healthcare sector, there have been limited applications in the 

mental and behavioral. This may be due to less structured information, or data points with less 
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fidelity, unlike lab values and biometric data. Despite these limitations, the ability for high 

fidelity datasets in mental and behavioral health is becoming more of a reality due to the 

treatment becoming more structured, evidence-based, and utilizing measurement-based care.  

 

Machine learning in Behavioral Health 

 

Despite the increase use of machine learning techniques in healthcare, there has been 

minimal use of supervised machine learning techniques in the behavioral setting. With most 

applications seeking to either predict outcome state or quantify the risk of a rare event in an 

individual. In behavioral health, some of the applications of supervised machine learning 

techniques have been applied to predict suicide risk (Roy et al., 2020) and predict the onset of 

opioid use disorder (Ellis et al., 2019). Many of these applications follow the same methods of 

supervised learning. The "learning" ascribed to machine learning techniques allows the computer 

to take part of the dataset and learn patterns, and then the learned patterns are validated on 

another part of the data to understand accuracy, sensitivity, and specificity. Typically, the 

original dataset is split into a 70% and 30% ratio, where 70% of the cases are training, and 30% 

of the cases are validation, where the output of the learned algorithm can be checked for validity. 

To reduce potential bias in the dataset, cross-fold validation is applied. Cross-fold validation is 

using the dataset and splitting it in diverse ways to find generalizable variables. Each time the 

dataset is split, iteratively identifies generalizable variables, thus reducing bias incorporated into 

a potential decision tree. The times that the cross-folds are performed varies from 10 times up to 

24 times (Kohavi, 1995). Differences from each of the runs are then generalized to produce an 

ensemble-based model. Typical outputs from machine learning models are called decision trees. 

Decision trees consolidate the patterns from the multiple learning runs into a set of rules. An 
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added advantage to producing decision tree-based models is they can identify linear 

relationships. In healthcare, relationships between outcome variables are often non-linear in 

fashion, allowing machine learning to take advantage of these relationships. Utilizing these 

advanced analytics, this study seeks to understand the predictive factors associated with 

readmission to medically managed inpatient services for the treatment of opioid use disorder by 

leveraging decision trees that allow an end-user to understand the associated factors with the 

outcome state. 

For example, Hatton et al. (2019) attempted to predict depression outcomes in a geriatric 

population utilizing the Patient Health Questionnaire (PHQ-9) (Kroenke et al., 2001). Utilizing a 

sample of 200 individuals who were "Older adults," the researchers utilized patient-reported 

outcome measures to classify if individuals would maintain treatment gains post-discharge.  

The authors' utilized machine learning techniques to predict if an individual who was part 

of the clinical trial would maintain their gains 12-month post-discharge from the trial. The 

researchers utilized bootstrapping to impute missing data in the dataset utilize the expectation-

maximization method. The dataset was then split at 60:40, with 60% being training and 40% 

being a validation of the algorithm. The primary algorithm utilized was gradient boosting, where 

the outcome variable was a binary PHQ-9 score over or under 10. This indicated if the individual 

was still endorsing depressive symptomology. The researchers also used logistic regression to 

predict the same outcome variable and then assessed the machine learning algorithm's predictive 

power.  

Machine learning has also been utilized to understand and predict who is at risk for 

completing suicide and what factors are associated with this risk. Current suicide risk prediction 

today is extremely antiqued. Typically, an individual completes a structured interview with a 
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trained clinician. These interviews are lengthy, and due to the training required to administer the 

interview, not easily accessible to the public. Additionally, a 30-year meta-analysis has shown 

that these aforementioned interviews have low power in predicting a suicide attempt. The field of 

psychology has historically utilized less than advanced statistical techniques. As this is 

essentially a classification problem, machine learning was an appropriate methodology to predict 

attempts. Utilizing medical records from 5,543 adult patients at Vanderbilt University Medical 

Center, the authors coded all E95x, International Classification of Diseases 10th Edition (ICD-10) 

codes. 

The author's utilized machine learning techniques in order to predict suicide attempts 

temporally. They utilized individuals with a previous attempt and a control group of adults with 

no prior documented history of suicide attempts. An ensemble-based learning method, random 

forests, was utilized to predict the attempts. Decision trees are generated via recursive sampling 

techniques of the predictor data. In this study, 500 trees were generated, and the risk estimated 

was determined based on the proportion of trees that predicted the correct outcome. The authors 

utilized standard demographic information from the medical record in their data. The authors 

published 92% accuracy of the prediction, with a low discrepancy between precision and recall. 

Both of these examples highlight an advanced state of affairs in the behavioral health 

setting. Machine learning is beginning to be introduced into the field but shows promise in 

achieving increased predictive power of current applications. Applying these techniques to 

predict the readmission state in individuals with OUD is believed to be a current gap in the 

literature.  
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Ensemble-based machine learning techniques 

 

Random Forests 

 

 

Random forest is an ensemble-based algorithm that generates many different decisions in each 

iteration of the algorithm (Breiman, 2001).  At its core, random forest models operate off of the 

following principles:  

"A large number of relatively uncorrelated models (trees) operating as a committee will 

outperform any of the individual constituent models. " 

The algorithm generates decision trees with subtleties in the parameters; then, it takes the 

model's run with the most accuracy on each iteration. Each tree that is generated then produces a 

prediction of the binary outcome variable. Each tree that accurately identifies the outcome 

variable state gets a vote. The trees with the most votes become the class prediction. By 

leveraging the low correlation between the models, the trees "protect" each from individuals 

errors. Typically, producing a model with a good ability to predict the outcome variable.  

 

Gradient Boosting and AdaBoost 

 

 

Gradient boosting AdaBoosting is another type of machine learning algorithm that allows 

the ability to predict an outcome variable. Gradient boosting comprises of three separate and 

distinct elements, a loss function that is allowed to be optimized, a weak learner that makes 

predictions, and an additive model to add to the weak learners to minimize the loss function 

(Natekin & Knoll, 2013). 

  The loss function allows us to quickly evaluate the model while ensuring each model 

does better than previous iterations of the model. In essence, a loss function quantifies error 

between the actual results, the predicted results and is a distillation of many variables into a 
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specific number. This specific loss function number allows multiple iterations of the algorithm to 

ooccur and the continued evaluation of which iteration "better" than the others (James, 2003).  

A weak learner is something that is computationally simple and provides accuracy at 

best, relatively poorly. These weak learners could be simple classifiers of predictors or a 

regression analysis; however, they create a robust classifier or an ensemble-based classification 

when these are pooled together in multiple iterations. Gradient boosting relies on the multiple 

iterations of weak learners while minimizing the loss function to evaluate which weak learners 

provide the best results. The additive model allows each weak learner's learnings to be applied to 

each new iterative run, landing on the best solution(Joshi et al., 2002).  

Adaboost or adaptive boosting is a variation on gradient boosting; the algorithm builds 

off the weak learners optimizing the loss function. However, in adaptive boosting, the sample 

distribution changes in each iteration. Changing the sample distributions, the weights on 

mispredicted weak learners increase, thus allowing the weights of correctly predicted weak 

learners to increase. This allows the algorithm to better focus on the more difficult iterations and, 

in many instances, leads to better predictive power (Friedman, 2001).  

 

J48 Trees 

 

J48 trees, a classification algorithm, allows the algorithm to identify numerous factors in 

a decision tree fashion to predict the outcome variable (Salzberg, 1994). The algorithm is a 

modification of the C4.5 algorithm developed by Ross Quinlan and an extension of the iterative 

dichtomiser 3, developed by the University of Waikato. The algorithm builds multiple decision 

trees utilizing the concept of information entropy. Since this is an ensemble-based algorithm, 

multiple trees are built and evaluated to take the best concepts of each tree and formulate them 
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down to one final tree. J48 trees are available in multiple different code types, including R-

statistics, Python, and open-source Java.  

 

Further Statistical Evaluation 

 

Logistic Regression 

 

Logistic regression is a common type of multivariate statistic which allows for the 

prediction of a binary outcome variable. Logistic regressions are wildly used in the psychiatric 

setting to evaluate treatment outcomes and the evaluation of psychometrics. Logistic regressions 

are derived from using a logistic function where the binary outcome variable is fit to regression 

and then predicted as a categorical binary variable. The general logistic regression equation can 

be derived as the following, where P is the probability of the state occurring, and a + bX is the 

regression equation:  

 

Equation 1: Logistic Regression 

Logistic regression 

ln
1

P
a bX

P

 
= + 

− 
 

Deep learning  

 

Deep learning is another machine learning technique that utilizes neural networks to 

predict outputs from a dataset. Deep learning mimics the thinking of an animal's brain by 

simulating different layers that aid in the algorithm's decision-making process. These layers are 

the input layer, the hidden layer, and the output layer. The input layer is the data fed into the 

algorithm and the data that will be utilized in the mathematical computations of the hidden layer. 

The hidden layer in a deep learning algorithm is where the algorithms mathematical connections 

are made. There could be a vast number of hidden layers depending on the complexity of the 
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problem. The output layer is where the predicted value from the model is exposed, or the 

prediction is made in the case of opioid prediction readmission; this would be the prediction if 

the patient were readmitted into treatment or not readmitted into treatment (Indolia et al., 2018) 

 

Figure 1:Conceptual Diagram of a Convoluted Neuro Network 

Conceptual Diagram Convoluted Neural Network 

 
 

Image Credit: Jordan (2017) 

 

Deep learning also relies on the use of a loss function, but in deep learning algorithms, it 

is called gradient descent. The gradient descent is a function where we could minimize the total 

number of errors in each associated model. The reduction in the area is due to modifying the 

weights in small increments on each of the input variables, which, once iterated over time, allows 

the cost function to be reduced. Because these weights are iterated many times, deep learning is a 
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computationally costly algorithm. Graphically depicted, J(w) is the function of error in the 

model, and w being the global cost minimum. In essence, the model attempts to reduce the total 

amount of error by adjusting weights to reach the Jmin(w), the lowest amount of global error in 

the outputs (Ruder, 2016).  

 

 

Figure 2: Decision Gradient 

Decision Gradient 

 
 

Image credit: Raschka (2020)  

 

Unfortunately, this results in a "black box" where simple sets of rules are not easily 

obtained from the model due to complex interactions and relationships. Deep learning, however, 

has the capability of producing highly accurate models and has been utilized in pathology 

applications to identify lymph node metastases more accurately than a panel of pathologists 

(Ehteshami Bejnordi et al., 2017).  

 



 17 

Dataset 

 

The dataset utilized in this analysis was a de-identified dataset provided by Rogers 

Behavioral Health. Permission to utilize data was obtained by Rogers Behavioral Health, and 

ethical considerations were reviewed by the University of Wisconsin Milwaukee Institutional 

Review Board. The dataset was transmitted for analysis utilizing secure means and was received 

fully de-identified according to the Health Insurance Portability and Accountability Act 

(HIPAA) safe harbor method. The data was a merged dataset containing information from the 

electronic health record and Rogers Outcome Assessment System (ROAS), which supplied the 

patient-reported outcome measure variables. The dataset file was provided as a comma-separated 

values file and securely transferred to this author, providing encryption while in transit.  

The dataset included patients from an inpatient medically managed detoxification for 

opioid use disorder unit with patients discharged from 2017 through 2020, at three separate 

facilities. Demographics that were analyzed included; age, discharge disposition, psychiatric 

diagnosis, employment status, ethnicity, highest education, length of stay, marital status, if 

commercial or Medicare or Medicaid insurance was utilized, the use of FDA approved recovery 

medications, sex, and as well as the QIDS, and QLESQ. Finally, patient flow characteristics 

were recorded with each encounter, including identifying if the patient stepped down to a less 

intensive level of care such as partial hospitalization, residential treatment, or intensive 

outpatient.  

The dataset contains patient-reported outcome measures administered at admission to the 

program, every four days after admission, and finally, within 24 hours of discharge. 

Additionally, the dataset contains a flag for every encounter the patient was readmitted to the 

inpatient level of care. This readmission flag was primarily utilized as the outcome variable in all 
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subsequent analyses. Both the QIDS and QLESQ were self-reported, with the patient filling out 

each measure electronically utilizing a tablet and the ROAS system.  

Methods 

 

The analysis, in general, followed a similar methodology for the evaluation of each 

machine learning algorithm. All analysis and cleaning of the data were completed utilizing R-

statistics version 4.0.3 "Bunny-Wunnies Freak Out" (R Core Team, 2020), as was the integrated 

development environmental R-Studio version 1.3.1093 (RStudio Team, 2021).  

The dataset of information from the electronic health record in the patient-reported 

outcome system was cleaned to remove outliers, inconsistencies in data formatting and 

identifying and coercing the data into appropriate data classes in preparation for machine 

learning and analysis. Individuals who were flagged as readmitted were then classified in a 

binary variable stating if the patient was readmitted or has not readmitted. This binary class was 

utilized as the target variable.  

The dataset utilized consisted of 2,103 patients admitted to Rogers Behavioral health's 

adult inpatient hospitalization unit in either Oconomowoc, West Allis, or Brown Deer, 

Wisconsin, between March of 2017 and December of 2020. Patients were included in the dataset 

if they had a primary diagnosis for OUD. In the sample, 160 patients readmitted back into one of 

the inpatient units at Rogers Behavioral Health, the individuals were labeled as "Readmitted," 

and all individuals who did not readmit to an inpatient unit at Rogers Behavioral Health were 

labeled as "No-Readmit." Demographic characteristics of the two groups are contained in Table 

1:  
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Table 1: Sample Demographics 

Sample Demographics   

Variables 

Readmitted 

(N=160) 

No-Readmit 

(N=1943) 

Age   
Mean (SD) 33.93 (10.80) 34.57 (10.07) 

Min-Max 19-69 18-79 

   
Sex (%)   

Female 52 (32.5) 777 (40) 

Male 108 (67.5) 1166 (60) 

   
Marital status (%)   

Single 107 (66.9) 1310 (67.4) 

Separated 15 (9.4) 153 ( 7.9) 

Married 14 (8.8) 215 (11.1) 

Divorced 11 (6.9) 140 (7.2) 

Widowed 1 (.6) 9 (.5) 

Unknown 12 (7.5) 116 (6.0) 

   
Race   

American Indian or Alaska Native 3 (1.9) 27 (1.4) 

Asian 0 (0) 9 (.5) 

Black or African American 12 (7.5) 151 (7.8) 

Hispanic or Latino 0 (0) 0 (0) 

Native Hawaiian or Pacific Islander 0 (0) 7 (.4) 

White 134 (83.8) 1602 (82.4) 

Unknown 11 (6.9) 147 (7) 

   
Number of Diagnosis   

Mean (SD) 3.72 (1.57) 3.49 (1.62) 

Min-Max 1-8 1-8 

   
Discharge Disposition   

Home or Self Care 120 (75) 1539 (79.2) 

Left Against Medical Advice 11 (6.9) 132 (6.8) 

Other Healthcare Facility 10 (6.2) 47 (2.5) 

Lower Level of Care (Residential, Partial 

Hospital, Intensive Outpatient) 19 (11.8) 225 (11.5) 
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QIDS Total Score   
Mean (SD) 14.70 (6.01) 14.01 (5.88) 

   
QIDS Percent change admission to discharge   

Mean (SD) -.31 (.59) -6.04 (6.02) 

   
Recovery Medications (%)   

Prescribed 96 (59.4) 1254 (64.5) 

Not Prescribed 65 (40.6) 689 (35.5) 

   
Length of Stay Days    

Mean (SD) 4.79 (2.35) 4.64(2.42) 

Min-Max 1-20 1-47 

   
 

As readmission to a hospital setting can be constituted as a relatively rare event, the 

dataset utilized was imbalanced in terms of individuals who readmitted versus those who did not 

readmit. To increase the number of cases and balance the dataset, a combination of both 

undersampling and oversampling was utilized. The dataset was oversampled with the readmitted 

cases, and those who did not readmit undersampled without replacement. This created a dataset 

with 1,010 individuals who did not readmit back to medically managed inpatient and 990 

individuals who were readmitted back to treatment—all algorithms trained off the identical 

training dataset and were validated utilizing an identical validation dataset.  

  For all of the algorithms that were utilized in the analysis, four evaluation statistics were 

generated. These evaluation statistics include sensitivity, precision, accuracy, and the Matthews 

coefficient. The evaluation statistics were derived utilizing a confusion matrix for each 

algorithms output. A confusion matrix is a tool that allows for the representation of a model's 

accuracy. The confusion matrix aids in the identification of the number of true positives (TP), 

true negatives (TN), false positives (FP), and false negatives (FN). Table 2 depicts a typical 

confusion matrix is constructed:   
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Table 2: Confusion Matrix Example 

Confusion Matrix Example 

 

Predicted/ Actual Positive Negative 

Positive TP FP 

Negative FN TN 

 

 

Sensitivity is the statistic that measures the number of true positives within the algorithm. The 

higher the sensitivity value, the more accurately the algorithm was able to identify the number of 

true positives. Sensitivity is derived below. In the following equation: 

 

Equation 2: Sensitivity 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

 

Precision is the positive predictive value or the amount of correct positive predictions that were 

made. The higher the value on the positive predicted value, the more correct positive predictions 

the algorithm could make. The calculation for precision is derived below:  

 

Equation 3: Precision 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
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Accuracy is how many data points the model correctly predicted. The higher the value for 

accuracy, the more correct true positives and true negatives that the algorithm was able to 

identify. Accuracy is derived below in the following equation:  

Equation 4: Accuracy 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑃 + 𝑁)
 

 

The Matthews Correlation Coefficient is derived the same way as Pearson's phi and is a 

coefficient that takes into all aspects of the confusion matrix. Because the evaluation statistics 

take into account both true and false positives and negatives, it is regarded as one of the most 

balanced evaluation statistics. The higher the value of the Matthews coefficient, the better the 

algorithms' ability to predict the binary classes. The Matthews coefficient is derived below:   

  

Equation 5: Matthews Correlation Coefficient 

𝑀𝑎𝑡𝑡ℎ𝑒𝑤𝑠 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃) ∗ (𝑇𝑃 + 𝐹𝑁) ∗ (𝑇𝑁 + 𝐹𝑃) ∗ (𝑇𝑁 + 𝐹𝑁)
 

 

In all the algorithms, feature importance was also obtained. Feature importance allows an 

individual to understand which variables have a higher importance in making the overall 

prediction. A graphical representation of the entire method is contained in Figure 3:  
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 Figure 3 : Conceptual diagram for utilizing machine learning to predict outcome states 

Conceptual diagram for utilizing machine learning to predict outcome states 

 

 

Five distinct types of algorithms were evaluated in terms of sensitivity, precision, 

accuracy, and Matthew's Coefficient to evaluate each algorithm's overall accuracy. Before these 

evaluation statistics were derived, the dataset was evaluated for collinear variables through the 

use of correlation analysis. Individuals' diagnoses were highly correlated with the total number 

of diagnoses. As a result, the individual diagnosis was removed from the dataset in favor of the 

total number of diagnoses. Additionally, individual questions on the QIDS were correlated to the 

total score of the QIDS; to keep the differentiation of the responses to the QIDS items, QIDS 

total score was removed. Items 10 and 11, items 13 and 11, and items 13 and 14 were also 

correlated. However, this is likely due to the design of the QIDS as multiple questions assess the 

same symptoms. Due to this, it was determined that these questions remain within the dataset 

despite their collinearity. Figure 4 summarizes the correlation between the variables: 
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Figure 4: Correlated variables 

Correlated variables 

 
 

 

  All algorithms trained off the same dataset and were validated against the same validation 

dataset. The training dataset contained 758 patients who did not readmit and 742 patients who 

were readmitted to medically managed inpatient detoxification. The validation dataset consisted 

of 252 patients who did not readmit and 248 patients who were readmitted to medically managed 

inpatient detoxification.  

Results 

 

Random forest 
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A random forest model was produced utilizing the r package "Random forest" (Wiener, 

2002). The algorithm was tuned with the following parameters, the initial set of trees to be 

produced was 2,000 trees, omit any instances that did not have a classification label, and 

proximity set as true. The random forest model produced a sensitivity of 0, a precision of 0, 

accuracy of 88%, and a Matthews coefficient of .-.02 The confusion matrix in Table 3 illustrates 

the output: 

 

 

Table 3: Confusion Matrix: Random Forest 

Confusion Matrix: Random Forest 

 

 

  No readmit Readmit 

No readmit 259 1 

Readmit 33 0 

 

 

 

 

 

The model did well at predicting individuals who were likely to not readmit into treatment. 

However, it did not accurately predict any individuals who were readmitted into treatment. The 

top five features obtained through the decision trees to predicting readmission included age, 

discharge disposition, payer type, and the total reduction of the quick inventory of depressive 

symptomology.  

 

 

Gradient Boosting 

 

The gradient boosted model utilized the method xgbTree, through the r package 

"XgBoost" (Tianqi Chen et al., 2020); the model parameters omitted any instances where there 

was no label to predict class. In this model, cross-fold validation was employed, with ten 
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crossfolds being applied. After training, tuning parameters were applied, including the number of 

rounds equaling 150, the max depth 150, an eta of 3, and gamma of .4. The gradient boosted 

model produced a sensitivity of 0%, a specificity of 100% , accuracy of 100%, and a Matthews 

coefficient of 0. The confusion matrix in Table 4 illustrates the output: 

 

 

Table 4: Confusion Matrix: Gradient Boosting 

Confusion Matrix: Gradient Boosting 

 

  No readmit Readmit 

No 

readmit 500 0 

Readmit 0 0 

 

 

The model performed poorly, predicting that all individuals were predicting not to readmit, 

resulting in a Matthews coefficient of 0. Due this this, there was no stratification between the 

binary classes in this model, and the usability of the model impacted, as all individuals were 

labeled as not predicted to not readmit.  The top features by importance that the model identified 

were difference in the QIDS score from admission to discharge, age, length of stay, and the total 

number of diagnoses. 

 

 

J48 Trees 

 

 

The J48 tree utilized the package "Rweka" for all model development and validation 

(Hornik K, 2009). The model parameters omitted any instances where there was not a label to 

predict class. Default settings were utilized in all other parameters. The J48 model produced a 
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sensitivity of 0%, a precision of 0%, accuracy of 88%, a Matthews coefficient of 0, and an 

accuracy of 91%. The confusion matrix in Table 5 illustrates the output. 

 

Table 5: Confusion Matrix: J48 

Confusion Matrix: J48 

  No readmit Readmit 

No readmit 1186 0 

Readmit 107 0 

 

 

 

The model did well at predicting individuals who were likely to not readmit into treatment. 

However, it did not accurately predict any individuals who were readmitted into treatment. This 

resulted in a Mathews coefficient of 0. The models usability may be impacted given that the 

majority of individuals were predicted not to readmit, and those predicted readmit were 

incorrectly classified. The top features by importance that the model identified were age, 

discharge disposition, the total number of diagnoses, the use of FDA-approved recovery 

medication, and patient's length of stay on their original medically managed detoxification 

encounter.  

 

 

 

Logistic Regression 

 

 

The logistic regression created utilized the base package of the r-statistics. The model 

parameters omitted any instances where there was not a label to predict class. A train control was 

created utilizing five cross-fold validation. Additionally, the method utilized was a general linear 

model, with the family set as binomial. Default settings were utilized in all other parameters built 
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within the model. The logistic regression model produced a sensitivity of 59%, a precision of 

59%, an accuracy of 61%, and a Matthews coefficient of 23%. The confusion matrix in Table 6 

illustrates the output. 

 

Table 6: Confusion Matrix: Logistic Regression 

Confusion Matrix: Logistic Regression 

 

  No readmit Readmit 

No readmit 175 100 

Readmit 100 147 

 

 

The model did moderately well at predicting both those who did not readmit and those who did 

readmit. The models identified more important features from the QIDS, compared to the other 

models, with the top features being the QIDS item 5, QIDS item 15, QIDS item 11, the total 

number of diagnoses, and the age of the patient.  

 

 

Adaboosting 

 

 

The AdaBoost algorithm utilized the r package "adabag" (Alfaro, 2003).  The model parameters 

omitted any instances where there was not a label to predict class, bootstrapped the training data 

utilizing the weights of each observation, and produced a total number of iterations as 50. 

Default settings were utilized in all other parameters. The AdaBoost model produced a 

sensitivity of 100%, a precision of 94%, an accuracy of 97%, and a Matthews coefficient of .94. 

The confusion matrix in Table 7 illustrates the output. 
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Table 7: Confusion Matrix: Adaboost 

Confusion Matrix: Adaboost 

 

  No readmit Readmit 

No readmit 238 0 

Readmit 14 248 

 

 

 

The model did well at predicting individuals who were likely to not readmit into 

treatment and well at predicting who would readmit back into treatment. The top features by 

importance that the model identified were age, discharge disposition, the total number of 

diagnoses, the use of FDA-approved recovery medication, and patient's length of stay on their 

original medically managed detoxification encounter.  

 

 

Deep learning 

 

The deep learning model utilized the package H2o in order to build and tune the algorithm (Tom 

Kraljevic & Malohlava, 2020). The model required a considerable number of hyperparameter 

tuning in order to produce the best results. Parameters tuned included the number of hidden 

layers, number of epochs, momentum, and downsampling. The final hyperparameter tuned 

model included, 100000 epochs, 128 hidden layers, a momentum start of .2, with a momentum 

ramp of 1e7. . As a result of the hyperparameter tuning, the model produced a sensitivity of 98%, 

a precision of 100%, an accuracy of 99%, and a Matthews coefficient of .98. The confusion 

matrix in Table 8 illustrates the output. 
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Table 8: Confusion Matrix: Deep Learning 

Confusion Matrix: Deep Learning 

 

  No readmit Readmit 

No readmit 248 4 

Readmit 0 252 

 

The model performed exceptionally well at not only predicting who would readmit but who 

would not readmit utilizing the validation training set. The top features by importance were 

similar to the other models: QIDS item 16, the patient's age, the total number of diagnoses, the 

length of stay of the patient's original encounter, and the overall reduction of QIDS score 

throughout the stay.  

 

Summary of model prediction 

 

The models performed with a wide range of variation sensitivity, accuracy, precision, and 

Matthew's coefficient. However, the model with the most optimal performance in terms of all the 

evaluation statistics is the deep learning model. Table 9 summarizes the evaluation statistics 

between all of the models.  

 

Table 9: Summary of evaluation statistics 

Summary of evaluation statistics 

 

 

  Sensitivity Precision Accuracy Matthews 

Random Forest 0 0 88% -0.02 

Gradient Boosting 0 0 100% 0 

J48 0 0 91% 0 

Logistic Regression 59% 59% 61% 0.23 

Adaboosting 100% 94% 97% .94 

Deep Learning 98% 100% 98% .99 

 



 31 

 

 

The models produced similarly within the feature importance, will all the models selecting age as 

an essential factor of readmission prediction. Additionally, all but one model selected the total 

number of diagnoses as an important feature. The model's utilized items of the QIDS or the total 

reduction of the QIDs as an important feature for prediction. The models ranked different 

features as more important based on the model which was applied, with the logistic regression 

weighting the items from the QIDs more than other models. This may be due to the logistic 

regression model weighting all of the variables at equal importance, rather than an iterative, 

ensemble-based decision. With the machine learning algorithms, the features were more evenly 

spread between demographic variables and items on the QIDs; likely due to voting of features on 

individual runs of the machine learning algorithms. Additionally, through hyperparameter 

tuning, the deep learning model incorporated 128 hidden layers, allowing the model to identify 

more complex interactions, not possible through the other algorithms evaluated.  Table 10 

summarizes each model's top five features and illustrates the overlap of the features between 

each algorithm.  

 

 

 

 

Table 10: Top five model features 

Top Five Model Features 

 

 

 

Feature 

Random 

Forest 

Gradient 

Boosting 
J48 

Logistic 

Regression 
Adaboost 

Deep 

Learning  

Age 
X X X X X X 

Discharge 

Disposition 
X  X  X  
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Payer Type 
X      

Length of Stay 
 X X  X X 

Total Number of 

Dx 
 X X X X X 

FDA Recovery 

Meds 
  X  X  

QIDS Item 5 
   X   

QIDS Item 11 
   X   

QIDS Item 15 
   X   

QIDS Item 16 
     X 

Reduction in 

QIDS 
X X    X 

 

 

Discussion 

  

Advanced data analytics, particularly machine learning techniques, appears to help gain 

new insights into sizeable behavioral health datasets, creating models with high accuracy at 

identifying who will readmit and those who will not readmit. Of all of the models generated, 

deep learning provided the overall best prediction as evaluated by the Matthews coefficient. The 

ability to produce a model with such high accuracy is promising to implement these decisions 

into behavioral healthcare. Additionally, the deep learning model had features consistent with the 

other models evaluated, lending credence that the factors displayed in Table 3 are at the very 

least correlated with identifying who is likely to readmit to an inpatient level of care.  

A large amount of the models identified age, length of stay, and the total number of 

diagnosis as essential features to predicting outcome class and is consistent with the current state 

of the literature. The lower the age and length of stay was associated with a higher risk of 

readmission.Furthmore, the higher number of total diagnosis were associated with an increased 
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risk of readmission. The presence of multiple comorbidities is also congruent with the literature. 

Typical comorbidities including, depression, sleep disorders, personality disorders, and anxiety 

disorders (Grella et al., 2009), are all associated with OUD and all identified in the dataset. In 

medically managed detoxification, the primary goal of treatment is withdrawal management, 

ensuring medical stability, and discharge preparation. The ability to introduce standard 

behavioral health management techniques such as cognitive-behavioral therapy (CBT) and 

behavioral activation (BA) may be advantageous to reducing symptoms associated with common 

comorbid disorders.  

Furthermore, the relationship between the length of stay and improved outcomes is also 

documented by (Oh et al., 2020), illustrating different treatment trajectories based on diagnosis 

on inpatient psychiatric treatment. Identifying a longer length of stay was consistently identified 

between all of the machine learning models evaluated. Length of stay in a psychiatric setting has 

varied across the years and within a geographic region, with the average length of stay declining 

close to the three days from the 1990s to the 2010s (Lee et al., 2012). This variation of length of 

stay may likely be due to a lack of robust outcome information, where the criteria to discharge 

are guided primarily through clinical judgment rather than care guidelines typical in the medical-

surgical sector. This lack of length of stay optimization may be a critical factor in the 

readmission of opioid use disorder patients and psychiatric inpatients in general. The utilization 

of deep learning techniques may be a critical method to establishing the optimal length of stay.  

          Encouragingly, many of the aforementioned features are modifiable through treatment and 

giving clinicians the ability to actively reduce the probability that a patient would readmit to an 

intensive level of care. Since many of these factors are collected through the standard treatment 

documentation of opioid use disorder, it would be practical to implement these as a set of rules 
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within the EHR. The rules can either be quantified and weighted as an overall score, illustrating 

the probability of readmission, or utilized as flags for treatment interventions. By flagging which 

conditions a patient met, a clinician would optimize one's length of stay, treating comorbidities 

through targeted treatment interventions and proper discharge planning.  

Additionally, this can create an even more robust treatment plan, individualized to not 

only the individual but to long-term outcomes. Treatment designed like this introduces 

personalized medicine into behavioral health in a way that is not prevalent in the space today and 

may help counter some of the ethical challenges of personalized medicine in psychiatry (Evers, 

2009). It can also produce a framework for treatment that would be generalizable to other 

behavioral health disorders, identifying individuals’ characteristics that place the patient at a 

higher risk of an adverse outcome.  

            However, there is a trade-off between algorithms that produce defined decision trees with 

less accuracy and deep learning algorithms with increasing accuracy and more obfuscated 

decision pathways. These factors may lead to less utilization of the features outputted by the 

algorithm due to clinicians having hesitancy to use when the algorithm is primarily a "black box" 

(Stead, 2018). With the potential lack of buy-in to utilize the information gained by the deep 

learning model, the work becomes more theoretical, rather than implementing functional changes 

to reduce readmission. The mistrust of deep learning techniques may prove to be a long term 

barrier to adopting many insights gained by applying these techniques. Further education to 

clinicians regarding machine learning techniques and the strategies on how to evaluate if an 

algorithm produces a reliable and robust model may increase adoption.  
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 In addition to the "black box" produced by the deep learning algorithm, the other 

algorithms produced very robust decision trees. For example, the AdaBoost algorithm produced 

a decision tree with over 400 different decision points. Due to the sheer amount of decision 

points contained in the model, there may be barriers to implementing the findings at an 

individual patient level. Implementing this processing to the EHR may not only be difficult but 

not feasible given the current architecture of EHR's today. Additionally, data processing modules 

may need to be added to the EHR in order to achieve this level of processing.  

There were also some underlying limitations within the dataset itself. All of the 

readmissions analyzed were patients who were admitted and readmitted to a single behavioral 

health system. This does not provide insight into the individuals who may have sought treatment 

at a different health system, or a different level of care, potentially missing important features 

when looking at readmissions from a more global perspective. This may bias the algorithm due 

to factors such as overall satisfaction with the treatment experience and satisfaction with 

providers not accounted for in the data. In essence, the data does not provide the opportunity to 

parse if a patient did not readmit due to being successful in maintaining sobriety or simply if they 

were unhappy with their treatment experience and sough another provider.  

One way to potentially counter this limitation is data sharing with entities such as payers, 

the fidelity of the outcome variable can be increased due to the payor collecting claims data not 

specific to one entity. The ability to use claims data as the outcome variable could further 

strengthen the predictive factors and potentially lead to other features essential to predicting 

readmission, such as emergency room utilization.  
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From a data analysis perspective, the dataset was unbalanced, and the use of over and 

under sampling was applied, which results in duplication of readmission cases. The algorithms 

learned features over duplicated cases; this may have biased the algorithm to features that were 

apparent only in the duplicated cases. However, the use of undersampling and oversampling was 

necessary to produce a viable model throughout the analysis. As the dataset accumulates new 

patients over time, these issues may no longer be relevant; they may also be mitigated through 

further collaborations with payers.   

           Regardless of these limitations, the use of machine learning techniques in behavioral 

health appears to be a valuable next step in reducing the total number of readmissions and 

potentially the costs associated with subsequent readmissions. Additionally, identifying 

modifiable features may be one of the first steps to personalized medicine in behavioral health 

treatment and allows for optimized treatment outcomes. As datasets in behavioral healthcare 

continue to grow with high-fidelity structured data, more insights may be possible to predict 

outcome states. Furthermore, with more precise education to clinical providers, the adoption of 

machine learning algorithms will further increase, providing more robust and patient-driven 

outcomes. 
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APPENDICES 

Quick Inventory of Depressive Symptomatology 16 item short form 

 

CHECK THE ONE RESPONSE TO EACH ITEM THAT BEST DESCRIBES YOU FOR THE PAST SEVEN DAYS.

Pg. 1 of 2

During the past seven days... During the past seven days...

8.  Decreased Weight (Within the Last Two Weeks):

   I have not had a change in my weight.

   I feel as if I have had a slight weight loss.

   I have lost 2 pounds or more.

   I have lost 5 pounds or more.

0

1

2

3

   I take more than 60 minutes to fall asleep, more than
   half the time.

   I take at least 30 minutes to fall asleep, more than
   half the time.

   I take at least 30 minutes to fall asleep, less than
   half the time.

   I never take longer than 30 minutes to fall asleep.

1.  Falling Asleep:

0

1

2

3

5.  Feeling Sad:

   I do not feel sad.

   I feel sad less than half the time.

   I feel sad more than half the time.

   I feel sad nearly all of the time.

0

1

2

3

0

1

2

3    I awaken more than once a night and stay awake
   for 20 minutes or more, more than half the time.

   I wake up at least once a night, but I go back to
   sleep easily.

   I have a restless, light sleep with a few brief
   awakenings each night.

   I do not wake up at night.

2.  Sleep During the Night

0

1

2

3    I awaken at least one hour before I need to, and
   can't go back to sleep.

   I almost always awaken at least one hour or so
   before I need to, but I go back to sleep eventually.

   More than half the time, I awaken more than 30
   minutes before I need to get up.

   Most of the time, I awaken no more than 30 minutes
   before I need to get up.

3.  Waking Up Too Early:

0

1

2

3    I sleep longer than 12 hours in a 24-hour period
   including naps.

   I sleep no longer than 12 hours in a 24-hour period
   including naps.

   I sleep no longer than 10 hours in a 24-hour period
   including naps.

   I sleep no longer than 7-8 hours/night, without
   napping during the day.

4.  Sleeping Too Much:

0

1

2

3

   I eat much less than usual and only with personal effort.

   I eat somewhat less often or lesser amounts of food than
   usual.

   There is no change in my usual appetite.

   I rarely eat within a 24-hour period, and only with
   extreme personal effort or when others persuade me to
   eat.

6.  Decreased Appetite:

0

1

2

3    I feel driven to overeat both at mealtime and between
   meals.

   I regularly eat more often and/or greater amounts of
   food than usual.

   I feel a need to eat more frequently than usual.

   There is no change from my usual
   appetite.

7.  Increased Appetite:

9.  Increased Weight (Within the Last Two Weeks):

   I have not had a change in my weight.

   I feel as if I have had a slight weight gain.

   I have gained 2 pounds or more.

   I have gained 5 pounds or more.

0

1

2

3

Please complete either 6 or 7   (not both)

Please complete either 8 or 9   (not both)

- OR -

- OR -

 The Quick Inventory of Depressive Symptomatology (16-Item) (Self-Report) (QIDS-SR 16)

Name or ID: _____________________________     Date: _____________________________ 
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Quality of Life Enjoyment and Satisfaction Short Form (Q-LES-Q- SF) 
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R-Statistics Code 
 

### Author: Brian Kay 

### Predicting readmission in OUD- Exploratory Data Analysis, and predictive models 

### Updated: 12/31/2020 

### PACKAGE LOAD  

 

library(openxlsx) 

library(Boruta) 

library(car) 

library(corrplot) 

library(data.table) 

library(plyr) ## Load this before dplyr 

library(dplyr) 

library(olsrr) 

library(psych) 

library(questionr) 

library(randomForest) 

require(caTools) 

library(tidyverse) 

library(caret) 

library(xgboost) 

library(imputeTS) 

library(stringr) 

library(tree) 

library(FFTrees) 

library(RWeka) 

library(party) 

library(FSelector) 

library(caret) 

library(pROC) 

library(adabag) 

library(mlbench) 

library(forcats) 

library(Amelia) 

library(tidyr) 

library(h2o) 

 

# Run Descriptive Statistics: 

 

# Subset to only baseline & by readmit vs non readmit 

 

OUD_Baseline<-subset(OUD_data, phase=="Baseline") 

OUD_Baseline$phase<-NULL 

OUD_Baseline_ML<-OUD_Baseline[!is.na(OUD_Baseline$Readmit_Orig),] 

descriptivestatsreadmit<-subset(OUD_Baseline_ML, Readmit_Orig=="Readmit") 
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descriptivestatsnoreadmit<-subset(OUD_Baseline_ML, Readmit_Orig=="No Readmit") 

 

# Summary of demographic information in each group 

describeBy(OUD_Baseline_ML,OUD_Baseline_ML$Readmit_Orig=="Readmit") 

describeBy(OUD_Baseline_ML,OUD_Baseline_ML$Readmit_Orig=="No Readmit") 

#Frequencies for readmit 

questionr::freq(descriptivestatsreadmit$sex, cum = TRUE, sort = "dec", total = TRUE) # 

Discharge sex 

 

questionr::freq(descriptivestatsreadmit$dcdisposition, cum = TRUE, sort = "dec", total = TRUE) 

# Discharge disposition 

 

questionr::freq(descriptivestatsreadmit$FDA_Recovery_Med, cum = TRUE, sort = "dec", total = 

TRUE) # Recovery Medications 

 

questionr::freq(descriptivestatsreadmit$race, cum = TRUE, sort = "dec", total = TRUE) # Race 

 

questionr::freq(descriptivestatsreadmit$marital, cum = TRUE, sort = "dec", total = TRUE) # 

Marital 

 

 

# Frequencies for no readmit 

 

questionr::freq(descriptivestatsnoreadmit$dcdisposition, cum = TRUE, sort = "dec", total = 

TRUE) # Discharge disposition 

 

questionr::freq(descriptivestatsnoreadmit$FDA_Recovery_Med, cum = TRUE, sort = "dec", 

total = TRUE) # Recovery Medications 

 

questionr::freq(descriptivestatsnoreadmit$marital, cum = TRUE, sort = "dec", total = TRUE) 

#Marital 

 

questionr::freq(descriptivestatsnoreadmit$sex, cum = TRUE, sort = "dec", total = TRUE) #Sex 

 

 

questionr::freq(descriptivestatsnoreadmit$race, cum = TRUE, sort = "dec", total = TRUE) # 

Race 

 

 

# Understand which variables are highly correlated 

corr_simple <- function(data=df,sig=0.5){ 

  #convert data to numeric in order to run correlations 

  #convert to factor first to keep the integrity of the data - each value will become a number 

rather than turn into NA 

  df_cor <- data %>% mutate_if(is.character, as.factor) 

  df_cor <- df_cor %>% mutate_if(is.factor, as.numeric) 
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  #run a correlation and drop the insignificant ones 

  corr <- cor(df_cor) 

  #prepare to drop duplicates and correlations of 1      

  corr[lower.tri(corr,diag=TRUE)] <- NA  

  #drop perfect correlations 

  corr[corr == 1] <- NA  

  #turn into a 3-column table 

  corr <- as.data.frame(as.table(corr)) 

  #remove the NA values from above  

  corr <- na.omit(corr)  

  #select significant values   

  corr <- subset(corr, abs(Freq) > sig)  

  #sort by highest correlation 

  corr <- corr[order(-abs(corr$Freq)),]  

  #print table 

  print(corr) 

  #turn corr back into matrix in order to plot with corrplot 

  mtx_corr <- reshape2::acast(corr, Var1~Var2, value.var="Freq") 

   

  #plot correlations visually 

  corrplot(mtx_corr, is.corr=FALSE, tl.col="black", na.label=" ") 

} 

corr_simple(OUD_Impute) 

 

 

#Duplicative Variables and Colinear Variables 

OUD_Impute$los<-NULL 

OUD_Impute$ethnic<-NULL 

OUD_Impute$employment<-NULL 

OUD_Impute$highest_education<-NULL 

OUD_Impute$dxquatinary<-NULL 

OUD_Impute$dxquinary<-NULL 

OUD_Impute$dxtertiary<-NULL 

OUD_Impute$Continuation<-NULL 

OUD_Impute$dxprimary<-NULL 

OUD_Impute$dxsecondary<-NULL 

OUD_Impute$qids_percent_change<-NULL 

OUD_Impute$qids_total<-NULL 

missmap(OUD_Impute) 

 

#Oversample and undersample the Dataset to balance 

library(ROSE) 

data_balanced_both<- ovun.sample(Readmit_Orig ~., data=OUD_Impute ,method= "both", 

N=2000, seed = 123)$data 

table(data_balanced_both$Readmit_Orig) 

OUD_Baseline_ML<-data_balanced_both 
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#Reduce dataset to feature selected variables  

 

# Apply Random forest model 

set.seed(101) 

sample = sample.split(OUD_Baseline_ML$Readmit_Orig,SplitRatio=.75) 

train= subset(OUD_Baseline_ML,sample ==TRUE) 

test= subset(OUD_Baseline_ML,sample ==FALSE) 

 

train<-train %>% mutate_if(is.character, as.factor) 

 

rf<-randomForest( 

  Readmit_Orig ~., 

  data=train, 

  ntree= 2000, 

  importance=TRUE, 

  proximity=TRUE, 

  na.action = na.omit 

) 

 

getTree(rf,1,labelVar = TRUE) 

pred= predict(rf, newdata=test[-36]) 

cm= table(test[,36],pred) 

cm 

 

 

#Apply gradient boosting model 

 

set.seed(123) 

OUD_gradient <- train( 

  Readmit_Orig ~., data=train, method= "xgbTree", 

  trControl=trainControl("cv",number=10), 

  na.action= na.omit 

  ) 

 

#Best tuning parameter 

OUD_gradient$bestTune 

 

#Make predictions on the test data 

pred<-predict(OUD_gradient,test) 

pred.resp <- ifelse(pred >0.86, 1, 0) 

predicted.classes<-OUD_gradient %>% predict(test) 

head(predicted.classes) 

confusionMatrix(pred.resp, Readmit_Orig, positive="Readmit") 

#Compute model prediction accuracy rate 

mean(predicted.classes == test$Readmit_Orig) 

varImp(OUD_gradient) 
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plot(varImp(OUD_gradient), top=10) 

y_pred=predict(OUD_gradient,test) 

err <- mean(as.numeric(pred > 0.5)) 

print(paste("test-error=", err)) 

 

 

#Apply J48 

j48 <- J48(Readmit_Orig~., data = train) 

 

summary(j48) 

 

plot(information.gain(Readmit_Orig~., data = OUD_Baseline_ML), top=10) 

y_pred=predict(j48,test) 

err <- mean(as.numeric(pred > 0.5)) 

print(paste("test-error=", err)) 

#Information gain of J48 

information.gain(Readmit_Orig~., data = OUD_Baseline_ML) 

if(require("party", quietly = TRUE)) plot(j48) 

 

#Apply Logistic Regression 

 

trCntl <- trainControl(method = "CV",number = 5) 

glmModel <- train(Readmit_Orig ~ .,data = train,trControl = trCntl,method="glm",family = 

"binomial") 

# print the model info 

summary(glmModel) 

glmModel 

confusionMatrix(glmModel) 

# generate predictions on hold back data 

trainPredicted <- predict(glmModel,test) 

# generate confusion matrix for hold back data 

confusionMatrix(trainPredicted,reference=test$Readmit_Orig) 

 

 

##adaboost 

 

adaboost<-boosting(Readmit_Orig~ ., data=train ,boos=TRUE, mfinal=50) 

predadaboost<-predict(adaboost,newdata=test) 

print(predadaboost$error) 

get_tree(adaboost,1) 

print(predadaboost$confusion) 

print(predadaboost$trees) 

 

#Boosted model with Crossfold validation 

adaboostcv<-boosting.cv(Readmit_Orig~ ., data=train ,boos=TRUE, mfinal=50, v=10) 

print(adaboostcv[-1]) 
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## Deep Learning Model,derived from h2o tutorial 

 

library(h2o) 

h2o.init(nthreads = -1) 

 

#Convert To H2o dataframe 

 

train<-as.h2o(train) 

test<-as.h2o(test) 

 

#Set target variable and predictors 

response<-"Readmit_Orig" 

predictors <- setdiff(names(train), response) 

predictors 

 

#Model 1 

m1 <- h2o.deeplearning( 

  model_id="dl_model_first",  

  training_frame=train,  

  validation_frame=test,   ## validation dataset: used for scoring and early stopping 

  x=predictors, 

  y=response, 

  activation="Rectifier",   

  hidden=c(200,200),        

  epochs=1, 

  variable_importances=T     

) 

summary(m1) 

 

head(as.data.frame(h2o.varimp(m1))) 

 

#Model 2 

m2 <- h2o.deeplearning( 

  model_id="dl_model_faster",  

  training_frame=train,  

  validation_frame=test, 

  x=predictors, 

  y=response, 

  hidden=c(256,256,256),                   

  epochs=1000000,                       

  score_validation_samples=10000,       

  stopping_rounds=2, 

  stopping_metric="misclassification",  

  stopping_tolerance=0.01 

) 
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summary(m2) 

plot(m2) 

 

#final Model Tuned  

m3 <- h2o.deeplearning( 

  model_id="dl_model_tuned",  

  training_frame=train,  

  validation_frame=test,  

  x=predictors,  

  y=response,  

  overwrite_with_best_model=F,     

  hidden=c(128,128,128,128),           

  epochs=1000000,                       

  score_validation_samples=10000,  

  score_duty_cycle=0.025,          

  adaptive_rate=F,                 

  rate=0.01,  

  rate_annealing=2e-6,             

  momentum_start=0.2,              

  momentum_stable=0.4,  

  momentum_ramp=1e7,  

  l1=1e-5,                         

  l2=1e-5, 

  max_w2=10                        

)  

summary(m3) 

 

h2o.performance(m3, train=T)           

h2o.performance(m3, test=T)           

h2o.performance(m3, newdata=train)     

h2o.performance(m3, newdata=test)     

 

#Tuning Hyperparameters 

hyper_params <- list( 

  hidden=list(c(256,256,256),c(64,64)), 

  input_dropout_ratio=c(0,0.05), 

  rate=c(0.01,0.02), 

  rate_annealing=c(1e-8,1e-7,1e-6) 

) 

 

hyper_params 

grid <- h2o.grid( 

  algorithm="deeplearning", 

  grid_id="dl_grid",  

  training_frame=train, 

  validation_frame=test,  
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  x=predictors,  

  y=response, 

  epochs=10, 

  stopping_metric="misclassification", 

  stopping_tolerance=1e-2,        ## stop when misclassification does not improve by >=1% for 2 

scoring events 

  stopping_rounds=2, 

  score_validation_samples=10000,  

  score_duty_cycle=0.025 

  adaptive_rate=F,                 

  momentum_start=0.5,              

  momentum_stable=0.9,  

  momentum_ramp=1e7,  

  l1=1e-5, 

  l2=1e-5, 

  activation=c("Rectifier"), 

  max_w2=10,                       

  hyper_params=hyper_params 

) 

grid 

 

dlmodel <- h2o.deeplearning( 

  x=predictors, 

  y="bin_response",  

  training_frame=train, 

  hidden=c(10,10), 

  epochs=0.1 

) 

summary(dlmodel) 

 

grid <- h2o.getGrid("dl_grid",sort_by="err",decreasing=FALSE) 

grid 

 

## To see what other "sort_by" criteria are allowed 

#grid <- h2o.getGrid("dl_grid",sort_by="wrong_thing",decreasing=FALSE) 

 

## Sort by logloss 

h2o.getGrid("dl_grid",sort_by="logloss",decreasing=FALSE) 

 

## Find the best model and its full set of parameters 

grid@summary_table[1,] 

best_model <- h2o.getModel(grid@model_ids[[1]]) 

best_model 

 

print(best_model@allparameters) 

print(h2o.performance(best_model, valid=T)) 
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print(h2o.logloss(best_model, valid=T)) 

 

 

hyper_params <- list( 

  

activation=c("Rectifier","Tanh","Maxout","RectifierWithDropout","TanhWithDropout","Maxou

tWithDropout"), 

  hidden=list(c(20,20),c(50,50),c(30,30,30),c(25,25,25,25)), 

  input_dropout_ratio=c(0,0.05), 

  l1=seq(0,1e-4,1e-6), 

  l2=seq(0,1e-4,1e-6) 

) 

hyper_params 

 

## Stop once the top 5 models are within 1% of each other (i.e., the windowed average varies 

less than 1%) 

search_criteria = list(strategy = "RandomDiscrete", max_runtime_secs = 360, max_models = 

100, seed=1234567, stopping_rounds=5, stopping_tolerance=1e-2) 

dl_random_grid <- h2o.grid( 

  algorithm="deeplearning", 

  grid_id = "dl_grid_random", 

  training_frame=train, 

  validation_frame=test,  

  x=predictors,  

  y=response, 

  epochs=1, 

  stopping_metric="logloss", 

  stopping_tolerance=1e-2 

  stopping_rounds=2, 

  score_validation_samples=10000,  

  score_duty_cycle=0.025,          

  max_w2=10,                       

  hyper_params = hyper_params, 

  search_criteria = search_criteria 

)                                 

grid <- h2o.getGrid("dl_grid_random",sort_by="logloss",decreasing=FALSE) 

grid 

 

grid@summary_table[1,] 

best_model <- h2o.getModel(grid@model_ids[[1]])  

best_model 

 

grid <- h2o.getGrid("dl_grid",sort_by="err",decreasing=FALSE) 

best_model <- h2o.getModel(grid@model_ids[[1]])  

h2o.confusionMatrix(best_model,valid=T) 

best_params <- best_model@allparameters 
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best_params$activation 

best_params$hidden 

best_params$input_dropout_ratio 

best_params$l1 

best_params$l2 

 

 

max_epochs <- 10000 ## Add two more epochs 

m_cont <- h2o.deeplearning( 

  model_id="dl_model_tuned_continued",  

  checkpoint="dl_model_tuned",  

  training_frame=train,  

  validation_frame=test,  

  x=predictors,  

  y=response,  

  hidden=c(128,128),           

  epochs=max_epochs,               

  stopping_metric="logloss",       

  stopping_tolerance=1e-2,        scoring events 

  stopping_rounds=2, 

  score_validation_samples=10000,  

  score_duty_cycle=0.025,          

  adaptive_rate=F,                 

  rate=0.01,  

  rate_annealing=2e-6,             

  momentum_start=0.2,              

  momentum_stable=0.4,  

  momentum_ramp=1e7,  

  l1=1e-5,                         

  l2=1e-5, 

  max_w2=10                        

)  

summary(m_cont) 

plot(m_cont) 

 

dlmodel <- h2o.deeplearning( 

  x=predictors, 

  y=response,  

  training_frame=train, 

  hidden=c(10,10), 

  epochs=1, 

  nfolds=5, 

  fold_assignment="Modulo" # can be "AUTO", "Modulo", "Random" or "Stratified" 

) 

dlmodel 
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#Binomial Model  

dlmodel <- h2o.deeplearning( 

  x=predictors, 

  y="Readmit_Orig",  

  training_frame=train, 

  validation_frame = test, 

  hidden=c(128,128,128,128), 

  epochs=1000, 

  reproducible = T 

) 

summary(dlmodel) 

h2o.varimp(dlmodel) 

h2o.varimp_plot(dlmodel,num_of_features = 5) 

plot(h2o.performance(dlmodel)) 
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