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Chapter 1

Magnetotelluric Geoprospecting
Problem

1.1 Introduction

In geoprospecting, the conductivity of rock is determined from its effect on electromagnetic waves.

From the conductivity, we can deduce the type of rock (or oil or water) and the nature of the

geological formation. The forward problem is to solve Maxwell’s system of partial differential

equations

∇×∇× E + iωµ0σE = J (1.1)

for the electric field E, given the electrical conductivity σ and source vector J, where ω is the angular

frequency, and µ0 is the magnetic permeability of free space. The conductivity could be complex,

but in our study we restrict it to have real values. The inverse problem is formulated from the

forward problem. Given J and some information about E, we must determine σ. Electromagnetic

inverse problems arise in many geological applications, including magnetotelluric geoprospecting,

hydrological modeling, and reservoir and environmental characterization [25].

A simpler forward problem is Poisson’s equation

∇ · σ∇φ = ∇ · J. (1.2)

This equation is essentially the conservative components of (1.1) (E = ∇φ), and is a scalar equation

rather than a vector equation. Thus ∇φ can still be thought of as an electromagnetic field, but
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the mathematics is simpler. Here, we begin with (1.2) in two space dimensions: given J(x, y) and

some measurements of φ(x, y), we must determine σ(x, y).

Electromagnetic inverse problems of this kind are ill-posed, meaning that the solution is not

unique or does not depend continuously on the data [7, p. 4]. Ill-posed problems arise in many

fields, including optics, signal processing, acoustics, astronomy, and thermodynamics. If a problem

has more than one solution, then the issue is how to select a desired solution from the solution space.

One approach is to stabilize the problem by adding information such as smoothness constraints to

the problem. Regularization, one such class of stabilizing methods, has commonly been used for

these problems.

1.2 Stabilization of Inverse Problem

There are many types of additional information that we could use to stabilize the problem. In least

squares methods, a residual and its norm are defined,

ρ(σ) = ‖z − Lσ‖2,

where L is the operator and z is the right-hand side, and then one of the following methods is used

to regularize [7, pp. 10–11]:

1. Minimize ρ(σ) subject to the constraint that σ belongs to a specified subset, σ ∈ Sσ.

2. Minimize ρ(σ) subject to the constraint that some measure of the “size” of σ, ω(σ), is less

than an upper bound δ, i.e., min ρ(σ) subject to ω(σ) < δ.

3. Minimize ω(σ) subject to a constraint on ρ(σ), i.e., min ω(σ) subject to ρ(σ) < α.

4. Minimize a linear combination of ρ(σ)2 and ω(σ)2, i.e., min (ρ(σ)2 + λ2ω(σ)2). This is the

most famous method and is known as Tikhonov regularization.

Tikhonov regularization is often used in magnetotelluric problems [23, 24, 25, 32, 34]. Newman

and Hoversten describe the technique at a high level in [25].
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1.2.1 Stabilization Using Tikhonov Regularization

Suppose that we can compute discrete solutions of Maxwell equations for a real and arbitrary 3-D

electrical conductivity distribution m, using a linear complex forward mapping operator f [m]. Then

the field observations can be viewed as a function of the model:

dobs = f [m] + ε,

where dobs and ε are complex vectors of length n that comprise the observed data values and

measurement noise. The mapping f [m] takes the real vector m of length m and maps it to the

complex space of dimension n. Because the inverse problem is underdetermined (m � n), the

process of recovering the model m is ill-posed. Thus to recover the model, extra information must

be added to the problem. Typically, the technique used is to minimize the Tikhonov functional

φ =
1
2
(F[m]− dobs)H(F[m]− dobs) +

λ

2
‖W(m−mref)‖2, (1.3)

where H denotes the Hermitian transpose operator, W ∈ Rm×m is a smoothing matrix that does

not depend on m, F[m] and dobs are weighted versions of f [m] and dobs, mref is the reference

model, and λ is the regularization parameter.

F[m] and dobs are obtained by multiplying a weighting matrix D ∈ Rn×n by f [m] and dobs,

respectively. Typically, D is diagonal and weights the entries based on the inverse of the standard

deviations of the measurements. W is usually based upon a finite-difference approximation to the

Laplacian operator, so minimizing the second term in the Tikhonov functional controls the model

curvature.

The regularization parameter λ ≥ 0 determines the degree of smoothing imposed upon the

solution. The trade-off is between data fit and model smoothness. A smaller λ yields a better

data fit but a rougher model, while a larger λ will result in a smoother model but poorer data fit.

Selecting the regularization parameter is a difficult problem with no single best approach. Newman

and Hoversten report success with using a continuation approach to the problem: Begin with a large

λ, which results in a nearly quadratic objective function, and then reduce λ (thereby placing more
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weight on the data fitting requirement) and solve a new minimization problem, reducing λ until the

data misfit no longer exceeds a given tolerance [25]. The rationale for using a continuation approach

is that a large regularization parameter stabilizes the problem at the outset of the procedure,

guarding against spurious, nonphysical models.

Computing the gradient ∇φ with respect to the model parameters and setting the resulting

expression equal to zero results in a nonlinear equation that must be satisfied for a minimum of

(1.3). The kth component of the gradient can be expressed as

∂φ

∂mk
= Re

{
∂F[m]T

∂mk

{
F[m]− dobs

}∗}
+ λwT

k W(m−mref),

where wk denotes the kth column of W, T denotes the transpose operator, and Re refers to the

real part of the complex argument. Thus we can write ∇φ = 0 as

Re
{
JT (m)(F[m]− dobs)∗

}
+ λWTW(m−mref) = 0, (1.4)

where JT (m) = ∂F[m]/∂m ∈ Cn×m is the sensitivity matrix, and ∗ represents the complex conju-

gate operation.

Typically, (1.3) is minimized by using Newton’s method to solve (1.4). Newton’s method con-

verges quadratically in the neighborhood of a minimum, and for a quadratic (1.3), it will solve (1.4)

in one step. In the first steps of continuation, (1.3) is nearly quadratic, and as the regularization

parameter is reduced, the starting model obtained from the previous step should be in the neigh-

borhood of the minimum. If this is not the case, it may be necessary to perform a line search with

backtracking.

The metric ω(σ) is usually chosen to measure the smoothness of the second derivative. While

this choice of metric certainly stabilizes the problem, it does not seem physically realistic for

this application, since different types of rock have distinct conductivities and strata have definite

boundaries.

Portniaguine and Zhdanov [29] propose a different stabilizing functional. Instead of minimizing

the second derivative, they minimize the area where strong model parameter variations and dis-
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continuities occur with their minimum gradient support (MGS) functional. Using this functional,

we seek the minimum of

φ =
1
2
(F[m]− dobs)H(F[m]− dobs) +

λ

2
‖m‖2

we
, (1.5)

where ‖ · ‖2
we

is a weighted norm with weighting function

we(m) =
fβMGS(m)

((m,m) + ε2)1/2
,

where ε is a small number, (x,y) is the inner product, and

fβMGS(m) =
∇m

(∇m · ∇m + β2)1/2
,

where β is also a small number.

Using the MGS functional in the regularization results in a more focused image. Portniaguine

and Zhdanov report promising results in [29]. In particular, their method is able to reproduce a

model containing two small bodies of anomalous conductivity, whereas traditional regularization

produces an incorrect solution.

1.2.2 Stabilization Using Selection Methods

Another class of stabilizing methods are known as selection methods [33]. The general idea behind

selection methods is to restrict the solution of Lσ = z to some set of possible solutions S, and then

minimize the residual in a meaningful manner. If z /∈ LS, then we are searching for a quasisolution.

Furthermore, if we search for a solution in a finite dimensional space, then the solution is said to

be an approximate quasisolution [33].

Other researchers have investigated selection methods for geoprospecting. Marcuello–Pascual,

Kaikkonen, and Pous have proposed an inversion algorithm that takes into account the varying

geometry in magnetotelluric models by parameterizing the boundaries between strata with curves

[17]. They use finite elements with linear shape functions to compute a coefficient matrix, and a
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statistical iterative method to determine the parameterization.

M. S. Zhdanov and N. G. Golubev have proposed the Finite Functions Method [36]. In this

method, the anomalous conductivity is described by a function of the form

f(x) =

 0 if x /∈ [a, b]

A · φα,β{t[τ(x; a, b); p, q]} if x ∈ [a, b]
,

where A is the amplitude of the function,

φα,β(t) = (1− t)α(1 + t)β

is a smooth function with a maximum equal to 1 within the interval [−1, 1],

t(τ ; p, q) = Re
[
− i

π
ln
(

(1 + γ∗)(eiπτ − γ)
(1 + γ)(1− γ∗eiπτ )

)]
,

and −1 ≤ τ ≤ 1, γ = p + iq, γ∗ = p − iq, |γ| < 1. The function t creates a continuous mapping of

[−1, 1] onto itself and is what allows great variation in the form of φα,β. The function τ(x; a, b) =

(2x− (a + b))/(b− a) maps x ∈ [a, b] onto the segment [−1, 1].

The finite function is completely defined by seven parameters. The two-dimensional version of

this function is simply the product of two one-dimensional finite functions of two different variables

(e.g., x and z), and turns out to be completely defined by nine parameters.

Placing the finite functions f1(x) and f2(z) inside a rectangle P (a1 ≤ x ≤ b1, a2 ≤ z ≤ b2)

enclosing the inhomogeneity, we obtain a function

∆̃σ(x, z) = Af1(x)f2(z) (1.6)

with a unique maximum amplitude A that represents the excess electrical conductivity contained

within P. The magnitude of A depends on the conductance S̄ of the inhomogeneity, and

S̄ =
∫

P

∫
∆̃σ(x, z)dx dz = A

∫
P

∫
f1(x)f2(z)dx dz.
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We might instead take S̄ as a free parameter, solve for A and obtain

A =
S̄∫

P

∫
f1(x)f2(z)dx dz

.

Substituting this expression for A into (1.6), we obtain an expression for the finite function ΨP

approximating ∆̃σ(x, z):

∆̃σ(x, z) ≈ ΨP (S̄, α1, β1, α2, β2, p1, q1, p2, q2) =
S̄f1(x)f2(z)∫
P

∫
f1(x)f2(z)

dx dz.

We now have a well-posed problem of minimizing the misfit with respect to a small number of

parameters. Zhdanov and Golubev use the Nelder–Mead optimization method (see Section 3.7.2)

to find the minimum.

We propose to solve the geoprospecting problem using an approximate quasisolution selection

method. Our approach is described in the next chapter.

7



Chapter 2

Solution of Magnetotelluric
Geoprospecting Problem

In the first chapter, we outlined the ill-posed problem that must be solved and some solution

methods that have been used by other researchers. Traditionally, Tikhonov regularization has been

the choice of practitioners, despite its great expense and the blurriness of results. Other researchers

have investigated selection methods, in which the anomalous conductivity is described by a function

of a certain form. Likewise, we search for an approximate quasisolution by following the same basic

algorithm:

1. Formulate an initial set S in which σ(x, y) is contained. (This set is meant to approximate

the actual conductivity function.)

2. Find the best σ(x, y) from the set S by minimizing the difference between the solution of the

forward problem using σ and the true solution obtained from measurements.

2.1 Formulation of Problem in Two Dimensions

The form of the conductivity function depends on the set S to which σ(x, y) is constrained. We

constrain the function σ(x, y) to the set of piecewise constant functions on two regions having two

different values,

σ(x, y) =

 σin if (x, y) ∈ Ωin

σout if (x, y) /∈ Ωin.
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e2 = 1 - b2/a2

ab

x

y(x0, y0) 

 = in

 = out

∂

Figure 2.1. Example conductivity function σ(x, y).

Furthermore, the interface ∂Ωin is taken to be an ellipse parameterized as follows:

r(x, y, a, e2, x0, y0, θ) = (1− e2 cos2 θ)(x− x0)2 − 2e2 sin θ cos θ(x− x0)(y − y0)

+(1− e2 sin2 θ) = a2(1− e2)

(see Figure 2.1 for an illustration). This formulation makes sense for the geoprospecting application

in particular. An oil deposit has a constant conductivity, and the surrounding rock has a different

constant conductivity. The interface can be described as above. We chose the elliptical formulation

because relatively few parameters are required to describe an ellipse, but it is still general enough

to describe the approximate size, shape, and orientation of an arbitrary region.

We expand φ(x, y) : [−π, π]× [−π, π] 7→ R in a truncated Fourier sine series in two dimensions:

φ(x, y) =
M∑

m=1

N∑
n=1

αmn sin(mx) sin(ny).

9



The Fourier formulation of φ is quite convenient, as every component is orthogonal to the other

components, i.e., ∫ π

−π
sin(mx) sin(nx) dx = 0 if m 6= n.

2.1.1 Solution of Forward Problem in Two Dimensions

In order to minimize the error, we set up the problem so that the error is orthogonal to the Fourier

basis. Thus we select coefficients αmn such that

∫
Ω

gpq(x, y) (∇ · J) dΩ−
∫

Ω
gpq(x, y)∇ · σ∇(αmn sin(mx) sin(ny)) dΩ = 0, (2.1)

where gpq(x, y) = sin(px) sin(qy). We evaluate the second term of (2.1) for every combination of

φmn and gpq to obtain the entries of a matrix A, and we compute the first term of (2.1) to obtain

the right-hand side b. Thus we obtain a square system of linear equations

Aα = b

of dimension MN , which we solve for α. We can then calculate an approximation to φ based on

our approximate σ,

φ(x, y) =
∑
m,n

αmnφmn(x, y).

2.2 Formulation of Problem in Three Dimensions

As in the 2-D problem, we constrain the function σ(x, y, z) to the set of piecewise constant functions

on two regions having two different values,

σ(x, y, z) =

 σin if (x, y, z) ∈ Ωin

σout if (x, y, z) /∈ Ωin.

10



Furthermore, the interface ∂Ωin is taken to be an ellipsoid parameterized as follows:

r(x, y, z, a, e2
1, e

2
2, x0, y0, z0, θ1, θ2, θ3) = x2[c2

11(1− e2
1)(1− e2

2) + c2
21(1− e2)2 + c2

31(1− e2
1)]

+2xy[c11c12(1− e2
1)(1− e2

2) + c21c22(1− e2)2 + c31c32(1− e2
1)]

+2xz[c11c13(1− e2
1)(1− e2

2) + c21c23(1− e2)2 + c31c33(1− e2
1)]

+y2[c2
12(1− e2

1)(1− e2
2) + c2

22(1− e2)2 + c2
32(1− e2

1)]

+2yz[c12c13(1− e2
1)(1− e2

2) + c22c23(1− e2)2 + c32c33(1− e2
1)]

+z2[c2
13(1− e2

1)(1− e2
2) + c2

23(1− e2)2 + c2
33(1− e2

1)]

= a2(1− e2
1)(1− e2

2),

where the coefficients

c11 = cos θ3 cos θ2 − cos θ2 sin θ1 sin θ3,

c12 = cos θ3 sin θ2 + cos θ2 cos θ1 sin θ3,

c13 = sin θ3 sin θ2,

c21 = − sin θ3 cos θ2 − cos θ2 sin θ1 cos θ3,

c12 = − sin θ3 sin θ2 + cos θ2 cos θ1 cos θ3,

c23 = cos θ3 sin θ2,

c31 = sin θ2 sin θ1,

c32 = − sin θ2 cos θ1,

c33 = cos θ2,

and e2
1 and e2

2 represent the eccentricity between the x and y and the x and z axes, respectively;

(x0, y0, z0) is the center point of the ellipsoid; θ1 is an angle about the z axis; θ2 ∈ [0, π] is an angle

about the x axis; and θ2 is another angle about the z axis. See Figure 2.2 for an illustration.

Like the two-dimensional case, we expand φ(x, y, z) : [−π, π]3 7→ R in a truncated Fourier sine
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Figure 2.2. Example conductivity function σ(x, y, z).

series in three dimensions:

φ(x, y, z) =
M∑

m=1

N∑
n=1

P∑
p=1

αmnp sin(mx) sin(ny) sin(pz).

2.2.1 Solution of Forward Problem in Three Dimensions

Like the 2-D case, the error is constructed to be orthogonal to the Fourier basis. Thus we select

coefficients αmnp such that

∫
Ω

gqrs(x, y, z)(∇ · J)dΩ−
∫

Ω
gqrs(x, y, z)∇ · σ∇(αmnp sin(mx) sin(ny) sin(pz))dΩ = 0, (2.2)

where gqrs(x, y, z) = sin(qx) sin(ry) sin(sz). We evaluate the second term of (2.2) for every combi-

nation of φmnp and gqrs to obtain the entries of a matrix A, and we compute the first term of (2.2)

to obtain the right-hand side vector b. Thus we obtain a linear system

Aα = b

12



of dimension MNP, which we solve for α. We can then calcuate an approximation to φ based on

our approximate σ,

φ(x, y, z) =
∑

m,n,p

αmnpφmnp(x, y, z).

2.3 Solution of Inverse Problem

We determine the optimality of a solution by taking the norm of the difference between the com-

puted coefficients and the true coefficients. So to solve the inverse problem, we perform the following

optimization:

min
α

Ψ = ‖α− αtrue‖2
2. (2.3)

We know the true coefficients because they represent the amplitude of the input electromagnetic

field. We choose to perform the optimization with respect to α because it is an easily calculated

vector with a simple physical meaning.

We use the Euclidean norm because of its simplicity. This function is not easily differentiated in

closed form, in general, and because of the expense of a single function evaluation, finite differencing

is costly.

2.4 Optimization

Preliminary exploration of the objective function Ψ in two spatial dimensions was performed. In

this initial study, x0, y0, and θ were constrained to be zero, while a and e2 were allowed to vary,

yielding a two-dimensional search space. For a given right-hand side, a unique global minimum

exists (see example in Figure 2.3).

We tried many local optimization methods, including Model-Assisted Pattern Search (MAPS)

[30], LMDIF [5], Praxis [1], Nelder–Mead [21], Sufficient Decrease Nelder–Mead [12], and BFGS [26].

Most of these methods successfully converged to the global minimum if the initial point was located

“close enough” to the global minimum. We discovered, however, that there are many local minima

to which these optimization methods will converge if the starting point is located “close enough”

to them. These local minima are more shallow than the global minimum but still attractive to any
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Figure 2.3. Example objective function Ψ, with atrue = 1, e2
true = 0.

starting points outside the neighborhood of the global minimum. Since they are located all around

the global minimum, a starting point outside the area would naturally be attracted to one of these

local minima. Thus it was necessary to find a global optimization method.

2.4.1 Global Optimization Methods

A standard local optimization problem can be defined as follows. Given a nonempty, closed set

D ⊂ Rn and a continuous function f : A 7→ R, where A ⊂ Rn is a suitable set containing D, find

a point x∗ ∈ D satisfying f(x∗) ≤ f(x) for all x ∈ D in a neighborhood of x∗, or show that such a

point does not exist.

A standard global optimization problem is more onerous: Given a nonempty, closed set D ⊂ Rn

and a continuous function f : A 7→ R, where A ⊂ Rn is a suitable set containing D, find at least

one point x∗ ∈ D satisfying f(x∗) ≤ f(x) for all x ∈ D, or show that such a point does not exist

[9].

Let us denote the minimum value of the function f(x) as f∗ and the point at which the minimum

is located as x∗. If D is compact and f(x) is continuous, then the problem of finding f∗ is well-

posed. We cannot guarantee that f∗ will be found in a finite number of steps, however. To see this,
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assume that f(x) has been evaluated at a finite number of points. It is possible that the global

minimum of the function has not yet been found. Indeed, we could construct a function fitting

those points but for which the global minimum is smaller than any function value found so far.

There is no algorithm that will find f∗ for every f(x) in a finite number of steps [35].

To make matters worse, the problem of finding x∗ is ill-posed. Even if f is continuous and

satisfies very stringent smoothness conditions, x∗ is not a continuous function of f. For example,

consider the functions fδ, where

fδ(x) = cos(πx)− δx, x ∈ [−2, 2].

If δ > 0, then x∗ ≈ 1, if δ < 0, x∗ ≈ −1, and if δ = 0 then the solution is not unique [35]. A very

small change in f can result in a very large change in x∗ [1].

There are many methods that guarantee that a local minimum will be found, but no corre-

sponding methods for finding global minima. How do we go about finding minima? Even if we find

a minimum, how can we be assured that it is the global minimum? While there is no guarantee

that any strategy we adopt (short of examining every point in the set D) will find a global mini-

mum, researchers have developed many techniques for global optimization that often work well for

certain classes of functions. Most global optimization methods for continuous functions fall into

one of three classes: branch and bound methods, stochastic methods, and smoothing methods.

Branch and Bound Methods

The general idea of a branch and bound method is to subdivide the feasible region of a problem

into smaller subproblems [6]. In order for this method to work, it must be possible to compute

lower and upper bounds on the objective function.

We begin by considering the original problem with its original feasible region (known as the root

problem). We compute the lower and upper bounds, and if they match, we have found an optimal

solution and the procedure is terminated. Otherwise, the feasible region is subdivided into strict

subregions (or child problems) that together make up the original feasible region. The algorithm is

applied recursively to the subproblems, forming a tree of subproblems. While an optimal solution
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to a subproblem is a feasible solution to the root problem, it is not necessarily a global optimum.

We can use it nonetheless to prune the rest of the tree: If the lower bound of a node is larger than

the best feasible solution found so far, then we can eliminate the subspace of that node from the

search. The search terminates when all nodes have been solved or pruned, or until some threshold

between the best solution and the lower bounds on all unsolved problems is met.

In the worst case, this sort of method requires an exponential amount of work, but in practice

most problems do not exhibit this worst case behavior. Neumaier suggests that branch and bound

methods, combined with computationally verifiable sufficient conditions for global minima, may

permit proof of global optimality of a solution [22].

Stochastic Methods

The two most popular stochastic methods are simulated annealing and evolutionary algorithms.

Both types of methods can be proven convergent in a probabilistic sense, and rely on properties

of statistics to overcome local barriers that would otherwise force them into local minima. These

methods are suitable in particular for objective functions that are cheap to evaluate.

Simulated annealing is based on the idea that heating and then slowly cooling a metal brings

it into a relatively uniform crystalline state, in other words, a configuration in which the free

energy of the metal is minimized. A temperature parameter allows the configuration to reach

higher energy states, so that states beyond a local well can be visited and examined. Simulated

annealing is provably convergent in a probabilistic sense using a sufficiently slow annealing schedule.

Researchers have developed enhancements that speed the convergence of simulated annealing, but

success depends on the implementation used [22].

Evolutionary algorithms take their inspiration from biological evolution. By making small

alterations to promising solutions, evolutionary algorithms seek to derive even better solutions

at each step. Evolutionary algorithms begin with a “population” of solutions that compete against

one another to eliminate poor solutions. The remaining solutions are mutated (each coordinate of

a promising solution is allowed to change with a certain probability) or crossed (the coordinates of

two promising solutions are interchanged), resulting in new possible solutions biased toward regions
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of space in which good solutions have already been found [6].

The efficiency of evolutionary algorithms depends greatly on the proper selection of crossing

rules. If the influence of the coordinates is nearly independent, then crossing may produce beneficial

results. If, on the other hand, the influence of the coordinates is highly correlated, as in the

case of functions with deep and narrow valleys not parallel to the coordinate axes, evolutionary

algorithms may not perform as efficiently [22]. Like simulated annealing, success depends on the

implementation. In particular, tuning the parameters of the algorithm requires considerable insight

into the nature of the particular objective function for which the minimum is sought.

Smoothing Methods

Smoothing methods are based on the idea that macroscopic features are an average of microscopic

details. For example, a valley seen from an airplane appears to have a simple shape; more and

more local features become visible upon closer examination at smaller and smaller scales [22].

Thus we could use some sort of smoothing process to simplify the appearance of our function

until enough details are removed that we can locate a single global minimum. Then we undo the

smoothing progressively, adding back detail and finding the minimum of the new function at each

step, until all the smoothing is undone and the global minimizer is found. While these methods are

not guaranteed to find the global minimum of all objective functions, they require relatively few

function evaluations, compared with stochastic methods in particular.

Choosing a Suitable Global Optimization Method

Each class of global optimization methods has its strengths and weaknesses, and is most suitable for

a certain type of objective function. Branch and bound methods work well for objective functions

whose upper and lower bounds are easily computed, and for discrete objective functions. Stochastic

methods befit objective functions that are inexpensive to evaluate, because hundreds of thousands of

evaluations are required for even the simplest objective function. Smoothing methods are expedient

for relatively smooth objective functions with global minima located in large wells.

There are no simple upper and lower bounds for the magnetotelluric objective function that
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could be used for branch and bound. In addition, the magnetotelluric objective function is costly to

evaluate, so stochastic methods are prohibitively expensive. While the objective function is steep

in some places, it is relatively smooth, so smoothing methods seem the most suitable.

There are many smoothing methods, including neighborhood averaging methods and integral

smoothing methods. While all smoothing methods are attractive for the magnetotelluric global

optimization problem, we chose the Diffusion Equation Method, a smoothing and continuation

method, for its elegance and simplicity.
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Chapter 3

Diffusion Equation Method for Global
Optimization

3.1 Background

The Diffusion Equation Method (DEM) is a global optimization method based on the concepts

of smoothing and continuation. The main idea of smoothing and continuation is to transform

the objective function into a sequence of progressively smoother functions, with the degree of

smoothing controlled by a smoothing parameter λ. The sequence ends at a λ = λmax for which only

one minimum remains. Starting with this smoothest function, the minimum is found. The degree

of smoothing is then reduced and the minima of the smoothed functions traced back to the global

minimum of the original objective function. At each step of this continuation, a local optimization

algorithm finds the minimum of the smoothed function, using the minimum from the previous step

as starting point [19].

Ideally, if the objective function can be smoothed enough, then other local minima will be

suppressed and only one minimum will remain. If the minimum of the smoothed function is found

and the continuation is performed with sufficiently small steps, then by the step at which the local

minima reappear, the starting point obtained from the previous step should be close enough to the

global minimum that the global minimum can be found.

One question is what sort of smoothing transform should be used. Since integration is an

inherently smoothing process, it is natural to use an integral transform, in which the objective
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y2 + 2): (a) original function and

(b) function smoothed using diffusion transform at t = 0.2.

function f is integrated against a kernel function ρ:

F (x, λ) =
1
λn

∫
Rn

f(y)ρ
(

x− y

λ

)
dy.

Many different classes of functions could be used as the kernel function, including the uniform

density function ρ(y) = 1
2 , ‖y‖∞ ≤ 1 and the Gaussian density function ρ(y) = exp(−‖y‖2

2). Moré

and Wu have delineated the properties of integral transforms for this purpose in [19].

The Diffusion Equation Method, proposed by Piela, Kostrowicki, and Scheraga for use in con-

formational analysis of molecules [28], is an integral transform method. The idea of the DEM is to

transform the objective function f(x) : Rn 7→ R into a function F (x, t) : Rn × R 7→ R by using the

diffusion operator. The diffused function is a solution to the following initial value problem:

∂F (x, t)
∂t

=
n∑

i=1

∂2F (x, t)
∂x2

i

,

F (x, 0) = f(x).

The initial value problem can be solved using the Fourier transform, and we find that

F (x, t) =
1

(4πt)n/2

∫
Rn

f(y) exp
(
−‖x− y‖2

4t

)
dy, (3.1)
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which resembles the convolution of f with the Gaussian density function. Thus the properties

of Gaussian smoothing apply [19], but the advantage of this transformation is that it is more

amenable to numerical implementation: Numerical quadrature or finite differences could be used.

In one spatial dimension, for example, the value of the smoothed function at time step n + 1 is

approximated with finite differences by

Fn+1
j = Fn

j +
∆t

(∆x)2
(Fn

j+1 − 2Fn
j + Fn

j−1).

Another way to express the analytic diffusion transform is with the Taylor-series diffusion op-

erator [28]

T (t) = exp
(

t
d2

dx2

)
:= 1 + t

d2

dx2
+

t2

2
d4

dx4
+

t3

3!
d6

dx6
+ · · · .

In multiple dimensions, the diffusion operator is the product of one-dimensional operators:

T (t) = T1(t)T2(t) . . . Tn(t),

where

Ti(t) = exp
(

t
∂2

∂x2
i

)
.

This formulation has proved useful for testing the DEM on analytical test functions. Applying the

differentiation operator is much simpler than kernel integration, particularly for polynomials.

3.2 Properties of Diffusion

We examine the effect of diffusion on a one-dimensional function. First we outline some properties

of the diffusion operator. Then we study the effect of diffusion upon two of the most important

basis sets for approximation of all functions: sinusoids and polynomials. Using this knowledge,

we examine the effect of diffusion on coercive functions. We restrict our study to functions of one

variable, but these results could be extended to functions in multiple dimensions, which would

behave similarly to the one-dimensional case.

The diffusion operator is a linear operator, because T (t)(f(x) + g(x)) = T (t)f(x) + T (t)g(x)
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and T (t)(αf(x)) = αT (t)f(x).

Diffusion damps high-frequency noise. If we apply the diffusion operator to a sinusoid, we can

see how oscillations are damped. Let α = 2πk/X, where k is the mode number, and X is the

period. Then

T (t) sin(αx) =
(

1 + t
d2

dx2
+

t2

2
d4

dx4
+

t3

3!
d6

dx6
+ . . .

)
sin(αx)

= sin(αx)− α2t sin(αx) + α4 t2

2
sin(αx) + α6 t3

3!
sin(αx) + . . .

= sin(αx)
(

1− α2t +
α4t4

2
− α6t6

3!
+ . . .

)
= sin(αx) exp(−α2t)

= sin
(

2πkx

X

)
exp

(
−4π2k2t

X2

)
.

The same procedure can be used for the cosine function and an identical damping factor is obtained.

Notice that the sine function obtains an exponential damping factor from diffusion, and that the

damping grows exponentially with k2. Thus higher frequency components damp more quickly, while

lower frequency components damp at a much slower rate.

3.2.1 Effect of Diffusion on Periodic Functions

A periodic function f(x) can be approximated by a Fourier series

f(x) =
a0

2
+

∞∑
k=1

(
ak cos

(
2πkx

X

)
+ bk sin

(
2πkx

X

))
,

where X is the length of the period, and ak and bk are the amplitudes of each component, derived

by integrating f against the appropriate sinusoid.

If |f(x)|2 is integrable on [x0, x0 +X], then the Fourier series converges to f in the mean-square

sense on the interval. Also, the Fourier coefficents will converge. This is shown by the following

proofs, adapted from [37].

Theorem 3.1. Let f(x) be a real function of period X on [x0, x1] (where x1 = x0 + X), and let

{φk} be an orthonormal set of functions on [x0, x1]. If |f(x)|2 is integrable on [x0, x1], then the
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Fourier series converges to f in the mean-square sense on the interval.

Proof: For a fixed integer n ≥ 0, letting

Φ = γ0φ0 + γ1φ1 + · · ·+ γnφn,

we seek values of the constants γ0, γ1, . . . , γn that minimize the integral

J =
∫ x1

x0

|f − Φ|2 dx.

Observe that

∫ x1

x0

|Φ|2dx =
∫ x1

x0

 n∑
j=0

γjφj

( n∑
k=0

γkφk

)
dx =

n∑
k=0

|γk|2,

∫ x1

x0

fΦ dx =
∫ x1

x0

f

(
n∑

k=0

γkφk

)
dx =

n∑
k=0

ckγk,

where c0, c1, . . . , cn are the Fourier coefficients of f with respect to {φk}.

From these observations we can see that

J =
∫ x1

x0

|f − Φ|2dx =
∫ x1

x0

|f |2dx +
∫ x1

x0

|Φ|2dx− 2
∫ x1

x0

fΦ dx

=
∫ x1

x0

|f |2dx +
n∑

k=0

|γk|2 − 2
n∑

k=0

ckγk.

Adding and subtracting
∑n

k=0 |ck|2, we obtain

J =
∫ x1

x0

|f |2dx−
n∑

k=0

|ck|2 +
n∑

k=0

|ck − γk|2.

From this equation it follows that J is minimized if γk = ck for k = 0, 1, . . . , n.

Thus, if |f(x)|2 is integrable on [x0, x1] and if Φ = γ0φ0 + γ1φ1 + · · ·+ γnφn, where φ0, φ1, . . . ,

form an orthonormal system on [x0, x1], then the integral J =
∫ x1

x0
|f − Φ|2dx is a minimum when

Φ is the nth partial sum of the Fourier series of f with respect to {φk}. �
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Theorem 3.2. If f(x) is a function of period X and |f(x)|2 is integrable on [x0, x1], then the

Fourier coefficients {ck} converge to zero as k →∞.

Proof: Recall that in Theorem 3.1 we have determined the minimum value for the integral J,

representing the minimum of the difference between f and its Fourier series representation Φ. This

minimum is ∫ x1

x0

|f |2dx−
n∑

k=0

|ck|2 > 0.

Rearranging, we obtain Bessel’s inequality, which is an upper bound on the sum of the coefficients:

n∑
k=0

|ck|2 ≤
∫ x1

x0

|f |2dx.

Taking the limit as n →∞, we obtain

∞∑
k=0

|ck|2 ≤
∫ x1

x0

|f |2dx,

where the ck are obtained by integrating f against exp((ikx)/(2π)) on [x0, x1].

In the case of a real-valued f, an equivalent expression of Bessel’s inequality is

a0

2
+

∞∑
k=1

(a2
k + b2

k) ≤
∫ x1

x0

f2 dx.

From this it follows that the Fourier coefficients tend to 0 with 1/k, provided that |f |2 is integrable.

�

Furthermore, the Riemann–Lebesgue Theorem states that the Fourier coefficients ck of an

integrable function f tend to 0 as |k| → ∞. The same result applies in the real case, since

ck = (ak − ibk)/2 for k > 0 [37].

We have shown that the Fourier series approximation converges to an integrable function, but

this says nothing about the accuracy of the Fourier series representation of diffusion. Using the

Taylor series representation of the diffusion operator, we can see that the accuracy of the diffusion

depends on the even derivatives of f. So if the derivatives of Φ match the derivatives of f, then the
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effect of diffusion should be identical.

As it turns out, if S[f ] is the Fourier series expansion of f, then S(k)[f ] = S[f (k)] as long as f

is a kth integral (meaning that there exists a function g such that integrating it k times yields f)

[37]. Thus for a periodic function f ∈ C∞ the Fourier series representation exactly represents the

effect of diffusion.

From the Fourier series representation, we see that the high frequency components of a periodic

function are damped faster than the low frequency components, and that the zeroth component,

a0, is not damped at all. Thus as t → ∞, F (x, t) → a0. This matches the physical behavior of

diffusion, which ultimately leads to a constant distribution over the entire region.

3.2.2 Effect of Diffusion on Coercive Polynomials

Next we discuss the effects of diffusion on a coercive polynomial. A coercive function tends toward

infinity with the absolute value of x. More precisely, “[a] continuous function f on an unbounded

set S ⊆ Rn is said to be coercive if

lim
‖x‖→∞

f(x) = +∞,

i.e., for any constant M , there is an r > 0 (depending on M) such that f(x) ≥ M for any x ∈ S

such that ‖x‖ ≥ r.” The implication of coercivity is that f must have a global minimum on S [8].

Theorem 3.3. A coercive polynomial p(x) = c0 + c1x + · · ·+ cKxK must be of even degree, and

the coefficient of the highest degree term must be positive.

Proof: Suppose that the highest degree is odd. Then the highest degree term could be rep-

resented as c2n+1x
2n+1 for some n ≥ 0. For x sufficiently large in absolute value, this term will

dominate the lower degree terms. But as x → +∞, x2n+1 → +∞, while as x → −∞, x2n+1 → −∞,

meaning that at one end of the real line p(x) → −∞, so p(x) cannot be coercive. A similar argu-

ment applies for the coefficient of the highest degree term. Suppose that the highest degree term

in the polynomial, the (2n)th term, has a negative coefficient. For sufficiently large absolute values

of x, this term will dominate the lower degree terms. As x → ±∞, c2nx2n → −∞. Thus at its

extreme, p(x) → −∞, so p(x) cannot be coercive. �
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The diffusion transform of a polynomial p is simply the weighted sum of its even derivatives

multiplied by appropriate powers of t,

P (x, t) = T (t)p(x) = p(x) + t
d2p

dx2
+

t2

2
d4p

dx4
+

t3

3!
d6p

dx6
+ . . . .

For a polynomial of degree K, there are 1 + bK/2c terms in this expansion, and the highest power

of t occurring in the expansion is tbK/2c. If a coercive polynomial p(x) is of degree 2N , then its

diffusion transform is

P (x, t) = p(x) + t
d2p

dx2
+

t2

2
d4p

dx4
+

t3

3!
d6p

dx6
+ · · ·+ tN−1

(N − 1)!
d2N−2p

dx2N−2
+

tN

N !
d2Np

dx2N
.

Theorem 3.4. Let p(x) be a coercive polynomial of degree 2N on R, and let P (x, t) be its diffusion

transform. Then for any constant M and r > 0 (depending on M) such that p(x) ≥ M whenever

‖x‖ ≥ r, there exists a finite τ > 0 such that P (x, t) is convex for ‖x‖ < r and t ≥ τ.

Proof: The second derivative of P (x, t) with respect to x determines its convexity: If the

second derivative is always positive, then the function is convex. Taking the second derivative of

the diffusion transform with respect to x, we obtain

∂2P

∂x2
=

d2p

dx2
+ t

d4p

dx4
+

t2

2
d6p

dx6
+ · · ·+ tN−1

(N − 1)!
d2Np

dx2N
.

(Note that the last term of P drops out because higher order derivatives are zero.) The final term

in the second derivative is
tN−1

(N − 1)!
d2Np

dx2N
=

tN−1

(N − 1)!
(2N)! c2N ,

where c2N > 0 is the coefficient of the x2N term of p.

Because ‖x‖ < r and the coefficients ci are finite, each term in the second derivative is bounded

for finite t. As t grows, the final term in the second derivative eventually dominates. It grows

with increasing t at a faster rate than its nearest competitor. Thus there exists τ > 0 such that
∂2P (x,t)

∂x2 > 0 on {x : ‖x‖ < r}. And as t becomes larger than τ, the second derivative grows, so
∂2P (x,t)

∂x2 > 0 on {x : ‖x‖ < r} for t ≥ τ. �
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3.2.3 Effect of Diffusion on Arbitrary Coercive Functions

According to the Weierstrass Approximation Theorem, an arbitrary continuous function can be

approximated arbitrarily well on a closed and bounded interval by a polynomial. The following

proof of the Weierstrass Approximation Theorem is adapted from [3].

Theorem 3.5. Weierstrass Approximation Theorem. Let I ⊂ R be a closed and bounded

interval and f a continuous function defined on I. Then, for every ε > 0 there exists a polynomial

p such that

|f(x)− p(x)| ≤ ε for all x ∈ I.

Proof: Without loss of generality, we can take I = [0, 1], since any desired interval [a, b] can

be scaled to [0, 1] by the transformation x = (x′ − a)/(b − a). For N ∈ N, define the Bernstein

polynomial BN on [0, 1],

BN (x) =
N∑

k=0

f(k/N)
(

N

k

)
xk(1− x)N−k. (3.2)

To bound |f(x)− BN (x)|, we rewrite f(x) with the help of the binomial formula. Multiplying

f by

1 = (x + (1− x))N =
N∑

k=0

(
N

k

)
xk(1− x)N−k

does not change its value. Thus we have

f(x)−BN (x) =
N∑

k=0

f(x)
(

N

k

)
xk(1− x)N−k −

N∑
k=0

f(k/N)
(

N

k

)
xk(1− x)N−k

=
N∑

k=0

(f(x)− f(k/N))
(

N

k

)
xk(1− x)N−k.

Recall that because f(x) is uniformly continuous on I, for a given ε > 0 there is a δ > 0 such

that

x, y ∈ [0, 1], |x− y| < δ ⇒ |f(x)− f(y)| < ε/2.
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For x ∈ [0, 1], we divide the set of indices {k}N
0 into two parts: those for which |x− k/N | < δ and

those for which |x− k/N | ≥ δ, to define the partial sums

S1 =
∑

|x−k/N |<δ

(f(x)− f(k/N))
(

N

k

)
xn(1− x)N−k, (3.3)

S2 =
∑

|x−k/N |≥δ

(f(x)− f(k/N))
(

N

k

)
xn(1− x)N−k (3.4)

so that

f(x)−BN (x) = S1 + S2.

We start with a bound on |S1|. By the triangle inequality, we see that

|S1| ≤
∑

|x−k/N |<δ

|f(x)− f(k/N)|
(

N

k

)
xk(1− x)N−k.

It follows from our choice of δ that

|S1| ≤ ε

2

∑
|x−k/N |<δ

(
N

k

)
xk(1− x)N−k

≤ ε

2

N∑
k=0

(
N

k

)
xk(1− x)N−k

=
ε

2
(x + (1− x))N

=
ε

2
.

Next we bound |S2|. First, we can rewrite |x− k/N | ≥ δ as

(x− k/N)2

δ2
≥ 1.

Now we see that

|S2| ≤
∑

(x−k/N)2

δ2
≥1

|f(x)− f(k/N)|
(

N

k

)
xk(1− x)N−k.
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Let M = maxx∈[0,1] |f(x)|. By the triangle inequality, we have

|f(x)− f(k/N)| ≤ |f(x)|+ |f(k/N)| ≤ 2M.

Using this inequality, it follows that

|S2| ≤ 2M
∑

(x−k/N)2

δ2
≥1

(
N

k

)
xk(1− x)N−k (3.5)

≤ 2M
∑

(x−k/N)2

δ2
≥1

(x− k/N)2

δ2

(
N

k

)
xk(1− x)N−k. (3.6)

((3.6) is derived from the fact that (x−k/N)2

δ2 ≥ 1.) Including the additional terms from (3.3) will

only increase the sum; thus

|S2| ≤ 2M
N∑

k=0

(x− k/N)2

δ2

(
N

k

)
xk(1− x)N−k (3.7)

≤ 2M

δ2

N∑
k=0

(x− k/N)2
(

N

k

)
xk(1− x)N−k. (3.8)

The sum
N∑

k=0

(k −Nx)2
(

N

k

)
xk(1− x)N−k

is the variance for a binomial distribution with parameter N and probability parameter x, so it

sums to Nx(1− x). Thus

N∑
k=0

(
x− k

N

)2(N

k

)
xk(1− x)N−k =

1
N

x(1− x)

and
2M

δ2

N∑
k=0

(
x− k

N

)2(N

k

)
xk(1− x)N−k =

2M

Nδ2
x(1− x).

Since x ∈ [0, 1],
2M

Nδ2
x(1− x) ≤ M

2Nδ2
.
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So we find that the upper bound on |S2| is

|S2| ≤
M

2Nδ2
.

The sum of our two upper bounds results in an upper bound for the difference between f and

its Bernstein polynomial approximation:

|f(x)−BN (x)| ≤ ε

2
+

M

2Nδ2

for all x ∈ [0, 1]. So if we choose N ∈ N such that M
2Nδ2 < ε

2 , i.e.,

N >
M

δ2ε
,

then |f(x)−BN (x)| < ε for all x ∈ [0, 1]. �

Thus we can choose a polynomial approximation of any degree greater than M
δ2ε

, and we may

select the degree to be even. If the Bernstein polynomial approximation to f is coercive, then we

can show that there exists a finite t and a region over which F (x, t) is convex. But is the Bernstein

polynomial approximation coercive?

Properties of Bernstein Polynomials

The Bernstein polynomials were formulated by S. N. Bernstein to derive a constructive proof of

the Weierstrass Approximation Theorem, as outlined above. There are other polynomial bases,

but they are ill-suited for this approach. For example, Taylor polynomials are applicable only to

infinitely-differentiable functions, and even then may or may not converge uniformly to the function.

The interpolating polynomials at equally-spaced points do not necessarily converge uniformly to

the function, which rules them out [27].

At first, Bernstein polynomials seem a strange choice for constructing the Weierstrass polyno-

mial. They are not orthogonal, and converge extremely slowly to the function. In fact, they do

not exactly reproduce polynomials of degree higher than one. Only in the limit does the Bern-
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Figure 3.2. Successive Bernstein polynomial approximations to Griewank function f(x) = 25(x−1/2)2−cos(15π(x−1/2)).

stein polynomial approximation of x2 converge. Voronovskaya’s Theorem [16, p. 22] states that

for all twice differentiable functions, the Bernstein polynomials converge uniformly to the function

like 1/n. The convergence of the Bernstein polynomials is illustrated for the Griewank function in

Figure 3.2.

We define ∆ to be the forward difference operator:

∆f(xj) = f(xj+1)− f(xj) = f(xj + h)− f(xj)

with step size h > 0. We further define the kth forward difference operator

∆kf(xj) =
k∑

r=0

(−1)r

(
k

r

)
f(xj + (k − r)h)
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with step size h > 0. Using these above definitions, we can express the Bernstein polynomial

approximation of f on [0, 1] in the form

Bn(f ;x) =
n∑

r=0

(
n

r

)
∆rf(0)xr, (3.9)

with step size h = 1/n. This formulation is equivalent to (3.2) [27].

From the Mean Value Theorem, we know that there is a relationship between finite differences

and derivatives: There exists a ξ ∈ (x0, xm) (where xm = x0 + mh) such that

∆mf(x0)
hm

= f (m)(ξ).

Suppose that f(x) = xk, and n ≥ k. Then we have

nr∆rf(x) = 0 for r > k

and

nk∆kf(0) = f (k)(ξ) = k!

So if we express the Bernstein polynomial approximation as

Bn(xk;x) = a0x
k + a1x

k−1 + · · ·+ ak−1x + ak,

then for k < 2, a0 = 1, but for k ≥ 2

a0 =
(

n

k

)
k!
nk

=
(

1− 1
n

)(
1− 2

n

)
· · ·
(

1− k − 1
n

)
,

confirming that the Bernstein approximation does not reproduce polynomials of degree higher than

one.

While this seems disappointing, there are several important conclusions to be gleaned from

it. First, the Bernstein polynomial approximation of a polynomial is never of higher degree than

the polynomial itself. Also, we can see from the formulation of a0 that the kth derivative of the
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Bernstein polynomial approximation of a coercive polynomial of degree k is positive. Thus the

diffusion transform has the same effect on the Bernstein polynomial approximation of the coercive

polynomial.

The Bernstein polynomial Bn(f ;x) can also be written in the form of a Stieltjes integral in the

variable t [16],

Bn(f ;x) =
∫ 1

0
f(t)

∂Kn(x, t)
∂t

dt,

where the kernel function

Kn(x, t) =
∑
r≤nt

(
n

r

)
xr(1− x)n−r, 0 < t ≤ 1,

Kn(x, 0) = 0,

which is constant on any interval r/n ≤ t < (r + 1)/n, r = 0, 1, . . . , n− 1, and has the jump

(
n

r

)
xr(1− x)n−r

at the basic point of interpolation t = r/n.

This formulation elucidates the smoothing properties of the Bernstein operator. Recall the

illustration of the Bernstein approximations of the Griewank function in Figure 3.2. For lower

order kernel functions, we see that the Bernstein approximation is smooth. It requires a higher

degree approximation before the details of the function show up in the Bernstein approximation.

Lorentz discusses the theory of Bernstein polynomials on an infinite interval in [16]. First,

suppose that f(x) is defined on the interval [0, b], b > 0. To obtain the set of Bernstein polynomials

Bn(f ;x; b) for this interval, we simply substitute y = x/b into the polynomial Bn(φ;x; b) for φ(y) =

f(b, y), 0 ≤ y ≤ 1, and we have

Bn(f ;x; b) =
n∑

r=0

f

(
br

n

)(
n

r

)(x

b

)r (
1− x

b

)n−r
.

For constant b this is simply a transformation to another interval. But assume that b = bn is a

function of n increasing with n to +∞, and that f(x) is defined in the infinite interval 0 ≤ x < +∞.
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In order for Bn to converge uniformly to any reasonably general f(x), we must assume that

the distance between two adjacent points bn/n → 0 for n → ∞; in other words, bn = o(n). For

example, if we approximate f(x) = x2 on [0, bn], we obtain

Bn(x2;x; b) =
(

1− 1
n

)
x2 +

bn

n
x.

In order for Bn(x2;x; b) to converge uniformly to x2, the ratio of bn and n must tend toward zero

as n grows. Likewise, the Bernstein polynomial approximation of f(x) = ex on [0, bn] is

Bn(ex;x; b) =
[
1 +

(
ebn/n − 1

) x

bn

]n

,

and in order for Bn(ex;x; b) to converge uniformly to ex, the ratio of bn and n must vanish as n

grows [2].

Two theorems by Chlodovsky, reproduced here from [16, p. 36], provide insight into the Bern-

stein polynomials on an unbounded interval.

Theorem 3.6. Chlodovsky’s Theorem for bounded functions. If bn = o(n) and the function

f(x) is bounded on [0,+∞), say |f(x)| ≤ M, then Bn(f ;x; b) → f(x) holds at any point of

continuity of the function f.

The significance of this theorem is that the interval can be expanded arbitrarily, and the Bernstein

polynomial approximation still converges to f(x), for bounded |f |.

Theorem 3.7. Chlodovsky’s Theorem for unbounded functions. Let M(b) denote the

maximum of |f(x)| for 0 ≤ x ≤ b. If bn = o(n) and

M(bn)e−αn/bn → 0

for each α > 0, then Bn(f ;x; b) → f(x) holds at each point of continuity of the function f(x).

So if |f(x)| grows at a less than exponential rate, the Bernstein polynomial approximation of f on

an infinite interval converges uninformly to f.
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In [2], Chlodovsky gives the following corollary to the above theorem:

Theorem 3.8. Chlodovsky’s Corollary for exponentially growing functions. If f(x) is

continuous on 0 ≤ x < ∞ and the inequality

|f(x)| < Cexp

holds for all x (where C and p are arbitrary finite constants), then Bn(f ;x; b) converges uniformly

to f(x) provided that the sequence bn satisfies the condition

bn < n
1

p+1+η ,

where η > 0 is arbitrarily small.

Chlodovsky also proved that the first derivative of Bn(f ;x; b) converges uniformly to the first

derivative of f. The argument could be extended to higher order derivatives.

Chlodovsky originally conjectured that f need be only Riemann integrable, but Impens and

Vernaeve [10, 11] showed that the arithmetic mean of the function evaluated at the Bernstein

points must approach the continuous mean of the function as the number of points grows. The

types of functions for which we seek a Bernstein polynomial approximation satisfy this condition

because they are continuous.

It is easy to see that the above results on the interval 0 ≤ x < ∞ can be extended to the whole

real line. Thus the Bernstein polynomial approximation of a coercive function bounded by Ce|x|
p

exists and converges uniformly to that function on the real line.

Theorem 3.9. Let f(x) be a continuous, coercive function on R bounded by Ce|x|
p

(where C and

p are arbitrary, finite constants), and let F (x, t) be its diffusion transform. Then for any constant

M and r > 0 (depending on M) such that f(x) ≥ M whenever ‖x‖ ≥ r, there exists a finite τ > 0

such that F (x, t) is convex for ‖x‖ < r and t ≥ τ .

Proof: Let Bn(f ;x; b) be the Bernstein polynomial approximation to f on [0, bn]. Because f is

coercive and Bn converges uniformly to f, Bn must be a coercive polynomial. By Theorem 3.4, for
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any constant M and r > 0 (depending on M) such that Bn(f ;x; b) ≥ M whenever ‖x‖ ≥ r, there

exists a finite τ > 0 such that the diffusion transform of Bn is convex for ‖x‖ < r and t ≥ τ.

Since the derivatives of Bn converge uniformly to the derivatives of f, in the case of f ∈ C∞,

we can use the Taylor series diffusion operator to see that the diffusion transform of Bn converges

uniformly to F (x, t). Even if f /∈ C∞, we can use the integral formulation to see that the diffusion

transform of Bn converges uniformly to F (x, t) for integrable f. Since Bn converges uniformly to

f, the integral
1√
4πt

∫
R

Bn(f ; y; bn) exp
(
−(x− y)2

4t

)
dy

converges uniformly to F (x, t). Thus there exists a finite τ > 0 such that F (x, t) is convex for

‖x‖ < r and t ≥ τ. �

We have shown that diffusion damps high-frequency oscillations and causes a coercive function

to become convex in a region containing the global minimum. But what does this suggest about

using diffusion as the smoother for a smoothing and continuation optimization method?

3.3 Robustness of DEM

Like any global optimization method, the DEM is not foolproof. Under certain conditions, the

method may not find the global minimum. There are two primary types of conditions under which

the DEM may fail.

First, the method may not find a global minimum in a narrow well if it is overshadowed by a

wider but shallower local minimum. Moré and Wu describe this shortfall in the Gaussian transform

approach to the search for a global maximum: “In particular, the Gaussian transform eliminates

tall, narrow hills; hence, if the global maximizer lies in one of these hills, the continuation approach

is likely to fail” [20]. Figure 3.3 illustrates a case for which the DEM fails when diffusion is carried

out until only one minimum remains.

Second, the method can fail due to implementation error. If the function is not sufficiently

deformed in the initial diffusion phase, the local optimization method used inside the continuation

loop may converge to a local minimizer rather than the global minimizer (see Figure 3.4). Also, if
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Figure 3.3. Function f(x) = − exp(−(x + 2.5)2/0.04)− exp(−(x− 2.5)2/4) for which DEM fails: Solid curves represent
F (x, t) for various values of t. Dotted line traces between minima found at each step of DEM, leading to wrong extremum.

the continuation steps are too large, the starting point for the next continuation step may not be

close enough to the global minimum to converge to it.

3.4 Implementation

Diffusion is traditionally implemented by performing the kernel integration described in Section

3.1. Moré and Wu have determined a method for reducing the integral to one dimension for certain

classes of functions. This is particularly important in the application that they propose, because

it involves millions of unknowns.

While this reduction in dimensionality works for the classes of functions that Moré and Wu

optimize, kernel integration of general functions cannot be reduced in this manner. Furthermore,

not all functions can be analytically integrated against this kernel, especially functions that have

no analytic form.

Numerical quadrature could be used to perform the kernel integration, but for small values

of t, numerical quadrature requires more function evaluations than finite differencing in order to

achieve the same degree of accuracy. For a small t, the integral is heavily biased toward the
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Figure 3.4. Insufficient diffusion: Griewank function f(x) = x2 + 1− cos(x): Original function (dashed line) and function
smoothed using diffusion transform at t = 0.1 and t = 0.6 (solid red and green lines, respectively). A local optimization
method may converge to a local minimum if diffusion insufficient.

immediate neighborhood of the point at which we are computing the integral, because the width of

the Gaussian kernel function in equation 3.1 is proportional to
√

t. A quadrature rule, regardless of

type, samples the function throughout the entire region. Thus some function evaluations far from

the central point would have a negligible effect on the integral, yet those points are required by the

quadrature. In order to sample more points near the center, a higher-order scheme must be used.

Finite differencing, on the other hand, begins sampling at points immediately adjacent to the

central point, and sampling spreads away from that point at each subsequent step of diffusion.

The number of points needed is directly proportional to the size of t and the degree of accuracy

required.

Because the objective function arising from the magnetotelluric geoprospecting problem has

no convenient analytical form, we cannot perform the analytical kernel integration. We there-

fore implement the diffusion transformation using finite differences because of its advantages over

quadrature.
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Figure 3.5. Recursive dependence between function values at different time steps.

3.4.1 Numerical Implementation

Evaluation of our objective function is expensive, so an efficient implementation is essential. We

have developed a non-recursive method for the finite differencing. Our application of finite dif-

ferencing differs from the traditional use, since we seek the value of the diffused function at only

one point at a time, rather than a whole grid of values. Thus we build a finite difference matrix

centered about that point, and use it to determine at what points the original objective function

must be evaluated, as well as the weighting of those evaluations in the overall sum.

There is a recursive dependence between the function value Fn
j ≡ F (xj , tn) and the value of its

nearest neighbors at time step n − 1. This dependence is illustrated in Figure 3.5. An analytical

formula for the weights using trinomials was found for one-dimensional diffusion. The coefficient

cj for the point x± j∆x in an N -step rule is computed by

cj =
∑

k=0,2,...,N/2

aN−j−k bk+j

(
N

N − k/2

)(
N − k/2

N − j − k

)

where a = 1 − 2b and b = ν = ∆t/(∆x)2. This formula was difficult to generalize to higher

dimensions, however, so instead the structure of the finite difference matrix M was determined.

In explicit form, M is of dimension (2N + 1)p × (2N + 1)p, where N is the number of steps of

diffusion, and p is the number of dimensions. For p > 1, only a fraction of those points are actually
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Figure 3.6. Shape of multi-dimensional finite difference stencil.

needed in the diffusion, as illustrated in Figure 3.6. The points that are needed and their respective

weights are determined by the nonzeros in the product MNek, where ek is the kth (middle) column

of the (2N + 1)p × (2N + 1)p identity matrix, with k = d(2N + 1)p/2e. The matrix M is formed

explicitly by the algorithm in Figure 3.7.

One potential drawback of the finite-differencing implementation of the DEM is the large number

of function evaluations required to perform a single evaluation of the diffused function. While the

number of function evaluations does grow exponentially with the number of dimensions p, as the

dimensionality rises the ratio of number of evaluations to Np decreases. The numbers of function

evaluations required for one evaluation of the objective function are tabulated in Table 3.1.

It turns out that the number of function evaluations for N steps and p dimensions is the

Delannoy number D(N, p), described in [31] and [4, pp. 80–81]. The Delannoy numbers D(p, q)

also represent the total number of minimal paths with diagonal steps from the origin to (p, q). The

Delannoy numbers can be derived recursively from the formula

D(p, q) = D(p, q − 1) + D(p− 1, q − 1) + D(p− 1, q)

and initial conditions D(0, q) = D(p, 0) = 1. The Delannoy numbers are symmetric, i.e., D(p, q) =
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np = (2N + 1)p (size of matrix)
νi = γ∆t/(∆xi)2 (0 < γ ≤ 1, i = 1, . . . , p)
a = 1− 2

∑
i νi (diagonal elements of M)

(Initialize matrix M of dimension np× np to zero)

for i = 0 : np− 1,
Mi,i = a;
k = 1;
for j = 0 : p− 1,

if ((i + k) < np)
if ((i + k)/(k ∗ (2N + 1)) == i/(k ∗ (2N + 1)))

Mi+k,i = νj ;
Mi,i+k = νj ;

end if
else

break;
end if
k = k ∗ (2N + 1);

end for
end for

Figure 3.7. Algorithm for creating finite difference matrix.
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p
N 0 1 2 3 4 5 6 7
0 1 1 1 1 1 1 1 1
1 1 3 5 7 9 11 13 15
2 1 5 13 25 41 61 85 113
3 1 7 25 63 129 231 377 575
4 1 9 41 129 321 681 1289 2241
5 1 11 61 231 681 1683 3653 7183
6 1 13 85 377 1289 3653 8989 19825
7 1 15 113 575 2241 7183 19825 48639

Table 3.1. Number of function evaluations required to perform one evaluation of diffused objective function for various
numbers of steps N and dimensions p, corresponding to the Delannoy number D(N, p).

D(q, p). A non-recursive formulation for the Delannoy numbers is

D(p, q) =
min(p,q)∑

d=0

2d

(
p

d

)(
q

d

)
.

3.5 Initialization of DEM

The question remains how much to diffuse the objective function. Conceptually, the objective

function must be smoothed to the point that all other local minima are suppressed and only one

minimum remains. But how can we know when we have reached that point?

We have shown that the diffusion process causes a coercive function to become convex in a

region containing the global minimum. As t grows, that region also grows, but a non-convex

function will not become convex everywhere for finite t. Figure 3.9 shows that the Rosenbrock

function becomes more convex as t increases, but always exhibits non-convexity at a distance from

the unique minimum.

While convexity is a sufficient condition for the existence of a unique minimum, it is not a

necessary condition. Indeed, a unimodal function is not necessarily convex yet possesses a unique

minimum. Nonetheless, as the objective function is smoothed it becomes more nearly convex, and

therefore it becomes increasingly likely to possess a unique minimum.

We propose a heuristic inspired by convexity. If F (x, τ) satisfies the following conditions, then
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Figure 3.9. Diffusion causing convexity in Rosenbrock function f(x, y) = 100(y − x2)2 + (1 − x)2: (a) original function
and (b) function smoothed using diffusion transform at t = 0.2.
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sufficient diffusion is deemed to have occurred:

1. Uniqueness: A local optimization method converges to the same minimum x∗, independent

of starting point.

2. Convexity/Unimodality: For all y, the line between (y, F (y, τ)) and (x∗, F (x∗, τ)) must either

lie above the point ((1 − α)y + αx∗, F ((1 − α)y + αx∗, τ)) for any α ∈ (0, 1) (convexity), or

F ((1− α1)y + α1x
∗, τ) > F ((1− α2)y + α2x

∗, τ) for α1 < α2 (unimodality).

If the first condition is not met, the function definitely does not have a unique minimum and

it must be deformed further. If the convexity condition is not met, it could be caused by a barrier

between y and x∗. In this case we check for unimodality along the line between (y, F (y, τ)) and

(x∗, F (x∗, τ)), and if the function is not unimodal then it must be deformed further.

We wrote a program implementing this heuristic. The user inputs a starting guess for t, or

a default value is provided. A starting point x0 is randomly selected and the diffused objective

function is optimized using Nelder–Mead, a particularly simple optimization method (see Section

3.7.2). Then another point is selected, and optimization is again performed. Periodically, the

optimization method is interrupted and the convexity of the function is tested. If the function

fails the convexity test, then a unimodality test is performed in the region where the convexity

test failed, to make sure that the function is consistently decreasing toward the minimum. When

Nelder–Mead is finished, the point to which it converges is compared to the point to which it

converged from x0.

If the unimodality test fails, or any optimization converges to a different point, then t is deemed

too small and testing restarts with a larger t. The value of t could be increased linearly or geomet-

rically, but in our implementation, t doubles at each step.

The points at which the method begins are selected using a pseudorandom number generator.

The seed is reset and the same points are selected for every value of t. We believe that this is a

good strategy, because it allows us to track the progress of diffusion as it smooths the objective

function. We can see whether this degree of diffusion has adequately suppressed a particular local

extremum that caused one of the tests to fail in the previous step.
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Using this method, it is easy to determine when a function is not unimodal. As soon as one

of the minimization or line tests fails, the function is definitely not unimodal. But if the tests are

passed, this does not necessarily mean that the function is unimodal. It is possible that we did not

happen to select a point for which one of these tests would fail. It is impossible to examine enough

points to guarantee unimodality, so instead we choose a number (a function of the dimensionality

of the objective function) at which the passing of these tests would give us sufficient confidence

that the objective function is unimodal.

3.6 Continuation

In the continuation steps, we seek a sequence (xk, F (xk, tk)) that converges to the global minimum

x∗. The number of steps and the difference ∆tk between steps must be determined. If too few

intermediate steps are taken, the method may not converge to the global minimum. On the other

hand, if too many steps are taken, computing power is wasted.

We study the effect of diffusion on the extrema of a function. We first examine the theoretical

underpinnings of continuation, and then we observe the behavior of the extrema under diffusion.

Finally, we suggest some heuristics for determining the optimal sequence of continuation steps.

3.6.1 Continuation Theory

As ∆tk → 0, the sequence of points (x(j∆tk), F (x(j∆tk), j∆tk)), j = 0, 1, . . . approaches a curve

x(t), t ≥ 0, where each x(t) minimizes F (x, t). Thus each x(t) is a stationary point of F (x, t), so

∂F (x(t), t)
∂x

= 0.

Since x is a function of t, the solution of the ODE

∂2F (x(t), t)
∂x2

dx(t)
dt

+
∂2F (x(t), t)

∂t ∂x
= 0

traces the parameterized curve [20], and with initial condition x(0) = x∗, this uniquely defines the

path traced to the minimum by the DEM, provided that the Jacobian is nonsingular.
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Moré and Wu analyze the situation where it is possible to determine a global minimizer xk of

F (x, tk) for some sequence {tk} converging to zero. They show that ∂F (x(t),t)
∂x is continuous with

respect to x and t individually, and then they prove joint continuity with respect to (x, t) on Rn×R.

The proof from [20] is reproduced below.

Theorem 3.10. Theorem of joint continuity. Assume that f : Rn 7→ R is continuous on Rn

and |f(x)| < C1e
C2‖x‖ (for positive C1 and C2). If the sequence {xk} converges to x∗ and {tk}

converges to zero, then

lim
k→+∞

F (xk, tk) = f(x∗).

Proof: Let Br be the ball of radius r centered at the origin, and let Cr be the complement of

Br, that is,

Cr = {x ∈ Rn : ‖x‖ > r}.

We first show that for any ε > 0 we can choose r > 0 and k0 so that

∫
Cr

|f(xk + tku)− f(x∗)| exp(−‖u‖2)du ≤ ε, k ≥ k0. (3.10)

Because we have assumed that f is bounded in absolute value by an exponential, there is a constant

µ > 0 such that

|f(xk + tku)− f(x∗)| ≤ µ exp(tk‖u‖),

and since t‖u‖ ≤ 1
2‖u‖

2 for t ≤ 1
2 and ‖u‖ ≥ 1,

∫
Cr

|f(xk + tku)− f(x∗)| exp(−‖u‖2)du ≤ µ

∫
Cr

exp(−1
2
‖u‖2)du

if tk ≤ 1
2 and r ≥ 1. This inequality proves (3.10) because, if r is sufficiently large, the integral∫

Cr
exp(−1

2‖u‖
2)du is arbitrarily small. Now note that the continuity of f at x∗ shows that for
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given r and k0 we can choose k1 ≥ k0 so that

∫
Cr

|f(xk + tku)− f(x∗)| exp(−‖u‖2)du ≤ 2ε, k ≥ k1.

This inequality and (3.10) imply that

|F (xk, tk)− f(x∗)| ≤ 2ε, k ≥ k1,

which is the desired result. �

We can use the results from the above theorem to prove the following theorem.

Theorem 3.11. Assume that f : Rn 7→ R is continuous on Rn |f(x)| < C1e
C2‖x‖ (for positive C1

and C2). Let {tk} be any sequence converging to zero. If xk is a global minimizer of F (x, tk) and

{xk} converges to x∗, then x∗ is a global minimizer of f.

Proof: Since xk is a global minimizer of F (x, tk),

F (xk, tk) ≤ F (x, tk), x ∈ Rn.

Theorem 3.10 now implies that f(x∗) ≤ f(x) for any x ∈ Rn. Hence, x∗ is a global minimizer of f.

�

Moré and Wu have shown that if {xk} is a sequence of global minimizers of F (x, tk), the

sequence converges to the global minimizer of f(x). But sometimes the {xk} we obtain are not

global minimizers of F (x, tk). As we have already indicated, there are cases for which the global

minimum cannot be found, or where the continuation steps are too large.

3.6.2 Behavior of Extrema under Diffusion

Diffusion causes local extrema to move. Over time, neighboring extrema drift toward one another

and combine. We see an example of such behavior in Figure 3.10, in which the extrema of the

diffused sixth-degree Legendre polynomial are tracked over time.

We can treat the graph in Figure 3.10 as a plot of displacement over time. We can determine the
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Figure 3.10. Agglomeration of extrema of sixth-degree Legendre polynomial under diffusion. Curves trace five extrema of
the polynomial as t increases.

48



“velocity” of a given extremum by calculating the slope of the curve representing its displacement,

and the “acceleration” of a given extremum by calculating the curvature of the displacement curve.

For most values of t, the extrema move at a constant velocity, as evidenced by the straightness of

the curve on the graph. At certain times, such as t ≈ 0.02 and t ≈ 0.07 in the case of the sixth-

degree Legendre polynomial, pairs of extrema join and anihilate. At times just before the pairs join,

we can see that the curvature of the curves increases, marking an acceleration of extrema as they

approach one another. From these observations we can glean that a sudden change in displacement

could mark a point at which bifurcation of extrema will occur when diffusion is reversed.

3.6.3 Heuristics for Continuation

It seems important to proceed with small steps at times close to the bifurcation of extrema, but

realistically, we cannot determine in advance the times at which we must be cautious. Because a

sudden change in displacement could indicate a bifurcation, we could set a threshold value limiting

the distance our minimum can move at each continuation step, with the rationale that a fast-

moving minimum is a sign that the topography of the objective function is changing drastically.

If the distance the minimum moves exceeds the threshold value, we could go back to the previous

step and subdivide it into two continuation steps, repeating the subdivision if necessary until the

distance moved between steps does not exceed the threshold value. But this method assumes that

our continuation steps are already small enough to detect the acceleration of the extrema pairs. If

the continuation steps are large, the acceleration of the extrema pairs may be lost in the averaging

over time.

Another method for making certain that the size of the continuation step is small enough would

be to run the optimization algorithm twice: once with larger steps and once with smaller steps. If

both runs find the same optimum, then the larger step size is acceptable. This works, of course,

only if the smaller step size is sufficiently small that it finds the optimum.
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3.7 Local Methods in Inner Loop

In each continuation step, a minimum is found using a local optimization method. In our im-

plementation of the DEM, we have taken two different approaches to optimization by using two

fundamentally different local optimization methods: BFGS and Nelder–Mead.

3.7.1 BFGS

The BFGS method, named for its four inventors Broyden, Fletcher, Goldfarb, and Shanno, is a

quasi-Newton optimization algorithm that uses a quadratic model of the objective function. At

each step of the algorithm, the approximate Hessian is updated using recently obtained gradient

information.

As a quasi-Newton method, a search direction is strategically chosen based on current approxi-

mate Hessian and gradient information, and the minimum along a line emanating from the current

starting point is found. From the difference in optima and gradients from the current and previous

steps, the approximate Hessian is updated. For many practical problems, BFGS exhibits superlin-

ear convergence, and the approximate Hessian updating process is known to have self-correcting

properties [26].

For the magnetotelluric geoprospecting application, this method is unfortunately quite costly.

Gradient information must be obtained through finite differencing, requiring p + 1 evaluations of

the p-dimensional diffused objective function. In addition, each evaluation of the diffused objective

function requires D(N, p) evaluations of the original objective function for N steps of numerical

diffusion. Thus, the cost of updating the Hessian alone exceeds pD(N, p).

3.7.2 Nelder–Mead

The Nelder–Mead algorithm is a direct-search algorithm for unconstrained minimization. The

Nelder–Mead algorithm maintains a simplex of approximations to the minimum, which is updated

at each step. The vertices are sorted by ascending objective function values. At each step of the

algorithm, the goal is to replace the worst vertex with a new vertex along a line that passes through

the worst vertex and the centroid of the remaining points.
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With the exception of shrink steps, the algorithm requires only two function evaluations per

iteration. Shrink steps are sufficiently rare that the average number of evaluations per iteration

is essentially two. In the case of evaluating the p-dimensional diffused objective function, with N

steps of numerical diffusion, this method requires only 2D(N, p) function evaluations per step.

Unfortunately, the Nelder–Mead algorithm is known to stagnate at nonstationary points of

certain smooth functions of low dimensionality [18]. Kelley has proposed a solution to this problem

by using a sufficient decrease condition and applying an oriented restart to the simplex when

necessary [12].

While one step of Nelder–Mead is less expensive than one step of BFGS, many more Nelder–

Mead steps are typically required to find a minimum. Still, in our experience, Nelder–Mead finds

the minimum of most of the sort of functions for which it is suitable to use the DEM with fewer

overall function evaluations than BFGS.

3.8 Performance of DEM

The diffusion equation method for global optimization can be quite costly, particularly when the

discrete transform is performed. We might therefore begin to wonder if it is worth all the expense.

In this section, we present results of using the DEM on test objective functions, and compare the

cost to the cost of brute force optimization methods.

3.8.1 Performance of DEM on Test Functions

The DEM was tested on three 2-D functions:

� Quartic test function: f(x, y) = (1
2x4 − 1

3x3 − 1
2x2 + 2)(1

2y4 + 1
3y3 − 1

2y2 + 2), with global

minimum x∗ = (1,−1).

� Rosenbrock function: f(x, y) = 100(y − x2)2 + (1− x)2, with global minimum x∗ = (1, 1).

� Goldstein–Price function: f(x, y) = (1+ (x+ y +1)2(19− 14x+3x2− 14y +6xy +3y2))(30+

(2x− 3y)2(18− 32x + 12x2 + 48y − 36xy + 27y2)), with global minimum x∗ = (0,−1).
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Five continuation steps were performed: t = 0.20, 0.15, 0.10, 0.05, 0. The Nelder–Mead optimiza-

tion method was used within the continuation steps. Before the Nelder–Mead method terminates,

the size of the simplex and the difference between the largest and smallest function values on the

simplex must be smaller than their respective tolerances. With the rationale that the exact location

and function value of the minimum at intermediate continuation steps is not as important as its

exact location in the final step, we varied the tolerance at each step, tightening it as t approached

zero. The simplex size tolerance varied linearly from 10−3 to 10−5, and the function value tolerance

varied linearly from 10−2 to 10−3. We also ran the method with tolerances kept constant at the

smallest values (10−5 and 10−3, respectively) to compare the results.

Continuing with the rationale that the exact location and function value are unimportant until

the final step, we performed the numerical diffusion transform with varying coarseness of finite

differencing. A larger ∆t means that the diffused objective function value is less accurate. We

compared the outcome and expense of ∆t = 0.05 and ∆t = 0.025.

Because of the simple nature of the test functions, we were also able to perform analytical

diffusion upon them. We tested its performance with varying and constant tolerances too. Finally,

we compared the performance of the DEM with MAPS, a model-assisted pattern search algorithm

developed by Siefert et al. [30]. The user provides MAPS with a region in which to search for the

minimum, a function evaluation allowance, and a model size, which should be less than the function

evaluation allowance. Using a number of function evaluations equal to the model size, MAPS forms

a model of the objective function, and from the model locates areas in which the global minimum

is likely to be found. Within those areas, MAPS performs a pattern search until it has exhausted

its function evaluation allowance. The outcome is described in Table 3.2.

In every case, the DEM successfully found the global minimum of the test functions. MAPS

did not find the minima of the Rosenbrock and Goldstein–Price functions. This was expected in

the case of the Rosenbrock function in particular, because the narrow, curved valley in which the

minimum lies is especially pathological for the pattern search algorithm. Still, when MAPS is able

to find the minimum, it does so with much less expense than even the analytical form of DEM.
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DEM
Numerical Analytical MAPS

Tolerance ∆t = 0.05 ∆t = 0.025 (model size)
Quartic Test Vary 5043 15956 292 200

Function Constant 7910 24617 403 (180)
Rosenbrock Vary 5566 17294 356 > 1000
Function Constant 8453 26193 453

Goldstein–Price Vary 5386 17267 306 > 1000
Function Constant 8477 26571 422

Table 3.2. Comparison of performance of DEM and MAPS on two-dimensional test functions. Nelder–Mead used as inner
local optimization routine, and function value and simplex size tolerances allowed to vary or kept constant. Numerical
diffusion performed with ∆t = 0.05 or 0.025; both numerical and analytical diffusion performed with five continuation
steps t = 0.20, 0.15, 0.10, 0.05, 0.0.

As expected, tightening the tolerance as the DEM progresses results in a decrease in expense,

and using a larger time step reduces the expense of the method by roughly a factor of three. Even

so, requiring several thousand function evaluations to find the minimum of a simple test function

hardly seems a bargain. How does the expense of the DEM compare to simple brute force methods?

3.8.2 Comparison of DEM and Brute Force Methods

A näıve method of locating the global minimum of a function might be to create a grid of points and

evaluate the objective function at each point. The point with the smallest function value would be

taken to approximate the global minimum, provided that the global minimum is located within the

grid, and the spacing between points is small enough to detect the global minimum with adequate

accuracy.

For the purpose of this comparison, we will restrict our concern to the location of the global

minimum. We will define the accuracy of our optimization method, ∆x, as the distance between

neighboring grid points. This is similar to the stopping tolerance of Nelder–Mead, in which the

largest distance between simplex points is used to determine whether the method has converged

adequately.

On a one-dimensional interval of length one, if we wish to attain an accuracy of ∆x, then we

need at least d1/∆xe+1 points in the grid. On a two-dimensional interval, to attain an accuracy of

∆x and ∆y in the x and y directions, respectively, we would need at least (d1/∆xe+1)(d1/∆ye+1)
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points in the grid. Let us suppose for the sake of simplicity that we desire the same accuracy in

all coordinate directions. For a p-dimensional objective function, we need at least (d1/∆xe + 1)p

points. The cost of this method rises dramatically as the dimensionality of the objective function

increases.

If we were to find the global minimum of the objective function with ∆x ≈ 10−5 on a unit

square, it would require roughly 1010 function evaluations. Reducing the accuracy by a factor of

ten reduces the number of function evaluations by a factor of 100. Enlarging the region in which

the minimum is sought only adds to the expense of the brute force method.

This method cannot attain the accuracy of the DEM for a reasonable number of function

evaluations. First, the DEM is an unconstrained optimization method, so the location of the

minimum is unrestricted. For the brute force method to work, we would need to know a priori

that the minimum is located within the region. Second, the most expensive run of the DEM on

the test functions required less than 27,000 function evaluations, or approximately 0.00027% of the

evaluations required to find the minimum on a unit square with the brute force method.

As the dimensionality of the objective function increases, the cost of the DEM undoubtedly

increases as well. The cost of numerical diffusion grows like the Delannoy number D(n, p), where

n is the number of steps of diffusion. (See Section 3.4.1 for a detailed discussion of the cost of

numerical diffusion.) While D(n, p) = O(np), the constant decreases as p increases. Furthermore,

as the dimensionality of the objective function increases, the cost of the internal local optimization

routine also grows. Still, it seems that the rising cost of the DEM would never exceed the cost of

the brute force method.

Another approach might be to sample points randomly throughout the region, and select the

point for which the function value is smallest as the global minimum. The probabilistic accuracy of

this method is proportional to 1/
√

N, where N is the number of points. The square-root relation

is independent of the dimensionality of the objective function.

If we seek the global minimum of a two-dimensional objective function, this method performs no

better than the uniform grid. It is at higher dimensions that this approach becomes competitive.

For sufficiently high dimensionality p, this method may become more efficient than the DEM,
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although the value of p would depend on the particular objective function and its behavior under

diffusion.
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Chapter 4

Implementation of Solution to
Geoprospecting Problem

4.1 Overview of Algorithm

In searching for the solution of the magnetotelluric geoprospecting problem, the basic algorithm is to

find the parameters that optimize the function Ψ from Equation (2.3), given the true measurements

of the input α and resulting right-hand side b. The minimum of Ψ is sought using an optimization

method. Nearly all optimization methods are inherently serial, because the choice of the next

point depends on the results for previous points. The optimization step turns out to be only a

small fraction of the overall calculation, however. The bulk of computation time is consumed by

evaluation of the function Ψ, the norm of the difference between the calculated coefficients α and

the true coefficients αtrue. We present our approach for minimizing the time consumed in computing

Ψ, and give computational results from our implementation.
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4.2 Computation of Objective Function in Two Dimensions

In order to calculate the coefficients α, the matrix A must first be constructed. Each entry of the

matrix is computed through quadrature:

aij = −m2 + n2

16

∫ π

−π

∫ π

−π
σ(x, y)(cos(ωx− γy) + cos(ωx + γy)

− cos(βx + γy)− cos(βx− γy)− cos(ωx− δy)− cos(ωx + δy)

+ cos(βx− δy) + cos(βx + δy))dx dy,

where ω = m − p, β = m + p, γ = n − q, δ = n + q; m,n, p, and q are the Fourier mode numbers;

and (i, j) are determined by a function of m,n, p, q, and their respective maxima, M,N,P , and Q.

The quadrature routine we use is DCUHRE, a Fortran routine from TOMS (#698). It is a robust

and efficient quadrature routine, and performs well despite the difficulty of the integral.

4.3 Computation of Objective Function in Three Dimensions

In three dimensions, the entries of A are given by

aij = −m2 + n2 + p2

32

∫ π

−π

∫ π

−π

∫ π

−π
σ(x, y, z) (cos(ωx− γy − ηz) + cos(ωx− γy + ηz) (4.1)

− cos(ωx− γy − λz)− cos(ωx− γy + λz) + cos(ωx + γy − ηz) + cos(ωx + γy + ηz)

− cos(ωx + γy − λz)− cos(ωx + γy + λz)− cos(βx + γy − ηz)− cos(βx + γy + ηz)

+ cos(βx + γy − λz) + cos(βx + γy + λz)− cos(βx− γy − ηz)− cos(βx− γy + ηz)

+ cos(βx− γy − λz) + cos(βx− γy + λz)− cos(ωx− δy − ηz)− cos(ωx− δy + ηz)

+ cos(ωx− δy − λz) + cos(ωx + δy + λz)− cos(ωx + δy − ηz)− cos(ωx + δy + ηz)

+ cos(ωx + δy − λz) + cos(ωx + δy + λz) + cos(βx− δy − ηz) + cos(βx− δy + ηz)

− cos(βx− δy − λz)− cos(βx− δy + λz) + cos(βx + δy − ηz) + cos(βx + δy + ηz)

− cos(βx + δy − λz)− cos(βx + δy + λz)) dx dy dz,
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where ω = m − q, β = m + q, γ = n − r, δ = n + r, η = p − s, and λ = p + s; m,n, p, q, r, and

s are the Fourier mode numbers; and (i, j) are determined by a function of m, n, p, q, r, s, and

their respective maxima, M,N,P, Q, R, and S. We used Monte Carlo integration for the three-

dimensional quadrature, as we explain next.

4.3.1 Monte Carlo Integration

As the dimensionality of a multiple integral increases, the cost of most quadrature routines grows

rapidly. Conceptually, if we require N function evaluations for a given accuracy in one dimension,

then for the same accuracy in two dimensions we need O(N2) function evaluations, and in k

dimensions, O(Nk) function evaluations.

Exceptions to this rule are Monte Carlo methods, in which the error estimate always goes to

zero with 1/
√

N, meaning that a hundred-fold increase in N results in an additional decimal digit

of accuracy, independent of dimensionality. Compared to other quadrature methods, Monte Carlo

methods perform poorly for one- and two-dimensional integrands, but outperform other methods

for integrands of three or more variables.

The main idea is to sample the integrand at N points distributed throughout the region of

integration, and then multiply the mean of the samples by the volume of the region. We approximate

the integral I(f) =
∫
Ω f(x)dx by

I(f) ≈ SN (f) =
V

N

N∑
i=1

f(xi),

where V is the volume of the region of integration. The resulting sum is an estimate to within a

certain probability of the true value of the definite integral.

The strong law of large numbers makes it nearly certain that SN → I as N →∞, but provides

no information about the error I − SN for a given sample size [13]. We can obtain a probabilistic

estimate of the error, however, by calculating the expected deviation of S from I.

The standard deviation σ(SN (f)) characterizes the quadratic mean of the error I − SN , and

σ(SN (f)) =
σ(f)√

N
,
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where σ(f) is the standard deviation of f(x). Unfortunately, in general we do not know σ(f), so

instead we estimate the standard deviation of SN (f) as

σ(SN (f)) =

(
1

N(N − 1)

N∑
i=1

(f(x))2

ρ(x)
− S2

N

)1/2

,

where ρ(x) is the density function associated with the particular Monte Carlo method (ρ(x) = 1

for the basic Monte Carlo method).

From the analytic formula for the standard deviation, we can see that the error in SN shrinks

with 1/
√

N. Another way to derive this behavior is by using the central limit theorem:

lim
N→∞

P

(
a ≤ SN (f)− I(f)

σ(f)N−1/2
< b

)
=

1√
2π

∫ b

a
exp(−t2/2) dt. (4.2)

The central limit theorem states that the distribution of the standardized random variable

SN (f)− I(f)
σ(f)N−1/2

converges to the normal distribution with mean µ = 0 and variance σ2 = 1. From (4.2), we can

derive for any α ≥ 0

lim
N→∞

P
(
|SN (f)− I(f)| ≤ ασ(f)N−1/2

)
=

1√
2π

∫ α

−α
exp(−t2/2) dt. (4.3)

By setting

εN := ασ(f)N−1/2 and δ :=
1√
2π

∫ α

−α
exp(−t2/2) dt,

we can express (4.3) as

lim
N→∞

P (|SN (f)− I(f)| ≤ εN ) = δ.

Thus, the rate of convergence εN = O(N−1/2) as N → ∞ holds for fixed likelihood δ of |SN (f) −

I(f)| ≤ εN .

According to [13, p. 205], Monte Carlo methods do not in general integrate smooth functions

more accurately or efficiently than they integrate non-smooth functions. So we can expect that
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a Monte Carlo method tested on a smooth function will perform equally well for our non-smooth

objective function.

VEGAS

The basic Monte Carlo method covers the region of integration with randomly distributed points.

Faster convergence might be obained if rather than being distributed evenly throughout the region

of integration, the points were strategically placed in regions that have the largest impact on the

average value of the function. We could develop a density function ρ(x) that weights the distribution

of points toward regions having a large impact on the average value of the function. This changes

our integral approximation to

I ≈ S =
V

N

N∑
i=1

f(xi)
ρ(xi)

,

where
∫
Ω ρ(x)dx = 1. In the case of the basic Monte Carlo method, ρ(x) = 1.

Ideally, the standard deviation of the integral is minimized when

ρ(x) =
|f(x)|∫

Ω |f(x)|dx
.

Lepage’s VEGAS algorithm is an iterative, adaptive Monte Carlo algorithm that approximates

this ideal density function by dividing the integration volume into hypercubes using a rectangular

grid [15, 14]. In the initial steps, random points are evenly distributed through the equally-spaced

hypercubes, and thus are uniformly distributed. From iteration to iteration, the hypercubes are

concentrated in regions where |f(x)| is largest, by adaptively adjusting the increment sizes on

each axis. Because they are evenly distributed through the hypercubes, the sample points are

concentrated in regions having a large impact on the average value of the function. Figure 4.1

illustrates the concentration of hypercubes.

For a given iteration, we see that

I ≈ Sk =
V

N

N∑
i=1

f(xi)
ρ(xi)
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Figure 4.1. Concentration of hypercubes in VEGAS. Sample function largest in lower left corner, so hypercubes concen-
trated in that region.
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with standard deviation

σk =

(
1

N(N − 1)

N∑
i=1

(f(x))2

ρ(x)
− S2

k

)1/2

.

And the cumulative estimate of the integral at step k is

S̄ = σ̄2
k∑

j=1

Sj

σ2
j

,

where

σ̄2 =

 k∑
j=1

1
σ2

j

−1

.

The standard deviation σk of Sk at each iteration decreases until the optimal grid is obtained.

While the standard deviation of an individual iterate no longer decreases after that point, the

standard deviation of the composite estimate S̄ continues to decrease like 1/
√

mN, where m is the

number of iterations.

We selected the VEGAS algorithm to perform our quadrature because the piecewise constant

conductivity function creates two regions where the maximum absolute value of the integrand differs

markedly. The two regions have different degrees of impact on the integral, and VEGAS should

concentrate the hypercubes on the region with the largest impact, leading to faster convergence.

4.4 Parallelization of Computation of Objective Function

Each entry of the matrix is independent of the others, so they can be computed in parallel. We

used our allocations on two NCSA Linux clusters and the CSE Turing cluster to develop MPI-based

parallel algorithms for efficient function evaluation.

4.4.1 Parallelization in Two Dimensions

The size of the matrix can range from 9×9 to 100×100. This range represents the smallest size with

significant physical meaning and a practical upper bound for computation. Our program evenly

distributes this work across multiple processors using a manager-worker approach. After the matrix

has been calculated, the coefficients α are determined by solving the corresponding linear system,
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which takes a negligible amount of time because the matrix, although dense, is relatively small.

The manager process runs the optimization routine, coordinates the division of the matrix into

evenly sized sections and the distribution of the workload to the processors, compiles the matrix,

and performs the function evaluation. After the worker processes have computed their portions

of the matrix, they send the results back to the manager process, which then compiles all the

data into one matrix, solves the linear system, computes the norm, and then presents the function

evaluation to the optimization routine. Based on this result, the optimization routine then chooses

a new point at which to invoke the function evaluation routine, and the procedure continues until

the optimization routine terminates, presumably at a minimum of the objective function.

4.4.2 Parallelization in Three Dimensions

In the three-dimensional case, the smallest matrix with physical meaning is of dimension 27× 27.

The cost of function evaluation increases drastically for three dimensions, so we must streamline

our algorithm to maximize efficiency. We first note that the matrix values are nearly symmetric,

because aij is a constant multiple of aji (see Equation 4.2). We can take advantage of this symmetry

and reduce the number of integrals performed by nearly a factor of two. Second, we changed the

method of sharing the work between processors.

The manager process still runs the optimization routine, coordinates the division of the matrix

into evenly sized sections and the distribution of the workload to the processors, compiles the

matrix, and performs the function evaluation. But instead of distributing individual matrix entries

to the worker processes, we instead take advantage of the parallelism inherent in Monte Carlo

methods by having each worker perform Monte Carlo quadrature for each matrix entry. Because

each worker performs an equal share of the total number of function evaluations required, this

approach eliminates quadrature-associated load imbalance issues.

After the worker processes have computed their portions of the quadrature, they send the results

back to the manager process, which then compiles all the data into one matrix, solves the linear

system, computes the norm, and then presents the function evaluation to the optimization routine.

Based on this result, the optimization routine then chooses a new point at which to invoke the
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function evaluation routine, and the procedure continues until the optimization routine terminates,

presumably at a minimum of the objective function.

4.5 Strategies for DEM

There are three levels of work over which we can exploit parallelism. The manager process runs the

DEM routine, and is responsible for obtaining diffused function values that are used by the local

optimization routine inside the DEM. The diffused function values, in turn, are the weighted sums

of strategically-chosen objective function values. These objective function values are independent of

one another and can be evaluated in parallel. Likewise, the matrix entries needed in the computation

of the objective function are independent of one another, and can also be evaluated in parallel.

Figure 4.2 illustrates the three levels of parallelism that can be exploited.

4.5.1 Determining Optimal Distribution of Work

For the Diffusion Equation Method, we use a three-tier approach. The manager process divides the

function evaluations required by the finite differencing scheme evenly among groups of processors.

Led by a driver process, each group evaluates the function at a different point. The driver process

then returns the value of the objective function to the manager, and the manager process collects

the results and performs the finite differencing to obtain the value of the diffuse function.

The number of function evaluations required depends on the dimensionality of the objective

function, the size of the time step, and the value of the diffusion parameter t. (For more details on

determining the number of function evaluations, see Section 3.4.1.)

In a preliminary implementation, the groups and their driver processes were statically defined,

based on the dimensionality of the objective function. Consequently many processors were idle in

the last step of the DEM because only one function evaluation is required at time zero.

A newer, more sophisticated implementation uses the three-tier approach, but the manager

process assigns the roles of driver and worker to the other processors dynamically at each evaluation

of the transformed function. This approach is more flexible and allows different numbers of steps

to be taken for different time values, although some processors could still be idle in the final step
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Figure 4.2. Three-tier approach to computing the diffused objective function. Green rectangles indicate three levels, and
blue lines indicate sequential dependence.
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Optimal Heuristic Ratio toptimal/theuristic

N # Drivers Time # Drivers Time Theoretical Empirical
16 5 135 8 164 0.823 0.845
24 2 91 12 123 0.740 0.770
32 7 68 16 82 0.829 0.815
48 5 45 24 82 0.549 0.563
64 13 34 25 41 0.829 0.842
96 7 24 25 27 0.960 0.923
128 25 17 25 17 1.000 1.012
256 3 9 25 9 1.000 1.009

Table 4.1. Theoretical comparison of optimal and heuristic work distribution in the evaluation of a 25-point stencil, for N
processors.

of the DEM, in the case of large sets of processors.

Optimal Distribution of Work for Two-Dimensional Objective Function

We developed two methods of determining the number of drivers to use for a given stencil size f

and number of processors N. The first is a simple heuristic based on the rationale that each driver

process should have at least one worker process. The second is a more complicated calculation of

the optimal distribution of work, taking into account the atoms of work (i.e., the number of matrix

entries to compute) required for each function evaluation.

For the simple heuristic, if f < bN/2c, then we set the number of drivers D = f. Otherwise, D

is set to bN/2c, so that each driver has at least one worker. The method of calculating the optimal

distribution of work takes into account the number of atoms of work A, in addition to f and N.

The algorithm is described in Figure 4.3.

We compared these two methods in performance evaluation runs. In the limit where the number

of processors N greatly exceeds the stencil size f, both algorithms choose D = f. For small and

intermediate values of N, the second method outperforms the simple heuristic.

We ran a set of performance evaluations for f = 25 and A = 81 number of matrix entries,

varying the number of processors. We also calculated the relative timings for the optimal and

heuristic configurations, and compared the ratio of the calculated relative timings to the ratio of

actual timings.
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f = stencil size (number of function evaluations to perform)
N = number of processors
A = number of atoms of work per function evaluation
D = optimal number of drivers (to be determined)

for d = 1 : min{f,N},
r+ = df/de;
r− = bf/dc;
g+ = dN/de;
g− = bN/dc;
w+ = dA/g+e;
w− = dA/g−e;
t+ = r+w+;
t− = r−w−;
if (mod{f, d} > mod{N, d})

t+− = r+w−;
else

t+− = 0;
end if
td = max{t+, t−, t+−};

end for
D = arg mind{td};

Figure 4.3. Algorithm for determining optimal number of driver processes.
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We ran three benchmarking jobs for each number of processors and configuration strategy.

In the runs, one hundred evaluations of the diffused function were performed, each requiring 25

evaluations of the original objective function. Figure 4.4 compares the performance of the optimal

and simple heuristic work distribution.

The straight line of its performance curve in Figure 4.4 suggests superb scalability in the case

of the optimal work distribution. The net performance of the heuristic, however, suggests that it

is not a particularly good strategy. The performance of the heuristic for N = 48 is particularly

miserable, because the heuristic assigns 24 processors as drivers. The load is unbalanced, resulting

in 46 processors idling as two processors perform the 25th function evaluation. In this case, the

heuristic chose the worst possible configuration.

It seems that it is more important to distribute the function evaluations evenly than to distribute

the worker processes evenly. One driver being short by one worker has less impact than one driver

being overloaded with function evaluations. Perhaps a better heuristic would be to choose the

number of drivers close to a divisor of the stencil size.

Optimal Distribution of Work for Three-Dimensional Objective Function

The cost of computing the three-dimensional objective function greatly exceeds the cost for the

two-dimensional case, so we eliminate idle time by evenly distributing the work for all the objective

function evaluations across all the processors. The manager process coordinates the work and

collects the integrals from the processors. It then computes the objective function values and their

weighted average, which is returned as the diffused objective function value.

We ran a set of performance evaluations for stencil size f = 5, varying the number of processors.

On the CSE Turing G5 Xserve cluster, we ran three benchmarking jobs for each number of proces-

sors, and in each run, four evaluations of the diffused function were performed, each requiring five

evaluations of the original objective function. Figure 4.5 shows the performance of the method on

varying numbers of processors. Again the performance curve is remarkably straight and its slope

indicates superlinear speedup for this method.
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Figure 4.4. Scalability of DEM function evaluations, for f = 25 stencil size and 2-D objective function.
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Figure 4.5. Scalability of DEM function evaluations, for f = 5 stencil size and 3-D objective function.
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4.6 Parallel Performance Modeling

We can use parallel performance modeling to assess the potential of our implementation. There are

several measures of parallel performance, including parallel execution time, speedup, and efficiency.

We explore these measures of parallel performance for our objective function in two and three

spatial dimensions.

For a given problem of constant size, we define T1 as the program’s execution time using a single

processor, and TN as the program’s execution time using N processors in parallel. The speedup SN

is the ratio T1/TN , and the efficiency EN is defined as the ratio T1/(NTN ). Ideally, SN = N and

EN = 1, but in most cases the speedup and efficiency do not achieve those ideal values.

The parallel execution time TN is the sum of three components: Tcomp, the time spent in parallel

computation; Tcomm, the time spent sending and receiving messages; and Tidle, the time spent idle.

The computation time is application-dependent and may vary for different numbers of processors.

The communication time, modeled by the cost of sending a message, is the sum of two components:

ts, the startup time, and twL, the transfer time per word times the length of the message. On most

real machines, ts is several orders of magnitude larger than tw, so the second term can be neglected,

except for very large messages.

4.6.1 Efficiency of DEM Computation of 2-D Objective Function

We used our results from the scalability analysis of the optimal configuration to compute empirical

efficiency ratios. Due to wall time limits on the supercomputer, we were unable to compute T1 for

the fixed problem size we used for the scalability analysis, so we instead compute the “pseudoeffi-

ciency,” defined as

En,p =
nTn

pTp
,

for all combinations of n and p, as tabulated in Table 4.2. The pseudoefficiency between two

numbers of processors n and p gives an idea of the relative efficiency of each configuration. If En,p <

1, then the configuration for n processors is more efficient than the configuration for p processors.

For the fixed problem size, the efficiency remains relatively constant for all configurations, with a
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p
n 16 24 32 48 64 96 128 256
16 1.0000 0.9806 1.0072 1.0036 0.9734 0.9109 0.9552 0.9023
24 1.0198 1.0000 1.0272 1.0235 0.9927 0.9289 0.9741 0.9202
32 0.9928 0.9736 1.0000 0.9965 0.9664 0.9044 0.9484 0.8959
48 0.9964 0.9770 1.0036 1.0000 0.9699 0.9076 0.9518 0.8990
64 1.0273 1.0074 1.0347 1.0311 1.0000 0.9358 0.9813 0.9270
96 1.0979 1.0765 1.1058 1.1018 1.0687 1.0000 1.0487 0.9906
128 1.0469 1.0265 1.0544 1.0507 1.0190 0.9536 1.0000 0.9446
256 1.1083 1.0867 1.1163 1.1123 1.0788 1.0095 1.0586 1.0000

Table 4.2. Pseudoefficiency ratio En,p = (nTn)/(pTp) for 2-D objective function.

difference in pseudoefficiency of less than 12% in the most extreme case.

4.6.2 Model of DEM Computation of 2-D Objective Function

We use a three-tier approach to computing the diffused objective function. A manager process over-

sees driver processes, which supervise worker processes. For more details about the computation,

see Sections 4.4.1 and 4.5.

The three-tier computation can be modeled as the sum of three components:

TN = T comp
N + T comm

N + T init
N ,

where T comp
N and T comm

N are the time spent in computation and communication, respectively, and

T init
N is the time spent by the manager process in serial computation and initialization.

The time spent in computation is equal to P (N, f), the maximum number of matrix entries

computed by one processor (in Figure 4.3, this is called td), times tquad, the average time to compute

one matrix entry. During the communication phases, 3N + d − 1 messages are passed, where d is

the number of drivers as determined by the algorithm in Figure 4.3 or by some other means, such

as the simple heuristic. The time spent in communication is (3N + d− 1)ts, neglecting the transfer

cost, which is small compared to the startup cost. The time spent by the manager process in serial

computation and initialization should be about the same for all N.
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Figure 4.6. Fit of performance model and empirical data for DEM for 2-D objective function. Crosses represent timings
on NCSA’s tungsten supercomputer.

Thus we can rewrite our computation time as

TN = P (N, f)tquad + (3N + d− 1)ts + tinit.

We performed a least squares fit on our results from the scalability analysis and determined that

tquad = 10.3311 seconds, ts = 3.81077× 10−3 seconds, and tinit = 3.19500 seconds for the optimal

work distribution of the 2-D integrand on NCSA’s tungsten supercomputer. Figure 4.6 shows the

excellent fit of the model and the performance of the algorithm on NCSA’s tungsten.
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p
n 8 16 24 32 48 64 96 128 256
8 1.0000 0.9921 0.9984 0.9943 1.0019 1.0609 1.0484 1.0703 1.0804
16 1.0079 1.0000 1.0064 1.0022 1.0099 1.0693 1.0567 1.0788 1.0890
24 1.0016 0.9937 1.0000 0.9958 1.0035 1.0625 1.0500 1.0720 1.0821
32 1.0057 0.9978 1.0042 1.0000 1.0077 1.0669 1.0544 1.0765 1.0866
48 0.9981 0.9902 0.9965 0.9924 1.0000 1.0588 1.0463 1.0682 1.0783
64 0.9426 0.9352 0.9412 0.9373 0.9444 1.0000 0.9882 1.0089 1.0184
96 0.9539 0.9464 0.9524 0.9484 0.9557 1.0119 1.0000 1.0209 1.0306
128 0.9343 0.9270 0.9329 0.9290 0.9361 0.9912 0.9795 1.0000 1.0094
256 0.9256 0.9183 0.9242 0.9203 0.9274 0.9819 0.9703 0.9907 1.0000

Table 4.3. Pseudoefficiency ratio En,p = (nTn)/(pTp) for 3-D objective function.

4.6.3 Efficiency of DEM Computation of 3-D Objective Function

We computed empirical efficiency ratios using the results from the scalability analysis of the DEM

using the three-dimensional objective function. As in the case of the two-dimensional objective

function, we were unable to compute T1 for the fixed problem size due to wall time limits, so we

instead compute the pseudoefficiency

En,p =
nTn

pTp

for all combinations of n and p, as tabulated in Table 4.3. Interestingly, with this method we

obtained superlinear speedup as the number of processors increased. For example, the pseudoeffi-

ciency En,8 exhibits a downward trend as n grows, meaning that the 256-processor configuration is

the most efficient.

Superlinear speedup is usually attributed to advantageous caching. As the amount of work

decreases, a larger fraction of the data can be held in faster memory, and less memory swapping

is necessary. We tested to see if this caused the superlinear speedup in this case, by increasing

the amount of work with the number of processors, thus keeping constant the amount of work to

be performed per processor. If the superlinear speedup is a result of the caching, then holding

the amount of work per processor constant should result in a constant run time for all numbers of

processors. It turns out that holding the amount of work constant does result in a constant run

time across all numbers of processors. For more details, see Section 4.6.4.

74



4.6.4 Model of DEM Computation of 3-D Objective Function

The computation of the diffused objective function is performed with a manager-worker approach.

For more details about the computation, see Sections 4.4.2 and 4.5.

This two-level computation can be modeled as the sum of three components:

TN = T comp
N + T comm

N + T init
N ,

where T comp
N and T comm

N are the time spent in computation and communication, respectively, and

T init
N is the time spent by the manager process in serial computation and initialization.

The time spent in computation is inversely proportional to the number of processors N , and di-

rectly proportional to the stencil size and the number of matrix entries to be computed. The

communication requirements are modest: one broadcast and one gather. The message to be

broadcast is simply the parameters, so cost per word can be neglected for the broadcast, but

for the gather, the size of the message is large to begin with, and grows with the number of

processors. The number of matrix entries to be computed, A, is 1890, and the number of iter-

ations of the VEGAS algorithm, v, is five. So we model the time spent in communication as

2 lg(N)ts + AvN lg(N)tw = 2 lg(N)ts + 1890 × 5 × N lg(N)tw, where ts is the startup time, and

tw is the transfer cost per double. Both the broadcast and gather operations use a tree structure

to complete the communication, so the cost should be logarithmic with respect to the number of

processors. The time spent by the manager process in serial computation and initialization should

be about the same for all N.

Thus we can express the computation time as

TN =
A

N
tquad + 2 lg(N)ts + AvN lg(N)tw + tinit.

We performed a non-negative least squares fit on our results from the scalability analysis and

determined that tquad = 139.83 seconds, and ts, tw, and tinit all equal to zero on CSE’s Turing

supercomputer, indicating that the corresponding terms in the performance model are relatively

insignificant. Figure 4.7 shows the fit of the model and the performance of the algorithm on CSE’s
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Figure 4.7. Fit of performance model and empirical data for DEM for 3-D objective function. Crosses represent timings
on CSE’s Turing supercomputer.

Turing. Due to the superlinear speedup of the algorithm, the model becomes increasingly inaccurate

for large N, as indicated by the growing error bars and increasing distance from the line to the

crosses.

We also performed a non-negative least squares fit on our results from the scalability analysis

in which the amount of work per processor was kept constant. In this case, we can write the time

for N processors as

TN = Atquad + 2 lg(N)ts + AvN lg(N)tw + tinit.

Because tquad and tinit are multiplied by constant coefficients, we are unable to fit them sep-

arately, but we end up with tquad + tinit/A = 174.65 seconds, ts = 1.20 seconds, and tw = 0.00
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Figure 4.8. Fit of performance model and empirical timings of DEM with amount of work per processor kept constant for
3-D objective function. Crosses represent timings on CSE’s Turing supercomputer.

seconds. Figures 4.8 and 4.9 show the fit of the model and the performance of the algorithm on

CSE’s Turing supercomputer. In Figure 4.8, we observe that the performance curve is a horizontal

line, meaning that the superlinear speedup for the fixed problem size is due to caching. Figure 4.9

shows the performance curve in more detail, including the error bars from the fit and the variations

in timings.

Assuming that tinit/A is negligible, we can compute the relative difference between tquad com-

puted from the runs in which the total amount of work remained constant and tquad computed from

the runs in which the amount of work per processor remained constant. The relative difference is

approximately 22%, suggesting that our model is reasonably realistic.
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Figure 4.9. Fit of performance model and empirical timings of DEM with amount of work per processor kept constant for
3-D objective function. Crosses represent timings on CSE’s Turing supercomputer.
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tmax # Iterations DEM # Evaluations Convergence
0.02 6 631 (0.998971, -0.004323)

4 181 (0.999932, -0.000133352)
3 333 (1.175560, 0.405093)

0.015 3 336 (0.561734, 6.513328)
0 1 89 (1.327086, 0.528704)

Table 4.4. Performance of DEM on geoprospecting objective function. Number of evaluations of diffused objective
function and minimizer found for various settings. Low number of evaluations for tmax = 0.02 and four iterations is
because Nelder–Mead used instead of BFGS.

4.7 Performance on Magnetotelluric Test Problem

We have shown that the computation of the original and diffused objective functions can be per-

formed in parallel and exhibit a high degree of scalability. While it is good to know that the

objective function is easily computed, it is also important to test the efficacy of the global opti-

mization method. In this section, we illustrate its the success of this method with a case study of

the two-dimensional magnetotelluric objective function.

We performed the analysis with varying the function in only the first two variables, a and e2,

and setting all the rest, x0, y0, and θ, to zero. We set the true solution to z∗ = (a, e2) = (1.0, 0.0).

If we use BFGS, a local optimization method, starting from z0 = (1.4, 0.4), we converge to a local

minimizer, z = (1.327, 0.529). But when we use six steps of diffusion with tmax = 0.02, with the

same local optimization method in the inner loop, we converge to the correct solution. Figure 4.10

illustrates the convergence of the method to the true solution.

If we do not take enough continuation steps, however, the global minimum may not be found.

Taking four iterations of the DEM with the same tmax = 0.02 was sufficient to converge to the global

minimum, but reducing it to three iterations was not. Likewise, if the function is not sufficiently

diffused, the method will not converge to the global minimum. If we take tmax = 0.015, the function

is insufficiently diffused and the global minimizer is not found. These results are summarized in

Table 4.4.
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Figure 4.10. Solution of magnetotelluric objective function using DEM. Starting from (1.4, 0.4), BFGS converges to
local minimizer (red cross). DEM (with BFGS as local optimization routine) traces path along dashed line, with circles
representing result of each continuation step, converging to the global minimizer, (1, 0).
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