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Parallel scientific applications deal with machine unreliability by periodic checkpointing, in

which all processes coordinate to dump memory to stable storage simultaneously. However, in sys-

tems comprising tens of thousands of nodes, the total data volume can overwhelm the network and

storage farm, creating an I/O bottleneck. Furthermore, a very large class of scientific applications

can fail on these systems if one of the processes dies.

Poor checkpointing performance limits checkpointing frequency and increases the time-to-solution

of applications. Also, the application can spend more time in recovery and restart because large sys-

tems tend to fail often.

Diskless checkpointing is a viable approach that provides high-performance and reliable storage

for intermediate or temporary data, such as checkpoint files. First, the data is stored in memory

instead of disk. Second, reliability and recoverability is guaranteed by use of redundancy codes

(parity bits or Reed-Solomon codes), which are stored on spares. Third, I/O is made scalable by

partitioning nodes and spares into small groups. Each group takes care of its own redundancy codes

generation and node failure and recovery.

We have implemented a diskless checkpointing and recovery system and assessed its perfor-

mance with both I/O benchmarks and real scientific applications. The results show much greater

I/O scalability and higher throughput than disk-based paralell file systems for a large number of

clients.

As a technology projection, we have also developed an analytical model to investigate the per-

formability of diskless checkpointing. Our model evaluation shows that the overhead of check-

point/recovery is small on systems with thousands of nodes, and with appropriate partitioning of

nodes, the user application can survive several times longer.
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Parallel scientific applications deal with machine unreliability by periodic checkpointing, in which

all processes coordinate to dump memory to stable storage simultaneously. However, in systems

comprising tens of thousands of nodes, the total data volume can overwhelm the network and storage

farm, creating an I/O bottleneck. Furthermore, a very large class of scientific applications can fail

on these systems if one of the processes dies.

Poor checkpointing performance limits checkpointing frequency and increases the time-to-solution

of applications. Also, the application can spend more time in recovery and restart because large sys-

tems tend to fail often.

Diskless checkpointing is a viable approach that provides high-performance and reliable storage

for intermediate or temporary data, such as checkpoint files. First, the data is stored in memory

instead of disk. Second, reliability and recoverability is guaranteed by use of redundancy codes

(parity bits or Reed-Solomon codes), which are stored on spares. Third, I/O is made scalable by

partitioning nodes and spares into small groups. Each group takes care of its own redundancy codes

generation and node failure and recovery.

We have implemented a diskless checkpointing and recovery system and assessed its perfor-

mance with both I/O benchmarks and real scientific applications. The results show much greater

I/O scalability and higher throughput than disk-based paralell file systems for a large number of

clients.

As a technology projection, we have also developed an analytical model to investigate the per-

formability of diskless checkpointing. Our model evaluation shows that the overhead of check-

point/recovery is small on systems with thousands of nodes, and with appropriate partitioning of

nodes, the user application can survive several times longer.



Chapter 1

Introduction

1.1 Large System Reliability

One of the challenges in achieving petaflop (1015 floating-point operations per second) performance

is system reliability. Although advances in VLSI technology have improved the reliability of com-

mercial off-the-shelf (COTS) hardware, the availability of a COTS-based high-performance com-

puting system is limited by a well-known fact in the reliability theory: the Mean Time to Failure

(MTTF) shortens as component count escalates. When a system consists of tens of thousands of

nodes, its MTTF can be as short as several hours.

As a motivating example, assume node failures follow exponential distributions and let R be a

single node’s one-hour reliability. Furthermore, suppose the system stops functioning if one node

fails. In this scenario, an n-node system’s MTTF is approximately 1/(1−Rn). Figure 1.1 plots the

MTTF for different n’s and R’s.

Commodity components usually have one to three years of warranty. If we use this period as

a node’s MTTF, then R falls between 0.9999 and 0.99999. It is clear that when the system size

approaches 10,000 nodes, the MTTF drops to less than 10 hours. Even for a system based on ultra-

reliable components (MTTF of 114 years, or equivalently, R = 0.999999), the system’s MTTF is

less than 20 hours for a supercomputer like Blue Gene. 1

1Announced in late 1999, the IBM Blue Gene project [1] plans to build a supercomputer of 65,536 nodes capable of
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Figure 1.1: Projected system reliability.

The impact of a short MTTF varies for different types of applications. For Internet services

such as search engines, Internet portals, and data centers, the failure of a single node degrades

performance without bringing down the entire system. Search engines can return fewer query results

in the presence of data loss due to failures. Another example is the master-worker computation

model, in which a master site distribute work units to client nodes to compute. In this model, client

nodes can join and leave freely and the computation can still proceed.

However, most parallel scientific applications are based on the domain decomposition model, in

which all processes are equal and each of them holds part of problem domain. In this model, there

is a strong data dependence among the participating processes and one process crash is enough to

stall the whole computation.

To illustrate this idea, we use the parallel computation of the steady-state heat-flow on a thin

slab as an example. The temperature of one point u(x, y) on the slab is described by the Laplace

partial-differential equation ∂2u
∂x2 + ∂2u

∂y2 = 0

To solve this problem by numerical methods, the commonly used approach is finite difference,

which discretizes a continuous problem domain into finitely many “cells” and applies some rules

360 teraflops.
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to update the cells iteratively. For the above partial-differential equation, the cell update rule is as

follows [2]:

u(x, y)← 1
4

(u(x− 1, y) + u(x + 1, y) + u(x, y − 1) + u(x, y + 1))

To evaluate the finite difference using parallel programming, we can distribute cells of u evenly

among the processes. For simplicity’s sake, assume each process has only one cell. At each iteration

of evaluation, each process exchange its data with its four neighbors and update the cell it holds, as

in Figure 1.2.

x-1,y x+1,y

x,y+1

x,y-1

….. …..
…

..
…

..

Figure 1.2: Domain decomposition computation.

The dependence of each process on its four neighbors form an interlock, that is, no process can

proceed one iteration ahead of or behind other processes. If a process crashes, then effectively this

crashed one lags behind, so its neighbors cannot update their cells, and hence the neighbors of these

neighbors, and so on. Therefore, one process failure can propagate outward like a ripple and cause

the whole computation to halt.

Moreover, the parallel programming toolkit that most scientific applications adopt is the Mes-

sage Passing Interface (MPI), which offers very little support for fault tolerance and recovery:2 the

default behavior to deal with process failure in most MPI implementations is to abort the program.

2We refer to the MPI 1.1 standard [3]. The MPI 2 standard added dynamic process management, allowing processes

to be created and removed during run-time, but this standard is not widely adopted.
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Once a program is aborted, to resubmit it to the job scheduler could incur long delays in job

queues and lead to lost productivity. Therefore, to enable multi-week executions of parallel pro-

grams in a large environment composed of commodity hardware, the underlying communication

middleware (e.g. the MPI library) must either be able to reconfigure and recover automatically, or

provide new function calls that allow programmers to improve fault tolerance.

In addition to MPI itself, another issue in failure recovery is restoring the program to a previ-

ous, consistent state. Checkpointing, the action of dumping memory to disk, has been a standard

solution used by most scientific applications. But its performance depends on I/O efficiency, which

is questionable on large systems, as we explain next.

1.2 Large System I/O

The I/O subsystem in current large systems is insufficient to cope sudden large data flows. Most

large systems uses a separate storage farm to serve I/O demands. A small set of nodes in the system

act as the conduit to the storage farm. These nodes are usually labeled as I/O nodes and do not

participate in any computation. Figure 1.3 illustrates the concept.

Now imagine a massively parallel program which writes tens of gigabytes in one checkpoint

Users

Users home

directories

Compute nodes I/O nodesAccess nodes Storage farm

Figure 1.3: Large system I/O. The arrows are I/O writes to the storage farm during a checkpoint.
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session.3 In the current I/O architecture, several places could be overwhelmed by huge inflow

data and become a bottleneck: the I/O nodes, their network links to the storage farm and to the

rest of nodes, or the storage farm itself. Currently, the state-of-the-art parallel storage solutions

can achieve several GB/s of throughput [7]. If there are 10,000 sPPM processes checkpointing

and further assume I/O throughput is 5 GB/s, then it requires six to seven minutes to complete a

checkpoint session.

1.3 Diskless Checkpointing

Diskless checkpointing is an attractive approach that provides high-performance and reliable storage

on large systems. First, a checkpoint is written to memory, which is much faster than disks. To

guarantee data integrity, redundancy codes (parity bits or Reed-Solomon codes) are computed and

then stored on spares. The spare also assumes the role of compute node if the failed compute node

is unable to recover in a short time (e.g. hard failure.) In this sense, diskless checkpointing is akin

to software-implemented RAID technology [8]. Finally, I/O is made scalable by partitioning nodes

and spares into small groups, and each group takes care of its own redundancy code calculation

and node failure and recovery. Figure 1.4 shows the concept of diskless checkpointing on a large

system.

We must emphasize that diskless checkpointing is not a replacement of disk-based parallel file

systems already running on large systems. Instead, it complements them. The difference is as

follows. Diskless checkpointing is meant for intermediate or temporary data, especially check-

point files. It is also specially tailored to MPI programs that perform synchronous checkpointing,

i.e. all processes dump to their individual checkpoint files concurrently and there is no sharing

among checkpoint files. Disk-based file systems are still essential because users may want to hoard

checkpoint files for post-mortem analysis and visualization. Diskless checkpointing just provides

a fast storage when checkpoint files are going to be overwritten again and again during the whole

3This is not a far-fetched assumption. The sPPM and Sweep3D are two real parallel programs which can dump 200

MB of data per process in a checkpoint (see [4, 5, 6] and §6.4).
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Figure 1.4: Diskless checkpointing on a large system. The compute nodes are partitioned into five
groups, each of which has a spare node (gray solid circle). Checkpoint is written to local memory
and then the redundancy code over the checkpoint is computed and stored on the spare (hence the
direction of the arrow).

execution.

1.4 Thesis Organization

The rest of this thesis is organized as follows. We first examine the failure behavior of high-

performance computing systems. We analyzed it from two perspectives: soft (transient) errors

(Chapter 2) and hard (permanent) errors (Chapter 3). Results from this study present a realistic

view of failure modes and further motivate our goal.

In Chapter 4 we introduce diskless checkpointing and its implementation. We discuss details of

data recovery in Chapter 5.

We performed a series of experiments using both benchmarks and two real scientific applica-

tions, and the results are presented in Chapter 6. We analyze the results and derive a performance

model in Chapter 7.

Chapter 8 and 9 put diskless checkpointing in a broader context. Since diskless checkpointing

uses spares, it is possible that spares will be exhausted and the recovery cannot proceed. Therefore

in Chapter 8 we develop an analytical model to study both the probability guarantees and time over-
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head (combinedly called “performability”) of diskless checkpointing. As a technology projection

for large systems, in Chapter (Chapter 9) we present the numerical evaluation of the above model.

In Chapter 10 we survey the related literature. Finally, we discuss directions of future work and

conclude this research in Chapter 11.
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Chapter 2

Failure Analysis: Soft Errors

Today, clusters built from commodity PCs dominate high-performance computing, with systems

containing thousands of processors now being deployed. As node counts for multi-teraflop systems

grow to thousands and with proposed petaflop system likely to contain tens of thousands of nodes,

the standard assumption that system hardware are fully reliable becomes much less credible.

Hardware failures are usually classified as either hard errors or soft (transient) errors. Soft

errors (also known as single-event upsets) include both transient faults in semiconductor devices

(e.g., memory or register bit errors) and recoverable errors in other devices (e.g., disk read retries).

Conversely, hard errors are permanent physical defects whose repair normally requires component

replacement (e.g., a power supply or fan failure).

In this chapter and the next we consider the impact of soft and hard errors and the associated

failure behavior. This analysis can provide motivation and insight for designing more reliable sys-

tems.

2.1 Introduction

Soft errors are non-repeatable transient faults mostly found in semiconductor devices. In many

cases, error detection and recovery mechanisms can mask the occurrence of transient errors. How-

ever, on some systems, error detection and correction support may be missing (e.g., due to price-
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sensitive marketing of commodity components) or disabled (e.g., for reduced latency on communi-

cation channels).

For example, error correcting memory is not used on many consumer PCs, nor are these systems

subject to the same level of quality assurance as systems intended for mission critical commercial

or scientific domains. Even when the individual systems are well engineered, the multiplicative

coupling of large numbers of components can lead to low reliability for the aggregate.

2.1.1 Memory Errors

In an analysis of system logs from workstation clusters, Lin and Siewiorek [9] reported that 90

percent of the crashes were due to soft memory errors. In practice, a single soft memory error rarely

causes a system crash, unless it strikes a critical memory region at right time. Hence, the actual

frequency of soft errors is higher than that detected – most have no detectable effect.

Improved manufacturing processes and designs and have continued to reduce the hard error rate

(HER) for memory modules. Recent estimates range from a mean time before failure (MTBF) of

1,100 years for a 32 Mb DRAM [10] to between 159-713 years for 16 and 64 Mb DRAMs [11, 12].

Overall, the HER has remained roughly constant as memory densities have increased [10].

On the other hand, shrinking geometries, lower voltages, and higher clock frequencies con-

tribute to the growing occurrence of soft errors – the associated decrease in noise margins increases

signal sensitivity to transients. Intel reported that the soft error rate for SRAMs increased thirty

fold when the process technology shifted from 0.25 to 0.18 micron features and the supply voltage

dropped from 2 V to 1.6 V [10].

Soft errors can also arise due to environmental conditions. Poor power regulation and brownouts

can induce soft errors because memory cells may not receive enough power to be refreshed. Cosmic

rays can also lead to single bit upsets, particularly for systems located at high altitudes. IBM showed

that the soft error rate in Denver was ten times higher than that at sea level [13]

Given these diverse conditions, the observed soft error rate (SER) can differ by as much as

two orders of magnitude, based on manufacturing process and environmental conditions. Actel
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[14] reported that the SER for every Mb of memory manufactured using a 0.13 micron process

technology was roughly MTBF of 1-10 years. Tezzaron Semiconductor [15] surveyed recently

published data on SER values and concluded that 1000 to 5000 FIT (Failure-In-Time; the number

of failures in a billion hours) per Mb was typical for modern memory devices. However, even using

a conservative soft error rate (500 FIT/Mb), a system with 1 GB of RAM can expect a soft error

every 10 days.

Historically, parity and error correction codes (ECC) have been the primary protection against

memory soft errors. SECDEC (Single-Error-Correction, Double-Errors-Detection) is the standard

approach, with every 64 data bits protected by a set of 8 check bits. However, ECC does not

eliminate all soft errors. Compaq reported that roughly 10 percent of errors are not caught by the

on-chip ECC [16].

Constantinescu [17] performed physical fault injection (at IC pin level) experiments to validate

the fault/error handling mechanism of the ASCI Red teraflops supercomputer. Stuck-at-0/1 faults

were randomly injected at random time instances, to randomly selected signals of data, address,

command components of a compute node. The induced errors could simulate many internal faults

experienced by the ICs due to environment perturbations. The result showed that 18 percent of

errors were uncovered (i.e. uncorrected or undetected) by ECC memory or front side bus.

Moreover, ECC memory solutions generally require 20 percent more die area to fabricate, cost

10-25 percent more, and reduce memory performance by 3-4 percent [15, 18]. In a price sensi-

tive consumer market, these marginal costs are substantial, and many vendors omit these features

on consumer-grade products. Therefore, soft memory errors will still be an inevitable reliability

problem for future COTS clusters.

2.1.2 Communication Errors

On parallel systems, transient errors can also occur when transmitting messages. Although the MPI

1.1 standard [3] specifies that it is MPI implementor’s responsibility to insulate the user from the un-

reliability of underlying communication fabric, most MPI implementations assume the underlying
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communication substrate (e.g., TCP/IP or Myrinet [19]) handles all reliability issues.

However, library or operating system managed end-to-end communication reliability is not

without cost – communication latency increases with each software-mediated verification. Indeed,

OS-bypass mechanisms, with direct access to network interface cards, were introduced precisely

to reduce buffer copying, context switch and interrupt handling overhead [20]. In such situations,

message data integrity is dependent on hardware-implemented, link-level checksums.

Stone and Patridge [21] show that link-level checksums are insufficient to detect errors in mes-

sage. In theory, the chance that link-level checksums do not catch errors should be as small as 1 out

of 4 billion packets. After analysis of a trace of 500,000 Ethernet packets that failed TCP’s 16-bit

checksum, Stone and Patridge found a much higher fraction (1 out of 1,100 to 32,000) should also

be caught by link-level checksums but did not.

The source of the errors proved to be host hardware, host software, router memory and links.

Indeed, network hardware have been reported to be increasingly susceptible to soft errors [22]. For

long-running, communication-intensive codes on large systems, even a small link error rate can

have serious implications for application reliability.

2.2 Experimental Methodology

Given the importance of soft errors for both memory and communication systems, we used fault

injection techniques to study MPI application responses to transient faults. Fault injection can be

either hardware-based or software-based [23]. Each has associated advantages and disadvantages.

Hardware fault injection techniques range from subjecting chips to heavy ion radiation to simu-

late the effects of alpha particles to inserting a socket between the target chip and the circuit board

to simulate stuck-at (e.g., always 0 or 1), open, or more complex logic faults. Although effective,

the cost of these techniques is high relative to the components being tested.

In contrast, software-implemented fault injection (SWIFI) does not require expensive equipment

and can target specific software components, such as the operating system, software libraries or

applications. Therefore, we chose the cost-effective SWIFI to simulate transient errors in memory
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and messages during runtime. Below we describe our memory and message fault injection models.

2.2.1 Software Environment

Our experimental target was Intel x86 systems running Linux 2.4, with the MPICH library [24] as

the MPI communication toolkit. Software error injection targeted both registers and the applica-

tion’s address space, but not the MPI libraries. The latter was intended to maximize the indepen-

dence of our results from a specific MPI implementation.

To inject faults, we linked the target applications with a custom fault injection library containing

MPI wrapper functions. Each wrapper performs fault injection tasks and then calls the actual MPI

function via the MPI profiling interface (PMPI).

int MPI_Init( int * argc,char *** argv) {

<performs some fault injection tasks>

PMPI_Init(argc, argv);

}

Our MPI Init() wrapper, shown above, parses a configuration file and spawns the memory

fault injector. The fault injector awakens periodically and invokes the ptrace() UNIX system

call to halt the target process and overwrite target process memory or register content to simulate

the effect of transient errors. The target process is then allowed to resume execution and its reaction

to faults is recorded.

2.2.2 Memory Fault Injection

Memory fault injection targeted both registers and applicaton memory regions. All registers (in-

cluding regular and x87 floating-point ones) were targeted except the following: system control

(CR0-CR4), debug and performance monitoring (DR0-DR7 and MSRs) and virtual memory man-

agement (GDTR, LDTR, IDTR, and TR). Modifications to these registers can cause system crashes,

complicating application experiments. We also omitted the TLB and the L1 and L2 caches. Mod-
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Figure 2.1: Linux process memory model.

ifying the latter would have required a kernel implementation, something we sought to avoid for

platform portability.

As we noted above, the memory region where we injected faults was confined to the address

space of an MPI process: the text, stack and heap, as shown in Figure 2.1. We excluded other

portions of the memory because we wanted our results to be independent of the execution context,

and we wanted to maximize the probability of application error effects. Injecting transient faults

into unused memory has little effect on applications.

To selectively inject faults into a user application’s context and not the MPI library, our fault

injector employs different techniques for different regions in the address space.

Text, Data and BSS. The identity and location of text, data and BSS memory objects are

determined at compile time and are static. To separate the MPI library’s memory objects from

the user application’s, we processed the library and application binaries to retrieve the respective

lists of {symbolic name, address} pairs. We then constructed a fault dictionary containing several

thousand addresses randomly selected from this list. Any address whose associated symbolic name

also appears in the MPI library’s list was removed as a possible injection point.

Heap. The heap stores data structures whose memory is dynamically allocated at runtime
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(i.e., by malloc, realloc and free in C and similar calls in C++). To identify the heap area

allocated with the MPI library, we implemented a customized memory allocator that wraps the

standard malloc using the GNU C library’s “memory allocation hooks.” Then we were able to

keep track of memory objects allocated by the application and modify its content during run-time.

Stack. Like the heap, the stack also resizes dynamically. In the Intel x86 architecture, the stack

is composed of stack frames. Each function call pushes a frame onto stack, and each return pops a

frame. Each frame contains saved registers, arguments, local variables, return address, and a pointer

to the next frame.

The stack frames in use by an application can be identified by a walk-through from the top

to bottom frames (using the EBP and ESP registers) and by examination of the “return address”

field in each frame. If the return address falls within user application’s text region, then the frame

immediately below is in user application’s context and is subject to our fault injection.

2.2.3 Message Fault Injection

For MPI message injections, we modified the payload received immediately from the underlying

communication software, as shown in Figure 2.2. MPICH is implemented in three layers: (a) API,

which connects the MPICH library to the user application, (b) ADI (Abstract Device Interface),

which implements MPI functionality at a network-independent level and (c) Channel, which is the

interface between MPICH and the underlying network-specific communication software.

We configured MPICH to use the ch p4 channel and injected faults at the Channel level. We

chose to inject the faults into incoming traffic immediately after MPICH invokes the recv()UNIX

socket routine. Although TCP/IP checksums, coupled with link-level CRCs, are very effective in

preventing data corruption, our purpose was to simulate the effects of soft errors that are undetected

in the transmission path when only a link-level CRC is present.

In reality, message errors can also originate from network hardware or operating systems. How-

ever, injecting faults there either requires special equipment or can cause instability. The fault

injection process will also be more time consuming; after each injection, the system must be re-
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Figure 2.2: Fault injection for MPI messages

booted to restore to a clean state. Because the systems on which we conducted tests are also used

by others, operating system fault injection was eliminated.

Before performing message injections, we profiled the application to estimate the total message

volume received by each MPI process during the execution. During each injection experiment, we

generated a uniform random number in this range. The modified MPICH library maintains a counter

on received message volume and overwrites the payload when the counter value coincides with the

random number.

2.3 Experimental Environment

The hardware experimental environment is a meta-cluster formed from two Linux PC clusters. The

first cluster (Rhapsody) has 32 nodes connected by both 10/100 and Gigabit Ethernet. Each node

has dual 930 MHz Pentium III processors and 1 GB of DRAM. The second, older cluster (Sym-

phony) has 16 nodes connected by Ethernet and Myrinet; each node has dual 500 MHz Pentium II

processors and 512 MB of RAM.

2.3.1 Test Applications

We used three scientific codes as test applications: Cactus Wavetoy [25], NAMD [26] and CAM

[27]. To reduce the time needed to conduct experiments to tractable levels, we modified each appli-
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Cactus Wavetoy NAMD CAM

Memory (MB) 1.1 25-30 80
Text Size 0.3 2 2
Data Size 0.13 0.11 32
BSS Size � 0.1 0.6 38
Heap Size 0.45-0.5 22-27 8

Message (MB) 2.4-4.8 13-33 125-150
Distribution Header User Header User Header User
Percentage 6 94 8 92 63 37

Table 2.1: Per-process profiles of test applications

cation’s input parameters such that each executed for only for 2-5 minutes.

However, we ensured that each application executive several phases (i.e. loop iterations or time

steps), as would be typical of normal execution. Despite these parameter modifications, the injection

experiment consumed two months of time on the two target clusters.

We profiled three test applications to quantify their memory use and communication frequency

and volume. The purpose of profiling was to provide a baseline for interpreting the experimental

results and to explain the error behavior. Table 2.1 shows the per-process application profiles.

Cactus Wavetoy

Cactus [25] is a modular toolkit for developing scientific codes. Wavetoy is a test program from the

Cactus package that solves hyperbolic PDEs. For our fault injection experiments, we used a problem

size of 150x150x150 and 100 steps. At the end of an execution, the process of rank 0 writes the

application results to output files in plain text format. For each execution, Wavetoy spawns 196 MPI

processes, each processor serves two MPI processes, and the application executes for just under one

minute.

NAMD

NAMD [26] is a parallel molecular dynamics code designed for high-performance simulation of

large biomolecular systems. We used a 92,000 atom “apoa1” input problem, whose data size was
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Errors Error Manifestations (%)
Region Executions (%) Crash Hang Incorrect

Regular Reg. 508 62.8 44 56
FP Reg. 500 4.0 50 50
BSS 502 6.2 19 81
Data 500 2.4 50 50
Stack 980 12.7 65 35
Text 1000 6.7 73 18 9
Heap 933 5.0 8 72 20
Message 2000 3.1 26 42 32

Table 2.2: Fault injection results of Cactus Wavetoy

Errors Error Manifestations (%)
Region Executions (%) Crash Hang Incorrect App. Det. MPI Det.

Regular Reg. 498 38.5 86 10 4
FP Reg. 500 7.6 39 11 3 47
BSS 497 1.8 78 22
Data 502 4.2 95 5
Stack 493 9.3 74 13 6 6
Text 498 8.4 79 7 7 7
Heap 500 5.2 81 8 8 3
Message 500 38.0 26 28 46

Table 2.3: Fault injection results of NAMD

20 MB. Each NAMD execution spawned 96 MPI processes and executed for 2.8 minutes.

As a baseline for output comparison, we used the NAMD console output, which shows total

energies, temperature and pressures at each time step. In NAMD, each MPI process holds a portion

of the input set of atoms. Each time step updates the atoms’ positions and velocities. However, the

order that these updates occur depends on the MPI message arrival order.

As such, NAMD executions are nondeterministic, and the output files can differ across execu-

tions. The only reproducible output is the console output, which has no noticeable deviation if the

number of steps is less than 20, which we used in our experiments.

17



Errors Error Manifestations (%)
Region Executions (%) Crash Hang Incorrect App. Det. MPI Det.

Regular Reg. 500 41.8 68 26 5 1
FP Reg. 422 8.0 33 15 26 26
BSS 500 3.2 62 25 13
Data 500 2.8 50 50
Stack 500 6.2 71 10 13 6
Text 500 14.8 78 11 7 4
Heap 500 2.6 31 69
Message 500 24.2 21 4 71 3

Table 2.4: Fault injection results of CAM

CAM

The Community Atmosphere Model (CAM) [27] is the atmospheric component of a larger, global

climate simulation package called CCSM, the Community Climate System Model. In our experi-

ments, we used CAM version 2.0.2 with the default test data sets and initial condition files as input,

totalling 96 MB.

Each CAM execution used 64 MPI processes. The input data specified 24 hours of simulated

time and took 4 minutes of execution to complete. The 76 MB of output is written to disk by the

process of rank 0 at the end.

2.4 Experimental Results

We executed each of the three applications (Cactus, NAMD and CAM) on our test clusters with the

fault injection methodology described in §2.2. From these experiments, we calculated the error rate,

which is the ratio of manifestations to injected faults. For all manifested faults, we also observed

the error manifestations and calculated the ratios of different manifestations. Before analyzing the

results, we summarize the range of error manifestations.
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2.4.1 Error Manifestations

If the injected fault does not manifest, we labeled the outcome as correct. Otherwise, the induced

errors are categorized into several disjoint classes.

Crash. Application crashes were detected by identifying MPICH error messages in the STDERR

output. MPICH handles all critical signals (e.g., SIGSEGV and SIGBUS) due to abnormal termi-

nation of both the user application and itself.

Hang. Because our experimental environment was under our exclusive control, there was little

variability in execution times. Hence, for each application execution, we waited for one minute

beyond the expected execution completion time. If the application did not complete during this

time, we terminated the application and labeled the outcome as an application hang.

Application Detected. Some of the applications in our suite implement internal consistency

checks. After a consistency failure, these applications print error messages to console and abort.

Therefore, by examining the console output, we identified such errors.

MPI Detected. The MPI 1.1 standard specifies that by default, an error during the execution of

an MPI call causes the application to abort. However, MPI provides mechanisms for users to handle

recoverable errors by registering customized error handlers via the MPI Errhandler set call.

Therefore, we registered such a handler, and whenever the handler was invoked, the handler labeled

the outcome as “MPI detected.”

Incorrect Output. After each execution, we compared the application output against the correct

one to test for silent data corruption. We labeled the outcome of an injection as incorrect if the user

application finishes execution without reporting an error, but the output was incorrect. This is most

dangerous of all possible errors because there is little sign during the execution that can alert the

user.

2.4.2 Results

Table 2.2 summarizes the results for Cactus Wavetoy. During our tests, no Application Detected or

MPI Detected errors were encountered. Table 2.3 and 2.4 show the results for NAMD and CAM,
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respectively.

2.5 Analysis

2.5.1 Register Injections

Even a cursory examination of Tables 2.2-2.4 shows that the regular (integer) registers are the most

vulnerable to transient errors, with an error rate ranging from 38.5 to 62.8 percent. Because the Intel

x86 architecture has less than a dozen general-purpose registers, most contain live data at any given

time. Single bit upsets in these registers are very likely to affect application behavior.

These effects are strongly dependent, however, on the quality of live register allocation and

management (a function of the compiler) and the size of the register file. One would expect different

sensitivity on systems with a larger register file. For example, Springer [28] investigated the register

usage of an image processing kernel on a PowerPC 750 system and found that only 4-5 of 64

available registers were used during execution. If the code were compiled with the optimization

switch -O, then the number of live registers jumped to 14-15. The suggests that a program could be

made more robust if it is compiled without register optimizations, albeit with possible performance

loss.

The error rate for floating-point register fault injection is much lower than that for integer regis-

ters, with only a 4-8 percent error rate. There are several possible reasons for this low error rate.

The Intel x87 FPU has seven special-purpose registers (CWD, SWD, TWD, FIP, FCS, FOO,

and FOS) and eight FPU data registers, which are placeholders for floating-point numbers [29].

First, we found that most special-purpose register injections did not induce errors, except for the

TWD register, which will possibly cause NaN (Not a Number) errors. The TWD (tag word) register

indicates the content of each of the eight FPU data registers. The content can be a valid number,

zero, special (NaN, infinity, or denormal,) or empty. Changing one bit can turn a valid number into

NaN or zero.

Second, the x87 FPU instructions treat the FPU data registers as a register stack, which is
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addressed relative to the register atop the stack. For the three applications we tested, we examined

their assembly codes generated by the compiler and found that no more than four, and usually only

two, FPU data registers are used.

Finally, because the FPU data registers are 80 bits long, based on the IEEE floating point stan-

dard, some bits are rounded when the value in an FPU data register is written to memory. When

combined, these three factors can cause the low observed error rates.

2.5.2 Memory Injections

The error rates for memory injections were consistently low, generally less than 10 percent, across

the three applications. Table 2.1 also suggests that the error rate is largely independent of memory

region size. For example, the data section sizes range widely from 130 KB to 38 MB, yet the error

rates vary only between 2.4 and 4.2 percent.

Given temporal and spatial locality, we conjectured that either most of the memory is never

accessed (i.e. faults are not within the spatial locality), or the faults are injected into memory

locations that will not be accessed again or will be overwritten before accessed (i.e. faults are not

within the temporal locality.)

To verify this conjecture, we used the open-source memory debugging tool Valgrind [30] to

trace the memory accesses of the three applications. Valgrind works directly on executable bina-

ries and can instrument each x86 instruction. We used Valgrind to collect the following run-time

memory access data: text accesses, which are executed instructions, and data accesses, which are

memory loads in Data, BSS, and Heap sections.1 We recorded snapshots of text and data accesses

periodically to understand temporal and spatial locality and their relation to error rates.

Tables 2.5–2.7 show the results of these measurements. The memory address shown is the

address relative to the beginning of the respective sections. Due to instrumentation overhead, the

1For measurement simplicity, this data is drawn from instrumentation of a randomly selected MPI process, with the

application executed on a smaller number of processors. Given the characteristics of our application suite, we believe this

data is representative.
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Text accesses Data+BSS+Heap loads

Text working set Data+BSS+Heap working set

Table 2.5: Memory Trace of Cactus Wavetoy

applications run 2 to 5 times slower than normal. To establish a consistent time frame across execu-

tions, we used the basic block count to measure the elapsed time.

Because injecting faults into unused memory has no effect, it is crucial to identify how much

memory is actually accessed. To estimate this, we calculated the working set size, where the “work-

ing set size at time t” is the size of accessed memory since t. The working set size, therefore, is

a non-increasing function of t. To relate the error rate with the working set size, we plotted the

percentage of working set size relative to the respective section sizes in Tables 2.5–2.7.

We must emphasize that there are also scientific applications with large memory footprint and

large working set size. For these kind of applications, the error rates of memory injection could be

much higher.
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Text accesses Data+BSS+Heap loads

Text working set Data+BSS+Heap working set

Table 2.6: Memory Trace of NAMD
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Text accesses Data+BSS+Heap loads

Text working set Data+BSS+Heap working set

Table 2.7: Memory Trace of CAM
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Based on this data, the following observations are apt. First, all three applications exhibit phase

behavior in their memory accesses: the initialization phase and the computation phase. The phase

shift occurs when there is a large drop in working set size because the working set has moved from

startup code to the computation kernel (spatial locality). During the computation phase, memory

accesses are very periodic and regular (temporal locality), and the working set remains unchanged.

Second, the working set size plots suggest the cause of the low error rate from fault injections.

For the text section, the working set size at time 0 is 30 percent for Cactus and CAM and 15 percent

for NAMD. Entering the computation phase, the working set size declines to 10, 8 and 13 percent

for Cactus, NAMD, and CAM, respectively. Compared to the text injection error rates, which are

6.7, 8.4, and 14.8 percent, the small working set size is the cause of the low error rates. Our results

are consistent with [28], where only a fraction of the heap was found to be used.

The working set analysis also shows that most memory in the Data, BSS, and Heap area is either

not accessed at all or is not accessed after the initialization phase. At time 0, the Data+BSS+Heap

working set size is 28, 60, and 19 percent for Cactus, NAMD, and CAM, respectively. During the

computation phase, this size drops to only 12, 22, and 16 percent. A close look at the Data and BSS

sections shows that their working sets are usually even smaller, mostly less than 10 percent. These

results strongly correlate with the low error rates in Data+BSS+Heap injections.

Unlike the text section, the working set alone cannot completely explain the error rates for

Data+BSS+Heap injections; the text is read-only, whereas Data+BSS+Heap can have many inter-

leaving writes and reads. Although we did not record the most recent write to each memory location

before read, we conjecture that a corrupted memory cell is overwritten by the application before it

is loaded and used again. In addition, a bit error in the instruction opcode can alter the instruction

and halt the execution, whereas a bit error in the data could be more innocuous. We believe this can

also lead to low error rates in Data, BSS, and Heap areas.
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2.5.3 Message Injections

Since messages will certainly be read by the receiver, we expect the message injections to have a

higher error rate. Indeed, we observed that both NAMD and CAM are quite sensitive to message

injections, with 38 and 24 percent error rates, respectively.

The difference between NAMD and CAM is that NAMD can detect 46 percent of these errors,

while CAM only detect three percent of them. As with floating point errors, we attribute NAMD’s

high detection rate to its built-in message consistency checks, which CAM lacks. An instrumenta-

tion of NAMD code shows that these internal checks increases the execution time by three percent,

but can detect many errors.

We also observed a few “MPI Detected” error manifestations for NAMD and CAM. All were

associated with memory errors in the stack contents. Recall that MPI allows the user application

to register error handler callback functions. However, in MPICH, the callback is triggered only

when incorrect arguments are passed to MPI routines (e.g., a non-existent destination specified for a

send operation). Stack error injections trigger such errors because the stack holds the arguments to

function calls. Other errors, such as abnormal termination of an MPI process due to fault injection,

do not trigger the error handler. Instead, MPICH itself will abort the user application, which we

labeled as an application Crash.

The MPI 1.1 standard gives implementors considerable liberty concerning those errors that can

raise the error handler. To assess alternatives, we examined the source code for two other popular

MPI 1.1 implementations, LAM/MPI [31] and LA-MPI [32]. We found that they also only raise

the user-registered error handler when argument checks fail. Abnormal termination of peer MPI

processes will abort the application without invoking the error handler, just as MPICH does.

The error rate for Cactus is only 3.1 percent, much lower than NAMD and CAM. We found

this seemingly counterintuitive phenomenon is due to several factors: the MPICH traffic structure,

Cactus’s message passing behavior, and Cactus’s output format.

Recall from §2.3.1 and Table 2.1 that the MPICH traffic can be roughly classified as header and

user data. For Cactus, 94 percent of its incoming MPI traffic is user data and 6 percent consisted
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of headers only. A substantial fraction of Cactus data transfers are large arrays of floating-point

numbers, whose perturbation does not crash or hang the application; rather, these errors are manifest

in other ways. In contrast, perturbing the headers has about a 40 percent probability of corrupting

the Cactus execution. Therefore, the combined Crash and Hang rate is 6*0.4 or roughly 2.4 percent.

Because user data is the majority of Cactus message traffic, message fault injection should

induce many cases of incorrect output. However, we found experimentally that this was not true.

The reason is the output data representation. As mentioned in §2.3.1, we configured Cactus Wavetoy

to write its output textually, which has the advantage of portability. Platform differences such as byte

order are avoided. However, for Cactus Wavetoy, it hides small changes in low order decimal digits.

A detailed examination of Cactus message data showed that most transferred data are very close

to zero. Only when faults occur in the significant bits of the exponent or mantissa will the output

be incorrect. We also noted that executing more Cactus Wavetoy iterations will almost always yield

incorrect outputs (i.e. the error amplifies as the computation continues). A binary output format

would detect more cases of incorrect output.

2.6 Summary

From our experiments, one can draw several conclusions. First and most importantly, soft bit errors

can adversely affect application reliability on commodity parallel systems. Their impact is pro-

portional to the size of memory accessed by the application. Without hardware checksums, ECC

memory and application-specific error checking, soft errors, particularly on large systems, will trig-

ger application crashes, hangs or incorrect results.

The definition of correctness is also often application specific, and different definitions could

lead to different error manifestation results. For Cactus Wavetoy, results presented in plain-text

format have lower precision and can mask some injected faults. In turn, NAMD execution is non-

deterministic, making error identification difficult. The distinction between memory fault induced

errors and small variations due to numerical roundoff are subtle and difficult to detect.

In detecting communication errors, NAMD’s message checksum is effective at low cost – only
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three percent overhead. However, NAMD’s checksum only tests user data, not headers, which can

only be observed inside the MPI library. If an application transfers a larger volume of user data per

unit time, the overhead for application-level message checksums can rise substantially.

Program assertions and sanity/consistency checks are usually used for debugging and are re-

moved in production code. In our experiments, they can also capture some of injected faults. Use

of internal checks is an important aspect of robust application implementation, but must be used

wisely because excessive checks can still harm performance.
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Chapter 3

Failure Analysis: Hard Errors

In the preceding chapter we analyzed the soft errors in memory and communication and their impact

to user applications. In this chapter we continue to explore the case of hard errors. Hard errors refer

to the permanent physical defects whose repair normally requires component replacement, such as

a power supply or fan failure.

Compared to soft errors, hard errors are much less likely to occur, but their impact is immediate

and more influential. This is because soft errors sometimes can be masked by error detection and

correction mechanisms, or they do not cause any harm at all. On the other hand, applications are

bound to crash if there is any hard error of any kind. Thus, the analysis of hard errors is as crucial

as that of soft errors.

Since the application failure behavior due to hard errors is simple and well-understood, our

study of hard errors is to understand their pattern, such as frequency and correlation. To this goal,

we obtained and analyzed the failure data of three high-performance computing systems.

3.1 Terminology

Certain terms in reliability theory are often used in confusion in the literature, and a clarification is

needed here. The Time to Failure (TTF) is the interval between the end of the last failure and the

beginning of the next failure. The Time between Failure (TBF) or the Time between Interruption
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Figure 3.1: TTF, TBF, and TTR.

(TBI) are the interval between the beginnings of two consecutive failures. The Time to Repair

(TTR) is the duration the repair takes place.

Figure 3.1 illustrates these ideas. In general, TTF is used for a system that is either in working

or in failure mode, e.g. a single node. TBF is used for a system consisting of multiple components,

each of which is either in working or in failure mode, and the system is consider operational so long

as at least one components is still working, e.g. a PC cluster. In Figure 3.1, for example, the two

failures could be failures of two different nodes in a cluster.

Reliability refers to how long a component works before it fails. It is usually described in terms

of Mean Time to Failure (MTTF). Availability is the ratio of time the component is working, i.e. the

ratio of uptime to total time (or MTTF / (MTTF+MTTR)). For multi-node systems, the availability

of the entire system is the average of node availability.

3.2 Systems and Measurements

We obtained the failure log of three systems at the National Center for Supercomputing Applications

(NCSA). These three systems are quite different architecturally. The first is an array of SGI Origin

2000 (O2K) machines. SGI Origin 2000 is a cc-NUMA distributed shared memory supercomputer.

An O2K can have up to 512 (and usually 128-256) CPUs and 1 TB of memory, all under control of

a single-system-image IRIX operating system. The SGI Origin 2000 system installed at NCSA is

an array of twelve O2K’s (total 1,520 CPUs) connected by proprietary, high-speed HIPPI switches.

Table 3.1 lists the CPU count and memory size of individual machines. The machines A, B, E, F,

and N are equipped with 250 MHz MIPS R10000 processors, and the rest with 195 MHz MIPS
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R10000 processors. M4 accepts interactive access, while the others machines only service batch

jobs. Peak performance of NCSA O2K is 328 gigaflops.

The second and the third systems are Beowulf-style PC clusters. The “Platinum” cluster has

520 two-way SMP 1 GHz Pentium-III nodes (1040 CPUs), 512 of which are compute nodes (2

GB memory), and the rest are storage nodes and interactive access nodes (1.5 GB memory). The

“Titan” cluster consists of 162 two-way SMP 800 MHz Itanium-1 nodes (324 CPUs), 160 of which

are compute nodes (1.5 GB memory) and 2 are for interactive access. Both clusters use Myrinet

2000 and Gigabit Ethernet as system interconnect. Myrinet is faster and for node communications,

whereas the Gigabit Ethernet is slower and serves I/O traffic. Both clusters have one teraflop of

peak performance.

All three systems use batch job control software to manage workload. The O2K uses the Load

Sharing Facility queueing system. Each job on the O2K have resource limits of 50 hours of run-

time and 256 CPUs. The Platinum and the Titan employ the Portable Batch System with the Maui

Scheduler, and the job limits are 352 and 128 nodes for 24 hours, respectively.

The failure log was collected in the form of monthly or quarterly reliability reports, as shown in

Figure 3.3. At the end of a month or a quarter, a report for each node/machine is created. A report

records outage date (but no outage time), type, and duration. There are five outage types defined by

NCSA system administrators: Software Halt (SW), Hardware Halt (HW), Scheduled Maintenance

(M), Network Outages, and Air Conditioning or Power Halts (PWR). The cause of an outage is

determined as follows: a program runs at machine boot time prompts the administrator to enter the

reason for the outage. If nothing is entered after two minutes, the program defaults to recording

a Software Halt. It is possible that some of the recorded Software Halts may be actually transient

hardware faults, but the absence of a more detailed log prevented us from further investigation.

The data collection period is two years (April 2000 to March 2002) for the O2K and eight

months (January 2003 to August 2003) for the Platinum and the Titan. In this set of failure log,

there is no occurrence of Network Outage, so we exclude it from the rest of analysis.
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3.3 Results

We summarize the failure data in Table 3.1 and 3.2, and Figure 3.2. There are two kind of avail-

ability measures. The overall availability is computed as

1−
∑

(# Down CPUs× Downtime)
# Total CPU× Total time

The scheduled availability removes the Scheduled Maintenance (M) downtime from consideration

and only counts scheduled uptime as total time, so it is computed as

1−
∑

(# Down CPUs× Unsched. Downtime)
# Total CPUs× Sched. time

Note that in the O2K’s case, the twelve machines have different number of CPUs, so “# Down CPU”

is the number of CPUs on the failed machines.

Because the failure log does not include the start and end times of outages, we can only calculate

TBFs in terms of days. For the whole system of the O2K, the TTF reported in Table 3.1 is TBF, and

the downtime is the weighted average of individual machine downtimes:
∑

(# Down CPUs× Downtime)
# Total CPUs

From the data, it is apparent that software halts account for most outages (59-83%), but the

average downtime (i.e. MTTR) is only 0.6-1.5 hours. On the other hand, although the fraction

of hardware outages is meager (1-13%), the average hardware downtime is the greatest among all

unscheduled outage types (6.3-100.7 hours). This is reasonable because hardware problems usually

require replacing parts and performing tests, whereas many software problems can be fixed by

reboot.

We contacted the NCSA staff about the exact causes of software and hardware halts. We were

told that for the Platinum and the Titan, there were two or three cases where power supplies needed

to be replaced; otherwise, the main cause of hardware outages is the Myrinet, including network

cards, cables, and switch cards.

The physical Myrinet network structure is as follows. A network card resides at a host PC

and is connected by cables to the Myrinet switch enclosure. A Myrinet switch enclosure stacks
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Figure 3.2: NCSA systems availability.
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All A B E F H1 H J M M2 M4 N S
CPUs 1520 128 256 128 128 128 128 128 128 64 48 128 128
Mem (GB) 618 64 128 64 76 64 32 32 32 16 14 64 32
Outages 687 87 182 40 81 42 25 32 24 41 59 37 37
SW (%) 59 74 68 53 63 57 60 59 42 44 39 49 46
HW(%) 13 8 19 13 9 21 8 3 17 10 5 5 32
M(%) 21 11 12 28 20 12 24 19 29 32 49 38 14
PWR(%) 7 7 2 8 9 10 8 19 13 15 7 8 8
Downtime
(day)

9.5 8.7 19.2 15.3 5.9 13.8 6.2 3.6 4.8 7.5 4.5 5.5 5.0

SW (%) 27 32 49 11 36 9 5 25 15 27 12 6 16
HW(%) 28 35 29 1 10 67 49 < 1 22 12 4 28 22
M(%) 41 28 20 85 44 22 45 66 58 52 75 62 58
PWR(%) 4 4 2 3 9 2 2 9 4 9 10 4 4
Avail(%) 98.7 98.8 97.4 97.9 99.2 98.1 99.2 99.5 99.3 99.0 99.4 99.2 99.3
Avail2(%) 99.2 99.1 97.9 99.7 99.6 98.5 99.5 99.8 99.7 99.5 99.8 99.7 99.7
MTBF
(day)

1.0 8.1 4.0 15.9 8.6 14.7 29.5 22.5 30.3 17.4 12.3 18.6 18.5

StdDev 2.1 14.5 5.8 28.5 14.7 20.9 36.9 33.4 48.3 31.7 18.7 34.3 22.9
50 % 0.9 1.7 2.1 1.7 2.5 3.5 25.0 1.0 4.0 1.6 5.7 1.0 11.0
75 % 1.9 8.8 5.5 20.3 10.0 18.8 46.0 44.3 34.5 28.0 15.8 29.0 28.5
90 % 3.8 27.4 11.7 50.1 30.0 49.9 69.6 70.9 88.8 77.0 33.2 64.4 56.4
MTTR (hr) 3.5 2.4 2.5 9.2 1.7 7.9 6.0 2.7 4.8 4.4 1.9 3.6 3.2
StdDev 13.1 7.8 5.2 29.9 5.1 33.2 15.6 7.5 9.3 7.7 8.1 8.8 7.2
50 % 0.5 0.4 0.9 0.43 0.4 0.5 0.5 0.3 0.5 0.7 0.4 0.4 0.5
75 % 1.5 1.0 2.0 2.5 0.7 1.6 1.4 0.5 1.9 4.9 0.8 1.2 1.3
90 % 8.4 3.3 6.4 16.0 3.5 14.9 14.8 3.9 18.8 13.5 1.8 13.7 10.7
MTTR SW 1.5 1.1 1.8 1.9 1.0 1.3 0.5 1.1 1.7 2.7 0.6 0.4 1.1
MTTR
HW

6.3 10.5 3.9 0.6 2.0 24.7 36.3 0.4 6.4 5.4 1.3 18.6 2.2

MTTR M 8.0 5.8 4.3 28.6 3.9 14.6 11.2 9.6 9.6 7.1 2.8 5.9 13.8
MTTR
PWR

2.1 1.5 3.4 3.8 1.0 1.5 1.3 1.2 1.7 2.8 2.6 1.7 1.7

Table 3.1: NCSA Origin 2000 failure summary. SW=Software Halts. HW=Hardware Halts.
M=Scheduled Maintenance. PWR=Air Conditioning or Power Halts. Avail is the overall avail-
ability, and Avail2 is scheduled availability. 50% means 50 percentile.
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Platinum Titan
Outages 7279 947
Outage/Node 14.00 5.85
SW (%) 84 60
HW (%) < 0.1 5
M (%) 16 1
PWR (%) 0 34
Downtime/Node (hr) 12.16 12.55
SW (%) 69 18
HW (%) 10 18
M (%) 21 < 1
PWR (%) 0 64
Avail (%) 99.79 99.78
S Avail (%) 99.83 99.79

Platinum Titan
System MTBF (hr) 0.79 5.99
StdDev 5.77 40.09
Node MTBF (day) 14.16 26.89
StdDev 15.87 25.75
Median 9 29
Node MTTR (hr) 0.87 2.15
StdDev 4.27 4.65
Median 0.15 0.28
MTTR SW 0.70 0.63
MTTR HW 100.67 7.60
MTTR M 1.15 0.55
MTTR PWR − 4.08

Table 3.2: NCSA Platinum and Titan failure data summary.

Month To Date Reliability Report for m4

Apr 22 2002

DATE TYPE DOWN TIME
04/17/02 Software Halt 0 HOURS 10 MINS
04/17/02 Scheduled Maintenance 0 HOURS 8 MINS

There were 1 maintenance outages totalling 0 hours and 8 minutes
There were 1 software halts totalling 0 hours and 10 minutes
There were 0 hardware halts totalling 0 hours and 0 minutes
There were 0 network outages totalling 0 hours and 0 minutes
There were 0 air conditioning or power halts totalling 0 hours and
0 minutes

TOTAL MACHINE TIME IS: 504 hours or 100 percent
TOTAL MACHINE DOWN TIME MONTH TO DATE: 0 hours or 0.00 percent
TOTAL MAINTENANCE MONTH TO DATE: 0 hours or 0.00 percent
TOTAL UNSCHEDULED HALTS MONTH TO DATE: 0 hours or 0.00 percent
TOTAL MACHINE UPTIME AVAILABLE TO USERS

MONTH TO DATE: 504 hours or 100.00 percent

Figure 3.3: Sample monthly reliability report of NCSA Origin 2000
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many Myrinet M3-SPINE switch cards. The usual symptom that prompts a network card or switch

card replacement is there are excessive CRC check errors. Sometimes the self-testing in a switch

card may fail and lead to replacement. Cable replacements also occurred because the “ping” query

packets cannot get through.

For the O2K, hardware crashes were split almost evenly between memory board failures and

power supply failures. There were a few CPU board failures, but they were in the minority.

We were also told by the NCSA staff that many of the software halts occurred due to either

application crashes or operating system panics. Most of the time these halts were rather short in

duration because the machine would attempt to reboot itself immediately following the halt. Usually

the reboot attempt was successful, so operator intervention was minimal for these halts.

The availability is lower for the O2K because when one of its machine is down, as much as one-

sixth of the overall system capacity could disappear (e.g. machine B, which has 256 CPUs.) This

is unlike PC clusters in which each node usually contains no more than 8 CPUs, so the availability

could degrade more gracefully.

For the O2K, the machine-wise TBFs and TTRs are skewed toward small values. Eleven of the

twelve machines have MTBF greater than 8 days, but the medians of TBF are mostly smaller than 4

days. For TTR, nine machines’ MTTR are greater than 2.5 hours, yet the medians are 0.3-0.9 hours.

The same phenomenon also occurs on the Platinum and the Titan’s node TTR. These prompt us to

study examine closely the distributions of TBF and TTR, which is the topic of the next section.

3.4 Summary

In this chapter we analyzed the failure data of three large high-performance computing systems.

We found the availbility is about 98.7-99.8 percent. The Mean Time Between Failure for individual

machines/nodes is 14.2-26.9 days. The Mean Time To Repair is 0.9-3.5 hours. Software halts

account for the most number of outages (59-84 percent), and take the shortest time to repair (0.6-1.5

hours). Hardware problems, albeit rarer, need 6.3-100.7 hours on the average to solve.
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Chapter 4

Diskless Checkpointing

The preceding two chapters show that in a distributed high-performance computing system, a variety

of soft and hard errors exist and can harm application execution. To cope with the errors, the

standard practice of protection in most scientific applications is checkpoint and restart.

In this chapter, we introduce an efficient method of checkpointing, called scalable diskless

checkpointing. First, we give a brief overview of common checkpointing approaches in scien-

tific computing and its associated I/O problem in §4.1. In §4.2 we describe our solution: scalable

diskless checkpointing. Diskless checkpointing uses redundancy codes to recover from lost data,

which we elaborate in §4.3. In §4.4-§4.7 we describe the implementation and operation details.

4.1 Checkpointing

The standard practice of fault tolerance in most scientific applications is checkpoint and restart.

Checkpointing is a rollback-based recovery. A program periodically dump system state, usually

values of key variables, to a persistent storage. If there is a failure, a program can restart at the

previous point where they checkpointed. It avoids having a program to restart from the beginning

in case of failure.

For a message-passing distributed environment, processes must coordinate to produce a con-

sistent global system state, which consists of states of all processes and channels among the pro-
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cesses. One classification of coordinated checkpointing techniques is based on whether the check-

point is performed asynchronously or synchronously [33]. Synchronous (blocking) checkpointing

is straightforward: all processes synchronize first, then dump their local state to the storage im-

mediately. No messages are allowed to be sent bewteen synchronization and state dumping. The

synchronization step, therefore, effectively flushes the channels so that only processes states need

to be recorded.

Asynchronous (non-blocking) checkpointing allows processes to checkpoint at different times

to reduce I/O overhead, but both the channels and processes states must be recorded. One of the

asynchronous checkpoint protocols is Chandy-Lamport’s distributed snapshot algorithm [34]. It as-

sumes that message delivery is reliable and first-in first-out (FIFO). Initially, a process starts check-

pointing by taking a local checkpoint and then broadcasting “marker” messages. Upon receiving

the first marker, processes take a local checkpoint and rebroadcast the marker before sending any

user application message. Upon receiving subsequent markers, processes record the channel state

by logging the messages received since the first marker. It can be shown that Chandy-Lamport’s

protocol can produce a consistent global state.

Most MPI-based scientific programs only implement synchronous checkpointing because it is

simpler and it fits the MPI’s SPMD (single-program multiple-data) execution model perfectly. As

supercomputers evolve into tens of thousands of nodes, the cost of coordinated checkpointing lies

in not the synchronization part, but the huge amount of concurrent I/O from all the participating

nodes.

As illustrated in Figure 1.3 in Chapter 1, the I/O subsystem in current large systems is insuffi-

cient to accomodate sudden large data flows due to synchronous checkpoint. Two possible bottle-

necks exist. First, the bandwidth of bridging network between the compute farm and the storage

farm is designed to serve modest I/O requests but not peak demand. Second, the disk bandwidth

within the I/O farm may also be insufficient to cope peak I/O demand.

Therefore, synchronous checkpointing does not scale well beyond thousands of nodes in the

current high-performance computing systems. To allow application to perform synchronous check-
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pointing more efficiently, we must localize the I/O traffic. This is the basic idea of diskless check-

pointing, which we elaborate in the next section.

4.2 Diskless Checkpointing

We propose an improved version of diskless checkpointing to deal with I/O problems of syn-

chronous checkpointing on large systems. Diskless checkpointing was first proposed by Plank et al

[35]. It is essentially a software-implemented RAID that provides a high-performance and reliable

storage for intermediate or temporary data, such as checkpoint files. It replaces the traditional disk-

based I/O subsystem with local memory and spare nodes to speed up the checkpointing process,

enabling the user application to checkpoint more frequently.

Our version of diskless checkpointing differs from Plank’s in that, in order to achieve scalability,

all nodes are partitioned into equal-sized groups. Each group has one or more nodes designated as

standby spares which do not involve in the computation. At checkpoint, each node saves its restart

data in local memory and nodes in the same group cooperate to create redundancy codes and store

them in the spares. Figure 4.1 shows the diskless checkpointing of a group of four processes and

one spare.

When a compute node fails, a spare in the same group assumes the role of a compute node and

the lost checkpoint is reconstructed from redundancy codes. Obviously, each group can survive

node failures no more than the number of spares in the group, as shown in Figure 4.2. Another kind

of catastrophic failure that can thwart diskless checkpointing is the network switch or power failure,

which usually disconnect or disable a large number of nodes.

Therefore, disk-based checkpointing cannot be totally eliminated. A better checkpoint scheme

would be alternate among diskless and disk-based checkpoint, depending on the performance over-

head and user’s need. For example, if a checkpoint method is slow, it should be performed less

often. Or if there is insufficient free memory, then the checkpoint should be directed to local disks

or storage farm. Also performance degradation or excessive read/write retries at a local disk usually

prophesize an imminent failure, so in this case we can remove local disks from possible choices of
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storage.

As mentioned above, in diskless checkpointing each process writes to in-memory storage, fol-

lowed by redundancy encoding. The former is straightforward, whereas the latter will be explained

in the next section.

4.3 Redundancy Encoding and Data Recovery

In diskless checkpointing, we characterize the failure using the erasure model. In this model, there

is a set of data blocks, and one failure can simultaneously erase or alter contents of one or more

blocks, and the system is able to detect which block(s) are tempered.

Under this model, we view the checkpoint data of a process as a data block. We also view two

failures that occur in a short time as an erasure of two data blocks, such as a failure that occurs

during the recovery for the previous failure. A recovery is to rebuild the lost data blocks from

remaining data blocks and redundancy blocks.

4.3.1 The Erasure Model

To formalize the idea, assume we have a collection of n data blocks D = {d1, d2, . . . , dn}, where di

is the checkpoint data on compute node i for 1 ≤ i ≤ n. We also have a collection of k redundancy

blocks R = {r1, r2, . . . , rk}, where ri is the redundancy stored on spare node i for 1 ≤ i ≤ k.

The complete, untampered dataset is D∪R. If there is a failure, the erased data E is a non-empty

subset of D ∪R, so the remaining good data is (D ∪R)− E. E is usually called the error pattern

or error symptom. The encoding algorithm tells how to get R from D, and the corresponding data

recovery algorithm tells how to rebuild E from (D ∪R)− E. The erased data could be either data

blocks or redundancy blocks, and we do not need to recover from erased redundancy blocks.

Following the formalism, a redundancy scheme is a pair of encoding algorithm F and data

recovery algorithm G such that R← F (D) and E ← G(D ∪R−E). (← means “is assigned as”.)

Actually, F consists of k functions F1, F2, . . . , Fk such that ri ← Fi(D), 1 ≤ i ≤ k. Therefore,

R← F (D) = {F1(D), F2(D), . . . , Fk(D)}.
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Figure 4.3: The erasure model of redundancy encoding and data recovery. There are 6 data blocks
D = {d1, . . . , d6} and 2 redundancy blocks R = {r1, r2}. The encoding algorithm F has two
encoding functions F1 and F2 which map D to r1 and r2, respectively. Suppose d3 and d5 are lost,
then E = {d3, d5}. The corresponding recovery algorithms G3 and G5 will map D ∪ R − E =
{d1, d2, d4, d6, r1, r2} to d3 and d5, respectively.

Supposedly we are only interested in recovering lost data blocks but not redundancy ones. Then

the recovery algorithm G consists of n functions G1, G2, . . . , Gn, each of which recovers the lost

data block di by di ← Gi(D∪R−E) , 1 ≤ i ≤ n. Note that di ∈ E, but E can also contains other

data blocks. Figure 4.3 gives an example of 6 data blocks and 2 redundancy blocks.

Depending on the redundancy scheme, Gi could be undefined for certain particular symptom

E. For example, for any encoding algorithm, if E = D ∪ R (i.e. all nodes die), then Gi is

undefined because Gi cannot recover from void. If Gi is undefined on certain E, then we say E is

unrecoverable or catastrophic.

A simple application of this model is RAID 1, which is called mirroring or full replication. In

RAID 1, we must have k = n, i.e. equally many redundancy blocks as data blocks. The encoding

algorithm F is simply Fi(D) ≡ di and thus ri = di for 1 ≤ i ≤ n. (≡ means ”is defined as.”) The

recovery algorithm G is Gi(D ∪ R − E) ≡ ri. An erasure is unrecoverable if for some i, di ∈ E

and ri ∈ E, i.e. both the original data di and its backup ri are lost. The main problem with the

mirroring is: although the system is furnished with many spares, in the worst case two failures are
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enough to stall the system.

As a result, there is a great deal of research in search for redundancy scheme that can recover

from maximal possible and arbitrary error pattern E with minimal number of redundancy blocks. A

good redundancy scheme should be able to recover from k arbitrary failures, provided there are k re-

dundancy blocks. Below, we discuss two redundancy schemes on which our diskless checkpointing

is based.

4.3.2 Parity Codes

In parity codes, k is fixed to be 1. The parity codes are resilient to one arbitrary failure and is the

foundation of reliability of RAID 3, 4, and 5. 1 The encoding algorithm F is F1(D) ≡ ⊕
D, so

R = {F1(D)}. 2 For the recovery algorithm G, Gi(D ∪ R − E) ≡⊕
(D ∪ R − E) if E = {di}

and Gi(D ∪R− E) is undefined if E contains more than one data block.

4.3.3 Reed-Solomon Codes

The Reed-Solomon codes are very general redundancy codes that can be found from applications

from communications (satellite, cell phones, high-speed modems/DSL, digital TV) to storage (tape,

hard drives, CD, DVD, barcodes). It uses k redundancy blocks and can recover from arbitrary error

patterns which contain k failures or less. The mathematics behind the Reed-Solomon codes are

based on an algebraic structure called finite fields (Galois fields) of power of 2, which is denoted as

GF (2w). We give a sketch of its encoding and recovery processes based on the work in [36, 37].

Given n data blocks D = {d1, d2, . . . , dn} and a supply of k spares, we use the following

encoding functions to get redundancy block ri:

ri ← Fi(D) ≡ d1 + d2 ∗ 2i−1 + d2 ∗ 3i−1 + . . . + dn ∗ ni−1 (4.1)

for 1 ≤ i ≤ k. Putting in matrix form:

1The differences among level 3,4, and 5 of RAID lie in the storage locations of parity bits.
2Let X = {x1, x2, . . . , xn}, then

�
X = x1 ⊕ x2 ⊕ . . . ⊕ xn where ⊕ is the bitwise XOR operation.
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⎡
⎢⎢⎢⎣

r1

r2
...

rk

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
1 1 1 · · · 1
1 2 3 · · · n
...

...
...

...
1 2k−1 3k−1 · · · nk−1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

d1

d2
...

dn

⎤
⎥⎥⎥⎦

The matrix in the middle of the equation is called the Vandermonde matrix.

Recovery from failures is more complex and has two steps: forming two failure matrices A and

E and inverting a matrix.

The failure matrix A is obtained by running Gaussian elimination on a (n+k)×n Vandermonde

matrix such that the upper n× n part is the identity matrix, i.e. the A has the following form:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
0 1 0 · · · 0
...

...
. . .

...
0 0 0 · · · 1

an+1,1 an+1,2 · · · an+1,n
...

...
...

an+k,1 an+k,2 · · · an+k,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The other failure matrix E is simply defined as:

[d1 · · · dnr1 · · · rk]T

Note that both A and E have n + k rows, and each data block di and redundancy block rj have

a corresponding row in A and E: di maps to row i and rj maps to row n + j (1 ≤ i ≤ n and

1 ≤ j ≤ k)

Suppose k blocks are lost, to recover, we first delete the lost blocks’ corresponding rows from

both A and E. If we lose fewer than k blocks, we can randomly delete remaining rows until there

are only n rows left. After removing k rows from A and E, we have n × n matrix A′ and n × 1

matrix E′, and the data is reconstructed by

[d1 · · · dn]T = (A′)−1E′

The special construction of A guarantees that no matter which k rows are deleted, A′ is invertible

and (A′)−1E′ always gives back the data blocks.

44



Several aspects of Reed-Solomon codes are worth noting. First, A can be precomputed. Sec-

ond, the biggest overhead in the Reed-Solomon codes is that all arithmetic operations in the above

derivations are performed in GF (2w). In GF (2w), additions and subtractions are still bitwise XOR,

but multiplications and divisions are non-trivial and require table look-ups. Third, the smallest size

of the data blocks is w bits, where w is chosen such that 2w > n + k. In practice, the data blocks

are decomposed into w-bit words and the above operations are performed on these w-bit words.

We adopted Plank’s implementation of Reed-Solomon codes [36] and further optimize its per-

formance as follows. Recall in formula 4.1 that each data block di is first multiplied by a constant.

Since a block is decomposed into words, we can calculate the multiplication of every possible w-

bit word with that constant beforehand and store the results in a table. During encoding the slow

GF (2w) multiplication reduces to a simple table look-up. To have a reasonable table size, the value

of w is chosen to be 16, which will yield a table of 216 entries of 16-bit words. The precalculation

step is like this

for (i=0; i < 65536; i++)
RSTable[i] = GFMultiplication(i, constant);

Then encoding and decoding is simply a series of table look-ups that map each user data word
in source into the result array target, as follows.

for (i=0; i < SIZE; i++)
target[i] = RSTable[source[i]];
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4.4 Design and Implementation

We designed and implemented the diskless checkpointing and data recovery system (DLCKPT) to

experimentally verify its performance and efficacy. The DLCKPT, coupled with a fault-tolerant

MPI library, LA-MPI, form a solution to the I/O and reliability problems of scientific codes running

on large high-performance computing systems.

The DLCKPT infrastructure consists of two components: a lightweight user-space in-memory

file system and a separate DLCKPT codec (coder/decoder) module. Figure 4.4 illustrates the overall

infrastructure. The DLCKPT file system handles I/O requests from the user application and manages

the memory storage, while the DLCKPT codec module performs redundancy encoding and data

recovery. We designed the DLCKPT to run completely in user space, so no extra root privilege or

kernel modifications are required. This greatly reduces administrative cost and gives users more

flexibility.

Unlike RAID storage, which produces redundancy codes on-the-fly as clients write, in the DL-

CKPT the client must explicitly call a function to perform encoding. This can improve performance

because most checkpoint data is huge and one bulk transfer is faster than a series of small transfers.

It also simplifies the design as DLCKPT does not need to deal with the data consistency problem

arised from multiple clients writing concurrently.

Below we begin with a description of the DLCKPT file system and the DLCKPT codec module

in §4.5 and §4.6, respectively, followed by their interactions in §4.7.

4.5 Diskless Checkpointing In-Memory File System

Since most most applications are designed to run in the UNIX-like environment, to allow applica-

tions to use DLCKPT without too much change in the code, we have designed a pseudo file system

(the DLCKPT file system) that emulates the UNIX file systems. The DLCKPT file system have two

parts: the file system itself and its I/O application programming interface (API).
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4.5.1 The File System

Although the DLCKPT file system can simulate the basic operations of a UNIX file system, there

are still some differences, as discussed below.

Naming

The DLCKPT file system is a local, per-process file system. It resides in the same address space

as the user process, and it only handles I/O requests from the host user process. Therefore, two or

more user processes on the same physical machine only see their respective DLCKPT file systems

but not others’ DLCKPT file systems. As such, file access rights are also unnecessary and hence are

not implemented in DLCKPT.

For simplicity’s sake, DLCKPT does not have directories or other sophisticated features such

as symbolic links or memory-mapped files. Each file is uniquely identified by its full pathname. To

simulate the semantics of UNIX file systems, when a file is created, DLCKPT will try to create it on

the disk-based file system. This on-disk file is the shadow of the one in memory. If the shadow can

be successfully created, its full pathname is obtained and is used as the file’s name in the DLCKPT

file system. The shadow is consulted only when file information and manipulation calls such as

fcntl, fstat and ioctl are invoked; all I/O traffic goes to the file in memory.

File Management

We have noted that most scientific applications do not need more than a handful files in their lifetime

(A checkpoint dump can be repeatedly overwritten.) Hence, we adopted a simple file management

design. Unlike the UNIX file system’s inode structure3, DLCKPT file system has a file table of

fixed size. The maximum number of files that can live within DLCKPT file system is constant

during run-time.

3UNIX file systems administer files by means of inodes. Each inode corresponds to a file and contains key information

such as file size and access rights. The inode approach allows the file system to grow so long as the physical storage

permits.
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Block Management

As with most UNIX file systems, the DLCKPT file system allocate file storage on a block basis.

The allocation is dynamic, as needed. On the other hand, the block addressing of DLCKPT is

different from UNIX file systems. In UNIX file systems, the block addressing is multi-level. The

first few blocks of a file can be directly addressed (”direct”). If the file contains more blocks, an

auxiliary block is allocated to store a list of addresses of these additional blocks (”single indirect”).

If the file contains still more blocks, ”double indirect” and ”triple indirect” methods are used. We

designed DLCKPT file system with performance as an aim, therefore, we only implemented the

direct addressing mode. Although this limits file growth, it should not present a problem because

the user should have in mind the size of checkpoint files and is free to change the limit.

We utilizied shared memory to allocate blocks. Shared memory is one of the inter-process com-

munication mechanisms available in UNIX. A process allocates a shared memory segment using

shmget system call. The arguments of shmget include the size and the access rights of the seg-

ment to be allocated. The return value is a segment ID. Unrelated processes can attach to the same

segment by calling shmat with the same segment ID. The return value is a pointer to the segment.

Once attached, accesses to shared memory are as fast as to non-shared ones because no system call

or entry to kernel are required. In our design, the DLCKPT module must be able to access DL-

CKPT file system to produce redundancy bits, so shared memory arises as the most natural choice.

Another advantage is the persistence of shared memory across process creations and terminations.

Shared memory is a system-wide resource, so as long as the operating system is intact, the data in

the DLCKPT file system can be retrieved even if the host process crashes.

A potential risk of using shared memory is the wild writes to the shared memory region due to

application bugs or transient errors. Adding CRC (cylic redundancy check) codes is one possible

protection to the data from being tampered. In our current implementation, we assume the integrity

of checkpoint in the memory storage is immaculate, just like the data on the disk.
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4.5.2 I/O Application Programming Interface

The DLCKPT file system is implemented as a user library. It provides two sets of I/O API: the

traditional UNIX low-level I/O system call interface (e.g. open, read, write), and the DLCKPT-

prefixed I/O interface (e.g. dlckpt open, dlckpt read, dlckpt write.) The former is

implemented as a wrapper of the latter, so they share the same functionality and semantics.

UNIX I/O Call Interception

However, only implementing the UNIX I/O system call interface is not sufficient. Many applica-

tions perform I/O without calling UNIX I/O interface directly. For example, C language provides

the buffered I/O such as fopen, fread, and fprintf, C++ has stream I/O such as ifstream

and ostream, and Fortran has formatted I/O. Furthermore, some applications use special I/O li-

braries to access files in certain format such as HDF[38] and XML[39]. Nevertheless, the common

denominator at the heart of these I/O libraries is the UNIX I/O interface.

To intercept UNIX I/O calls emitted from an application, we have considered several meth-

ods proposed by Thain and Livny in [40]. The methods are either at kernel level or user level.

The kernel-level solutions are usually through kernel patches or kernel modules. They can add ad-

ministrative burden and cause system instability. The weaknesses of kernel-level solutions are the

strengths of user-level solutions: the file system acts like an sandbox isolated from the system kernel

and the user has total control over it without security or protection concerns.

Therefore, we decided to adopt a user-level solution: the static linking technique, which forces

all I/O libraries linked to the application to call our UNIX I/O interface. Generally, the user ap-

plication is linked dynamically to I/O libraries to reduce sizes of binaries, so the I/O libraries code

is not part of the application binaries. As such, UNIX I/O calls emitted by I/O libraries do not go

through our interface. To overcome this problem, we use linker controls to force static linking of

the user application to I/O libraries. This creates a stand-alone application binary that can self-serve

all UNIX I/O requests. We have tested and validated this approach on both Linux version 2.4 and

IBM AIX version 5.x.
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Storage Control

The DLCKPT file system provides a global variable dlckpt enabled for users to control the

storage preference when a file is opened. If dlckpt enabled is true, this file will be stored in

the DLCKPT file system; otherwise, the file will be handled as if DLCKPT is absent. The following

code shows how the DLCKPT interface can be used in an application. In this example, both files

are created and written using the buffered I/O routines of the C language. The file referred by f1 is

in the memory and file referred by f2 is on the disk.

FILE *f1, *f2;

dlckpt_enabled = 1;
f1 = fopen("file1", "w");
dlckpt_enabled = 0;
f2 = fopen("file2", "w");

.

.
fprintf(f1, "Hello World");
fprintf(f2, "Hello World");

The above example presents a problem: how can DLCKPT tell the fprintf call on f1 should

be handled by DLCKPT file system and the same call on f2 should be relegated to the operating

system? After all, we did not modify the fprintf routine in C library.

We mentioned that C library, among most I/O libraries, also makes use of UNIX I/O calls to

satisfy I/O requests. To a UNIX operating system, all open files are referred to by file descrip-

tors (non-negative numbers), and every I/O call requires the file descriptor as one of arguments.

Therefore, we solved the above problem by using disparate ranges for file descriptors. First, we

use getrlimit system call to get the upper limit of file descriptors that can be assigned by the

operating system. For example, this limit is 1024 on most Linux systems. Then for any file that will

reside in memory, the DLCKPT file system returns a file descriptor greater than 1024, say 1025, to

it. Thus, by only examining the file descriptor’s value, the DLCKPT is able to recognize the file’s

storage location and handle I/O requests accordingly.
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4.6 Diskless Checkpointing Codec Module

The DLCKPT codec module takes the DLCKPT file system contents and produces XOR parity or

Reed-Solomon redundancy codes. In case of failure, the DLCKPT codec module also reconstructs

lost data from redundancy codes, as described in §4.3.

We implemented the DLCKPT codec module as an MPI program. There are two advantages

of doing this. A crucial step in the diskless checkpointing is to send local encoding results across

the network. An MPI program enables us to harness fast interconnections without low-level details

of network hardware programming because MPI implementations tailored for most interconnects

are widely available. Another strength is to reduce programming complexity because the DLCKPT

codec module uses a great deal of collective communications which are readily implemented as

MPI calls.

We designed the DLCKPT codec module as an independent program instead of a user library.

The reason is as follows. The user application is made fault tolerant by being linked to the LA-MPI

library. For compatibility reasons, the LA-MPI library only supports UDP as the message trans-

mission mode. If the codec functionality is part of DLCKPT file system, the codec will be forced

to use LA-MPI library, hence slow down checkpointing performance. To strike a balance between

performance and fault tolerance, we decided to isolate DLCKPT codec module from DLCKPT file

system, so it can use the system-dependent high-performance MPI library.

4.7 Diskless Checkpointing in Operation

In this section, we will discuss how the DLCKPT file system and the DLCKPT codec module

cooperate to produce a diskless checkpoint. We will cover the data recovery part together with the

fault-tolerant LA-MPI library in the next chapter.

Roughly speaking, during run-time, the DLCKPT codec module acts as a server which takes

commands from the DLCKPT file system. The DLCKPT file system in the root process sends

commands to the root process of DLCKPT codec module. Non-root processes of DLCKPT codec
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Figure 4.5: Diskless Codec Module during Run-time

module communicate implicitly with their corresponding DLCKPT file system via shared memory.

The relationship is illustrated in Figure 4.5. Their run-time interactions are described in the follow-

ing steps. The steps 1-3 are done once during the initialization, and the steps 4-5 are repeated for

every diskless checkpoint.

1. The DLCKPT codec module is launched and number of groups and operation mode (regular

or recovery) are specified in the command-line arguments. Its root process sets up a TCP

port to listen to commands from the DLCKPT file system of the root process of the user

application. It also writes the host name and port number information to a file in the user

home directory.

2. The user application is launched and it should have less number of processes than the DL-

CKPT codec module does. The user application proceeds to do computations. At checkpoint

time, every user process writes to the DLCKPT file system and then calls the dlckpt encode

function. In this function, the DLCKPT file system gathers user processes information (shared

memory segment IDs and host names) at the root process. The root process reads the file

saved in the previous step and makes contact with the DLCKPT codec module. It sends user
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processes information to DLCKPT codec module.

3. Upon receiving user processes information, the DLCKPT codec module matches user pro-

cesses with its own processes by host names. Some of the DLCKPT codec module’s processes

do not match any user processes, so they act as spare process, as shown in Figure 4.5.

The DLCKPT codec module partitions its processes into groups. The number of groups is

specified in Step 1. The partition is conveniently done by calling MPI Comm split func-

tion. This function creates new communicators4 from an existing communicator. It takes

an integer-value argument “color.” Processes with the same “color” are placed in the same

new communicator. In our case, we assign different colors to process groups and create

group comm from the default global communicator as follows:

MPI_Comm_split(MPI_COMM_WORLD, group_color, 0, &group_comm);

4. The root process of the user application sends ENCODE command to the DLCKPT codec

module and waits for response.

5. Upon receiving ENCODE command, the DLCKPT codec module starts encoding. Non-spare

processes attach to user processes’ shared memory segments using the information collected

in step 3. If a group has more than one spare process, the encoding algorithm to be used is

Reed-Solomon codes. In this case, each non-spare process performs the local encoding first

and then merges the result. Otherwise, the merge is applied directly. We implemented the

code as the following:

if (I am spare) {
in_buf = blank_buf
allocate result_buf

}
else {
attach to user_data shared memory segment;

4In MPI, a process group is called “communicator”. A global communicator named MPI COMM WORLD always exists

throughout the application’s run-time. A process can belong to multiple communicators.

54



if (Reed-Solomon codes)
in_buf = local_encode(user_data);

else
in_buf = user_data;

}

MPI_Reduce(in_buf, result_buf, data size, MPI_CHAR, MPI_BXOR,
spare process’s rank, group_comm);

The MPI Reduce call applies bitwise XOR (specified by MPI BXOR) over in bufs sup-

plied by all processes and places the outcome in a spare process’ result buf. The reduc-

tion is performed on a group basis, as specified by group comm.

When all groups are done, the root process of DLCKPT codec module sends DONE reply to

the user application, completing one diskless checkpoint.

4.8 Summary

In this chapter we first mentioned the I/O bottleneck faced by paralell applications running on large

systems. We then proposed the scalable diskless checkpointing to solve this problem. We introduced

the concept of diskless checkpointing, which is basically a software-implemented RAID that uses

memory as storage to provides a fast and reliable storage for temporary data, such as checkpoint

files. It also uses redundancy codes (parity codes or Reed-Solomon codes) to enable recovery from

loss of data.

We have also implemented the diskless checkpointing. The framework (DLCKPT) contains a

user-space in-memory file system and a codec (coding/decoding) module. The DLCKPT file system

is realized as a user library, whereas the DLCKPT codec module is written as an MPI program.

Together with the fault-tolerant LA-MPI library, which is the topic of the next chapter, they form a

complete infrastructure of high-performance checkpointing and recovery for parallel applications.

55



Chapter 5

A Fault Tolerant MPI Library

In the preceding chapters, we have discussed the design and implementation of a scalable diskless

checkpointing (DLCKPT) infrastructure. The DLCKPT, coupled with a fault-tolerant communica-

tion library form a solution to the I/O and reliability problems of scientific codes running on large

high-performance computing systems.

The theme of this chapter is a fault-tolerant communication library, which is responsible for

recovering from failures (process crashes.) Since MPI (Message Passing Interface) is widely used

in the high-performance computing community, we chose to enhance an existing MPI library, LA-

MPI [32], by adding automatic recovery and scalable heartbeat monitoring functions required by

the DLCKPT infrastructure.

5.1 Reliability Issues in MPI

MPI is a specification for the message-passing SPMD (Single-Program, Multiple-Data) parallel

programming paradigm. After over ten years of development and evolution, MPI is now widely

adopted as a standard for parallel programming, and its implementations can be found on systems

ranging from PC clusters to supercomputers. Most MPI libraries conform to the MPI 1.1 standard

[3], which provides little support for reliability.

MPI 1.1 has two pre-defined error handlers: MPI ERRORS ARE FATAL, which is the default

56



one and causes the user application to abort all executing processes, and MPI ERRORS RETURN,

which returns an error code to the user. The user can register customized error handlers by MPI

Errhandler create() and MPI Errhandler set() calls.

However, it is also clearly stated in the MPI 1.1 specification that “ after an error is detected, the

state of MPI is undefined... A user-defined error handler, or MPI ERRORS RETURN does not nec-

essarily allow the user to continue to use MPI after an error is detected... An MPI implementation

is free to allow MPI to continue after an error but is not required to do so.”

In reality, we found that in most MPI 1.1 implementations, the user-defined error handler is trig-

gered only when incorrect arguments are passed to the MPI calls, such as a non-existing destination

in a send operation.

For catastrophic errors such as the abnormal termination of processes during run-time, most

MPI 1.1 implementations simply abort the execution, even if the user has registered an error handler.

Furthermore, there is no MPI function that allows the user to create new processes during run-time

because MPI 1.1 adopts a static group membership model. The group membership is determined at

the time the user application is started, and the group is named MPI WORLD COMM. Any loss of a

MPI process effectively creates a “hole” in MPI WORLD COMM that cannot be mended in any way.

5.2 Introduction to the LA-MPI

Developed by the Los Alamos National Laboratory, the Los Alamos MPI Library [32] is an end-

to-end network fault-tolerant message passing system for tera-scale clusters. We chose it as our

baseline MPI library for further improvement because it already features several reliability func-

tions, such as fail-over across multiple interconnect networks, message checksum, and heartbeat

monitoring. On the other hand, it1 still lacks the ability to recover from process failures and a scal-

able protocol of heartbeat monitoring. Our goal is to add these functions to make it work seamlessly

with the DLCKPT system developed earlier.

Before describing our reliability enhancement, we would like to give a brief introduction of LA-

1LA-MPI library version 1.1.4
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Figure 5.1: LA-MPI communication core.

MPI’s software architecture and its run-time operations. More details on the LA-MPI architecture

can be found in [32].

5.2.1 Software Architecture

The communication core of the LA-MPI has a three-layer architecture shown in Figure 5.1.

• The MPI layer glues the user application and LA-MPI. It contains implementations of collec-

tive communication, which are based on point-to-point transport primitives of the next layer.

It also implements assorted MPI management and control functions such as MPI Comm rank.

• MML is the Memory and Message Layer. For memory part, LA-MPI has its own memory

management instead of using malloc/free.

For messages, LA-MPI keeps several queues and binds messages to different network paths.

The queues record requests posted by non-blocking MPI calls such as MPI Irecv(), and

blocking MPI calls such as MPI Recv() are implemented on the non-blocking counterparts.

Initially, a call to MPI Irecv() will put a request in either PostedWildcardRecv or Post-

edSpecificRecv queue, depending on whether the message tag is a wildcard or not. If an
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incoming message fragment matches with any pending request in the above two queues, this

pending request moves to and stays in MatchedRecv until the whole message is received.

A network path implements the TCP-like reliable transport layer of point-to-point commu-

nication over a particular communication substrate, may it be a high-speed interconnect, an

existing protocol (e.g., UDP) or shared memory. Multiple paths may co-exist between a pair

of source and destination in multi-rail networks. The job of the Network Path Scheduler is to

control how messages are tied to the network paths. For example, it may stripe one message

over two paths or assign messages to different paths in a round-robin style to improve network

utilization. It can also support fail-over of multi-rail networks.

• In SRL (Send and Receive Layer), outgoing messages are broken into fragments whose size

fits the underlying network paths, and incoming fragments are queued and re-assembled.

As in TCP/IP, each fragment is attached with a unique sequence number in case the fragment

is lost or tampered and needs re-transmission. Outgoing message fragments are first attached

to FragsToSend list, and once sent, are moved to FragsToACK list. Any fragment staying

too long on FragsToACK is retransmitted. An incoming uncorrupted fragment that matches

a request in the request queue is put into either OkToMatchRecvFrags or OkToMatchSM-

PRecvFrags queue, depending on whether it is off-host or on-host traffic. Unexpected or

out-of-order incoming fragments are stored in AheadOfSeqRecvFrags queue.

The above communication core is linked to the user application and becomes part of a user

process. In addition, LA-MPI also has a master-daemon code and a client daemon code that execute

on their own. Their functionality is best discussed in the context of the run-time operations of

LA-MPI, as below.

5.2.2 Run-time Operations

The run-time process relationship of LA-MPI is shown in Figure 5.2. There are three kinds of

processes: a master daemon, client daemons, and user processes. The master daemon, mpirun,
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processes.

is responsible for spawning client daemons on remote nodes, checking health of client daemons

periodically, and handling console I/O (e.g., collecting remote processes’ output to the stdout

device.)

Each node runs one client daemon, which spawns one or more user processes and then enters

the daemon mode. In this mode, the client daemon constantly checks for control messages such as

heartbeat from the master daemon and monitors the status of user process via SIGCHLD signal and

waitpid(). The user processes run the user application and perform MPI communications with

peer processes.

5.3 Reliability Enhancement

Our enhancement to the LA-MPI is to add automatic recovery capability and a scalable heartbeat

monitoring scheme.
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5.3.1 Scalable Heartbeat Monitoring

Heartbeat monitoring in the current LA-MPI (version 1.1.4) library is a centralized scheme in which

a master daemon oversees all other daemon processes, as in Figure 5.2. Our new scalable scheme

gets rid the master daemon. Instead, it creates a logical ring among all client daemons. Each client

daemon heartbeats its downstream neighbor in the ring and can trigger a recovery if its downstream

neighbor failed, as shown in Figure 5.3.

It should be noted that the heartbeat monitoring only checks the responsiveness of peer client

daemons. It does not check whether the user process is making progress or has been frozen due to

failures, because the MPI library is separated from user application logic.

5.3.2 Automatic Recovery

The system or the user should supply a list of spares at the launch of an application. When the

heartbeat monitor detects a failure, the LA-MPI removes one spare from the list and restarts the

failed processes on the spare. All of these recovery operations are semi-transparent to the user

process in the sense that the user application has to be slightly modified to cooperate with LA-

MPI’s automatic restartability.

The user should write a recovery callback function which cleans prior dynamically allocated

memory objects, loads the last checkpoint, and re-initializes the process state. As most scientific

applications are already able to resume execution from checkpoint, the additional programming ef-
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fort is minimal. The following code shows how the user application is modified to use the automatic

recovery feature.

extern jmp_buf LAMPI_Recovery;

if (setjmp(LAMPI_Recovery) == 0)
MPI_Init(&argc, &argv);

else
recovery_callback_function();

The application first registers a long jump buffer LAMPI Recovery. using setjmp(). The

first time the setjmp(LAMPI Recovery) is executed, it returns 0. When there is a recov-

ery, LA-MPI will call longjmp(LAMPI Recovery), after which the control flow jumps to

setjmp(LAMPI Recovery) and returns a non-zero value, hence initiates the user-provided

recovery callback function(). The usage of setjmp and longjmp can be found in

most UNIX programming manuals.

Although in effect the automatic recovery is like using a shell script to automates the restart of

the user application, the advantage of our approach over user-directed restart is the small overhead

compared to that of a full-scale re-launch of the user application, which can take long on thousands

of nodes [41].

5.4 Implementation

Our modification to the LA-MPI code base is mostly inside the the commmunication core and the

client daemon code. Here we discuss details of our implementation.

5.4.1 Scalable Heartbeat Monitoring

Each client daemon in the heartbeat ring sends a heartbeat message to its downstream peer every

second. If any client daemon fails to receives a heartbeat within a fixed period, it initiates a recovery.

If any member detects an abnormal termination of any of its user processes (via SIGCHLD signal

and waitpid()), it suicides and will later be detected by absence of heartbeat.
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5.4.2 Automatic Recovery

After the client daemon detects the failure of its peer, it initiate the recovery. We need to deal with

both LA-MPI itself and the user application. First, the LA-MPI commmunication core restarts itself

by resetting its internal data structures. Then the LA-MPI uses longjmp() to invoke the user-

provided recovery callback function as mentioned earlier to complete the user application recovery.

The whole LA-MPI recovery follows the protocol below. Note that the current version of re-

covery protcol cannot handle multiple failures (e.g. due to network switch failure) or failures of two

adjacent nodes in the heartbeat ring.

Let A denote the client daemon that detects a failure, then A is the coordinator of recovery.

1. A checks the groupwise spare list. If there is still one available, it broadcasts a MPIFT

RECOVERING message and tries to spawn a new client daemon on the spare. Otherwise, the

execution cannot continue and must halt.

2. A notifies its own user processes by sending SIGUSR2 signals to each of user processes.

3. On receipt of MPIFT RECOVERING, all functioning client daemons pause the execution of

their user processes and wait for instruction from A.

4. A spawns a new client daemon on a spare. If the new client daemon fails to start, it is regarded

as multiple failures and the execution will halt.

5. The notified user processes jump to SIGUSR2 signal handler function, which is inside the

LA-MPI library code.

In this handler functions, data structures in the communication core of LA-MPI are reseted.

Then the user processes suspend and wait for further instruction from their client daemons.

6. When A successfully spawns a new client daemon, it disseminates the updated network and

node information to other client daemons. All client daemons then update their information,

reanimate the user processes to continue, and resume to normal mode of operation.
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7. The user processes jump back to the user application code from inside the LA-MPI library

using longjmp() and execute the recovery callback function (e.g. to load the checkpoint)

to complete the recovery.

Figure 5.4 and 5.5 show the finite-state diagrams of this protocol.
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5.5 Recovery of the DLCKPT System

The above recovery protocol works independently of the DLCKPT system. As we mentioned in

§4.6, the DLCKPT codec module is also an MPI program but linked to a non-fault-tolerant MPI

library for high performance. Hence, a node failure can also crash the DLCKPT codec module and

render the DLCKPT system crippled.

To integrate the DLCKPT code module into the LA-MPI recovery protocol, the following two

steps of the LA-MPI recovery protocol is modified:

1. A checks the spare list. If there is still one available, it broadcasts a MPIFT RECOVERING

message and tries to spawn a new client daemon on the spare. Otherwise, the execution cannot

continue and must halt.

A also launches the DLCKPT codec module in the recovery mode (can be specified by the

command-line option) and supplies it with spare and node information.

4. The DLCKPT codec module determines whether the checkpoint data can be recovered. If all

spares in the group that contains the failure are used up, the recovery cannot proceed. In this
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situation, the DLCKPT notifies the LA-MPI to abort.

Otherwise, the DLCKPT codec module reconstructs the lost checkpoint on a spare. The

information about this particular spare is sent back to A.

A spawns a new client daemon on this spare. If the new client daemon fails to start, it is

regarded as multiple failures and the execution will halt.

5.6 Discussion

The main overhead of the automatic recovery lies in broadcasting the node failure notification,

restarting the failed processes, and distributing the new node’s address and port information. In

particular, the newly-spawned client daemon must receive a table of network addresses of all other

processes. The size of this table grows in proportion to the node count. In practice, a process may

not need the complete network address information because it probably only communicates with

a small set of peer processes. So an improvement would be storing the complete network address

table on a subsets of nodes (“name servers”) only, and other nodes can query these name servers for

network address of peer processes.

As a proof-of-concept and as a complementary part to diskless checkpointing, our current scal-

able heartbeat monitoring and recovery protocol are not sophisticated enough to recover from fail-

ures of two or more adjacent processes. We also assume node failures are “hard,” thus every failure

needs a spare to resume the execution. This limitation can be relaxed by attempting to restart the

process on the original node and then a spare node.

5.7 Summary

We introduced a fault-tolerant MPI library, LA-MPI, and discussed our improvement to it to enable

automatic recovery. The enhanced LA-MPI uses a scalable heartbeat monitoring to detect abnormal

process crashes. Following a crash, the enhanced LA-MPI can automatically respawn the failed

process on a spare. It also works seamlessly with the DLCKPT system to reconstruct the lost
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checkpoint data on a spare. The user application code only needs small modifications to utilize this

automatic recovery feature.
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Chapter 6

Experimental Results

We have conducted a series of experiments to assess the performance of the DLCKPT system on

large systems. We have used an I/O benchmark and two real scietific applications on large clusters

and measured the performance.

6.1 Experimental Environment

We used three Linux-based PC clusters in our experiments. Their hardware and software are de-

scribed below.

1. NCSA TeraGrid TeraGrid is a multi-institution long-term collaboration to deploy high-performance

computing resources in a geographically distributed environment for the science community.

In addition to providing an aggregate of 20 teraflops of computing power, TeraGrid also hosts

petabytes of storage, high-resolution visualization devices, and grid computing toolkits.

The TeraGrid system at the National Center for Supercomputing Applications (NCSA) site

is a cluster of 889 nodes. All nodes are based on Intel Itanium 2 processors. There are two

access nodes, each of which has four processors and 8 GB ECC memory. The compute nodes

were deployed in two phases. There are 256 phase-one nodes, each of which has dual 1.3

GHz processors and 4-12 GB ECC memory. There are also 631 phase-two nodes, each of
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which has dual 1.5 GHz processors and 4 GB ECC memory. The workload is managed by

the Portable Batch System. The peak performance is 10 teraflops.

There are three interconnect fabrics: Myrinet 2000 [19] serves inter-node network messages,

and Gigabit Ethernet and Fiber Channel serve I/O traffic.

2. SDSC TeraGrid The TeraGrid system at the San Diego Supercomputer Center has a smaller

but similar hardware and software configuration as the one at NCSA. It has 384 dual 1.5 GHz

Itanium 2 nodes and a peak performance of 4 teraflops.

3. NCSA Tungsten The NCSA Tungsten is a PC cluster consisting of 1,450 Dell PowerEdge-

1750 nodes. Each node has dual 3.2 GHz Pentium 4 Xeon processors and 3GB of ECC

memory. The nodes are connected by the Myrinet 2000 high-performance interconnect. The

peak performance achievable on the 1,250 nodes is 15 teraflops.

In practice, Tungsten is divided into five identical compute sub-clusters, one test/debug sub-

cluster, and a set of I/O servers. Each compute sub-cluster has 256 compute nodes, one

interactive access node, and two management nodes. The test sub-cluster has 64 compute

nodes plus administration and login nodes.

6.1.1 Interconnect

In the preceding chapters, we have stressed the importance of network speed on the performance

of diskless checkpointing, so here we give more details of the interconnect used by the systems on

which we experimented.

All of the three clusters use Myrinet 2000 high-speed interconnect to serve inter-node traffic.

Each node is equipped with a single-port Myrinet M3F-PCIXD-2 network card. This card uses 64-

bit 133 MHz PCI-X bus interface which has a limiting throughput of 8 × 133 = 1064 MB/s. Each

card contains a Lanai-XP RISC processor operating at 225 MHz and 2 MB of local memory. With

fiber optic cables as transmission medium, the sustained data rate (for large messages) measured at

application-level is 248 MB/s in uni-directional mode and 489 MB/s bi-directional. The latency for
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short messages (< 100 bytes) is 6.3 microseconds.

6.1.2 System Software and Performance Fine-Tuning

All of the three clusters run Linux version 2.4. The compiler used to compile all benchmark and

application codes is Intel C Compiler version 8. The communication middleware used on TeraGrid

is MPICH-GM library version 1.2.5, which is based on MPICH [24] and Myrinet GM low-level

message-passing library. NCSA Tungsten employs a proprietary MPI library called ChaMPIon/Pro

from the MPI Software Technology, Inc. The version is 1.1.1.

We also made the following arrangements to optimize the network performance in our experi-

ments.

Message Receive Mode

The first enhancement is in the communication middleware. MPICH-GM supports three modes

of message receives: polling, blocking, or hybrid. By default, MPICH-GM uses polling which

has the most favorable performance for short messages. However, we found the hybrid mode,

in which MPICH-GM automatically enters blocking mode after one millisecond of failed polls,

yielded at least four times better performance than the polling mode. The reason is in practice, the

checkpointing data is large, so DLCKPT module uses very long messages. The busy waiting in the

polling mode is not only unhelpful but can harm performance for bulk transfers. The hybrid mode

is enabled by supplying a --gm-recv hybrid switch to mpirun.

The ChaMPIon/Pro on NCSA Tungsten adopts a message receive mode very similar to the

hybrid mode of MPICH-GM, so we did not use any additional tuning.

Node Placement

The second enhancement is node placement. Ideally, all pairs of nodes can be assumed equidis-

tant, so the message transfer time between any pair of nodes is constant. For large clusters this

assumption is not true: the communication between two nearest neighbors can achieve twice more
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bandwidth than that of two nodes far apart [42]. Although in diskless checkpointing we partition

nodes into groups, this does not mean nodes of a group are physically close. An obvious reason is

that we have no control over the nodes the batch scheduler assign to our jobs. Another reason is that

even if the assigned pool of nodes have good affinity, without careful coordination we will not be

able to take its advantage. Therefore, throughout the experiments, we have manipulated the node

list fed to mpirun, the launcher of MPI applications, to enforce node affinity.

6.2 Checkpointing Performance

We wrote a simple micro-benchmark to assess diskless checkpointing performance under various

configurations. A configuration is defined by three parameters: m, n, and the number of groups.

Group-wise, m is number of clients and n is number of spares. For convenience we denote m:n.

In a run, each client dumps 200 MB of data to DLCKPT file system and performs redundancy

encoding. The time to accomplish this task is recorded and the dumping process is repeated until

the job has exhausted its allocated time. Usually 15-50 such measurements will be taken and the

average is reported. The aggregate checkpointing rate is calculated accordingly. Because all of the

large systems we used impose the same cap of 256 nodes on job size, we only tested up to 512

clients in the experiments.

The results of 10:1, 20:1, 40:1, 60:1, 80:1, and 100:1 (one spare per group) configurations are

presented in Figure 6.2 and 6.3.

We also experimented configurations in which two or three m:1 groups are merged into a larger

group, so each group has two or three spares and runs the Reed-Solomon codes. The concept is

shown in Figure 6.1.

The results of 20:2, 40:2, 80:2, 120:2, and 160:2 are illustrated in Figure 6.4 and 6.5, and 30:3,

60:3 and 120:3 in Figure 6.6.

The results clearly show excellent scalability: the checkpointing time increases only a little

when more clients were added. In one spare per group scheme, it is possible to obtain 9-12 GB/s

of throughput. In two or three spares per group scheme, the performance is slowed down by a
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10:1 20:2

Figure 6.1: Different diskless checkpointing configurations. The circles denote nodes and gray ones
are spares. The rectangles denote groups. Two 10:1 groups can be merged into one 20:2 group.

factor of 2-2.5 and 3.2-4.5, respectively, as can be seen in Figure 6.8. This is expected because first,

Reed-Solomon algorithm makes n reduction passes over the data where n is the number of spares

per group. Second, an additional encoding procedure is required before each reduction. Third, the

group size is larger, so each reduction takes more time. This increase of time along with group size

is logarithmic. Figure 6.7 validates this claim. However, the logarithmic growth depends on the

MPI library being used. More details will be discussed in the next chapter.
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Figure 6.2: Checkpointing times and throughput.
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Figure 6.3: Checkpointing times and throughput.
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Figure 6.4: Checkpointing times and throughput.
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Figure 6.5: Checkpointing times and throughput.
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Figure 6.6: Checkpointing times and throughput.
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Figure 6.7: Checkpointing times comparison of one, two, and three spares per group.
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Figure 6.8: Checkpointing times comparison of merging two or three groups into one larger group.
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6.3 Comparison with Disk-based Parallel File Systems

To show the better performance of diskless checkpointing, we also benchmarked the disk-based

parallel file systems as a contrast.

6.3.1 The Parallel File Systems

The NCSA TeraGrid system provides three kinds of cluster-wide scratch storage for users. The first

is the Network File System (NFS), which has 1 TB size and hosts user home directories. The second

and the third both run IBM’s General Parallel File System (GPFS) [43] on a Storage Area Network

(SAN) composed of IBM TotalStorage FAStT 900 storage servers, but the connections to SAN are

different. The /gpfs scratch1 directory is mounted in the Network Shared Disk (NSD) mode,

in which 32 nodes are dedicated to act as the conduit to SAN, an array of eight FAStT servers with

39 TB of space. The /gpfs sanscratch directory operates in the Directly Attached (DA) mode,

in which every node that mounts this directory must connect directly to SAN via Fiber Channel. The

SAN for DA mode consists of 24 FAStT servers and provides 90 TB of space. DA mode delivers

performance several times better than NSD mode, but due to the direct connection requirement,

currently only the phase-one nodes (1.3 GHz) can access it. For fail-over, all the FAStT servers are

arranged in a sister pair configuration: each server node serves a set of primary disks, which has a

backup node that can take over transparently for those disks and vice versa.

The NCSA Tungsten system has a dedicated sub-cluster of 104 I/O nodes connected to a SAN

via Fiber Channel. The SAN is composed of fourteen DataDirect model 8000 storage servers,

providing a total of 122 TB of space. The compute nodes are connected to I/O nodes via Gigabit

Ethernet. The cluster-wide scratch storage uses the proprietary Lustre File System (CFS, mounted

under /cfs/scratch) developed by Cluster File System, Inc [44]. CFS is a scalable parallel file

system designed exclusively for large commodity clusters. Unlike traditional file systems which

manage files on a block basis, CFS organizes all data related to a file as store objects. There is

no hierarchical namespace but only a flat collection of store objects with distinct identifiers. Such
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Figure 6.9: Disk-based file system performance comparison.

an object-based storage architecture can ease access control and storage management of data on

clusters with high volume demand [45].

6.3.2 Results

We used the same micro-benchmark code mentioned in §6.2 and compared the performance of

GPFS and CFS to DLCKPT on the NCSA TeraGrid. The result is shown in Figure 6.9. It can

be readily seen that on the two high-performance computing systems we experimented, their disk-

based parallel file systems cannot scale beyond a certain point, e.g., 300 clients in GPFS. GPFS in

DA mode is 2.5-4 times better than in NSD mode and CFS is the worst of three disk file systems.

Under 200 clients, GPFS DA performs equally well as DLCKPT 20:1 configuration does. We

believe the reason that GPFS DA fared well in this case is the micro-benchmark code does not

perform an fsync(), which will force the transfer of content of write cache to the disk, after each

write().

Nevertheless, DLCKPT starts to outperform all three disk file systems when the number of

clients gets larger. Even the 40:2 configuration, which only has half of 20:1’s throughput, catches

up with GPFS DA at about 500 clients. We can conjecture that the root of unscalability of disk-

based file systems lies in its inability to dynamically expand I/O nodes and I/O servers to cope the

user’s needs, whereas our DLCKPT has no such constraints.
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6.4 Application Checkpointing Performance

In addition to micro-benchmarks, we also used two real data-intensive parallel codes to evaluate

diskless checkpointing. Both codes are part of the ASCI Purple Benchmarks, representing the bulk

of workload on the ASCI supercomputers.

6.4.1 The sPPM Application

sPPM [4] is a computational kernel used by many applications. It solves a 3-D gas dynamics

problem on a uniform Cartesian mesh using a simplified version of Piecewise Parabolic Method. Its

algorithm progresses in “double timesteps”. Each double timestep involves 13 different directions

of sweeps through the meshed data. Message-passing were largely used to update ghost cells from

neighboring domains.

6.4.2 The Sweep3D Application

Sweep3D [5, 6] is the kernel of solver for 3-D time-independent particle transport problem using a

multi-dimensional wavefront algorithm. Sweep3D exchange messages among processes as wave-

front propagates diagonally across its 3-D space in eight directions.

Both codes follow the Bulk Synchronous Parallel (BSP) computing model which characterizes

process execution as iterations of supersteps. A superstep consists of, in order, local computation,

global communication, and a barrier synchronization. Checkpoint can be selectively dumped at the

end of a superstep. In both codes all processes dump checkpoint to their individual files and there

is no sharing among the files during recovery.

6.4.3 Results

The NCSA TeraGrid system is the testbed of choice for this set of experiments. We configured both

codes to checkpoint after every iteration. For sPPM (in single-precision mode) an iteration lasts for

one minute and each process creates a 157 MB file, and for Sweep3D the time is half minute and
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Figure 6.10: sPPM checkpointing performance.

file size is 182 MB.

Figure 6.10 and 6.11 show the result. Both codes exhibit comparable performance to the micro-

benchmark result in §6.2. In one spare per group case, both achieve 6-8 GB/s of throughput at 448

clients, and in two spares per group both have 3-3.5 GB/s of throughput.

We can infer that diskless checkpoint has a positive impact to the performance (i.e. time-to-

solution) of both applications because it consumes almost constant time (8-25 seconds in sPPM and

9-27 seconds in Sweep3D) regardless of the number of processes, while the disk-based checkpoint

could use as much as two minutes (based on results in §6.3) when there are 500 processes.
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Figure 6.11: Sweep3D checkpointing performance.
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6.5 Application Recovery Performance

Application recovery has three components: process recovery, data recovery, and additional over-

head. Process recovery is re-spawn the failed process on a spare, which is taken care by LA-MPI.

Data recovery is performed by DLCKPT codec module. The additional overhead is induced by the

launch of DLCKPT codec module and the communication between DLCKPT codec module and

LA-MPI. As mentioned in §5.5, the DLCKPT codec module uses a high-performance MPI library

that lacks self-recovery feature, so a node failure can cripple the DLCKPT codec module and a

re-launch is required.

We tested the same applications with a 16:1 configuration. We wrote a simple fault injector to

kill both a user process and the DLCKPT codec module to simulate a node failure. The injector is

activated after the first checkpoint and before the second checkpoint. When it is activated, it sends

SIGKILL signals to one of user processes and a DLCKPT codec module process.

The recovery results are presented in Figure 6.12 and 6.13. Data recovery performance is the

same as the checkpointing performance, as expected. Process recovery is also quite scalable and

takes no longer than 2.5 seconds. However, the additional overhead is the dominant part and ac-

counts for up to 70 percent of total recovery time. Besides, its time increases along with the total

number of processes, making recovery unscalable. The main cause lies in the extremely inefficient

way the MPICH launches an MPI application.

Following the node list, the MPICH uses Secure Shell (ssh) utility to login to each node in order

and create processes there. The linearity is already inefficient, let alone that ssh itself is also slow

because it goes through a complex user authentication protocol. It is not an exaggeration that job

launching times can take tens of minutes on very large parallel systems [41, 46].

The job launching time can certainly be improved. The makers of the MPICH developed an

alternative, high-performance job launching facility called Multiple Purpose Daemon (MPD) [47].

There are also other research projects aimed at building fast and reliable job management systems

with improved algorithms (e.g. binary tree) and interconnect support (e.g. multicast). STORM [46]
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Figure 6.12: sPPM recovery performance.

exploits hardware barrier and broadcast available on Quadrics interconnect to achieve 0.11 seconds

of launching a 12 MB job on 64 nodes. Projects like SLURM [48] and BProc [49] also reported

comparable results.

Figure 6.13: Sweep3D recovery performance.
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6.6 Checkpoint Compression

Volatility is not the only shortcoming of using RAM as storage: another constraint is the small size

compared to disks. In practice, when a user program checkpoints, it cannot simply overwrite the

previous checkpoint because a failure can occur during checkpoint. Instead, the user program must

write to a different file and delete the previous checkpoint until the current checkpoint is complete.

Therefore, the total memory required could triple the process’s memory.

Memory compression has become a feasible solution to increase the “effective” capacity as

speed of modern processors is fast enough to squeeze the content data in real-time. Compression

can also maximize the effective bandwidth because less data is transferred. As an example, IBM

developed a novel memory controller architecture called Memory Expansion Technology (MXT)

[50] to perform real-time compression and decompression of data traffic between the cache and

the main memory. Diverse cache compression schemes are also extensively studied and evaluated

[51, 52].

To assess the benefit of memory compression, we adopted a lossless compression library called

LZO [53]. Its compression algorithm is a derivative of the industrial-strength Lempel-Ziv compres-

sor. LZO is designed to favor speed over compression efficiency to achieve real-time compression

and decompression.

We added LZO to the application code instead of the DLCKPT file system in order to keep our

DLCKPT code clean and simple. Because LZO is a block compressor, we modified the way the

application allocates the memory such that the portion of the application address space to be dumped

during a checkpoint is a continuous block. Then in a checkpoint, the data is first compressed and

then written to the DLCKPT file system.

There are two gauges of compression efficiency: “compression ratio,” defined as compressed

size divided by the original size, and “compression time”. The definition of compression ratio may

seem awkward because a higher compression ratio corresponds worse compressibility, but it can

correlate nicely to compression time, as we should see later from the experimental results.
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Figure 6.14: Compression ratio and combined compression and I/O time of sPPM.

We tested with sPPM and Sweep3D using 16 MPI processes and 16:1 configuration on the

NCSA TeraGrid system. Our result shows that Sweep3D is very incompressible; the compression

ratio is greater than 0.8 across all processes. This corroborates the findings of Alameldeen and

Wood [51]. They tried several SPEC2000 and commercial benchmarks and found that floating-

point benchmarks are generally less compressible (with compression ratios 0.77 to 1) than their

integral counterparts (ratios 0.4 to 0.7).

The result of sPPM is more interesting. Figure 6.14 presents the plots of compression ratio

and time as a function of iteration step. The result is chosen from one of the processes, but all

processes exhibit the same behavior: both compression ratio and time increases as the application
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progresses. In the first 10 iterations, the compression time is 0.6-1.2 seconds. After 30 iterations,

the compression time grows to a point where the combined (compression and I/O) time is longer

than 9 seconds, the time if no compression is used.

The growing incompressibility is also observed in Sweep3D. This phenomenon can be explained

from the viewpoint of information entropy. The principle of compression is to replace repetitive data

patterns with compact representation. Initially, the data is highly homogeneous (e.g. all zeros) and

thus highly compressible. After iterations of computations and changes on data, the information

content in data becomes less regular and hence less compressible.

The concomitant growth of compression time is related to the dictionary-based compression

algorithm of LZO. LZO maintains a sliding dictionary of frequent strings and their encodings. If a

stream of bytes matches an entry in the dictionary, the output is the corresponding encoding; oth-

erwise, the stream is output in it original form with an appropriate prefix. For highly compressible

data, the repetitive strings can be quickly identified in dictionary and hence the short compression

time. If the data is pattern-less, then full search and update of dictionary will be commonplace and

waste more CPU cycles.

6.7 Summary

We used a micro-benchmark and two real parallel scientific applications on large high-performance

computing systems to assess the efficacy of diskless checkpointing. The results showed great scal-

ability of diskless checkpointing, as expected. When the number of clients grows to a certain point,

the diskless checkpointing starts to outperform the disk-based parallel file system. In one spare per

group configuration, the throughput of 448 clients can reach 9-12 GB/s, and in two or three spares

per group configuration, the throughput of the same number of clients can achieve 3.6-6 GB/s and

2-3.8 GB/s, respectively.

We also measured the recovery performance and found the dominant factor is the job re-launching

time of the DLCKPT codec module. If this factor is ruled out, the recovery is also highly scalable

and its performance is comparable to the checkpointing.
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Finally, because the memory storage is scarce compared to disks, we experimented with check-

point compression using a real-time lossless compression library. The result shows that compression

can effectively reduce the application checkpoint size and hence the I/O time. However, after more

iterations of computation, the application checkpoint becomes less compressible, so the incurred

compression time overhead outweighs the advantage it brings.
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Chapter 7

Performance Analysis

The goal of this chapter is to develop a performance model of of the DLCKPT system and derive

its model parameters from the experimental results presented in the previous chapter. In reality

there are so many affecting factors (e.g. communication middleware optimization, node affinity

[see §6.1.2], OS interference [54], and interconnection architecture) that it is unlikely to correctly

predict the performance of a system one or two orders greater than the PC clusters on which we ex-

perimented. Despite the difficulty, we propose a tractable model that can explain most experimental

results and is reasonable enough to predict performance on larger systems.

7.1 Overview

Our model consists of several components, each of which corresponds to a stage of execution. For

checkpointing, the model is broken up into the following components/stages:

1. The user application writes to the DLCKPT file system. Multiple checkpoint files can be

written at this stage.

2. All user processes finish writing and enter a barrier. After the barrier, the root process of the

user application prompts the DLCKPT codec module to start encoding.

3. The DLCKPT codec module runs Reed-Solomon encoding if necessary.
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4. The DLCKPT codec module uses MPI Reduce() to produce redundancy codes.

5. The DLCKPT codec module finishes the reduction and enter a barrier. After the barrier, the

root process of the DLCKPT codec module informs the user application of completion.

Therefore, the checkpoint time for one spare per group is

C1 = MemCopyT ime + ReductionT ime + MultiGroupOverhead

and for k > 1 spares per group is

Ck = MemCopyT ime+k · (RSEncodingT ime+ReductionT ime)+MultiGroupOverhead

The MemCopyT ime term corresponds to stage 1 (see §7.2), RSEncodingT ime to stage 3

(see § 7.3) and ReductionT ime to stage 4 (see § 7.4).

The stage 5 is critical to the scalability of diskless checkpointing on large systems. The reported

performance in the previous chapter is based on the time the last group entering the barrier (i.e.

last one that completes in stages 3 and 4.) However, based on our measurement, not all groups

finishes stages 3 and 4 in exactly the same time, even if they all have the same amount of data to

process. Therefore, we use the MultiGroupOverhead (see §7.5) term to account for the additional

overhead due to multiple groups.

Recovery follows essentially the same scenario except that the LA-MPI must spawn the DL-

CKPT codec module (JobLaunchingT ime), must restart the failed process on a spare and all pro-

cesses must reload the checkpoint (combinedly ProcessRecoverT ime.) So we derive the recovery

time for one spare per group scheme as

R1 ≈ FailureDetectionT ime + ProcessRecoverT ime + JobLaunchingT ime + C1

The recovery time for k (k > 1) spares per group is

Rk ≈ FailureDetectionT ime + ProcessRecoverT ime + JobLaunchingT ime + 2 · Ck

Rk differs from R1 in that when there are more than one spare per group, immediately after a

recovery, the redundancy codes must be recomputed because old codes are no longer valid, so Rk

has a 2 · Ck term.
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7.2 Memory Copy Performance

We wrote a benchmark to measure the efficiency of memcpy() on large data arrays. rate. On a

machine with 3.2 GHz Pentium 4 Xeon processors, we got about 1000 MB/s with the GCC compiler

and 1500 MB/s with the Intel C Compiler (ICC) version 8. On a machine with 1.3 GHz Itanium 2

processors, we got about 770 MB/s with GCC and 2000 MB/s with ICC. We believe the performance

difference comes from a better implementation of memcpy() of ICC. At any rate, such speed is

fast enough to deal with large checkpoints.

7.3 Reed-Solomon Encoding Performance

In §4.3.3 we mentioned our implementation of Reed-Solomon codes. Both encoding and decoding

are simply a series of table look-ups that map each user data item in source into the result array

target:

for (i=0; i < SIZE; i++)
target[i] = RSTable[source[i]];

All of source, target, and RSTable are arrays of 16-bit unsigned short integers. The

RSTable has 216 elements and its size is 128 KB.

Although the above code seems simple, its performance can vary greatly. We have identified

two bottlenecks that can affect the performance by a factor up to three: data locality and compiler

optimization.

It has been well studied that different data patterns can yield different cache reuse rates and

hence different access speed. In general, sequential accesses are more favorable than random ac-

cesses. To verify how data locality affects the performance of Reed-Solomon encoding, we per-

formed a simple benchmark. We filled the the source array with different data patterns as follows:
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Pattern Fill Method
Constant source[i] = 0
Less Random source[i] = rand() % 1024
Random source[i] = rand() % 8192
Fully Random source[i] = rand()
Sequential source[i] = i
Stride source[i] = 1+32*i
Stride Random source[i] = 1+32*rand()

We took the processor cache into consideration when we designed the above patterns. The

Itanium 2 has 16 KB level-one (L1) data cache and 256 KB L2 cache. Pentium 4 Xeon has 8 KB

L1 data cache and 512 KB L2 cache. The cache line size in both processor’ L1 cache is 64 bytes.

It is clear that RSTable cannot fit into both processors’ L1 caches, and this implies that there

may be quite a few cache misses for certain kinds of data patterns. The Stride pattern is to artificially

reduce L1 cache reuse because RSTable is accessed every 32 elements, which are a single cache

line’s load.

We used ICC with -O3 flag to compile the benchmark. We also use PAPI [55] to get information

on cache efficiency. Figure 7.1 shows the result. The encoding speed reaches its peak when the

portion of RSTable in use can fit into L1 cache, e.g. Constant and Less Random. On the other

hand, the speed drops to less than half (43%) of peak performance for two cache-unfriendly patterns:

Fully Random and Stride Random. Overall, we found that the encoding speed is strongly correlated

to the L1 cache hit rate in Itanium’s case and less so in Pentium’s case.

The second factor that affects performance is compiler optimization. We tested the GCC and

ICC with varied optimization flags on Fully Random data pattern. The -O0 flag indicates no opti-

mization and -O3 indicates the most aggressive optimization. Figure 7.2 presents the result. Here

we had contradictory outcomes. The general belief is that ICC generates better code than GCC, and

this can be validated in Itanium case: ICC outperforms GCC by 73% with both -O3 flag set. Using

PAPI, we found that GCC generates code that has three times the stalled cycles than ICC does.

Further investigation shows that the GCC-generated code executed three times more branches.

The superiority of ICC reversed on Pentium 4. Here over-optimization causes inferior perfor-

mance, even for GCC. Although we measured various performance metrics with PAPI, we could
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(a) 1.3 GHz Itanium 2

(b) 3.2 GHz Pentium 4 Xeon

Figure 7.1: Reed-Solomon encoding performance and L1 cache hit rate for different data patterns.
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not find a single metric that best explains this phenomenon. We suspect the architecture of Itanium

relies more on the compiler to do optimizations, while the Pentium 4’s already sophisticated built-in

optimization can sometimes offset compiler efforts.

In practice no matter how the encoding code is optimized, on Pentium 4 the speed is fast enough

to encode a large checkpoint in a second or two. On Itanium the encoding process can be a bot-

tleneck, especially when the code is not properly optimized. For example, the encoding speed is

only 30 MB/s with ICC -O0, which is even slower than the bandwidth of high-speed networks like

Gigabit Ethernet.
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(a) 1.3 GHz Itanium 2

(b) 3.2 GHz Pentium 4 Xeon

Figure 7.2: Reed-Solomon encoding performance of different compiler optimizations.
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7.4 Reduction Performance

As mentioned in §4.7, the efficiency of MPI Reduce calls is the most critical to the overall per-

formance of diskless checkpointing. In this section we examine two different MPI Reduce imple-

mentations and their performance.

We used version 1.2.5 of MPICH library [24] and version 1.1.1 of ChaMPIon/Pro in our exper-

iments. The 1.2.5 and earlier versions of MPICH employs a Binary Tree algorithm in the reduction

operation [42]. Although we do not have access to ChaMPIon/Pro’s source code, we suspect it is

also based on the same algorithm.

Let n be the number of processes, 0, . . . , n− 1 be the process ranks, and d be the checkpoint

size. In the Binary Tree algorithm, at step i, process (2i ∗k) receives d amount of data from process

(2i ∗ k + 2i−1) and performs reduction (k runs from 0 through 	lg n
 − i). Figure 7.3 illustrates an

example of four processes with summation as the reduction operation and P0 being the root process.

Since there are 	lg n
 steps, the time complexity is O(	lg n
d).

At first glance, the Binary Tree algorithm seems to be the most efficient way of reduction.

However, at time of writing we learned that the 1.2.6 version of MPICH library adopts an even

faster algorithm called Rabenseifner’s algorithm [42]. For long messages, this algorithm achieves

O( (n−1)d
n ) and can be further bounded above by O(d) for large n. The idea behind Rabenseifner’s

algorithm is very simple: the reduction is implemented as a reduce-scatter followed by a gather

operation. Both reduce-scatter and gather operations are defined in the MPI specification as MPI

Reduce scatter and MPI Gather functions. Reduce-scatter is a variant of reduce, in which

the send buffer at each process is a vector of n blocks and the result of reduction is scattered over all

processes. Gather is to collect data from all processes to the root process. Figure 7.4 demonstrates

Rabenseifner’s algorithm at work.

The key to the high performance of Rabenseifner’s algorithm lies in the implementation of

reduce-scatter and gather. MPICH 1.2.6 adopts the Pairwise Exchange algorithm for reduce-scatter

operation over messages longer than 512 KB [42]. In the Pairwise Exchange algorithm, at step i,
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Figure 7.3: Binary Tree algorithm for reduction.
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Figure 7.4: Rabenseifner’s algorithm for reduction.

process k sends data to process k + i and receives data from process k − i (with wrap-around)

where k runs from 0 through n − 1. The data sent is only the data needed for the scattered result

on the receiving process. Thus, only d
n amount of data per process is sent in a step. The algorithm

concludes after n − 1 steps. Assume messages are long and the latency (i.e. message set-up time)

can be ignored, then the time complexity is O((n−1)d
n ). Figure 7.5 gives an example of the Pairwise

Exchange algorithm.

MPICH 1.2.6 implements gather operation using a Binary Tree algorithm similar to the re-

duction algorithm in MPICH 1.2.5. Figure 7.6 shows the gather algorithm. Despite the seeming

similarity, the time complexities are disparate. The time of gather does not grow logarithmically

with respect to the number of processes n; instead, it is O((n−1)d
n ). A comparison of Figure 7.3

with 7.6 reveals the difference: for reduction, constant (in this case, four) units of transfer are re-

quired for every step, while for gather, the units of transfer start with one and grow exponentially.
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Figure 7.5: Pairwise Exchange algorithm for reduce-scatter.

Hence, the gather complexity is
�lg n�∑
i=1

d

2i
=

(n− 1)d
n

where lg n is base-2 logarithm function.

Combining reduce-scatter and gather operations, Rabenseifner’s algorithm achieves O((n−1)d
n )

time complexity. Rabenseifner’s algorithm is not only time-efficient but also space-efficient. In

Binary Tree algorithm, half of the processes need to prepare a temporary buffer as large as the send

buffer to hold intermediate results, while in Rabenseifner’s algorithm the temporary buffer is no

larger than half of the send buffer.

We measured the performance of old and new algorithms of MPI Reduce on two systems (see

§ 6.1). We experimented 10:1, 20:1 and 40:1 configurations with one group and used bitwise XOR

as reduction operation. The result is presented in Figure 7.7. Rabenseifner’s algorithm is 1.5 times

faster in most cases and twice as fast as Binary Tree algorithm for larger group and checkpoint

size. A comparison of time growth of both algorithms is shown in Figure 7.8, which confirms that
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Rabenseifner’s algorithm has an almost constant execution time whereas the Binary Tree algorithm’s

time grows logarithmically with respect to group size.

Based on the above experimental data, we used the least-square curve-fitting technique to find

parameters of performance models for old and new reduction algorithms. The checkpoint time of a

single group with one spare on the Tungsten system with ChaMPIon/Pro library is:

(0.00785d − 0.07427)	lg n


on the TeraGrid system with MPICH-GM 1.2.5:

(0.00961d − 0.09926)	lg n


on the Tungsten system with MPICH-GM 1.2.6:

0.02781
(n − 1)d

n
− 0.1281

and on the TeraGrid system with MPICH-GM 1.2.6:

0.0254
(n − 1)d

n
+ 0.1734
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(a) 10:1 configuration

(b) 20:1 configuration

(c) 40:1 configuration

Figure 7.7: Comparison of different reduction algorithms for different per-process checkpoint sizes.

104



Figure 7.8: Comparison of different reduction algorithms for a fixed per-process checkpoint size of
500 MB.
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Figure 7.9: Predicted times of different reduction algorithms for a fixed per-process checkpoint size
of 500 MB.
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where d is per-process checkpoint size in MB and n is group size.

Figure 7.9 plots the performance prediction based on the above equations with d = 500. We

only predict up to a group size of 100 because our analysis and prediction is based on the assumption

that the communication between any pair of nodes has the same bandwidth. In a very large system,

Thakur [42] has reported that the nearest neighbors can achieve twice more bandwidth than that of

two nodes far apart, so actual measurement is still required.

So far we have discussed memory copy time, Reed-Solomon encoding time, and reduction time,

we can use these results to establish following formulae about checkpointing time in one group case.

If the group has one spare, the time is

MemCopyT ime(d) + ReductionT ime(d, n)

If the group has k > 1 spares, the time is

MemCopyT ime(d) + k · (RSEncodingT ime(d) + ReductionT ime(d, n))

We used the formulae to verify the experimental results for one group case. The measured times

are from the NCSA TeraGrid system with MPICH-GM 1.2.5, in which each process dumps 200 MB

of data (d = 200). Reed-Solomon encoding rate is assumed to be 207 MB/s (Fully Random data

pattern, see §7.3), so RSEncodingT ime(d) is 200/207 = 0.97. Memory copy rate is 1500 MB/s

(see §7.2), so MemCopyT ime(d) is 200/1500 = 0.13.

Figure 7.10 presents the comparison. There are four node-spare ratios: 10:1, 20:1, 40:1, and

60:1. In each case the results are normalized against the baseline configuration, which is the mea-

sured time of 10:1, 20:1, 40:1, and 60:1, respectively. The error of prediction is 0.2-4.3 percent,

with an average of 1.6 percent.
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Figure 7.10: Measured and predicted time for multiple spares per group cases.

7.5 Maximum Group Completion Time

Ideally, diskless checkpointing is scalable exactly because the time is constant regardless of number

of groups. However, during the experiments, we observed that if there are more groups, the check-

point completion time of the DLCKPT system preceived at the user application increases. After

investigation, we found this is because not all groups complete at exactly the same time, and the

reported result is the time the last group that completes. Figure 7.11 shows the completion times of

forty-five 10:1 groups on the NCSA TeraGrid system with MPICH-GM version 1.2.5.

To characterize this phenomenon and investigate its growth with respect to the number of

groups, we adopt a probability model as follows. Let random variables X1,X2, . . . ,Xn denote the

completion time of group 1, 2, . . . , n, respectively. To simplify, we assume Xi are independent and

identically distributed. Then the maximum completion time is defined as Y = max(X1,X2, . . . ,Xn).

Y is usually called the n-th order statistic [56]. Order statistics play an important role in reliability

analysis. For example, a system made of components structured in a parallel fashion fails when the

last good component fails. A branch of statistics called extreme value theory deals with such rare

but extreme situations.

Let f(x) and F (x) be the probability density function and cumulative distribution function of
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Figure 7.11: Completion time of individual groups. The per-process checkpoint size is 200 MB.

Xi, respectively. Then the mean of Y is

E[Y ] = n

∫ ∞

−∞
xf(x)[F (x)]n−1 dx

We further assume that Xi’s have the standard normal distribution (the general case follows

easily), that is, f(x) = (2π)−0.5 exp(−0.5x2) and F (x) =
∫ x
−∞ f(t) dt. Then the limiting distri-

bution (i.e. n→∞) of Y is called Gumbel distribution, which has a finite mean. This suggests that

E[Y ] is bounded and does not grow infinitely. Because Y converges to a Gumbel distribution rather

slowly, we calculate E[Y ] for small n’s and list them in Table 7.1. If Xi’s have normal distribution

with mean µ and standard deviation σ, E[Y ] can be directly calculated from Table 7.1 [56]. For

example, if n = 100, then E[Y ] = µ + 2.51σ.

To verify this model, we use the experimental result of 10:1 configuration on the NCSA TeraGrid

system with MPICH-GM version 1.2.5. We compute the mean and the standard deviation of group

completion times and use them to predict the maximum completion times. Figure 7.12 shows the

comparison of measured values against the model predictions. The average prediction error is less

than one percent.
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n E[Y ]
5 1.17

10 1.54
50 2.25

100 2.51
500 3.04

1000 3.24
5000 3.68

10000 3.85

Table 7.1: Expectation of the maximum of n i.i.d. standard normal random variables.

Figure 7.12: Measured and predicted maximum group completion times.
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7.6 Summary

We have developed a performance model of the DLCKPT system and derived the model param-

eters from the experimental results. In this model, we mainly considered the memory copy time,

the Reed-Solomon encoding performance and its susceptibility to different data patterns and com-

piler optimization switches, and the performance of different implementations of MPI Reduce()

function. To analyze the scalability of the DLCKPT system, we also investigated the maximum

completion times of multiple groups and characterized it with a probability model. Overall, we

found our performance model matches closely to the experimental results.
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Chapter 8

Performability Modeling

Previously we have experimentally demonstrated the great performance and scalability of diskless

checkpointing. However, we have not yet shown the ultimate goal: how diskless checkpointing can

help reduce time-to-solution of applications running on large systems. Although diskless check-

pointing is fast, its Achilles’ heel is that when the number of (hard) failures exceeds available spares

in any group. In such a case, which we call catastrophic failure, diskless checkpointing simply

cannot recover from any further failure.

On the other hand, the user has the liberty of assigning more spares to each group at the cost of

slower checkpointing. This poses two interesting questions: based on resources at one’s discretion

(e.g. total number of spares) how can the user choose a spare assignment strategy to make the

application survive as long as possible, and with this strategy what is the overhead to time-to-

solution?

For example, given a system of 20 compute nodes and 2 spare nodes, as shown in Figure 6.1, we

can create one group with two spares or two groups with one spare each. The former configuration

can survive two arbitrary failures but also have slower checkpointing, while the latter is contrary.

Collectively the two questions are called the performability (performance and reliability) prob-

lem. In this chapter, we build an analytical model to address the performability of diskless check-

pointing. As a technology projection, we will evaluate the model numerically and verify it by
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simulation in the next chapter.

Before introducing our model, we would like to mention some related performability analy-

sis work. While none of these work characterizes diskless checkpointing exactly the same way as

ours does, many of our model assumptions do originate from them. One of the earliest is Young’s

approximation formula for the optimal checkpoint interval, with the assumption that inter-failure

times are exponentially distributed [57]. Gelenbe [58] extened Young’s work by allowing arbitrary

inter-failure distributions, but the precise result has no closed-form solutions. Daly [59] proposed

a modification of Young’s model that characterizes a large system composed of individual nodes.

Wang et al [60] presented a model which further considers the checkpoint protocol overhead and

correlated failures. Unlike the previous works which are analytical models, Wang’s model is pre-

sented in the form of Stochastic Activitity Networks, a variant of Petri nets. Thus, the model can

express quite complicate failure relationship among nodes, but no simple formula can be derived

from it.

8.1 Model Description

For mathematical convenience we have the following premises in our model:

• Like sPPM and Sweep3D in §6.4, the execution of an application is characterized by the Bulk

Synchronous Parallel (BSP) model. Each superstep, or more commonly called, a phase, is

composed of Production, during which the application is doing useful work, Checkpoint, and

possible Restarts.

• All groups are of the same size and have the same number of spares.

• The failure mode of nodes is fail-stop. Failed nodes do not self-repair nor induce correlated

failures of other nodes. There are no transient bit errors in memory or bus.

• Failure detection is accurate and instant. The system triggers a recovery immediately after a

failure. To simplify analysis, we do not distinguish between a spare failure or a compute node
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failure.

• Recovery is always successful so long as the necessary redundancy codes exist.

• The inter-failure times have an exponential distribution.

We parametrize our model by the following set of variables:

• λ: Failure rate of a node.

• n: Total number of compute nodes.

• m: Total number of spare nodes.

• R: Number of spares per group.

• N : Number of phases of the application execution.

• c: Production duration, i.e. the checkpoint interval.

The following parameters are derived from above parameters to aid analysis:

• s: Group size, which is R · n+m
m .

The number of groups is m+n
s = m

R .

• C: Checkpoint time, which depends on many factors as we analyzed in the previous chapter.

• Rs: Restart time.

• Rl(t): Reliability function. It is the probability that no failure occurs within t time. Because

the system size is (n+m), the system failure rate is (n+m)λ. Then Rl(t) is equal e−(n+m)λt.

Our objective is to first derive the following quantities:

• S(k): Given k failures, the conditional probability that no two failures co-locate within the

same group. This is for one spare per group case. Multiple spares per group case will be

discussed later.
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• PP(N, k): Probability of k failures in N phases.

• TT(N, k): The average time-to-solution for N phases of execution, given there are k fail-

ures.

And with above quantities, we can calculate the two performability metrics:

• Probability of successful execution of an N -phase execution, which is

P (successful execution) =
m∑

k=0

S(k) · PP(N, k)

• The average time-to-solution for N phases of execution TT(N). This assumes the execution

is successful, which means there are at most m failures/restarts during the execution. It is

given by

TT(N) =
m∑

k=0

S(k) · PP(N, k)
P (successful execution)

· TT(N, k)

• Checkpoint and restart overhead . We need to define the baseline time-to-solution IT(N) for

N phases of execution. It is the time of an ideal execution free of checkpoints and restarts

and is equal Nc. Then the overhead is simply given by:

TT(N)− IT(N)
IT(N)

8.2 Single Spare Per Group

Initially we study the simple case in which each group has one spare (R = 1), and no two failures

can co-locate in the same group.

We first derive S(k). The number of ways to place k failures in m + n nodes is
(m+n

k

)
. Beause

there are m groups and no two failures can co-locate within the same group, then the number of

ways is
(m

k

)
sk: we first pick k out of m groups, and within each of the chosen groups, we pick 1

out of s nodes and designate it as a failed node. Thus, S(k) =
(
m
k

)
sk

/(
n+m

k

)
.

Next, we compute an approximation for PP(N, k). This approximation assumes the system

failure rate is always constant (= (n + m)λ) regardless of any node loss, albeit in reality the
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Figure 8.1: Failure scenario in a single-phase execution. CP is checkpoint and RS is restart. The
top timeline is failure-free execution, the middle one with one failure, and the bottom one with two
failures. The shaded part is the corrupted execution. Its duration E(c + C) and E(Rs + c + C) are
counted as the overhead induced by failures.

number of nodes decreases and so does the system failure rate. We made this approximation to

simplify analysis. In §9.6, we will verify this approximated model by precise simulations.

To find PP(N, k), we define two helper functions: the unreliability function Rl(t) = 1−Rl(t),

which is the probability of time-to-failure being less than t, and F (k), the probability of k failures

in 1 phase:

F (k) =

⎧⎪⎨
⎪⎩

Rl(c + C) , k = 0

Rl(c + C) ·
[
Rl(c + C + Rs)

]k−1 · Rl(c + C + Rs) , k > 0

Figure 8.1 illustrates some possible scenarios of one phase execution. Because failures can

strike anytime, the chance of a failure-free execution for c + C time is Rl(c + C), and chance of

one failure (k = 1) is Rl(c + C) · Rl(c + C + Rs). If more failures occur, then they must occur

during a Restart-Production-Checkpoint cycle. Then PP(N, k) can be defined recursively as:

PP(N, k) =

⎧⎪⎨
⎪⎩

F (k) , N = 1
∑k

i=0 F (i) · PP(N − 1, k − i) , N > 1

PP(N, k) is explained as follows. For an N -phase execution, we divide it into the prior (N−1)
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phases and the most recent phase. Suppose there are k failures within N phases, then the most

recent phase has i failures and the prior (N − 1) phases have (k− i) failures, for i runs from 0 to k.

For each i, such a situation occurs with probability F (i) · PP(N − 1, k − i).

Finally, we derive TT(N, k), which is time-to-solution given the execution is successful. As

shown in Figure 8.1, each failure induces an overhead which is the wasted time. So given a failure

occurs within t time, the average overhead E(t), i.e. time-to-failure, is

E(t) =
∫ t

0
x · (n + m)λe−(n+m)λx

Rl(t)
dx =

1
(n + m)λ

− te−(n+m)λt

Rl(t)

Given there are k failures within 1 phase, the expected time PT(k) is:

PT(k) =

⎧⎪⎨
⎪⎩

c + C , k = 0

E(c + C) + (k − 1) ·E(Rs + c + C) +
[
Rs + c + C

]
, k > 0

To analyze the case for N phases, we again divide the execution into the prior (N − 1) phases

and the most recent phase. Given there are k failures within N phases, the most recent phase has

i failures and the prior (N − 1) phases have (k − i) failures, for 0 ≤ i ≤ k. For each i, the

time is PT(i) + TT(N − 1, k− i), with probability F (i)·PP(N−1,k−i)
PP(N,k) (recall here is the conditional

probability, so we need the denominator PP(N, k).) Combining all of these, we have the average

time-to-solution of an N -phase execution given there are k failures:

TT(N, k) =

⎧⎪⎨
⎪⎩

N · PT(0) , k = 0
∑k

i=0
F (i)·PP(N−1,k−i)

PP(N,k) ·
[
PT(i) + TT(N − 1, k − i)

]
, k > 0

8.3 Multiple Spares Per Group

The analysis for multiple spares case is similar, except that the S(k) function must include the

number of spares per group R as a parameter.

Define S(k, R) to be the conditional probability that no more than R failures co-locate in any

group, given there are k failures.

To calculate S(k,R) we need to count the number of ways to assign k failures to m
R groups

with a limitation that no group has more than R failures. This number can be conveniently found
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by using the generating function method [61]. It is equal to the coefficient of xk, i.e. ak, in the

following generating function:

[(s

0

)
+

(
s

1

)
x + · · ·+

(
s

R

)
xR

]m
R =

m∑
k=0

akx
k (8.1)

First we use this equation to verify the R = 1 case we derived earlier. Equation 8.1 becomes

[
1 + sx

]m
=

m∑
k=0

(
m

k

)
(sx)k

The right-hand-side is from the binomial theorem. So we have ak =
(m

k

)
sk, which is exactly the

same as the expression we found in §9.6.

We give a brief explanation of Equation 8.1. For our analysis, A =
(s
0

)
+

(s
1

)
x + · · · + ( s

R

)
xR

encodes the all possible non-catastrophic failure modes in a group of s nodes: each term
(
s
k

)
xk

embeds two pieces of information: k the number of failures in this group and
(s
k

)
the number of

ways to assign k failures to these nodes.

A simple example which motivates the use of generating functions is as follows. Consider a

system of three groups of nodes. Group I has 2 nodes and can survive 1 failure. Group II has 4

nodes and can survive 2 failures. Group III has 6 nodes and can survive 3 failures. All nodes are

distinct. The system can survive if no group has failures more than it can tolerate. How many ways

are there for 5 failures to occur, yet the system survives? Using the generation function, we can

write

[(2
0

)
+

(
2
1

)
x
][(4

0

)
+

(
4
1

)
x +

(
4
2

)
x2

][(6
0

)
+

(
6
1

)
x +

(
6
2

)
x2 +

(
6
3

)
x3

]
(8.2)

It can be verified that the number of ways to be sought is the coefficient of x5 in Equation 8.2,

which is
(2
1

)(4
2

)(6
2

)
+

(2
1

)(4
1

)(6
3

)
+

(2
0

)(4
2

)(6
3

)
. The case for 5 is manageable without using generating

functions, but the case for 3 will be complex and generating function is the easiest way to count.

Therefore, in Equation 8.1, the coefficient ak of xk in Aj is the number of ways to assign k

failures to j groups such that no group has more than R failures. Although the explicit formula for
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ai is very complex when k > 1, the generating function method gives a straightforward and quick

way to count.

To obtain the coefficient ak, we need to expand Aj . An efficient way to do this for large j’s is to

calculate A2, A4, A8, . . . until An where n is the largest power of 2 that is less than j. For example

if j = 100, then we calculate and keep the results up to A64. Then we multiply A64, A32, and A4

together to obtain A100.

8.4 Summary

In diskless checkpointing, if the number of failures in a group exceeds the number of spares in that

group, then the application cannot recover from the failure.

Based on the above premise, we have used the probability theory to establish and analyze an

analytical model of diskless checkpointing. This model addresses two issues: given a diskless

checkpointing configuration (e.g. two spares per every twenty nodes), what is the success rate of

application execution if the nodes fail randomly? And what is the associated time overhead due to

checkpoints and restarts?

This model can assist the user to choose an appropriate configuration that best fits his needs. In

particular, given a fixed number of spares, the user can use this mode to determine how to allocate

spares to a group to achieve the maximum success rate of execution or minimize the checkpoint and

restart overhead.
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Chapter 9

Projections for Large Systems

Despite hardware and time constraints that prevent us from experimentally verifying the performa-

bility of diskless checkpointing on large scale systems, we can still provide a technology projection

based on the model developed in the last chapter.

In this chapter we use both numerical evaluation and simulation to predict the performability

the user can anticipate on large systems. We first describe and evaluate the baseline case in §9.1. We

conducted a series of parametric studies and the results are presented in §9.2 through §9.5, which

are followed by simulation results in §9.6.

9.1 The Baseline Case

We adopted the following set of parameter values as our baseline case. A summary is in Table 9.1.

• λ: Node failure rate, which is 1/(43,800 hours). This is equal to an MTTF of five years.

We choose this value because most computer vendors provide warranty no longer than this

period, and the life-cycle of supercomputers is usually three to five years. Five years of MTTF

can be translated as 0.999977 (approximately five nine’s) of one-hour reliability.

• n: Number of compute nodes, which is 5,000. There are several big systems with size of

this order of magnitude, such as Thunder (4,096 processors) at the Lawrence Livermore Na-
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tional Laboratory and Seaborg (6,656 processors) at the National Energy Research Scientific

Computing Center (NERSC).

• m: Number of spare nodes, which is 250. This gives a 20:1 node-spare ratio, or 5 percent

of redundancy, which we believe is a reasonable assumption for a big system.

• C: Checkpoint time. We assume the baseline system to have hardware and software con-

figuration similar to NCSA TeraGrid’s. Namely, memory copy rate is 1,500 MB/s (see §7.2),

Reed-Solomon encoding rate is 207 MB/s (see §7.3), the MPI library is MPICH-GM version

1.2.5 (see §7.4), the standard deviation of group completion times is 1 second (see §7.5), and

a communication overhead between DLCKPT codec module and the user application of 1.5

seconds.

The checkpoint size per process is 200 MB.

• Rs: Restart time. The restart time follows the model derived in § 7.1. We use 2.5 seconds

of failure detection time, 3 seconds of process recovery time (measured in experiments with

sPPM and Sweep3D in §6.5), and 10 seconds of job launching time (use the technology

mentioned in §6.5). We also assume the user application use an extra of one minute to do

bootstrapping and reconfiguration (e.g. reinitialize data structures.)

• c: Production duration (i.e. checkpoint interval) The user application performs diskless

checkpointing after every c time of work. Large parallel programs checkpoint every 1-3 hours

[41, 4]. In theory, checkpointing less often will not reduce overhead because more work could

be lost in one failure. To determine the checkpoint interval we use Young’s formula [57],

which gives the optimal checkpoint interval as c =
√

2MC where C is the checkpoint time

defined as above, and M is the system MTBF. In the baseline case, M = 43, 800/5, 500 ≈ 8

hours, and C is no greater than one minute = 0.017 hours, so c ≈ 0.5 hours.

We also define the two metrics as the criteria for assessing the effectiveness of diskless check-

pointing:
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Parameter Value Comments
λ 1/43,800 Node failure rate
n 5,000 Number of compute nodes
m 250 Number of spare nodes
C (see Table 9.2) Checkpoint time
Rs (see Table 9.2) Restart time
c 0.5 Production duration (hours)

Table 9.1: Summary of parameters of the baseline case.

Spares per group Checkpoint time C Restart time Rs

1 0.22 1.48
2 0.47 2.19
3 0.66 2.58
4 0.98 3.22

Table 9.2: Checkpointing and restart times (in minutes) of the baseline case.

• Reliability: The number of phases that can be successfully executed at probability 0.9. The

greater the better.

• Overhead: The fraction of additional execution time induced by checkpoint/recovery. The

smaller the better.

Putting these parameter values into the formulae in the last chapter, we calculate the checkpoint-

ing and restart times and list them in Table 9.2. Figure 9.2 (c) shows the performability curve of

the baseline case. Clearly the longer the application runs, the less likely it can accomplish without

encountering a catastrophic failure.

A more detailed comparison of spare and group partitioning schemes is presented in Figure 9.1.

We find 2,3, and 4 spares per group schemes can increase reliability (compared to one spare per

group) by a factor of 3, 5, and 7, respectively. We also found the overhead increases by 26, 46, and

78 percent, respectively, and in all cases the overhead is in the range of 0.04-0.07. In the next few

sections we present the results of sensitivity analysis.
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(Baseline)

(Baseline)

Figure 9.1: Reliability and overhead of a system of 5,000 compute nodes.
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9.2 Sensitivity Analysis: Total Number of Spares

Previously we assumed the system has a 5 percent redundancy. Here we explore other node-spare

ratios: 10:1 (10 percent), 40:1 (2.5 percent), and 100:1 (1 percent).

The results are shown in Figure 9.2 and 9.1. We note that the performability curves have sim-

ilar shapes and only differ in the spread. More spares will undoubtedly improve reliability. This

improvement, however, is not proportional to the number of spares.

For example, comparing the baseline to the 10 percent redundancy case, we found that doubling

the spares only improves reliability by 1.39-1.68 fold. The diminishing returns of adding more

spares are also evident if we compare the baseline to the 2.5 percent redundancy case.

For overhead we found it drops slightly in higher redundancy case. This is because the group

size is smaller, so the reduction times get shorter.
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Figure 9.2: Performability curves of a system of 5,000 compute nodes. The duration of time axis
is 1,440 phases, which are roughly equal 30 days of execution (each phase is 0.5 hours, excluding
checkpoint/restart.)
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9.3 Sensitivity Analysis: System Size

We also considered systems of different compute node counts: 10,000 and 15,000. The results are

summarized in Figure 9.3.

First, we noted that the plots of different system sizes have resembling shapes, that is, the

relative magnitude are similar. The main difference, of course, is the absolute magnitude. In the

10,000 nodes case, the reliability is in the range of 37-1100, and in the 15,000 case, the the reliability

reduces to 29-1000.

For overhead, we also found that it increases from 0.07-0.12 in 10,000 case to 0.11-0.16 in

15,000 case. The reason of lower reliability and higher overhead is not hard to surmise: the system

MTBF becomes shorter (4.4 hours for 10,000 nodes and 2.9 hours for 15,000 nodes), so the system

fails often and spends more time in recovery.

If we apply Young’s formula to adjust the checkpoint interval according to the system MTBF,

then the checkpoint interval will be shorter for larger systems, e.g. 0.28 hours for 15,000 nodes. We

found that the overhead is reduced somewhat (from 0.11-0.16 to 0.09-0.13) but the reliability does

not change much.

9.4 Sensitivity Analysis: Node Failure Rate

The overall system failure rate is dependent on the node failure rate. In the baseline case we used

a node MTTF of 5 years. Here we explore what happens if the node MTTF is 3 or 7 years, or

equivalently, the one-hour reliability is 0.999962 or 0.999984, respectively.

Although the difference seems small (≈ 0.002 percent), it has vast impact to system reliability.

Figures 9.4 summarizes the results. In the 3 years case, the maximum of reliability is 800, while in

the 5 years case, it is close to 2000. We found the reliability is roughly proportional to the single

node MTTF. For example, if the node has 7 years of MTTF, then the system is 1.42 more reliable

than that of nodes with 5 years of MTTF.

The overhead is as susceptible as reliability. In the 3 years case, the overhead is in the range of
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Figure 9.3: Reliability and Overhead of different system sizes.
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MPICH-GM 1.2.5 MPICH-GM 1.2.6
(baseline) (fast MPI)

Spares per group C Rs C Rs

1 0.22 1.48 0.07 1.33
2 0.47 2.19 0.11 1.47
3 0.66 2.58 0.12 1.50
4 0.98 3.22 0.14 1.54

Table 9.3: Checkpoint and restart times (in minutes) of the baseline system and a faster system.

0.06-0.1, while in the 5 years case, it is in the range of 0.03-0.067.

9.5 Sensitivity Analysis: Checkpoint and Restart Times

We used MPICH-GM version 1.2.5 as the communication middleware in the baseline case. As ex-

plained in §7.4 the improved algorithm in MPICH-GM version 1.2.6 increases performance by a

factor of 2 or more over older versions. In this section, we compare the performability of two sys-

tems running on MPICH-GM version 1.2.5 and 1.2.6, respectively. Table 9.3 lists the checkpointing

and restart times (in minutes) for a system of 5,000 nodes and 250 spares.

The result is shown in Figure 9.5. It can be readily seen that although the checkpoint and restart

times are much shorter, the improvement in reliability is less than 5 percent. On the other hand, the

overhead does drop from 0.04-0.07 to 0.03-0.04.
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9.6 Simulation

Our performability model developed in the previous chapter assumes that the system failure rate

remains constant no matter how many nodes have been lost (see §9.6). We made this approximation

to simplify mathematical analysis. To corroborate this model, we write a simulation program which

is based on the same model but the system failure rate varies with respect to the number of remaining

nodes.

Each simulation run roughly proceeds as follows. We update the system failure rate when a

node is down and use the new failure rate to generate an exponential random variate t, the time to

next failure. We calculate the number of elapsed failure-free phases within t and the overhead of

checkpoints and restarts. Then we randomly mark a up node as down and check for the catastrophic

failure condition. If the condition holds, we label this run as failure. Otherwise, we generate a new

time-to-failure and repeat the previous process until the total number of elapsed phases exceeds a

pre-defined value k, in which we label the run as success. For each k the above simulation run

is repeated thousands of times, and the fraction of successful runs and the average overhead are

reported.

The performability curves of the baseline case are show in Figure 9.6. For other configurations,

the simplified model also exhibit quite accurate results, and the error is less than 5 percent.

9.7 Summary

From the evaluation of our performability model we have the following observations:

• If the total number of spares is fixed, the best way to use them is to assign multiple spares

per group. Although the group size will be larger, the reliability increases greatly at small

overhead increase.

For example, 4 spares per group is 6.9 times more reliable than 1 spare per group scheme.

The overhead increases from 4 to 7.2 percent.
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Figure 9.6: Comparison of model and simulation.

• The reliability is proportional to the total number of spares, although the relationship is not

linear. For example, doubling the spares only provides 1.7 times more reliability at best.

• The overhead for larger systems is greater because large systems tend to fail often.

For example, the overhead for a system of size 5,000 is at most 7 percent but for a system of

size 20,000 it is 20 percent.

• The node failure rate has a great impact on system reliability. The system reliability is roughly

proportional to the MTBF of a single node. Systems built from nodes with an MTBF of 7

years can increase system reliability by a factor of 1.43 compared to systems built from nodes

with an MTBF of 5 years.

• Checkpointing and recovery performance can affect the overhead as much as a factor of 2.

• Although our performability model is a simplified one, we have verified it against simulation

based on more precise conditions and found it can indeed characterize the performability of

diskless checkpointing with high fidelity,
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Chapter 10

Related Work

In this chapter, we survey the related literature on failure data analysis, diskless checkpointing,

fault-tolerant MPI, and fault tolerance research for large systems.

10.1 Failure Data Analysis

Although real failure data is not easily accessible, among the few publications it is agreed that

software is the major source of unplanned outages. Among hardware outages, disks are the most

unreliable component [62, 63, 64], and this fact contributes to the invention and wide adoption

of RAID. The seminal work of Gray [65] analyzed 2,000 Tandem fault-tolerant systems over a

seven-month period and found that next to preventive maintenance, software problems caused most

downtime. The work also pointed out the double failure phenomenon, in which shortly after main-

tenance comes an unscheduled outage, is not rare. For example, the operator could have typed the

wrong command or unplugged the wrong components during maintenance.

Five years after the previous paper, a follow-up availability analysis [66] reported that soft-

ware quality did not improve much; it still accounts for majority (> 60 percent) of unscheduled

downtime. The paper concluded that system software complexity grows to support new peripherals,

network protocols, or other customized functionality. As hardware becomes increasingly reliable,

software troubles naturally dominate the cause of outages.
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In a distributed computing environment, outages can propagate across the network. Wood [62]

mentioned the “broadcast storm” phenomenon, in which a great number of random packets were

injected into the network. The heavy traffic slowed down the system and caused poor response

time. The user’s perception of poor response time was the LAN was down. The propagating errors

are not necessarily due to hardware problems only. Buggy software, computer viruses, distributed

denial-of-service attacks, and even problematic routing algorithms in switches and routers can also

cause this kind of troubles. Xu et al [67, 68] used Markov chains and clustering analysis study

correlated failures in a network of Windows NT workstations. Mutka and Livny [69] and Brevik

et al [70, 71] studied the inter-failure times of machines in distributed computing environments by

statistical distributions and used the results to predict machine availability.

Assorted domain-specific failure data have also been studied: operating systems [72, 73, 74],

disk drives [63], human factor [75, 76], impact of workload on failure trend [77], DEC VAX systems

[78, 79], Internet services [80], Internet backbones [81, 82] and telephone network [83].

Field failure data of high-performance computing systems is usually for internal circulation and

is almost never published in detail. However, there are several talks and reports that shed light on

the actual operations of some of the world’s most powerful supercomputers. Table 10.1 summarizes

the reliability of such systems. In general, these systems are designed for multiple-month, thousand-

processor simulations [84].

10.1.1 ACSI White

The ASCI White is a 8,192-processor IBM RS/6000 SP supercomputer with peak performance of

12.28 teraflops. Koch [41] reported that the ASCI White had successfully completed a four-month

2,000-4,000 processor run of a nuclear explosion simulation. Such large jobs usually dump 100-250

GB checkpoint data every hour, and full-time human operators are required to monitor the execution

progress.

Each whole-system reboot of the ASCI White system takes 4 hours and preventive maintenance

is performed weekly, with separate periods for software and hardware. According to the report,
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machine problems occur in every aspect of the system. For example, transient CPU faults generated

invalid floating-point numbers, and it took great efforts to spot these bad nodes because they passed

standard diagnostic tests and only failed in real programs. Bad optical interconnects led to non-

repeatable hard-to-trace link errors which corrupted the computation because these errors could

sneak through network host firmware and MPI library without being detected. The storage system

was not 100 percent dependable either. The parallel file-system sometimes failed to return I/O

error to the user program when the program was dumping restart files. In addition, the archival

subsystem’s buggy firmware corrupted restart files and made the user program fail to launch.

Seager [85] showed that the reliability of the ASCI White improved over time as MTBF in-

creased steadily from 5 hours in January 2001 to 40 hours in February 2003. Except uncategorized

failures, the storage system (both local disks and IBM Serial Disk System) proved to be the main

source of hardware problems. The next hardware problems are CPU and third-party hardware. For

software, communication libraries and operating systems contributed the most interruptions.

10.1.2 ACSI Q

The ASCI Q system at Los Alamos National Laboratory is a 8,192-processor supercomputer that

can provide 20 teraflops computational capability. Morrison [86] reported operations of the ASCI Q

system during June 2002 through February 2003. The MTBI is 6.5 hours, and on the average there

were 114 unplanned outages per month.

Morrison mentioned that file system is the top priority among the problems to be solved for the

ASCI Q system. The troubles include loss of data on local scratch disks, considerable impact of

local disk failures on the whole system (many “hung” services require whole machine reboot, which

takes 4-8 hours), and occasional unavailability of files.

In addition to the storage subsystem, hardware problems account for 73.6 percent of node out-

ages, with CPU and memory modules being responsible for over 96 percent of all hardware faults

(CPU is 62.5 percent and memory is 33.6 percent.) Network adaptors or system boards seldom fail.
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10.1.3 Other Large Systems

Levine [87] described the failure statistics of Pittsburgh Supercomputing Center’s supercomputer

Lemieux: the MTBI during the period from April 2002 to February 2003 is 9.7 hours, shorter than

predicted 12 hours. The availability is 98.33 percent1 during mid-November 2002 to early February

2003.

The National Energy Research Scientific Computing Center (NERSC) houses several super-

computers and their operations are summarized in NERSC’s annual self-evaluation reports and

NERSC’s website [88, 89]. During the period from August 2002 to July 2003, NERSC’s largest

supercomputer Seaborg reached 98.74 percent scheduled availability, 14 days MTBI, and 3.3 hours

MTTR. Storage and file servers had similar availability. Two-thirds of Seaborg’s outages and over

85 percent of storage system’s outages are due to software.

In the realm of very large scale Internet services, Google operates its search engine in five geo-

graphically dispersed data centers consisting of over 15,000 cheap PCs and disks storing petabytes

of data [90]. Hennessy and Patterson [64] reported that Google’s biggest source of failure is soft-

ware, which is mostly fixed by reboot and roughly 20 machine are rebooted every day. Hardware

has about 1/10th the failures of software. Ninety-five percent of hardware problems are disks and

DRAMs, and the remaining five percent are due to problems with the motherboard, power supply,

connectors, and so on. Two to three percent of the PCs replaced annually. Transient bit-flip er-

rors in DRAM and during data transfer are also detected. Disks usually experience a performance

degradation before crash.

10.2 Diskless Checkpointing

The idea of replacing rotating magnetic media by semiconductor memory as the preferred storage

can be traced back to 1980s, but not until recently does it become a reality thanks to the declining

price of memory and the broad adoption of compact mobile devices such as digital cameras, PDAs,

1Estimated from “Time Lost to Unscheduled Events” divided by weekly node-hours product.
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Computer
(Site)

Configuration Reliability

ASCI Q
(LANL)

8,192 1.25GHz Alpha EV-68 processors.
Quadrics interconnect.
Peak: 20 teraflops

MTBI: 6.5 hr (06/2002-02/2003)
114 unplanned outages/month.
Main HW outage sources: storage,
CPU, and memory

ASCI
White
(LLNL)

8,192 375MHz Power3 processors.
IBM SP/2 switch.
Peak: 12 teraflops

MTBF: 5 hr (01/2001), 40 hr (02/2003)
Main HW outage sources: storage,
CPU, and third-party hardware

Lemieux
(PSC)

3,016 1GHz Alpha EV-68 processors.
Quadrics interconnect.
Peak: 6 teraflops.

MTBI: 9.7 hr (04/2002-02/2003)
Availability: 98.33%
(11/2002-02/2003)

Seaborg
(NERSC)

6,656 375MHz Power3 processors.
IBM SP/2 switch.
Peak: 10 teraflops

MTBI: 14 days
MTTR: 3.3 hr
Scheduled availability: 98.74%
(08/2002-07/2003)
Main outage sources: software

Google ∼ 15,000 Pentium 3/4 processors 20 machine reboots/day.
2-3% machines replaced annually.
Main HW outage sources: storage and
memory

Table 10.1: Summary of reliability of large systems
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and Flash memory drives.

I/O has always been critical to database performance, prompting researchers in mid-1980s to

consider fitting the entire database into main memory [91]. However, disks cannot be totally elimi-

nated and in-memory data or transaction logs must still be checkpointed to magnetic media. Another

drawback was that, at that time, memory was still at a premium; only a handful of applications in

telecommunications and real-time systems could afford enough memory to store all their data.

In the context of operating systems, much work has been done on in-memory file systems.

Non-volatile RAM (NVRAM) has been employed to alleviate write traffic and provide reliability

[92, 93, 94, 95]. Traditional write cache still suffers from high latency, since in-cache newly-written

data (dirty data) must still be written to disk (flushing) to ensure persistence. If the write cache is

implemented in NVRAM, flushing can be postponed until the cache is full, and dirty data can be

preserved across reboots or crashes.

Portable devices also requires in-memory file systems. For example, Flash memory is one kind

of NVRAM that has become ubiquitous in hand-held computing devices. The access latency of

Flash memory is slower than DRAM, especially for writes because the content must be erased

before new data can be stored. The erasure process must be performed block-wise (64-128 KB per

block) and takes about 0.6-0.8 seconds per block. As a result, Flash-based file systems need new

algorithms and techniques for block replacement. Example Flash file systems include [93, 96].

RAM disk is an idea similar to in-memory file systems and is supported by many operating

systems [97]. A RAM disk is a pre-allocated portion of main memory that mimics a hard drive. It

is mostly implemented as a memory-resident program or a kernel driver. RAM disks are normally

used to store short-lived data such as scratch or temporary files. Unlike a disk buffer, RAM disks

give users complete control over the content they wish to store.

Diskless checkpointing can be thought as a group of RAID-enhanced RAM disks. The idea

could be traced back to Silva and Plank’s work [98, 99]. Silva [98] implemented “checkpoint mir-

roring” on Transputer networks and Plank [99] proposed using redundancy codes to improve recov-

erability. Checkpoint mirroring is simply storing a node’s checkpoint in a neighboring node’s mem-
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ory. It can survive multiple failures so long as failures do not happen on adjacent nodes at the same

time. Chiueh [100] experimented both checkpoint mirroring and parity on the massively parallel

computer Maspar DECmpp 12000 and found that mirroring is ten times faster than parity scheme,

at expense of double memory space. Plank extended the parity redundancy to Reed-Solomon codes

to allow multiple, arbitrary simultaneous failures in [35].

More recently there is a revival of interest in diskless checkpointing. Chen et al [101] used

checkpoint mirroring together with a fault tolerant MPI library to provide reliability to parallel pro-

grams. Zheng [102] modified checkpoint mirroring by storing the checkpoint on two other nodes,

hence strengthening survivability of multiple failures. In [103] Chen also studied a new class of re-

dundancy codes. Most redundancy codes treat data as a semantic-less stream of bits. Chen proposed

redundancy codes defined over real or complex numbers. Of course, due to the limit of floating-

point numbers, lost data cannot be reconstructed exactly, but Chen’s method can recover lost data

with pretty good approximation.

Our main contribution is to extend Plank’s work by making diskless checkpointing scalable on

large systems through partitioning nodes into groups. We also develop and evaluate a performa-

bility model to determine the group size and choice of redundancy codes that balance the trade-off

between overhead and reliability.

10.3 Fault Tolerant MPI and Checkpointing Libraries

There is a trend in the high-performance computing community of providing fault tolerance in MPI

programs. One class of fault tolerant MPI libraries focuses more on dynamic configurability and

robustness of run-time execution, such as Harness [104], MPI/FT [105], MPI-FT [106], and Starfish

[107]. Another class of fault tolerant MPI libraries couples tightly to the checkpoint/restart mech-

anism being used. These are more like checkpointing libraries for distributed systems. Examples

include CoCheck [108], MPICH-V [109, 110], LAM/MPI [111], MPI/Pro [112, 113]. All of these

depend on certain system-level transparent checkpoint libraries such as Libckpt [114], Condor [115]

or BLCR (Berkeley Lab’s Linux Checkpoint/Restart) [116]. Some mainframe vendors such as IBM,
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SGI, and Cray also implement parallel job checkpoint/restart capability in their operating systems

or execution environments.

FT-MPI/Harness [104, 101] extends MPI-1 semantics by incorporating MPI-2’s and PVM’s

dynamic process model. To deal with failures, the pre-registered user MPI error handler is in-

voked on a leader node to coordinate the recovery. The error handler can then call the modified

MPI Comm Dup() function to either rebuild the broken communicator or shrink the communica-

tor to current size 2. Legacy MPI-1-compliant programs need to be redesigned to use new features.

This is because MPI-1 standard assumes static group membership and static process ranks, and it is

possible that after recovery the process ranks change or become non-contiguous.

MPI-FT [106] deals with broken communicators by spawning redundant replacement processes

and communicators at application launch, then switching to a good communicator when the current

communicator is dead. MPI/FT [105] use redundancy in a slightly different way. Multiple copies of

the same program are executed concurrently, and they perform the majority voting on every trans-

mitted message. Processes also periodically vote on MPI’s internal data structures to ensure the

integrity of system state. Starfish [107] is an MPI implementation based on the Ensemble atomic

group communication toolkit. The Ensemble keeps track of node health and group configuration. If

any process crashes, it can optionally restart from the last checkpoint or deliver the node configura-

tion change event to the Starfish. However, it is not clear how much modification must be done to

the user program to utilize this dynamic configuration feature.

CoCheck [108] is a process migration environment based on Condor, a single process check-

pointer Condor. It adopts the Chandy-Lamport’s distributed snapshot algorithm (see §4.1) to achieve

non-blocking checkpointing. Sankaran et al [111] incorporated Chandy-Lamport’s scheme to LAM/

MPI. Bronevetsky et al [112, 113] also adopted Chandy-Lamport, but implemented it at the user-

level using the MPI function wrappers. This approach is MPI-library-independent, since their im-

2The original MPI-1 semantics for MPI Comm Dup() is simply to duplicate a communicator. It cannot add or delete

nodes during run-time. In most MPI-1 implementations, the user MPI error handler is invoked only when erroneous

parameters are passed to MPI calls.
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plementation posits upon the host MPI library. MPICH-V [109, 110] provides fault tolerance by

asynchronous checkpointing using Condor and message logging. It is different from previous ap-

proaches in that it has a set of special nodes called Channel Memory servers, and all messages must

go through Channel Memory for logging before reaching their destination.

IBM’s LoadLeveler [117] is a job management system for the IBM SP/2 mainframes. In addi-

tion to scheduling, LoadLeveler is capable of checkpointing and restarting parallel jobs either auto-

matically or manually through user intervention. This functionality is implemented inside the IBM

AIX operating system kernel. In automatic mode, the job description script specifies a checkpoint

interval and storage locations to instruct LoadLeveler to take a snapshot of process images at speci-

fied intervals. In manual mode, the user program must call the Parallel Environment checkpointing

APIs explicitly. However, LoadLeveler’s checkpoint/restart functions have many restrictions. For

example, the user program cannot use multi-threading, fork, interprocess communication, file locks,

dynamically loaded libraries, device I/O, and any MPI library other than IBM’s. Also, the saved job

can restart only on machines with the same switch type and the same software environment.

System-level transparent checkpoint/restart capability can also be found on some shared mem-

ory machines such as SGI Origin series and Cray mainframes. The SGI IRIX operating system can

checkpoint jobs through the cpr utility. A set of APIs is also provided for user-initiated check-

point/restart [118]. As in IBM LoadLeveler’s case, there are non-checkpointable objects such as

network sockets connections and file pointers to special devices (e.g., tape drives). For an MPI job,

cpr can checkpoint and restart it only if all of its processes reside on one host (each SGI mainframe

can have up to 512 CPUs.) If an MPI job spans over several SGI mainframes, then network sockets

must be used, making the job non-checkpointable.

The Cray mainframes (models T3E, SV1, and X1) have long supported system-level check-

point/restart in their UNICOS operating system; both UNIX commands and APIs are provided

[119]. By leveraging this checkpoint/restart capability, Cray systems also support advanced fea-

tures like job migration and compaction3, swapping/gang scheduling, and priority pre-emption.

3Compaction is the defragmentation of a job so all the CPUs it is using are continuous in topology sense. This can
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Finally, Gropp and Lusk categorize ways to enhance the reliability of MPI [120] into four classes

based on transparency to user applications:

1. The recovery is completely transparent to the user application.

2. The user application will be notified about the recovery and must perform user-level corrective

actions such as loading the checkpoint.

3. The MPI library changes default MPI semantics or offers new MPI functions, such as the

dynamic process management in the MPI-2 specification.

4. The user application aborts whenever failures occur and is restarted manually.

Each level has different cost of software development and performance overhead. Level 1 seems

the most favorable but its implementation inevitably ties to certain system-level checkpoint library,

which tends to save more data than necessary. At level 3, programmers have more liberty in dealing

with failures. For example, in the master-slave computing model, the crash of a slave process does

not hang the whole execution, so it can be dealt lightly. At this level considerable changes to the

user application are required. Our fault-tolerant MPI implementation in Chapter 5 falls into level

2. The main reason is we observe that most scientific applications already have efficient user-level

checkpoint/restart routines, which is exactly the level 2 requires. So with minimal programming

efforts, we can make an MPI application resilient to failures.

10.4 Fault Tolerance Research for Large Systems

IBM recently began the Autonomic Computing initiative [121]. The name draws an analogy from

the human body’s autonomic nervous system, which frees the conscious brain from the burden of

handling low-level but vital functions such as maintaining a constant temperature or regulating the

heartbeat. The vision of autonomic computing is to reduce the ever-increasing management cost of

large complex systems by enabling computers to manage themselves and handle varying workloads

greatly improve communication performance.
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efficiently. Essentially it defines a dynamic resource allocation and performance optimization prob-

lem. From the fault tolerance perspective, systems should be able to recover quickly from crashes

and freezes, or better yet, prevent them from occurring. Unrepairable failures can be viewed as

resource loss, and the system should adapt to a smaller pool of resources by migrating workloads to

a new facility where desired performance can be met.

One example prototype of autonomic computing is the IceCube database/storage server [122].

It is a physically three-dimensional, dense pile of Collective Intelligent Bricks. A “brick” is a PC

with 12 hard drives in a very compact chassis. Two faces of a brick have 10 Gb/s network interface

to adjacent bricks. The whole server can track the health, performance, and capacity of its bricks

and work around any brick failure. Dead bricks are left in place until there is a maintenance time to

replace.

Recovery-Oriented Computing [123] is an on-going effort to introduce fault tolerance into soft-

ware that runs on potentially unreliable commodity hardware, with an emphasis on quick recovery

of some Internet services. Their main argument is that fast recovery reduces the MTTR compo-

nent in the “Availability = MTTF/(MTTF+MTTR)” formula, thereby increasing availability. One

approach to ROC is to engineer an Internet service in a fine-grained modularized style such that

software modules can be restarted individually without shutting down the whole service [124]. The

premise behind this “recursive restartability” is that most nondeterministic software bugs or tran-

sient hardware faults can be fixed by reset. Another key tenet of ROC philosophy is the reduction

of damage from operator errors by providing an “undo” function in software [125]. The “undo”

idea has been applied to an e-mail server software to make it “invertible,” allowing the roll-back of

accidental message deletion, mailbox migration, and system misconfiguration.
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Chapter 11

Conclusions and Future Work

We have designed and implemented a scalable, high-performance diskless checkpointing system for

large computing systems. In this chapter, we summarize the contributions of this thesis and point

out some future research directions.

11.1 Results

We have the analyzed failures of large computing systems to gain a solid understanding of failure

behavior and its impact on applications running on them.

The failures are either soft (transient) errors or hard (permanent) errors. To analyze soft errors,

we conducted a series of fault injection to simulate soft errors in registers, memory and communi-

cation networks. We found the applications are susceptible to soft errors, and in some case the error

will lead the application to generate incorrect output.

For the hard errors, we analyzed the failure data from three large computing system. We com-

puted descriptive reliability measures such as Mean Time To Repair, Mean Time Between Failure,

availability. The result shows that software halts are the main source of outages, but hardware halts

account for the most downtime. Further deep analysis of failure distribution and correlation show

that in many cases the Time To Repair and the Time Between Failure exhibit heavy-tail distributions

instead of exponential. Failures of different nodes could also co-occur in a short time frame due to
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an environmental cause, e.g. power failure.

We have designed a scalable, high-performance diskless checkpointing system based on node

partitioning. In diskless checkpointing, checkpoint is written to memory, which provides a speed

advantage over disks. To guarantee data integrity, redundancy codes (parity codes or Reed-Solomon

codes) are computed and stored on spares. The spare assumes the role of compute node in case of

failure. I/O is made scalable by partitioning nodes and spares into small groups, and each group

takes care of its own redundancy code calculation and node failure and recovery.

We have implemented diskless checkpointing. The implementation has two components: a

lightweight in-memory file system with a UNIX-like I/O interface, and a codec module which gen-

erates redundancy codes. The in-memory file system resides in user process address space and is

individualized to the user process it attaches to. The codec module is an independent program which

uses MPI to assist transferring and merging encoding results across network.

Because recovery is usually initiated by the communication middleware layer, we have chosen

an MPI library, LA-MPI, to add automatic restartability and scalable heartbeat monitoring capabil-

ities. MPI-based scientific applications only need to add several lines of code to use the reliability

features of LA-MPI.

We have verified diskless checkpointing using benchmarks and real scientific applications on

large PC clusters. We explored various group sizes, spare count, and performance fine-tuning tech-

niques in the experiment. The results show that diskless checkpointing has great scalability and

can achieve 9-12 GB/s throughput with 448 clients in the single-spare-per-group setting and 4-6

GB/s in the two-spares-per-group setting. In our experiment, diskless checkpointing shows a clear

performance advantage over disk-based parallel file systems when the number of clients increases

to a certain point.

We have developed an analytical model to characterize performability of diskless checkpoint-

ing on future large systems. The model allows users to examine the reliability and performance

overhead of different node partitioning and spare assignment schemes. As a technology projection,

we have also evaluated the model numerically for fictitious systems with 5,000-20,000 nodes. We
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found that more spares per group can increase reliability by a factor of 2.6 to 6.9. Individual node

reliability also affects overall system reliability considerably.

11.2 Future Work

Lastly, we point some directions for future research work.

• We have stressed at the beginning of this thesis that diskless checkpointing does not elimi-

nate disk-based file system. Instead, there could be an adaptive strategy which intelligently

alternates among different storage choices and adjust checkpoint intervals based on real-time

failure trend and system health analysis.

Here is an example of how an adaptive checkpoint strategy can help improve reliability. It is

known that a hard failure usually follows a period of performance degradation. Therefore, we

could monitor the machine sensor readings such as CPU temperature and voltage fluctuation,

chassis fan speed, packet retransmission rate, and disk I/O errors.1

If there is any performance anomaly, we could take preventive actions by dynamically ad-

justing the checkpointing strategy. For example, if the CPU temperature exceeds normal

operational range, we may either checkpoint more often or migrate processes to a stable node

[127]. The latter can be done by emulating a hardware failure which will trigger recovery.

• The partition of nodes into groups is determined during the initialization and will not change

ever since. The problem with this static scheme is that a catastrophic failure can easily occur

if any group uses up all spares it has to cope failures. Ideally, a catastrophic failure should

only occur when all spares are uses up. Therefore, to defer catastrophic failure and increase

reliability, a dynamic scheme of reorganizing the groups can be used. The reorganization

1For example, SCSI drive re-reads and re-writes, and SMART readings. SMART (Self Monitoring and Reporting

Technology) is a standardized specification for failure prediction adopted by the hard disk industry since 1995. It con-

stantly monitors several key drive measurements related to impending failure and emits a warning if the values exceed

thresholds [126].
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should take place when a group has used up all its spares, and a re-partition of nodes and

spares can follow.

• A closely related topic is failure recovery. The current ring-based heartbeat monitoring and

recovery protocol in our enhanced LA-MPI library cannot handle two or more simultane-

ous failures of adjacent nodes in the ring topology. Developing an efficient, scalable failure

detecting and recovery algorithm is of central concern in a fault-tolerant distributed systems.

• Diskless checkpointing itself can also be further optimized. We have mentioned the phase

behavior found in many scientific applications. To exploit this phenomenon, the DLCKPT

codec module could transfer the checkpoint data from memory to the disk-based file system

during application’s computation phase. Overlapping I/O with computation has been proven

an effective way to hide I/O latency. Combining this technique with diskless checkpointing

can guarantee better data integrity and recoverability.

• Reducing memory demand and checkpoint size is extremely important to the usability of

diskless checkpointing. In this thesis, we have demonstrated that data compression could be

somewhat helpful. Another promising approach is incremental checkpointing [128].

In this approach, only the data that is modified since last checkpoint is saved. To identify

modified data, two classes of techniques have been developed: page-based and hash-based.

The former requires memory hardware and operating system support to manipulate the pro-

tection bits to identify dirty pages. For the latter scheme, memory is partition into blocks and

a hash function runs over blocks to generate a set of compact “digest.” By comparing the di-

gest, one can find out changed blocks. We believe that by careful memory exclusion (no need

to save the memory storage used by diskless checkpointing system), incremental checkpoint-

ing can be seamlessly integrated into diskless checkpointing or better yet, combined with data

compression to further reduce checkpoint size.
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