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We have seen dramatic advances in the IC technology in the past several years.

The shrinkage of die sizes and the increase in functional complexities made the cir-

cuits more and more dense. Furthermore, the number of timing critical nets in a

typical high-end design has increased considerably due to increasing clock frequen-

cies. These factors have brought significant routing challenges that cannot be handled

by traditional board routing algorithms. In this dissertation, we propose novel routing

algorithms targeted at handling the challenges due to increasing package densities,

and increasing clock frequencies.

Routing nets within minimum and maximum length bounds is an important re-

quirement for high-speed VLSI packages. For this problem, we first propose a La-

grangian relaxation based length matching routing algorithm, where the objective

of satisfying min-max length constraints is effectively incorporated into the actual

routing problem. Our experiments demonstrate that our algorithm outperforms a

commonly used ad hoc methodology, especially when the length constraints are tight.

Although this algorithm can be used for more general routing problems, we also

consider more restricted yet common problem instances, and propose more effective

routing algorithms for them. Specifically, we first focus on the problem of two-layer

bus routing between component boundaries. We model this problem as a job schedul-

ing problem, and propose algorithms to solve it effectively. After that, we focus on the

problem of routing bus structures between component boundaries on a single layer.

For this, we propose algorithms that are proven to give close-to-optimal solutions.

As the package densities are increasing, routing nets from individual pins within

dense components to the component boundaries (escape routing) is becoming the

main bottleneck in terms of overall routability. Furthermore, solving the escape rout-

ing problem in each component independently is not an effective methodology for

high-end board designs, since it ignores the wiring requirements between different

components. For this, we propose novel models and algorithms to solve the escape

routing problem in multiple components simultaneously, such that the number of

crossings in the intermediate area (between components) is minimized. Our experi-

ments demonstrate that these algorithms can reduce via requirements substantially,
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compared to a net-by-net methodology. We also consider practical generalizations of

these models, and discuss how to incorporate several high-speed design constraints

into the framework of these algorithms. Finally, we focus on the problem of escape

routing within dense pin clusters, which can have arbitrary convex boundaries. We

propose a set of sufficient and necessary conditions that guarantee routability outside

the escape boundaries. We also discuss how these conditions can be incorporated

effectively into an escape routing algorithm.
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Chapter 1

Introduction

During the past several years, we have seen dramatic advances in the IC technology.

The shrinkage of die sizes and the increase in functional complexities made the circuits

more and more dense. So, boards and packages have reduced in size, while the pin

counts have been increasing. For example, a multichip module (MCM) used in IBM

eServer z900 [26] (introduced in 2000), contains 20 processor chips, 8 L2 cache chips,

2 system control chips, 4 memory bus adapter chips, and a clock chip – a total of 35

chips in one package. On the bottom of this MCM, there are 4224 I/O pins, within

an area of 127-mm × 127-mm. In the subsequent generation of the same series, IBM

eServer z990 [61] (introduced in 2003), the corresponding number of pins in an MCM

has increased about 20%, with a decrease of almost 50% in the substrate area. With

increasing pin densities of this pace, routing nets on boards beneath the component

areas (escape routing) is increasingly becoming the main bottleneck in terms of overall

routability [61]. Furthermore, the number of timing-critical nets in a typical high-

end design has increased significantly due to increasing clock frequencies. While only

2-5% of the nets were timing-critical in the past, today this ratio can reach to 90% in

a typical high-end design [60]. These factors bring significant routing challenges that

cannot be handled by traditional board routing algorithms. Today, many high-end

board designs in the industry are being routed using manual efforts [40], since the

existing autorouters fail to produce acceptable solutions.

In this dissertation, we propose novel routing algorithms that can handle chal-

lenges due to increasing package densities, and increasing clock frequencies [41–48].

A typical printed circuit board (PCB) contains a number of different components

such as MCMs, memory, or I/O modules. These components are mounted on or
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Printed Circuit Board

MCMMem Mem

Figure 1.1: Different components are mounted on or plugged into a PCB. A pin
array is created on the board corresponding to each component.

plugged in to the board, forming a set of dense pin arrays, as shown in Figure 1.1.

The routing resources within such pin arrays are extremely limited due to the large

number of pins, and tight clearance rules. Furthermore, there are large number of

nets that need to be routed from their terminal pins to the corresponding component

boundaries. On the other hand, the intermediate routing area on the board between

different components has relatively few blockages, and the amount of available routing

resources is relatively larger.

In accordance with this characteristics, we propose a problem decomposition that

handles routing within dense pin arrays separately from the intermediate area rout-

ing. In other words, two separate problems are distinguished here: (1) routing nets

from pin terminals to component boundaries (escape routing), and (2) routing nets

between component boundaries (area routing). For escape routing, the main empha-

sis is on routability: routing as many number of nets as possible using the limited

resources inside dense pin arrays. On the other hand, during area routing, we mainly

focus on timing constraints due to high clock frequencies. Figure 1.2 illustrates a

sample problem instance where the objective is to route a group of nets between two

components, which are shown as dense pin arrays on the left and right sides of the

figure.
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Escape routing Escape routingArea routing

Figure 1.2: Escape routing and area routing solutions of a problem instance con-
taining two components. The lengths of some nets in the intermediate area have been
extended to satisfy the min-length constraints.

1.1 Overview of Dissertation

Timing constraints are commonly imposed on PCB bus structures, where data is

clocked into registers or other circuits. For example, in the case of a 64-bit data bus,

each bit travels over a different wire, and all 64 bits must arrive destination pins

approximately at the same time. To achieve this, all the wires constituting this bus

need to have approximately same lengths. The precision with which matching must

be done is directly related to the clock frequency. As the clock frequency increases,

the skew requirements on the propagation delays become more strict, and hence, a

higher degree of length matching is required. There have been several algorithms

proposed in the literature for the objective of minimizing path lengths, or satisfying

prespecified maximum length constraints. However, the problem of routing nets with

lower bound constraints has not been studied explicitly. As circuits start to use clock

frequencies in the order of gigahertz in the current technology, the timing constraints

become extremely tight, and more aggressive methods for achieving length bounds

are needed in the industrial applications.

In Chapter 2, we propose a novel algorithm that incorporates the objective of

satisfying min-max length constraints effectively into the original routing problem.

Here, we model the problem of length matching as a constrained optimization prob-

3



lem, and use Lagrangian relaxation to obtain a new routing objective function. Then,

we perform multiple routing iterations, each of which is guided by the global objec-

tive of length matching. In one iteration, we route nets and allocate resources so as

to minimize our objective Lagrangian function, which captures both min and max

length constraints for all nets. Our experiments show that this algorithm outperforms

a commonly used ad hoc methodology.

In Chapter 3, we focus on a more restricted yet common length matching problem:

routing nets between component boundaries using two x-y signal layers. Here, the

component boundaries define a routing channel, and all net terminals are assumed

to be aligned on the opposite sides of this channel. The objective is to route all nets

while satisfying their min-max length constraints. Routability in a highly congested

area is expected to be limited; so it is more effective to perform length extension

(to satisfy min-length constraints) within the less congested areas. For example, the

vertical layer of a horizontal problem is expected to be significantly less congested;

so it makes more sense to perform length extension on this layer. In Chapter 3, we

propose an algorithm that incorporates the objective of length extension into the

actual routing algorithm. For a horizontal problem, our algorithm simultaneously

extends the lengths of the nets and assigns them to vertical tracks. For this, we

first model the routing problem as a task scheduling problem with release times and

deadlines. Here, the min-max length constraints of a net correspond to the release

times and deadlines of one task in the scheduling problem, and a vertical routing

track corresponds to one machine. Although the scheduling problem is NP-complete

even for the single machine case, we propose a polynomial-time optimal algorithm for

one track, due to a special property of the given routing problem. In particular, our

approach here is to process one routing track at a time and to choose the best subset

of nets to be routed on each track. The algorithm we propose is guaranteed to find

the optimal subset of nets together with the optimal solution with length extension

on one track.

In Chapter 4, we focus on board designs that do not use any buried vias, due

to high manufacturing costs. For such designs, each net needs to be routed on a

single layer in a planar fashion. Similar to the problem of Chapter 3, we assume

that boundaries of the components define a routing channel, and all net terminals are

aligned on the opposite sides of the channel. The objective is to route all nets on a

single layer such that each net satisfies its prespecified min-max length constraints.
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For this problem, we propose an algorithm in Chapter 4, and we prove that it gives

close-to-optimum routing solutions. In particular, if there exists a feasible routing

solution for a given set of nets on a channel width of W , we prove that our algorithm

is guaranteed to find a feasible solution for a channel width of W + 3. Since typical

channel widths in the industry are on the order of hundreds, or even thousands, this

difference is negligible in practice.

In Chapter 5, we propose algorithms for escape routing problem, which is defined

as routing nets from their respective pins to the component boundaries. As mentioned

above, we need more effective algorithms to solve the escape routing problem, due

to increasing package densities. It is important here to note that escape routing for

different components should not be considered independent of each other. In other

words, we cannot just apply a traditional escape routing algorithm on different com-

ponents independently. The reason is that such an approach ignores the connections

between different components and increases the via requirements significantly. Espe-

cially in high-speed designs, these vias seriously degrade signal characteristics, add

additional delay, decrease routing area, and lower the manufacturing yields. Further-

more, for some board designs, no buried vias are allowed for the purpose of limiting

manufacturing costs [40]. For such designs, the nets need to be routed in a planar

fashion on every layer. Hence, an escape routing algorithm that tries to minimize

(or completely avoid) crossings in the intermediate area is crucial to handle the re-

cent challenges encountered in board routing problems. For this reason, we propose

algorithms in Chapter 5 to find the escape routing solutions of multiple components

simultaneously such that the number of crossings in the intermediate area is mini-

mized. For multilayer designs, the best layer assignment also needs to be determined

during this process. Our approach to solve this problem is to process one layer at

a time and to try to route as many planar nets as possible on each layer. For this

purpose, we generate a number of escape patterns for each net and try to choose the

maximum subset of patterns such that (1) at most one pattern is selected for each

net, (2) there are no conflicts within components, and (3) there are no crossings in

the channel. Note that even though we consider only a limited number of routing

patterns for each net, there are exponential number of possible ways of selecting pat-

terns for a set of nets. However, we propose a polynomial time optimal algorithm

to select the best combination that gives the maximal planar routing solution. We

also propose a faster randomized algorithm that gives almost as good results as the
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optimal algorithm in practice. Experiments on industrial problems show that our

algorithms can reduce the via requirements significantly, compared to a Pathfinder

based net-by-net approach.

In Chapter 6, we propose further improvements for the escape routing algorithm

foundations of which are presented in Chapter 5. Here, we propose three main im-

provements: (1) Escape patterns are generated based on the congestion levels inside

the components and the number of crossings in the intermediate region, instead of

simple straight connections. (2) An improved maximal planar route selection algo-

rithm is proposed, which is general enough to handle multi-capacity escape slots, and

high-speed design constraints. (3) Explicit discussion about how to handle various

high-speed design constraints is given for this framework. Our experiments demon-

strate that these improvements can reduce the via requirements of industrial test

cases on average by 39%, compared to the basic algorithm of Chapter 5.

In Chapter 7, we study another important routing problem encountered in typical

high-end MCM designs: routing within dense pin clusters. Pin clusters are often

formed by pins that belong to the same functional unit or the same data bus, and can

become bottlenecks in terms of overall routability. Typically, these clusters have ir-

regular shapes, which can be approximated with rectilinear convex boundaries. Since

such boundaries have often irregular shapes, a traditional escape routing algorithm

may give unroutable solutions. In this chapter, we study how the positions of escape

terminals on a convex boundary affect the overall routability. For this purpose, we

propose a set of necessary and sufficient conditions to model routability outside a

rectilinear convex boundary. Given an escape routing solution, we propose an op-

timal algorithm to select the maximal subset of nets that are routable outside the

boundary. After that, we focus on an integrated approach to consider routability

constraints (outside the boundary) during the actual escape routing algorithm. Here,

we propose an optimal algorithm to find the best escape routing solution that satis-

fies all routability constraints. Our experiments demonstrate that we can reduce the

number of layers by 17% on average by using this integrated methodology.

Finally, in Chapter 8, we give our concluding remarks and discuss future research

directions.
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Chapter 2

A Lagrangian Relaxation Based

Length Matching Algorithm

2.1 Introduction

Routing nets within minimum and maximum length bounds is an important require-

ment for high-speed VLSI layouts. There have been several algorithms proposed for

the objective of minimizing path lengths or satisfying prespecified maximum length

constraints, especially in the context of timing-driven routing [5; 12; 13; 18; 35; 37; 52].

However, the problem of routing nets with lower bound constraints has not been stud-

ied explicitly in the literature. The main reason is that these bounds were loose most

of the time, and non-sophisticated strategies (such as greedy length extension in post-

processing) were sufficient for most applications. However as circuits start to use clock

frequencies in the order of gigahertz in the current technology, the timing constraints

become extremely tight, and more aggressive methods for achieving length bounds

are needed in the industrial applications.

Timing constraints are commonly imposed on PCB bus structures, where data

is clocked into registers or other circuits. For example, in the case of a 64-bit data

bus, each bit travels over a different wire, and all 64 bits must arrive destination

pins approximately at the same time. To achieve this, all the wires constituting this

bus need to have approximately same lengths. The precision with which matching

must be done is directly related to the clock frequency [54]. As the clock frequency

increases, the skew requirements on the propagation delays become more strict, and

hence, a higher degree of length matching is required.
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A typical approach used for this problem is to route the nets using a conventional

routing algorithm to satisfy max length constraints, and then perform snaking to

extend the routes of the short nets during postprocessing. The main disadvantage of

such an approach is that after all the nets have already been routed, the available

routing space around short nets might be limited in dense designs. So, it is likely that

some nets cannot be extended to satisfy minimum length constraints due to lack of

routing space.

In this chapter, we propose a novel algorithm that incorporates the objective of

satisfying min-max length constraints effectively into the original routing problem.

For the ease of presentation, we will first focus on the length matching problem, and

then we will extend our models for the general case where individual nets might have

different lower and upper bound constraints. For this, we start with redefining the

routing problem as follows: Find valid routes for all nets such that (1) the length

of the longest route is kept small, and (2) the shorter routes have available routing

space around themselves such that it is possible to match all lengths by snaking at

the end. We propose effective algorithms in this chapter to handle both objectives

simultaneously during routing.

As a motivating example, consider the circuit given in Figure 2.1(a). Here, there

are three nets that need to be routed with equal lengths, and the figure illustrates a

typical routing solution1 given by a conventional router. Here, all nets were routed

first, and then snaking was performed at the end for length matching. Observe that

the top net turned out to be the longest one, with a path length2 of 17. So, the length

of the bottom net was extended by 6 through snaking. However, snaking was not

possible for the middle net, because all routing resources around its route were used

during routing. So, length matching fails in this example.

Figure 2.1(b) shows the solution given by the router we propose in this chapter.

Observe that the lengths of these three nets are matched exactly through snaking.

Here, our approach is to simultaneously route each net and allocate extra routing

resources (i.e., grid cells) for them. After that, these extra resources are used for

snaking. There are a couple of points worth mentioning here. First of all, the number

of extra grid cells allocated for a net depends on the length of its route (i.e., more

1The underlying grid structure is also shown in this figure. Throughout the chapter, we assume
that routing edges go center-to-center of each grid cell, as illustrated in this figure. Note that each
grid cell is regarded as a routing resource.

2All the path lengths given in this chapter are in terms of number of grid cells spanned.
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(a) (b)

Figure 2.1: Length matching based on (a) greedy snaking in postprocessing, and (b)
resource allocation during routing. Dashed lines indicate snaking performed. Observe
that the length of the middle route could not be extended in part (a).

grid cells are allocated for shorter nets, and vice versa). Here, it is likely that the

actual routes of the nets will be affected because of this resource allocation. In this

example, the bottom net is detoured so that there are enough resources allocated

for the middle net. An important point here is that it is not the top net that is

detoured for this purpose, because detouring the top net would increase the length

of the longest route. In fact, we can say that the two objectives for length matching

mentioned above are achieved simultaneously in this example.

As will be discussed in detail later, we perform multiple iterations, each of which is

guided by the global objective of length matching. In one iteration, we route nets and

allocate resources so as to minimize an objective Lagrangian function, which captures

both min and max length constraints for all nets. Our low-level routing algorithm is

based on Pathfinder negotiated congestion algorithm [2; 3; 19]. However, we propose

a methodology to handle resource allocation simultaneously during path calculations,

as opposed to the greedy algorithm above, which considers min constraints only in

post-processing. In our approach, shorter nets automatically prefer the paths where

they can allocate extra resources around.

The rest of the chapter is organized as follows. In Section 2.2, we summarize

the relevant work in the literature and discuss why they are not applicable for this

problem. Then, we propose a Lagrangian relaxation based algorithm that facilitates

allocating extra resources during routing in Section 2.3. After that, we propose a

graph model in Section 2.4 to perform resource allocation in accordance with snaking.

Specifically, this model makes sure that if the number of extra grid cells allocated

for net i is Si, it is possible to extend length of net i by an amount equal to Si

through snaking. In other words, resource allocation is done in such a way that
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every allocated grid cell can be used for snaking later. We then outline the low-level

routing algorithm we use in Section 2.5. Then in Section 2.6, we briefly explain

how to extend this method for more general problems. Note that even though we

propose a systematic approach based on Lagrangian relaxation for this problem, the

solution found is not guaranteed to be optimal, because of the non-convex nature

of the problem. Furthermore, it is not guaranteed that a feasible solution will be

found, even if one exists. However, we demonstrate the effectiveness of our heuristics

through experiments in Section 2.7.

2.2 Related Work

There have been several routing algorithms proposed in the literature for the objective

of satisfying maximum length constraints [5; 12; 13; 18; 35; 37; 52]. Typically, these

algorithms try to keep the lengths of critical nets shorter, but they do not consider

explicit minimum length constraints.

A related problem in the literature is the zero/bounded skew clock tree routing

problem [32]. Here, the objective is to construct a clock tree such that the arrival

times for all source-sink pairs are (almost) equal. However, our bus routing problem

is different in the sense that each terminal pair belongs to a different net, and no

overlaps are allowed between different pairs. On the other hand, in the clock tree

routing problem, there is a single net (with multiple terminals), and the objective is

to find a routing tree, instead of independent pairwise connections. Several algorithms

have been proposed in the literature for this problem [11; 31; 32; 58]. However, they

are based on tree construction methods most of the time, and they are not applicable

to the case where each pairwise connection must be routed independent of each other.

If the length matching problem consists of only two nets, it is possible to use a

wave expansion method to find a feasible solution [49]. Let us denote the source-sink

pair of the two nets as (s1, t1) and (s2, t2). Here, waves are expanded originating

from these four terminals, and their intersections are checked repeatedly. Namely,

whenever waves from s1 and t1 meet, the length of the corresponding path is compared

with every path between s2 and t2. This process continues until a match is found

between the lengths of two paths. Note that this approach does not explicitly avoid

short circuits between the two nets; so special care must be taken, such as restricting

propagating waves to separate portions of the layout [49]. However, we cannot use
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this technique in our bus routing problem, since the number of nets is typically much

larger than 2. Here, the main problem is that conflicts between different nets cannot

be detected during simultaneous wave expansions, and it would not be practical to

limit the waves of all nets to separate regions when there are multiple nets.

On the other hand, some traditional routing tools allow users to specify length

matching constraints. However, as the clock frequencies increase, the constraints for

typical high-end circuits become extremely tight, and these tools fail to find a feasible

routing solution for many high-end industrial designs. A commonly used practical

approach here is to route all nets first, and then to perform length extension in post-

processing. The disadvantage of such an approach is that after all nets have already

been routed, the available routing space around short nets might be limited in dense

designs. So, it is likely that some nets cannot be extended to satisfy min-length

constraints due to lack of space. In Section 2.7, we will present an experimental

comparison of this practical approach with our framework.

2.3 Routing Resource Allocation

2.3.1 Problem Formulation

The original length matching problem can be stated as follows. Given a circuit, and

a set of nets N , find a congestion-free routing solution for each net in N such that

the maximum path length is minimized, and the difference between the minimum

and maximum path lengths does not exceed the predefined tolerance value ∆. Here,

the input circuit is assumed to be modeled as a uniform n×m grid structure, where

each grid cell is marked as either a routing resource, or a blockage. Each net in N is

assumed to have two fixed terminals on the grid structure. A routing solution for a

set of nets S is defined to be congestion-free if and only if no routing resource on the

grid is used by more than one net in S.

To solve the length matching problem, we introduce two main objectives for the

router: (1) to keep the path lengths of longer nets small, and (2) to allocate extra

routing resources around shorter nets such that their lengths can be extended through

snaking. Intuitively, we want to minimize the expression
∑

i∈N (αiLi − βiSi), where

Li is the length of net i’s route, Si is the total number of extra grid cells allocated for

net i, and αi and βi are weighting terms. One can argue that for long nets, αi should

11



be large, giving priority to path length minimization. On the other hand, for short

nets, βi should be large, giving more priority to resource allocation. In this section,

our focus will be on how to set and update these parameters dynamically such that

the two main objectives are achieved simultaneously.

For simplicity of the presentation, we assume that routing will take place on

one layer only. Furthermore, our focus will be to route only one bus; i.e., all the

given nets need to be routed with the same length. However, it is straightforward

to extend our models and algorithms to a multi-layer multi-bus routing problem,

or to the general problem where each net has a different length constraint, as will

be discussed in Section 2.6. Also, we introduce some restrictions for the resulting

routing solutions. We assume that there is a preferred direction for each net, and

all the snaking will be performed perpendicular to this direction. Furthermore, the

resulting routes will not have any detour towards opposite of the preferred direction.

For example, if the preferred direction is RIGHT, then snaking will be performed UP

and DOWN (as in Figure 2.1); detouring towards LEFT will not be allowed. These

restrictions are necessary for the models we propose. However, we believe that they

will not degrade the solution quality, because a typical routing solution given by a

conventional router would also satisfy these conditions. For simplicity of presentation,

we will first assume that there is a global preferred direction for all nets. However,

it is possible to generalize our models to the case where each net has an individual

preferred direction, as will be discussed in Section 2.6.

2.3.2 Lagrangian Relaxation Based Resource Allocation

Lagrangian relaxation is a general technique for solving optimization problems with

difficult constraints. The main idea is to replace each complicating constraint with a

penalty term in the objective function. Specifically, each penalty term is multiplied

by a constant called Lagrangian multiplier (LM), and added to the objective func-

tion. The Lagrangian problem is now the optimization of the new objective function,

where difficult constraints have been relaxed and incorporated into the new objective

function. If the optimization is a minimization problem, then the solution of La-

grangian problem is guaranteed to be a lower bound for the original optimization. In

fact, Lagrangian relaxation is a two-level approach: In the low level, the Lagrangian

problem is solved for fixed LM values. In the high level, LM values are updated

iteratively such that the optimal value obtained in the low level is as close to the real
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optimal value as possible. Typically, a subgradient method is used to update LM

values in the high level. Intuitively, the LM values corresponding to the constraints

that are not satisfied in the current iteration are increased (hence, the weights of

these constraints in the low-level objective function are increased), and vice versa.

The iterations continue until a convergence criterion is satisfied. Further details can

be found in various survey or tutorial papers about Lagrangian relaxation [21–23].

Length matching problem can be formulated as a constrained optimization prob-

lem. Assume that we somehow determine3 a target length T ; and our purpose is to

route each net i in set N with a path length in the range T − ∆ and T .

Based on the resource allocation idea we have discussed before, it is possible to

give the following formulation:

minimize
∑
i∈N

Li

subject to :

∀i, Li ≤ T

∀i, Li + Si ≥ T − ∆

(2.1)

Again, Li denotes the length of net i’s route, and Si denotes the number of extra

grid cells allocated for net i. Suppose for now that it is possible to extend the length

of net i by an amount up to Si using snaking (in Section 2.4, we will propose a model

that will facilitate this). Observe that the first constraint above simply states that

the total length should not exceed the target length. On the other hand, with the

second constraint we make sure that shorter nets allocate enough routing resources

for snaking.

If we apply Lagrangian relaxation on this formulation, our objective becomes

minimization of
∑
i∈N

Li +
∑
i∈N

λiL(Li − T ) −
∑
i∈N

λiS(Li + Si − T + ∆) (2.2)

Here, each λiL and λiS are Lagrangian multipliers corresponding to length and re-

source constraints given in the original formulation (2.1). Intuitively, we would

3Initially, T can be set based on the maximum Manhattan distance of the terminal positions of
the input nets. If no routing solution is found with target length T , it can be increased gradually
throughout the execution.
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ROUTE-AND-LENGTH-MATCH (Inputs: N , T)

Initialize λiL, λiS to zero for each i ∈ N
while termination condition not occurred do

route all nets for fixed λiL, λiS values (see Section 2.5)

for each i ∈ N do

check constraints for current route

update λiL and λiS values accordingly

perform snaking using the extra grid cells allocated

Figure 2.2: High-level algorithm description.

want longer nets to have larger λiL values (so that length minimization is prioritized

for them) and shorter nets to have larger λiS values (so that resource allocation is

prioritized for them).

The high-level algorithm we propose for length matching during routing is given

in Figure 2.2. For the following discussions in this section, assume that we have a

subroutine for finding the routing solution that minimizes objective function (2.2), for

fixed λiL and λiS values. Observe in Figure 2.2 that we iteratively call this subroutine,

and update the Lagrangian multipliers until some convergence criterion is satisfied.

We use an update scheme similar to subgradient method, but we have tailored it

specifically for this problem. Given a routing solution in iteration k, and the current

multiplier values λk
iL and λk

iS, the multipliers for iteration k + 1 are calculated as

follows:

λk+1
iL =

⎧⎨
⎩

max(0, λk
iL − tk(T − Li)

γ) if Li ≤ T ,

λk
iL + tkviL(Li − T )γ otherwise.

(2.3)

λk+1
iS =

⎧⎨
⎩

max(0, λk
iS − tk(Li + Si − T + ∆)γ) if Li + Si ≥ T − ∆,

λk
iS + tkviS(T − ∆ − Li − Si)

γ) otherwise.
(2.4)

Note that tk is the step size used in subgradient method, and it is updated in

each iteration such that it slowly converges to 0. Specifically, we use the convergence

condition given by Held et al [28], which states that as k → ∞, it should be the case

that tk → 0 and
∑k

i=1 ti → ∞. The terms viL and viS denote the number of iterations

the length constraint (Li ≤ T ) and the resource constraint (Li + Si ≥ T − ∆) for
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Figure 2.3: Parallel routing segments of net m and net n, together with allocated
routing resources (indicated by dashed lines): (a) resource allocation if λmS > λnS,
(b) resource allocation if λnS > λmS, and (c) desirable resource allocation if λnS is
only slightly larger than λmS.

net i have been violated, respectively. If a constraint is not satisfied repeatedly for

several iterations, then its multiplier is increased more rapidly. Finally, γ ≤ 1 is a

constant we have introduced for this problem, and it is used to smooth the effect of

the amount of length or resource constraint violation, which can have large values.

Our experiments have shown that setting it to a value as small as 0.1 gives decent

results.

2.3.3 Handling Oscillation Problems

It is known that solution oscillation is a serious and inherent problem for Lagrangian

relaxation based methods [24; 53]. Note that even if the Lagrangian multipliers con-

verge to their optimal values in the subgradient method, the solution to the original

problem might oscillate between two extremes with a slight change of the multipliers.

Guan et al. [25] identify one cause of such a behavior as the existence of homoge-

neous subproblems. A similar problem also exists in the formulation we have given in

Section 2.3.2.

Figure 2.3 illustrates this problem with an example of two parallel routing seg-

ments. Assume that both net m and net n need to allocate extra routing resources

(i.e., grid cells) around their routes to satisfy their resource constraints. Observe that

to minimize objective function (2.2), the intermediate grid cells should be allocated

by net m or net n, depending on the values of λmS and λnS. Specifically, if λmS > λnS,

then function (2.2) will be minimized if Sm has its maximum value. Hence, all the

intermediate grid cells will be allocated by net m (Figure 2.3(a)). On the other hand,
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if λnS > λmS, then Sn will be set to its maximum value as in Figure 2.3(b) to mini-

mize the objective function. Note that even if the difference between two Lagrangian

multipliers is infinitely small, the solution will be one of these extreme cases;4 so the

solution will always oscillate between these two. The desirable behavior would be as

shown in Figure 2.3(c) when λmS and λnS are close to each other.

A typical remedy for this kind of a problem is to use augmented Lagrangian re-

laxation [53; 59], where a penalty term is added to the Lagrangian function to avoid

oscillations. Using a similar idea, we can modify objective function (2.2) such that

our new objective becomes the minimization of

∑
i∈N

(Li + λiLLi − λiSSi) +
∑
i∈N

∑
e∈Pi

ε(se)2 (2.5)

where Pi denotes the path of net i, e denotes a unit edge (between two neighboring

grid cells) in Pi, and se denotes the number of extra grid cells allocated around edge

e, i.e.,
∑

e∈Pi
se = Si.

Here, we first simplified the original function (2.2) by eliminating the constant

terms. Then, we added the term
∑

i∈N
∑

e∈Pi
ε(se)2 as a penalty term for resource

allocation. Note that, ε is expected to be a small constant compared to the initial step

size t0 used to update Lagrangian multipliers. Intuitively, we want the penalty term

to be ineffective in earlier iterations, but as the multiplier values start to converge

to their optimal values, we want it to effectively dampen the oscillations. Note that

the resulting behavior will be similar to the one illustrated in Figure 2.3(c). Also as

a side effect, we had to eliminate the term −
∑

i∈N λiSLi from function (2.2). The

reason can be explained by using the example given in Figure 2.3. Assume that both

net m and n have small λL, but large λS values, and assume that λnS is slightly

larger than λmS. Due to the penalty term added, it is possible that the term −λnSLn

dominates instead of −λnSSn; so, Ln will be maximized, instead of Sn. The result

would be similar to the case shown in Figure 2.3(b), but this time with a snaking-

like behavior5 instead of resource allocation. So, we also need to remove the term

−
∑

i∈N λiSLi. It is interesting to note here the similarity between the new objective

function (2.5), and the intuitive formula
∑

i∈N (αiLi − βiSi), given in Section 2.3.1.

4The case λmS = λnS would give an arbitrary outcome, so we ignore this case in our discussions.
5The routing algorithm we use (Section 2.5) maximizes length if all the edge weights are negative.
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Figure 2.4: Parallel routing segments of net m and net n, together with allocated
resources (indicated by dashed lines): (a) resource allocation if λmS > λnS, (b) re-
source allocation if λnS > λmS, and (c) desirable resource allocation if λmS is slightly
larger than λnS.

Another source of possible oscillations is due to the fact that we route all nets

using fixed Lagrangian multiplier values. As shown in Figure 2.4, if λmS is even

slightly larger than λnS, all the intermediate grid cells would be allocated for net m,

and vice versa, to minimize objective function (2.5). The reason for such a behavior is

that the Lagrangian multipliers are updated only after the complete routing solution

is found using the fixed multiplier values. For instance, assume that it is required to

allocate extra grid cells for both net m and n to satisfy their resource constraints (i.e.,

as in Figure 2.4(c)). If the solution in iteration k is as in Figure 2.4(a), λmS would

be decreased, and λnS would be increased for the next iteration. So, the solution

in iteration k + 1 would be as in Figure 2.4(b). Similar arguments suggest that the

solution will always oscillate between these two extreme cases.

We propose a simple yet effective heuristic for this problem. First, we rewrite the

objective function (2.5) without any modifications as follows:

∑
i∈N

∑
e∈Pi

(1 + λiL − λiSse + ε(se)2) (2.6)

Again, e ∈ Pi is a unit edge in the path of net i. This formulation suggests that we

need to access the variables λiL and λiS for each edge e ∈ Pi. To avoid the oscillation
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problem described above, we will apply random smoothing each time such an access

occurs. Specifically, instead of using λk
iL and λk

iS in iteration k, we will use

λiL = αλk
iL + (1 − α)λk−1

iL (2.7)

λiS = αλk
iS + (1 − α)λk−1

iS (2.8)

where α is a random number in the range [0, 1], and it is regenerated for each access to

λiL and λiS values. Observe that such a smoothing is not expected to affect the results

if there are no oscillations (since the multiplier values in iterations k− 1 and k would

be consistent with each other). However, in case of oscillations as in Figures 2.4(a)

and (b), the result is expected to turn out eventually as in Figure 2.4(c).

2.4 Graph Model

In this section, we propose a graph model that facilitates resource allocation during

shortest path calculations. The significance of this model is that all the extra grid cells

allocated for net i can be used for extending the length of net i through snaking. In

other words, our low-level routing algorithm will operate on this graph, so that there

will be a one-to-one correspondence between resource allocation (during routing) and

snaking (in post-processing). For simplicity of the presentation, we will give the graph

model in case the preferred direction (see Section 2.3.1) is RIGHT. It is straightforward

to extend this model for the other directions.

As a first step, we define a supernode corresponding to each routing grid cell. A

supernode N is defined to contain three subnodes: uN , dN , and sN . Each subnode

corresponds to a different state of N in terms of the direction of the incoming edge.

Namely, uN , dN , and sN define the cases where the incoming edge to N is upwards,

downwards, and straight, respectively. Figure 2.5 illustrates this graph model with

an example. Here, supernodes A, B, and C correspond to three neighboring routing

grid cells, where B and C are right and down neighbors of A, respectively. All eleven

edges are illustrated separately with the corresponding physical explanation. For

instance, the edge sA → sB corresponds to the case where the incoming edge to A is

straight, and the connection from A to B is also straight. As another example, the

edge uA → dB corresponds to the case where the incoming edge to A is upwards, and

the connection from A to B is through allocating some of the top grid cells. Note

that in this case, the direction of the incoming edge to B (from A) is regarded as
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Figure 2.5: Three supernodes together with their subnodes are displayed on the
upper left corner. Only 5 of the 11 edges are drawn in the big picture for clarity. All
the 11 edges between supernodes A, B, and C are illustrated separately on the right.

downwards, assuming that the allocated grid cells will be used for snaking later.

One point to observe in Figure 2.5 is that resource allocation is possible only

through the edges uA → dB, dA → uB, sA → dB, and sA → uB. This guarantees that

all the allocated grid cells during min-cost path calculations can be used for snaking

later. The issues such as assigning weights to these edges, determining the amount of

resource allocation, etc. will be discussed in Section 2.5. However, we can state the

following lemma based on the discussions above.

Lemma 2.1 Let R be the original routing grid, and let G be the corresponding graph

model. For any valid route (with snaking) in R, there exists a corresponding path

(with extra resource allocation) in G. Furthermore, for any path P in G, a route can

be constructed in R such that all extra allocated resources are used for snaking.

Figure 2.6 shows an example path on the routing grid, and its graph representa-

tion. Here, resource allocation is performed for two edges, and the notation extra=4
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Figure 2.6: (a) An example routing segment, where allocated grid cells are shown
with dashed lines, and (b) the corresponding path in our graph model.

in part (b) means that four extra grid cells are allocated around this edge. Observe

that a total of six grid cells is allocated in part (a), and it is possible to extend the

length of this path from 5 to 11 if all these grid cells are used for snaking.

2.5 Routing Nets

In this section we describe the methodology we use to route all nets i ∈ N , given fixed

λiL and λiS values. We will first give a brief overview of the Pathfinder negotiated

congestion algorithm in Section 2.5.1. Then, we will discuss how to incorporate our

Lagrangian cost functions into this methodology in Section 2.5.2.

2.5.1 Negotiated Congestion Algorithm

Our low-level routing algorithm is based on the Pathfinder negotiated congestion

algorithm, which was originally proposed for FPGA routing problem [2; 3; 19]. The

main idea here can be summarized as follows. First, every net is routed individually,

regardless of any overuse (i.e., congestion) of routing grid cells. Then the nets are

ripped-up and rerouted one by one iteratively. In each iteration, the congestion cost

of each grid cell is updated based on the current and past overuse of it. By increasing

the congestion cost of an overused grid cell gradually, the nets with alternative routes

are forced not to use this grid cell. Eventually, only the net that needs to use this grid

cell most ends up using it. More details about this heuristic-based routing algorithm

can be found in [19].
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In our implementation, we have used the following congestion cost function for

grid cell g in iteration k:

congestion cost(g, k) = kϕ . tg . (1 + history(g, k)) (2.9)

where ϕ is a constant parameter, tg is the number of nets that are passing through

grid cell g in the current iteration, and history(g, k) is the congestion history of grid

cell g. In the beginning of the algorithm, the congestion history of each grid cell is

initialized to zero. Then, after each iteration k, the congestion history of grid cell g

is updated as follows:

history(g, k + 1) = history(g, k) + vgc . max(0, tg − 1) (2.10)

where vgc denotes the number of consecutive turns in which grid cell g has been

congested. Observe here that when a grid cell is congested for multiple iterations

consecutively, its history is incremented by a larger value; hence, its congestion cost

increases more rapidly. On the other hand, when a grid cell is not congested in the

current iteration (i.e., when tg is 0 or 1), its congestion history remains unchanged.

In cost function (2.9), ϕ is a user-defined parameter, and it is used to control how

fast the congestion costs are increased in the later iterations. In practice, this param-

eter is set empirically, based on a trade-off between solution qualities and execution

times.

2.5.2 Incorporating Length Matching Objectives

In one iteration of the negotiated congestion routing algorithm, each routing grid cell

has a fixed congestion cost value, as defined in Equation (2.9). The problem now is

to find the best route and resource allocation for each net i, based on fixed congestion

costs and fixed λiL and λiS values. Specifically, we want to find path Pi for each net

i that minimizes the following expression:

∑
e∈Pi

(1 + λiL − λiSse + ε(se)2 + ce) (2.11)

where se is the number of extra grid cells allocated around edge e, and ce is the total

congestion cost of the grid cells occupied by edge e. Observe that this expression is ob-

tained by incorporating congestion costs into the Lagrangian objective function (2.6),

defined in Section 2.3.3.

21



To find the best path for net i, we model the routing grid as a graph using the

model described in Section 2.4. Based on objective function (2.11), the weight of edge

e is defined as:

weight(e) = min
se

{1 + λiL − λiSse + ε(se)2 + ce} (2.12)

As described in Section 2.4, some types of edges are not suitable for resource allo-

cation. If e is such an edge, then se is set to zero, and ce is set to the sum of the

congestion costs of the two grid cells connected by this edge. Otherwise, se is selected6

so as to minimize weight(e) in Equation (2.12). Note that increasing se means al-

locating more grid cells, hence possibly increasing ce. Here, the optimal value of se

depends on the value of λiS (i.e., the importance of resource allocation constraint),

and congestion costs of the grid cells around this edge. For this graph model and the

weight function, we can state the following theorem:

Theorem 2.1 Let R be the original routing grid, and let G be the corresponding

graph model as defined in Section 2.4, and edge weights set based on Equation (2.12).

The shortest path P in G corresponds to the best route (with resource allocation) in

R that minimizes objective function (2.11).

Proof. From Lemma 2.1, we know that there is a one-to-one correspondence be-

tween any valid route in R, and any path in G. Furthermore, consider an arbitrary

path in the form: v0 � vi → vj � vn, where v0 and vn are the terminal nodes, and

vi and vj are any intermediate neighbouring nodes. According to the graph model

given in Section 2.4, the types of vertices vi and vj completely determine whether

space allocation is possible around the edge (vi → vj). Furthermore, changing the

amount of space allocation around this edge does not affect the paths v0 � vi and

vj � vn, since all paths are defined to be monotonic in the horizontal direction (see

Section 2.3.1). In other words, the amount of space allocation on a particular edge

does not affect the solution for the rest of the path. So, the value se around any edge e

must be selected as defined in Equation (2.12) to minimize objective function (2.11).

6In our implementation, we have defined a small preset upper bound value (e.g., 10) for se, and we
tried each even number between 0 and this upper bound to find the optimal se value that minimizes
the weight function defined.
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ROUTE-ALL-NETS (Inputs: λiL, λiS values for each net i)

initialize congestion cost of each grid cell to zero

while a congestion-free routing solution not found do

for each net i ∈ N do

calculate edge weights

find min cost path for net i

increase congestion costs of overused grid cells

Figure 2.7: Low-level algorithm description to route nets based on fixed Lagrangian
multiplier values

After setting the edge weights, the next step is to find the minimum cost path

for net i. Intuitively, defining edge weights as in Equation (2.12) has two important

consequences. Shorter nets (with large λiS values) will automatically prefer the routes

where they can allocate enough resources around. On the other hand, longer nets will

probably not be detoured despite congestion costs, because λiL will dominate weight

function (2.12) for small or moderate congestion levels. Closer examination of the

edges illustrated in Figure 2.5 will reveal that our graph is in fact a dag (directed

acyclic graph). It is known that the shortest path problem can be solved for a weighted

dag in linear time [16].

The overall method described in this section is summarized in Figure 2.7.

2.6 Generalizing the Models

The models and algorithms in the previous sections mainly focus on routing a single

bus on a single layer, and it is assumed that all routes are monotonic in one direction.

However, it is straightforward to extend these ideas to more general cases.

For a multilayer layout, we can use a 3-D grid model, where the third dimension

corresponds to interlayer connections. Here, the graph model proposed in Section 2.4,

and the weight calculation scheme given by Equation (2.12) can be applied to each

layer independently. However, the main difference here is in modeling interlayer con-

nections. Assume that grid cells A and B are in different layers, and a via connection

is possible between them. To model such a connection, we need to create edges be-

tween all subnodes of A and B. Since resource allocation is not applicable here, the
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weight of these edges would only reflect the length requirement and congestion. For

example, we can modify equation (2.12) for this purpose as follows:

weight(evia) = (λiLdvia + ce) × via penalty (2.13)

Note that an interlayer connection is likely to have different delay characteristics than

a regular intralayer connection; so it might be necessary to use a circuit-dependent

factor dvia to model such difference. Furthermore, since via connections are typically

undesired, the constant via penalty is used to avoid using these edges unless they

are really necessary. After that, we can use our low-level routing algorithm on this

3-D grid structure. However, note that since this multilayer graph structure is not

acyclic, we need to use a shortest path algorithm that can handle edges with negative

weights,7 such as Bellman-Ford algorithm [16]. Figure 2.8 shows a sample routing

solution on 2 layers. Here, each of nets 2 and 3 is routed on a single layer, while net

1 uses a via to switch layers. Note that the only difference in the multilayer routing

model is that a net can use a via to go in the third dimension during path calculations.

By assigning a high cost to interlayer connections, we can avoid using vias if they are

not really needed.

Also, we can extend these models for routing multiple buses together. For this,

we need to modify the original formulation (2.1) such that each bus uses a different

target length T . We can also extend this formulation to the most general case, where

each net has different upper and lower bound constraints:

minimize
∑
i∈N

Li

subject to :

∀i, Li ≤ T ub
i

∀i, Li + Si ≥ T lb
i

(2.14)

7Edges with negative weights are possible due to the weight function given in Equation 2.12.
However, it is guaranteed that there is no negative-weight cycle, since we assume that each net has
the same preferred direction in all layers. For example, if the preferred direction is RIGHT, then
there will be no detour towards LEFT. Hence, a cycle cannot contain a horizontal edge. Since
resource allocation is not possible around vertical edges, it is guaranteed that all edges in a cycle
have positive weights.
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Figure 2.8: A sample solution with 3 nets routed on 2 layers. The interlayer con-
nection for net 1 is illustrated with a dashed line. Note that snaking is performed on
each layer the same way as in a single-layer model.

where T ub
i and T lb

i are the upper and lower bounds for net i. Note that such a modifi-

cation in constraints would only effect the update schedule of Lagrangian multipliers.

Namely, the multipliers for iteration k + 1 would be calculated as follows:

λk+1
iL =

⎧⎨
⎩

max(0, λk
iL − tk(T

ub
i − Li)

γ) if Li ≤ T ub
i ,

λk
iL + tkviL(Li − T ub

i )γ otherwise.
(2.15)

λk+1
iS =

⎧⎨
⎩

max(0, λk
iS − tk(Li + Si − T lb

i )γ) if Li + Si ≥ T lb
i ,

λk
iS + tkviS(T lb

i − Li − Si)
γ) otherwise.

(2.16)

It is also possible to generalize our algorithms to the case where each net has an

individual preferred direction, instead of a single global preferred direction for all nets.

In other words, some nets can be specified as monotonic in the horizontal direction,

while some others are monotonic in the vertical direction. Note that monotonicity

of routes in one direction is required for the graph model we propose in Section 2.4,

which ensures that all the extra routing resources allocated by our low-level routing

algorithm can be used for length extension. In section 2.4, we have given a graph

model for routes that are monotonic in the horizontal direction, and it is straightfor-

ward to generalize it for monotonicity in the vertical direction. Since our low-level

routing algorithm (given in Figure 2.7) routes nets one by one, different graph models

can be used for different nets, based on the prespecified preferred directions.8 As an

8The preferred direction for a net can be determined heuristically based on the relative positions
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Figure 2.9: A sample routing solution where two nets are monotonic in the vertical
direction, and one net is monotonic in the horizontal direction. The lengths of all
three nets have been matched by our algorithm.

example, consider Figure 2.9, where two nets are monotonic in the vertical direction,

and one net is monotonic in the horizontal direction. Our algorithm has successfully

found the routing solution where all three nets have exactly the same length.

2.7 Experimental Results

In this section, we compare our framework with a commonly used greedy approach.

In this approach, a negotiated-congestion routing algorithm (similar to Pathfinder

[2; 3; 19]) is used to find a congestion-free routing solution for all nets. As described

before, the main idea here is to route each net regardless of any congestion in the

beginning; then the costs for congested routing resources are increased gradually,

forcing the nets to use alternative routes. Note that this algorithm does not explicitly

consider the objective of length matching during path calculations. Instead, after a

conflict-free routing solution is found for all nets, a greedy post-processing method is

used for the purpose of length matching. Here, each net is processed (from shortest

to longest), and jogs are inserted (as in Figure 2.1) until it satisfies the min-length

constraint.

During implementation of our algorithm, we have used a heuristic to expedite the

convergence of the solution. Here, after all the nets are routed for fixed λiL and λiS

of its terminals. It is also possible to try both directions one by one, and then choose the one that
gives the better route.
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Figure 2.10: A sample routing solution using Lagrangian relaxation based resource
allocation.

values in one iteration, it might be the case that some nets have more than necessary

allocated resources. Our heuristic is to deallocate the extra resources from all these

nets and to greedily allocate the available routing grids for shorter ones. We have

observed that this heuristic decreases the running time of our algorithm.

We have implemented all these algorithms in C++, and we have performed our

experiments on an Intel Xeon 2.4Ghz system with 512MB memory, and a Linux

operating system.

For illustration purposes, we have applied our algorithm on a relatively small-sized

single-layer bus routing problem,9 the outcome of which is displayed in Figure 2.10.

Here, there are various nets that are routed10 with almost the same path lengths.

Specifically, we have set the constant ∆ in objective function (2.1) to 1 in our experi-

ments.11 In accordance with this constraint, the difference between the minimum and

9Although a single-layer routing solution is illustrated here, our algorithm applies equally well to
multi-layer problems.

10We have not fine-tuned our program to reduce the number of bend points. However, if these are
undesirable, it is possible to eliminate them in postprocessing.

11The length of a route can be extended only by an even number of grid cells. So, if there are
two different nets (one with an even path length, one with an odd path length), their lengths can
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Table 2.1: Properties of test problems
Test Vertical Spacing Manhattan Dist. Grid Net Layer
Problem avg stdev avg stdev size count count
B1 3.54 2.25 106 14.43 150×356 99 one
B2 2.74 2.24 106 7.19 150×280 100 one
B3 2.66 1.72 107 17.31 150×261 96 one
B4 2.23 1.38 107 17.07 150×222 97 one
B5 3.29 2.64 117 15.05 150×459 133 two
B6 2.50 1.68 116 10.37 150×357 135 two
B7 2.30 1.43 117 18.47 150×325 133 two
B8 1.93 1.37 116 11.19 150×277 134 two
B9 1.81 1.18 117 15.74 150×231 118 two
B10 1.73 0.97 117 14.88 150×250 134 two

maximum path lengths is only one grid cell in the solution of Figure 2.10. Observe

that snaking could be performed even in the dense areas of the layout. Furthermore,

the heights of these jogs are usually small (i.e., 1 or 2 grid cells most of the time),

mainly due to the methods proposed in Section 2.3.3 to avoid solution oscillations.12

As a result, multiple nets effectively share the available routing resources such that

all satisfy their min-length constraints.

We have also performed experiments on test problems properties of which are

summarized in Table 2.1. Here, vertical spacing is measured in terms of the number

of grid cells between the terminal points of adjacent nets, and it indicates how dense

the problem is. On the other hand, Manhattan distance is given in terms of number

of grid cells between two terminals of the same net. The deviation in this value is a

good indicator for the amount of snaking needed to be performed. Each bus given in

this table has around a hundred nets, and the objective is to route them and match

their lengths. Note also that the underlying grid sizes are between 150 × 222 and

150 × 459, depending on the problem size. Similar to Figure 2.10, the nets in these

problems are monotonic in the same direction. Furthermore the net terminals in the

single-layer problems are ordered as in Figure 2.10 to ensure that a planar routing

solution exists. On the other hand, the terminals in the two-layer problems are not

ordered, since via usage is permitted for these problems.

be matched only up to 1 grid cell difference.
12As mentioned before, we use a preset upper bound value for se in function (2.12), effectively

limiting the maximum height of a jog. However, in this figure the jogs have heights even smaller
than this upper bound most of the time.
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Table 2.2: Routing results on test problems
Test GREEDY SNAKING LR-BASED ROUTING
Problem minL maxL stdev time minL maxL stdev time
B1 140 141 0.50 0:08 140 141 0.50 0:08
B2 99 127 2.78 0:11 121 122 0.50 0:19
B3 91 142 7.12 0:14 145 146 0.50 0:41
B4 66 150 10.71 0:12 145 146 0.50 3:27
B5 150 151 0.50 0:22 150 151 0.50 0:23
B6 109 140 3.04 0:25 139 140 0.50 0:47
B7 132 161 3.44 0:24 160 161 0.50 0:49
B8 103 147 6.78 0:24 144 145 0.50 4:25
B9 100 152 4.91 0:20 151 152 0.50 0:44
B10 96 152 7.75 0:25 151 152 0.50 9:46

As described before, our formulations involve some parameters due to the high-

level Lagrangian relaxation framework (Figure 2.2) and the low-level negotiated con-

gestion algorithm (Figure 2.7). In our experiments, we have set these parameters as

follows. In the update schedule for Lagrangian multipliers given in Equations (2.3)

and (2.4), we have set the step size tk such that the convergence criterion given by

Held et al[28] is satisfied, i.e., as k → ∞, it should be the case that tk → 0 and∑k
i=1 ti → ∞, where k is the current iteration number. Specifically, we have used the

function tk = 1/
√

k for this purpose. As mentioned before, exponent γ in these equa-

tions is expected to have a small value to smooth the effect of the amount of length

or resource constraint violations. So, we have set γ = 0.1 in our experiments. Simi-

larly, we have set ε in the Lagrangian cost function (given in Equation (2.5)) to 0.1.

Remember that the penalty term
∑

i∈N
∑

e∈Pi
ε(se)2 in this function has been intro-

duced to avoid potential solution oscillations. Setting ε to such a small value makes

the penalty term ineffective in earlier iterations, and dampens the oscillations as mul-

tiplier values start to converge to their optimal values, as described in Section 2.3.3.

For the congestion cost function given in Equation (2.9), we have empirically set ϕ

to 0.4. As discussed earlier, the main idea of the Pathfinder algorithm is to gradually

increase the congestion costs of the overused grid cells. Here, parameter ϕ determines

how fast the congestion costs are incremented. Finally, for the two-layer problems in

Table 2.1, we have used Equation (2.13) to set the weights of via edges, as described

in Section 2.6. In our experiments, we have empirically set the via penalty multiplier

in this equation to 4 to discourage via usage.
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We have executed both the greedy algorithm mentioned before and the Lagrangian

relaxation (LR)-based routing algorithm on these test problems. The comparison of

the results are given Table 2.2. Here, minL, maxL, and stdev denote the minimum

path length, maximum path length, and standard deviation in path lengths, respec-

tively. All results are given in terms of the number of grid cells spanned. Also, the

execution times of these algorithms are given under columns time, and they are re-

ported with min:sec units. Observe that the greedy method fails to match lengths

especially when the problem is dense or when the variation in net lengths is large.

However, our method performs multiple iterations in such cases to effectively find

the solution that satisfies length constraints. Due to these multiple iterations, the

execution time increases; nevertheless, the feasible solution is obtained eventually. In

these experiments, we have observed that the high-level Lagrangian framework (as

given in Figure 2.2) took less than 10 iterations most of the time. On the other hand,

the low-level negotiated congestion algorithm (as given in Figure 2.7) took around

50-100 iterations. We have also observed that most of the nets are routed without

congestion in the first few iterations; then the remaining few nets negotiate congested

resources in the later iterations.

2.8 Conclusions

We have proposed an algorithm for routing nets within minimum and maximum

length bounds. We can summarize our contributions in this chapter as (1) a high-level

Lagrangian relaxation framework that guides the routing iterations such that length

matching objectives are eventually satisfied, (2) incorporating the resource allocation

objectives (which are guided by a Lagrangian function) into a state-of-the-art routing

algorithm, (3) a special graph model G such that the shortest path in G corresponds

to the optimal resource allocation for the current Lagrangian multipliers of a net.

Our experiments indicate that our algorithm can be effectively used for routing nets

with min-max length constraints, even in the situations where the greedy strategy

fails to satisfy these constraints.
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Chapter 3

A Two-Layer Bus Routing

Algorithm for High-Performance

Boards

3.1 Introduction

In this chapter, we focus on a more restricted yet common length matching problem:

routing nets between component boundaries using two x-y signal layers. Here, the

component boundaries define a routing channel, and all net terminals are assumed

to be aligned on the opposite sides of this channel. We assume that each layer

is assigned a primary routing direction of either horizontal or vertical. A sample

routing solution is illustrated in Figure 3.1, where there are two bus structures: (1)

a vertical bus between MCM and I/O module, and (2) a horizontal bus between

MCM and memory module. Observe in the horizontal layer that the congestion in

the area corresponding to the vertical problem (i.e., the area between MCM and I/O)

is considerably lower than the congestion in the area corresponding to the horizontal

problem (i.e., the area between MCM and MEM), and vice versa. The main reason

is that the horizontal distance between terminals of a net in a horizontal problem

corresponds to the distance between two different components, and it is typically

much larger than the respective vertical distance.

Routability in a highly congested area is expected to be limited; so it will be

more effective to perform length extension (to satisfy min-length constraints) within

the less congested areas. For example, the vertical layer of a horizontal problem is
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Figure 3.1: A typical two-layer routing solution. There are two separate bus struc-
tures here: (1) between MCM and I/O, and (2) between MCM and memory. No
length extension (to satisfy min-length constraints) has been performed yet.

expected to be significantly less congested; so it makes more sense to perform length

extension on this layer. In this chapter, we propose an algorithm that incorporates

the objective of length extension into the actual routing algorithm. For a horizontal

problem, our algorithm simultaneously extends the lengths of the nets and assigns

them to vertical tracks.

The Lagrangian relaxation based length matching algorithm proposed in Chap-

ter 2 can handle more general routing problems. However, the algorithm proposed

in this chapter has some distinct advantages on its target class of problems. First of

all, we route multiple nets simultaneously on one track in an optimal way, instead of

using a net-by-net approach, which has no theoretical guarantees. Furthermore, the

routing solutions are more uniform in this algorithm. That is, all nets use two vias,

and the number of bends (due to length extension) is at most four for each net. Also,

we consider a certain type of length extension methodology here, which is especially

effective for this target class of problems.

The rest of the chapter is organized as follows. In Section 3.2, we describe the

target problem in more detail, and discuss why simple ad hoc methodologies are not

sufficient for this problem. Then, we propose an algorithm in Section 3.3 based on

some assumptions about input circuits. In Section 3.4, we relax these assumptions,

and discuss how to generalize this algorithm. Finally, we perform experiments in

Section 3.5 to show the effectiveness of our algorithm compared to the Lagrangian

relaxation framework.
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3.2 Problem Formulation and Motivation

For a given set of nets N , and min-max length constraints T min
i , Tmax

i for each net

i, our purpose is to find a two-layer routing solution such that all length constraints

are satisfied, and the routing resources are utilized most effectively. We assume that

routing within dense components (escape routing) has already been accomplished1

by the earlier stages of the routing system; hence all terminals are now aligned on

the opposite sides of the channel. At first glance, this problem may seem similar

to the traditional channel routing problem [7; 27; 55; 63], which has been studied

extensively in the literature. However, the existence of min-max length constraints

due to the high-speed design rules makes this problem significantly different from the

traditional problem.

For simplicity of presentation, we will first focus on a restricted problem instance,

where (1) each pair of adjacent terminals is separated by at least one grid cell on

each side, and (2) no obstacles are found within the routing area. The algorithms we

propose in Section 3.3 will be based on these assumptions; however, we will extend

our algorithms in Section 3.4 for the general case.

All algorithms in this chapter will be presented for a horizontal problem (i.e.,

terminals are aligned on the left and right sides of the channel); however it is trivial

to modify them for a vertical problem. Let us denote the horizontal routing layer as

the primary layer and the vertical routing layer as the secondary layer. As mentioned

before, since routing resources are very scarce on the primary layer, length extension

will be performed on the secondary layer to satisfy all min-length constraints.

Figure 3.2 illustrates a sample routing solution for 12 nets, where the dashed lines

indicate length extension performed on each net. Observe that layers 1 and 2 are

primarily for routing horizontal and vertical segments, respectively. However small

deviations from the primary directions are allowed on each layer. For instance, there

are small diagonal segments (for alignment) on layer 1 and small horizontal segments

(for length extension) on layer 2. Furthermore, the second layer is defined to consist

of vertical tracks, where each track has width equal to the sum of via diameter and

wire width (plus clearance between them). For example, five vertical tracks are used

on layer 2 of this figure. Note that via diameters are typically much larger than wire

widths, so the increase in track widths due to length extension is normally negligible.

1We propose such escape routing algorithms in Chapters 5 and 6.
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Figure 3.2: A sample routing solution on two layers, where each net has individual
min-max length constraints. The terminals for 12 nets are aligned on the left and
right side of the channel. Two vias (represented as empty circles) are used to route
each net. The dashed lines on layer 2 indicate the length extension performed to
satisfy min-length constraints.

It is important here to note that length extension needs to be performed simulta-

neously while determining the positions of vertical segments on the secondary layer.

In the example of Figure 3.2, the number of vertical tracks used is kept minimum

(i.e., 5 vertical tracks used on the second layer), and the routing resources are uti-

lized most effectively. However, this utilization will be significantly reduced if length

extension is performed as a separate step in the routing process. For instance, one

can use a traditional channel routing algorithm (such as left-edge algorithm [27]) first

to assign routing segments to the vertical tracks, and then extend the lengths of ver-

tical segments in post-processing. Figure 3.3(a) shows the corresponding solution of

the left-edge algorithm. Observe that segments have been assigned to vertical tracks

without considering the min-length constraints. So, it is not guaranteed that there

is enough space around each net such that its length will be successfully extended

in post-processing. For instance, consider net 5 in this figure, which is assigned to

the second vertical track between the segments of nets 1 and 7. Obviously, its length

cannot be extended in post-processing (due to lack of space), and its min-length con-

straint will be violated. Specifically, there are four nets in this example of which

length constraints will not be satisfied even after post-processing: nets 1, 5, 7, and 9.

This example clearly demonstrates that min-length constraints need to be considered

during the actual routing process, not just as a post-processing step.

Another approach here can be to extend the lengths of vertical segments using a
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Figure 3.3: Alternative routing solutions corresponding to Figure 3.2, if (a) length
extension is performed in post-processing, and (b) length extension is performed in
preprocessing. In (a), min-length constraints of nets 1, 5, 7 and 9 are violated. In
(b), the number of vertical tracks necessary increases to 8 (from 5). For clarity, only
the results on the secondary layer are illustrated.

predefined pattern in preprocessing, and then to apply a traditional channel routing

algorithm to assign them to vertical channels. Figure 3.3(b) shows such an example,

where segments have been extended (from bottom) first; then the left edge algorithm

has been applied on the extended segments. The disadvantage of this approach is that

the routing algorithm has no control over the length extension process; so the resulting

solution cannot utilize the routing resources most efficiently. In this example, eight

vertical tracks are used to obtain a feasible solution, while Figure 3.2 shows that five

tracks would be sufficient to satisfy all length constraints. This example shows that

performing length extension as a preprocessing step is also not an effective strategy.

The algorithms we propose in this chapter handle length extension and track

assignment simultaneously, so that a feasible routing solution is obtained while using

a minimum number of vertical tracks. For instance, observe in Figure 3.2 that net 1

is extended both from top and from bottom, and such an extension allows three nets

to fit on one track. The next section describes our models and algorithms in more

detail.
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3.3 Algorithm Description

3.3.1 Routing Model

Routing on the horizontal layer is straightforward, because of the assumptions that

there are no obstacles in the routing area and that each adjacent pair is separated by

at least one grid cell (see Section 3.4 for the general case without these assumptions).

As illustrated in the example of Figure 3.2, a horizontal connection2 is possible from

each terminal on one side of the channel to the other side, without any conflicts

with others. So, the main problem here is to determine the positions of vertical

segments on the secondary layer. Once the positions of these vertical segments are

fixed, the horizontal segments on the first layer can be connected to them using vias,

as illustrated in this example.

Figure 3.4 shows an example illustrating the way length extension is performed

on vertical segments. Here, assume that we need to extend the length of the segment

in part (a) by 16 units (in terms of grid cells) to satisfy its min-length constraint.

Figure 3.4(b) shows eight possible configurations, each of which is the extended ver-

sion of the original segment. As mentioned before, one via and one wire is defined to

fit on a vertical track together; so each extended segment in this figure is defined to

be on a single track. Figure 3.4(c) gives a simpler representation, where a solid line

represents the original segment and a dashed line represents the extended length.

Min length constraint for a net directly determines the minimum length require-

ment for its vertical segment. Let xi denote the amount of length extension required

to satisfy min length constraint of net i. The value of xi is simply equal to the

Manhattan distance between net i’s terminal points subtracted from its min length

constraint. Here, the vertical segment of net i must be extended by at least xi/2− 1

from top or from bottom, as in Figure 3.4(c). In the example of Figure 3.4, xi is given

as 16, and the vertical segment of net i needs to be extended by at least 7 units.3

These concepts are formalized by the following definitions:

Definition 3.1 The routing solution for net i is defined based on the position of its

2A small diagonal segment might be necessary to align the horizontal segments on opposite sides,
as shown in Figure 3.2.

3As shown in Figure 3.4(b), the extended part actually consists of two adjacent vertical wire
segments and one unit of horizontal wire segment. However for simplicity, we represent it as a single
wire as in part (c).
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(a) (c)(b)

Figure 3.4: (a) A vertical segment that needs to be extended by 16 units. (b) Eight
possible configurations corresponding to the extended segment. (c) Each configura-
tion is represented as a single line, where dashed lines represent the length extension.

vertical segment, and it is denoted as Ri = (ti, ri, �i), where ti is the track number, ri is

the top row, and �i is the length of the vertical segment of net i. Here, �i is determined

directly from the min length constraint of net i, as discussed before. Furthermore, ri

must be chosen such that rmin
i ≤ ri ≤ rmax

i , where ri = rmin
i , and ri = rmax

i correspond

to the extreme cases where no length extension is performed from the bottom, and from

the top, respectively. The main idea is illustrated in Figure 3.5.

Definition 3.2 The routing problem for a given set of nets is defined as finding a

solution Ri = (ti, ri, �i) for each net i such that (1) no two vertical segments on the

�i

�i

�i

rmin
i ≤ ri ≤ rmax

i

ri = rmin
i

ri = rmax
i

Figure 3.5: Three different cases for the vertical segment of net i are illustrated.
Here, length �i is fixed, since it is determined by the min-length constraint. However,
the top row ri can vary between rmin

i and rmax
i . The solid and dashed lines here

represent the original and extended segments, respectively.
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same track overlap with each other, and (2) the number of vertical tracks used is

minimized.

Note that the min length constraints are captured by the target length �i defined

for each net i, while the max length constraints do not need to be considered explicitly.

The reason is that each net is routed using the minimum possible length in this

algorithm.

3.3.2 Algorithm Proposed

The problem defined by Definitions 3.1 and 3.2 is actually a special case of the task

scheduling problem with release times and deadlines on a multi-computer. Here, each

vertical track can be considered as a computer; each vertical routing segment can be

considered as a task with length �i, release time rmin
i , and deadline rmax

i . Note that

this problem is known to be an NP-complete problem in the strong sense, even in

the case where there is a single computer [4]. However, the special property of our

problem will allow us to give a polynomial-time exact algorithm for the single-track

case.

Here, our approach will be to process one track at a time and to pack as many

routing segments as possible on each track. Note that the best routing configuration

for each net should also be determined simultaneously during this process. The

following definition gives a formal description of this objective.

Definition 3.3 The problem of single-track assignment is defined as follows: Given

a set of nets N , and a set of vertical segments for each net i in N , the objective is to

select a subset of these vertical segments, such that (1) at most one vertical segment

is selected corresponding to each net i, (2) the selected segments do not overlap with

each other, and (3) maximum resource utilization is achieved on one track (i.e., the

number of grid cells unused is kept minimum).

As an example, consider Figure 3.6(a), where there are four different nets, and

each net has multiple routing configurations. The corresponding optimal solution for

single-track assignment is shown in Figure 3.6(b). Observe that 21 out of 22 grid cells

have been utilized on this track.

As mentioned above, this problem is a special case of the task scheduling problem

on a single computer, which is an NP-complete problem in the strong sense. However,
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Figure 3.6: (a) A sample single-track assignment problem with 4 nets. Multiple
routing configurations are illustrated for each net. (b) The optimal solution, which
utilizes 21 out of 22 grid cells of one track. The dashed lines indicate the length
extension performed.

we propose an algorithm in Figure 3.7, which is guaranteed to find the optimal solution

in polynomial time (due to the special property that will be given in Lemma 3.2).

Here, the main idea is to represent each row of the track as a vertex, and to model

each vertical segment as a zero-weight edge between the respective rows. Furthermore,

there is a unit-weight edge from each v[j] to v[j + 1], which corresponds to the case

where the grid cell on row j is unused. Then, the shortest path from the first row to

the last row is computed to find the optimal assignment with the maximum resource

utilization. Intuitively, the weight of an edge from v[k] to v[m] indicates the number

of grid cells that will be wasted between rows k and m − 1 if this edge is selected.

So, the shortest path from the top row to the bottom row will give us the assignment

with the minimum waste. Figure 3.8 illustrates the graph model corresponding to

the problem given in Figure 3.6(a). The highlighted path in this graph is the shortest

path, and it corresponds to the optimal solution in Figure 3.6(b). For example, the

edge from v[1] to v[6] on the shortest path corresponds to the vertical segment of net

2 from row 1 to row 5. The formal analysis of this algorithm is given as follows.

Lemma 3.1 Consider any pair of edges ei, ej ∈ G. If there exists a path P such that

ei, ej ∈ P , then the vertical segments corresponding to ei and ej are guaranteed not

to overlap with each other.
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SINGLE-TRACK-ASSIGNMENT (N : set of nets, t: current track)

create a graph G as follows:

for each row j of track t

create a vertex v[j]

add a unit-weight edge from v[j − 1] to v[j]

for each net i in N
for ri = rmin

i to rmax
i do

create a zero-weight edge from v[ri] to v[ri+�i+1]

Compute the shortest path P from v[1] to v[last] in G
for each edge e ∈ P

if e is a zero-weight edge from v[k] to v[m]

select the vertical segment that spans rows from k to m-1

Figure 3.7: Algorithm for selecting the maximal subset of non-overlapping vertical
segments
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Figure 3.8: The graph model corresponding to the problem of Figure 3.6(a). The
edges corresponding to net segments (solid arrows) have zero weights, while the oth-
ers (dashed arrows) have unit weights. The shortest path (with total weight 1) is
highlighted, and it corresponds to the optimal solution in Figure 3.6(b).
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Proof. The direction of edges in G are always towards larger vertex indices. Fur-

thermore, for a vertical segment that spans rows k to m, the corresponding edge will

be from v[k] to v[m+1]. Hence, any edge selected after this edge will correspond to a

segment starting from row m + 1. So, any pair of edges in a path cannot correspond

to overlapping net segments.

Lemma 3.2 Consider the set of edges En corresponding to net n. There exists no

path P in G such that ei, ej ∈ P and ei, ej ∈ En. In other words, a path cannot

contain two edges corresponding to different vertical segments of the same net.

Proof. There are different vertical segments corresponding to net n, because there

are different ways of extending the length of n. However, as can be seen in Figure 3.5,

the original segment (represented with solid lines) is always fixed; hence all vertical

segments corresponding to the same net will overlap with each other. Also, from

Lemma 3.1, a path cannot contain edges corresponding to overlapping net segments.

Theorem 3.1 The shortest path in G between the first and last vertices corresponds to

the optimal solution of the single-track assignment problem defined in Definition 3.3.

Proof. From Lemmas 3.1 and 3.2, the set of edges on any path corresponds to a

valid assignment on one track. Furthermore, there is a path in G corresponding to

any valid assignment on one track. Since the unit weighted edges in G correspond

to the unused rows of the track, the total weight of path P will be equal to the

number of rows wasted. So, the shortest path from the top row to the bottom row

will correspond to the optimal assignment with maximum utilization.

Theorem 3.2 Let H denote the number of rows in the channel, and xi denote the

amount of length extension required to satisfy min-length constraint of net i. The

time complexity of the algorithm given in Figure 3.7 is O(H +
∑

i∈N xi).

Proof. There are O(xi) different vertical segments defined for each net. So, the

number of edges in G is O(H +
∑

i∈N xi), while the number of vertices is O(H).

Furthermore, G is a directed acyclic graph, and the shortest path can be computed

in linear time [16].
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CHANNEL
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Figure 3.9: In a typical board routing problem, nets escape from dense components
(solid line segments), and the input to the bus routing problem is defined as a set of
terminals aligned on the opposite sides of a channel. Since the diameters of the pins
within components are much larger than wire widths, these terminals are typically
well-separated. So, it is possible to align all horizontal segments (dashed lines) such
that there are no overlaps between them.

3.4 Generalization of the Algorithm

In the previous section, we assumed that each pair of adjacent terminals is separated

by at least one grid cell. However, this is not absolutely necessary, as long as it is pos-

sible to extend the horizontal segments from one side of the channel to the other side

without any conflicts, as illustrated in Figure 3.9. If this is the case, then there will

be no restrictions on the positions of the vertical segments, and the same algorithm in

Section 3.3 can be used without a change. Note that this assumption is reasonable for

a typical industrial circuit, since the pin diameters within chip components are much

larger than the wire widths; so there will be enough routing space to align horizontal

segments from both sides without any overlaps (as in Figure 3.9).

Actually, this corresponds to the unrestricted case of the original channel routing

problem [27], where there are no vertical constraints; i.e., net segments can be assigned

to tracks without any ordering constraints. On the other hand, if overlaps are possible

on the horizontal layer, then we need to define pin constraints to avoid overlaps. For

instance, assume that the horizontal segment of net i originating from a left terminal

overlaps with the horizontal segment of net j originating from a right terminal. In

that case, the vertical segment of net i must be assigned to a track which is to the left

of the vertical segment of net j to avoid an overlap on the horizontal layer. Note that

if there were no min-max length constraints, this would correspond to the problem

of channel routing with vertical constraints, which has been studied in the literature.
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(a) (b) (c)

Figure 3.10: (a) The horizontal segments of a net are not entirely straight due to an
obstacle. (b) The vertical segment is assigned on a track to the left of the obstacle.
(c) The vertical segment is assigned on a track to the right of the obstacle. The solid
and the dashed lines represent the routing segments on the horizontal and vertical
layers, respectively. For clarity, only one net is displayed, and length extension on
the vertical layer is not shown.

This problem has been shown to be NP-complete [36; 56]; however there have been

several algorithms proposed that give sufficiently good results [7; 20; 55; 63]. If the

assumption of well-separated terminals (mentioned above) is not valid for a circuit,

we can use similar ideas to extend our algorithm to the general case. In particular,

we can define pin constraints indicating the ordering of the vertical segments, and

then perform track assignment based on this ordering. Since our algorithm processes

one track at a time, we can simply consider the set of nets that do not violate the

ordering constraints for the track that is being processed.

We can also generalize our algorithm to the case where there are some obstacles

in the routing region. If the obstacles are on the horizontal layer, then the horizontal

segments will not be entirely straight, as shown in Figure 3.10(a). Furthermore, the y

coordinates of the vertical segments will depend on the track on which it is assigned,

as illustrated in parts (b) and (c) of the same figure. Since the algorithm we propose

processes one track at a time, the appropriate vertical segments corresponding to each

net can be determined for each track, and the algorithm given in Figure 3.7 can still

be used to choose the best subset. On the other hand, we can handle the obstacles

on the vertical layer by simply removing the edges corresponding to vertical segments

that overlap with an obstacle on the current track.

3.5 Experimental Results

We have performed experiments to compare the two-layer routing algorithm proposed

in this chapter with the Lagrangian relaxation (LR) based methodology of Chapter 2.
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LAYER 1

LAYER 2

Figure 3.11: A sample two-layer solution for 128 nets. A vertical problem is il-
lustrated here; hence length extension is performed on the horizontal (second) layer.
The length constraints for all nets have been satisfied in this solution.

All algorithms in this section have been implemented in C++, and experiments were

performed on an Intel Pentium 4 2.4GHz system with 1GB memory, and a Linux

operating system.

A sample output of this two-layer routing algorithm is illustrated in Figure 3.11,

for a routing problem with 128 nets. Here, each net has individual length constraints,

and terminals are aligned on the top and bottom sides of the channel. Since this is

a vertical problem, length extension is performed on the horizontal (second) layer.

Observe that nets have been assigned to tracks and their lengths have been extended

so that maximum resource utilization is achieved on each track.

The experiments we have performed on test problems are given in Table 3.1. Here,

“avg. spacing” is measured in terms of the number of grid cells between terminal

points of adjacent nets, and it indicates how dense the problem is. On the other

hand, columns “length avg” and “length stdev” give statistical information about net

target lengths. Each problem in this table contains between 100 and 300 nets, with

individual length constraints for each net. The grid size for the smallest circuit in
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Table 3.1: Comparison of the two-layer routing algorithm proposed in this chapter
with the Lagrangian relaxation based methodology.

TWO-LAYER LR-BASED
Input Avg. Length Length # nets time # nets time
Prob. spacing avg stdev failed (m:s) failed (m:s)
B1 3.40 150.1 39.9 0 0:01 5 38:21
B2 3.19 138.5 18.6 0 0:01 6 44:52
B3 3.46 151.6 40.1 0 0:01 21 57:06
B4 2.91 160.8 38.0 0 0:01 4 46:32
B5 3.16 183.9 30.0 0 0:01 19 52:50
B6 2.94 174.7 18.1 0 0:01 48 52:45
B7 2.12 157.4 20.7 0 0:01 45 73:50
IBM1 7.75 417.6 35.8 3 0:01 3 2:29
IBM2 6.41 382.0 46.0 1 0:01 1 1:50
IBM3 9.16 427.6 73.8 0 0:01 0 7:06

this table is 100×330, and the largest one is 290×776. The last three problems here

have been extracted from an IBM design, corresponding to the bus routing problems

between MCM, memory and STI modules. Here, layer assignment and routing inside

chips have been performed by the previous phases of the routing system; so the input

for the bus routing problem is a set of non-crossing nets on each layer. While the first

seven circuits in this table have a single layer pair, the IBM circuits have multiple

layer pairs.

The results in this table indicate that the two-layer routing algorithm performs

significantly better than the LR-based approach on most circuits, in terms of both

quality and run time. The solution quality for LR-based approach degrades especially

when the average spacing between nets decrease, or the target lengths increase (hence

more aggressive length extension required). The main reason for this is that the LR-

based approach uses a variant of Pathfinder [3; 19] algorithm in the low level, where

routing conflicts are resolved through negotiations. As the problems get denser, these

negotiations take more and more time, and they do not always successfully lead to

a good result. On the other hand, this two-layer routing algorithm performs length

extension in a fast and effective way on its target class of problems.
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3.6 Conclusions

We have proposed a routing algorithm with the objective of satisfying length con-

straints of high-speed printed circuit boards. The main idea is to perform length

extension on the secondary layer (e.g. vertical layer for a horizontal problem), where

routing congestion is typically much lower than the primary layer. We have proposed

an optimal algorithm to select the best subset of nets to assign to a single track,

while satisfying the length constraints. Our experiments show that compared to the

more general Lagrangian relaxation framework of Chapter 2, this algorithm performs

considerably better on its target class of problems.
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Chapter 4

An Algorithmic Study of

Single-Layer Bus Routing For

High-Speed Boards

4.1 Introduction

In this chapter, we focus on board designs that do not use any buried vias, due to high

manufacturing costs. For such designs, each net needs to be routed on a single layer

in a planar fashion. Similar to the problem of Chapter 3, we assume that boundaries

of the components define a routing channel, and all net terminals are aligned on the

opposite sides of the channel. The objective is to route all nets on a single layer such

that each net satisfies its prespecified min-max length constraints.

Figure 4.1 illustrates this problem with an example. Here, we assume that layer

assignment has already been performed and that all nets have been routed from their

individual pins to chip boundaries.1 The problem is to route nets between pairs of

components such that all nets belonging to the same bus have approximately the

same length. In the example of Figure 4.1, two separate bus structures are displayed.

However, in reality there may be more than one bus structure interleaved with each

other, or there may be individual nets not belonging to any bus. For this reason, we

will focus on the general problem, where each net has individual min and max length

1Since via usage is not allowed, the previous phases of the routing system make sure that net
ordering within a single layer is compatible among different components. We propose such escape
routing algorithms in Chapters 5 and 6.
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Bus routing problemchip area
Routing withinBus routing problem

MEM MEM

MCM

Figure 4.1: Two separate bus structures are displayed between MCM and memory
modules of a sample board.

constraints.

Actually, this problem is similar to the river routing [39] problem, in the sense that

all terminal points are aligned with each other on two opposite sides of the circuit, and

a single-layer routing solution is desired. River routing has been studied extensively

in the literature [30; 38; 50; 51; 65]. A common application for river routing has been

routing bus structures across a channel [30]. Today, we face a similar problem for

high-performance bus routing, with the additional constraint that each net must be

routed within min-max length constraints due to very high clock frequencies.

In this chapter, we first define the problem of min-area max-length routing in

Section 4.2. The objective here is to route each net within its max-length constraint,

while allocating at least a prespecified amount of routing area around it. Then in

post-processing, snaking can be performed within this area to extend the lengths of

short nets. Intuitively, shorter nets belonging to a bus need to allocate more area

around their routes so that length matching will be possible in the end. We propose

a linear-time optimal algorithm for this problem in Section 4.2. Then, we extend this

algorithm in Section 4.3 to solve a general river routing problem with min-max length

constraints, and we prove that this algorithm is near-optimal. Finally in Section 4.4,

we perform experiments to compare these algorithms with the Lagrangian relaxation

methodology.
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Figure 4.2: (a) A sample routing solution with area allocation, where dashed lines
represent the allocated areas around routes. (b) The final routing solution, where
shorter nets have extended their lengths using the allocated areas.

4.2 Min-Area Max-Length Routing

4.2.1 Problem Formulation

Our objective here is to find a routing solution, where each net has some extra space

allocated around its route. The idea is that if a short net allocates enough routing

resources around itself, it is possible to extend its length in post-processing using

those extra resources. Figure 4.2(a) gives a sample routing solution, where shorter

nets have allocated extra routing areas around their routes. Figure 4.2(b) illustrates

how those areas can be used for matching the lengths of all three nets. Based on this

idea, we assume that each min-length constraint (T min
i ) can actually be given as a

min-area constraint (Amin
i ), where area of route i (Ai) is defined as the total number

of grid cells allocated by route i.

This problem can formally be stated as follows: Given a set of nets N , and min-

area (Amin
i ), max-length (Tmax

i ) constraints for each net i, find a single-layer routing

solution such that Ai ≥ Amin
i , and Ti ≤ Tmax

i , where Ai, Ti denote the area and the

length of route i, respectively.

Here, we assume that there is an underlying routing grid where routes go center-

to-center of grid cells. As mentioned in the previous section, we also assume that

all terminal points are aligned on two opposite sides of the circuit. For simplicity of

presentation, we will give our algorithms for the case where terminal points are at

the topmost and bottommost rows of the grid.
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ROUTE-WITH-MIN-AREA-MAX-LENGTH-CONSTRAINTS

find the leftmost boundary Li for each net i

find the rightmost boundary Ri for each net i

for each net i from left to right

while Route(Li, Li+1) does not satisfy min-area constraint

flip an appropriate corner of Li+1 rightwards

Figure 4.3: High-level algorithm for routing problem with min-area max-length
constraints

4.2.2 An Optimal Algorithm

The high level description of our algorithm is given in Figure 4.3. The algorithm

starts with finding the leftmost boundary (Li) and the rightmost boundary (Ri)

for each net i. Here, Li and Ri define the interval within which net i must be

routed. These boundaries depend on (1) the boundaries to the left and right of net

i, and (2) the maximum detour allowed for net i due to its max-length constraint.

Figure 4.4 illustrates the idea for left boundaries. The right boundaries can also be

found similarly. Note here that, a boundary Li follows Li−1 to the left as long as

max-length constraint of net i is not violated. For example, L5 in Figure 4.4 stops

short of following L4 due to the max-length constraint of net 5.

After finding the initial positions of all left and right boundaries, the algorithm

attempts to find a valid route for each net, starting from the leftmost one. At any

point in time, route of net i is defined based on Li and Li+1 as follows: The main

route of net i follows the trail of Li as close as possible; and all the remaining grid

cells between Li and Li+1 are allocated by net i as extra routing area. Since the left

and right boundaries are defined based on the max-length constraints, it is guaranteed

that any route within those boundaries will satisfy max constraints. So, the algorithm

checks only the min-area constraints. The strategy here is to incrementally flip the

left boundary of the right neighbor until the area constraint of the current net is

satisfied.

Before giving details of the flip operations, we need to define some properties for

boundaries.

Definition 4.1 A boundary is defined to be monotonic if its trail contains no detour,

and nonmonotonic otherwise. A monotonic boundary can be either falling or rising,
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Figure 4.4: Left boundaries L1-L6 for six nets. Terminal points of the nets are
shown as filled circles. A feasible route for net i cannot cross Li at any point.
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Figure 4.5: Types of boundaries: (a) rising monotonic, (b) falling monotonic, (c)
concave nonmonotonic, and (d) convex nonmonotonic.

depending on the relative positions of its terminals. A nonmonotonic boundary can

be either concave or convex, depending on the direction of the detour. A boundary is

defined to have three regions: rising, middle, and falling regions.

These concepts are illustrated in Figure 4.5. Note that a rising monotonic bound-

ary has an empty falling region, and vice versa. Due to the algorithm we use, a

nonmonotonic boundary cannot have detours in two different directions at any point

in time; so this case is not defined. It is also possible to show that a left boundary

cannot be convex nonmonotonic in the beginning of the algorithm. Similarly, a right

boundary cannot be concave nonmonotonic.

Based on Definition 4.1, we can define the operation flip Li as follows:

• If Li is rising monotonic: Flip the top corner of the leftmost segment of Li that

is not adjacent to Ri. If no such corner exists, see the special case below.
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Li Ri Li Li Ri LiRi Ri

Figure 4.6: Next flip on left boundary Li if Li is (a) rising monotonic, (b) falling
monotonic, (c) concave nonmonotonic, and (d) convex nonmonotonic. The dashed
lines illustrate the flip operation. The final Li is shown with solid lines.

• If Li is falling monotonic: Flip the bottom corner of the leftmost segment of Li

that is not adjacent to Ri. If no such corner exists, see the special case below.

• If Li is concave nonmonotonic: Flip the top corner of the middle region. Since

Ri is guaranteed not to be concave nonmonotonic, such a flip will always be

possible.

• If Li is convex nonmonotonic: Consider the leftmost segment of Li that is not

adjacent to Ri. If this segment is in the rising region of Li (as in Figure 4.6(d)),

then flip its top corner. If it is in the falling region of Li, then flip its bottom

corner. If it is in the middle region, then see the special case below.

Figure 4.6 illustrates each case with an example. Recall that the algorithm given

in Figure 4.3 processes nets from left to right, and Li is flipped to allocate more area

for net i− 1. It is obvious that Li cannot be pushed on or beyond any segment of Ri,

since that would make it impossible to route the next net.

There are 3 special cases mentioned above that need to be handled separately.

These are illustrated in Figure 4.7. Observe that we can flip the rightmost segments

either from the top or from the bottom. We have to make this decision so that the fol-

lowing invariant is maintained throughout the execution: Each boundary is one of the

following: (1) rising monotonic, (2) falling monotonic, (3) concave nonmonotonic,

and (4) convex nonmonotonic. Figure 4.8(b) shows an example where this invariant

is violated because of an incorrect decision. On the other hand, if the flip is performed

from the bottom as in part (c), then the invariant is successfully maintained. Note

that flipping Li modifies some of the boundaries Lj (j > i) to the right of Li, as in

the example of Figure 4.8. Here, we need to check the invariant for all boundaries
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(a) (b) (c)

Li

Figure 4.7: Special cases corresponding to (a) rising monotonic Li, (b) falling mono-
tonic Li, and (c) convex nonmonotonic Li. The dashed lines illustrate 2 alternative
flips for each case.

L2 L3L1 L2 L3L1L2 L3L1

(a) (b) (c)

Figure 4.8: Illustrating two alternative flip operations for a special case: (a) A flip is
to performed at the rightmost segment of L1. (b) Flip is performed from the top, and
L3 violates the invariant. (c) Flip is performed from the bottom, and the invariant is
maintained.

between Li and Lk, where k is the smallest value such that k > i, and Lk will not

be convex nonmonotonic after the flip. Note that the boundaries to the right of Lk

do not need to be checked, because only convex nonmonotonic boundaries can cause

others (to the right) to violate the invariant.

A sequence of flips on an initially concave nonmonotonic boundary Li is illustrated

in Figure 4.9 as a general example. As mentioned above, it is always possible to flip

the top corner of a concave nonmonotonic boundary. So, a sequence of flips are

performed on Li, until it becomes falling monotonic. Then, it stays monotonic until

all its segments except the rightmost one are pushed adjacent to Ri. After that, it

becomes convex nonmonotonic, and its middle region is flipped until there remains a

trail only with a single width for net i.

The example of Figure 4.9 suggests that we do not need to perform flips only one

unit at a time, as shown in Figure 4.6. Instead, we can use two binary searches to
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Figure 4.9: A sequence of flips on left boundary Li is illustrated. The initial and final
positions of Li are shown with dashed and solid lines, respectively. Each columnwise
flip is shown as a dotted arrow. The intervals within which Li is monotonic or
nonmonotonic are also specified.

find the minimum number of flips necessary to satisfy the min area requirement of

the current net. Here, the first binary search performs flips one column at a time (as

in Figure 4.9) to find the minimum number of columnwise flips. Then, the second

binary search finds the minimum number of single-unit flips necessary on the last

columnwise flip.

The time complexity of this algorithm is O(A), where A is the area of the channel.

The operations of finding the left and right boundaries for all nets dominate this time

complexity. Note that we need O(logAi) iterations in the binary search described

above to route net i, where Ai denotes the total area between Li and Li+1. The area

constraint for net i can be checked in constant time in each iteration.2 Note also that

checking the invariants for special cases (as in Figure 4.7) does not affect the time

complexity. The main reason is that we need to make this check only once for each

net: for the last partial column.

4.2.3 Proof of Correctness

We will prove that if a feasible solution exists for a given min-area max-length routing

problem, our algorithm is guaranteed to find it.

Lemma 4.1 Consider the initial positions of two adjacent boundaries Li and Li+1.

2We assume that a boundary Lj (j > i + 1) is updated lazily; i.e., only before net j − 1 is to be
routed.
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It is guaranteed that every segment in the rising and falling regions of Li+1 is adjacent

to either some segment of Li or the channel boundary. In other words, extra routing

space between Li and Li+1 can only exist to the left of the middle region of Li+1.

Proof. The main intuition is that maximum detour for Li+1 is determined by the

position of its middle region. The bends that are not in the middle region of Li+1

must be due to the blockage of Li.

Definition 4.2 A grid cell in the final routing solution is defined to be critically allo-

cated iff its removal causes either a route to be disconnected or a min-area constraint

to be violated.

We can argue that the grid cells that are not critically allocated may cause some

min-area constraints to be violated. As an example, consider the interval between L4

and L5 in Figure 4.4. If the min-area constraint of net 4 is not large enough, there will

be several grid cells here that are not critically allocated. On the other hand, the min-

area constraint for net 6 can be violated, since it cannot be routed further to the left

due to the blockage of L5. In other words, some routing resources are wasted in one

part of circuit, while there are not enough resources in other parts. Our optimality

proof will be based on the fact that our algorithm uses routing resources at least as

efficiently as any feasible solution.

Remark 4.1 If there is no extra space between the initial positions of Li and Li+1,

then all grid cells between the final positions of Li and Li+1 will be critically allocated.

Lemma 4.2 If there is some extra space between the initial positions of Li and Li+1,

then either (1) all grid cells between the final positions of Li and Li+1 will be critically

allocated, or (2) the final position of Li+1 will be the same as its initial position.

Proof. The left boundary Li+1 will be flipped only after all extra routing space

between Li and Li+1 is critically allocated by some net to the left of net i + 1. From

Lemma 4.1, we know that the extra space must be to the left of the middle region of

Li+1. Since the algorithm continuously flips Li from its leftmost available segment,

the position of Li+1 will stay the same until all extra space to its left has been critically

allocated.
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The following discussion will be based on comparison of the solution of our algo-

rithm with an arbitrary feasible solution. Let Ti, Ai denote the length of and area

allocated for net i, respectively, in our solution. (Note that since we assume that the

route of net i follows the trail of Li, the length of Li is also equal to Ti.) Let T F
i and

AF
i denote the corresponding quantities in the arbitrary feasible solution.

Lemma 4.3 Consider the final positions of left boundaries in the solution of our

algorithm. If all grid cells have been critically allocated between L1 and Ln, then there

exists no convex nonmonotonic left boundary Li, 1 ≤ i ≤ n, such that Ti > AF
i .

Proof. By contradiction, consider the smallest i such that Li is convex non-

monotic, and Ti > AF
i . We know that no left boundary can be convex nonmonotonic

in the beginning of our algorithm. So, before obtaining the final Li, our algorithm

must have tested a configuration L′
i such that T ′

i = AF
i , and no more flip is possible

on L′
i without increasing its length T ′

i . Note that in the feasible solution considered

above, all grid cells allocated for nets [1, i) must be within the region between L1

and L′
i, because L1 is the absolute leftmost boundary for any solution, and L′

i is the

rightmost possible boundary if net i has a length of at most AF
i . So, we can say that

the set of grid cells allocated for net [1, i) in the feasible solution is a proper subset

of the region between L1 and Li. Now, consider two cases:

• Case 1: There is no Lj (j < i) that is concave nonmonotonic and Tj > AF
j . In

other words, for all k, 1 ≤ k < i, it is the case that Tk ≤ AF
k ; hence Ak ≤ AF

k ,

since all grid cells between L1 and Ln are assumed to be critically allocated.

However, we have shown above that the number of grid cells between L1 and

Li is greater than the number of grid cells allocated for nets [1, i) in the feasible

solution, if Li is convex nonmonotonic and Ti > AF
i . This is a contradiction,

and our proof is complete for this case.

• Case 2: There is at least one Lj (j < i) that is concave nonmonotonic and

Tj > AF
j . Now, consider the largest such j value. Since net j already satisfies

its min-area constraint (i.e., Tj > AF
j ), Lj+1 will not be flipped by net j. Note

that this means Lj+1 cannot be convex nonmonotonic; hence j < i − 1. By

the same arguments above, the set of grid cells allocated for nets [j + 1, i) in

the feasible solution must be a proper subset of the region between Lj+1 and

Li. Also, we know that for all k, j + 1 ≤ k < i, it is the case that Tk ≤ AF
k ;
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hence Ak ≤ AF
k , due to the assumption of critical allocation. Again, this is a

contradiction, and the proof is complete.

Theorem 4.1 Assume that a feasible solution exists for a given problem containing

nets [1..n]. If our algorithm critically allocates all grid cells between final positions of

L1 and Ln, then it is guaranteed that the solution found will be feasible.

Proof. The proof is based on induction on the number of concave nonmonotonic

left boundaries Li for which Ti > AF
i :

• Base case: There exists no Lk (1 ≤ k ≤ n) for which Tk > AF
k . For all k,

1 ≤ k ≤ n, it will be the case that Tk ≤ AF
k ; hence, Ak ≤ AF

k , due to critical

allocation. By contradiction, consider the leftmost net j of which min-area

constraint has been violated. This means that Lj+1 has been maximally flipped

to the right in our algorithm. On the other hand, any feasible solution for

nets [1, j] must be within the region between L1 and Lj+1, by definition. Since

we have already shown that Ak ≤ AF
k for all nets, it must be the case that

Ak = AF
k for all k, 1 ≤ k ≤ j. This contradicts with the assumption that

min-area constraint for net k is not satisfied.

• General case: Consider the smallest j (1 ≤ j ≤ n) for which Tj ≥ AF
j . The

same proof above applies to the nets [1, j); hence, their min-length constraints

must have been satisfied. Now, consider the subproblem containing nets (j, n].

Since Tj > AF
i , and Lj is concave nonmonotonic, the area between Lj and Rn is

a superset of the set of grid cells allocated by nets (j, n] in the feasible solution.

Hence, our inductive hypothesis applies for it.

Theorem 4.2 If there exists a feasible solution for a given min-area max-length rout-

ing problem, then it is guaranteed that the given algorithm is going to find it.

Proof. The proof is based on (reverse) induction, where the base case contains

only the rightmost net n. It is obvious that the theorem is correct for the base

case. Now we will prove that the theorem holds for an input problem containing nets

[1..n]. Consider the smallest j value (1 ≤ j < n) such that there are some grid cells
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not critically allocated between Lj and Lj+1. If no such j exists, then the proof is

complete due to Theorem 4.1. Otherwise, the final position of Lj+1 will be the same

as its initial position due to Lemma 4.2. This implies that the subproblem containing

nets [j + 1..n] remains unmodified; hence our induction hypothesis applies for it. On

the other hand, we can use Theorem 4.1 to show that the solution found for nets [1..j]

is feasible since all grid cells are critically allocated between L1 and Lj . As a result,

a feasible solution will be found (if one exists) for all nets in the given input problem.

4.3 Bus Routing with Min-Max Length Constraints

4.3.1 Problem Formulation

In this section, we extend the algorithm given in Section 4.2 to the problem of river

routing with min-max length constraints. The main difference here is that the mini-

mum constraints are also given as exact length bounds, instead of min-area require-

ments.

In the original river routing problem [50], the input is a single-layer rectangular

routing channel, and a set of two-terminal nets, where all terminals are aligned at the

top and the bottom of the channel. In this section, we extend this problem for the

case where all nets have to be routed within prespecified min-max length bounds.

Most of the existing work on river routing assume monotonic routes both in hor-

izontal and vertical directions, since it does not hurt routability [39]. However in our

case, we will need explicit detours to satisfy min-length constraints. So, we assume

monotonicity only in the vertical direction. In other words, routes are allowed to

proceed in three directions: left, right, and down.

4.3.2 Routing Algorithm

For this problem, we use almost the same algorithm given in Figure 4.3. The main

difference here is that we need to check min-length constraint of Route(Li, Li+1)

in each iteration, instead of the min-area constraint. Recall that it was trivial to

calculate the total area between Li and Li+1, after each flip on Li+1. However, we

now need to calculate the maximum length achievable by route i, so that we can
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Figure 4.10: (a) A sample max-length route, where wasted cells are marked with
‘X’. (b) The corresponding shortest path in G. For clarity, only the edges on the
shortest path, and only the non-zero edge weights are displayed.

determine whether min-length constraint for net i can be satisfied within the interval

defined by Li and Li+1.

For the purpose of calculating the maximum-length route efficiently, we define

a graph G, corresponding to the interval between Li and Li+1. For each row, two

vertices are defined on the leftmost and rightmost horizontal grid edges within the

interval.3 Then, an edge is defined from each vertex in row k to each vertex in row

k +1, corresponding to the paths between the respective cells. The weight of an edge

is defined to be the number of grid cells wasted (i.e., not used by the route), if this

edge is selected. Figure 4.10(a) shows a maximum-length route between two terminal

points, and (b) shows the corresponding path in the graph model G.

It is straightforward to show that the shortest path between the top and bottom

vertices in G corresponds to the maximum-length route in the original problem; and

the total path length in G is actually equal to the number of grid cells wasted by this

route. Observe in the example of Figure 4.10(a) that there are five grid cells wasted

within the given interval, and the length of the corresponding shortest path in (b) is

also five.

Based on this graph model, the time complexity of calculating the maximum

length achievable by Route(Li, Li+1) is O(W ), where W denotes the channel width,

i.e., the number of rows between the top and bottom terminal points. As discussed in

3If there is a single grid edge in a particular row, there will be a single vertex defined. However
for consistency of presentation, assume that the two vertices overlap with each other in this case.
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Figure 4.11: A sample interval illustrating the upper bound on waste(i). It is
possible to construct a route that wastes at most the grid cells marked with ‘X’.

Section 4.2.2, we can find the optimum position of Li+1 using two binary searches on

the flip sequence. So, we need O(logAi) iterations to route net i, where Ai denotes the

total area between Li and Li+1. As a result, the overall time complexity of routing

all nets within min-max length bounds becomes: O(nWlogA), where n is the number

of nets, and A is the total area of the channel. Note that since nW ≤ A, the time

bound can also be stated as O(AlogA).

4.3.3 Analysis of the Algorithm

We are going to show that the algorithm described in the previous subsection is

near-optimal.

Definition 4.3 Let Route(Li, Li+1) denote the route with the maximum length within

the interval of Li and Li+1. The waste due to net i (denoted as waste(i)) is defined

as the number of grid cells that are within the respective interval, but not used by

Route(Li, Li+1).

Observe in the example of Figure 4.10(a) that waste(i) is 5, since the max-length

route of net i cannot use 5 grid cells.

Lemma 4.4 For each net i, waste(i) is guaranteed to be less than the sum of hori-

zontal spans of the trails corresponding to Li, and Li+1.

Proof. Figure 4.11 illustrates the idea with an example. Assume that we construct

a path in the corresponding graph G by always choosing edges going from a vertex
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Figure 4.12: The final positions of left boundaries are illustrated for 6 nets. For
each left boundary Li, the leftmost flipped column (if any) Ci is also highlighted.
The extra grid cells between Li and Li+1 exist only at columns within the interval
[Ci, Ci+1]. For consistency, C7 is defined to be the rightmost channel boundary.

adjacent to Li to another vertex adjacent to Li+1, or vice versa. We can show that

such a path will only waste the grid cells marked with ‘X’ in Figure 4.11 in the worst

case. Since the shortest path in G (corresponding to the longest route in the channel)

is guaranteed to waste at most as many grid cells as this path, the lemma follows.

For the following analysis, let Ci denote the leftmost column of left boundary Li

that has been flipped. If Li has never been flipped, let it denote the leftmost column

of Li.

Remark 4.2 For each i, 1 ≤ i < n, it is the case that Ci < Ci+1.

Lemma 4.5 The extra grid cells allocated for net i can only be at columns within

the interval [Ci, Ci+1]. In other words, there exists only a single trail between Li and

Li+1 outside the interval [Ci, Ci+1] (see Figure 4.12). For consistency of presentation,

Cn+1 is defined to be the rightmost channel boundary, for a set of n nets.

Proof. Consider a left boundary Li and the corresponding column Ci. By defini-

tion, no segment of Li to the right of Ci has been flipped. So, any bend on Li that is

to the right of Ci must either be adjacent to the channel boundary or be due to the
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blockage of Li−1. So, all nets to the left of net i can have only a single trail at columns

to the right of Ci. On the other hand, remember that our algorithm always flips the

leftmost segment of Li that is not adjacent to Ri. So, all segments of Li to the left of

Ci (if any) must have been flipped until the corresponding right boundaries. Hence,

for each net j, j ≥ i, there can be at most a single trail to the left of Ci. These

concepts are illustrated by an example in Figure 4.12.

Theorem 4.3 For a given routing problem with min-max length constraints, the

number of grid cells wasted by all nets will be less than 4H, where H is the number

of grid cells in one row of the channel.

Proof. Due to Lemma 4.5, the grid cells wasted by net i can only be at columns

within the interval [Ci, Ci+1]. Also, the total size of the horizontal trails of Li and

Li+1 in the interval [Ci, Ci+1] will be at most 2(Ci+1−Ci +1). So, due to Lemma 4.4,

we can state that waste(i) ≤ 2(Ci+1 − Ci + 1). As a result, the total number of grid

cells wasted by n nets will be at most 2(H + n − 1), which is less than 4H .

Definition 4.4 Let CW denote a river routing problem with channel width W , and

with length constraints T min
i , Tmax

i for each net i. The projection of CW onto a channel

width of W -k (denoted as CW−k) is defined to be the same routing problem as CW ,

except that the channel width in CW−k is W -k, and length constraints are T min
i -k and

T max
i -k, respectively for each net.

For the rest of the analysis, we will use the following notations:

• CW
L : the given min-length max-length routing problem with length constraints

Tmin
i , Tmax

i for each net i.

• CW−3
L : the projection of CW

L onto channel width W -3, with length constraints

Tmin
i -3 and Tmax

i -3, for each net i.

• CW−3
A : the min-area max-length routing problem obtained by replacing min-

length constraints of CW−3
L with min-area constraints Amin

i for each net i, where

Amin
i is defined as follows: If the minimum detour required to satisfy the min-

length constraint of net i in CW−3
L is even, then Amin

i = Tmin
i − 3; otherwise,4

4Let MDi denote the Manhattan distance between the terminals of net i. It is obvious that any
valid route for net i will have a length of MDi + di, where di is an even number. If the minimum
detour required to satisfy the min-length constraint T min

i − 3 is an odd number, a feasible solution
will have a length of at least T min

i − 2, since odd detour is not possible.
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Amin
i = Tmin

i − 2.

• SW−3
A : the solution to CW−3

A produced by our min-area max-length routing

algorithm (given in Section 4.2).

• SW
A : the projection of SW−3

A to channel width of W (see Definition 4.5).

• SW
L : the solution obtained after routing each net within the area allocated for

it in SW
A (as in the example of Figure 4.10).

Our objective in the following analysis is to show that if a feasible solution to

CW−3
L exists, then our min-length max-length routing algorithm is guaranteed to find

a feasible solution to CW
L .

Definition 4.5 Assume that our min-area max-length routing algorithm is applied

on CW−3
A . As described in Section 4.2, a number of flips are performed on each left

boundary Li during the execution of the algorithm. Let #fcW−3
i denote the number

of columnwise flips, and #fsW−3
i denote the number of single flips on the last flipped

column of left boundary Li (see Figure 4.13(a)). The projected solution SW
A is defined

to be constructed from SW−3
A as follows:

• Find the leftmost and rightmost boundaries Li and Ri for each net i for channel

width W .

• For each net i:

– Perform #fcW
i columnwise flips on Li, where #fcW

i = #fcW−3
i .

– Perform #fsW
i single flips on the next column of Li, where #fsW

i is defined

as follows: If #fsW−3
i is equal to 0, then #fsW

i =0; else if Li is convex

nonmonotonic, then #fsW
i =#fsW−3

i + 2; otherwise #fsW
i =#fsW−3

i + 1.

• The route of net i in SW
A is defined to follow the trail of Li as close as possible;

and all the grid cells between Li and Li+1 are defined to be allocated by net i.

It is important to note here that solution projection is not an actual part of the

algorithm we have proposed, but it is only used for correctness analysis. Projection

of a concave nonmonotonic left boundary from channel width W −3 to channel width

W is illustrated in Figure 4.13, as an example.

For the rest of the analysis, we will use the following notation:
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(a) (b)

Li
Li

W−3 W

Figure 4.13: Illustration of solution projection from channel width W − 3 to W .
The flips performed are shown by dotted arrows, and the final positions of Li are
shown by solid arrows. (a) The original output of the min-area max-length routing
algorithm, where #fcW−3

i = 4, and #fsW−3
i = 5. (b) The projected solution, where

#fcW
i = 4, and #fsW

i = 6.

• Ci: The leftmost column of left boundary Li that has been flipped. If Li has

never been flipped, let it denote the leftmost column of Li.

• AW−3
i , AW

i : The number of grid cells (i.e., area) allocated for net i in SW−3
A ,

and SW
A , respectively.

• TW−3
i , TW

i : The length of net i in SW−3
A , and SW

A , respectively.

• T min
i : The min-length constraint for net i in CW

L .

Remark 4.3 The Ci values of SW
A are the same as those of SW−3

A .

Lemma 4.6 For any i, 1 ≤ i ≤ n, if Ci+1 = Ci + 1 in SW
A , and if CW−3

L has a

feasible solution, then it is guaranteed that the min-length constraint of net i in SW
L

is satisfied.

Proof. We know that AW
i ≥ AW−3

i + 3, due to the increase in the channel width.

Since Ci+1 = Ci + 1, and due to Lemma 4.5, the extra grid cells allocated for net i

can only be at columns Ci and Ci+1. Figure 4.14 illustrates examples for different left

boundary types. Observe that if the number of extra grid cells allocated for net i is

even, then net i can be routed between Li and Li+1 without wasting any grid cell. In
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Figure 4.14: Examples illustrating the final positions of different left boundary
types, where Ci+1 = Ci + 1. The dashed lines indicate the route for net i between
left boundaries Li and Li+1 for each case. If the number of extra grid cells between
Li and Li+1 is even, then no grid cell is wasted by the corresponding route.

this case, we will have TW
i = AW

i ≥ AW−3
i +3 ≥ Tmin

i . Remember from the definition

of CW−3
A in Section 4.3.3 that the number of extra grid cells required to satisfy the

min-area constraint of net i in CW−3
A is always even. Since the number of extra grid

cells in SW
A will be at least as large as the number of extra grid cells in SW−3

A , the

lemma follows.

Lemma 4.7 For any i, 1 ≤ i ≤ n, if Ci+1 > Ci + 1 in SW
A , and if CW−3

L has a

feasible solution, then it is guaranteed that the min-length constraint of net i in SW
L

is satisfied.

Proof. The proof is based on case-by-case analysis of different types of left bound-

aries Li and Li+1. Note that since a left boundary can be one of the four types

described in Definition 4.1, there are 16 different cases for Li and Li+1. Figure 4.15

illustrates 4 of these cases, and it is straightforward to extend the ideas here for the

remaining 12 cases.

The following notations are used in Figure 4.15:

• si: the number of columns between (but excluding) Ci and Ci+1, i.e., si =

Ci+1 − Ci − 1.

• waste(i): the number of grid cells wasted by the longest route within the region

between Li and Li+1 (see Definition 4.3).

• ∆area(i): The area increase between Li and Li+1 after solution projection, i.e.,

∆area(i) = AW
i − AW−3

i .
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∆area(i) ≥ 3si + 4
waste(i) ≤ 2si + 2 waste(i) ≤ 2si + 1
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Figure 4.15: Calculation of waste(i) and ∆area(i) values for different types of Li-
Li+1 pairs. The grid cells marked with ‘X’ are the cells that will be wasted in the
worst case by the longest route for net i. The number of such grid cells gives an
upper bound for waste(i). The increase in the number of grid cells (due to solution
projection) at each column between Li and Li+1 is indicated below each column. Note
that the lower bound for ∆area(i) is calculated as the sum of these values between
Ci and Ci+1.
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Due to Lemma 4.5, the grid cells wasted between Li and Li+1 can only be at

columns within the interval [Ci, Ci+1]. To find an upper bound for waste(i), we

can construct a route that snakes between boundaries Li and Li+1, as described in

the proof of Lemma 4.4. In each case illustrated in Figure 4.15, the grid cells that

would be wasted in the worst case by such a route are marked with an ‘X’. Since the

route with the maximum length is guaranteed to waste at most this many grid cells,

the number of grid cells marked with ‘X’ in each case gives us an upper bound for

waste(i).

Due to the increase of channel width from W−3 to W , we know that the number of

grid cells at each column will increase by 3. To calculate ∆area(i), we should consider

the extra grid cells that are in the region between Li and Li+1. From Definition 4.5,

we know that no segment of Li in the interval (Ci, Ci+1) has been flipped. On the

other hand, the segments of Li+1 (if any) in the interval (Ci, Ci+1) have been flipped

maximally, i.e., until the right boundary Ri+1. So, we can state that the 3 extra

grid cells at each column in the interval (Ci, Ci+1) are all in the region between Li

and Li+1. To find the corresponding area increase at columns Ci and Ci+1, we should

consider the last flip performed on Li and Li+1, respectively. These flips are illustrated

in Figure 4.15 for each case, and the corresponding increase at these columns are

marked below. For instance, if Li is concave nonmonotonic as in Figure 4.15(a), then

the corresponding area increase on column Ci will be 2. The reason is that the last

flip on Li will have #fsW
i = #fsW−3

i +1 (see Definition 4.5), and 1 out of 3 extra grid

cells on column Ci will be outside the region between Li and Li+1.

Based on these considerations, the values of waste(i) and ∆area(i) are given for

each case in Figure 4.15. Note that since Ci+1 > Ci + 1, si will have a value of at

least 1. So, for each case, we will have ∆area(i) − waste(i) ≥ 3. Based on this, we

can state that AW
i ≥ AW−3

i + waste(i) + 3 ≥ T min
i + waste(i). This means that we

can find a routing solution for each net i that satisfies the min-length constraint T min
i

within the region between Li and Li+1 in SW
L .

Now, we can prove the correctness of our algorithm as follows.

Remark 4.4 A feasible solution to CW−3
L is also a feasible solution to CW−3

A .

Remark 4.5 If there exists a feasible solution to CW−3
A , then SW−3

A is guaranteed to

be feasible (due to Theorem 4.2).
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Lemma 4.8 It is possible to obtain a feasible SW
L , which satisfies all length con-

straints of CW
L , by projecting SW−3

A to SW
A , and then routing each net within the area

allocated for it in SW
A .

Proof. The proof directly follows due to Lemmas 4.6 and 4.7.

Remark 4.6 SW
L is within the solution space explored by our min-length max-length

routing algorithm.

Theorem 4.4 Assume that CW
L is the given min-length max-length routing problem,

and CW−3
L is the projected problem onto channel width W -3. If a feasible solution

exists for CW−3
L , then our algorithm is guaranteed to find a feasible solution for CW

L .

Proof. From Remarks 4.4 and 4.5, and Lemma 4.8, we know that SW
L will be

feasible if there exists a feasible solution to CW−3
L . From Lemma 4.6, our algorithm

will find either SW
L or another feasible solution.

4.3.4 Discussions and Practical Considerations

Recall that the given algorithm in Section 4.2 finds the optimal solution if the min-

imum constraints are given as area constraints. Theorem 4.3 suggests that, if a

prespecified amount of routing area is allocated for each net using this optimal algo-

rithm, then all routing resources within the allocated areas will be successfully used

for length extension, except for at most a number of 4H grid cells. Since the total

area of the channel is WH , where W is the channel width, and typically is much

larger than 4, the number of grid cells wasted will be negligible.

On the other hand, Theorem 4.4 makes a stronger statement, giving an approxi-

mation factor for the actual routing problem with min-max length constraints. One

implication of this theorem is that if we are given a bus routing problem that has

a feasible solution, we can guarantee to match the lengths of all nets by extending

the channel width by three units. The reason is that all length constraints T min
i and

Tmax
i are increased by exactly the same amount (i.e., three units); and our algorithm

is guaranteed to find a feasible solution for the extended channel.

Furthermore, typical industrial circuits have channel widths containing hundreds

or even thousands of grid cells. One can argue that if a feasible solution exists for the

original channel width W , most probably a feasible solution will exist for the channel
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(b)(a)

Figure 4.16: Sample post-processing techniques to reduce number of bends. (a)
Adjacent jogs are replaced with a longer segment. (b) The jogs for adjacent nets are
merged together.

width W -3, since the difference will be almost negligible. So, in practice the proposed

algorithm will find the feasible solution for the original problem without the need for

extending the channel length.

Note here that our algorithm in this section uses a certain type of snaking, and

it does not explore the whole solution space; e.g., the route in Figure 4.10 cannot go

up-and-down, since it must be monotonic in the channel direction. Yet, Theorem 4.4

states that the solution found by our algorithm is guaranteed to be close to the

(most general) optimal solution. In other words, our solution will be sufficiently close

to optimum even though we consider only a particular type of snaking. However,

it is possible to use different types of length-extension methods to reduce number

of bends (see discussion below). Note here that our general framework (given in

Figure 4.3) allows using such alternative approaches, as long as it is possible to check

the maximum length achievable for net i within the area between Li and Li+1. Yet

another practical approach can be to use the min-area max-length routing algorithm

given in Section 4.2.2 first, and then to perform any type of length extension in post

processing using the allocated areas.

The type of snaking we use in this algorithm (as illustrated in Figure 4.2) is also

frequently used in current industrial circuits [40]. However, it is possible to reduce

the number bends by using some post-processing methods, if necessary. Two possi-

ble techniques are illustrated in Figure 4.16. Here, part (a) gives a straightforward

replacement of adjacent jogs with a single longer detour. On the other hand in part

(b), the jogs for three nets are merged to obtain a solution with less number of bends.
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Table 4.1: Comparison of the single-layer routing algorithm proposed in this chapter
with the Lagrangian relaxation based methodology

SINGLE-LAYER LR-BASED
Avg. Length # nets time # nets time

Circuit spacing stdev failed (min:sec) failed (min:sec)
C1 2.59 31.96 0 0:02 1 12:54
C2 2.80 47.80 0 0:02 2 7:45
C3 2.18 66.12 1 0:02 7 20:41
C4 1.81 44.62 0 0:03 18 21:30
C5 1.53 11.13 0 0:02 21 8:31
C6 1.64 41.26 0 0:02 29 17:58
C7 1.52 53.46 1 0:02 86 45:34
IBM 1 7.75 35.78 3 0:02 3 6:32
IBM 2 6.41 45.98 1 0:02 1 4:31
IBM 3 9.16 73.76 0 0:03 0 4:09

4.4 Experimental Results

We have performed experiments to compare the single-layer routing algorithm pro-

posed in this chapter with the Lagrangian relaxation based methodology of Chapter 2.

All algorithms in this section have been implemented in C++, and experiments were

performed on an Intel Pentium 4 2.4GHz system with 512MB memory, and a Linux

operating system.

For the purpose of illustration, we have first applied our algorithm on a test

circuit, shown in Figure 4.17. Each net in this circuit has prespecified min-max

length constraints, and the solution displayed satisfies all those constraints.

Then we have performed experiments on test circuits, as demonstrated in Ta-

ble 4.1. Here, “avg. spacing” is measured in terms of the number of grid cells

between terminal points of adjacent nets, and it indicates how dense the problem is.

On the other hand, column “length stdev” gives the standard deviation in net target

lengths. Each problem in this table contains around 200-300 nets, with individual

length constraints for each net. The grid size for the smallest circuit in this table is

390 × 200, and the largest one is 776 × 290. The last three problems here have been

extracted from an IBM design, corresponding to the bus routing problems between

MCM, memory and STI modules. Here, layer assignment and routing inside chips

have been performed by the previous phases of the routing system, as described in

Section 4.1, and the input for the bus routing problem is a set of non-crossing nets
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on each layer. While the first seven circuits in this table have single layers, the IBM

circuits have multiple layers.

As seen in this table, our algorithm performs significantly better than the La-

grangian relaxation based approach on most circuits, in terms of both quality and

run time. As the average spacing between nets decrease, the solution quality for

LR-based approach degrades, and it takes more time to find a routing solution. The

main reason for this is that LR-based approach uses a variant of Pathfinder [3; 19]

algorithm in the low level, where routing conflicts are resolved through negotiations.

As the problems get denser, these negotiations take more and more time, and they

don’t always successfully lead to a good result. On the other hand, the algorithm we

propose in this chapter has optimality guarantees on its target class of problems, and

it finds a good solution as long as it exists. Observe that, our algorithm has also very

good run-time characteristics, since the underlying flip operations can be done in a

fast and efficient way.

4.5 Conclusions

We have proposed two algorithms for high-performance bus routing problem. The first

algorithm is for the problem of routing with min-area max-length constraints, where

length matching is assumed to be performed in post-processing using the allocated

areas. The second algorithm extends these ideas to the problem where minimum con-

straints are given as exact length bounds. The first algorithm is proven to be optimal,

while the second one is provably close-to-optimal. The respective time complexities

of these algorithms are given as O(A) and O(AlogA), where A is the area of the

intermediate region between chips. Our experiments demonstrate the effectiveness

of these algorithms on the target class of problems, compared to the more general

Lagrangian relaxation based methodology of Chapter 2.
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Figure 4.17: The output of our algorithm on a bus-routing problem. Only part of
the circuit is displayed here due to space limitations. The post-processing technique
illustrated in Figure 4.16(a) has been applied on the output of the algorithm given in
Section 4.3 to obtain the final routing solution. Note that although a small problem is
chosen here for illustration purposes, typical industrial problems have channel widths
on the order of hundreds or even thousands, and our algorithm is scalable for such
large problems.
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Chapter 5

Algorithms for Simultaneous

Escape Routing and Layer

Assignment of Dense PCBs

5.1 Introduction

The shrinkage of die sizes and the increase in functional complexities in the past

several years made the circuits more and more dense. So, boards and packages have

reduced in size, while the pin counts have been increasing. For example, a multichip

module (MCM) used in IBM eServer z900 [26] (introduced in 2000), contains 20 pro-

cessor chips, 8 L2 cache chips, 2 system control chips, 4 memory bus adapter chips,

and a clock chip – a total of 35 chips in one package. On the bottom of this MCM,

there are 4224 I/O pins within an area of 127-mm × 127-mm. In the subsequent

generation of the same series, IBM eServer z990 [61] (introduced in 2003), the cor-

responding number of pins in an MCM has increased about 20%, with a decrease of

almost 50% in the substrate area. With increasing pin densities of this pace, routing

nets on boards beneath the component areas (escape routing) is increasingly becom-

ing the main bottleneck in terms of overall routability [61]. Traditional board routing

algorithms cannot handle designs with such complexities, and many high-end boards

in the industry today require manual efforts for routing. In a typical design cycle of

a high-end board, manual routing efforts take about a month [40], and new effective

routing algorithms are necessary to significantly reduce this time. In this chapter, we

focus on board-level routing beneath dense components, and we propose algorithms
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Printed Circuit Board

MCMMem Mem

Figure 5.1: Different components are mounted on or plugged into a PCB. A pin
array is created on the board corresponding to each component.

that address these challenges effectively.

A typical PCB contains a number of different components such as MCMs, memory,

or I/O modules. These components are mounted on or plugged in to the board,

forming a set of dense pin arrays, as shown in Figure 5.1. In this chapter, we will

focus on the type of board designs where each component pin is accessible from all

layers, as will be discussed in detail below. The routing resources within such pin

arrays are extremely limited due to the large number of pins, and tight clearance

rules. Furthermore there are large number of nets that need to be routed from their

terminal pins to the corresponding component boundaries. On the other hand, the

intermediate routing area on the board between different components has relatively

few blockages, and the amount of available routing resources is relatively larger. So,

it is clear that the escape routing problem requires a special focus in a board routing

framework.

It is important here to note that escape routing problem for different components

should not be considered independent of each other. That is, we cannot just apply

a conventional escape routing algorithm [16] on different components independently.

The reason is that such an approach ignores the connections between different com-

ponents, and increases the via requirements significantly. Especially in high-speed

designs, these vias seriously degrade signal characteristics, add additional delay, de-

crease routing area, and lower the manufacturing yields. Furthermore, for some board

designs, no buried vias are allowed, for the purpose of limiting manufacturing costs
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through via

surface land pad
through via

Figure 5.2: A BGA package is mounted on a PCB, and through vias are used to
connect component pins to inner layers of the board. (a) Cross-sectional view. (b)
Top-side view. In the context of board-level routing, each through via here will be
regarded as a component pin.

[40]. For such designs, the nets need to be routed in a planar fashion on every layer.

Hence, an escape routing algorithm that tries to minimize (or completely avoid) cross-

ings in the intermediate area is crucial. For this reason, we propose algorithms in

this chapter to find the escape routing solutions of different components simultane-

ously such that the number of crossings in the intermediate area is minimized. For

multilayer designs, the best layer assignment also needs to be determined during this

process. Figure 5.3 illustrates a sample problem, and Figure 5.4 gives a two-layer

solution.

Since the routing resources inside dense components are extremely limited, we

assume that via usage is not allowed within components. So, the escape routing

solution has to be conflict-free within components on every layer. On the other

hand, via usage is possible in the intermediate areas, where there are relatively few

routing blockages. However, since vias adversely affect routability and signal delay

characteristics, and they lower manufacturing yield, we try to minimize the number of

vias through crossing minimization. So, our objective is to find the best conflict-free

escape routing solution inside components that will minimize the number of crossings

in the intermediate area.

As mentioned before, for the models and algorithms we propose in this chapter, we

assume that each component pin can be accessed from every layer of the input PCB.

For example in IBM eServer z900 [26], pin grid array (PGA) connectors are used to

connect components or daughtercards into the PCBs. PGA-based connectors have

a grid of metal leads as their pins, which are plugged into the PCBs, making each

pin directly accessible from the inner layers of the board. However, our algorithms
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Figure 5.3: A sample escape problem with 13 nets on two components. Each ter-
minal pin is labeled with its net index. The problem is to find a conflict-free routing
solution within components, and to minimize crossings in the channel.

are also applicable to surface-mount type packages, if plated through holes (PTHs)

[10] (a.k.a through vias) are used to connect component pins to inner board layers.

For example, the MCMs in IBM eServers p690 and z990 use land grid array (LGA)

connectors [15], which are mounted on the board surface, and connected to PTHs

on the board. Similar statements can be made for a ball grid array (BGA)-type

package that is mounted on a grid of PTHs, where the through-via pitch is equal to

the ball pitch of the BGA. Typically dog bone pattern-type routing is used in such

cases to connect the component balls to the through-vias on the board surface [8],

as illustrated in Figure 5.2. In these cases, we will regard each such through via as

a component pin in the context of board-level routing. We will not go into further

details of these issues in this chapter; instead, we will focus on escape problem from

the perspective of board-level routing where each component pin is accessible from

every layer, either directly or by through vias.

The rest of this chapter is organized as follows. In Section 5.2, we give a formal

description of this problem, and discuss how it relates to the existing work in the liter-

ature. Then, we outline our solution approach in Section 5.3. Mainly, we process one

layer at a time, and try to route as many non-crossing nets as possible on each layer.

In Section 5.4.1, we model the maximal planar routing problem as a longest path with

forbidden pairs (LPFP) problem, and propose an efficient checkerboard-based graph

model for it in Section 5.4.2. Although the general LPFP problem is NP-complete,

the special structure of our problem allows us to propose a polynomial-time exact al-

gorithm in Section 5.4.3. Then, we propose a fast and effective randomized algorithm

in Section 5.4.4 for large circuits. In Section 5.5, we discuss generalizations of our

models and algorithms. Finally, we demonstrate the effectiveness of our algorithms
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Figure 5.4: A sample solution for the problem given in Figure 5.3. Escape routes
are illustrated with solid lines within components. Channel segments are shown with
dashed lines.

through experiments in Section 5.6.

5.2 Problem Formulation and Related Work

Let a component be defined as a 2-D array of pins that span multiple layers. The

input circuit is assumed to contain two components separated by a channel between

them. A two-terminal net specifies two pins as its endpoints, which are assumed to be

in different components by definition. For simplicity of presentation, we will assume

that only one net can be routed between adjacent rows and columns of component

pins1. An escape route for a given net is defined as the route from one of its terminal

pins to the respective component boundary. Two escape routes ri and rj within the

same component are defined to conflict with each other iff ri and rj cannot exist

together in a permissible one-layer planar routing solution. Given an input circuit

and a set of two-terminal nets, the problem is to find an escape routing solution

for each net, and assign them to different layers such that (1) conflict-free routing

1In Chapter 6, we will discuss how to handle components with multiple routing tracks between
adjacent pins.
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solution is obtained within each component at every layer, and (2) the number of

crossings in the intermediate channel is minimized. Here, routing conflicts are not

allowed inside the components, because routing resources within components are too

scarce to allow via usage. On the other hand, via usage is allowed in the intermediate

channel between components; hence crossings are allowed here. However, since vias

have adverse affects on routability and signal delay characteristics, and they lower

manufacturing yield, our objective is to minimize the number of vias through crossing

minimization.

Figure 5.3 illustrates a sample escape problem with 13 nets in two components,

and Figure 5.4 gives a two-layer solution. As mentioned earlier, it is assumed that

each pin spans multiple layers; so it is possible to assign the route for each net to any

layer. In the given solution, 6 nets are routed on layer 1 without any crossings in the

channel. On the other hand, the channel segment of one net (net 10) on layer 2 crosses

with others. This crossing can be avoided in the later stages of the routing system

by using a via for only net 10. So we can state that the escape routing solution given

in Figure 5.4 helps the objective of via minimization since it minimizes the crossings

in the channel.

A related problem in the literature is the pin assignment problem [6; 34; 62].

Its objective is to determine the positions of pins on chip boundaries such that a

cost function is minimized. However this problem ignores escape routing inside the

components. Another related problem is the k-layer topological via minimization

problem [14], where the objective is to determine the topological routing of a set of

nets on k routing layers such that the total number of vias is minimized. It has been

shown that the general case of this problem is NP-complete, and an algorithm has

been proposed for the case of a crossing channel, where nets have fixed pin positions

on chip boundaries [14]. However, escape routing is not considered in this problem.

On the other hand, in our problem we need to find the escape routes simultaneously

while assigning nets to different layers for via minimization. In other words, the pin

positions of nets are not fixed on component boundaries, but they are determined

based on the escape routes. For instance in the example of Figure 5.4, the ordering

of nets within components is not necessarily the same as the ordering on component

boundaries,2 since this ordering further reduces the number of crossings.

2For example, in the left component of first layer, net 4 escapes to row 1, and net 2 escapes to
row 3, although the terminal of net 2 is above net 4 within the component.
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5.3 Methodology

We use a two-phase approach for this problem: (1) for each layer l, pack as many

non-crossing routes as possible on l, and (2) distribute the remaining nets to available

layers, this time allowing crossings in the intermediate channel.

In the first phase, we process one layer at a time and try to find the maximum

subset of available nets that can be routed without any crossings on that layer. The

first layer in Figure 5.4 is an example output of this phase. Specifically, the maximum

non-crossing subsets for layer 1 and layer 2 have been found to be {2, 4, 6, 7, 9, 11},
and {1, 3, 5, 8, 12, 13}, respectively, for this problem. The details of the algorithm we

propose for this phase are presented in Section 5.4.

Then in the second phase, the nets that have not been routed are distributed to

available layers. In our sample problem, net 10 does not belong to any of the planar

subsets of phase 1. So, an escape routing solution is found for it in the second phase

on layer 2. Observe in Figure 5.4 that although it has a conflict-free routing solution

within the components, it crosses with nets 5 and 13 in the channel.

For the second phase, we use a negotiated congestion based net-by-net approach

similar to Pathfinder [19]. The main idea is to allow routing conflicts in the beginning,

and then to iteratively rip-up and reroute nets, while gradually increasing the costs

of conflicted routing resources. By doing so, nets with alternative routes are forced

not to use the conflicted resources, and eventually a conflict-free routing solution is

obtained. Note here that we discourage ripping up the nets routed in the first phase

by using relatively higher costs for conflicts with these nets.

5.4 Maximal Planar Routing

5.4.1 Algorithm Outline

Given a set of nets, our objective is to find the maximum subset that can be routed

on one layer without any conflicts. For this purpose, we define a number of routing

patterns for each net, and we propose algorithms to choose the best possible combi-

nation of these patterns. For simplicity of presentation, we will focus on a horizontal

problem, where one component is to the right of another.

Our main assumption in the following algorithm is that the vertical span of escape

routes within components will be limited in a typical solution, as in Figure 5.4, where
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Figure 5.5: Routing patterns considered for net A. Only 4 out of 16 patterns are
shown here for clarity.

an escape route spans at most 2 rows. The main reason is that large vertical spans

within components block other escape routes; so we need small vertical spans for

maximal routing. Furthermore, we have observed this behavior for a great majority

of nets in typical manual industrial solutions. Based on this, we define 16 possible

configurations for each net,3 as shown in Figure 5.5. Namely, we consider 4 escape

routes for a net within each component, so that it can escape from one of the 4

neighboring rows of its terminal pin. Note that any one of the 4 escape routes within

each component can be selected, and so there are 4×4 = 16 possible routing patterns

for each net. Let Aij denote the configuration where net A escapes to row i in the first

component, and to row j in the second component. In Figure 5.5, some sample routing

patterns are illustrated. As seen in this figure, we consider only simple escape routes,

each of which has a single horizontal segment. This assumption can be generalized

for more general patterns, as will be discussed in Chapter 6.

Now, the problem can be stated as to select the maximum subset of patterns for

a given set of nets such that (1) at most one pattern is selected for each net, (2) there

are no conflicts within components, and (3) there are no crossings in the channel.

Note that even though we consider only a limited number of routing patterns for

each net, there are exponential number of possible ways of selecting patterns for a

set of nets. However, we will propose a polynomial time algorithm to select the best

combination that gives the maximal planar routing solution.

If every net had only one possible routing pattern (instead of 16), and if there were

no conflicts between different nets within components, then we could use a longest

path algorithm to find the maximal subset of non-crossing nets [14]. However, we have

to consider escape routes within components, and try to find the best possible escape

route for each net simultaneously while finding the optimal subset of non-conflicting

3In Section 5.5, we discuss possible extensions to relax this assumption.
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and non-crossing nets. For this purpose, we will define a graph model G, and a set of

forbidden pairs F (such that F contains pairs of vertices from G) as follows:

• For each routing pattern, a vertex exists in G.

• Let u, v be two vertices in G corresponding to routing patterns Uij and Vkl,

respectively.4 An edge from u to v exists in G iff the channel segment of Uij is

strictly above the channel segment of Vkl, i.e., i < k and j < l. (e.g., A12 in

Figure 5.5 would be strictly above A34.)

• Let u, v be vertices in G. Forbidden pair (u, v) exists in F iff at least one the

following conditions is the case:

1. u and v correspond to the same net.

2. The routing patterns corresponding to u and v conflict with each other (as

defined in Section 5.2) in at least one component.

It is straightforward to show that G is in fact a directed acyclic graph (dag). We

can state that if a path exists from vertex u to vertex v in G, then it is guaranteed that

the channel segments of the corresponding routing patterns do not cross with each

other. Hence, the longest path in G will correspond to the maximum set of routing

patterns that have no crossings in the channel. However, we also need to consider the

conflicts within components, as defined by the forbidden-pair set F . The following

theorem gives a formal description of this problem:

Theorem 5.1 The problem of finding the maximum subset of non-crossing and non-

conflicting routing patterns is equivalent to the longest path with forbidden pairs

(LPFP) problem on {G,F}.

LPFP problem [17] for a graph G, and a vertex-pair set F is defined as finding the

longest path P in G such that P contains at most one vertex from each pair of vertices

in F . In other words, if (u, v) ∈ F , then a permissible path in G cannot contain both

u and v. The general LPFP is known to be an NP-complete problem [1]. However,

the following property of our problem will enable us to propose a polynomial time

algorithm in Section 5.4.3.

4As before, Uij denotes the routing pattern where net U escapes to row i in the first component,
and row j in the second component.
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Figure 5.6: A sample escape routing problem for five nets. For clarity, only one or
two routing patterns are defined for each net (instead of 16 as in the actual algorithm).
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Figure 5.7: The graph model corresponding to the problem given in Figure 5.6. The
longest path without forbidden pairs is illustrated with the thick lines.

Lemma 5.1 For any forbidden vertex pair (u, v) ∈ F , if v is reachable from u in G,

then the maximum path length (in terms of number of edges) from u to v is guaranteed

to be less than or equal to 3.

Proof. An edge from w to t exists only if the corresponding routing pattern of t

escapes to rows strictly below those of w (by definition). Furthermore, the vertical

spans of routing patterns are limited. Hence, if u and v conflict with each other

within a component, then this means that their escape routes are on nearby rows.

It is possible to show by case-by-case analysis that u and v cannot escape to rows

separated by more than 3 rows if (u, v) ∈ F . So, the maximum path length between

conflicting vertices in G can be at most 3.

Figure 5.6 gives a sample problem with a limited number of patterns defined
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Figure 5.8: The actual maximal planar routing solution corresponding to the path
given in Figure 5.7.

for each net.5 The graph model corresponding to these patterns is illustrated in

Figure 5.7. Observe that the longest path without forbidden pairs on this graph is

given as A21 → D43 → C55 → E67. The actual solution corresponding to this path is

also shown in Figure 5.8.

5.4.2 Checkerboard Graph Model

In the graph model described in Section 5.4.1, an edge exists from vertex u to every

vertex v of which channel segment is strictly below u. So, the number of edges in

G is O(n2), where n is the number of nets. In this section, we will describe a more

structured graph model with less number of nets.

Let us consider a (conceptual) checkerboard structure with size r × r, where r is

the number of rows in a component. As before, let Aij denote the routing pattern

where net A escapes to row i in the first component, and to row j in the second

component. The main idea here is to (conceptually) assign each routing pattern Aij

to cell (i, j) of the checkerboard, as shown in Figure 5.9. We can formally define a

graph model GC based on this conceptual structure as follows:

• For each cell (i, j) of the checkerboard, a vertex eij with zero weight exists in

GC .

• For each routing pattern Uij , a vertex uij with unit weight exists in GC .

5Only one or two patterns are defined for each net for clarity of the figure. In our actual algorithm,
there are 16 patterns defined for each net.
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Figure 5.9: The checkerboard structure corresponding to the graph of Figure 5.7.
For clarity, only the edges on the longest path are illustrated.

• Let uij and vkl be vertices in GC . An edge from u to v exists in GC iff (k = i+1

AND l > j) OR (l = j + 1 AND k > i). In other words, an edge exists

only between adjacent rows or adjacent columns of the checkerboard, and the

direction is always towards south-east.

Figure 5.9 shows the checkerboard structure corresponding to the graph given in

Figure 5.7. For clarity, the vertices with zero weights, and the edges between adjacent

rows and columns are omitted in this figure. The corresponding longest path without

forbidden pairs is also illustrated here. Observe that this path traverses the empty cell

(3, 2) on the checkerboard in addition to the selected routing patterns. Intuitively,

this empty cell corresponds to the unused connection from row 3 to row 2 of the

channel illustrated in Figure 5.8.

This graph structure is in fact very similar to the one proposed in Section 5.4.1.

The main difference is that edges exist only between neighboring routing patterns

here, which brings an asymptotic reduction in the problem complexity. For the fol-

lowing analysis, let r and c denote the number of rows and columns of the components,

respectively; let s denote the size of the components (i.e., s = rc); and let n denote

the number of nets. Furthermore, let us assume that the components have constant

aspect ratios, i.e., r = Θ(c) = Θ(s1/2).

Lemma 5.2 The total number of vertices in GC that are assigned to row i of the

checkerboard is O(s1/2); similarly, the number of vertices assigned to column j is

O(s1/2), where 1 ≤ i, j ≤ r.

Proof. Remember that each net has a constant number of routing patterns, and

each routing pattern has a limited (constant) vertical span (as shown in Figure 5.5).
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So, the total number of nets escaping to row k of a component is O(c). Furthermore,

the routing patterns assigned to row i of the checkerboard are the ones escaping

to row i of the first component, by definition. Similarly, the patterns assigned to

column j of the checkerboard are the ones escaping to row j of the second component.

In addition, each row and column of the checkerboard contains O(r) zero-weighted

vertices, corresponding to the cells of the checkerboard. Hence, the total number of

vertices assigned to any row or column of the checkerboard is O(r + c) = O(s1/2).

Lemma 5.3 The number of vertices in GC is O(n + s), and the number of edges is

O(ns1/2 + s3/2).

Proof. For each net, a constant number of routing patterns are defined, and

there is a zero-weighted vertex corresponding to each checkerboard cell. Hence, the

number of vertices in GC is O(n + s). The edges are only between adjacent rows and

columns of the checkerboard structure; so each vertex has O(s1/2) incoming edges

(due to Lemma 5.2). As a result, the number of edges in GC is O(n + s)×O(s1/2) =

O(ns1/2 + s3/2).

Assuming that the component pins are densely populated (i.e., n = Θ(s)), the

number of edges in graph GC is in fact O(n3/2). This is an asymptotic reduction

in complexity, compared to the graph model described in Section 5.4.1, which has

O(n2) number of nets. Hence, the checkerboard structure will be helpful to reduce

the complexity of the exact algorithm we propose in Section 5.4.3. Furthermore, the

structured view of a checkerboard will help us to propose a very effective randomized

algorithm in Section 5.4.4.

5.4.3 Exact Algorithm for LPFP Problem

As mentioned earlier, the exact algorithm is possible due to the special property of

the input graph as given in Lemma 5.1. Our approach will be to perform a graph

transformation such that the longest path on the transformed graph will be equivalent

to the solution of the LPFP problem on the original graph. This transformation will

be described in Definition 5.3; however to give an intuition about this process, we

will first describe simpler versions of this transformation in Definitions 5.1 and 5.2.

The notations we will use in this section are as follows: The input problem is

given in the form {G,F}, where G is a directed acyclic graph, and F is the set

containing forbidden vertex pairs. Consider two vertices u and v in G. We denote u
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as a parent of v if there is an edge u → v in G. On the other hand, u is denoted as

a grandparent of v if there is a vertex w such that the edges u → w and w → v exist

in G. For consistency, we assume that each vertex has a parent-grandparent pair of

NULL-NULL.

Definition 5.1 First-order transformation of G (denoted as G1) is defined as follows:

• For each vertex u in G, there is a vertex u′ in G1.

• There exists an edge u′ → v′ in G1 iff:

1. The edge u → v exists in G.

2. (u, v) is not a forbidden pair

Remark 5.1 If the maximum path length between any forbidden pair (u, v) in G is

at most 1, then the longest path in G1 is the exact solution to LPFP problem in G.

Definition 5.2 Second-order transformation of G (denoted as G2) is defined as fol-

lows:

• For each vertex u in G, there is a set of vertices U in G2 such that U [i] corre-

sponds to the ith parent of u. In other words, number of vertices in U is equal

to the number of parents of u.

• There exists an edge from U [i] to V [j] in G2 iff:

1. u is the jth parent of v in G.

2. (u, v) is not a forbidden pair.

3. (ith-parent-of-u, v) is not a forbidden pair.

As an example, consider graph G with forbidden pairs in Figure 5.10. Second

order transformation of this graph is shown in Figure 5.11. Observe that there is a

group of vertices in the transformed graph corresponding to each vertex in G. For

instance, there is set D, containing 4 vertices in Figure 5.11, corresponding to vertex

d in G. Here, each vertex in set D corresponds to one parent of d, and it is connected

to that parent if they are not forbidden pairs. As mentioned earlier, we assume that

each vertex in G has a (pseudo) parent of NULL; hence an extra vertex with no parent
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Figure 5.10: A sample graph G, and a set of forbidden pairs.
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Figure 5.11: Second-order transformation of graph G in Figure 5.10. A set of vertices
indicated with dotted lines correspond to each vertex of G.

is created in each set. For instance, the extra vertex in set D corresponds to the case

where the path starts with d in G, i.e., a NULL parent. The following lemma gives

the rationale behind this transformation:

Lemma 5.4 Consider two vertices w and v in G such that the maximum path length

from w to v is at most 2. If (w, v) is a forbidden pair, then there exists no path from

vertex set W to vertex set V in G2.

Proof. If the maximum path length from w to v is 1, then the proof is straight-

forward. Otherwise, consider any path of the form w → u → v. Assume that w is

the ith parent of u, and u is the jth parent of v. Due to rule (1) in Definition 5.2,

edges from vertex set W to vertex set U in G2 can only be to U [i]. Due to rule (3),

an edge from U [i] to V [j] exists only if (w, v) is not a forbidden pair. Hence, if (w, v)

is a forbidden pair, a path from W to V cannot exist.

As an example, consider the forbidden pairs (a, f), (b, d), (b, e), (b, f), (c, e) in

Figure 5.10, each having a maximum path length of 2 between the pairs. Observe that

there is no path in the transformed graph of Figure 5.11 between the corresponding

set of vertices.
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Lemma 5.5 If there is a path from w to v in G such that no pair of vertices on the

path is a forbidden-pair, then there will be at least one path of the same length in G2

from vertex set W to vertex set V .

Proof. Since there are no forbidden pairs in the path from w to v in G, only the

first rule of Definition 5.2 will apply, and the proof of the lemma follows directly.

Theorem 5.2 If the maximum path length between any forbidden pair (u, v) in G is

at most 2, then the longest path in G2 is the exact solution to LPFP problem on G.

Proof. It follows directly from Lemma 5.4 and 5.5.

Definition 5.3 Third-order transformation of G (denoted as G3) is defined as follows:

• For each vertex u in G, there is a 2-D array of vertices U in G3 such that U [i][j]

corresponds to the ith parent of u and the jth parent of ith parent of u. In other

words, for each parent-grandparent pair of u, there exists a corresponding vertex

in set U .

• There exists an edge between U [i][j] and V [k][l] in G3 iff:

1. u is the kth parent of v in G.

2. l = i.

3. (u, v) is not a forbidden pair.

4. (ith-parent-of-u, v) is not a forbidden pair.

5. (jth-parent-of-ith-parent-of-u, v) is not a forbidden pair.

Figure 5.12 illustrates the third-order transformation of the graph given in Fig-

ure 5.10. Here, it is again assumed that the first parent of each vertex is NULL. For

instance, G[2][1] (i.e., the first vertex on the second row of vertex set G) corresponds

to the vertex pair (e, NULL) in the original graph, since e is the second parent of g,

and NULL is the first parent of e.

Lemma 5.6 Consider two vertices w and v in G such that the maximum path length

from w to v is at most 3. If (w, v) is a forbidden pair, then there is no path from

vertex set W to vertex set U in G3.
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Figure 5.12: Third-order transformation of graph G in Figure 5.10. A set of vertices
indicated with dotted lines correspond to each vertex of G.

Proof. If the maximum path length from w to v is 1 or 2, then the proof is similar

to that of Lemma 5.4. Otherwise, consider any path of the form w → y → u → v,

where w is the jth parent of y, y is the ith parent of u, and u is the kth parent of

v. Any edge in G3 from vertex set W to vertex set Y can only be to Y [j][.] due to

rule (1) in Definition 5.3. Similarly, any edge from Y [j][.] to vertex set U can only be

to U [i][j] due to rules (1) and (2) in Definition 5.3. Finally, an edge from U [i][j] to

vertex set V exists only if (w, v) is not a forbidden pair, due to rule (5). So, a path

from w to v cannot exist if w and v conflict with each other.

Observe in Figure 5.12 that there is no path between vertex sets corresponding to

the forbidden pairs in Figure 5.10. For example, (a, g) is a forbidden pair, and there

is no path between vertex set A and vertex set G in the transformed graph.

Lemma 5.7 If there is a path from w to v in G such that no pair of vertices on the

path is a forbidden pair, then there will be at least one path of the same length in G3

from vertex set W to vertex set V .

Proof. Since there are no forbidden pairs in the path from w to v in G, only the

first and second rules of Definition 5.3 will apply, and the proof of the lemma follows

directly.

Theorem 5.3 If the maximum path length between any forbidden pair (u, v) in G is

at most 3, then the longest path in G3 is the exact solution to LPFP problem on G.

Proof. It follows directly from Lemma 5.6 and 5.7.

Let GC denote the acyclic checkerboard graph structure described in Section 5.4.2.

Due to Lemma 5.1, we can apply a third-order transformation on GC to obtain G3
C ,
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and we can find the exact solution to the LPFP problem by using a linear-time

longest path algorithm [16] on G3
C . From Theorem 5.1, this solution corresponds to

the maximal planar routing solution to our original problem.

The following theorem gives the asymptotic time complexity of this algorithm.

Theorem 5.4 Let s and n denote the size of the components, and the number of

nets, respectively. The time complexity of the exact algorithm proposed in this section

is O(ns3/2 + s5/2).

Proof. Each vertex v in GC has O(s1/2) parents, and O(s1/2) grandparents, due

to Lemma 5.2. Since there is a vertex V [i][j] in G3
C corresponding to each parent i

and grandparent j of v in GC , the number of vertices in G3
C will be O(s)×O(n+ s) =

O(ns + s2). Note here that O(n + s) is the number of vertices in GC , as stated in

Lemma 5.3. Furthermore, closer examination of Definition 5.3 will reveal that the

number of edges entering to each vertex V [k][l] in G3
C is O(s1/2). Hence, the total

number of edges in G3
C will be O(ns3/2 + s5/2). Since the longest path algorithm used

on acyclic G3
C has linear time complexity in terms of the input graph size, the total

time complexity of our algorithm is O(ns3/2 + s5/2).

Although this time complexity is acceptable for moderate component sizes, the

algorithm might not be scalable for very large circuits. In the next subsection, we

propose a scalable randomized algorithm as an effective alternative for large circuits.

5.4.4 Randomized Algorithm for LPFP

As stated by Lemma 5.1, the vertices that conflict with each other are always close

to each other in graph G. Intuitively, if we somehow generate subpaths by grouping

the nearby vertices together, then we can obtain a graph where there are no conflicts

between groups that are far away from each other. The algorithm we propose in this

section makes use of this idea, and uses randomization to group the nearby vertices

together, and handle forbidden pairs accordingly.

Figure 5.13 gives the outline of the randomized algorithm we propose for the

checkerboard graph model described in Section 5.4.2. The first step here is to define

subproblems on the checkerboard structure, as shown in Figure 5.15. Then, we ran-

domly generate a predefined number of permissible subpaths for each subproblem.

Figure 5.14 gives the algorithm we use to generate random subpaths for one subprob-

lem. Observe that for each checkerboard cell C at the last row of a subproblem, we
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RANDOM-LPFP

Define horizontal subproblems (with 3 rows) on the checkerboard

Randomly generate subpaths P i
j within each subproblem i

Create a graph GR as follows:

–A vertex vi
j exists in GR corresponding to each subpath P i

j

–Weight of vi
j is equal to size of P i

j

–An edge from vi
j to vi+1

k exists iff:

(1) P i+1
k is completely to the south-east of P i

j

(2) The last element of P i+1
k is separated from the last

element of P i
j by at least 2 columns

(3) There exists no forbidden pair (u, w) such that

u ∈ P i
j and w ∈ P i+1

k

Return the longest path in GR

Figure 5.13: Randomized algorithm for LPFP problem on a checkerboard graph
where the maximum path length between any forbidden pair is at most 3.

keep the K/r longest subpaths ending at C. Note that our purpose here is not just

to find the best possible subpath, but instead to find various (possibly on the order

of thousands) good subpaths for each subproblem. After that, we merge them in an

optimal way by applying a longest path algorithm on the directed acyclic graph GR,

which is defined in Figure 5.13. The following lemma explains the rationale behind

this model:

Lemma 5.8 Consider two subpaths P i
j and P l

k (i < l) in subproblems i and l, respec-

tively. If there is a forbidden pair (u, w) such that u ∈ P i
j and w ∈ P l

k, then there

exists no path between the corresponding vertices vi
j and vl

k in GR.

Proof. If l = i+1, this check is done explicitly by rule (3), as given in Figure 5.13.

Otherwise, assume that l ≥ i+2, and there is a path from P i
j to P l

k in GR. It is obvious

that P i
j and P l

k are separated by at least 3 checkerboard rows, since there is at least one

subproblem between them. Furthermore due to rule (2), there are at least 3 columns

between the last element of P i
j , and the first element of P l

k. Since the maximum path

length between a forbidden pair can be at most 3 in the original graph (as stated in

Lemma 5.1), there exists no forbidden pair (u, w) such that u ∈ P i
j and w ∈ P l

k.
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GENERATE-SUBPATHS(Subproblem i: between rows Ti and Bi)

for a fixed number of M iterations do:

u ← a random vertex at row Ti

P ← {u} // initialize the subpath

repeat:

v ← a random vertex for which edge u → v exists,

and (w, v) is not a forbidden pair for any w ∈ P

P = P ∪ {v}
u ← v

until v is not at row Bi

Let C be the checkerboard cell that contains the last v

Let PC denote the set of previously recorded subpaths ending at C.

If |PC | < K/r, where r is the number of component rows

record P

else if there exists a subpath P ′ ∈ PC such that P ′ is shorter than P

replace P ′ with P

else

discard P

Figure 5.14: Algorithm to generate a set of O(K) random subpaths between rows
Ti and Bi of the checkerboard.
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Due to this lemma, we can use a simple longest path algorithm on GR without the

need of checking forbidden pairs. This longest path will correspond to the optimal

combination of subpaths that were randomly generated. If we can generate a large

variety of random paths, we can expect the final solution to be sufficiently close to

the optimal planar routing solution.

For the complexity analysis of this randomized algorithm, let us first focus on the

subpath generation phase given in Figure 5.14. In one iteration of this algorithm, a

subpath P is generated and evaluated. Generation of one subpath P takes constant

time, since P can contain at most 3 routing patterns, by definition. The evaluation

of P can also be performed in constant time by using efficient bucket-based data

structures.6 Since M iterations are performed in Figure 5.14 for one subproblem, and

there are O(r) subproblems (where r is the number of rows in the components), the

total time complexity of the subpath generation phase is O(Mr). Note here that the

number of subpaths recorded at the end of this phase for each subproblem is O(K),

where K ≤ M . After this phase, a graph GR is created, as shown in Figure 5.13.

The number of vertices in GR is equal to the total number of recorded subpaths,

which is O(Kr). The edges in GR are only between vertices that correspond to

adjacent subproblems. Hence the number of edges in GR is O(K2r). As mentioned

before, computing the longest path for a directed acyclic graph (dag) has linear time

complexity in terms of the input graph size [16]. As a result, the total time complexity

of this algorithm is O(Mr+K2r). Here, we can set K and M to large values (possibly

on the order of thousands) so that a large number of subpaths are generated for each

subproblem, and various path combinations are explored for the solution. Yet the

algorithm will still have good run-time characteristics, as will be demonstrated in

Section 5.6.

Figure 5.15(a) illustrates a sample checkerboard with 9 rows, and 3 subproblems.

For each subproblem, a subpath is selected, and they are merged to obtain a path

of 8 routing patterns. The solution corresponding to this path is illustrated in Fig-

ure 5.15(b).

6Namely, we can create 3 buckets for each checkerboard cell C, each bucket corresponding to a
linked list of subpaths having the same length. Using this, we can find a subpath P ′ ∈ PC such that
P ′ is shorter than P , and replace it with P in constant time.
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Figure 5.15: (a) A sample checkerboard structure with 3 subproblems. The selected
subpaths in each subproblem are {a11, b32, c43}, {d54, e65, f76}, and {g88, h99},
respectively. (b) The corresponding escape routing solution.

5.5 Generalizations of the Algorithms

In the algorithms of Section 5.4, we have considered only 16 routing patterns for

each net. The rationale behind this assumption has been discussed in Section 5.4.1.

However, it is also possible to extend our algorithms such that more routing patterns

are considered. Assume that a net is allowed to escape from one of the V neighboring

rows of its terminal. (We have assumed that V = 4 in the previous sections). The

graph model described in Section 5.4.1 can be used with small modifications for

different V values. However, for the exact maximal planar routing algorithm in

Section 5.4.3, we would need a (V − 1)st-order transformation on the input graph.

Note that the size of the transformed graph would be exponential in V , and this

approach could be impractical for large V values. However, the randomized algorithm

we propose in Section 5.4.4 can easily be generalized for arbitrary V values. Namely,

only two modifications are needed in the algorithm described in Figure 5.13. First,

the subproblem sizes need to be V − 1, instead of 3. Then, the second rule for

edge creation in GR needs to be changed such that P i+1
k and P i

j are separated by

V − 2 columns, instead of 2 columns. Hence the randomized algorithm would still

be scalable for large V values. Furthermore it is also possible to generalize the types

of escape patterns used in the proposed algorithms, as will be discussed in detail in

Chapter 6.

Another assumption we have made in the previous sections is that the problem
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consists of two components separated by a channel. For a general design, we can ap-

ply these algorithms on different pairs of components independently. As future work,

we need an algorithm that automatically identifies the best pairs of components to be

routed on each layer of a complex design. Once the component pairs are identified,

the algorithms given in this chapter can be applied on each pair independently. For

a typical industrial board today, it is reasonable to expect large bus structures (each

containing a large number of nets) between different pairs of components. Further-

more, in high-speed designs, there are additional spacing requirements between nets

belonging to different buses due to noise considerations. For such designs, it is highly

preferable to route nets belonging to the same bus together, and to minimize adja-

cencies between nets belonging to different bus structures. So, identifying different

component pairs and solving the escape problem for each pair separately will be an

effective approach.

It is also possible to merge more than one component to obtain a (conceptual)

super-component, and apply our algorithms on super-component pairs. As an exam-

ple, consider Figure 5.16, which illustrates components from a real industrial design.

For this circuit, we can define two separate subproblems: (1) two memory modules

on the left, and the left half of the MCM, and (2) two memory modules on the right,

and the right half of the MCM. For the first subproblem, we can define one super-

component as the concatenation of the two memory units on the left, and the other

super-component as the two quadrants on the left half of the MCM. Applying our al-

gorithms on these super-components will give an escape routing solution for the three

components simultaneously. Section 5.6 gives further details about our experiments

on this and other industrial problems.

5.6 Experimental Results

For evaluation of our algorithms, we have extracted escape problems corresponding

to different components of an industrial circuit from IBM, for which the current

industrial routers fail to produce a routing solution. Typically, the industrial tools

do not use the problem formulation proposed in this chapter. A common approach

used to route board designs in the industry is to perform global routing, followed by

iterations of rip-up and reroute techniques. However, such an approach fails when

there are a large number of nets of which terminals are inside very dense pin arrays.
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Table 5.1: Comparison of randomized and exact algorithms
EXACT-PLANAR RANDOM-PLANAR
# planar time # planar time

Input # nets # layers nets (min:sec) nets (min:sec)
IBM MEM1 213 4 196 3:34 198 0:31
IBM MEM2 213 4 191 3:33 190 0:34
IBM STI 352 5 319 21:52 313 1:44

As discussed before, applying escape routing on each component independently is not

an effective approach, either.

For experimental comparisons, we have used a special implementation of the

Pathfinder [19] algorithm that recognizes the special property of this problem. In

particular, a special graph structure is used so that the dense component areas are

modeled as detailed grids, and the intermediate areas between components are mod-

eled as coarse-grain connections. The purpose here is to find the detailed escape

routing solutions inside dense components, while minimizing the number of crossings

in the intermediate areas. We have implemented all our algorithms in C++, and

performed our experiments on an AMD Athlon 1.3 GHz system with 512MB mem-

ory, and a Linux operating system. For the randomized algorithm, we have used a

fixed random seed throughout our experiments. We have observed that changing the

random seed does not have a considerable effect on the routing results.

First, we have performed experiments to evaluate the effectiveness of the ran-

domized maximal planar routing algorithm given in Section 5.4.4. Table 5.1 gives

comparison of this algorithm with the exact algorithm described in Section 5.4.3.

Note that the exact algorithm is guaranteed to route maximum number of planar

nets on one layer. However, it does not guarantee the optimal result on multiple

layers, since we process one layer at a time. As can be seen from this table, the

randomized algorithm gives results almost as good as the exact algorithm, requires

less running time, and is more scalable for larger circuits. Therefore, we have used

the randomized algorithm as the underlying maximal planar routing algorithm in the

next set of experiments.

We have then implemented the methodology described in Section 5.3. Namely, the

maximal planar routing solution is found for each layer, and then the remaining nets

are distributed to all layers at the end. For comparison purposes, we have used the

Pathfinder [19] based algorithm described above. We have fine-tuned this algorithm
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Table 5.2: Comparison of our methodology with a net-by-net approach
OUR METHOD NET-BY-NET

# crossing time # crossing time
Input # nets # layers nets (min:sec) nets (min:sec)
IBM MEM1 213 4 8 0:38 41 5:14
IBM MEM2 213 4 19 0:43 32 4:33
IBM STI 352 5 24 0:27 62 11:23
IBM MEMG1 452 8 82 2:59 164 62:51
IBM MEMG2 454 8 101 2:24 174 52:32

such that the number of crossing nets (in the channel) is minimized. Table 5.2 gives

comparison of the results. Here, the number of crossing nets can also be viewed as

the number of nets that need to use vias in the area routing stage. Observe that our

methodology results in substantially less number of crossing nets for all problems.

On average, 14% and 28% of all nets are crossing in the solution of our methodology,

and the net-by-net approach, respectively. So, we can say that our algorithms reduce

the via requirements significantly. Furthermore, the execution times of our method

are much lower, since we calculate the best set of planar nets simultaneously in an

efficient way. On the other hand, the net-by-net approach requires multiple iterations

to negotiate routing resources among different nets.

We also illustrate a sample solution for one layer of a circuit in Figure 5.16.

Actually, this figure contains two separate problems: (1) the memory units on the

left and MCM, and (2) the memory units on the right and MCM. As mentioned

in Section 5.5, we have grouped multiple components together to obtain two super-

components separated by a channel, for each problem. Although the exact area

routing will be determined by a later stage, we also display the non-crossing channel

segments in this figure.

5.7 Conclusions

We have proposed an exact and a randomized algorithm for simultaneous escape

routing and layer assignment problem for boards with dense components. The ex-

perimental results show that the randomized algorithm gives results as good as the

exact algorithm, and is much faster. We also show that the methodology we propose

produces considerably better results than a net-by-net approach.
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MEMMEMMEMMEM
MCM

Figure 5.16: A sample solution for one layer (out of 8) of a problem containing an
MCM and 4 memory units. The non-crossing channel connections are illustrated as
straight (dotted) lines between components, while the escape routing solutions are
shown with solid lines inside the components. 120 (out of 906 total) nets have been
assigned to this layer, and 109 of them have non-crossing channel segments.
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Chapter 6

An Escape Routing Framework for

Dense Boards with High-Speed

Design Constraints

6.1 Introduction

In Chapter 5, we proposed fundamental algorithms for solving the escape routing

problem in multiple components simultaneously. However, these algorithms have

been given under some simplifying assumptions for the ease of presentation. In this

chapter, we generalize these models and algorithms, and present an improved escape

routing framework targeted for dense boards with high-speed design constraints.

We propose an escape routing framework in this chapter for the purpose of solv-

ing the escape routing problem in multiple components simultaneously, so that the

number of crossings in the intermediate area is minimized, and high-speed design

constraints are satisfied. Figure 6.1 illustrates a one-layer escape routing solution for

two components. In this figure, nets have been routed from their terminal pins to

the corresponding component boundaries. Here, only one net (net D) crosses with

the others in the intermediate area. For this net, the area router will need to use

a via to resolve the crossing. As mentioned before, the number of crossings in the

intermediate area is a good measure for the via requirements of an escape routing

solution.

Compared to the algorithm proposed in Chapter 5, this algorithm brings three

main improvements: (1) more general escape patterns are considered within the
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Figure 6.1: An escape routing solution for 12 nets. The escape slots are identified on
the boundaries of components. The connections in the intermediate area are shown
by dashed lines.

framework, instead of simple straight connections (Section 6.3); (2) an improved

maximal planar route selection algorithm is proposed, which is general enough to

handle multi-capacity escape slots, and high-speed design constraints (Section 6.4);

and (3) explicit discussion about handling various high-speed design constraints is

given for this framework (Section 6.5). Our experiments in Section 6.6 show that our

algorithm reduces the via requirements of industrial test cases on average by 39%,

compared to the basic algorithm proposed in Chapter 5.

The rest of this chapter is organized as follows. We give the formal description

of this problem in Section 6.2. Our methodology to solve this problem is based on

generating a number of different routing alternatives for each net and then selecting

the maximum planar subset of escape patterns on each layer. In Section 6.3, we pro-

pose an algorithm to generate escape patterns based on congestion levels within the

components and the crossings in the intermediate area. Then, we propose a random-

ized algorithm in Section 6.4 for the problem of maximum planar route selection. In

Section 6.5, we discuss how to handle high-speed design constraints within the frame-

work of this algorithm. Finally, we demonstrate the effectiveness of this algorithm on

industrial test cases in Section 6.6.

100



6.2 Problem Formulation and Methodology

We will present our generalized models and algorithms in such a way that the chapter

is overall self-contained. The theoretical results given in Chapter 5 are still relevant

in this chapter. However, we will adapt a slightly different presentation, which is

more suitable for the general escape routing framework that will be proposed in this

chapter.

Let a component be defined as a 2-D array of pins, where each pin spans multi-

ple layers, and routing tracks are defined on each layer between adjacent rows and

columns of pins. An escape segment is defined to be a route from a pin inside the

component to an escape slot on the component boundary. For a component, a set of

escape slots are defined on its boundary, defining the permissible end-points of escape

segments originating from the pins. Due to limited routing resources, buried vias are

not allowed inside the components. So, routing within the component area needs to

be planar on every layer. Two escape segments corresponding to two different nets

are defined to have a conflict inside the component if they cannot be routed together

on the same layer in a planar fashion. The number of routing tracks at each row and

column is pre-determined based on the pin diameters, wire widths, pin spacings, and

clearance constraints. In a feasible solution, the number of escape segments passing

through a row/column of the component cannot exceed the corresponding capacity

of that row/column.

Let us assume that the input problem consists of only two components, which are

denoted as left and right components, respectively, for simplicity of presentation. A

net is assumed to have two terminals, one in each component. An escape pattern Pi

for net i is defined to be the combination of two escape segments originating from

the terminals of net i in the left and right components. Two escape patterns Pi

and Pj corresponding to nets i and j are defined to have a conflict iff their escape

segments have conflicts within at least one component. Note here that a pair of

non-conflicting escape patterns Pi and Pj can have a crossing in the intermediate

area between components, depending on the relative ordering of their escape slots.

Since buried vias are allowed in the intermediate area between components, these

crossings are allowed in a feasible solution. However, the number of crossings need to

be minimized for the objective of via minimization.

Based on these definitions, the simultaneous escape routing problem for a set of
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nets can be stated as follows: Find an escape pattern Pi for each net i, and assign it

to a layer such that: (1) no pair of escape patterns on the same layer conflict with

each other, (2) the capacity constraints on all rows and columns of the components

are satisfied, and (3) the number of crossings in the intermediate area is minimized.

Figure 6.1 illustrates a sample one layer solution for 12 nets. The number of escape

slots in the left and right components are 18 and 16, respectively. While the slots

on the left component are numbered increasing in the clockwise direction, the slots

on the right component are numbered increasing in the counter clockwise direction.

Among the 12 nets routed on this layer, only one (net D) crosses with the others in

the intermediate area. Some of the escape slots (slots 1 and 9 in the left component,

slot 1 in the right component) are used by more than one escape segments. This is

allowed in a feasible solution as long as the capacity constraints are not violated.

Our methodology to solve this problem is similar to the one proposed in Chapter 5.

Namely, we process one layer at a time, and route as many noncrossing nets as

possible on each layer. After finding a maximal planar routing solution for all layers,

we distribute the remaining nets to available layers, this time allowing crossings in

the intermediate area. In the rest of the chapter, we will focus on the problem of

maximal planar routing. For the second phase, we use a Pathfinder-based algorithm

to distribute the remaining nets to available layers.

Our algorithm for maximal planar routing consists of two phases: (1) Generate

a number of different routing alternatives for each net, and (2) select the maximal

subset of routing patterns that will give a feasible planar routing solution for the

current layer. Compared to the algorithm of Chapter 5, our main contributions in this

chapter can be summarized as follows. For the first phase, we propose an algorithm

to generate routing patterns based on the congestion levels inside the components,

and the number of crossings in the intermediate area (Section 6.3). For the second

phase, we propose a more sophisticated randomized algorithm, which can also be

generalized to handle high-speed design constraints (Sections 6.4 and 6.5).
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Figure 6.2: The output of a simple pattern generation technique for 3 nets. The
maximal planar subset is highlighted with bold lines.

6.3 Escape Pattern Generation

6.3.1 Motivation

In this section, we describe an algorithm to generate a number of different routing

alternatives for each net. In Chapter 5, a simple pattern generation methodology has

been used for this purpose. In particular, 4 escape segments are generated for each

net within each component, for a total of 4 × 4 = 16 escape patterns. The escape

segments generated in the basic algorithm have vertical spans of at most 2 rows, as

illustrated in Figure 6.2. The justification here is that escape patterns with large

vertical spans block other patterns; so small vertical spans are needed for maximal

planar routing. However, nonregular escape patterns with larger vertical spans, as

illustrated in Figure 6.3, may be helpful in some situations. For example if we use

the simple pattern generation technique of Chapter 5, as in Figure 6.2, then only 2

out of 3 nets will be routed in a planar fashion, as highlighted in the figure. However,

if we use a more intelligent pattern generation algorithm as in Figure 6.3, we can

route all 3 nets in a planar fashion. With this motivation, we propose an algorithm

in this section that generates escape patterns based on congestion levels within the

components, and the crossings in the intermediate area.

Our objective here is to generate escape patterns with low congestion levels inside

the components, and small number of crossings in the intermediate area. However,

the patterns generated need to satisfy the following two properties:

Consider any pair of escape segments Si and Sj generated within the same com-

ponent. Let V be a constant input parameter.
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Figure 6.3: Pattern generation with the objective of low congestion levels, and small
number of crossings. The maximal planar subset is highlighted with bold lines.

Property 6.1 If Si and Sj correspond to the same net (i.e., Si and Sj originate from

the same terminal), then it must be the case that |Si.slot − Sj.slot| < V .

Property 6.2 If Si and Sj have a conflict, then it must be the case that |Si.slot −
Sj .slot| < V .

Here, the notation S.slot denotes the index of the escape slot of segment S, as

defined in Section 6.2. Intuitively, the segments belonging to the same net, and

the conflicting segments must escape to slots that are close to each other on the

component boundary. In the examples of Figure 6.2 and 6.3, these two properties

hold for V = 4. As will be discussed in detail in Section 6.4, our maximal planar route

selection algorithm will be based on the assumption that these two properties hold.

Furthermore, we will show in Section 6.4 that a polynomial-time optimal algorithm

exists for maximal planar route selection problem if these two properties hold for a

constant V value.

6.3.2 The Algorithm

Given a simultaneous escape routing problem, as defined in Section 6.2, we start with

sorting all the net terminals based on their distances to the closest escape slots on the

component boundaries. Then, we process these terminals in sorted order, starting

from the terminal closest to an escape slot. Originating from each terminal, we

generate a number of escape segments, by using the algorithm outlined in Figures 6.4

and 6.5.
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GENERATE-ESCAPE-SEGMENTS(G, t, V , T )

// G: the grid graph corresponding to the component

// t: the terminal from which the segments will be generated

// V : the input parameter

// T : the set of target escape slots

for index ← 1 to V do

S ← GENERATE-ONE-ESCAPE-SEGMENT(G, t, T )

add S to the set of escape segments originating from t

T ← T ∩ ({s : S.slot−V < s < S.slot+V }\{S.slot})
// limit the target slot range to satisfy Property 6.1

Figure 6.4: High-level algorithm to generate a number of V escape segments origi-
nating from terminal t.

Figure 6.4 displays the high-level algorithm used to generate a number of routing

segments originating from a given terminal t. Here, graph G is used to model the

routing resources of the input component. As described in Section 6.2, a component

is assumed to be a 2-D array of pins, with rows and columns of routing tracks between

adjacent pins. Also, a set of target escape slots T is specified for terminal t as input

to the algorithm of Figure 6.4. Although T can be set such that it contains all escape

slots on the component boundary, it is also possible to set it based on the length

constraints of the corresponding net, as will be discussed in Section 6.5. Observe in

Figure 6.4 that after an escape segment S is generated from terminal t, the set T is

restricted to the escape slots that are within the neighbourhood of escape slot of S.

The purpose here is to make sure that Property 6.1 is maintained for the segments

generated from terminal t.

Before describing the low-level algorithm, we need to make the following definition:

Definition 6.1 Let v.segments denote the set of escape segments passing through

vertex v. An escape slot s is defined to be reachable from vertex v iff for each escape

segment S ∈ v.segments, it is the case that |S.slot − s| < V , where V is the input

parameter specified in Property 6.2. The set of reachable escape slots from vertex v

is denoted as v.reachableSlots

Remark 6.1 Consider a path P in grid graph G that starts at terminal t, and ends
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GENERATE-ONE-ESCAPE-SEGMENT(G, t, T )

pQ ← an empty priority queue

for each vertex v ∈ G that is adjacent to terminal t do

v.label ← 0

v.targetSlots ← T
pQ ← pQ ∪ {v}

while pQ not empty do

u ← pQ.extractMin()

if u corresponds to an escape slot then terminate loop

for each edge (u → v) ∈ G do

if (u.targetSlots ∩ v.reachableSlots �= ∅)
&& (u.label + cost(u → v) < v.label) then

v.label ← u.label + cost(u → v)

v.targetSlots ← u.targetSlots ∩ v.reachableSlots

// limit the target slot range to satisfy Property 6.2.

v.parent ← u

pQ ← pQ ∪ {v}
construct escape segment S by backtracking from escape slot u

Figure 6.5: Low-level algorithm to generate one escape segment originating from
terminal t.

at escape slot s. If s ∈ v.reachableSlots for each v ∈ P , then it is guaranteed that

path P satisfies Property 6.2.

The low-level algorithm used to generate one escape segment is given in Figure 6.5.

This is basically a variant of Dijkstra’s shortest path algorithm [16]. As an additional

constraint, we make sure that Property 6.2 is satisfied, by restricting the target slot

range when a conflict with an existing pattern is possible. The cost of edge (u → v)

is computed by the following formula:

cost(u → v) = α.dist(u → v) + β.cong(v) + γ.cross(v) (6.1)

Here, α, β, and γ are scaling factors for distance, congestion, and crossing cost

metrics, respectively. Congestion cost for vertex v is computed based on the number

of escape segments passing through v. Before generating any escape pattern, we
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first estimate the congestion values for individual vertices through path analysis.

As we generate escape segments, we gradually replace these estimations with actual

congestion values. If v is a vertex corresponding to an escape slot, we also compute

a crossing cost based on the estimated number of crossings in the intermediate area.

6.4 Maximal Planar Route Selection

In this section, it is assumed that a number of escape patterns that maintain Prop-

erty 6.1 and Property 6.2 have been generated. The objective now is to select the

maximum number of escape patterns such that: (1) at most one pattern for each net

is selected, (2) the segments of the selected patterns do not conflict with each other

within components (i.e., they are routable in a planar fashion on the same layer), and

(3) the selected patterns have no crossing in the intermediate area.

6.4.1 Problem Modeling

Let P.slotL and P.slotR denote the escape slots of escape pattern P in the left

and right components, respectively. Furthermore, let us assume that a unique rank is

assigned for each escape segment within a component, indicating the relative ordering

between different segments. As an example, consider the segments of nets I and H in

the left component of Figure 6.1. Although these two segments escape to the same slot

(slot 9), the rank of net I’s segment must be less than the rank of the corresponding

segment of net H . Let P.rankL and P.rankR denote the rank of pattern P in the

left and right components, respectively. For simplicity of presentation, we will first

consider the problem with unit slot capacities in the following definitions.

Definition 6.2 The less-than predicate for two escape patterns is defined as follows:

Pi ≺ Pj iff Pi.rankL < Pj.rankL and Pi.rankR < Pj .rankR.

Note here that the precedence relation defined above is transitive; i.e., if Pi ≺ Pj

and Pj ≺ Pk, then Pi ≺ Pk. Based on this property, we can give the following

definitions:

Definition 6.3 A pattern sequence S is defined to be an ordered set of patterns

{P1, P2, ..., Pn} such that if i < j then Pi ≺ Pj.
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Definition 6.4 A pattern sequence S is defined to be permissible iff it contains no

pair of conflicting patterns.1

Theorem 6.1 For a given set of escape patterns, the longest permissible pattern se-

quence S is equivalent to the maximum subset of patterns that can be routed on one

layer in a planar fashion.

Theorem 6.2 For a given set of escape patterns, assume that Property 6.1 and Prop-

erty 6.2 are satisfied for a constant V value. Then, there is a polynomial-time optimal

algorithm to solve the maximal planar route selection problem.

Proof. As given in Theorem 6.1, the maximal planar route selection problem is

equivalent to finding the longest permissible pattern sequence among a given set of

patterns. If Property 6.1 and 6.2 are satisfied, then we can use a dynamic program-

ming algorithm to solve this problem. As an example, consider the simplified problem

where V = 1; i.e., there is only one pattern corresponding to each net, and no pair

of patterns conflict with each other. In this case, a simple dynamic programming

based algorithm that computes the longest sequence ending at each pattern will be

sufficient. We can use the same intuition to devise an algorithm for the general case,

where V has an arbitrary constant value. Let PV be the set of all different permu-

tations of the given patterns with size V . The main idea here is to compute each

longest sequence that has its last V patterns the same as an element of set PV . For

example, let us consider pv ∈ PV (where pv consists of V patterns). We can find the

longest sequence that has its last V elements the same as pv in O(n) time. (We need

to consider the longest subsequences that have its last V −1 patterns the same as the

first V −1 patterns in pv.) Based on these ideas, we can show that such an algorithm

will have a time complexity of o(nV +1), where n is the number of nets, and V is a

constant value. Note here that this is a loose upper bound, and more efficient algo-

rithms can be devised for fixed V values. In particular, the exact algorithm proposed

for V = 4 in Chapter 5 has a time complexity of O(ns3/2 + s5/2), where s is the size

of the components.

Although a polynomial-time optimal algorithm exists for this problem, its high

time complexity makes it impractical for large circuits. For this reason, we propose a

1We denote two patterns Pi and Pj as conflicting iff they cannot occur together in a valid planar
escape routing solution.
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PLANAR-ROUTE-SELECTION(P: a set of patterns)

map each pattern in P to a cell of checkerboard C
rowwise partition C into subproblems with V − 1 rows each

randomly generate a set of subsequences in each subproblem

create a graph GR as follows:

– A vertex vi
j exists in GR corresponding to each subsequence

Si
j in subproblem i.

– The weight of vi
j is equal to the number of patterns in Si

j.

– Let xi
j and xi+1

k denote the x coordinates of the checkerboard

cells of the last patterns in subsequences Si
j and Si+1

k .

An edge from vi
j to vi+1

k exists in GR iff:

(1) all patterns in Si
j are to the left of all patterns in Si+1

k

(2) xi+1
k > xi

j + V − 2,

(3) no pattern in Si
j conflict with a pattern of Si+1

k .

return the longest path in GR

Figure 6.6: High-level description of the randomized planar route selection algorithm

much faster randomized algorithm in the next subsection, which gives solutions that

are very close to optimum in practice. As mentioned before, we will also discuss how

to handle high-speed design constraints within the framework of this algorithm in

Section 6.5. The algorithm proposed in the next subsection can also handle multi-

capacity slots, as given by the following definition.

Definition 6.5 Assume that each escape slot is defined to have a particular capacity,

as defined in Section 6.2. A sequence S is defined to be capacity constrained iff the

number of patterns in S that use a particular escape slot is less than or equal to the

corresponding slot capacity.

6.4.2 A Randomized Algorithm

In this section, we propose a randomized algorithm to solve the capacity-constrained

longest permissible sequence problem for a given set of escape patterns. The high-

level algorithm is given in Figure 6.6. Compared to the algorithm given in Chapter 5,

the main improvement is our randomized subsequence generation algorithm, as given
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Figure 6.7: (a) A set of routing patterns defined for 6 nets. (b) The corresponding
checkerboard model. For clarity, only one or two escape segments are illustrated for
each net. The maximum planar subset is highlighted in both figures.

in Figure 6.9. This algorithm not only improves the routing results considerably

(Section 6.6), but also is general enough to handle multi-capacity escape slots and

typical high-speed design constraints (Section 6.5). We also prove later in this section

that the average-time complexity of this algorithm is linear in the component sizes

(Theorem 6.3).

The (conceptual) checkerboard model introduced in the algorithm of Figure 6.6 is

defined in a similar way as in Chapter 5.

Definition 6.6 Let #sL and #sR denote the number of escape slots defined on the

left and right components, respectively. Let C be a (conceptual) checkerboard with #sL

rows and #sR columns. An escape pattern P is defined to be mapped to cell (i, j) of

checkerboard C iff P.slotL = i and P.slotR = j.

Figure 6.7 illustrates a sample escape problem and the corresponding checkerboard

model. Let us consider two patterns Pi and Pj on this checkerboard. If Pj is below

and to the right of Pi (e.g., Pi = B12, Pj = C33), then Pi ≺ Pj , as defined in

Definition 6.2. If Pj is above and to the right of Pi (e.g., Pi = D43, Pj = A35),

then neither Pi ≺ Pj nor Pj ≺ Pi. Otherwise, if Pi and Pj are on the same row

(e.g., Pi = D44, Pj = A45), or the same column (e.g., Pi = C33, Pj = D43), or the

same cell (e.g., Pi = E56, Pj = F56), then we need to check the ranks of Pi and Pj

to determine the relationship between these patterns. For instance, ranks of E56 in

both left and right components are less than those of F56 (since the corresponding

escape segments of net E are above those of net F ); hence E56 ≺ F56.

After mapping each pattern to a checkerboard cell, C is rowwise partitioned into

subproblems. Then a set of capacity-constrained permissible subsequences is randomly
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generated within each subproblem, as will be described in detail later in this section.

After that, these subsequences are merged together to obtain the capacity-constrained

longest permissible sequence. For this purpose, a graph model GR is defined in Fig-

ure 6.6, which satisfies the following lemma.

Lemma 6.1 Consider two subsequences Si
j and Sl

k in subproblems i and l, respec-

tively. If there is a path between the corresponding vertices vi
j and vl

k in GR, then it

is guaranteed that Si
j and Sl

k contain no patterns that conflict with each other.

This lemma is similar to Lemma 5.8, which was given for the restricted problem

instances of Chapter 5. Based on this lemma, we can compute the longest path in

acyclic graph GR to find the best combination of subsequences generated in different

subproblems. We can then merge these subsequences to obtain the longest permissible

sequence. Figure 6.8 illustrates the execution of the randomized algorithm on a sample

problem. Here, assume that a number of patterns have already been mapped to this

checkerboard, and the conflicts between patterns are as listed in this figure. A small

set of randomly generated subsequences2 is shown for each subproblem on the right.

Corresponding to each subsequence, there is a vertex in GR, and edges between them

are created based on the rules defined in Figure 6.6. For instance, there is no edge

from {A, B, C, E} to {I, J, L, M} because patterns E and I are conflicting. Similarly,

there is no edge from {A, B, F, G} to {I, J, L, M}, because it violates rule (2) in

Figure 6.6. The longest path in GR, corresponding to the capacity-constrained longest

sequence is also highlighted in this figure.

The algorithm we use to generate a set of random subsequences is outlined in

Figure 6.9. In the beginning, this recursive function is called for each cell on the first

row of the given subproblem, with argument subseq set to ∅. In one recursive call, first

it is checked whether the partial subsequence generated so far is good enough to store.

This decision is made by comparing the weight of the current subsequence subseq with

the weights of the subsequences already stored for this subproblem. Let tx denote the

x-coordinate of the checkerboard cell corresponding to the last pattern in subseq. The

weight of subseq is compared with only the subsequences that end at column tx of the

checkerboard. An input parameter determines how many subsequences can be stored

2For clarity, only 3 or 4 subsequences are given in this example. Normally, hundreds or even
thousands of subsequences are generated for each subproblem to obtain a good variety.
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GENERATE-SUBSEQ(x, y, subseq)

// (x,y): coordinate of the current checkerboard cell

// subseq: the partial subsequence generated so far

if cell (x, y) is not within subproblem boundaries

terminate recursion

if subseq is good

store subseq in candidate set of the subproblem

Let P ′ be the last pattern in subseq

T ← {P : P ′ ≺ P (see Definition 6.2) AND

((x ≤ P.slotR ≤ x + ∆ AND P.slotL = y) OR

(y ≤ P.slotL ≤ y + ∆ AND P.slotR = x)) AND

capacity of (P.slotR, P.slotL) not fully used AND

P has no conflict with subseq}
for each pattern P ∈ T do

randomly determine whether to accept or reject P

if P is accepted

GENERATE-SUBSEQ(P.slotR, P.slotL, subseq ∪ {P})
GENERATE-SUBSEQ(x + 1, y + 1, subseq)

Figure 6.9: Algorithm to generate a set of random subsequences
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Figure 6.10: (a) A subsequence on the checkerboard, and (b) the corresponding
escape patterns.

corresponding to each column.3 If the partial subsequence subseq is to be stored,

a previously stored subsequence with less weight may need to be replaced. Note

here that our purpose is to generate a large variety of good subsequences for the given

subproblem, instead of generating only the best ones. The variety among subsequences

is obtained by making sure that a subsequence ending at a particular checkerboard

column does not replace another subsequence ending at a different column.

The next step of the recursive algorithm is to find the set of patterns T that can

be added to the partial subsequence subseq. Here, this selection is done based on the

invariant that subseq remains permissible (Definition 6.4) and capacity constrained

(Definition 6.5). In one recursive iteration, we consider the patterns that are (1) on

cell (x, y), (2) on column x, and (3) on row y of the checkerboard. To limit the search

space, we only consider patterns that are within ∆-neighbourhood of (x, y), where ∆

is an input parameter, typically set to a value less than five. Figure 6.10 illustrates

the physical meaning of selecting patterns from the same cell, row, or column of the

checkerboard.

After finding the candidate pattern set T , we consider each P in T , and randomly

decide whether to accept or reject P . Here, the probability of accepting pattern P

is set so that the expected number of escape patterns that can be selected from set

T is equal to a fixed input parameter.4 In other words, this probability is inversely

proportional to the number of candidate patterns in T . If P is accepted, then another

recursive call is made starting from the current checkerboard cell. After all patterns in

3In our experiments, the maximum number of subsequences that can be stored corresponding to
each column is set to 50.

4We have set the expected number of patterns that can be selected at each recursive iteration to
7 in our experiments. The execution time of the subsequence generation phase can be controlled by
this parameter.
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T are considered, a recursive call to cell (x+1, y+1) is made to continue subsequence

generation without selecting any pattern from the current level. the main purpose

here is to have a good variety in the generated subsequences.

For the following complexity analysis, we assume that parameter V given in Prop-

erties 6.1 and 6.2, and all the slot capacities are constants (i.e., have complexity O(1)).

Lemma 6.2 Let R be the recursion tree of the function GENERATE-SUBSEQ given

in Figure 6.9. The following two properties hold for R: (1) The maximum depth of

R is O(1), and (2) the number of recursive calls made from a node in R is O(1) on

the average.

Proof. At each recursive call, either a pattern P is added to the partial subse-

quence, or the x and y coordinates are both incremented by 1. Since each subproblem

consists of V rows, and escape slot capacities are constants, the maximum length of

any subsequence is O(1). Hence, the maximum recursion depth is O(1). Furthermore,

we randomly decide whether to accept or reject pattern P such that the expected

number of patterns selected in each iteration is constant. As a result, the number of

recursive calls made from a node in R is O(1) on the average.

Lemma 6.3 The recursive function GENERATE-SUBSEQ(x,y,subseq) is invoked only

a constant number of times for each checkerboard cell (x, y).

Proof. Our proof is based on induction on the depth of the recursive tree R.

Obviously, the checkerboard cell at the root of R is called only a constant number

of times (base case). Let us consider a grid cell (x, y), and let us assume that the

induction hypothesis holds for all cells called before (x, y). From the algorithm of

Figure 6.9, we know that only the cells that are in the ∆-neighbourhood of (x, y) can

make a call to (x, y). Since ∆ is constant, the lemma follows due to the induction

hypothesis.

Theorem 6.3 The total average-time complexity of subsequence generation for all

subproblems is O(n + s2), where n is the number of nets, and s is the number of

escape slots on the component boundaries.

Proof. We will first prove that the average-time complexity for subproblem i is

O(ni + s), where ni is the number of patterns mapped to a cell within subproblem
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i. In one recursive call, all patterns P mapped to cells in the ∆-neighborhood of cell

(x, y) are processed to determine set T . Since ∆ is constant, and due to Lemma 6.3,

each pattern is processed only a constant number of times. Furthermore, the average

number of nodes in a recursion tree R is O(1), due to Lemma 6.2. Since there are

s separate recursion trees (each root corresponding to a cell on the first row of the

current subproblem), the average-time complexity for one subproblem is O(ni + s).

Based on this, the total average-time complexity for all subproblems can be written

as
∑

1≤i≤s/V O(ni + s) = O(n + s2).

Theorem 6.4 Let K denote the maximum number of subsequences that can be stored

for each subproblem. The average time complexity for the proposed randomized planar

route selection algorithm is O(n + s2 + K2s), where n is the number of nets, and s is

the number of escape slots on component boundaries.

Proof. In graph GR (defined in the beginning of this section), there is a vertex

corresponding to each subsequence generated. Since there are s/V = O(s) subprob-

lems, the number of vertices in GR is O(Ks). The edges in GR are only between

vertices that correspond to adjacent subproblems. Hence, the number of edges in GR

is O(K2s). Since, GR is acyclic, computing the longest path has linear time complex-

ity in the graph size [16], which is O(K2s). As given in Theorem 6.3, the average

time complexity of subsequence generation is O(n + s2); so the proof is complete.

6.5 Handling High-Speed Design Constraints

In the following subsections, we discuss how to generalize the algorithms given in

Sections 6.3 and 6.4 to handle different high speed design constraints.

6.5.1 Maximum Length Constraints

Board designers specify maximum length constraints for critical nets to limit the

maximum arrival times. We can handle these constraints during the pattern gener-

ation phase of our framework. Specifically, we can restrict the set of target escape

slots (parameter T in Figure 6.4) such that the escape segments with long detours

are avoided. Furthermore, remember that an escape pattern is created by merging

two escape segments from the left and right components. It is possible to check the
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maximum length constraints during this step, and eliminate the patterns that violate

the corresponding constraints.

6.5.2 Minimum Length Constraints

Minimum length constraints are typically enforced for nets belonging to a bus struc-

ture, with the objective of matching the signal arrival times. Typically, the length of a

short net needs to be extended to satisfy its min-length constraint. Since the routing

resources within components are extremely limited, it makes more sense to perform

length extension in the intermediate area between components, in a later stage of the

routing system. However, we can also modify our randomized planar route selection

algorithm (Section 6.4) such that the patterns that satisfy min bounds are preferred

over the others. For this purpose, we can assign a weight to each escape pattern,

based on its length and the corresponding min length constraint. Then, the ran-

domized algorithm given in Section 6.4 can be used to select the permissible pattern

sequence with the largest weight.

6.5.3 Adjacency Constraints for Noise Avoidance

Adjacency constraints between different nets are defined by designers to avoid crosstalk

problems. A typical adjacency constraint between nets ni and nj can be stated as

follows [40]: If ni and nj are routed adjacent to each other on the same layer, then

their routes need to be separated by at least k routing tracks. Such a constraint is en-

forced typically on signal nets that belong to different bus structures. In the context

of the model defined in Section 6.4.1, we can restate this constraint as follows: If the

patterns corresponding to ni and nj are adjacent in a permissible pattern sequence S,

then the escape slots of these patterns need to be separated by at least k routing tracks.

This constraint can be handled effectively in the subsequence generation algorithm

given in Figure 6.9 by comparing the last pattern in the partial subsequence subseq

with the candidate pattern P . Specifically, the following line needs to be added im-

mediately after set T is defined in Figure 6.9:

T ← T ∩ {P : if (P ′, P ) has a k-adjacency constraint, then

there are k empty tracks between P ′ and P in

both left and right components
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By adding this line, we make sure that only the subsequences that do not violate

adjacency constraints are generated. In addition, we also need to check these con-

straints for subsequences in neighbouring subproblems. Specifically, we need to add

the following rule while defining the edges of GR in Figure 6.6:

Let vi
j and vi+1

k denote two vertices in GR corresponding to subsequences Si
j and

Si+1
k , which have been generated in subproblems i and i+1, respectively. Let P i

j denote

the last pattern in subsequence si
j, and P i+1

k denote the first pattern in subsequence

Si+1
k . If (P i

j , P
i+1
j ) have an adjacency constraint of at least k tracks, then an edge

from vi
j to vi+1

k (in GR) exists only if there are at least k tracks between P i
j and P i+1

k

in both components.

These two modifications are sufficient to ensure that the output of our algorithms

satisfy all adjacency constraints.

6.5.4 Differential Pairs

A differential pair is a complementary pair of nets that provide noise immunity. The

two nets within a differential pair need to be routed parallel to each other, separated

by a specific distance as long as possible. Let us consider two nets ni and nj that

belong to a differential pair. During pattern generation, we can identify the pairs

of escape segments corresponding to ni and nj that adhere to these constraints. In

the context of the model defined in Section 6.4.1, a pattern corresponding to ni can

exist in a permissible sequence S only if it is adjacent to an acceptable segment of

nj . This constraint can be explicitly checked in the subsequence generation algorithm

of Figure 6.9 by comparing the last pattern in the partial subsequence subseq with

the candidate pattern P . Specifically, the following code segment needs to be added

immediately after set T is defined in the algorithm of Figure 6.9:

Let P ′′ be the second-to-last pattern in subseq

if P ′ belongs to a differential pair AND

(P ′′, P ′) is not a differential pair then

T ← T ∩ {P : (P ′, P ) is a differential-pair}

By adding these lines, we make sure that patterns belonging to a differential pair

always occur together in a subsequence. However, we also need to check differential

pairs that are in two adjacent subproblems. For this purpose, we need to add the

following rule while defining the edges of GR in Figure 6.6:
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Table 6.1: Comparison of the proposed framework with the basic algorithm given
in Chapter 5

PROPOSED FRAMEWORK BASIC ALGORITHM
nonplanar time nonplanar time

Input # layers # nets nets (m:s) nets (m:s)
IBM1 5 426 25 1:56 50 0:37
IBM2 5 428 35 0:58 44 0:30
IBM3 4 352 22 1:04 48 0:33
IBM4 5 312 47 1:22 68 0:54
IBM5 3 226 6 0:25 18 0:18
IBM6 5 441 35 1:01 50 0:32

Let P i
j−1 and P i

j denote the second-to-last and last patterns in subsequence si
j;

let P i+1
k denote the first pattern in subsequence Si+1

k . Assume that P i
j is part of a

differential pair, and (P i
j−1, P

i
j ) is not a differential pair. If this is the case, then an

edge from vi
j to vi+1

k (in GR) exists only if (P i
j , P

i+1
k ) is a differential pair.

These two modifications are sufficient to handle the differential pair constraints.

6.6 Experimental Results

We have performed experiments on escape problems extracted from a real industrial

board design, for which current industrial tools fail to produce a routing solution.

We have implemented our algorithms in C++, and performed the experiments on an

Intel Pentium 4 2.4GHz system with 1GB memory, and a Linux operating system.

The input parameter V given in Properties 6.1 and 6.2 is set to 4 in our experiments.

In Section 5.6, our experiments have illustrated that the randomized algorithm of

Chapter 5 outperforms the net-by-net methodology. Here, we use that randomized

algorithm for comparison with the algorithm we propose in this chapter. Table 6.1

gives the results obtained on industrial test cases. As mentioned before, layers are

processed one by one, and the maximal planar routing solution is found for each layer.

The number of nets that could not be routed in a planar fashion is given for each

problem under columns nonplanar nets. These nets will be distributed to available

layers later, allowing crossings in the intermediate channel. As discussed before, a

crossing net will need to use a via during the later stages of the routing system. The

results in Table 6.1 indicate that our algorithm reduces the via requirements on the

average by 39%, for the given industrial test cases. A sample output of our maximal
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planar routing algorithm for one layer is illustrated in Figure 6.11.

6.7 Conclusions

We have proposed an algorithm to solve the escape routing problem in multiple com-

ponents simultaneously. Compared to the algorithm proposed in Chapter 5, the main

improvements can be summarized as follows. First, we propose a more intelligent

pattern generation algorithm based on congestion levels in the components and the

number of crossings in the intermediate area. Then, we propose a more sophisticated

randomized algorithm for the maximal planar routing problem. We also show how

to handle typical high speed design constraints within the framework of this algo-

rithm. Our experiments show that our algorithm can reduce the via requirements

significantly.
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Figure 6.11: A planar escape routing solution is illustrated for two components.
111 nets have been routed on this layer. The connections in the intermediate area
are shown as straight lines between components.
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Chapter 7

Optimal Routing Algorithms for

Pin Clusters in High-Density

Packages

7.1 Introduction

One of the most difficult parts of the package routing problem is routing within

dense pin clusters [33]. Both packaging hierarchy and functional hierarchy imply

potential pin clustering at hierarchical interfaces. These clusters are formed typically

by pins that belong to the same functional unit or the same data bus. The highest

wire demand is typically within such pin clusters and in proximity of the cluster

perimeters. As additional objectives (such as delay and noise optimizations) impose

further constraints on the routing problem, getting the connections started correctly

from the clustered pin areas is becoming an increasingly important issue.

A cluster of pins from a real MCM design (from IBM) is illustrated in Figure 7.1.

As seen in this figure, these pin clusters typically have irregular shapes. The empty

areas in these clusters can be due to islands of voltage pins, which are routed in

dedicated voltage layers. They can also be due to blind or buried vias that do not

span all layers of the package. In surface mount type (SMT) components, such as

ball grid arrays (BGAs), I/O signals are typically transferred to inner component

layers using blind or buried vias [8; 60]. These vias are used to carry the I/O signals

from bare chips (on the top layer) to the layers on which the corresponding nets are

routed. In other words, once a net is routed on one layer, its pin is not extended
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Figure 7.1: A cluster of pins from a chip mounted on a ceramic MCM module from
a real IBM design. The convex boundary enclosing the pin cluster is also illustrated.

further down the layer stack. As a result, the cluster of pins typically shrinks as we

go further down the layer stack. Due to all these factors, the pin clusters often have

irregular shapes, as shown in Figure 7.1.

The escape routing problem has been studied extensively in the literature [9; 16;

29; 57; 64] to route nets from individual pins to a boundary. However, a rectangular

boundary is assumed in these algorithms most of the time, and the effects of irregular

boundaries are not considered. Normally, a traditional escape routing algorithm can

also be applied on a pin cluster with an irregular boundary. However, the problem here

is that routability outside the boundary is not guaranteed, since the routes of nets that

escape to this boundary may conflict with each other outside. Figure 7.2 gives a small

example to illustrate this problem in more detail. Assume that a set of nets have been

routed to a set of escape terminals on the boundary, as shown in Figure 7.2(a). Here,

one problem is how to determine whether all nets that have escaped to the boundary

can be successfully routed outside, since some of the escaped nets can conflict with

each other. In this example, there are 14 nets that have successfully escaped to the

boundary; however only 9 of them can be successfully routed outside, as shown in

Figure 7.2(b). In Section 7.3, we propose a set of necessary and sufficient conditions to

determine routability based on only the positions of escape terminals on an arbitrary
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(a) (b)

Figure 7.2: (a) An escape routing solution for 14 nets from pins to a convex bound-
ary. (b) Only 9 out of 14 escaped nets can be routed outside due to conflicts with
each other.

convex boundary. Another problem here is how to determine the maximal routable

subset if a given set of escape terminals is not routable. A maximal routable subset

is shown in Figure 7.2(b), together with a feasible routing solution, corresponding

to the escape terminals in Figure 7.2(a). For this purpose, we propose an optimal

algorithm in Section 7.4. In this algorithm, the optimal subset is determined based

on only the positions of the escape terminals, without performing any routing outside

the boundary. After that, we focus on an integrated approach in Section 7.5 to

consider routability outside during the actual escape routing algorithm. In other

words, instead of using a two-step methodology (escape routing followed by routability

analysis), we directly find the escape routing solution such that routability outside is

also guaranteed. For example, Figure 7.3(a) shows a different escape routing solution

for the problem in Figure 7.2. Here, all the nets that have escaped are routable, as

shown in Figure 7.3(b). The proposed algorithm for this purpose is also proven to be

optimal.

The rest of this chapter is organized as follows. We give a formal description of

this problem in Section 7.2. Then in Section 7.3, we propose a set of necessary and

sufficient conditions that exactly model routability outside the given convex bound-

ary. Based on these constraints, we propose an optimal algorithm in Section 7.4 to

select the maximal subset of routable escape terminals. After that, we propose an

integrated approach in Section 7.5 that incorporates the routability constraints into

the original escape routing algorithm in an optimal way. In section 7.6, we present

our experimental results, and demonstrate the effectiveness of our algorithms.
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(a) (b)

Figure 7.3: (a) A different escape routing solution for the problem of Figure 7.2.
(b) All 12 nets are routable outside the boundary.

7.2 Problem Formulation

Let P denote a cluster of pins, and let B denote the rectilinear convex boundary

enclosing P. Our purpose is to find a routing solution from each pin in P to an escape

terminal on B. Here, the scarcity of routing resources inside dense pin clusters do

not allow usage of additional buried vias. Hence, the escape routing solution needs

to be planar on every layer.

As illustrated in Figure 7.2, the nets escaping to an irregular boundary can have

conflicts with each other outside. A given escape routing solution is defined to be

routable outside iff all nets escaping to boundary B can be routed without conflicts,

as illustrated in Figure 7.3(b). Here, let us assign a unique index to every escape

terminal on boundary B, as shown in Figure 7.4. Furthermore, let #t(x, y) denote the

number of nets escaping to escape terminals in the interval [x, y], e.g. #t(8, 13) = 5

in part (a), and #t(8, 13) = 3 in part (b) of Figure 7.4. Here, the first problem we

focus on is how to determine whether a given escape routing solution is also routable

outside, using these #t(x, y) values. If the given solution is not routable outside, the

next problem becomes how to select the maximal subset of routable escape terminals.

Finally, the third problem is how to find an escape routing solution in an optimal way

such that overall routability is guaranteed. We study these problems in this chapter,

and propose models and algorithms to solve each of them optimally.

For simplicity of presentation, we will consider only a single layer. In other words,

our objective will be to find the maximal escape routing solution on one layer, given a

set of candidate pins. It is possible to process layer by layer, and apply our algorithms
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Figure 7.4: A boundary with a single corner is illustrated, where filled circles repre-
sent the escape terminals at which an escape route ends (the escape routes inside are
not shown for clarity). Two examples with different terminals are given in (a) and
(b).

on every layer. However, our algorithms can also be extended to multilayer problems

in a straightforward way, by duplicating the given constraints for every layer.

7.3 Constraint Modeling

Our purpose in this section is to investigate the relationship between escape terminal

positions on a given convex boundary and the overall routability. For this, we define

a set of necessary and sufficient conditions that exactly model routability outside the

boundary. For simplicity of presentation, we will first focus on a single corner of a

given convex boundary in Section 7.3.1 and then generalize this model for an arbitrary

convex boundary in Section 7.3.2. This constraint modeling will be especially useful

since it can be incorporated into the original escape routing algorithm in such a way

to guarantee routability outside the boundary.

7.3.1 Corner Constraints

In this section, we will consider a boundary with a single corner, as shown in Fig-

ure 7.4. Here, let r and r + 1 denote the escape terminals on the corner, and let
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Figure 7.5: Routing solutions outside the boundaries for the problem given in Fig-
ure 7.4. Three and one nets are unroutable in the solutions of parts (a) and (b),
respectively.

k denote the width of one side of the corner.1 Furthermore, let #t(x, y) denote the

number of nets that have escaped to terminals in the interval [x, y]. Observe in the

example of Figure 7.4 that r = 10, and k = 10. Also, #t(9, 12) = 3 in part (a),

and #t(9, 12) = 2 in part (b), etc. The following theorem defines the necessary and

sufficient conditions for routability:

Theorem 7.1 An escape routing solution is routable if and only if #t(r-i+1, r+i) ≤
i, for each i, 1 ≤ i ≤ k. In other words, routability is guaranteed if and only if the

number of nets escaping to terminals in the interval [r-i+1, r+i] is less than or equal

to i, for each i.

As an example, let us consider the boundary given in Figure 7.4, where the escape

terminals are marked from 1 to 20. Here, the following conditions are necessary

and sufficient for routability: #t(10, 11) ≤ 1, #t(9, 12) ≤ 2, ..., #t(1, 20) ≤ 10.

The given escape routing solution in part (a) violates the conditions #t(9, 12) ≤ 2,

#t(8, 13) ≤ 3, and #t(5, 16) ≤ 6; hence, 3 out of 11 nets are unroutable, as illustrated

in Figure 7.5(a). Similarly, the solution in part (b) violates the condition #t(5, 16) ≤
6, resulting in one unroutable net.

Proof. NECESSITY: We first prove that the constraints given in Theorem 7.1 are

necessary for routability outside. For any i value, let Di denote the diagonal line

1For simplicity, assume that the widths of both sides are equal as shown in Figure 7.4. The
generalization will be given in Section 7.3.2.
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spanning the grid cells that have Manhattan distance of i to the corner, as shown

in Figure 7.6(a). It is obvious that the number of outlets (i.e., grid cells through

which nets can escape) on Di is equal to i. Since a net escaping to a terminal in

the interval [r − i + 1, r + i] must use an outlet on Di, the necessity of constraint

#t(r − i + 1, r + i) ≤ i follows.

Proof. SUFFICIENCY: Let us make the following inductive hypothesis: If the

constraints #t(r − i + 1, r + i) ≤ i are satisfied for each i, 1 ≤ i ≤ k, then all nets

escaping to terminals in the interval [r−k+1, r+k] can escape to diagonal Dk. Again,

Dk denotes the diagonal line spanning the grid cells that have Manhattan distance

of k to the corner, as shown in Figure 7.6(a). It is straightforward to show that this

hypothesis holds for the base case k = 1. Now let us assume that it holds for k = m,

and we will prove it for k = m + 1. For this, we need to consider two cases:

• Case 1: #t(r − m + 1, r + m) < m. Here, since there are less than m outlets

used on diagonal Dm, there is at least one outlet unused (shown as a hollow

circle in Figure 7.6(b)). Even if there are two nets escaping to terminals r −m

and r + m + 1, all nets will still be routable to diagonal Dm+1, as shown in

Figure 7.6(b).

• Case 2: #t(r−m+1, r+m) = m. For the constraint #t(r−m, r+m+1) ≤ m+1

be satisfied, only one net can escape to terminals r − m and r + m + 1. As

shown in Figure 7.6(c), and (d), all nets will still be routable to diagonal Dm+1,

as long as only one of the terminals r − m or r + m + 1 is selected.

So, the inductive proof is complete.

7.3.2 Generalization to Arbitrary Convex Boundaries

In this section, the idea presented in Section 7.3.1 is generalized to arbitrary convex

boundaries. For a rectilinear convex boundary, we can make the following definition:

Definition 7.1 A rectilinear convex boundary is defined to have four different re-

gions: falling-right, falling-left, rising-left, and rising-right regions, as illustrated in

Figure 7.7.

It is obvious that nets escaping to one boundary region (e.g. falling-right region)

do not interfere with nets escaping to other regions outside the boundary. In other
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Figure 7.6: (a) Diagonal Dm has m escape outlets (shown as hollow circles). (b) If
there is an unused outlet on Dm, all nets are routable to Dm+1, even if both escape
terminals r − m and r + m + 1 are selected. (c,d) If all outlets on Dm are occupied,
then routability is guaranteed as long as at most one of terminals r−m and r+m+1
is selected.
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Figure 7.7: Different boundary regions of a rectilinear convex boundary are illus-
trated.

words, we can consider each of falling-right, falling-left, rising-left, and rising-right

regions independent of each other while determining routability outside the boundary.

So, in the rest of this section, we will propose the necessary and sufficient conditions

for only a falling-right boundary region. It is straightforward to generalize these

conditions for other region types.

For the ease of presentation, we will define the routability conditions using the

algorithm given in Figure 7.10. This algorithm is based on boundary transformations

that are defined in Definitions 7.2 and 7.3. It is important here to note that these are

only conceptual transformations used for the purpose of presentation. In other words,

these transformations are not actually performed (i.e., the original boundary still re-

mains intact); however, they are used conceptually to generate the set of necessary

and sufficient conditions for routability. In the following, let H-segment, V-segment,

and D-segment denote horizontal, vertical, and diagonal boundary segments, respec-

tively.

Definition 7.2 Consider a corner of a falling-right boundary where a V-segment is

followed by an H-segment. We can (conceptually) transform this corner as shown

in Figure 7.8(a), and add the explicit constraint #t(r, r + 1) ≤ 1, where the escape

terminals on the corner are denoted as r and r + 1. Intuitively, replacing a corner

with a diagonal as in this figure implies that we do not have to consider this corner

anymore for routability analysis, as long as the constraint #t(r, r+1) ≤ 1 is satisfied.

Definition 7.3 Consider a falling-right boundary that contains a V-segment, fol-

lowed by a D-segment, followed by an H-segment. We can (conceptually) transform
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Figure 7.8: Illustration of the boundary transformations given in (a) Definition 7.2,
and (b) Definition 7.3. The corresponding constraints generated are also shown.

this boundary as shown in Figure 7.8(b), and add the explicit constraint #t(r−k, r +

k + 1) ≤ k + 1, where r and k are as defined in this figure.

Lemma 7.1 Let B denote the original escape boundary, and let B′ denote the bound-

ary after one of the transformations given in Definitions 7.2 and 7.3 is applied on B.

The routability characteristics of B is equivalent to the routability characteristics of

B′ iff the additional constraint introduced during the transformation is satisfied.

Proof. The proof is very similar to the inductive proof of Theorem 7.1.

Intuitively, we can continue performing boundary transformations, and defining

new conditions, until the transformed boundary is guaranteed to be routable. The

following lemma states the routability condition for a falling-right boundary.

Lemma 7.2 A falling-right boundary B is guaranteed to be routable outside if there

is no H-segment after a V-segment in B.

Proof. Figure 7.9 shows the main intuition. In part (a), there is no H-segment

after a V-segment, and all nets escaping to all terminals on the boundary are routable.

On the other hand, there is an H-segment after a V-segment in part (b), and routing

conflicts are possible outside the boundary.
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Figure 7.9: Illustration of routing conflicts outside a falling-right boundary. (a)
There is no H-segment after a V-segment; hence conflict-free routing is possible out-
side. (b) The H-segment after V-segment causes routing conflicts.

CREATE-CONSTRAINT-FOREST(falling-right boundary B)

C ← ∅ // the set of necessary and sufficient conditions

while there is no H-segment after a V-segment in B

perform a (conceptual) boundary transformation

add the corresponding constraint into C.

create the constraint forest F as follows:

for each constraint in C, a node exists in F .

Node u is a parent of node v in F iff u has the smallest

interval that is a proper superset of v’s interval.

return F

Figure 7.10: Algorithm to generate the set of necessary and sufficient conditions for
a given falling-right boundary.
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Figure 7.11: Illustration of constraint forest generation on a convex boundary with
28 escape terminals. The original boundary is shown with dotted lines. (a) The
boundary after the first set of transformations, and the corresponding partial forest.
(b) The final boundary, and the constraint forest generated.

Figure 7.10 gives the algorithm we use to generate the set of necessary and suffi-

cient conditions corresponding to a given falling-right boundary. This set of conditions

is represented as a constraint-forest F , where each node in F corresponds to a con-

straint in the form #t(x, y) ≤ z; i.e., the number of nets escaping to terminals in the

interval [x, y] is less than or equal to z. Here, if node u is a parent of node v, then the

constraint interval corresponding to node u is guaranteed to be a proper superset of

the constraint interval corresponding to node v. Figure 7.11 illustrates the constraint

forest generation process with an example.
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7.4 Selection of Maximal Routable Escape

Terminals

In this section, we assume that escape routing to an arbitrary convex boundary has

already been performed, and our purpose is to select the maximum subset of terminals

that can be routed outside without any conflicts. For this, we make use of constraint

forest F , which was defined in Section 7.3. Before giving the details of this algorithm,

we will make some observations about the properties of F as follows.

Remark 7.1 Consider two nodes u and v in constraint forest F . If u is an an-

cestor of v, then the interval corresponding to u is a proper superset of the interval

corresponding to v.

Remark 7.2 Consider two nodes u and v in constraint forest F . If u is neither

ancestor nor descendant of v, then the intervals corresponding to u and v do not

overlap.

Remark 7.3 Consider a non-leaf node u that has the constraint #t(x, y) ≤ z, The

union of the constraints corresponding to all children of node u is equivalent to #t(x+

1, y − 1) ≤ z − 1.

Remark 7.4 The number of nodes in constraint forest F is linear in the number of

escape terminals on the boundary.

These observations directly follow from the definition of the constraint forest.

Readers can refer to Figure 7.11 for an example.

The algorithm we propose for selection of maximal routable escape terminals is

given in Figure 7.12. The recursive function given in this figure needs to be called for

each root node in the constraint forest F . Intuitively, we first process the children

of the current node r, and find the maximal set of escape terminals that satisfy the

descendant constraints. Then, we consider the constraint at r, which is #t(x, y) ≤ z.

From Remark 7.3, we know that the escape terminals in the interval [x+1, y−1] have

already been processed by the descendants of node r. So, we consider only the escape

terminals x and y here. If the size of the selected terminal set T is still less than z,

then we add these terminals to T , making sure that the constraint #t(x, y) ≤ z is

not violated. The following theorem states the optimality and the time complexity

of this algorithm.
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SELECT-ESCAPE-TERMINALS(Node r)

T ← ∅ // the selected terminal set

for each child u of r do

T ← T ∪ SELECT-ESCAPE-TERMINALS(u)

Let #t(x, y) ≤ z be the constraint corresponding to r

If there is an escape route ending at terminal x

T ← T ∪ {x}
If there is an escape route ending at terminal y

if |T | < z

T ← T ∪ {y}
return T

Figure 7.12: The algorithm to select the maximal routable escape terminals. This
algorithm needs to be called for each root node in the constraint forest.

Theorem 7.2 The algorithm proposed in Figure 7.12 returns the maximal subset of

escape terminals that are routable outside the boundary. The time complexity of this

algorithm is linear in the number of escape terminals on the boundary.

Proof. The time complexity of the algorithm directly follows from Remark 7.4,

since each node in the forest is processed only once. For optimality, let us first consider

Remark 7.2, which indicates that different subtrees rooted at r specify constraints for

non-overlapping intervals. In other words, terminal selection in each subtree can

be performed independent of each other. Now, we will prove the optimality of this

algorithm using induction. As the base case, let us consider a forest consisting of only

leaf nodes. It is obvious that our algorithm will give the optimal solution, since each

leaf is independent of each other (due to Remark 7.2). Now, assume that the inductive

hypothesis holds for each child subtree of node r; i.e., each recursive call to a child of

r returns the optimal solution. Let us denote the constraint corresponding to node r

as #t(x, y) ≤ z. We know that the intervals corresponding to different subtrees do

not overlap (due to Remark 7.2) and that the union of the intervals considered in r’s

child subtrees is [x+1, y−1] (due to Remark 7.3). From the inductive hypothesis, we

can state that after the recursive calls, T contains the maximal routable set of escape

terminals in the interval [x + 1, y − 1]. So, while processing node r, we only need
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to consider whether we should add escape terminals x and y into T . Note that the

maximum number of escape terminals that can be selected in the interval [x, y] is z due

to the constraint at node r. Now, let us consider two cases: (1) #t(x+1, y−1) < z−1,

and (2) #t(x + 1, y− 1) = z − 1. In the first case, both x and y can be added to T , if

there are escape routes ending at these terminals; hence, the optimal solution in the

interval [x, y] is obtained. In the second case, we need to make sure that the number

of selected terminals does not exceed z before selecting terminals x or y. However,

we know that the maximum size of T can be z in any routable solution; hence the

optimal solution in the interval [x, y] is still maintained. So, our inductive proof is

complete.

7.5 Routability-Driven Escape Routing

In the previous sections, we have assumed that the escape routing solution has already

been found, and we have proposed a set of constraints to determine the routability

outside the boundary. In this section, we propose an integrated approach to solve the

escape routing problem in such a way that routability outside is guaranteed. For this

purpose, we define a flow network corresponding to the constraint forest proposed in

Section 7.3, and then we augment it to the original flow network which corresponds

to the escape routing problem.

It is well known that the problem of escape routing can be solved optimally using

network flow [16]. In the literature, there have also been different improvements

proposed for the purpose of reducing execution time and space requirements [9; 29].

Our constraint models can be applied to different flow models; however we will focus

on the basic network flow formulation for simplicity of presentation.

Let us assume that flow network N is modeled corresponding to the original escape

problem (to a convex boundary) as follows: For each grid cell, there is a vertex in N ,

with node capacities equal to 1. The vertices corresponding to the neighboring grid

cells are connected by edges in N . Furthermore, there are two special vertices: the

source and the sink vertices in the flow network. There is an edge from the source

vertex to every vertex that corresponds to a grid cell on which a net terminal exists.

Similarly, there is an edge to the sink vertex from every vertex that corresponds to a

grid cell on the boundary. It is known that the maximum flow from the source vertex

to the sink vertex in N gives the optimal solution for the escape routing problem.
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Further details about this basic network flow formulation can be found in [16]. Note

here that this formulation does not consider the routability constraints outside the

boundary, and it is possible to obtain a routing solution that is not routable outside

the convex boundary, as illustrated in Figure 7.2. For the purpose of incorporating

the routability constraints, we define the following flow network NC :

Definition 7.4 The flow network NC corresponding to constraint forest F is created

as follows:

• Create a t-vertex corresponding to each escape terminal on the convex boundary.

Set the capacity of each t-vertex to 1.

• Create a c-vertex corresponding to each node in the constraint forest F .

• Consider each c-vertex vc, which corresponds to the constraint #t(x, y) ≤ z. Set

the capacity of vc to z. Then, create the incoming edges to vc as follows:

– Create an edge to vc from t-vertex corresponding to escape terminal x.

– Create an edge to vc from t-vertex corresponding to escape terminal y.

– Create edges to vc from the c-vertices that correspond to children of vc (in

the constraint forest F).

• Consider each c-vertex vr that corresponds to a root node in the constraint forest

F . Create an edge from vr to sink vertex of F .

The flow network corresponding to the constraint forest of Figure 7.11(b) is illus-

trated in Figure 7.13 as an example. Note that the size of NC is linear in the number

of escape terminals on the convex boundary, due to Remark 7.4.

Definition 7.5 The flow network NC (corresponding to constraint forest F) can be

augmented to the original flow network N (corresponding to the escape routing prob-

lem inside the convex boundary) as follows:

Consider each vertex v in N that corresponds to an escape terminal on the bound-

ary. If this escape terminal has a constraint associated with it in constraint forest F ,

then

• The edge from v to the sink vertex is removed.
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Figure 7.13: The flow network NC corresponding to the constraint forest given in
Figure 7.11(b). The dark and light circles represent t-vertices and c-vertices, respec-
tively. The capacities of c-vertices, and the terminal indices of t-vertices are also
shown.
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Figure 7.14: An example illustrating how to augment constraint network NC to the
original flow network N . Here, an edge exists from each terminal vertex in N to the
corresponding t-vertex in NC .

• An edge is created from v to the corresponding t-vertex in NC.

This augmentation process is illustrated in Figure 7.14 with a simple example.

Here, the terminals on the corner (terminals 1-8) are connected to the corresponding

t-vertices in NC. Since no constraint is associated with terminals 9-12, they are still

connected to the sink vertex directly.

Theorem 7.3 Let N denote the original flow network corresponding to the escape

problem inside the boundary. Let NC denote the constraint flow network as given in

Definition 7.4. Assume that we augment NC to N as described in Definition 7.5 to

obtain the final flow network NF . The maximum flow on NF will give the optimal

escape routing solution that is also routable outside the convex boundary.

Proof. Here, we need to prove that there is a one-to-one correspondence between

the maximal flow in NF and the maximal escape routing solution that is also routable
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outside the convex boundary. First, we will prove that any valid flow solution in

NF corresponds to a valid escape routing solution. We can state that any valid

flow solution in NF must satisfy all the conditions defined in Section 7.3, since NC

models the constraint forest exactly. We have also shown in Section 7.3 that these

constraints are sufficient for routability outside the convex boundary. Hence, there is

a valid escape routing solution corresponding to any flow in NF . Then, we can prove

that there is a flow in NF corresponding to any valid escape routing solution. We

have proven in Section 7.3 that the constraints defined are necessary for routability

outside the convex boundary. So, any valid escape routing solution must satisfy all

these constraints; hence must have a corresponding valid flow in NF .

7.5.1 Discussions

A straightforward approach here could be to define a rectangular bounding box for

the pin clusters, instead of a rectilinear convex boundary. In that case, we do not

need to worry about the routability constraints outside, since all escape terminals

are on a rectangular boundary. However, this approach increases the complexity of

the escape problem inside the boundary. For example, let us consider the boundary

segment in Figure 7.4. Defining a bounding box instead of this convex boundary

would require the k× k grid outside the boundary to be included in the flow network

inside. Depending on the convexity of the boundary, this approach can increase the

size of the flow network quadratically. However, the constraint network we have

defined in this section has only linear size in the number of escape terminals on the

boundary. So, when we augment it to the original flow network, the complexity of

the network flow algorithm does not increase.

Besides, in industrial practice, escape routing problem is not always solved by

flow-based methodologies. This is mainly due to the high complexities and lack of

constraint-handling capabilities of network flow algorithms. So, different heuristics

for escape routing are being used in practice. A sample heuristic here can be based on

routing pins to the closest escape terminals on the boundary. This heuristic would es-

pecially work well if most of the pins are close to the escape boundary. However, if we

define the boundary as a bounding box instead of a rectilinear convex boundary, the

pins will get farther away from the boundary, and the escape routing problem inside

will get considerably more difficult. On the other hand, the routability constraints we

have defined in this chapter can easily be incorporated into different heuristic-based
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Table 7.1: Comparison of routability-driven escape routing with the traditional
algorithm

TRADITIONAL ROUTABILITY-DRIVEN
PIN CLUSTER ESCAPE ROUTING ESCAPE ROUTING
Area # Pins # layers time # layers time
7167 1687 13 1:12 10 0:57
8530 2080 14 1:44 11 1:26
9237 3742 26 3:34 21 2:53
9930 4885 31 5:02 26 4:13
10620 5984 38 7:04 32 5:51
12534 7638 47 11:02 40 8:59

escape routing algorithms, and they are applicable to arbitrary rectilinear convex

boundaries.

7.6 Experimental Results

We have performed experiments to evaluate the practical effectiveness of the models

and algorithms we have proposed. We have implemented all algorithms in C++, and

performed the experiments on a Linux system with Intel Centrino 1.5GHz processor,

and 512MB memory.

For comparison purposes, we have applied a network flow based escape routing

algorithm on a set of test circuits, and then used the optimal algorithm (proposed in

Section 7.4) to select the maximal subset of routes that are also routable outside the

boundary. In other words, escape routing is performed without considering routability

outside in the beginning, and then the unroutable nets for the current layer are

removed. The results of this methodology are given in Tables 7.1 and 7.2 under

the columns traditional escape routing. We have also implemented the integrated

approach (proposed in Section 7.5), which considers routability constraints outside

the boundary during the actual escape routing algorithm. A sample routing solution

using this integrated methodology is given in Figure 7.15. Note here that all the

necessary and sufficient conditions defined in Section 7.3 are satisfied in this solution,

and it is guaranteed that all nets can be routed outside without any conflicts.

Table 7.1 gives the final routing results corresponding to these two methodologies.

When routability outside the boundary is not considered during the actual escape
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Table 7.2: Single-layer routing characteristics of the traditional and routability-
driven escape routing algorithms

TRADITIONAL ROUTABILITY-DRIVEN
PIN CLUSTER ESCAPE ROUTING ESCAPE ROUTING
Area # Pins # escape # routable time # escape # routable time
7167 1687 308 239 0:14 290 290 0:13
8530 2080 322 264 0:17 310 310 0:17
9237 3742 329 270 0:21 319 319 0:21
9930 4885 337 287 0:24 331 331 0:24
10620 5984 344 285 0:27 333 333 0:26
12534 7638 368 299 0:35 353 353 0:34

routing, more routing layers are needed, as can be observed in this table. However,

when these constraints are integrated into the actual escape routing algorithm, the

number of necessary layers decreases by 17% on average.

We have also listed the number of nets routed on the first layers of each circuit

in Table 7.2. These quantities are important to observe the characteristics of these

algorithms more closely, because each algorithm tries to route the maximal number

of nets on the first layer. In this table, we list not only the number of nets that

have escaped to the convex boundary, but also the number of nets that are routable

outside. On average, the traditional escape routing algorithm routes 3.7% more nets

on the first layer. However, on average 18.1% of these nets are not routable outside

the boundary; so they need to be removed from the solution of this layer (and need to

be propagated to the lower layers). However, when we consider routability constraints

during the actual escape routing algorithm, it is guaranteed that the escape routing

solution found is completely routable outside.

7.7 Concluding Remarks

In this chapter, we have studied the escape routing problem of irregular-shaped pin

clusters, which are encountered frequently in in high-end MCMs. We have shown

that routing nets to the cluster boundary without considering routability outside

may lead to inferior solutions. We have proposed a set of necessary and sufficient

conditions that model routability based on the positions of escape terminals on the

boundary. Then, we have proposed an algorithm that selects the optimal subset
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Figure 7.15: The escape routing solution on one layer of a sample pin cluster. 227
out of 414 nets have been routed on this layer. The solution found is also guaranteed
to be routable outside.

of escape routes that are also routable outside. This algorithm is especially useful

when a traditional routing algorithm is applied on a cluster of pins with a convex

boundary. Then, we have shown how to integrate these constraints into the original

routing algorithm without losing optimality. Our experiments have shown that the

integrated methodology can reduce the number of layers by 17% on average.
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Chapter 8

Conclusions and Future Directions

In this dissertation, we have proposed routing algorithms for high-performance VLSI

packaging. Our objective has been to handle routing challenges due to increasing

package densities, and high clock frequencies.

We have first focused on the problem of routing nets within tight min and max

length constraints. This problem is becoming more and more important due to in-

creasing clock frequencies, and increasing numbers of high-speed bus structures in

the current high-end VLSI packages. In Chapter 2, we have proposed a Lagrangian

relaxation based length matching routing algorithm, where the objective of satisfying

min-max length constraints is effectively incorporated into the actual routing prob-

lem. Although this algorithm can be used for more general routing problems, we have

also considered more restricted yet common problem instances and proposed more ef-

fective algorithms in Chapters 3 and 4. Specifically, we have focused on the two-layer

bus routing problem between component boundaries in Chapter 3. We have modeled

this problem as a job scheduling problem, and proposed algorithms to effectively solve

it. In Chapter 4, we have focused on the problem of routing bus structures between

component boundaries on a single layer. For this, we have proposed algorithms that

are proven to give close-to-optimal solutions.

In the second half of the dissertation, we have focused on the escape routing prob-

lem, which is defined as routing nets from individual pins within dense components to

the component boundaries. Due to increasing package densities, the escape routing

problem is increasingly becoming the main bottleneck in terms of overall routability

[61]. In Chapter 5, we have proposed fundamental models and algorithms to solve

the escape routing problem in two components simultaneously, such that the number
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of crossings in the intermediate area is minimized. Then, in Chapter 6, we have fo-

cused on the practical aspects of this problem, and we have proposed improvements

on the fundamental models and algorithms of Chapter 5. Finally, in Chapter 7, we

have focused on the escape routing problem within dense pin clusters, which can have

arbitrary convex boundaries. Here, we have proposed a set of sufficient and neces-

sary conditions that guarantee routability outside the escape boundary. We have

also discussed how these conditions can be used effectively within an escape routing

framework.

An important future research direction here is to develop a package-level rout-

ing system based on the fundamental algorithms proposed in this dissertation. As

noted in Chapter 5, the basic assumption used in our simultaneous escape routing

algorithm is that the problem consists of two components separated with a channel.

In Section 5.5, we have discussed how to generalize this assumption by merging mul-

tiple components into (conceptual) super-components, and applying our algorithms

on these super-components. However, for complex board designs, we need an algo-

rithm that automatically identifies the best pairs of components to be routed on each

layer of a complex design. Once the component pairs are identified for the current

layer, the proposed escape routing algorithms can be applied on each component pair

separately. As mentioned before, typical industrial boards today contain large bus

structures between pairs of components. Basically, we need a bus planning algorithm

that identifies the best subset of buses to be routed on the current layer. After that,

the escape routing algorithm given in Chapter 5 can be used to determine the routing

solutions of individual nets from their terminal pins to the corresponding component

boundaries. Once all nets are routed to their component boundaries, it is possible to

use one of the area routing algorithms we have proposed in Chapters 2, 3, and 4 to

route nets between different component boundaries. In particular, if buried vias are

allowed, the two-layer routing algorithm proposed in Chapter 3 can be used to route

nets between pairs of component boundaries. Otherwise, the single-layer routing al-

gorithm proposed in Chapter 4 can be used for this purpose. For the remaining nets

that do not belong to any regular bus structure (i.e., for which a well defined channel

cannot be defined), the general length-matching routing algorithm given in Chapter 2

can be used.
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