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Abstract 

 

Shipping has a considerable impact on the environment due to operational and 

accidental pollutant releases. Maritime environmental legislation has tightened in 

recent years since the introduction of the MARPOL 73/78 regulations, however 

there is often a significant time gap between when the regulations are adopted 

and when they legally enter force. The emergence of private voluntary initiatives 

has occurred in an attempt to bridge this gap, reduce environmental impacts and 

raise the environmental profile of ships. However, there are inconsistencies in the 

methodologies used to define ship performance, while the number and diversity 

of initiatives available for use can cause confusion, hindering progress towards 

greater sustainability. 

A critical analysis of existing environmental initiatives in the shipping industry has 

been conducted, highlighting limitations with regards to applicability, scope, 

ambition, and integrity of the methodologies adopted. Many of the existing 

initiatives lack the flexibility to be ship specific and show bias towards certain 

environmental indicators, and lack the ambition to set stringent standards. Many 

of the schemes use proxy indicators based on design criteria as a measure of 

environmental performance rather than actual emissions and discharges.  

An alternative approach to environmental assessment of ships is proposed which 

offers a holistic method of assessment, can be applied to multiple vessel types 

using a broad, relevant scope based on environmental impacts, and assesses 

performance based on actual emissions and discharges of pollutants to the 

environment. The proposed method, the VEP index, adopts a risk assessment 

based methodology and is intended as a holistic framework for assessment of 

ship environmental performance. The VEP index is rigorously tested using 

operational data from two case study vessels. The results clearly distinguish 

which of the vessels performs better environmentally, and highlight the suitability 

of the index for comparing vessel environmental performance. When compared 

with other indices used in the shipping sector, the VEP index provides a more 

accurate assessment of environmental performance based on ships’ operational 

emissions.
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1.0 Introduction 

 

1.1 Introduction 

The aim of this chapter is to introduce the purpose and focus of this research, and to 

provide the reader with an overview of the thesis. This chapter outlines the 

background to the research, the focus of the study, the contribution to the wider 

research field, the aims and objectives of the research, the research structure, and 

an overview of the thesis. 

The thesis is presented in a series of chapters that address the research questions. 

Each chapter begins with an introduction to the topic and the purpose of the work, 

then provides a detailed description of the work carried out including any methods 

utilised and analyses of the findings, and ends with a summary of the outcomes.  

 

1.2 Research background 

The shipping industry is under increasing pressure to reduce its environmental 

footprint. Maritime legislation with regards to the environment has tightened in recent 

years with the introduction of international regulations such as MARPOL 73/78 and 

its annexes for controlling air emissions and discharges of oil, sewage, garbage and 

noxious substances to sea. Treaties such as the Ballast Water Management (BWM) 

and Anti-fouling Systems (AFS) Conventions regulate other pollutant discharges to 

water, and proposed agreements such as the Hong Kong Convention for ship 

recycling, and the Hazardous and Noxious Substances (HNS) Convention are yet to 

be ratified.  

Many countries with a heavy reliance on the shipping industry recognise the need for 

improved air quality in ports and harbours, with increasing attention focussed on 

shipping sustainability through various international consortia such as CLINSH 

(Clean Inland Shipping), CNSS (Clean North Sea Shipping), and SCC (Shipping in 

Changing Climates).  

Much of the focus of concern in the shipping sector has been on the impacts of air 

pollutants from vessels, while the effects of pollutant discharges to other aspects of 
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the environment have received less attention. Ships are used to transport 

approximately two billion tonnes of oil around the world annually (Rodrigue et al., 

2009), and while the risk of spillage has decreased in recent years since the 

introduction of double hull tankers (Yip et al., 2011), it is estimated that around 

200,000 tonnes of oil are discharged to the environment during ship operation 

(Jernelov, 2010). Recreational shipping is responsible for discharging large 

quantities of sewage and grey water into the oceans, while the accumulation of toxic 

chemicals from antifoul coatings and discharge of untreated ballast water can have 

major impacts on the marine environment. It is therefore important that measures for 

controlling the effects of ships on the environment adopt a broad scope based on 

critical and rational assessment of impacts, rather than current political and 

regulatory concerns. 

It has been suggested that the shipping industry is insufficiently regulated with 

regards to environmental protection due to the fragmentary nature of local, national, 

regional and international legislation (Lister et al., 2015). The structure of 

international law requires a consensus based approach, which often results in stalled 

ratification of environmental conventions.  

In response to the regulatory challenges, other approaches have been adopted to 

reduce the environmental impact of ships including the use of proactive 

environmental management strategies such as ISO 14001, to identify and control 

environmental risks by providing a framework for preventing and mitigating pollutant 

releases to the environment.  Other environmental management techniques such as 

Life Cycle Assessment (LCA), scenario modelling and analysis, and environmental 

risk assessment are useful tools for estimating and quantifying the potential impact 

of pollutant emissions on the environment, however such activities are complex and 

require significant allocation of time, resource and expertise to be conducted.  

An increasingly common approach to assessing and communicating the 

environmental performance of ships is through the use of voluntary environmental 

initiatives, which act as indicators of environmental performance and attempt to 

apportion cost to harmful emissions by offering incentives to cleaner ships. However, 

studies suggest that many of the indices developed focus heavily on emissions to 
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air, without taking into consideration the interactions with the wider environment 

(Murphy et al., 2013). 

Numerous environmental indices have been proposed as methods to assess ships, 

approximately 50 were catalogued as part of the Clean Baltic Sea Shipping 

CLEANSHIP project (Fridell et al., 2013), and additional studies identify numerous 

other initiatives used in the shipping sector (Svensson and Andersson, 2011; EMSA, 

2007; Pike et al., 2011; SSI, 2013; Stuer-Laridsen et al., 2014).   

Further to this, Murphy et al. (2013) conducted an in depth analysis of two of the 

more commonly used indexing systems for emissions to air; the ESI (Environmental 

Ship Index) and CSI (Clean Shipping Index). The previous studies provide some 

preliminary data with respect to the composition of green shipping initiatives, 

however there is a lack of analysis regarding the effectiveness of such schemes in 

improving the environmental performance of ships. 

Additional research is required to investigate the methods used to rank vessel 

environmental performance, and assess the effectiveness of existing schemes in 

reducing pollutant emissions and discharges from ships. There is also a need for 

development of coherent strategies for assessing the impact of ship related 

pollutants on the environment using a quantitative approach. 

The motivation behind this thesis is driven by the authors’ interest in the environment 

and recognition of the importance of environmental preservation for future 

generations. Previous work in the fields of environmental science (Undergraduate) 

and environmental engineering (Masters) have fuelled this interest, while prior 

research into ship environmental indices (Murphy et al., 2013), to which the author of 

this thesis contributed, highlights the need for further exploration in this field. 

 

1.3 Focus of study 

It is proposed that this research seeks to establish a rational and coherent strategy 

for assessing and ranking the environmental performance of ships that is transparent 

and effective across all ship types and sizes. The thesis focuses on commercial 

ships, however the approach is to be flexible for adaptation to other types of fleet 

including recreational craft, fishing vessels and warships (excluding nuclear). This 
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will be done through identification of the key impacts of shipping on the environment, 

and development of an appropriate system of assessment through investigation of 

current indices and assessment techniques. Furthermore, the proposed method will 

assess a ships environmental performance against realistic operating profiles, rather 

than under assumed test conditions, which is current practice. In order to truly 

measure performance, a ship must be ranked against the regulatory requirements, 

but also take into consideration the wider impacts on the environment. That is, a 

ranking system is required to assess a ships green credentials beyond simply 

meeting the regulations. 

 

1.4 Research contribution 

This thesis contributes to the wider research field by detailing the impacts of ship 

operations on the environment, and outlines the related regulatory and voluntary 

management and control mechanisms currently utilised in the industry. Summaries 

of the outputs are presented to help better understand the linkages between 

pollutant emissions and environmental threats, and the measures currently 

implemented to reduce such threats. This study also proposes a set of quantified 

pollutant weighting factors by assessing the severity of impacts of ship emissions 

and discharges to the environment. 

The research builds upon the body of work conducted by Svensson and Andersson 

(2011), Fridell et al. (2013), Pike et al. (2011) and Stuer-Laridsen et al. (2014), 

examining the use of environmental performance indices in the shipping sector by 

providing in depth analyses of the transparency, scope, assessment rationale and 

flexibility of the existing schemes. The purpose of this is to understand their 

limitations, and develop the existing strategies into an accurate and rational 

approach for assessment of environmental performance based on realistic 

operational profiles of ships. An environmental assessment method for ships, the 

VEP index, is presented. 

 

 

 



 

5 
 

1.5 Aim and objectives 

The aim of this research is to develop a clear and coherent method for assessing 

and ranking the environmental performance of ships using a holistic approach. The 

method must include ships interactions with the environment and consider actual as 

opposed to theoretical ship performance. 

The objectives of this research are as follows: 

- Comprehensive review of literature outlining the interactions and impacts of 

ships on the environment, along with the regulatory and voluntary 

mechanisms utilised for controlling ship related pollutants. 

 

- Critical analyses of existing environmental rating and assessment systems, 

identifying the limitations with existing schemes. 

 

- Development of a ship environmental assessment methodology (the VEP 

index) applicable across a range of ship types. 

 

- Application of the methodology using actual performance data from case 

study vessels. 

 

1.6 Overview of thesis 

The thesis is divided into six chapters, with references and appendices presented at 

the end. It is recommended that each chapter is read in the order laid out, as the 

findings from each are referenced in the sections that follow, however the chapters 

can also be read independently. The content of each chapter is briefly outlined in the 

following sections. 

 

1.6.1 Chapter 1.0 - Introduction 

Chapter 1 provides an introduction to the research topic and explains how and why 

this study delivers a significant academic contribution. The aims and objectives of 
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the research are clearly defined, and the thesis overview provides a brief explanation 

of the content and purpose of each chapter. 

 

1.6.2 Chapter 2.0 - Environmental impacts of shipping 

This chapter presents a review of ships' interactions with the environment, the types 

of pollutants emitted during ship operation, and the environmental consequences. 

The purpose of this chapter is to review existing scientific evidence on shipborne 

environmental impacts and to provide rationale for the development of pollutant 

weighting factors to be used in a ship environmental assessment method. The 

interactions with the environment, sources and pathways of pollutants, and 

subsequent impacts are summarised in this chapter, and an environmental impacts 

summary table is presented in Appendix A. 

 

1.6.3 Chapter 3.0 - Environmental management, assessment and control in the 

maritime sector 

Chapter 3 outlines the pathways and barriers to sustainable shipping through 

environmental regulation, management and assessment. The purpose of this 

chapter is to analyse the effectiveness and limitations of existing measures of 

environmental management and assessment in the maritime sector. This includes 

the role of national and international legislation in reducing the environmental 

impacts of shipping, the barriers to regulatory implementation, and the use of 

voluntary environmental schemes and initiatives to fill the void where regulation is 

considered ineffective. 

 

1.6.4 Chapter 4.0 - Development of a holistic environmental assessment model 

The purpose of this chapter is to outline the proposal for a framework for assessing 

ships' environmental performance. The method proposed in this research - ‘the VEP 

index’ - is holistic in scope, can be applied to all types and sizes of ship, and 

assesses environmental performance based on operational data. There are two 

parts to the methodology, A and B, each consisting of several steps. Part A defines 
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the scope of the assessment and the weighting factors assigned to each pollutant, 

and part B outlines the vessel data collection procedure and how the data can be 

used to calculate vessel environmental performance scores. 

 

1.6.5 Chapter 5.0 - Testing the methodology 

The purpose of this chapter is to test the flexibility and sensitivity of the VEP 

index methodology to confirm its suitability for use across a range of vessels. Two 

case study vessels with similar design specifications and operating characteristics 

have been assessed to demonstrate use of the index. The method can clearly 

distinguish which of the two vessels performs better environmentally, based on 

voyage data. The case study vessels are also evaluated using the existing 

environmental initiatives evaluated in Chapter 3, and the results are compared with 

the VEP index results to highlight the benefits of the method over the existing 

indices. 

 

1.6.6 Chapter 6.0 - Conclusions and recommendations for future work 

The final chapter summarises the conclusions of the thesis on a per chapter basis. 

The contributions of the research to the wider field of study are also summarised, 

along with the limitations encountered, and recommendations for future work.   
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2.0 Environmental impacts of shipping 

 

2.1 Introduction 

Shipping is widely considered as one of the most efficient modes of freight transport, 

and until recently the environmental impacts of shipping have been less of a priority 

when compared with other sectors. Despite being responsible for around 90% of 

global trade transport (Hoffman & Kumar, 2010; IMO, 2011; UNCTAD, 2014) – 

including the supply of raw materials, food, consumer goods and energy – shipping 

is considered a minor contributor to marine pollution compared to land based 

industries (IMO, 2011).  

The Third IMO Study on Greenhouse Gas (GHG) emissions from ships was carried 

out in 2014. This study suggests that shipping contributes around 3% of total 

anthropogenic CO2 emissions globally, with emissions predicted to increase 

significantly (in the region of 50 - 250%) by 2050 (Smith et al, 2014). Shipping as a 

sector was excluded from the 2015 United Nations Framework Convention on 

Climate Change Conference of Parties (UNFCCC COP 21) held in Paris and hence 

a global CO2 reduction target from shipping activities was not set at the time, 

however a separate target has recently been agreed by the IMO in an ‘Initial 

Strategy on reduction of GHG emissions from ships’ (IMO, 2018a). The strategy sets 

out a target of ‘at least’ 50% reductions in CO2 emissions compared with 2008 

levels, by 2050, with the aim of cutting emissions to 100% by 2050 if this can be 

proven to be feasible. Such targets are considered to be in line with the requirements 

of the Paris Agreement (United Nations, 2015) of reducing global CO2 emissions 

‘well below’ the amount needed to achieve a less than 2C increase in global 

average atmospheric temperatures above pre industrial levels, by 2050. 

Despite the industry’s relatively small contribution to CO2 emissions currently, 

projections suggest shipping could be responsible for up to 25% of global totals by 

2050 if no action is taken to decarbonise (Smith et al., 2014). In addition, ships burn 

poor quality heavy fuel oil, polluting the atmosphere with emissions of NOX, SOX, 

VOCs, CO and PM amongst other toxic emissions, including ozone depleting 

substances. 
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Impacts of shipping on air pollution are a significant concern, however also a 

concern are the impacts of ship operations on marine ecosystems due to the release 

of toxic substances into the oceans and other water bodies. Uncontrolled discharges 

can lead to the spread of diseases and invasive aquatic species, oil spills, and 

release of toxic chemicals into the water environment. Discharge of pollutants from 

ships to the sea can have multiple and complex consequences, costing billions of 

pounds in remediation measures and in some cases cause permanent damage to 

the marine ecosystem.  

Disposal of sewage and waste from shipping is a significant environmental concern, 

requiring the designation of ‘Special Areas’ with strict guidelines on disposal at sea. 

Waste and sewage from ships is often disposed of on land and hence the provision 

of adequate reception facilities is a challenge, while the process of ship 

decommissioning and disposal of hazardous materials can damage the environment. 

Other environmental issues include the impacts of noise from shipping near 

population centres, and the effects of noise on the behaviour and communication of 

certain aquatic species. It has been found that the main source of noise from ships is 

from the propellers, which dominate the low frequencies – the range that whales use 

to communicate (Green, 2004). Large marine mammals can also be threatened by 

the risk of collision with ships in the open ocean. Ship strikes have been known to kill 

the larger species of whales, with the biggest risk to species inhabiting waters with 

high shipping volumes (OSPAR, 2009).  

This chapter will identify the source of environmental threats and pollutants 

(including biohazards) associated with shipping, and present the science behind the 

impacts of the pollutants on the environment. This includes authorised operational 

releases, and releases resulting from accidental and other unauthorised activities. 

For the purpose of this research, pollution of the marine environment is defined in 

accordance with UNCLOS article 1, which refers to the ‘direct or indirect introduction 

of substances or energy by man into the marine environment’. Pollutants are 

grouped according to the aspect or sphere of the environment to which they are 

emitted, known as the ‘environmental receptor’. Biohazards such as invasion of alien 

species impacting on local ecosystems are considered in the context of ballast water 

releases, and biohazards caused by hull fouling are also acknowledged. The impacts 
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associated with ship emissions to air, discharges to water, pollutant releases to land, 

anthropogenic noise, and physical contact with marine animals are detailed in this 

chapter. The findings are summarised in this chapter, and presented in an 

environmental impact table for ships, shown in Appendix A. 

 

2.2 Emissions to air 

According to the Third IMO GHG study (Smith et al., 2014) ships are estimated to 

have emitted 1.036 billion tonnes per annum of equivalent CO2 (CO2e) into the 

atmosphere, averaged over the period 2007-2012. The same study estimates 

average annual emissions from shipping of NOX and SOX of 20.9 million and 11.3 

million tonnes respectively, over the same time period. 

While the emissions of CO2 compare favourably with those produced by road 

transport - 3% of total global GHG emissions comes from shipping as opposed to 

15% from road vehicles (International transport forum, 2010) - the volumes can be 

regarded as a significant contribution towards anthropogenic climate change. 

Oceans play a significant role in the carbon cycle as a natural CO2 sink, however the 

accelerated anthropogenic release through burning of fossil fuels can cause the 

oceans to uptake too much carbon, increasing the pH causing ocean acidification.  

The release of NOX and SOX through burning poorly refined fuel oils in ships’ 

engines can have a significant impact on both the marine and continental 

environment due to their high atmospheric persistence, and coastal winds carrying 

the pollutants inland (OSPAR, 2009). Air pollutants can be carried hundreds of 

kilometres causing health and environmental problems to populated urban centres 

inland through atmospheric accumulation. The uptake of nitrogen from plants and 

vegetation in marine habitats can cause nutrient blooms leading to eutrophication 

(Jonson et al., 2015). 

The persistence of NOX and SOX in the atmosphere can lead to the formation of acid 

rain. NOX and SOX are able to rise high into the atmosphere, reacting with water 

vapour to form nitric and sulphuric acid in the presence of sunlight. The persistence 

of these pollutants can also lead to the formation of low level ozone which can have 

considerable health effects in populated port areas (OSPAR, 2009). Ships also emit 
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ozone depleting gases from refrigerants used for cooling, fire safety systems, cargo 

vapours etc. (OSPAR, 2009).  

Ship emissions have been identified as an environmental risk, the scale of which is 

reflected in the development of specific maritime regulations to control and ultimately 

reduce harmful emissions from ship exhausts. However, concerns remain over the 

accuracy and availability of global emissions data and subsequent environmental 

impact and energy efficiency of ships. With this in mind, the focus of the IMO and the 

EC (European Commission) in the immediate future is on improving the Monitoring, 

Reporting and Verification (MRV) of ship emissions. The agreed methodology for 

calculating emissions in the MRV process is: 

CO2 emissions = emission factor x fuel consumption (2.1) 

The process requires all ships to submit a verified monitoring plan and emissions 

report to the EU.  

Meanwhile, energy efficiency in shipping is measured using the EEDI (Energy 

Efficiency Design Index) and SEEMP (Ship Energy Efficiency Management Plan), 

mandatory measures introduced by the IMO through amendments to MARPOL 

Annex VI (resolution MEPC.203 (62)), which entered into force on 1 January 2013. 

The EEDI is designed to promote the use of energy efficient technologies in engines 

in newly built ships, however it does not apply to pre-existing ships. It requires a 

minimum level of energy efficiency (grams CO2) per capacity mile (e.g. tonne mile) to 

be achieved, known as the baseline EEDI. New ship designs must meet this 

reference level for a given ship type. The SEEMP is designed as an operational 

approach to improve energy efficiency in both new and existing ships, using EEOI 

(Energy Efficiency Operational Indicator) as a guide.  

Multiple studies have highlighted the impact of NOX emissions from shipping on the 

environment. Lawrence and Crutzen (1999) highlighted the effects of NOX from ships 

on the formation of tropospheric ozone causing atmospheric cooling due to the 

reflectivity of aerosols and the impact of lower level ozone on the persistence of 

greenhouse gases in the atmosphere. This may be seen as a positive influence on 

the net warming effect of global climate change, however Jonson et al (2000) 

describe how NOX from shipping can increase eutrophication and acidification, 

highlighting negative impacts on the environment. Efforts to control emissions of air 
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pollutants have been implemented through proposals to designate emission control 

areas for NOX, SOX and particulates (EPA, 2009a; IMO, 2009). 

 

2.2.1 Greenhouse Gases 

Since the industrial revolution atmospheric concentrations of greenhouse gases 

(GHGs) have increased considerably due to the burning of fossil fuels. The third IMO 

GHG Study (Smith et al., 2014) states that 3% of total global GHG emissions come 

from shipping activities, and the contribution from shipping is likely to increase in the 

future unless action is taken to mitigate the source of emissions. According to the 

IPCC (Intergovernmental Panel on Climate Change), atmospheric concentrations of 

Carbon dioxide (CO2), Methane (CH4) and Nitrous oxide (N2O) (which, along with 

water vapour, are considered to be the main GHG contributors) are higher at present 

than at any time in at least the last 800,000 years (IPCC, 2013).  

 

2.2.1.1 Climate change 

The earth’s global mean climate is controlled by the extent of incoming solar 

radiation and the properties of the earth’s surface and its atmosphere. The amount of 

solar energy received is governed by the orbital pattern of the earth around the sun. 

The elliptical nature of the orbit results in variations in the intensity of solar radiation 

reaching the earth, while solar cycles and sun spots are also known to affect the 

intensity of solar irradiance on the planet (Eddy, 1976; Solanki et al., 2013). 

Climatic conditions are influenced by the extent of solar radiation reaching the 

earth’s surface and atmosphere. To maintain a stable temperature energy that 

enters and leaves the atmosphere must be in equilibrium. Radiation from the sun 

enters the atmosphere and some of it is reflected straight back into space by clouds, 

atmospheric particles and reflective surfaces, but the majority (approximately 70%) is 

absorbed by the atmosphere and earth’s surface (Stocker et al., 2013). Radiation is 

emitted from the sun across the full range of the electromagnetic spectrum, with a 

significant proportion (approximately 43%) at visible wavelengths. Some atmospheric 

gases such as water vapour and Ozone (O3) are effective absorbers of direct solar 

radiation at shorter wavelengths, which occurs in the upper atmosphere. Visible 
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radiation is not absorbed by gases in the atmosphere, and is instead absorbed by 

the earth’s surface. Energy absorbed by the earth’s surface is then re-emitted back 

into the atmosphere at longer wavelengths. Atmospheric gases such as water 

vapour (clouds), CH4 and CO2 are effective absorbers of long wave radiation, thus 

the atmosphere is heated up by radiation from the ground. Some of the energy 

absorbed in the atmosphere is reemitted back to the surface, resulting in further 

warming. This process is known as the greenhouse effect, and is important in 

maintaining stable temperatures on earth to enable life to thrive (Lindgren et al., 

2016a). 

Global temperatures remain relatively stable when there is a balance between the 

amount of radiation entering and leaving the atmosphere. Anything that causes an 

imbalance can alter temperatures down or up. Historically, the earth has gone 

through natural cycles of warming and cooling. The planet entered a warming trend 

approximately 11,700 years ago known geologically as the Holocene Epoch, and 

records from deep sea cores suggest that the global climate fluctuates from an ice 

age to a period of warming approximately every 100,000 years, in relation to the 

shape of the earth’s orbit around the sun, which varies from near circular to elliptical 

over long time periods (Shackleton, 2000). There have been other periods of climate 

variability within the Holocene, most notably during the Little Ice Age – a period of 

cooling in the northern hemisphere from 1450 to 1850 AD - and the Medieval 

Climate Anomaly (or Medieval Warm Period) - a time of warm climate from about 

950 to 1250 AD – however these times are widely considered as periods of regional 

climate variability rather than global climate phenomena (Mann, 2002; Jones et al., 

1998; IPCC, 2013). Furthermore, the IPCC states with high confidence that it is very 

likely (90-100% probability) that the mean temperature in the northern hemisphere 

over the last 50 years exceeds the mean for any 50 year period at any point in the 

last 800 years, including during the Medieval Climate Anomaly (Masson-Delmotte et 

al., 2013). 

According to the IPCC (2013), human influence on the climate system is clear due to 

the increase in greenhouse gases in the atmosphere since 1750, and the effects of 

this are continuing (WHO, 2018). Significant research has taken place in order to 

develop an understanding of the effects of human induced GHG emissions on the 

planet, however the system is complex. Anthropogenic emissions are responsible for 
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significant increases in the atmospheric concentrations of CO2, CH4 and N2O since 

the pre industrial era. Since 1750, 2040 (310) GtCO2 have been emitted into the 

atmosphere, approximately half of which have occurred in the last 40 years (IPCC, 

2013). About 40% of the total emissions in this period have remained in the 

atmosphere, the rest have been stored on land and in the ocean. 

GHGs influence the warming of the planet differently depending on the lifespan in 

the atmosphere and the radiative efficiency of the gas. The impacts of different 

gases are compared using the Global Warming Potential (GWP), which is the 

measure of how much energy the emissions of 1 tonne of a gas will absorb over a 

period of time (typically 100 years) compared with 1 tonne of CO2, thus CO2 has a 

GWP of 1 (Mhyre et al., 2013). CO2 is the main contributor to GHGs from shipping, 

formed during the combustion process from carbon based fuels used to propel 

vessels, and from production of energy and heat on board vessels. 

Methane is a considerably more potent greenhouse gas than CO2, with a GWP over 

100 years of 28 and an atmospheric lifetime of 12.4 years (Mhyre et al., 2013). 

Methane is released to the atmosphere from natural sources such as wetlands, 

freshwater reservoirs, and organic waste deposits, however the precise contributions 

from the various sources and sinks of the methane cycle are not yet fully understood 

(Kirschke et al., 2013). Shipping’s contribution to atmospheric CH4 is through 

potential slippage (unburned emissions) and spillage of LNG fuel (Liquefied Natural 

Gas) during handling and combustion (Salo et al., 2016). LNG contains no sulphur 

and has a lower carbon content compared with the more common marine fuels such 

as HFO (Heavy Fuel Oil) and MGO (Marine Gas Oil), and its use is becoming 

increasingly widespread due to the need to meet strict sulphur regulations within the 

marine industry (IMO, 2016a).  

Nitrous oxide is a powerful GHG with a GWP over 100 years of 298 and a relatively 

long lifetime in the atmosphere of 121 years (Mhyre et al., 2013). N2O enters the 

atmosphere through the earth’s natural nitrogen cycle, mainly through the 

breakdown of nitrogen in soils and the oceans by bacteria through nitrification (Khalil 

& Rasmussen, 1992). About a third of global N2O emissions are from anthropogenic 

sources with the majority coming from agricultural processes, and around 15% of the 

anthropogenic emissions are from energy and transport (Davidson and Kanter, 
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2014). Shipping’s contribution is through fuel combustion, where N2O is formed 

through oxidation of nitrogen in the air at low temperatures and under lean fuel 

conditions where there is more air in the combustion chamber (Hayhurst & 

Lawrence, 1990).  

Climate change is considered a global environmental issue as localised emissions 

have global impacts on the natural environment and human health.  According to the 

IPCC, increased GHGs in the atmosphere have already caused a number of 

observed changes in the earth’s climate system. Mean global surface temperatures 

have increased by 0.85C from 1880 to 2012, while the upper 75m of the world’s 

oceans have warmed by 0.11C per decade since 1971. Glacial cover has reduced 

significantly over the last 20 years, while sea ice conditions in the Arctic have 

decreased in every season due to substantial Arctic warming. Global average sea 

levels have risen over the last century, likely down to loss of glaciers and ocean 

thermal expansion caused by rising temperatures (IPCC, 2013). Changes in the 

natural environment can lead to habitat changes and loss of species, while increased 

temperatures can lead to spread of infectious diseases impacting human health. The 

occurrence of more extreme weather can affect farming practices resulting in loss of 

crops causing malnutrition, while humans are directly affected by heat waves 

(Lindgren et al., 2016a). 

 

2.2.1.2 Ocean acidification 

Another impact of anthropogenic CO2 emissions is increased acidification of the 

world’s oceans. The uptake of CO2 by oceans occurs as part of the planets natural 

carbon cycle, however increased levels of CO2 in the atmosphere are resulting in 

greater absorption by the sea. Once dissolved in seawater, CO2 forms carbonic acid 

affecting the pH levels of the water. The mean surface ocean pH has become more 

acidic since pre industrial times, decreasing from 8.2 to 8.1 on the pH scale (Gattuso 

and Hansson, 2011), and could decrease by a further 0.3 pH units by 2100 (Gattuso 

and Lavigne, 2009). The pH scale is logarithmic therefore the acidity of the oceans 

has increased by a factor of 10, resulting in a near 30% increase in ocean acidity 

since 1750 (Raven et al., 2005; Doney et al., 2009).  
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Acidification of the oceans can affect marine species in a variety of ways. 

Calcification of shell forming organisms can be inhibited due to a decrease in the 

saturation state of calcium carbonate (CaCO3), stunting the growth rate of such 

organisms resulting in reduced fertilisation success and development of larvae 

(Doney et al., 2009). Ocean acidification can accelerate photosynthesis in organisms 

without carbon concentrating mechanisms (Gattuso and Hansson, 2011), although it 

is also thought that the effects on photosynthetic response may be minor as there is 

a high level of variability throughout taxa (Mackey et al., 2015). Photosynthesis can 

also be indirectly affected through changes to biological processes as lower pH 

levels can affect the thermodynamics and kinetics of nutrients such as phosphorus, 

nitrogen and iron affecting the bioavailability of such species in the ocean (Millero et 

al., 2009). The effects of acidification on photosynthetic organisms such as 

phytoplankton and benthic organisms is important due to their trophic level and the 

subsequent impacts on marine organisms higher up the food chain.  

It is thought that ocean acidification can affect the behavioural response of some 

marine species. Munday et al. (2009) indicate that clownfish larvae are unable to 

detect predators due to sensory disruption in acidic conditions, while Vargas et al. 

(2013) suggest a reduction in the intensity of larval feeding of the Chilean abalone 

sea snail (Concholepas concholepas) at lower pH levels. This could suggest a 

decline in populations of certain sea species, however the correlation between 

increased acidification and species populations is uncertain due to on-going physical 

and chemical processes in the ocean that may be of influence (Lindgren et al., 

2016a). 

 

2.2.2 Ozone Depleting Substances (ODPs) 

Historically, gases used in refrigeration and air conditioning units exhibited ozone-

depleting properties. In 1987 the Montreal Protocol was introduced to gradually 

phase out the use of substances that deplete the ozone layer. The IMO also 

introduced a phase out plan for the use of ozone depleting substances on ships 

through MARPOL Annex VI, however a complete ban on all ODPs has yet to enter 

force, and due to the long lifespan of vessels there is some risk that ODP containing 

substances may continue to leak from older vessels in the future. 
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2.2.2.1 Ozone depletion 

Ozone depletion refers to the reduction in concentrations of ozone (O3) in the 

stratosphere due to human activity. O3 is a reactive gas that forms freely in the 

atmosphere due to the splitting of oxygen (O2) molecules by intense UV radiation 

(Rowland, 2009). Single oxygen atoms are very reactive and immediately bond with 

O2 molecules to form ozone. Such reactions occur continually where there is a 

presence of UV radiation and hence a thick layer of ozone is formed in the tropical 

stratosphere which thins out towards the poles where solar radiation is less intense. 

O3 production is balanced by its subsequent destruction through reactions with 

natural and anthropogenic chemicals in the atmosphere. One of the main ozone 

depleting chemicals is Chlorine (Cl), which resides in the atmosphere naturally due 

to emissions from oceans (Graedel and Keene, 1995) and terrestrial plants 

(Yakouchi et al., 2000). Human induced emissions of chlorine occurs primarily 

through use of halocarbons for cooling in e.g. refrigeration and air conditioning units.  

The impacts of anthropogenic halocarbon emissions on the ozone layer are well 

documented (Farman et al., 1985; Solomon et al., 1986). Atmospheric O3 acts as a 

protective barrier to flora and fauna from UV-B radiation. Depletion of O3 results in 

more UV-B reaching the earth’s surface, which can be harmful to human health 

causing skin cancer, it can also effect the physiological development of plants and 

marine organisms. UV-B radiation has a wavelength of 290-320 nm and can damage 

cells at a molecular level causing DNA mutations (Marrot and Meunier, 2008). In 

1987, a global agreement known as the Montreal Protocol ‘on substances that 

deplete the ozone layer’ was reached (UNEP, 2018), initially to reduce halocarbon 

emissions by 50% by 2000, and later to completely phase out the use of halocarbon 

containing gases (CFC’s and HCFC’s) by 2030. 

Other ozone depleting chemicals include Bromine (Br), which occurs naturally 

through marine aerosols (Sturges and Harrison, 1986) and is also contained in 

halocarbons, and N2O, which occurs naturally and anthropogenically, but is not 

controlled by the Montreal Protocol (Ravishankara et al., 2009). 

Emissions of ODPs from ships originate from refrigeration plants on reefer ships and 

fishing vessels, and refrigerated containers and air conditioning provisions on board 

all types of vessels. N2O emissions are generated due to incomplete combustion of 
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fuel. Refrigerant gas losses can occur during refrigerant handling, disposal of 

equipment and leakage through loose seals (Salo et al., 2016). CFC’s and HCFC’s 

are regulated in the marine industry through Regulation 12 of Annex VI of MARPOL 

73/78, banning the use of all CFC’s in refrigeration systems on board vessels 

constructed on or after 19th May 2005, and use of HCFC’s in new installations by 1st 

January 2020. 

 

2.2.3 Sulphur Oxides (SOX) 

According to the Third IMO GHG study (Smith et al., 2014) 13% of global 

anthropogenic emissions of sulphur oxides (SOX) can be attributed to shipping, 

estimated at an average of 11.3 tonnes per year for the period 2007 to 2012. SOX is 

the abbreviation used for both sulphur dioxide (SO2) and sulphur trioxide (SO3), 

although most anthropogenic sulphur emissions are SO2 (Salo et al., 2016). Sulphur 

occurs naturally in the atmosphere in multiple forms. Volcanic emissions contribute 

significant volumes of hydrogen sulphide (H2S), SO2, and SO3, while sea spray 

deposits sulphate ions (SO4
2-) into the atmosphere above the world’s oceans. A 

significant natural source of atmospheric sulphur comes from the biological reduction 

of sulphur compounds such as marine algae, decaying vegetation, and bacteria as 

di-methyl sulphide (DMS) (Cullis and Hirschler, 1980). 

Anthropogenic sulphur emissions increased significantly from 1850, peaking around 

1970, and have subsequently reduced in the years up to the turn of the 21st century 

(Smith et al., 2011). Additional studies by Klimont et al. (2013) show further global 

increases up to 2006, followed by steady decline. The peaks in sulphur 

concentrations can be attributed to industrialisation of developed and developing 

nations, with the decline from the 1970’s onwards in line with considerable emissions 

reductions from developed nations due to the introduction of air pollution policies 

such as the LRTAP (Long-Range Transboundary Air Pollution) regulations in 1979 

(Vestreng et al., 2007), and a further peak representing activity in newly 

industrialised countries such as China, along with international shipping (Klimont et 

al., 2013). 

The main source of anthropogenic sulphur is from the burning of fossil fuels. The 

amount of sulphur emitted varies based on the refinement of the fuel. Historically, 
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ships have used heavy fuel oils (HFO’s) and residual fuels which have a greater 

sulphur content than refined distillate fuels, however the sulphur content of the fuels 

will likely reduce in future with the introduction of a strict global sulphur cap by the 

IMO. The current IMO fuel oil sulphur limit is 3.5% m/m, which reduces to 0.5% in 

2020. Residual fuels used in shipping contain an average of 2.54% sulphur (IMO, 

2018b), significantly above the target for 2020. SOX emissions are a concern due to 

effects on the environment and human health (EPA, 2008a). 

 

2.2.3.1 Acid rain 

Anthropogenic sulphur from shipping is emitted into the atmosphere mainly as SO2 

in the gas phase. SO2 is oxidised by hydroxyl radicals (OH) to produce HOSO2 

(hydroxylsulfonyl radical), which reacts with O2 in the atmosphere to form 

hydroperoxyl (HO2) and SO3. In the presence of water vapour, SO3 reacts rapidly to 

form sulphuric acid (H2SO4). Acid rain occurs via wet deposition of H2SO4 through 

precipitation. Sulphuric acid is dissolved into rain or snow droplets forming sulphate 

ions, which can then be carried long distances in clouds and deposited on land or 

water. Studies by Corbett and Fischbeck (1997) suggest that sulphur from ship 

emissions can travel up to 1200km before deposition, hence SOX is considered a 

long range transboundary air pollutant (United Nations, 1979) and can affect the 

environment in areas hundreds of kilometres from the point of emission.  

Sulphuric acid rain can affect ecosystems, infrastructure, and human health. 

Acidification of aquatic environments can result in increased mortality rates and 

skeletal deformities of organisms (Watt et al., 1983), while amphibians such as frogs 

and toads are sensitive to changes in pH (Whelpdale, 1983). Some species of flora 

and fauna are tolerant to high acidity and flourish in such conditions (Singh and 

Agrawal, 2008), however it is evident that changes in pH can alter the natural 

biodiversity of habitats. Acid depositions on forested land can impact certain species 

of trees, resulting in receding canopy cover and in some cases whole tree death 

(Tomlinson, 1983), while reductions in the yields of certain crop types such as 

soybean have also been observed, as a result of reduced carbon assimilation due to 

low soil pH (Norby and Luxmoore, 1983; Evans and Lewin, 1981). 
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Acid rain can speed up the chemical weathering of exposed building materials such 

as ferrous metals, limestone and marble. Buildings exposed to wet deposition have 

suffered from erosion and corrosion, as calcium carbonate (limestone and marble) 

reacts with sulphur forming calcium sulphate, which is subsequently washed off 

causing accelerated erosion. SO2 also causes metals such as iron to rust more 

quickly, with a study by Tolba (1983) suggesting corrosion rates up to 10 times faster 

in urban polluted areas than observed in less polluted countryside. 

Acid rain can indirectly affect human health by impacting on food and water supplies 

that are later ingested. Acidification causes mobilisation of heavy metals in soil which 

can contaminate food grown in the soil, and infiltrate into fresh water supplies. 

Accumulation of heavy metals in the body can lead to health problems such as 

asthma, headaches, and dry coughs (Singh and Agrawal, 2008). 

 

2.2.3.2 Dry deposition 

Sulphur particles emitted from ships can be adsorbed and absorbed onto and into 

land and water surfaces through dry deposition. The impacts of dry deposition on 

ecosystems and infrastructure are much the same as those caused by acid rain, 

while the suspension of SO2 particles in the lower atmosphere in aerosol form can 

directly impact human health. Breathing can be affected by concentrations of 

airborne particles, which can also cause eye and skin irritations (Lynn, 1976; Okita, 

1983). Suspended particles are known to impact on visibility due to the development 

of haze.  

 

2.2.3.3 Radiative forcing 

The net effect of air emissions from shipping results in an overall cooling effect on 

the climate (Eyring et al., 2010; Fuglevstedt and Bernsten, 2009). This is largely 

down to the emissions of SO2 forming sulphate aerosols in the atmosphere, which 

reflect incoming solar radiation and hence reduce the extent of warming of the 

planet. Sulphur emissions can also impact on radiative forcing indirectly through 

perturbation of cloud microphysics on a localised scale. Sulphur particles can act as 

cloud condensation nuclei (CCN) upon which cloud droplets form, enhancing cloud 
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albedo causing larger amounts of solar radiation to be reflected (Devasthale et al., 

2006). While the current effect of ship emissions on radiative forcing is negative, 

future projections of GHG emissions coupled with stricter sulphur regulations will 

likely result in ships contributing to a net warming (Fuglevstedt and Bernsten, 2009). 

 

2.2.4 Nitrogen Oxides (NOX) 

The abbreviation NOX refers to oxides of nitrogen which generally include nitrogen 

monoxide (NO) and nitrogen dioxide (NO2). Shipping contributes approximately 15% 

of global anthropogenic NOX emissions (Smith et al., 2014), predominantly due to 

reactions of nitrogen and oxygen during the fuel combustion process. NOX is formed 

as a by-product of combustion when nitrogen (N2) and O2 in the air react under 

certain conditions, while nitrogen contained in the fuel can also be oxidised to form 

NOX. Formation of NOx in a diesel engine requires a long residence time at elevated 

temperatures, therefore formation rates increase when the temperature is higher, the 

conditions in the combustion chamber are oxygen rich and the engine rpm is lower, 

allowing the time for NOX formation to be prolonged (Stone, 1999). NOX emissions 

are a concern due to the effects on the environment and human health (EPA, 2008b). 

NOX occurs naturally in the atmosphere through lightning strikes and biogenic soil 

emissions. Natural sources account for approximately 30% of atmospheric NOX, the 

rest comes from anthropogenic sources including fossil fuel combustion (50%) and 

biomass burning (20%) (Delmas et al., 1997). Anthropogenic NOX emissions 

contribute to an increase in atmospheric nitrate (NO3
-) concentrations which can 

cause acidification and eutrophication. NO is oxidised on the atmosphere to form 

NO2, which can increase the rate of low level ozone formation while also impacting 

on human health, causing e.g. breathing difficulties due to airway inflammation (Salo 

et al., 2016). Atmospheric NOX also impacts on climate due to increased O3 

generation and destruction of CH4, and hence the contribution of NOX emissions 

from shipping results in a net cooling of the climate (Eyring et al., 2010).  
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2.2.4.1 Acidification 

Acidification by NOX occurs due to the formation of Nitric acid (HNO3) in the 

atmosphere and subsequent deposition to the earth’s surface through precipitation 

and particulate. Dry and wet deposition of nitrate can alter the pH of water bodies 

and cause erosion and corrosion to infrastructure and buildings. 

 

2.2.4.2 Eutrophication 

Eutrophication refers to excess nutrients in water bodies causing dense growth of 

plant life. High levels of nutrients in the oceans occur due to disruptions in the earth’s 

natural nitrogen and phosphorus cycles. Elevated nitrogen levels lead to increased 

biological productivity of phytoplankton in water bodies (Smith et al., 1999). The 

rapid growth and subsequent death of primary consumers can result in dissolved 

oxygen deficiency in the water body, leading to hypoxia and anoxia. 

 

2.2.4.3 Surface ozone formation 

Ozone is present at ground level due to reactions of NOx in the presence of sunlight. 

NO2 is broken down by radiation into NO and a free oxygen atom, which reacts with 

O2 to form O3. An additional rapid reaction takes place between the newly formed O3 

and the residual NO which converts the NO and O3 back to NO2 and O2 respectively. 

Ground level ozone concentrations increase in the presence of volatile organic 

carbons (VOCs), Cl and Br, as the free radicals released in the reaction of VOCs 

with OH in the atmosphere react with the NO, reducing the amount of O3 converted 

back to O2 (Pleijel, 2000).  

Due to its oxidising properties, ground level ozone is hazardous to human health 

causing damage to lungs and inflammation of airways, and can also damage 

infrastructure and buildings by shortening the lifespan of textiles and paints and 

weakening the bonds of polymers (Pleijel, 1999).  It has also been known to effect 

ecosystems and vegetation such as forests and crops (Pleijel, 2009). 
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2.2.4.4 Radiative forcing 

The chemical processes involving NOX in the atmosphere can lead to both an 

enhancement and dampening of the greenhouse effect. The processes which lead to 

increased ozone formation at ground level can also occur in the upper atmosphere 

resulting in an overall warming effect, while the destruction of CH4 results in negative 

radiative forcing (Bernsten et al., 1997). The warming effect caused by increased O3 

formation in the troposphere occurs on a regional scale as the atmospheric lifetime 

of O3 is limited to 100-200 days, and hence occurs relatively close to the point of 

emission and in a short time after the emission. However  the impact of NOx 

emissions causing destruction of CH4 can result in radiative cooling on a global 

scale, as methane has an atmospheric lifetime of 12 years (IPCC, 2013), and hence 

the degradation of CH4 impacts global atmospheric concentrations.  

CH4 is broken down in the atmosphere by OH radicals. Reactions involving NO and 

O3 with hydroperoxyl (HO2), an abundant free radical in the atmosphere, result in the 

formation of additional OH radicals. Therefore, NOX emissions can directly and 

indirectly lead to the destruction of CH4 through primary reactions and secondary 

reactions due to increased ozone formation (Isaksen et al., 2014).  

 

2.2.5 Particulate 

Particulate matter (PM) is the term given to atmospheric aerosol particles of 

microscopic solid or liquid matter. PM refers to particles from both anthropogenic and 

natural sources, and includes organic and inorganic materials such as dust, smoke, 

soot, pollen, sea spray and liquid droplets. Particulate from industrial sources tends 

to be finer than natural particles, with diameters from 0.002 – 2.5 m (Salo et al., 

2016). Particle growth occurs due to aggregation, coagulation and surface growth. 

Aggregation involves clustering of primary particles of the same species to form 

bigger particles, while coagulation happens when particles collide and merge 

resulting in a reduced number of particles (PN), and surface growth occurs when 

species attach to existing particles and the PN remains unchanged. Particles from 

shipping originate from multiple sources including fuel combustion, wear of materials 

and emissions from lubricating oils and greases (Salo et al., 2016). Ships emit 

around 1.7 Tg (Teragrams) of particulate annually (Eyring, 2005). Particulate is 
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considered a concern to the environment and human health (EPA, 2009b; WHO, 

2013; WHO, 2016). 

Particles form in the ships engine due to incomplete combustion of fuel. Microscopic 

particles of soot are emitted immediately after the fuel is injected, particularly under 

high temperatures and fuel rich conditions. The soot nuclei begin to grow to form 

larger particles, some of which undergo oxidation to form CO and CO2 and some are 

released though the ships exhaust into the atmosphere (Stone, 2012). The 

combustion conditions of the engine (e.g. type, design and load) influence the 

number, size and concentration of particles while the fuel type determines the 

chemical content (Eyring et al., 2010). Slow speed marine diesel engines operate at 

higher temperatures and pressures than medium speed diesel engines therefore are 

likely to emit more particulate (Lack, 2009), while particulate formation also 

increases with engine load (Stone, 2012). 

Particulates from material wear occur due to erosion during processes that cause 

friction, such as the piston ring rubbing against the engine cylinder during fuel 

combustion. Wear of materials from ship engine processes result in emissions of 

inorganic particles including metals such as iron (Fe), nickel (Ni), and vanadium (V), 

which are associated with burning of heavy fuel oils (Stone, 2012). Other inorganic 

particles such as calcium (Ca), zinc (Zn) and phosphorus (P) are associated with 

emissions from lubrication oils (Moldovana et al., 2009). Other emitted particles from 

a ship include black carbon (BC) elemental carbon (EC), organic carbon (OC), and 

sulphate (SO4).  

Ships emit various species of particles into the atmosphere with multiple potential 

impacts on the environment and human health. Particulate is considered an 

environmental concern, particularly where ships interface with human populations in 

coastal cities and ports. The European Port Industry Sustainability report has 

repeatedly identified particulate dust as one of the top 10 environmental priorities for 

European ports (ESPO, 2018). 
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2.2.5.1 Human health 

Modelling of particulate emissions suggests that releases from maritime transport 

have significant impacts on human health, with approximately 60,000 mortalities 

annually due to lung and heart related diseases directly from ship emissions (Corbett 

et al., 2007). Emissions of ultrafine particulate (diameter less than 10nm) are also 

related to cases of asthma and bronchitis, as the particles are small enough to reach 

and penetrate the lungs and enter the bloodstream, and hence can be transported to 

other parts of the body (Pope and Dockery, 2006). Ultrafine particles can act as 

carriers for toxic compounds such as vanadium and iron, which cause respiratory 

diseases (Donaldson et al., 2005).  

 

2.2.5.2 Radiative forcing and albedo effect 

Different species of particles affect radiative forcing in different ways. BC and soot 

particles absorb solar radiation and contribute to positive radiative forcing, while OC 

and sulphate particles reflect and scatter UV rays contributing a cooling effect 

(Isaksen et al., 2009; Forster et al., 2007). Particles also affect climate indirectly 

through cloud formation. Sulphate particulates act as CCN in the atmosphere leading 

to the formation of clouds, which reflect incoming solar radiation. BC emissions that 

are deposited on surfaces covered by snow and ice can affect the earth’s albedo by 

reducing the reflectivity of the surface, causing increased melting of snow and ice. 

The particulate deposits darken the surface and reduce reflectivity, and absorb solar 

radiation, which warms the surface resulting in ice and snow melting (Isaksen et al., 

2009).  

 

2.2.5.3 Acid rain 

Nitrogen and sulphur based aerosols that form clouds in the atmosphere can be 

precipitated out through dry deposition and acid rain. SOX and NOX particulates are 

oxidised to form H2SO4 and HNO3 respectively, which are then deposited to the 

earth’s surface. Suspended aerosols can create haze, reducing visibility and 

impacting upon human health in populated areas. 
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2.2.6 Volatile Organic Compounds (VOC’s) 

VOC’s are carbon based compounds that exist in the gas phase under atmospheric 

conditions. VOC’s have a high vapour pressure and low boiling point, causing large 

numbers of molecules to evaporate from a liquid or solid and enter the surrounding 

atmosphere. Organic compounds with low numbers of carbon atoms tend to be most 

volatile, for example methane (CH4) - which is the smallest hydrocarbon – exists in 

the gas phase in atmospheric conditions. VOC’s are often categorised to exclude 

methane and the term NMVOC’s (non-methane VOC’s) is commonly used instead, 

the reason for this is that methane primarily originates from other sources and has 

different environmental implications to NMVOC’s such as climate change (Salo et al., 

2016). 

The biggest contribution to atmospheric NMVOC concentrations is from biogenic 

sources, mainly vegetation, but also including animals and microbes (Guenther et 

al., 2000). Emissions of NMVOCs occur mainly from the leaves of plants and trees, 

and the extent of emissions depends largely on temperature and light (Niinemets et 

al., 2004). Temperature regulates the synthesis of two of the most common biogenic 

VOCs, Isoprene and Monoterpene, while availability of light affects the production of 

VOC precursors formed during photosynthesis. Biogenic emissions of NMVOCs on a 

global scale are significantly greater than from anthropogenic sources (Guenther et 

al., 2000; Goldstein and Galbally, 2007), however concentrations over urban 

populations are dominated by emissions from human activities (Freidrich and 

Obermeier, 1999; Na et al., 2001; Badol et al., 2008). The main anthropogenic 

sources of NMVOCs are from fuel combustion from motor vehicles and other 

industrial processes, chemical manufacturing facilities, refineries and solvent 

containing consumer products such as paints and cleaning chemicals. 

From a shipping perspective, NMVOC’s originate from the handling of crude oil 

during production, transport and storage, and from the combustion process. 

NMVOC’s vaporise from the crude oil stored in tanks and are held in the space 

between the surface of the cargo and the top of the tank. The vapours are often 

vented to atmosphere during cargo loading and unloading. Tankers that hold 

100,000 tonnes of crude oil can emit between 10 and 280 tonnes of NMVOC’s (Salo 

et al., 2016). Technologies and methods exist to treat and control emissions of 
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NMVOCs from oil tankers during loading and transit (OCIMF, 2019). According to the 

3rd GHG study (Smith et al., 2014) ships can emit up to 3kg of NMVOC’s per tonne 

of fuel burned. NMVOCs also emanate from solvents used in paints and chemicals 

for cleaning on board ships, but in much lower volumes.  

NMVOC’s can have a direct impact on human health. Hydrocarbons emitted during 

fuel combustion such as benzene are carcinogenic and can affect the respiratory 

system and cause haematological problems (Kampa and Castanas, 2008), while 

formaldehyde is also a known carcinogen (Pilidis et al., 2009). NMVOC’s have a 

relatively short atmospheric life span ranging from hours to months, and therefore 

have only minimal direct impact on radiative forcing. However there are secondary 

influences due to the effects of NMVOC’s on aerosol and O3 formation, and 

subsequent impacts on OH radicals and methane production (IPCC, 2013). 

NMVOC’s contribute to the formation of O3 in the presence of NOX and sunlight in 

the troposphere (Atkinson, 2000). Other products such as carbonyls and organic 

acids are also formed in this reaction contributing to increased acidity of precipitation 

(Kawamura et al., 2001). The reactions of products of NMVOCs can also lead to the 

formation and growth of atmospheric aerosol particles, which can affect climate and 

human health.  

 

2.2.6.1 Photochemical smog 

The presence of NMVOCs along with other pollutants such as CO, NOx and O3 in 

the atmosphere can lead to development of a brown haze in the lower troposphere, 

particularly in heavily urbanised areas with a warm climate, known as photochemical 

smog. It occurs when NOx and hydrocarbons in NMVOCs react with sunlight, forming 

species such as peroxyacetyl nitrates (PANs), aldehydes and ketones. These 

chemicals, along with other secondary pollutants such as O3, HNO3 and NOX can 

accumulate at ground level in the troposphere under certain meteorological 

conditions, forming a chemical haze. Photochemical smog tends to form in dry, warm 

and still conditions in the presence of a tropospheric temperature inversion, where 

warm air sits above the smog layer, trapping it near the surface. 

Photochemical smog impacts both the environment and human health, causing 

respiratory problems and eye irritation due to direct contact. Smith (1963) suggests 



 

28 
 

that human exposure to PAN exacerbates respiratory problems, while studies show 

that photochemical oxidants are causally associated with damage to plants and 

vegetation (Guderan et al., 1984). 

 

2.3 Discharges to water 

In addition to air emissions, ships also pollute the environment through discharges of 

solid and liquid substances to the immediate surrounding media. Vessels operate in 

seas, rivers, lakes and inland canals, and there is potential to pollute through 

accidental losses and spillages of chemicals, controlled and uncontrolled discharges 

of waste material, and indirectly through dissolution of chemicals from e.g. paint 

coatings, and transfer of alien species and diseases in ballast water. 

Many of the potential pollutants discharged to water from vessels are controlled by 

regulations. The IMO MARPOL 73/78 convention regulates and restricts the usage 

of a number of pollutants which could be discharged to sea globally, while other 

localised regulations are implemented for vessels operating inland. The MARPOL 

regulations control discharges of oil, chemicals, sewage and garbage through 

various annexes, while ballast water release is regulated by the IMO BWM (Ballast 

Water Management) convention, and release of toxic chemicals from antifoul 

coatings are controlled by the International Convention on the Control of Harmful 

Anti-fouling Systems on Ships (AFS convention).  

 

2.3.1 Oil 

Pollution of the seas by oil  coincides with an increased reliance on petroleum based 

products during the twentieth century. Ships transport almost 2 billion tonnes of 

petroleum around the world (Rodrigue et al., 2009), most of which is carried in VLCC 

(very large crude carriers) and ULCC vessels (ultra large crude carriers) with a 

deadweight capacity of up to half a million tonnes (Rogowska and Namiesnik, 2010). 

A number of factors can influence the impact of oil discharges on the environment 

such as the volume of material discharged, the composition of the oil, and the 

geographical location of the discharge in terms of proximity to habitats, shorelines 

and ecosystems. Large tankers with a greater carrying capacity have the potential to 
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release bigger volumes of oil into the marine environment therefore the need to 

reduce the risk of discharges increases as tankers get bigger. 

It has been estimated that an average of 1,250,000 tonnes of oil are released into 

the marine environment annually (GESAMP, 2007). Approximately half of this occurs 

through natural seepage from the seabed (Mitchell et al., 1999), a further 11% is 

estimated to enter the oceans due to industrial runoff, and around a third is attributed 

to shipping (Lindgren et al., 2016b). Accidental spillages from large tankers receive a 

lot of media attention, are well documented (ITOPF, 2018), and cause significant 

marine pollution, however the biggest anthropogenic contributor to oil discharges is 

from routine shipping operations (Farrington, 2013).  

Operational discharges of oil from ships into the sea have been estimated at around 

200,000 tonnes annually (Jernelov, 2010). Such spillages are small relative to tanker 

accidents however the frequency is much greater, and the impacts on the 

environment can be significant. Operational discharges can occur through a variety 

of different pathways. Spillages often occur during fuel bunkering and cargo loading 

and unloading, and leakages occur from the propeller shaft and stern tube when 

bearing seals become worn causing small but continuous discharges. Propeller shaft 

repairs tend to take place during dry-docking therefore it is possible that small 

continuous leaks from worn seals could occur for years at a time (Lindgren, 2015). 

Bilge water collected in the ship’s hull can also be a source of oil pollution to the sea. 

IMO regulations state that vessels over 400 GT (gross tonnage) must not discharge 

bilge water that exceeds 15ppm for hydrocarbons, however it has been estimated 

that more than 16,000 tonnes of oil enters the sea annually as a result of bilge 

releases (Lindgren et al., 2016b). This is because the regulations do not apply to 

vessels smaller than 400 GT, and it is likely that unknown and illegal discharges also 

take place, suggesting the estimate could be conservative. Other sources of oil 

pollution include shipwrecks - which can slowly release residual pollutants into 

surrounding water if remediation activities are not carried out - and unregulated small 

craft such as pleasure boats where operational spills can be substantial due to the 

use of two-stroke diesel engines where 20-30% of fuel is not combusted and is 

washed out to sea in the exhaust (Lindgren et al., 2016b). 
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Once oil enters the ocean it can behave in different ways depending on its 

characteristics. Oil that is highly viscous is likely to remain relatively confined, while 

less viscous oils can spread across the surface of the ocean. Weather conditions 

(wind) and currents can affect the extent of spreading, while higher water 

temperatures accelerate oil diffusion (Hamam, 1987). The lighter hydrocarbons 

contained in oil undergo almost immediate evaporation from the surface of the ocean 

and enter the atmosphere, and the extent to which oil evaporates depends on the 

volatility of the hydrocarbons e.g. HFO will evaporate less than light crude oil. 

Evaporated oil particulate can be carried to other locations by weather (Rogowska 

and Namiesnik, 2010). 

Some of the oil that remains on the surface of the ocean undergoes photolysis in the 

presence of UV light, forming potentially more toxic products such as PAHs 

(polycyclic aromatic hydrocarbons), which are hazardous to marine species and 

ecosystems (Hylland, 2007). A proportion of oil undergoes emulsification, where 

droplets are mixed in with the surrounding water due to wind and currents which 

expands the volume of contaminated water between two and five times (Lindgren et 

al., 2016b), making it more difficult to remediate in a clean-up. Less than 1% of the oil 

is dissolved in seawater, while a larger fraction becomes dispersed into the water 

column as small droplets, which is eventually degraded (Kingston, 2002). The 

process of degradation increases the bioavailability of toxins to marine species, 

which refers to the amount of substance available to enter living organisms by 

crossing the cellular membrane from surrounding media. The heavier fraction of oil 

can sink to the sea bed, or adsorb to organic particles in water increasing the particle 

weight and sink in a process called sedimentation (Gong et al., 2014). 

 

2.3.1.1 Impacts of large discharges 

The effects of oil discharges on marine species and habitats can vary depending on 

the characteristics of the discharge and the sensitivity of the biota. Exposure of oil 

contaminants to biota can occur through a number of different pathways including 

direct contact, ingestion of contaminated prey, and uptake of bioavailable 

components through water (Boehm and Page, 2007). Large discharges can have 

lethal effects on biota due to direct toxification and suffocation due to a lack of 
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oxygen. Hypoxia (depletion of oxygen) occurs due to nutrient enrichment of the 

water, which is exacerbated by oil discharges due to the organic content of the oil 

(Craig et al., 2013). Hypoxia can also impact marine organisms indirectly through 

habitat loss. Other sub-lethal impacts of oil discharges can occur such as 

hypothermia in sea birds and marine mammals, as even small amounts of oil can 

affect insulation capabilities (Piatt and Ford, 1996). Large discharges can also cause 

physical damage to marine species due to clogging, and to beaches and shorelines 

requiring extensive clean-up operations.  

 

2.3.1.2 Impacts of small continuous discharges 

Small continuous discharges of oil can also impact on marine species and habitats, 

causing sub-lethal but long terms effects such as cancer, reduced fertility and 

stunted growth. Such effects arise due to the presence of PAHs, which can be 

passed down through generations of species due to bioaccumulation resulting in a 

manifestation of health issues in future generations (OECD, 2006).  

 

2.3.2 Sewage and Grey Water 

Ships generate wastewater from passengers and crew on-board, and hence large 

cruise ships carrying significant numbers of people tend to generate the most. 

Wastewater can be separated into two main strands, black water (sewage) and grey 

water. Sewage can be defined as faecal contaminated wastewater emanating from 

toilets, medical facilities and premises containing animals, while grey water includes 

other less contaminated wastewater streams from washing facilities such as sinks, 

showers and kitchens, along with storm water and surface run off. Black and grey 

water are collected and treated together in municipal treatment plants on land, 

however due to space limitations and the structure of the wastewater regulations in 

shipping, sewage and grey water tend to be collected separately.  

Annex IV of the IMO MARPOL 73/78 regulations requires sewage emanating from 

vessels over 400 GT to be treated to certain standards prior to discharge within 

12nm of land, while grey water is not currently regulated by the IMO. There are no 

restrictions on discharges of raw sewage on the ‘high seas’, and while grey water 
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discharge is not regulated by the IMO, countries and regions impose their own 

restrictions for territorial waters e.g. through Directive 2012/49/EU in Europe (Butt, 

2007). 

The amount of sewage and grey water generated on a vessel depends on the 

number of people on board. It has been estimated that on cruise ships, between 25-

70 litres per person per day of sewage are generated and between 120-130 litres per 

person per day of grey water (HELCOM, 1990; Butt, 2007). Raw sewage contains 

high concentrations of pathogens, organic matter and nutrients and hence requires 

treatment before discharge. Annex IV of MARPOL requires treated sewage 

discharge to meet standards for faecal coliform content (FCS), total suspended 

solids (TSS), Biochemical oxygen demand (BOD) and Chemical oxygen demand 

(COD) amongst other criteria which are in line with the requirements of EU Directive 

91/271/EEC on urban wastewater treatment. The requirements state that treated 

sewage effluent must not contain more than 250 faecal coliform per 100ml, while 

BOD and COD must not exceed 25 mg/l and 125 mg/l respectively. Despite not 

being regulated, grey water can often contain a variety of pollutants including 

bacteria, chemicals, metals, micro-plastics and suspended solids. It is assumed that 

grey water pollutants are less concentrated than raw sewage, however the 

concentrations of faecal matter, suspended solids, BOD and COD can in some 

cases far exceed the discharge requirements outlined in MARPOL Annex IV (EPA, 

2011).   

Sewage discharge is directly related to the number of people on board a vessel, and 

hence passenger ships are considered the most significant threat in this regard and 

are therefore regulated more stringently. As of 1st January 2016, passenger ships 

must use approved treatment plants before effluent can be discharged to sea within 

special areas, while vessels operating outside of special areas must ensure sewage 

is ‘comminuted and disinfected’ before discharge, but only at a minimum distance of 

3nm from shore. A significant source of wastewater pollution is from leisure craft and 

passenger vessels less than 400 GT, which carry significant numbers of people on 

board but are not covered by MARPOL requirements. Such vessels tend to operate 

near the shoreline and in tourist zones where discharges can affect bathers and 

cause aesthetic damage. 
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2.3.2.1 Impacts on marine species and habitats 

Wastewater discharge into the sea can impact on marine life and habitats directly 

through toxification and indirectly though nutrient enrichment causing eutrophication. 

Raw sewage contains significant concentrations of nitrogen and phosphorus, 

estimated to be up to 15 grams and 5 grams per person per day respectively 

(Lindgren et al., 2016b). Eutrophication increases the risk of algal blooms which can 

affect the balance of marine ecosystems. Elevated populations of phytoplankton at 

the surface can reduce light penetration, affecting the growth and nutrition of certain 

marine flora and fauna (Pastorok and Bilyard, 1985). The subsequent decomposition 

of organic matter can lead to hypoxia (low oxygen between 1-30% saturation) and 

anoxia (0% oxygen saturation) at the sea floor, creating ‘dead zones’ in the ocean 

due to low oxygen levels being unable to support marine life (Hagy et al., 2004). 

Decomposition of organic matter in anoxic waters can result in the formation of 

hydrogen sulphide (H2S), as oxygen used by bacteria as a source of energy is 

unavailable and sulphate is used instead (Bernes, 2005). 

Fish and shellfish are directly impacted by wastewater discharges as they retain 

toxic particles when filtering seawater, while calcification of shellfish can be inhibited 

by nutrient enrichment. High concentrations of suspended solids can affect growth 

rates of coral reefs and the diversity of populations living within coral ecosystems 

(Pastorok and Bilyard, 1985).  The accumulation of toxic substances in fish and 

shellfish can also lead to disease and ill health further up the food chain (Koboevic et 

al., 2011).  

 

2.3.2.2 Human health 

Pathogenic organisms, viruses and bacteria are contained in sewage which may 

cause damage to human health including diseases such as hepatitis A and E, 

salmonella, gastrointestinal diseases and infections. Sewage is a particular threat to 

human health if it is discharged within public coastal areas used for recreation 

(Koboevic et al., 2011). Various studies highlight the adverse health outcomes for 

recreational swimmers and bathers coming in to contact with wastewater polluted 

waters, with faecal bacteria emphasised as the principal cause of symptoms such as 

skin irritation, infections and respiratory diseases (Soller et al., 2010). 
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2.3.3 Antifoul systems 

A significant proportion of a ship’s hull is situated below the waterline and therefore 

is in direct contact with the ocean. The process of biofouling begins almost 

immediately when a surface such as a vessel hull enters the sea. Within a short 

period of time (minutes), organic particles such as proteins, proteoglycans and 

polysaccharides accumulate on the surface forming an organic conditioning layer 

(Callow and Fletcher, 1994; Abarzua and Jakubowsky, 1995). Within hours, bacteria 

and single cell diatoms attach to the conditioning layer - initially through adsorption, 

then through adhesion - along with other single celled organisms to form a microbial 

biofilm. The organisms making up the biofilm release adhesive substances known as 

EPS (extracellular polymeric substances) which, along with the friction caused by 

rough surfaced microbial colonies in the biofilm, help to attract more organisms to 

the surface. Within a week, additional organisms such as spores of macro-algae and 

protozoa accumulate creating a more complex community, and within two to three 

weeks larger marine invertebrates such as larvae of barnacles and molluscs begin to 

settle and grow on the surface, forming a layer of macro-fouling (Yebra et al., 2004). 

The characteristic of biofouling varies according to a number of conditions, including 

the operating pattern of the vessel, the geographical location, and water quality 

parameters such as temperature, salinity and pH. Fouling can be broadly divided into 

soft and hard organisms. Soft organisms are those which lack solid structures such 

as sea weeds and sponges, while hard organisms have tough shells or skeletons 

such as barnacles, mussels and corals (Lewis, 1994). Both types of fouling create 

problems for the shipping industry due to increased friction of vessel hulls and the 

surrounding ocean, and increased weight through accumulation. These impacts 

result in decreased vessel speed and manoeuvrability, and therefore increased fuel 

consumption and associated atmospheric emissions. Another environmental effect of 

ship biofouling is the potential for introduction of alien marine species to non-native 

marine environments as organisms detach from the hull naturally or during cleaning. 

(Yebra et al., 2004). 

The process of prevention of marine biofouling from ships has been attempted for 

more than 2000 years (Yebra et al., 2004). Various compounds have been applied to 

vessel hulls over the years in order to reduce the extent of fouling, from resins of tar 
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and wax to lead and copper sheathings. In the mid 1800’s, antifoul paints were 

developed using toxic materials such as arsenic and mercury, with the aim of 

releasing toxicants from polymer based coatings to prevent build-up of organisms. 

Many of the coatings were ineffective up until the Second World War when synthetic 

petroleum based resins were introduced, and later compounds containing organotin 

(Yebra et al., 2004). 

Organotin based compounds such as TBT (Tributyltin) are extremely effective 

biocides due to being highly toxic, particularly to shell based organisms, while also 

being colourless and having no corrosive properties (Omae, 2003). In 2001, the IMO 

introduced regulations in relation to the International Convention on the Control of 

Harmful Anti-fouling Systems in Ships (AFS Convention), which banned the use of 

TBT coatings due to the effects of the chemicals released on marine organisms, 

such as imposex in sea snails and defective shell growth in oysters (Gibbs et al., 

1991; Dyrynda, 1992). The AFS Convention prohibits ships from using organotin 

based coatings as antifoul agents, and organotin compounds of any kind should not 

be present in coatings at concentrations greater than 2,500 mg tin (Sn) per Kg of dry 

paint.  

Since the enactment of the AFS Convention, alternative coating types have been 

utilised, typically copper based (Srinivasan and Swain, 2007). Copper is a naturally 

occurring metal in the environment, which enters the oceans through weathering. Up 

to 250,000 tonnes of copper enter the marine environment naturally annually, 

compared to about 15,000 tonnes through use of antifoul coatings (Lindgren et al., 

2016b). In certain ionic forms such as Cu2+, copper can be toxic to living organisms 

as it can easily pass through cell membranes causing significant bioaccumulation 

leading to growth inhibition (Debelius et al., 2009). Copper used in antifoul coatings 

is in ionic form, and is an effective repellent to hard organisms including barnacles, 

tube worms and certain algal species, however some species (typically soft 

organisms) display high tolerance and hence additional biocides are added to the 

copper coatings (Yebra et al., 2004).  

Numerous so called ‘booster biocides’ are available on the market, and are intended 

to be used in addition to copper based antifoul paints to improve the removal rate of 

species with a high tolerance to copper. The most common of these compounds are 
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Irgarol 1051 and Diuron, which have been found to persist in surface waters and 

accumulate in marine sediments (Manzo et al., 2008). Irgarol has a lifetime in water 

of about 350 days, and considerably longer in sediment as particulate (Gatidou et al., 

2007), while Diuron can persist in seawater for more than 42 days (Thomas and 

Brooks, 2010). Irgarol has been found to be toxic to various species of seaweed and 

sea grass, while Diuron can be detrimental to corals, sea urchin, and marine 

invertebrates (Konstantinou and Albanis, 2004). Due to the persistence of these 

compounds in the marine environment, these substances can be toxic to organisms 

in the sea and not just those that have accumulated on vessel hulls (Lindgren et al., 

2016b). Both Irgarol and Diuron have since been banned in several European 

countries including the UK (Price and Readman, 2013). 

More recently, alternative biocide free coatings have been utilised which rely on 

physico-chemical properties to deter organisms from attaching to a surface, and 

reduce the strength of adhesion of the organisms that do attach (Callow and Callow, 

2011). Such products are known as Fouling Release Coatings (FRC’s) and are 

typically silicone or fluorine based (Lejars et al., 2012). Coatings developed from 

silicone-based polymers undergo a process called curing, which hardens the silicone 

and removes the adhesive properties. Curing is carried out through hydrosilylation 

and condensation reactions in the presence of platinum or tin based catalysts 

(Mincheva, 2016). There are concerns that the tin compounds contained in the 

biocide free coatings may be released into the marine environment due to abrasion 

(Watermann et al., 2005), while (Lagerstrom et al., 2016) suggest that organotin 

compounds are still being released in the oceans due to ineffective removal of 

historic paint layers. 

 

2.3.4 Ballast water 

Ballast is the term used for the material used to stabilise or balance a vessel when at 

sea. Historically, ships have used dry ballast materials such as sand and stones 

placed in the ships’ keel in order to counter balance the weight of unloaded cargo. 

Modern ships with steel hulls use seawater as ballast, stored in the ship’s hull or 

more commonly in ballast tanks.  Large tankers and cargo ships tend to carry the 

most ballast water, in excess of 200,000 m3 in some cases (US National Research 
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Council, 1996). Ballast water is taken on board when loaded ships dock at port and 

discharge cargo. The ballast water stabilises the vessel during voyage, and when the 

ship docks at the destination port the ballast water is discharged into the surrounding 

water to make room for new cargo loads. This process results in the transfer of 

seawater from one geographical location to another. The seawater collected in the 

ballast tanks also contains indigenous aquatic organisms, which are transported to 

different ports and coastal waters around the world.  

It has been estimated that between 3,000 and 4,000 different species of organisms 

are carried around the world in ballast tanks daily (Carlton and Geller, 1993), with 

some estimates as high as 10,000 (Bax et al., 2003). Many of the species 

transported are unable to survive in the ballast tanks under low oxygen conditions 

and with no access to sunlight, however survival rates can increase when journey 

times are cut shorter due to new improved shipping logistics and rapid transportation 

(Lindgren et al., 2016b). The fate of many organisms is also dependent on the 

environmental conditions at the destination port, as variations in water temperature 

and salinity at different locations can eliminate species with low tolerance to such 

changes. 

The IMO introduced the Ballast Water Management Convention in 2004, which 

entered force in 2017. The convention requires vessels to remove or render 

harmless aquatic organisms contained in ballast water before its release into a new 

location. The regulation applies to ships registered under contracting parties to the 

convention and to ships that dock at ports which are party to the convention, and 

outlines standards for treatment of ballast water. Ships are required to maintain a 

ballast water management plan and record book, and ships over 400 GT will carry 

an International Ballast Water Management Certificate. The risks, and techniques for 

mitigating risks associated with organisms carried in ships’ ballast water are well 

researched, as outlined in the report led by the IMO and World Maritime University 

(GEF-UNDP-IMO GloBallast Partnerships Programme and WMU, 2013). 
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2.3.4.1 Invasive species 

The IMO defines non-indigenous species as “any species outside its native range, 

whether transported intentionally or accidentally by humans or transported through 

natural processes” (IMO, 2007). Non-indigenous species can become invasive if 

they have a high tolerance to changes in water quality parameters and become 

established in an alien location. Studies suggest that the rate of establishment of 

foreign species is increasing and the impact of the introduction of new organisms is 

considered a major threat to marine biodiversity and contributor to environmental 

change (Bax et al., 2003). There are many examples of species invasions with 

varying impacts. Zebra mussels (Dreisenna polymorpha), which were native to the 

Caspian Sea can now be found in many locations across Europe including the UK, 

and in the Great lakes in America due to their introduction from shipping through 

ballast water and hull fouling. Zebra mussel’s impact on local marine ecosystems by 

competing with indigenous species for food, they have also been found to cause 

damage to infrastructure, blocking the inlet pipes to water treatment systems and 

damaging ship engines (Lindgren et al., 2016b). Introductions of other invasive 

species such as the comb jellyfish to the Black Sea have impacted significantly on 

populations of aquatic life by feeding on many of the primary consumers in large 

quantities, and therefore impacting e.g. fish species further up the food chain, greatly 

affecting the fishing industry (Lindgren et al., 2016b). 

 

2.3.4.2 Spread of disease 

Ballast water can also carry viruses and pathogens that can lead to ill health in 

humans (David and Gollasch, 2015). Ships are known to have spread pathogenic 

diseases such as cholera, leading to an outbreak in Peru in 1991 that was directly 

related to ballast water discharges in Latin American waters. Other studies provide 

evidence of bacteria such as E. Coli and Faecal Streptococci present in significant 

concentrations in ballast water samples (Whitby et al., 1998), which can lead to 

disease in humans though ingestion, particularly in areas used for recreation and 

bathing. 
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Toxins can also be passed on to humans through ingestion of contaminated shellfish 

that have filtered water containing toxic micro algae and fed on toxic phytoplankton. 

Such algae are present in resting forms in marine sediment, which can be 

transferred to different locations in ballast water tanks. Human ingestion of 

contaminated shellfish can result in poisoning and potential fatalities (Lindgren et al., 

2016b). 

 

2.3.5 Marine litter 

Marine litter or debris consists of incorrectly disposed solid waste products from 

human activities that end up in the marine environment. It can enter the marine 

environment from two main pathways, land based sources and ocean or waterway 

based sources. Around 80% of the world’s marine litter comes from land based 

sources (GESAMP, 1991). Discarded litter in the streets enters drains and sewers 

and accumulates in rivers and streams before being carried out to sea, while 

unwanted waste from commercialised areas by the coast, including beaches and 

seaside towns can be blown through wind or washed into the sea through 

precipitation (Sheavly and Register, 2007). This study focuses on marine litter from 

ocean based sources. 

Ocean or waterway based sources such as ships, drilling rigs and other offshore 

platforms are responsible for the other 20% of marine litter (Lindgren et al., 2016b). 

Packaging waste and unwanted consumer goods are the main types of litter to enter 

the marine environment from ocean sources, such as food packaging, beverage 

containers, cigarette butts and cosmetics. Litter typically enters the ocean 

environment due to accidental loss, illegal dumping or poor waste management 

practices (Sheavly and Register, 2007). 

In the past, much of the waste to enter the ocean was made up of organic and 

degradable materials, however in the last 100 years synthetic elements such as 

plastics have become far more abundant. Plastics are durable and buoyant, and 

hence are a significant threat to the marine environment as they can float over long 

distances and are difficult to break down (Derraik, 2002). Plastics that settle in 

sediment may remain for centuries (Hansen, 1990; Goldberg, 1997). 
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The IMO introduced regulations prohibiting the discharge of garbage into the sea 

from ships through Annex V of MARPOL 73/78, which includes all waste products 

with the exception of food waste, animal carcasses, non-toxic cargo residues, and 

non-harmful cleaning agents and additives contained in ship deck wash water. Food 

waste can only be disposed of at a distance of 12 nm or greater from the nearest 

land, and must be comminuted if the ship is operating inside a designated special 

area. Outside special areas, comminuted food waste can be disposed of at a 

distance of 3nm from land. The disposal of non-harmful cleaning agents from deck 

wash water are not restricted at any distance, however cargo residues and cleaning 

agents contained in cargo hold wash water must be disposed of at a minimum 

distance of 12 nm from land. 

 

2.3.5.1 Human health and safety 

The presence of litter in the marine environment can impact upon human health and 

safety. Litter on beaches and shorelines such as broken glass or discarded syringes 

can cause physical harm to recreational visitors walking on the shore line, while 

swimmers can become entangled in disposed fishing ropes and floating debris. 

Hazardous wastes such as from used medical products containing various types of 

bacteria can greatly impact on water quality, causing subsequent effects to bathers 

such as skin infections, diarrhoea, and in some cases more serious diseases such 

as typhoid and cholera (Sheavly and Register, 2007). 

 

2.3.5.2 Aesthetics and economics  

The economic costs associated with marine litter can be significant, as debris on 

beaches can discourage visitors affecting local income from tourism, while costs are 

also incurred to clear up. Significant amounts of money are spent annually by local 

communities in the North Sea region on cleaning up beaches to maintain aesthetic 

and safety aspects, while damage to ships and other infrastructure from marine litter 

can also incur considerable economic costs (Lindgren et al., 2016b). 
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2.3.5.3 Wildlife  

Marine litter can also impact upon marine wildlife by causing entanglement from 

fishing nets and other debris leading to strangling or drowning of larger animals such 

as sea birds, seals and sea turtles. Many fragmented particles of waste, particularly 

micro plastics, can be mistaken for food and ingested by fish and marine mammals 

causing blockages of the digestive tract and other internal injuries (Lindgren et al., 

2016b). Debris can inhibit mobility and block feeding vectors by preventing wildlife 

from opening mouths and blocking access to food sources, while large debris can 

cause physical smothering leading to suffocation and drowning. 

 

2.3.5.4 Habitat destruction and introduction of invasive species  

Debris can cause physical damage to shorelines, coral reefs and living habitats. 

Litter can be carried in currents and tides and accumulate in different locations e.g. 

Great Pacific Garbage Patch, affecting habitats at considerable distances from the 

source of the waste. The transport of litter in ocean currents can also carry invasive 

species to different locations, indirectly affecting habitats, while large patches of 

garbage can block sunlight, inhibiting important processes for marine flora such as 

photosynthesis (Sheavly and Register, 2007). 

 

2.3.5.5 Vessel and infrastructure damage  

Nets, ropes and discarded fishing gear can become entangled with ship propellers 

and rudders causing significant damage. Plastic bags and other large items and can 

block inlet pipes of coastal utilities and power stations. 

 

2.3.5.6 Source and fate of micro plastics  

Micro plastics can originate from secondary sources as fragmented plastic waste, or 

as primary sources from cosmetics and fibres. The National Oceanographic and 

Atmospheric Administration (NOAA) define micro plastics as small pieces of plastic 

less than 5mm in size. They can be persistent in sea water at concentrations of up to 

100,000 particles per m3 of ocean (Wright et al., 2013), and are easily ingested by 
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primary consumers and can therefore be passed on to marine organisms at higher 

trophic levels, although the long term impacts of this are not well established (Wright 

et al., 2013).  

 

2.3.6 Hazardous and Noxious Substances (HNS) 

Chemicals from shipping can enter the marine environment through a number of 

different pathways. Discharges can occur from cargo related activities, ship 

operation, and operational wastes. According to the IMO HNS Convention, 

hazardous and noxious substances are defined as oils, other liquid substances 

defined as noxious or dangerous, liquefied gases, liquid substances with a flash 

point not exceeding 60°C, hazardous and harmful materials and substances carried 

in packaged form or in containers, and solid bulk materials considered as chemical 

hazards. HNS are a concern if they come into contact with the marine environment, 

most likely through spillage due to an accident or during handling. The IMO have 

estimated that more than 200 million tonnes of chemicals are transported annually 

by shipping tankers, with more than 2,000 different types of chemicals transported 

on a regular basis (IMO, 2016b). The most common chemicals to be transported by 

ships are sulphuric acid (H2SO4), hydrochloric acid (HCl), sodium hydroxide (NaOH), 

phosphoric acid (H3PO4), nitric acid (HNO3), LPG/LNG, ammonia (NH3), benzene 

(C6H6), xylene (C8H10), and phenol (C6H5OH) (IMO, 2016b). 

The impact of chemical spillages on the environment depends on the quantity and 

properties of the substance spilled. Chemical spillages can cause potential harmful 

consequences to human health, result in economic losses, and cause environmental 

damage through toxification of marine species and habitats. Table 2.1 classifies the 

chemicals mentioned above in terms of acute toxicity to humans and aquatic 

species, categorised according to the Global Harmonised System (GHS) of 

classification and labelling of chemicals (see Chapter 4, Sections 4.8.3 and 4.8.4 for 

further information on this classification system). Using the GHS, substances 

classified as Category 1 are considered to be the most toxic, with decreasing toxicity 

as the category number increases (see Table 4.4. for definitions of each). 
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Table 2.1 Acute toxicity of chemicals according to GHS 

Chemical 
Toxicity category 

(aquatic)  

Toxicity category 

(Humans) 

HNO3 3 2 

C6H5OH 2 3 

NH3 

(anhydrous) 

2 4 

NaOH 3 4 

C6H6 3 4 

C8H10 2 5 

HCl 4 4 

H2SO4 3 5 

H3PO4 4 5 

 

The fate and behaviour of noxious chemical pollutants in the marine environment 

can vary considerably depending on the characteristics of the chemical. A 

comprehensive study was conducted by Cunha et al. (2015) to examine the extent of 

chemicals released into the environment through spillages, and the fate, behaviour 

and impact of such chemicals on marine habitats. The study found that many historic 

chemical spills are poorly documented and hence the fate and behaviour of such 

pollutants in the marine environment are not well known. Neuparth et al. (2011) also 

state that the ecological hazards associated with chemical spills are not as well 

understood as those related to oil pollution. Nevertheless, some inferences can be 

drawn from the limited data that is available. Cunha et al. (2015) developed a 

publically accessible database highlighting the toxicity and persistence of 24 

chemicals which are known to have been released into the aquatic environment 

through spillage. Biodegradation half-life is in the order of weeks, with only a small 

number of the chemicals listed persisting for longer than a month. Cunha et al. 

(2015) also state that while there is limited data regarding the behaviour of chemicals 

at sea, the incidents that were analysed as part of the study suggest the effects on 

the marine environment are localised. However it is acknowledged that improved 

monitoring and modelling is required to provide a more accurate assessment.  

MARPOL Annex II on the ‘carriage of noxious liquid substances in bulk’ sets out a 

categorisation system for noxious and liquid substances which are potentially 

harmful to the environment. Substances are grouped into 4 categories: X; Y; Z; and 

other.  Substances grouped into Category X are those which are considered to be 

severely harmful to the environment or human health, and are prohibited from being 
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discharged to sea. Category Y substances are those which are deemed to present a 

hazard to the environment or human health, and therefore discharge to sea is limited 

based on the quality and quantity of the substance. Category Z substances are 

considered to present a minor hazard, and therefore less stringent discharge 

restrictions are incurred. Substances classed as other present no harm to the 

environment or human health and there are no discharge restrictions on such 

substances. Appendix 1 to Regulation 6 of MARPOL Annex II lays out the guidelines 

for categorisation of noxious liquid substances.  

The IMO also introduced the HNS Convention on ‘Liability and Compensation for 

Damage in Connection with the Carriage of Hazardous and Noxious Substances by 

Sea’ in 1996, however it is yet to be ratified. The convention introduces a system of 

compensation in the event of an accident involving the transport of chemicals at sea, 

whereby ship owners are liable to pay all associated costs up to a compulsory limit 

(typically covered by insurance), and the rest is covered by an HNS fund. If the 

convention becomes ratified, it is expected that the HNS fund will be generated by 

the states party to the convention. Other regulations governing the carriage of 

chemicals by ship include the SOLAS 1974 Convention (Safety of Life at Sea), which 

requires chemical tankers to comply with the International Bulk Chemical (IBC) 

Code, which sets out standards for minimising the risk of harm to the environment, 

the ship and crew from hazardous substances. 

 

2.4 Impacts on land 

By definition, ships operate on water and therefore rarely make direct contact with 

land, with the exception of dry-docking which takes place infrequently, for a relatively 

short period of time and typically for a specific purpose. Even when in port the 

structure of the vessel remains sea bound, however there are activities that take 

place during ship operation that can impact on the land environment. The scope of 

this study focuses on environmental impacts of the operational phase of vessels, 

however there are additional impacts associated with construction and 

decommissioning of vessels that are indirectly related to the operational phase, as 

ship operation could not occur without the construction phase. This section highlights 
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both direct operational impacts and indirect impacts associated with construction and 

decommissioning, on the land environment. 

 

2.4.1 Waste disposal 

Disposal of waste from ships is governed by Annex V of the MARPOL 73/78 

regulations. All waste streams with the exception of food, animal carcasses, non-

harmful cargo residues and cleaning agents and additives must be disposed of 

onshore, and the MEPC (Marine Environment Protection Committee) have 

developed guidelines for waste disposal (Resolution MEPC.295(71)). The guidelines 

state the need for garbage management practices, training and education on board 

ships, along with adequate waste reception facilities at ports. Operational wastes 

from ships include ash from on-board incinerators and boilers, harmful chemical 

cleaning agents and additives, and municipal solid wastes. Waste collected at port 

reception facilities is handled in accordance with the waste regulations of the country 

in which the port resides e.g. Directive 2008/98/EC in the EU. 

Ship waste disposal onshore can have various environmental impacts depending on 

the type of waste. Garbage sent to landfill can result in methane emissions due to 

the organic content of the waste, while leaching of chemicals and pathogens into the 

watercourse is an associated problem, particularly where there is flood risk (Laner et 

al., 2009). In addition, waste disposal sites can be aesthetically unpleasing and 

produce unpleasant odours, affecting port workers and local communities.  

 

2.4.2 Resource depletion 

During the design and construction phase of a vessel raw materials are extracted 

and undergo manufacturing and production processes which impact on the 

environment. Extraction of raw materials from land can impact upon land quality, 

causing degradation through deforestation and quarrying. Ship construction is an 

energy intensive process resulting in direct emissions of CO2 from the burning of 

fossil fuels, while metal extraction also releases greenhouse gases and other air 

pollutants (Lindgren et al., 2016c).  Steel production also produces significant 

volumes of wastewater containing chemicals such as phenol, cyanide and ammonia 
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requiring treatment (Jorgensen, 1979). Metal construction processes result in 

emissions of particulate matter into the atmosphere which can be washed into the 

environment, along with other contaminants from cleaning and maintenance 

operations. Studies show that elevated concentrations of metal contaminants along 

with TBT, PCBs (Polychlorinated Biphenyls) and PAHs have been found in sediment 

and water bodies near ship construction yards (Lindgren et al., 2016c). 

 

2.4.3 Ship decommissioning 

The environmental impacts associated with ship decommissioning arise from the 

disposal of materials. The process of decommissioning involves the separation of 

different materials, however ships are primarily made up of steel which is a valuable 

commodity, and most of which can be recycled (Lindgren et al., 2016c). Ships also 

tend to contain hazardous materials including asbestos, heavy metals, hydrocarbons 

and refrigerants, which can be harmful to the environment if not disposed of 

correctly. Separation of materials can be costly, especially in the shipping industry 

where ‘design for recycling’ has not historically been considered in shipping when 

compared with other industries (Lundqvist, 2004), and therefore the possibility of 

hazardous materials interacting with the environment is higher. Scrapping often 

takes place in developing countries where the conditions for dismantling are not 

sophisticated hence the environmental and safety risks are heightened (Lindgren et 

al., 2016c). A review of ship breaking and recycling in developing countries is 

provided by the World Bank Report (2010), which highlights the issues in Pakistan 

and Bangladesh. 

Ship dismantling involves cutting of the vessel structure into steel plates which can 

result in discharges of toxic pollutants including heavy metals and TBT. Furthermore, 

the process involves the removal of oils, greases and cargo residues which are at 

risk of discharge to the environment. Currently no international regulation exists to 

control the process of ship decommissioning, however there are local regulations in 

some areas for disposal of hazardous materials that cover dismantled vessels e.g. 

the 1989 UN Basel Convention (UNEP, 1989). The IMO established the Hong Kong 

convention in 2009, with the aim of reducing the risks associated with ship 
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dismantling by requiring all ships to carry an inventory of hazardous materials, 

however the convention has not yet been ratified.  

 

2.5 Noise 

The marine environment is the source of and is subjected to a variety of natural 

physical and biological sounds, such as from breaking of waves at the ocean 

surface, underwater earthquakes and volcanoes, communication between and 

movement of marine organisms, and ‘thermal noise’ associated with the pressure 

fluctuations caused by thermal agitation of the ocean (US National Research 

Council, 2003). Intentional and unintentional anthropogenic sounds are a significant 

contribution to background noise in the marine environment, and can differ from 

natural sounds in terms of direction, frequency and duration (Weilgart, 2007).  

Noise from ships and shipping activities can impact upon humans and marine life 

above and below the surface of the ocean. Above the surface, noise from 

operational processes such as handling of cargo, horns, and warning sirens create 

noise along with the running of engines and generators. Surface noise becomes a 

nuisance to humans whilst ships are berthed in ports and harbours near to 

population centres, and ship crew are subjected to noise whilst at sea. Ships also 

produce underwater noise from propellers (exacerbated during cavitation), vibrations 

from the ship’s hull and from the main and auxiliary engines (Badino et al., 2012), 

potentially affecting aquatic life. 

 

2.5.1 Underwater noise interference with aquatic life 

Sound is an important sensory mechanism for aquatic life in an environment where 

the other senses are dampened, and many animals depend on it for navigation, 

communication and to search for mates and food (Jasny et al., 2005). Marine 

mammals produce sounds in a broad range of frequencies from less than 10 Hz to 

more than 200 kHz (US National Research Council, 2003), while sound waves can 

travel hundreds of kilometres in water, and at speeds almost five times faster than in 

air (Lindgren and Wilewska-Bien, 2016). Propagation of sound in water is mainly 
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affected by the frequency of the noise and the properties of the water such as 

temperature, salinity, turbidity and density (Urick, 1983). 

Anthropogenic noise has increased in amount and variety in recent decades due to 

human activity at sea. High intensity impulsive noise tends to emanate from 

industrial activities such as pile driving for installation of large structures, seismic 

exploration, sonar, and underwater blasting, while low intensity stationary noise 

tends to originate from ships (Peng et al., 2015). Marine species vary in their 

sensitivity and range of hearing, and hence sound can affect species in different 

ways at varying frequencies. Some species such as the Lusitanian toadfish have a 

low auditory threshold and can detect sounds at frequencies between 50 and 200 

Hz, by contrast, the hearing range of a sea lion is between 1 and 10 kHz 

(Slabbekoorn et al., 2010). Therefore, the range of intensity and frequency of 

anthropogenic noise has been shown to have adverse impacts on a wide variety of 

marine species. 

 

2.5.1.1 Acoustic masking 

Anthropogenic noise can cause auditory masking of communication signals between 

species of marine organisms. Many species use acoustic interpretation as a means 

of survival, and external noise from ships can interfere causing the standard sound 

signals of some species to be inaudible. A study into the Lusitanian toadfish 

suggests that communication signals need to be 36db louder in the presence of ship 

noise in order to be detectable to the species (Vasconcelos et al., 2007). 

 

2.5.1.2 Behaviour 

The behaviour of marine organisms at an individual level has been known to alter 

due to external anthropogenic noise. Responses to seismic airgun shots and naval 

sonar of certain marine mammals and fish species show behavioural changes such 

as altered swimming patterns, disruption of foraging and avoidance responses such 

as diving deeper into the ocean (Peng et al., 2015). Noise from large vessels at high 

speed and smaller vessels at accelerating speed is shown to cause avoidance 

responses in Pacific herring (Schwarz and Greer, 1984), while Bruintjes and Radford 



 

49 
 

(2013) suggest that vessel noise can result in reduced nest digging and decreased 

response to predators in cichlid fish. Increased vulnerability to predators due to ship 

noise has also been shown in other marine species (Chan et al., 2010; Wale et al., 

2013). 

 

2.5.1.3 Populations 

Underwater anthropogenic noise has been shown to have an impact upon population 

distribution and abundance of certain marine species. Population densities of free 

swimming organisms can reduce in noisy environments as species leave to seek 

more favourable conditions (Peng et al., 2015). Populations of aquatic mammals are 

known to have reduced in areas where marine industrial activity has taken place 

(Morton, 2002; Carstensen et al., 2006; Thompson et al., 2010), and reductions in 

fish catches are a signal of lower population abundance in areas affected by 

anthropogenic noise (Lokkeborg and Soldal, 1993; Engas et al., 1996). Emigration of 

marine species can also affect the balance between predators and prey in specific 

habitats. 

Evidence of relationships between anthropogenic noise and mass strandings of 

marine species on beaches has been identified, caused by damage to ears and 

brain from mid frequency sonar exposure (Cox et al., 2006; Fernandez et al., 2005; 

Jepson et al., 2003). In addition, anthropogenic noise can affect reproduction rates of 

certain species and development in juvenile organisms causing body malformations, 

impacting upon populations (Peng et al., 2015). 

 

2.5.1.4 Physiological impacts 

Noise pollution from ships can result in a number of physiological impacts on marine 

organisms. Elevated noise levels typically lead to increased stress responses, 

stimulating nervous activity of aquatic species. Studies suggest that anthropogenic 

noise from ships and other marine based industrial activities can cause increased 

heart rate and hormone levels in marine mammals (Romano et al., 2004; Lyamin et 

al., 2011), along with increased metabolism and reduced immunity (Peng et al., 
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2015). The combination of high metabolism and reduced food intake due to stress 

can result in reduction in growth of marine organisms (Anderson et al., 2011). 

 

2.5.2 Surface noise 

Noise from ships and shipping can impact on people working on board vessels and 

in ports, and in communities close to ports, harbours and the shoreline.  Sounds 

generated from shipping can propagate in air, and unlike in water, the extent of 

propagation depends on the characteristics of the surrounding area rather than the 

frequency and amplitude of the sound wave. Sound emissions in air are influenced 

by weather conditions and population and distribution of obstacles such as buildings 

and orography, therefore the impact of noise from ships is controlled by external 

factors (Badino et al., 2012).  

Sound is generated from the various operational processes on board ships and in 

ports. Engines, ventilation fans and warning sirens are common sources of noise, 

along with auxiliary engines when a vessel is berthed at port. Studies indicate that 

ship generators and electric motors typically produce noise levels between 100 and 

115 decibels (Khoo and Nguyen, 2011), which can be harmful to humans if exposure 

is prolonged.   

The human ear is sensitive to sound frequencies between 20 Hz and 20 kHz (Turan 

et al., 2011). There are several negative health effects associated with noise 

pollution, including hearing issues, increased blood pressure, heart disease, sleep 

disturbance and annoyance (van Kempen et al., 2002). It has also been suggested 

that noise can affect human performance leading to errors from vessel crew, which 

can increase the risk of accidents at sea (Turan et al., 2011).  

 

2.6 Physical collisions 

Ships are large, heavy, solid structures that travel at relatively high speeds through 

the water. Over the last century, the number of ships travelling in the ocean has 

increased, with an observed 4 fold increase globally from 1992 to 2012 (Tournadre, 

2014). Owing to a ships physical structure, collisions with aspects of the marine 
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environment can occur, causing damage to ecosystems such as coral reefs and 

physical harm to aquatic species. Such collisions can also cause damage to the 

structure of the ship, and in extreme cases result in shipwrecks which have 

environmental consequences (Lindgren et al., 2016). There has been an increase in 

the number of known collisions between ships and marine mammals recorded 

worldwide since the 1950’s, which coincides with increased traffic and ship speeds 

(Laist et al., 2001). 

The oceans are home to more than 115 species of marine mammals including 

cetaceans such as whales and dolphins, and pinnipeds which include seals, sea 

lions and walruses (Kaschner et al., 2011). Large mammals are most vulnerable to 

ship strikes due to their physical size, but collisions between vessels and many 

marine species can occur anywhere that their paths cross, however are most 

common in areas of heavy traffic near ports and harbours and near shipping lanes. 

Information regarding the fate of marine life following a ship strike is limited and often 

anecdotal, however evidence suggests that it often results in serious injury or fatality, 

particularly when the vessels involved are traveling at higher speeds (Laist et al., 

2001). 

Marine animals can be difficult to avoid for ship operators as they are not always 

visible on the surface of the ocean, and there is often no time to manoeuvre the 

vessel out of its path. Species with migration routes close to major ports and 

shipping lanes are most at risk, while animals which surface during feeding and 

breeding season are also at risk as they are more likely to come into contact with 

moving vessels than animals located deeper in the ocean. Animals that make 

contact with vessels often suffer serious injury due to the force of the impact with a 

ship’s hull, they can also become entangled with the propellers suffering from deep 

cuts and slashes. 

Collisions of ships with large marine animals can also pose a threat to human safety 

with considerable damage to ships reported, while the impact can injure passengers 

and crew and cause fatality in extreme cases (Carrillo and Ritter, 2006). 
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2.7 Summary 

Ships impact on the environment through a number of sources and a variety of 

different pathways. Combustion processes on board pump significant volumes of 

exhaust gases into the atmosphere including CO2, N2O, NOX, SOX, particulate 

matter, and volatile organic compounds, which have detrimental effects on the 

surrounding environment. Methane is also released through potential slippage and 

handling of LNG fuel, while gases used in air conditioning units and refrigeration 

systems with potential ozone depleting properties are leaked into the atmosphere. 

The potential impacts of air emissions from ships are a significant threat to the 

environment. Greenhouse gases from shipping account for approximately 3% of 

worldwide annual emissions, and that figure is expected to increase in the future 

based on current projections. GHGs are the most significant contributor to climate 

change, while CO2 also causes ocean acidification, raising the pH levels of the 

ocean and impacting on aquatic species. Emissions of NOX, SOX, and PM can have 

far-reaching environmental implications, damaging buildings and infrastructure 

through acid rain, affecting the health of human populations in port and coastal cities, 

and upsetting the radiative balance of the planet through net cooling. VOCs can also 

affect human health and radiative cooling through secondary reactions in the 

atmosphere leading to the development of photochemical smog. 

Ships also pollute the marine environment through direct discharge of pollutants into 

the surrounding water body. Release of oil through spillages and continuous 

operational discharges can cause considerable damage to marine wild life and 

habitats, and affect the chemical quality of seawater. Other discharges include 

sewage and grey water release, which can affect marine species by altering the 

chemical and biochemical oxygen demand of the water, and affect human health in 

bathing waters through release of bacterial pathogens causing disease and infection. 

Shipping is also a common cause of invasive species transfer through ballast water 

release and use of antifouling agents on vessel hulls. Disposal of waste at sea 

causing marine littering is a significant environmental concern, affecting the health of 

numerous marine species and destroying ecosystems and habitats. Due to ocean 

currents, waste can accumulate in hotspots in the open sea and at shorelines 

potentially causing damage to infrastructure, while the aesthetic degradation of 

beaches can impact on the tourist economy of many coastal towns and cities.  
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Shipping is a sea-based activity, however certain operations can impact upon the 

terrestrial environment due to the interface of vessels with ports and the practice of 

construction and decommissioning of vessels on land. Due to changes in 

regulations, many ships now dispose of solid waste on land at port reception facilities 

rather than dumping it all out at sea. Waste collected in port is handled in the same 

way as municipal waste, and hence can be sent to land fill contributing to toxic gas 

emissions such as methane, and potential chemical leaching into soil and the 

watercourse. Ship construction involves the extraction of large volumes of raw 

materials and is an energy intensive process. Meanwhile, ship decommissioning 

typically takes place on land in less regulated conditions, which can result in various 

discharges of hazardous materials to the environment.  

Another side effect of the sea-land interface is the effect of ship noise in ports and 

harbours on nearby populations. Sounds from ships can cause disturbance and 

annoyance, affecting cardiovascular activity of humans and increasing safety risks. 

Noise generated by vibrations of the ship’s hull and operation of the propellers can 

affect the physiology and behaviour of aquatic species due to the properties of 

underwater sound waves. Ships can also make physical contact with larger aquatic 

species causing injury and fatality. 

The impacts of shipping on the environment are extensive and well recognised. The 

IMO have introduced pollution regulations in the form of the MARPOL 73/78 

convention and supplementary annexes to legislate pollutant emissions and 

discharges from ships. More recently the IMO introduced the Ballast Water 

Management Convention to prevent the discharge of poor quality ballast water, the 

AFS convention to regulate the use of antifoul coatings, and the Hong Kong 

convention for the recycling of hazardous materials from ships, which is yet to be 

ratified.  

Despite the introduction of pollution regulation in shipping, there is often a significant 

time gap between when the regulations are adopted and when they legally enter 

force. In addition to regulation, various voluntary environmental initiatives exist in 

attempt to bridge this gap, reduce environmental impacts and raise the 

environmental profile of ships. The next chapter will critically assess the methods 

currently adopted for assessing, managing and controlling environmental impacts 
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and ship environmental performance, and identify improvements in the systems in 

order to achieve greater sustainability in shipping.   
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3.0 Environmental management, assessment and control in the 

maritime sector 

 

3.1 Introduction 

Humans and the actions of humans have had a considerable effect on the natural 

environment throughout history. Whilst legislative responses to environmental 

problems can be traced back to medieval times, it was not until the industrial 

revolution that pollution related issues were evident at a larger scale, and hence 

environmental law at a civic level began to take shape (Pontin, 2007). From a 

shipping perspective, the impacts of maritime activities on the marine environment 

were largely ignored up until mid-way through the 20th century, with the introduction 

of the OILPOL convention in 1954 on the prevention of pollution of the sea by oil, the 

first piece of maritime environmental regulation to be introduced. Since then, various 

regulations have been adopted in response to an improved understanding of the 

impacts of emissions and discharges of pollutants on the environment, along with a 

general acceptance that controls must be put in place to minimise the detrimental 

effect of human actions on the natural world.  

In addition to regulations, other responses for protection of the natural environment 

include the use of proactive environmental management strategies to identify, 

evaluate, and control environmental risks through prevention and mitigation of 

emissions and discharges. Environmental management strategies help to provide a 

framework for environmental protection, which can be incorporated into an 

organisation, operation or system. Strategies for environmental management 

encourage a holistic approach to dealing with pollution, by identifying sources of 

pollutants, exploring the potential pathways into the environment and determining 

possible impacts, while also devising strategies to monitor and control pollutant 

releases and develop techniques for mitigation and prevention. 

There are various tools available for managing impacts of human activity on the 

environment. Good management is possible through better understanding of the 

processes that lead to pollution incidents, and of the potential risks associated with 

such incidents. Life Cycle Assessment (LCA) is a common tool used to determine 
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the impacts of a product, process or activity through each stage of the life cycle from 

extraction of raw materials, to construction and operation, through to disposal. Other 

methods include scenario modelling and analysis, where the inputs and outputs of a 

potential process are modelled to determine the risk of associated environmental 

threats. The impact of an activity or action on the environment can be quantified 

using indicators and indices, which provide a mechanism for comparisons between 

products, processes and activities. In the shipping sector, many environmental 

initiatives exist that are designed to measure and communicate environmental 

performance, which use indicators and indices as a means of quantifying and 

ranking the performance of vessels (Andersson et al., 2016). Where proactive 

environmental management is not possible, emissions and discharges of pollutants 

can be abated reactively through technological advancements, or cleaned up after 

the event through remediation activities. However, impact avoidance is generally 

considered to be the most efficient approach to environmental management 

(Andersson et al., 2016).  

This chapter reviews the most effective strategies for environmental management 

and assessment in the shipping sector, and highlights the barriers to environmentally 

sustainable shipping associated with current regulation, practices and initiatives by 

critically assessing the methods adopted. A suitable best practice approach for 

holistic assessment of ship environmental performance is subsequently proposed in 

Chapter 4.  

 

3.2 Environmental regulations in shipping 

The need for regulation in shipping arises from the increase in human activity on the 

seas. Maritime regulations have developed throughout history, and environmental 

regulation has been influenced by the technological improvements in the shipping 

sector. The development of laws relating to human activity on the seas can be traced 

back to the birth of international law (Tanaka, 2015), and was based on the 

principles of freedom of the seas and sovereignty (Linne and Svensson, 2016). The 

concept of freedom of the seas proposes the safeguarding of freedom of navigation 

to ensure that no state can prevent another state from accessing the oceans, a 

necessity for expanding trade around the world. Meanwhile, the principle of 
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sovereignty acts as a counterbalance and protects the interest of states whose 

coastline is subject to shipping operations from other states. These two basic 

principles have shaped the UN Convention on the Law of the Sea (UNCLOS, 1982) 

which provides the basic legislative framework for shipping activities at sea. It 

contains rules that protect the regulatory requirements of coastal and port states, but 

also maintains the notion of free navigation of the seas and considers the maritime 

interests of flag states i.e. the state in which a ship has been granted to sail under its 

flag.  

Regulatory focus on marine pollution to the environment is a relatively new concept, 

with the OILPOL convention on the prevention of pollution of the sea by oil 

introduced in 1954. Despite being regarded as the first multilateral agreement for 

shipping pollution to be accepted by the international community (Linne and 

Svensson, 2016), the OILPOL convention was not deemed successful due to 

problems with enforcement from flag states who were either not party to the 

convention or lacked enthusiasm for enforcement outside of their own jurisdiction, 

and from a belief that the convention restricted the principle of freedom of the seas 

(Linne and Svensson, 2016). 

The maritime sector became more environmentally conscious following a major oil 

spill from a shipping tanker in March 1967 off the south west coast of the UK. 

Incidents such as this became catalysts for the development of maritime 

environmental regulation (Linne and Svensson, 2016), and in 1973 the MARPOL 73 

convention was adopted. MARPOL was supported by the IMO, and has become a 

flagship piece of environmental legislation in the shipping industry regulating the 

emission and discharge of many pollutants including oil spills, chemicals, sewage, 

garbage and toxic gases. The IMO now play a central role in the development of 

regulations, guidance and recommendations regarding the international marine 

environment. 

 

3.2.1 The role of the IMO 

The IMO was founded in 1948, initially as the Inter-Governmental, Maritime 

Consultative Organization (IMCO). In 1982 its name changed from IMCO to IMO, as 

it was no longer thought that ‘consultative’ was the correct word to describe its 
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function, with an ability to take decisions and act rather than just talk (Linne and 

Svensson, 2016). It is a specialised, autonomous agency of the UN connected 

through agreements with the UN ECOSOC (Economic and Social Council). It is the 

international body responsible for safety, security and pollution prevention in 

international shipping (Boisson, 1999). 174 member states are party to the IMO, with 

an additional 3 associate members (IMO, 2018c). One of the key roles of the IMO is 

to develop new, and amend existing, environmental conventions to be recommended 

for adoption by member states, whilst also developing other instruments such as 

guidelines and codes that are not legally binding. The IMO has a hierarchical 

structure as follows: 

 

Figure 3.1 Hierarchical structure of the IMO (adapted from Linne and Svensson, 2016) 

 

The Assembly is responsible for recommending the adoption and amendment of 

policy and regulations to member states, however such recommendations are not 

legally binding. The Council assumes a supervisory role over the workings of the 

organisation, and is responsible for appointing a secretariat. The role of the 

secretariat is to liaise with each member state and act as a negotiator. The 

committees are for decision-making and political negotiations, while the sub-
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committees are given instructions to conduct technical work and report back with 

proposed actions. Most technical work on environmental issues is assigned by the 

Marine Environment Protection Committee (MEPC) to the sub-committee on 

Pollution Prevention and Response (PPR). 

 

3.2.1.1 IMO Actors 

The positions of member states of the IMO are influenced by other actors such as 

inter-governmental (IGO’s) and non-governmental organisations (NGO’s). The IMO 

convention allows all states to become members, however it sets out provisions 

which favour states party to the UN (Linne and Svensson, 2016). Territories within 

member states (e.g. Hong Kong, Macao, Faroe Islands) can also become associate 

members of IMO, but have no formal decision making powers and are excluded from 

membership of the council (Karim, 2015). 

The derivation and drafting of IMO policy can be described as a political contest 

between maritime interests and coastal interests (Linne and Svensson, 2016). 

Interests vary between coastal states, flag states and states of maritime interests, 

and also between developed and developing states. For example, coastal states 

assert the right to environmental protection of their shores and waters and seek strict 

regulations for pollution from ships. Traditional coastal states such as Canada and 

Australia, along with developed western states (Europe and US) are generally in 

favour of environmental protection in the marine sector, while flag states traditionally 

emphasise the choice to use vessels with freedom whilst at sea (Tan, 2006). 

Many ships are registered to flag states but have owners from different countries. 

This is often known as ‘Flags of Convenience’, where ship owners use the 

availability of open registry to register ships to different states where regulations are 

more relaxed. In 2014, 57% of the world’s shipping fleet (by dead weight tonnage) 

was registered to 5 flag state countries, namely Panama, Liberia, the Marshall 

Islands, Hong Kong and Singapore (UNCTAD, 2014). 

The IMO is funded proportionally by member states based on the size of their 

merchant fleets, therefore Panama, Liberia and the Marshall Islands have been the 

top economic contributors despite a large proportion of the fleet being foreign owned 
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(IMO, 2017). Developing states form the majority of IMO membership as more than 

75% of the world’s shipping fleet was constructed in developing nations (UNCTAD, 

2014), however the developed states assert far more influence. One reason for this 

is the ability of developed states to supply large delegations of representatives with a 

high level of expertise to participate in meetings (Linne and Svensson, 2016). 

The IMO convention allows for co-operation of members with IGO’s if their interests 

and activities are related to the purpose of IMO e.g. the EU. Currently 64 IGOs have 

entered agreements with the IMO (IMO, 2018c) and they are normally represented at 

IMO meetings as observers, meaning they can contribute to discussions but have no 

formal decision making powers. They can however have powerful influence over 

member states. 

NGO’s can involve themselves in IMO forums in an attempt to shape environmental 

policy, however like IGO’s they are not afforded any decision-making powers. The 

member states can determine which NGO’s can participate and the terms in which 

they can participate. However the IMO convention is not specific with regards to 

conditions for membership and participation of NGO’s, and they are often granted 

‘consultative status’ to the IMO council, which gives them rights to submit and 

receive documents, be represented at sessions and to speak on agenda items of 

interest. Currently 81 NGOs hold consultative status within the IMO (IMO, 2018), 

which includes professional bodies such as the IMarEST (Institute of Marine 

Engineering, Science and Technology). 

 

3.2.2 IMO environmental regulations 

The IMO have introduced a number of regulations to help safeguard the marine 

environment from shipping practices. In 1973, the IMO introduced the International 

Convention for the Prevention of Pollution from Ships (MARPOL 73/78), which is the 

primary piece of environmental legislation for the control of pollution from ships.  

MARPOL 73/78 includes six annexes containing marine pollution requirements 

(Figure 3.2). Annexes I and II are mandatory to all parties to the convention, and III 

to VI are optional, therefore it is left to the discretion of the member states whether to 
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adhere to the regulations or not. Other international agreements for regulation of 

pollution from ships have also been introduced by the IMO, listed in Figure 3.2. 

Table 3.1 List of IMO conventions relating to the environment 

Convention 
Date of entry 

into force (year) 
Description 

MARPOL 73/78 1983 Prevention of pollution from ships. 

Annex I 1983 Prevention of pollution by oil. 

Annex II 1983 
Control of pollution by noxious liquid substances in 
bulk. 

Annex III 1992 
Prevention of pollution by harmful substances 
carried by sea in packaged form. 

Annex IV 2003 Prevention of pollution by sewage from ships. 

Annex V 1988 Prevention of pollution by garbage from ships. 

Annex VI 2005 Prevention of air pollution from ships. 

AFS Convention 2008 Control of harmful anti-fouling systems on ships. 

BWM Convention 2017 
Control and management of ships’ ballast water 
and sediments. 

HNS Convention Yet to enter force 
Control of hazardous and noxious substances 
transported by sea. 

Hong Kong 
Convention 

Yet to enter force Safe and environmentally sound recycling of ships. 

Nairobi 
Convention 

2015 Removal of shipwrecks. 

 

 

3.2.3 Enforcement of international law and the division of maritime zones 

The need for international law regarding the environment is clear as many 

environmental issues transcend national boundaries (Linne and Svensson, 2016). A 

level of co-operation between states is required to solve many environmental issues. 

States are the main entities of international law and not individual citizens, while 

other entities include international organisations such as the IMO (Shaw, 2008). 

International law differs from national law in that no global government exists to 

enforce international law within the global community, whereas national laws are 

enforced through a hierarchy of a legislature (supreme rule maker), a judiciary (court 

system) and an executive authority (government) within a specific nation (Cassese, 

2005). The United Nations was set up with the intention of having a governing role in 

the international community, however it does not hold the same powers as national 

governments (Shaw, 2008). 
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The decentralised, non-hierarchical system of international law lacks executive 

authority to enforce the rules (Linne and Svensson, 2016), and ruling often only 

takes place if or when the parties have accepted the courts right to resolve a conflict.  

This is seen as a significant weakness in international law, and particularly 

international environmental law (Bodansky, 2010). 

The Law of the Sea (UNCLOS, 1982) is classed as international law in a maritime 

context, and covers marine activities such as navigation on the sea, over flight, 

laying undersea cables and pipelines, fishing, and marine research. The international 

law of the sea designates marine spaces as jurisdictional zones and forms the bases 

of international co-operation among states for protecting the marine environment 

(Tanaka, 2015). 

Jurisdiction (or power to make legal decisions) in the context of maritime 

international law can be described as either legislative jurisdiction, or enforcement 

jurisdiction. Legislative jurisdiction refers to the adoption of laws by a state that 

enable the protection of its coastal environment either through international law or 

through its own initiative. Enforcement jurisdiction refers to situations requiring 

enforcement of compliance with laws, for example investigation of offences, 

detainment, arrest and prosecution of offenders (Bodansky, 1991; De la Rue and 

Anderson, 2009). 

A state can act as a flag state, a coastal state and a port state in the context of 

maritime law. Flag states are states which have granted a ship the right to sail under 

its flag (Tanaka, 2015), coastal states are states in whose zone a maritime ship is 

situated at a given time (Churchill and Lowe, 1999), and port states are those in 

whose ports and internal waters a ship is situated at a given time (Tan, 2006). States 

can act in more than one role at a time, and the roles determine the conditions for 

either legislative or enforcement jurisdiction of ships (Linne and Svensson, 2016). 

On the high seas, a flag state has exclusive jurisdiction over vessels flying its flag 

(Tanaka, 2015). Considering the roles of states, the primary responsibility to create 

and enforce rules for ships belongs to the flag state (De la Rue and Anderson, 

2009). However due to the increasing interests of coastal states regarding marine 

pollution and their discontent towards flag state jurisdiction, coastal states are 

assuming increased power to legislate and enforce (Linne and Svensson, 2016). A 



 

63 
 

greater potential also exists for port states to legislate and enforce. Within its 

legislative jurisdiction, a port state is generally unrestricted from adopting rules and 

standards for ships voluntarily entering its ports and internal waters (De la Rue, 

2009).  

The conflict between the basic principles of freedom and sovereignty has led to the 

division of maritime zones, balancing the freedom of the seas with protection of 

coastal areas (Tanaka, 2015). UNCLOS (1982) divides the seas into 5 zones as 

follows: 

(1) Internal waters (landward from the shoreline). 

(2) Territorial seas (shoreline to 12nm) also includes airspace, seabed and 

subsoil areas – beginning of states maritime territory. 

(3) Contiguous zone (shoreline to 24nm). 

(4) Exclusive economic zone (shoreline to 200nm). 

(5) High seas (>200nm) – open to all states. 

The legal obligations of flag states remain consistent regardless of which sea zone a 

vessel is located, while the rights of coastal states to legislate ships depends on the 

maritime zone it is in, but in general the power to enforce reduces with distance from 

the coast. Within internal waters, a coastal state has full sovereignty to legislate 

foreign ships. Ships entering internal waters (including ports within these waters) 

must abide by the regulations set by the coastal state, including discharge standards 

and requirements (UNCLOS, 1982). Within the territorial seas zone, coastal states 

maintain sovereignty to make laws and legislate, however foreign vessels have the 

‘right of innocent passage’ in accordance with UNCLOS. Coastal states cannot 

create anti-pollution laws for foreign ships if they apply to generally accepted CDEM 

(construction, design, equipment and manning) standards, however for cases not 

involving such standards, a coastal state can create anti-pollution laws for foreign 

ships provided they are made public (De la Rue, 2009). 

Within the contiguous zone, coastal states are restricted from being able to legislate 

foreign ships (Tan, 2006), with the exception of preventing breaches of its customs, 

fiscal, immigration or sanitary laws within its territorial seas (De la Rue, 2009). Within 



 

64 
 

the exclusive economic zone, coastal states have legislative rights over matters 

concerning economic exploration and the exploitation of marine natural resources, 

and also for protection of the marine environment including effects from ship based 

marine pollution (UNCLOS, 1982). However pollution control within this zone cannot 

go beyond regulations outlined in international law (i.e. the IMO). In the high seas 

zone, a coastal state has no right to regulate marine pollution and all states are 

granted freedom of the seas under flag state rules (Linne and Svensson, 2016). 

 

3.2.4 Regulatory barriers to sustainable shipping 

According to Lister et al. (2015), shipping as an industry is under regulated regarding 

environmental impacts, and lags behind other industries in terms of environmental 

protection as a result. Lister et al. (2015) believe that ‘regulatory fragmentation’ is 

growing in the industry as a result of the divergence of international, regional, 

national and local regulations and a multitude and diversity of private standards, 

along with delays in ratification and weak enforcement. Similarly, a report by 

Transparency International (2018) outlines the challenges of international 

governance and decision-making in the IMO, and provides recommendations for 

overcoming these barriers. 

The IMO have suffered numerous delays in regulation ratification. Once new laws 

are adopted they must be ratified by a specific number of member countries 

representing a proportion of the world’s gross tonnage in order to become legally 

binding, hence it can take many years before they come into force. The MARPOL 

Convention for the prevention of pollution from ships was originally adopted in 1973, 

however it did not fully enter force until 1983. Similarly, the Ballast Water 

Management convention was adopted in 2004 but did not enter force until late 2017, 

and the Hong Kong convention was adopted in 2009 but has yet to enter force.  

The attitude of ship owner associations towards environmental legislation is also 

seen as a barrier, who are often critical of new regulation and have lobbied against 

the introduction of certain environmental measures such as the introduction of 

NECA’s, SECAs, the BWMC and market based measures (MBMs) regarding CO2 

emissions (Lister et al., 2015). Having conducted interviews with several shipping 

companies, Lister et al. (2015) claim that ship owners prefer global regulation agreed 
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by the IMO to local or regional initiatives from other bodies, however there is concern 

regarding the incoherence and fragmentary nature of IMO regulation. The perceived 

barriers associated with maritime regulation leaves space for other measures for 

controlling ship environmental impacts.  

 

3.3 Environmental assessment tools used in shipping 

Numerous environmental assessment tools exist which have been adopted for use in 

the shipping sector. A number of studies in the field of environmental systems 

analysis have developed frameworks for comparative analyses between the different 

types of tools available (Baumann and Cowell, 1999; Finnveden and Moberg, 2005; 

and Ness et al., 2007). Andersson et al. (2016) classify a selection of tools to have 

been adapted for use in shipping as either procedural; analytical; or aggregated. In 

conducting an environmental assessment it is important to select the right tools or 

combinations of tools for it to be a success. This section discusses the methods 

utilised for conducting environmental assessments in shipping.   

 

3.3.1 Environmental Impact Assessment (EIA) 

EIA is described by Andersson et al. (2016) as a procedural tool. It is typically used 

for decision support in development projects, with the aim of identifying all potential 

impacts of a project on the environment at the implementation stage, but prior to 

commencement. An EIA should include the direct and indirect impacts on humans, 

animals, plants, soil, water, the atmosphere, the climate, the landscape, the cultural 

environment, and the management of land and water resources.  

EIA’s are carried out in the EU by following Directive 2011/92/EU, and are 

mandatory for all projects covered by the directive across all industries. The directive 

includes development of inland waterways, and ports for inland traffic which permit 

the passage of vessels over 1,350 tonnes. EIA’s are implemented in multiple 

locations across the globe, using similar principles to those outlined in the EU 

directive.  
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As a precursor to EIA, Strategic Environmental Assessment (SEA) is also 

implemented under Directive 42/2001/EC in the EU. It involves strategic assessment 

of the wider social, economic and environmental impacts of alternative proposals at 

the beginning of a project i.e. at the decision stage rather than implementation stage. 

It is designed to assist the decision making process in policy making, planning and 

programme development. According to Andersson et al. (2016), the use of EIA and 

SEA for evaluating impacts from shipping is uncommon. Such tools are not suitable 

for assessment of environmental impacts of vessels during operation. 

 

3.3.2 Scenario Analysis 

Scenario analysis is a technique used to develop understanding of possible future 

impacts based on changes to e.g. current policies, practices and technologies. It can 

be defined as “a description of how the future may unfold based on if-then 

propositions” (Alcamo and Henrichs, 2008). It is typically used to analyse several 

alternative options and determine possible futures by following certain decision 

making processes. Duinker and Greig (2007) discuss the use of scenario analysis in 

EIA, and investigate its application in assessment of cumulative future impacts, and 

forecasting the influence of future changes e.g. in climate on specific projects, 

however it is not common practice to conduct scenario analyses in EIA procedures.  

From a shipping perspective, Corbett et al. (2010) use scenario analysis to quantify 

ship emissions in the Arctic under different shipping scenarios, assuming varying 

levels of growth in shipping operations, and different vessel types, up to 2050. This 

type of analysis can assist decision making in policy and logistics, and provide a 

picture of the potential impacts of such decisions.  

Similarly, the IMO 3rd GHG study (Smith et al., 2014) uses scenario analysis to 

develop future emissions projections from global shipping, using historic data as the 

baseline to model potential emissions up to 2050 based on several scenarios. The 

study uses estimated fleet activity, transport demand, and proposed advances in 

energy efficiency and regulations to predict a number of possible futures. The study’s 

is intended to inform policymakers, scientists and other stakeholders about the 

development of potential drivers of environmental impacts of shipping, and the 

relevance of policy instruments to address emissions. 
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Scenario analysis is adopted to develop estimations and predictions of future states 

based on decision pathways. It can be used to guide decisions on policy, technology, 

logistics and operation, however it is not typically used as a measure of operational 

performance. 

 

3.3.3 Multi Criteria Decision Analysis (MCDA) 

Linkov and Moberg (2017) provide an overview of how MCDA can be effectively 

utilised as an environmental management tool. The method enables comparisons of 

alternatives using criterion, allowing preferential options to be prioritised through 

rigorous mathematical assessment. The process of MCDA involves 5 key steps 

according to Linkov and Moberg (2017); and Belton and Stewart (2003):  

 (1) Problem identification – define the overall problem. 

 (2) Problem structuring – outline possible alternatives or options, and a set 

 of properties (criteria) to describe the performance of the options. 

 (3) Model assessment and building – assign numerical values to the criteria, 

 and score the alternatives against the criteria. 

 (4) Model application – use the scores to provide a decision on the best 

 alternative option, based on the data. 

 (5) Planning and extension – use the outputs to make decisions or inform 

 further planning. 

There are many variations of MCDA models as described by Linkov and Moberg 

(2017), all of which adopt the basic methodological steps described above. For 

shipping applications, MCDA has been utilised to evaluate potential locations of 

inland ports in Spain (Awad-Nunez et al., 2016); to compare alternative methods for 

ballast water exchange (Gomes, 2005); and to assess fuel options to reduce ship 

emissions (Brynolf et al., 2016). 
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3.3.4 Environmental Management Systems (EMS) 

An EMS is used to systematically manage an organisations environmental activity 

through development of environmental policy, procedures and processes specific to 

the needs of the organisation. The overall aim of an EMS is to maintain 

environmental protection and achieve continuous improvement in environmental 

performance through implementation of the ‘plan, do, check, act’ principle.  The EMS 

methodology is outlined in the international standard, ISO 14001, which provides a 

comprehensive summary of the system.  

The ISO 14001 EMS framework is made up of 10 clauses, which includes the scope 

of the standard, normative references outlining the application of the standard, and 

terms and definitions. The remaining clauses outline the requirements of an EMS, 

including: the context of the organisation; the role of leadership in delivering the 

system; planning of the system; resource requirement and support within the 

organisation; operation of the system; evaluating the performance of the system; and 

delivering improvements to the system. 

In the context of shipping, ISO 14001 is implemented at an organisational level and 

therefore is usually set up to manage the environmental activity of shipping 

companies rather than individual vessels, however some companies have 

certification which covers multiple sites, including chartered vessels (NYK, 2018). 

ISO 14001 certification is awarded following external audit from a qualified 

certification body, and provides a statement of a company’s environmental 

management practices and commitment to continuous improvement, however it 

does not provide an indication of environmental performance (Andersson et al., 

2016). The principles of environmental management systems are also common in 

change management processes such as the SEEMP, which adopts a ‘plan, do, 

check, act’ approach to managing energy efficiency (Andersson et al., 2016). 

 

3.3.5 Life Cycle Assessment (LCA) 

LCA is an analytical tool used to quantify environmental impacts from ‘cradle to 

grave’. The method is used to assess environmental impacts throughout the life 

cycle of a product, process or service from raw material extraction and construction, 
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operation and maintenance, through to decommissioning, disposal and end of life. 

There are 4 main stages to an LCA (Murali Krishna and Manickam, 2017):  

 (1) Goal and Scope – definition of the assessment boundaries and purpose 

 of the study. 

 (2) Inventory Analysis – description of environmental inputs and outputs, 

 including material and energy flows, and waste streams. 

 (3) Impact Assessment – classification of environmental impacts of inputs 

 and outputs described in the inventory analysis. This involves use of 

 environmental indicators to quantify impacts. 

 (4) Interpretation – evaluation of results of LCA, and development of 

 conclusions based on the impact assessment.  

The LCA methodology is outlined in the international standard, ISO14044, which 

provides a comprehensive framework of the assessment. Partial LCA’s can be 

undertaken to identify interactions of a product, process, or service with the 

environment without investigating the impacts. This is known as a Life Cycle 

Inventory Analysis (LCIA) (Andersson et al., 2016). Software packages exist to 

enable LCA’s to be conducted using pre-defined inventory data, however one of the 

challenges of adopting LCA for shipping purposes is the availability of life cycle 

inventory data used to characterise material and energy flows (Kameyama et al., 

2005), although some inventories do exist (Tincelin et al., 2010). 

In shipping, LCA has been implemented to assess the environmental impacts of 

alternative shipping fuels (Gilbert et al., 2018; Hua et al., 2017; Bengtsson et al., 

2012), and is useful for drawing comparisons between different options based on 

environmental effects. LCA is utilised to estimate environmental impacts over the 

whole life cycle of a vessel, therefore is not the most appropriate tool to use as an 

indicator of operational performance. 

 

3.3.6 Risk Assessment 

Environmental risk assessment is a tool used to evaluate the impact of pollutants on 

the environment, taking into account the likelihood of the pollutant entering the 
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environment, and the consequences of the subsequent impacts. It is utilised as a 

decision making tool to establish the risks associated with proposed actions. 

According to Ostrom and Wilhelmsen (2012), “Risk assessments provide a basis for 

comparing, ranking, and prioritising risks”. 

A set of generic guidelines for environmental risk assessment have been developed 

by Gormley et al. (2011), outlining a structured approach to managing environmental 

risk in 4 key steps: 

 (1) Problem formulation 

 (2) Risk assessment 

 (3) Appraisal of options 

 (4) Addressing the risk 

The first step is carried out in order to set the boundaries of the assessment to 

prevent ambiguous outputs (Gormley et al., 2011), and clearly define the scope of 

the problem, typically through development of a conceptual model. Conceptual 

models represent the relationships between the sources of pollutants, the pathways 

by which exposure to the environment might occur, and the features (or receptors) of 

the environment which may be caused harm due to the exposure. 

 

3.3.6.1 Risk assessment methods 

Impacts and the risk of impacts can be determined in step 2 through an evaluation of 

the consequences of a pollution incident, and estimation of the probability of the 

incident occurring. Risk can be quantified using quantitative, semi-quantitative or 

qualitative methods.  

 

Quantitative methods 

Assessment of risk based on numerical data inputs, using numerical scales to derive 

likelihood and consequence criteria.  This method relies heavily on the availability of 

quantitative data derived from probability analysis, impact assessments and expert 

judgement. Quantitative methods can provide a more realistic assessment of risk 
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providing accurate data is available and is used correctly, however it can be 

ambiguous depending on the use and availability of data (Altenbach, 1995).  

 

Semi-quantitative methods 

Use of a combination of subjective opinion and numerical data to define risk. 

Subjective definitions are quantified using an index, score, rank, or logic based 

system (Gormley et al., 2011). Semi-quantitative methods are systematic and offer 

consistency in approach, however are based largely on subjective assessment of 

risk likelihood and consequence assessment. Therefore, justification of the 

assumptions and data applied must be clearly defined in the assessment, and 

judgements regarding risk must be backed up by sound scientific evidence (Gormley 

et al., 2011). 

 

Qualitative methods 

Assessment of risk is based on subjectivity and the relative judgement of the 

assessor (Altenbach, 1995). Qualitative assessments tend to be carried out using 

simple scales for estimating likelihood and consequence, and hence are useful when 

definitive numerical data is not applicable or available to quantify risk. Such methods 

are less common in risk assessment due to the level of subjectivity (Altenbach, 

1995), but have value in establishing a logical basis for more detailed quantitative or 

semi quantitative assessments (Gormley et al., 2011). 

 

3.3.6.2 Techniques for determining risk 

Risk can be quantified by adopting one or more of a series of techniques to 

determine probabilities of occurrence or exposure, potential causes of the risk, and 

possible mitigation options to reduce or prevent the risk. The following list outlines 

some common alternative methods: 
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Failure Mode and Effects Analysis (FMEA) 

Provides analysis of defined failures and the effects of a failure on a system. A 

detailed analysis outlining the potential ways in which a process or product can fail to 

meet critical requirements is carried out. A list of all possible failures and effects is 

created, from which mitigation options and procedures can be devised to reduce or 

eliminate the risk of the failure occurring.  

 

Fault Tree Analysis (FTA) 

FTA is an integral part of Probabilistic Risk Assessment (PRA), and is used to 

identify and analyse hazard prevention and mitigation options, using a systematic 

approach. A top down approach is utilised to identify faults or accidents, then 

consider the possible direct causes, and the origins of the causes.  

 

Expert Opinion 

Gathering data from a group of subject experts is often used in the development of 

risk criteria and assessment of risk significance, particularly in the absence of 

quantitative data. However, expert opinion is used in both qualitative and quantitative 

risk assessment to assign risk ratings for probability and severity indicators (Yildiz et 

al., 2014). 

 

Fuzzy Logic 

The principles of fuzzy logic were first defined by Zadeh (1965). It is used as a 

method of defining imprecise and uncertain information or data in a precise way. 

This technique can be used in environmental risk and impact assessment to 

numerically define subjective or linguistic descriptions of a state. It is often used in 

qualitative risk assessment where there is an absence of quantitative data and/or 

there is a degree of uncertainty in the data and information available.  
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Historic data 

Use of historic data sets to determine probabilities of occurrence and magnitude of 

future impacts. Use of historic data sets is adopted where significant, meaningful 

data is available to provide an inference of future probabilities and impact 

magnitudes. 

 

HAZOP Analysis 

The purpose of Hazard and Operability Analysis is to investigate the extent of 

deviation of operational conditions from the intended design conditions. HAZOP 

considers that a deviation from the intended conditions could result in a potential 

hazard, therefore the risk and consequence of any deviation must be assessed. 

HAZOP is used as standard in the Oil and Gas industry in the North Sea, and is 

commonly used in the chemical processing and manufacturing industries involving 

operation of industrial plants. 

 

Preliminary Hazard Analysis (PHA) 

Developed by the US Army, PHA is designed to identify hazards at the conceptual 

design phase of a product or process. It is carried out early in order to gain maximum 

benefit, and is often the first step in a more complicated hazard analysis, however in 

more simple cases it can be used on its own. 

 

Failure Mode, Effects and Criticality Analysis (FMECA) 

FMECA is similar to a standard failure mode and effects analysis but with an added 

dimension analysing the probability and criticality of a failure. Criticality is often 

assessed qualitatively based on experts' opinion, or quantitatively using historical 

data, or data forecasting. It is used to rank risk of failures in a system, allowing risks 

to be prioritised. 
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Event Tree Analysis (ETA) 

ETA is a graphical representation of possible events in an accident sequence. When 

using ETA, it is assumed that there are only two possible outcomes to each event as 

it occurs, failure or success. If the outcome of the event in the sequence is success, 

the accident is averted, if the outcome is failure, the accident outcome moves on to 

the next possible event in the sequence. Event trees are used to analyse the 

probability of an impact by analysing the probability of a sequence of events 

occurring which lead to the impact. Each event is analysed in terms of probability of 

failure and success. 

 

Probabilistic Risk Assessment (PRA) 

PRA is a systematic approach to evaluating the risks associated with a process, 

product or service. Risk is assessed by considering the consequences of a process, 

product or service and an evaluation of the significance of the consequences is 

conducted by assessing the probability of occurrence and the magnitude (severity) of 

the impact. It is commonly used in engineering projects and to assess the effects of 

stressors on the environment. PRA often encompasses other tools such as FTA and 

ETA to assess the significance of consequences/impacts of a process, product or 

service. 

 

Source Pathway Receptor Analysis (S-P-R) 

S-P-R analysis uses the principle of a conceptual model to identify the source of a 

pollutant, the pathway into the environment and the environmental receptor of the 

pollutant. Pollutant sources may have multiple pathways and receptors. It is used to 

identify potential environmental hazards due to pollutant emissions. This method can 

help to reduce pollutant risks and mitigate impact of emissions. 

 

3.3.6.3 Risk assessment in shipping 

Following a risk assessment, an appraisal of options is carried out in accordance 

with Gormley’s model (step 3). Options appraisal is the process of selecting the most 
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appropriate risk management strategy to deal with the identified risks. The risk 

management strategy adopted will likely depend on the significance of the risk and 

the constraints of the assessor, but will most likely result in termination of the source 

of the risk; mitigation of the effects of the risk; transfer of risk; exploitation of 

opportunities presented by the risk; or acceptance of the risk. The final step in 

Gormley’s model involves addressing the risk by taking the appropriate actions to 

fulfil the objectives of the risk management strategy. 

In a shipping context, Landquist et al. (2013) evaluate the use of environmental risk 

methodologies used to assess oil leakage from shipwrecks, and suggest a 

comprehensive framework for assessing such risks based on ISO 31000 standards. 

Magnusson et al. (2018) use risk assessment to model the potential ecological risk 

posed by continuous bilge water discharge in the Baltic Sea using toxicity indicators, 

and Blasco et al. (2014) assess the environmental risk of emissions from ocean 

going ships by modelling the distribution and fate of air pollutants. A risk assessment 

approach has also been adopted under the BWM Convention to enable a selective 

approach to ballast water management. Quantitative risk assessment studies such 

as these often have a limited scope as large volumes of data are analysed to provide 

accurate risk based models. A quantitative model representing environmental 

impacts from multiple emission and discharge sources would be extremely data 

intensive, and hence a semi quantitative approach would be more appropriate. 

Another approach to modelling the environmental impact of pollutants from ships is 

to use performance indicators and indices. Indicators are considered as simple 

measures that represent the state of an environmental system in a defined region 

(Ness et al., 2007). Indicators provide a useful alternative to raw data measurements 

where a data requirement for modelling is either too vast, or the data is unavailable. 

Indicators have also been used as tools for measuring performance in green 

shipping initiatives.  

 

3.4 Green shipping initiatives 

The use of voluntary initiatives as self-governance mechanisms has become 

apparent in many industries, including shipping. The chemical industry introduced an 

initiative called ‘Responsible Care’ to improve health, safety and environmental 
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awareness following the Bhopal disaster in 1984 (Dominelli, 2013). Other such 

reactive responses to events have been reported by the ILO (1999), suggesting that 

development of voluntary schemes can be considered a reactionary response to 

overcome the threat of tight regulations and limit loss of confidence from within 

industry sectors. Voluntary schemes, including established standards such as ISO 

14001, provide a framework for meeting standards and can therefore operate 

effectively alongside international regulations. 

The perceived barriers associated with environmental regulation in shipping has led 

to the proliferation of ‘independent initiatives’ to improve environmental credentials, 

and meet the demands of customers and other stakeholders in the shipping industry 

(Lister et al., 2015). The development of voluntary measures is driven by the concept 

of ‘self governance’, as discussed by Supiot (2017). The term ‘independent initiative’ 

in this context refers to action being taken by non-regulatory bodies within the 

shipping sector to improve environmental performance within the industry. This 

includes the development of environmental indicators and indices to communicate 

environmental data related to shipping, the concept of incentive schemes offering 

rewards for achieving environmental targets, and development of mitigation 

strategies and awareness campaigns to reduce environmental impacts.  

It is apparent that a large number of environmental initiatives have been developed 

for use in the shipping sector, both from independent bodies and the IMO. 

Approximately 50 different initiatives are identified in the Clean Baltic Sea Shipping 

(CBSS) CLEANSHIP project (Fridell et al., 2013), and other reports by Svensson & 

Andersson (2011) and EMSA (2007) have compiled inventories of 38 and 47 

respectively. Pike et al., (2011) review 29 different schemes, while the Sustainable 

Shipping Initiative (SSI, 2013) have created a search and compare tool containing 11 

schemes, and a report by the Danish environmental protection agency (Stuer-

Laridsen et al., 2014) discusses 10 different schemes in detail. Based on these 

studies, 85 different environmental initiatives in the shipping sector have been 

identified and compiled into a Ship Environmental Initiative Inventory (see Appendix 

B).  
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3.4.1 Categorisation of initiatives 

According to Lister et al. (2015), the number and diversity of initiatives available for 

use in the shipping sector can cause confusion, add a significant administrative 

burden, and hinder progress towards improved sustainability due to a lack of 

cohesion between them and the widely different audiences they are designed to 

target. Previous studies have attempted to categorise the different initiatives 

available in the shipping sector into groups. Pike et al. (2011) classify initiatives into 

4 groups based on intended purpose: Research and Innovation; Corporate Social 

Responsibility and Marketing; Awareness Raising/Environmental Education; and 

Voluntary Class Notations and Certification. Svensson and Andersson (2011) have 

also carried out a classification, categorising initiatives into 5 groups based on the 

service provider or developer: IMO instruments; National Instruments and Initiatives; 

Classification Societies; Ports and Port Associations; and Cargo owners, NGO’s and 

Shipping Associations. The Fridell et al. (2013) study focuses on environmentally 

differentiated port fees, and highlights the use of environmental initiatives in the 

development of port incentive schemes, and Stuer-Laridsen et al. (2014) analyse a 

number of ‘environmental ship performance indices’, without providing a 

classification. The European Maritime Safety Agency (EMSA, 2007) published an 

inventory of initiatives that contribute towards ‘green shipping’, categorising them into 

several groups: Awards; Certificates; Incentive Systems; Initiatives; Labels; and 

“Different systems”.  

Previous studies in this field have used different criteria to categorise ship 

environmental initiatives in to groups (EMSA, 2007; Pike et al., 2011; Svensson and 

Andersson, 2011; Fridell et al., 2013; SSI, 2013; Stuer-Laridsen et al. 2014), 

however it is evident that no single, unanimously accepted system of classification 

exists. Therefore, this study compiles the inventories developed in previous research 

and classifies the initiatives according to Figure 3.2. 
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Figure 3.2 Categorisation of environmental initiatives in shipping 

 

Based on the systems of classification developed by Pike et al. (2011), EMSA 

(2007), and Svensson and Andersson (2011), a holistic categorisation model has 

been developed to classify all of the initiatives identified (Figure 3.2). At a high level, 

the initiatives can be classified as either ‘Regulatory’ or ‘Independent’ schemes. 

Regulatory instruments are defined as environmental initiatives developed by the 

regulator (IMO), and independent initiatives are those which are not developed by 

the IMO. The regulatory initiatives can be further classified as ‘Mandatory’ or 

‘Optional’. The independent initiatives are classified into 3 groups based on intended 

purpose, as: 

 (1) ‘Performance Indicators’ - to provide an indication of environmental 

 performance; 

(2) ‘Incentive Schemes’ - to provide an incentive to improve  environmental 

performance; and 

 (3) ‘Research & Innovation’ - innovative research activities, strategies or 

 actions designed to improve the environmental landscape in shipping, and 

 /or raise awareness and promote sustainability in the shipping sector. 

The initiatives identified in the literature have been systematically categorised 

according to Figure 3.2, summarised in Table 3.2. A complete inventory based on 

the initiatives identified in this study is available in Appendix B. 
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3.4.1.1 Regulatory instruments 

5 of the initiatives identified are mandatory (EEDI, SEEMP, and STCW) and optional 

(EEOI, Green Passport) instruments developed by the IMO and are classified as 

‘Regulatory’ in Table 3.2. The IMO Convention on Standards of Training, 

Certification and Watch-keeping (STCW) outlines the basic training requirements for 

seafarers, including on marine environment awareness, and the Green Passport is a 

concept discussed in the Hong Kong Convention for an inventory of hazardous 

materials on-board vessels, however the convention is yet to enter force, therefore is 

considered ‘optional’. The EEDI and EEOI are indicators of ship energy efficiency at 

design stage and during operation respectively. The EEDI is a mandatory 

requirement for new build ships, while the EEOI is currently optional. The Ship 

Energy Efficiency Management Plan (SEEMP) is a mandatory tool to assist ship 

owners in managing energy efficiency on-board.  

It is also noted that other non-mandatory regulatory instruments exist which are not 

mentioned in the literature analysed in this study, such as the IMO guidelines related 

to ship recycling, bio fouling, and garbage management.  

 

3.4.1.2 Performance Indicators 

28 of the initiatives in the inventory are classified as performance indicators. Many of 

the performance indicators identified use multiple criteria to provide a thorough 

assessment of environmental performance, while others are focussed on single 

environmental pollutants. Many of the performance indicators identified are 

developed by classification societies and shipping companies. 

 

3.4.1.3 Incentive Schemes 

30 incentive schemes have been identified. The incentive schemes are designed to 

reward vessels for meeting environmental requirements, benchmarked against 

defined thresholds or targets to encourage continuous improvement, often with 

certification, class notation, or economic gains to provide market advantage. Many of 

the incentive schemes identified in the literature have been developed by port 
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authorities or other independent bodies with the intention of using the schemes to 

reward ship owners for achieving certain environmental targets in ports, typically 

through financial compensation.  

 

3.4.1.4 Research and Innovation 

22 of the initiatives are schemes categorised as research and innovation. These 

initiatives are designed to improve sustainability in the shipping sector through 

research, and in many cases focus on the development of new technologies 

designed to reduce the impact of shipping on the environment. Other schemes in this 

category include industry and academic partnerships, facilitating and coordinating 

knowledge growth and environment related research activities in the maritime sector, 

and education and awareness campaigns related to the impacts of shipping on the 

environment. 

Table 3.2 Classification of initiatives identified in the literature 

Classification No. of initiatives 

Independent 
Initiatives 

80 

Performance 
Indicators 

28 

Incentive Schemes 30 

Research & 
Innovation 

22 

Regulatory 
Initiatives 

5 

Mandatory 3 

Optional 2 

Total 85 

 

3.4.2 Analysis of existing initiatives used in the shipping sector 

Many, but not all, of the existing initiatives mentioned in the literature are well 

marketed and can be found in the public domain via web searches. Some initiatives 

can be accessed online, however no further information regarding the methodology 

of the schemes is provided, and in some cases registered access is required. Not all 

of the initiatives listed in the inventory have been designed specifically for use in the 
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shipping sector, and some are only applicable in certain companies, countries, 

regions or ports. Many of the schemes are designed to assess specific pollutants as 

single indicators, or multiple pollutants using indices. This section highlights the 

diversity of green shipping initiatives and investigates the transparency and 

applicability of the schemes. The research identifies where published methodologies 

are available in the public domain, and an analysis of the scope and ambition of the 

initiatives is conducted to compare the different methods adopted for ship 

environmental assessments. 

 

3.4.2.1 Transparency 

Following a systematic web-based search it was found that many of the initiatives 

referenced in the literature are not publically transparent as they do not have their 

own website or any other published documentation outlining the requirements of the 

scheme. 47 of the initiatives were found to be publically transparent (listed in 

Appendix B), however some of these require registration and login to access further 

information regarding participants of the scheme and award criteria.  Some of the 

initiatives listed, such as the VCS (Verified Carbon Standard) programme and the 

Good Environmental Choice award, are sustainability eco labels not specifically 

designed for the shipping sector, and a large number are designed for use in a 

specific region, country or port.  

In some cases, a description of the scheme is available in the public domain, 

however the detail of vessel assessment outcomes is not. The Clean Cargo Working 

Group (CCWG) for example publishes a list of participants to its ‘environmental 

performance scorecard’ but does not provide detail of the assessment outcomes, 

such information is only available to members who are participants of the scheme, 

and access is conditional upon signing a non-disclosure agreement (Scott et al., 

2017). The Green Award lists the holders of the Green Award certificate by company 

name and by individual vessel including the date of certification, however there is no 

detail of the environmental assessment outcomes (Green Award, 2018). From the 

information available it is not possible to ascertain vessel environmental 

performance.  
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By contrast, the ESI lists the top 50 vessels participating in the scheme in order of 

decreasing score, the dates in which the assessment is valid, and a breakdown of 

performance in each of the assessment categories, so it is possible to determine 

how well a vessel has performed in each category based on publically available 

information. Only 50 ships are listed, however there are over 8000 vessels with a 

recorded ESI score which can be found using the search function on the ESI 

website. While ESI scores are visible, there is no breakdown of actual emissions or 

detail of how vessel scores are awarded (ESI, 2018). Another initiative provider, 

RightShip’s EVDI (in conjunction with the Carbon War Room), have taken steps to 

improve transparency by making performance assessment outcomes available for 

participating vessels, however access requires registration via the website (Scott et 

al., 2017).  

The lack of transparency means it is not possible within the scope of this research to 

determine how effective all of the schemes are in assessing ship environmental 

performance, or how well vessels are performing, and to what extent they are 

impacting on the environment. It is also not possible to compare schemes like for like 

where information outlining the assessment methodologies is limited. 

 

3.4.2.2 Initiative scope & indicator weightings 

A number of initiatives have been analysed to determine their environmental scope 

i.e. the number and variation of environmental indicators used in the assessment 

methodology (Figure 3.3). It was not possible to analyse all of the initiatives listed in 

Appendix B as information regarding scope and methodologies was not available, 

however the following schemes have been analysed in more detail, where 

information could be accessed: 

 (1) ABS Enviro 

 (2) ABS Enviro+ 

 (3) CCWG Environmental Performance Scorecard 

 (4) CSI 

 (5) DNV Clean 
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 (6) DNV Clean Design 

 (7) EEDI 

 (8) EEOI 

 (9) ESI 

  (10) EVDI 

 (11) Green Award (Oil tankers; Bulk carriers; LNG carriers; Chemical 

 tankers; Container ships; LPG carriers; Inland vessels) 

 (12) Green Ship Incentive Programme 

 (13) RINA Green Plus 

 (14) RINA Green Star 

 (15) Norwegian NOx Fund  

 (16) The Blue Angel (Operation) 

Some of the initiatives have a wide environmental scope and are made up of several 

indicators with different weightings, while others use single indicators to assess 

specific pollutants. Five of the schemes analysed in this research are single pollutant 

indicators: the Norwegian NOX fund, which is a tax incentive scheme set up to 

reduce NOX emissions from ships in Norway; Green Ship, which is a financial 

incentive programme implemented at the Port of Long Beach in the United States 

which also targets NOX reductions; the EEDI and EEOI, which are indicators of a 

vessels CO2 emissions designed by the IMO; and the EVDI, which is a CO2 indicator 

developed by RightShip to calculate EEDI scores for existing vessels. 

Many of the schemes that assess multiple pollutants do not assign specific 

weightings to pollutant indicators, and use audit style checklists to assess vessel 

performance, requiring ships to meet a list of mandatory criteria in order to qualify for 

certification. In such cases, all criteria must be met in order to achieve accreditation 

and therefore the schemes are not suitable for comparing vessels’ environmental 

performance in detail. The only distinction that can be made is between vessels with 

or without certification. Examples include the Clean and Clean Design eco-labels 
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developed by DNV, the Enviro and Enviro+ eco-notations developed by ABS, and 

the RINA Green Star notation. 

Other initiatives are designed for performance benchmarking, allowing ships to be 

distinguished from others by a system of ranking. Such schemes use thresholds and 

scales to assess and grade environmental criteria, and allocate points totals for each 

criteria which can be totalled to give an overall score. Total scores can then be used 

to compare against other vessels, or benchmarked against threshold values for 

which different ratings or levels of certification can be achieved.  

For the CSI, environmental criteria are split into five equally weighted groups – CO2, 

NOX, SOX, Chemicals, Water & Waste Control - with 30 points available for each 

group, adding up to a total of 150 points. However if the groups are broken down into 

individual pollutants, the number of points available for each criterion varies (Figure 

3.3). Many of the initiatives allocate a different number of points for individual criteria, 

as shown in Figure 3.3. The difference in criteria weighting suggests that in some 

initiatives, certain environmental pollutants are prioritised over others. 

 

Figure 3.3 Breakdown of environmental criteria weightings 
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Comparisons between the weighting factors of each pollutant for each initiative can 

be made by categorising the criteria into groups (Table 3.3). The pollutant criteria 

listed in Figure 3.3 are categorised based on interaction type with the environment. 

The pollutant criteria can be categorised as ‘emissions to air’, ‘discharges to sea’, or 

‘other’. Using this method of categorisation, NOX, SOX, PM, CO2, OPS and 

Refrigerants are classed as emissions to air. Antifouling, Oils and lubricants, 

Cleaning agents, Ballast water, Sewage, Grey water, Garbage, Sludge, and Bilge 

water are classed as discharges to sea. All other criteria in Table 3.3 are categorised 

as other.  

The method of categorisation shown in Table 3.2 shows a clear difference between 

initiatives in terms of the weighting factors used per type of environmental 

interaction. Each of the single criteria initiatives are designed to assess air emissions 

only, while the weighting factors used in the multi criteria initiatives vary greatly. 

CCWG, CSI, ESI and the RINA Green Plus eco label clearly prioritise pollutant 

emissions to air over discharges to sea and other criteria. The weighting factors for 

emissions to air and discharges to sea in The Blue Angel are equally split (42% 

each), while the Green Award initiatives are weighted more heavily in favour of 

discharges to sea. 

Table 3.3 Criteria weightings per interaction type with the environment 

No. of 
criteria 

Environmental initiative 

Weighting 

Emissions to 
air 

Discharges to sea Other 

Multi-
criteria 

CCWG 71% 9% 20% 

CSI 62% 35% 3% 

ESI 100% 0% 0% 

GA (oil tanker) 27% 40% 33% 

GA (bulk carrier) 28% 46% 27% 

GA (LNG carrier) 16% 54% 30% 

GA (chemical tanker) 28% 41% 32% 

GA (containership) 27% 47% 26% 

GA (LPG carrier) 28% 42% 30% 

RINA Green Plus 72% 25% 3% 

The Blue Angel (Operation) 42% 42% 16% 

Single 
criteria 

EEOI 100% 0% 0% 

RightShip EVDI 100% 0% 0% 

Green Ship Incentive 
Program 

100% 0% 0% 

Norwegian NOX Fund 100% 0% 0% 
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Many of the initiatives have a broad environmental scope but the weightings of the 

criteria vary significantly. For example, 54% of the points available in ESI are 

allocated to NOX, significantly more than in any of the other multi criteria initiatives 

(ESI, 2017). NOX is allocated 20% in CSI, 10% in CCWG and less than 10% in each 

of the other schemes with the exception of the Green Ship incentive programme and 

the Norwegian NOX fund, which are specifically designed to promote NOX reductions 

from shipping. Vessels with low NOX emissions are likely to receive a high overall 

score in ESI even if they score low in the other categories. A ship with zero NOX – 

assuming it does not score points in any of the other categories - would gain a score 

of 67 points in ESI (54% of the total). 

Many ports around Europe use the ESI as a benchmarking tool, and offer financial 

incentives if vessels meet a minimum point’s threshold (Table 3.4). Point’s 

requirements to obtain discounts vary from 20 to more than 50, depending on the 

policy of the port. A score of 67 points is enough to comfortably achieve the required 

score to receive maximum financial benefit from each of the example incentive 

schemes for ports shown in Table 3.4. A vessel with low NOX clearly has some 

significant environmental benefits, however it may not necessarily be considered 

‘eco-friendly’ in other pollutant categories. 

There is no evidence provided in the published methodologies to justify the criteria 

weightings used in each initiative, therefore it is assumed that the weightings have 

been decided subjectively by the developers. A more transparent approach could be 

implemented, using objective, quantifiable indicators to assess each pollutant and 

allocate criteria weightings. By doing this, criteria could be assessed objectively and 

weightings assigned based on the environmental impact of the pollutant.  
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Table 3.4 ESI points requirement for reduced duty fees at selected ports (adapted from CNSS, 
2014) 

 

 

3.4.2.3 Environmental ambition 

The main purpose of many of the initiatives analysed is to provide an indication of 

the environmental performance of a vessel, often by benchmarking against the 

performance of other vessels. The ESI is a tool for calculating environmental 

performance scores for individual vessels. Vessel scores can then be compared 

against each other to rank vessel environmental performance. Additionally, vessel 

scores can be benchmarked against a threshold value as shown in Table 3.4, and 

used to determine eligibility for incentives such as port discounts. CSI uses its own 

benchmarking scheme to classify ships based on environmental performance. CSI-

class 1 is awarded to vessels scoring between 0-37 points, with higher classifications 

awarded to vessels achieving higher scores. Ships are awarded the highest 

classification (CSI-class 5) if they receive 125 points or more.  

While CSI uses a multi-tiered classification system to rank ship environmental 

performance, other initiatives are less ambitious, with just a single classification. In 

order to qualify for the RINA Green Plus certification vessels must achieve 100 

points or more out of 621 available (16%) (see Table 3.5), and vessels taking part in 

the Blue Angel scheme must achieve 40 out of 113 points (35%). 

In the examples in Table 3.5, the number of points required to achieve accreditation 

is low. In each case, the minimum point threshold is a requirement to obtain overall 

certification of the award. There are no minimum thresholds set for individual 

Port Minimum ESI points requirement Discount 

Rotterdam 
≥ 31 10% 

≥ 31 total and ≥ 31 NOX* 20% 

Oslo 
25-49 20% 

≥ 50 40% 

Bremen & 
Bremerhaven 

≥ 20 5% 

Kiel ≥ 31 10% 

Setubal ≥ 31 3% 

Hamburg > 50 10% (capped at €2,000) 

Antwerp ≥ 31 10% 

Wilhelmshaven ≥ 31 5% 

Zeebrugge ≥ 20 10% 

Groningen sea ports ≥ 20 5% 
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pollutants. An oil tanker using Green Award (GA – oil tanker) for example is not 

required to obtain any points for reduction of NOX, Particulate Matter or CO2, 

therefore a vessel can obtain the award by gaining a satisfactory number of points in 

other criteria. 

Incentive based initiatives such as the port discount schemes outlined in Table 3.4 

set unambitious environmental targets for vessels. The highest achievable score in 

ESI is 100 points (Murphy et al., 2013), however the maximum threshold for the 

incentive schemes in Table 3.4 is capped at 50 points.  

Scott et al. (2017) suggest that one of the reasons for this is to not discourage 

participation by setting standards that are deemed unrealistic for many vessels. 

However, a more ambitious system, such as using multi-tiered benchmarking 

offering bigger financial incentives for high scoring vessels and smaller incentives for 

lower scoring vessels could encourage a wide uptake.  

It is also noted that the incentives offered are small relative to the total operating 

costs of a ship, and hence may not encourage shippers to participate in such 

schemes (Murphy et al., 2013; Scott et al., 2017), and hence lack incentive to 

enhance environmental performance. 

Table 3.5 Thresholds for Accreditation 

Environmental 
initiative 

Points threshold (%) 

GA (oil tanker) 20% 
GA (bulk carrier) 21% 
GA (LNG carrier) 40% 

GA (chemical tanker) 20% 
GA (containership) 26% 
GA (LPG carrier) 18% 
RINA Green Plus 16% 
The Blue Angel 35% 

 

Where possible, initiatives were analysed to determine the level of ambition in 

regards to individual pollutant criteria. Many of the schemes are considered to go 

‘beyond regulatory requirements’ (Scott et al., 2017) however further analysis 

suggests that most of the schemes are unlikely to encourage pollutant reductions 

significantly below the levels set out in MARPOL Annex VI. Many of the schemes do 

not measure pollutants in absolute terms, and performance is assessed relative to 

emissions from other vessels, or average emissions from similar vessels.  
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For example, the CCWG assesses vessel CO2 emissions relative to a calculated 

trade lane average. Vessel emissions must be below the trade lane average to 

obtain a minimum score, and 10% below the trade lane average to achieve the 

maximum score. CCWG also uses relative thresholds rather than absolute 

thresholds for SOX emissions. The minimum requirement is an average fuel S 

content of 15% above the trade lane average, and the maximum score is achieved if 

it is 15% below the trade lane average. Therefore if the trade lane average S content 

rises, the S content required to achieve a score will also rise. Conversely, if the 

average S content reduces then the threshold for scoring in CCWG also reduces. 

This could be considered a useful mechanism for lowering Sulphur emissions, given 

the introduction of increasingly stringent regulations planned for the near future, 

requiring all ships to use fuel oil with a maximum S content of 0.5% by 1st January 

2020.   

The NOX and SOX criteria for a number of initiatives are compared in terms of 

absolute values (see Figures 3.5 and 3.6). Each of the initiatives in Figure 3.5 use 

the requirements set out in MARPOL Annex VI as a scale to assess performance. 

For all of the initiatives, vessels are required to achieve at least Tier 1 emission 

levels in order to score points, while some initiatives set more stringent minimum 

requirements. CCWG is one of the more ambitious schemes in this regard, setting 

the minimum NOX threshold at 20% below Tier 1 levels, however the maximum 

score is capped at Tier 3. Each of the Green Award initiatives offer maximum points 

for vessels achieving better than Tier 3 emissions, while CCWG, CSI, The Blue 

Angel and Green Ship Incentive Programme (Green Ship) set the maximum 

threshold at the regulatory limit (i.e. Tier 3). 
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Figure 3.4 NOX Scoring Range 

 

Figure 3.5 SOX Scoring Range 

 

The ESI is by far the most ambitious scheme with regards to assessment of NOX and 

SOX. It is the only scheme that rewards ships for reducing NOX and SOX emissions 

to zero, using a calculation based methodology to determine points based on 

emission level rather than using absolute threshold values. However it is limited in 

assessing CO2, apportioning only 20% of the total available points in the scheme to 
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CO2 related criteria - 4% for reporting of EEOI on fuel consumption and distance 

sailed, and up to 8% for energy efficiency improvements, and 8% if the vessel has 

OPS capability on board. Also, NOX and SOX scores are calculated based on the 

installed power of a ships engines and the published % S content of the fuel 

respectively, rather than the actual emissions of each pollutant. 

As shown in Figure 3.5, the initiatives use more ambitious thresholds to assess SOX 

emissions with only ESI and RINA Green Plus setting the minimum requirement at 

the regulatory limit, the other schemes require a fuel S content lower than 3.5% in 

order to qualify. However only ESI and the Blue Angel use a scoring range which 

goes beyond the regulatory limit for SECA’s of 0.1% S. The low level of ambition 

shown for parameters such as NOX, SOX and CO2 questions the success of private 

initiatives in the context of improving sustainability, as in most cases the criteria do 

no more than reinforce the regulatory standards set out by the IMO.  

It is also noted that most of the initiatives analysed use one single, rigid assessment 

methodology for all ships, and only the Green Award uses different scoring criteria 

for different vessel types. The other schemes analysed have a standard 

methodology which is either applied to a range of ship types, or is only suitable for 

application to a limited range of ship types e.g. the CCWG is for container ships only. 

In some cases, additional or alternative bonus points are available for different ship 

types where the criteria is relevant to a specific characteristic of a ship e.g. the Blue 

Angel offers more points for passenger ships using OPS while in port than other ship 

types. The extent to which a ship impacts on the environment may vary depending 

on the characteristics of the vessel, and assuming that different ship types affect the 

environment in different ways, a ‘one size fits all’ performance assessment 

methodology for all ships is not appropriate. 

 

3.5 Summary 

Regulations exist to minimise the damage to the marine environment caused by ship 

operations, by limiting the amount of harmful pollutants released. Shipping 

regulations have evolved in recent years to become more stringent as global 

environmental awareness has increased. However, the jurisdictional structure of 

international law provides a barrier to enforcement of environmental regulations in 
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shipping. In addition, the process of ratification of IMO conventions leads to delays in 

when regulations can enter force legally, which along with a divergence of 

international, national, regional and local regulations, contributes to the fragmentary 

nature of shipping legislation. 

Another method of controlling the release of pollutants to the marine environment is 

through adoption of environmental management strategies. Many global shipping 

companies have adopted a corporate social responsibility to promote environmental 

protection, and implement environmental management strategies and systems, such 

as ISO 14001, to showcase their credentials. Many cross-industry environmental 

assessment tools and methods are available for use to manage environmental 

performance and assess environmental impacts, and have been adopted for use in 

shipping. So called ‘green shipping initiatives’ have become increasingly common in 

the shipping sector, to meet the environmental demands of customers and other 

stakeholders in the industry, and ‘bridge the gap’ caused by the barriers associated 

with shipping regulations. 

This research identifies 85 different environmental initiatives relevant to shipping, 

and uses a holistic categorisation method to classify the schemes based on intended 

purpose. Initially the schemes are classified as either regulatory or independent 

instruments. The regulatory instruments are categorised further into optional or 

mandatory, and the independent schemes are classified as performance indicators, 

incentive schemes, and research and innovation activities.  

Analysis of the initiatives reveals some limitations with the methods used to assess 

environmental performance, the applicability of the schemes to different ship types 

and locations, their environmental scope, and ambition to meet the increasing 

environmental demands of the industry. Many of the performance indicators 

identified are designed to assess multiple environmental pollutants, however the 

rationale behind the allocation of pollutant weightings is unclear, as some pollutants 

are weighted more heavily than others without justification. It is proposed that 

weightings should be justified and allocated based on the environmental impacts of 

the pollutant. None of the initiatives assess ship environmental performance based 

on actual pollutant emissions and discharges, and instead use proxy indicators such 

as fuel S content to assess SOX emissions, and engine tier ratings to assess NOX. It 
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is proposed that actual measurements of emissions, or emissions estimates based 

on fuel use, would provide a more accurate assessment method. 

Most of the initiatives analysed use a limited scoring range to assess pollutant 

emissions and discharges, with maximum scores capped at the regulatory limit, or 

just below. The ESI is an exception to this, as NOX and SOX scores are not capped 

and scores increase as emissions reduce down to zero. It is proposed that a ship 

performance assessment should include a scoring range starting at zero 

emissions/discharges, and scores should decrease as the amount of pollutants 

emitted or discharged, increase. It is also evident that most of the initiatives use a 

single assessment method, which is applied to all ship types, and therefore lack the 

flexibility to assess different vessel types where pollutant emissions and discharges 

may vary significantly. In some cases, the initiatives are only applicable to one type 

of ship e.g. the CCWG for containerships. 

To summarise, a broad set of limitations with existing environmental initiatives have 

been identified in the research, these are: 

- A lack of transparency of results and assessment methods. 

- Limited applicability of initiatives to a wide range of ship types. 

- Some initiatives have a narrow environmental scope. 

- Biases towards certain pollutant indicators and unjustified weighting factors. 

- Low thresholds for certification and limited ambition to go beyond regulatory 

requirements. 

- Assessment of vessel performance based on design parameters rather than 

operational performance. 

In the next chapter, a framework for a holistic environmental assessment 

methodology is proposed which can be applied to multiple different vessel types, 

whilst adopting a broad, relevant environmental scope based on the environmental 

impacts of emissions and discharges of pollutants. The method uses justified, 

calculated, pollutant weightings based on a set of environmental indices, and 

calculates vessel environmental performance scores based on actual vessel 

emissions and discharges of pollutants.  
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4.0 Development of a holistic environmental assessment model 

 

4.1 Introduction 

Shipping has a considerable impact on the environment due to the intentional and 

accidental release of pollutants. Maritime environmental legislation has tightened 

since the introduction of the MARPOL 73/78 regulations, however there is often a 

significant time gap between when the regulations are adopted and when they 

legally enter force.  

The emergence of private voluntary environmental initiatives has occurred in an 

attempt to bridge the gap, reduce environmental impacts and raise the 

environmental profile of ships. However, there are inconsistencies in the 

methodologies used to define ship performance, while the number and diversity of 

initiatives available for use can cause confusion, hindering progress towards greater 

sustainability.  

A critical analysis of existing environmental initiatives in the shipping industry has 

been conducted in Chapter 3, challenging the applicability, scope, environmental 

ambition and integrity of the methodologies adopted. Analysis of the initiatives 

highlights significant differences regarding their applicability to ship types and 

locations, assessment rationale and environmental scope. The existing initiatives 

lack the flexibility to be ship specific and many show bias towards certain 

environmental indicators, while others lack ambition and assess a limited number of 

environmental pollutants. 

An alternative approach to environmental assessment of ships is proposed in this 

chapter, offering a holistic method of assessment which can be applied to multiple 

vessel types. The method adopts a broad, relevant environmental scope based on 

assessment of ship environmental impacts and determines environmental 

performance based on actual vessel emissions and discharges. The approach 

adopts a risk assessment based methodology using source pathway receptor (S-P-

R) analyses to characterise and prioritise environmental impacts from pollutant 

discharges and emissions from ships. A comprehensive scoring system is adopted 
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to indicate vessel environmental performance. A method and set of criteria for 

prioritising environmental pollutants is proposed.  

 

4.2 Overview of methodology 

The holistic environmental assessment framework is comprised of several steps as 

outlined in Figure 4.1. First, the scope of the assessment must be set, to determine 

what is and is not included. The framework is divided into two parts, part A (steps 1 

to 6) is designed to characterise the pollutant emissions and discharges released 

from the vessel through environmental impact determination and assessment using 

environmental indicators, and part B (steps 7 to 11) provides the vessel assessment 

based on calculations, estimations and measurements of actual discharges and 

emissions.  

A risk assessment method has been adopted as it is considered to be the most 

appropriate tool for evaluating the impacts of pollutants on the environment based on 

the severity of impact, and probability of occurrence. Section 3.3.6 reviews a number 

of different risk assessment methods. For this purpose, a semi quantitative method 

has been adopted so that ship related pollutants can be assessed subjectively but 

can be backed up by sound scientific evidence, and can be applied consistently by 

following the steps of the method.  

The first step involves the identification of ship interactions with the environment in 

order to understand which aspects of the environment the vessel may impact upon. 

The second step identifies a broad list of environmental pollutants, or hazards, 

associated with ship operation. The next step consists of an S-P-R analysis to 

determine the possible impacts of the identified ship hazards on the environment. S-

P-R analysis was selected from the various techniques outlined in Section 3.3.6.2 as 

it enables a systematic, consistent approach to identifying impacts of pollutant 

emissions and discharges. Next, the hazards are assessed using numerical severity 

indicators (spatial extent, residence time, toxicity, and global warming potential) and 

a total severity score is calculated in order to determine a weighting factor score for 

each hazard.  
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The second part of the method (part B) requires vessel specific data to be collected 

via checklist, in order to calculate a Vessel Environmental Performance (VEP) 

indicator score for each hazard. The hazard weighting factors (from part A) and VEP 

indicator scores are multiplied together to calculate overall severity scores for each 

hazard, which are then multiplied by the likelihood of occurrence to give scores for 

hazard significance. This allows ship environmental hazards (i.e. pollutants) to be 

assessed based on the effects of the pollutant on the environment and the amount 

discharged or emitted to the environment from a specific vessel.  

Hazard significance scores for each pollutant are combined to provide a total VEP 

(Vessel Environmental Performance) Index score for the vessel.  

Figure 4.1 outlines the framework of the methodology, including the inputs and 

outputs. 

 

Figure 4.1 Holistic environmental assessment framework 
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The method is implemented as follows: 

Part A: 

  Step 1: Identify key interactions of ships with the environment. 

  Step 2: Identify environmental hazards. 

  Step 3: Conduct Source-Pathway-Receptor analysis. 

  Step 4: Identify environmental impacts. 

  Step 5: Assess severity of hazards. 

  Step 6: Calculate hazard severity weighting. 

 

Part B:  

  Step 7: Conduct vessel assessment using inputs from vessel checklist. 

  Step 8: Determine Vessel Environmental Performance (VEP). 

  Step 9: Calculate overall severity. 

  Step 10: Determine likelihood of hazards. 

  Step 11: Calculate hazard significance. 

  Step 12: VEP Index score 

 

This approach enables identification of the major environmental threats associated 

with specific ships by assessing and prioritising pollutant emissions based on impact 

severity and actual vessel emissions and discharges. The outputs of assessments of 

different vessels can be compared, providing an indication of vessel environmental 

performance. 

 

4.3 Assessment scope 

An important first step in the development of impact assessments is to quantify the 

scope of the problem or investigation (Gormley, 2011). In order to assess the 
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impacts of shipping, or more specifically ships, on the environment, definitions for 

‘ships’ and ‘the environment’ must be determined. The purpose of this assessment 

methodology is to provide an indication of ship environmental performance based on 

the impacts of vessel operations on the surrounding natural environment, therefore 

the definition of ‘ship’ in this instance refers to individual vessels during the 

operational phase, it does not include fleets or ‘shipping’ in the wider industry 

context, and does not include impacts associated with construction and maintenance 

of the vessel during dry docking, or breaking at end of life.  

Ships are man-made entities and are not part of the natural environment of the earth, 

therefore the definitions of ‘ship’ and ‘environment’ are clearly distinguished. 

‘Environment’ refers to the surrounding conditions in which a vessel operates, which 

includes the maritime environment, atmosphere and ports. Environmental impacts of 

ships are considered to be primary or secondary effects resulting from direct 

emissions or discharges from a vessel to land, sea, and air, and the impacts 

associated with such emissions on earth systems and living organisms (biota). For 

the purpose of this research, the environmental impacts assessed are limited to 

those which have been identified in Chapter 2 and summarised in Appendix A. 

In summary, the scope of this assessment methodology includes direct emissions 

and discharges of pollutants from vessels during the operational phase, whilst in 

operation at sea and/or other water bodies, and in port. 

 

4.4 Step 1: Ship interactions with the environment 

The earth’s environmental system is made up of five interacting spheres (Manahan, 

2017). The hydrosphere consists of all water on the earth’s surface, the atmosphere 

is made up of air and other gases which envelope the earth’s surface, the geosphere 

consists of soil, rocks and mineral matter on or below the earth’s surface, the 

biosphere consists of all living organisms, and the anthrosphere represents the parts 

of the earth that are made, modified or operated by humans.  

The scope of the assessment methodology has been constructed based on the 

interaction of ships with the environment during operation. Ships are designed for 

transportation of goods and people by sea or other water bodies, therefore there is a 
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direct interaction of ships with the hydrosphere. Ships also interact with the 

atmosphere through emissions of various exhaust and other gases. Direct 

interactions of ship pollutants with the hydrosphere and atmosphere also lead to 

interactions with the biosphere and have impacts on the earth’s geochemical 

activities (the transfer of substances to different environmental spheres). Ships 

interact with the geosphere due to the release of pollutants (e.g. in municipal solid 

waste) which come into contact with the earth’s natural landscape when berthing at 

ports and harbours. Harbours and ports are manmade landscapes, hence vessels 

also interact with the anthrosphere. Ships also produce sounds that can cause 

annoyance or disturbance to living organisms in the biosphere, and can make 

physical contact with marine organisms. 

During the operational phase, ships interact with aspects of each of the five spheres 

of the environment. Therefore, this assessment method categorises ship interactions 

with the environment into five groups, considering each of the environmental 

spheres. Interactions with the biosphere have been separated into two categories: 

noise; and physical contact with marine animals, to represent different types of 

interaction. Interactions with the geosphere and anthrosphere are combined into a 

single category, ‘Land’. The interactions are categorised as follows:  

 (1) Emissions to Air (atmosphere)  

 (2) Discharges to Water (hydrosphere) 

 (3) Land (geosphere and anthrosphere) 

 (4) Anthropogenic Noise (biosphere) 

 (5) Physical Contact (biosphere) 

 

4.5 Step 2: Determination of Environmental Hazards 

A hazard in environmental risk assessment is defined by Gormley et al. (2011) as “a 

situation or biological, chemical or physical agent which may lead to harm or cause 

adverse effects” to an aspect of the environment. Therefore in the context of this 

assessment method, ship hazards are considered to be emissions or discharges of 

pollutants from a vessel which interact with the environment. Vessels produce 
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various pollutant releases to the environment due to the operation of different 

processes and equipment on board. The most common discharges include oil and 

chemical spills, wastewater releases, chemical releases from paint coatings, ballast 

water release, dumping of waste material, and emissions of exhaust gases and other 

air pollutants. Chapter 2 provides a detailed assessment of environmental impacts 

associated with pollutants from ships. Based on the impacts identified, a summarised 

list of ship hazards is presented, categorised per interaction type, shown in Table 

4.1. The list does not include hazards associated with the construction or end of life 

phases of a vessels life cycle as such phases are not included in the scope of this 

research (and therefore resource depletion and ship decommissioning are omitted 

as hazard categories). 

The method distinguishes between operational releases and those that are 

considered accidental and/or violations of current regulations (Figure 4.2). For 

example, air emissions occur during routine operation of the ship. Similarly, 

discharge of treated ballast water may also be considered a controlled release, 

whilst untreated may be considered a violation. Pollutants can also be distinguished 

from biohazards such as invasive species, which can impact on the environment due 

to biological effects on local ecosystems. The method acknowledges operational and 

non-operational releases in Section 4.13 by coarsely assessing hazard likelihood. 

The method distinguishes pollutants (including biohazards) based on discharge 

pathway, as shown in Table 4.1. 

 

Figure 4.2 Types of environmental release from ships 
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The list of hazards is intended to be generic and is based on the environmental 

interactions determined from the literature in Chapter 2. However, the list can be 

tailored by an environmental assessor to a specific group of vessels depending on 

the scope of the assessment. In order to compare vessels like for like, the hazard list 

must remain constant. For the purpose of this research, the hazard list in Table 4.1 is 

adopted. 

Table 4.1 List of ship environmental hazards 

Interaction with the Environment Environmental Hazard 

Emissions to Air 

GHGs (CO2, CH4, N2O) 
ODPs (Refrigerants) 
SOX 
NOX 
PM 
VOCs 

Discharges to Water 

Oil 
Sewage 
Grey water 
Antifoul systems 

Ballast water 

Marine litter 
Chemicals 

Land Garbage 

Anthropogenic Noise 
Underwater noise 
Surface noise 

Physical Contact Collisions with marine animals 

 

4.6 Step 3: Source Pathway Receptor Analysis 

As discussed in Section 3.3.6 (Chapter 3), a common tool in risk assessment for 

quantifying impacts and risks of pollution is S-P-R (source pathway receptor) 

analysis. This technique has been utilised in this research to categorise the impacts 

of ships on the environment into the interaction groups outlined in Table 4.1, and to 

determine the pathways into the environment of the pollutants (hazards) discharged 

from ships. An S-P-R analysis has been conducted for each environmental hazard 

outlined in Chapter 2, summarised in Table 4.2.  
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Table 4.2 S-P-R analysis of ship hazards 

Interaction Hazard Source Pathway Receptor 

Emissions to 
Air 

CO2 (GHG) Engine Combustion of fuel Atmosphere 

CH4 (GHG) 

Slippage due to 
incomplete 
combustion of 
natural gas in 
engine / loss 
during handling 

Handling and 
combustion of LNG 

Atmosphere 

N2O (GHG) Engine 
Fuel combustion at 
low temperatures 

Atmosphere 

Refrigerants Leakage 
Refrigeration units 
Air conditioning units 

Atmosphere 

SOX Engine Fuel combustion Atmosphere 

NOX Engine Fuel combustion Atmosphere 

PM Engine 
Fuel combustion 
Material wear 
Lubrication oil 

Atmosphere 
Humans 

VOCs 

Solvent 
containing 
materials (paints, 
thinners) 
Crude oil 
(tankers) 
Engine 

Solvent evaporation 
during paint 
application and 
cleaning 
Solvent evaporation 
in oil tanks (vented to 
atmosphere) 
Fuel combustion 

Atmosphere 
Humans 

Discharges to 
Water 

Oil 
Fuel tanks 
Storage 
containers 

Spillage 
Leakage 

Sea 
Aquatic species 
Marine ecosystems 
Humans 

Sewage 

Toilets 
Medical facilities 
Live animal 
premises 

Disposal 
Spillage 

Sea 
Humans 
Marine ecosystems 

Grey water 
Washing facilities 
Oily water 
separators 

Disposal 
Spillage 

Sea 
Marine ecosystems 

Discharges to 
Water 

(continued) 

Antifoul 
coating 

Hull coatings 
Leakage 
Dissolution 

Sea 
Aquatic species 

Invasive 
species 
transfer 
(Ballast 
water) 

Ballast water 
Hull fouling 

Ballast water release 
Detachment from hull 

Sea 
Marine ecosystems 
Aquatic species 

Marine litter 
Discarded from 
ship 
Lost from ship 

Disposal 
Accidental loss 

Sea 
Humans (bathing) 
Marine ecosystems 

Chemicals 
Cargo 
Cleaning products 

Spillage 
Leakage 

Sea 
Aquatic species 
Marine ecosystems 
Humans 

 

Continued overleaf… 
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Interaction Hazard Source Pathway Receptor 

Land Garbage 
On-board solid 
waste 

Disposal at 
port/harbours 
Fly tipping 
Accidental loss 

Land 
Soil 

Anthropogenic 
Noise 

Underwater 
noise 

Propellers 
Engines 

Soundwaves 
(exacerbated by 
cavitation) 

Sea 
Aquatic species 

Surface 
noise 

Shipping activities 
Warning sirens 

Soundwaves Humans 

Physical 
Contact 

Collisions 
with marine 
animals 

Ship’s hull 
Ship movement 
Movement of aquatic 
species 

Aquatic species 
(Cetaceans) and 
other sea life 

 

4.7 Step 4: Identification of Impacts 

The environmental impacts reviewed in Chapter 2 have been collated for each ship 

related emission and discharge (hazard) in Table 4.3. The purpose of this step is to 

understand how ship emissions and discharges impact on the environment, and 

develop a summary of impacts to inform the severity assessment in the next step. 

 

Table 4.3 Environmental impacts of ship operations 

Interaction Hazard Environmental impacts 

Emissions to Air 

CO2 (GHG) 
Climate change 

Ocean acidification 

CH4 (GHG) Climate change 

N2O (GHG) Climate change 

Refrigerants 
Ozone depletion 
Climate change 

SOX 

Acid rain 

Dry deposition 

Radiative forcing 

Secondary particulate formation 

NOX 
 

Acidification 

Eutrophication 

Surface ozone formation 

Radiative forcing 

Secondary particulate formation 

 

 

Continued overleaf… 
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Interaction Hazard Environmental impacts 

Emissions to Air 

PM 

Human health 

Radiative forcing 

Decrease in snow/ice albedo 

Acid rain 

VOCs 

Human health 

Secondary radiative forcing 

Secondary acid rain 

Photochemical smog formation 

Discharges to 
Sea 

 

Oil 

Toxification of biota 

Suffocation of biota 

Ocean hypoxia 

Hypothermia in sea birds 

Physical damage to shore line 

Disease in marine species 

Bioaccumulation in marine species 

Sewage and Grey 
water 

Direct toxification of biota 

Eutrophication 

Ocean hypoxia and anoxia 

Hydrogen Sulphide formation 

Stunted growth rate of marine species 

Human health 

Antifoul coating 

Imposex and stunted growth of marine species 
due to TBT release 

Bioaccumulation of Copper in marine organisms 

Toxification of marine organisms (Irgarol and 
Diuron) 

Invasive species 
transfer (Ballast 
water) 

Relocation and establishment of alien species 

Competition for resources with native species 

Damage to infrastructure 

Spread of disease 

Increase in fuel consumption due to hull fouling 

Marine litter 

Human health 

Shoreline aesthetics 

Infrastructure damage 

Entanglement of marine species 

Bioaccumulation of micro plastics in marine 
species 

Habitat destruction 

Chemicals 

Human health 

Toxification of biota 

Bioaccumulation in marine species 

Habitat destruction 

 

Continued overleaf… 
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Interaction Hazard Environmental impacts 

Land Garbage 

Chemical leaching into soil and watercourse 

Odour 

Aesthetics of waste disposal sites in 
ports/harbours 

Anthropogenic 
Noise 

Underwater noise 

Acoustic masking of communication signals in 
marine species 

Behavioural disruption of marine species 

Reduced population density of marine species 

Physiological impacts on marine species 

Surface noise 

Human health 

Annoyance 

Distraction leading to increased safety risks 

Physical Contact 
Collisions with 
marine animals 

Serious injury to aquatic species 

Death of aquatic species 

 

 

4.8 Step 5: Hazard Severity Assessment 

In order to quantify the potential severity of impact of vessel emissions and 

discharges on the environment, each hazard is assessed using a set of severity 

indicators. In risk assessment, characterisation of impact can be subjective 

especially where quantitative data is not readily available. The use of severity 

indicators in this case attempts to minimise the subjectivity of the assessment by 

providing clear definitions for characterising the impact of pollutants on the 

environment.  

In some cases there may not be data available in order to accurately determine e.g. 

the spatial extent of an impact, however it may be possible to ‘best fit’ the effects 

within a broader definition. For example, a global environmental phenomenon such 

as climate change could generally be considered to have both global and localised 

effects on the environment, however a detailed climate model would be required in 

order to predict the effects in detail. This level of resolution is outside of the scope of 

the methodology, which is designed to provide a broad assessment of environmental 

impacts related to shipping emissions and discharges. Therefore in this case the 

effects of climate change are considered to be global. 

A set of severity indicators used to assess each hazard is outlined in Table 4.4. The 

indicators are defined with definitive boundaries to provide a framework for objective 
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assessment, but also require minimal scientific interpretation or data input. The 

process of qualitative risk assessment is inherently ambiguous as it relies on 

personal interpretation, therefore the use of well-defined severity indicators is 

important, especially where availability of data is limited. In this case, the indicators 

are clearly defined as described in Table 4.4. 

The hazards are assessed based on spatial distribution of the pollutant in the 

environment (estimated from the literature), the residence time of the hazard in the 

environment, the toxicity of the hazard to aquatic species, toxicity to humans, and 

Global Warming Potential (GWP). 

The indicators are assigned a numerical score based on the definitions for each 

indicator outlined in Table 4.4. A linear numerical scale was chosen to score the 

indicators from 1 to 5 to enable vessels to be scored on a simple scale. The indicator 

scores do not represent the magnitude of impact of a pollutant incident.  

Using spatial extent as an example, pollutants which have a global effect on the 

environment are given a score of 5, while pollutants considered to have a local effect 

on the environment at a port or city level are given a score of 3. 

Residence time is established where possible from the literature, for example the 

lifetime of greenhouse gases in the atmosphere has been extensively researched by 

the IPCC (Intergovernmental Panel on Climate Change), with the latest findings 

published in the 5th Assessment Report (5AR) in 2013. The GWP of gases is also 

readily available using the same source, while data on pollutant toxicity can be 

obtained through the EU established ECHA (European Chemicals Agency) database 

and through GESAMP, (2018) (Group of Experts on the Scientific Aspects of Marine 

Environmental Protection), a report listing hazardous substances commonly 

transported via shipping. 
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Table 4.4 Environmental indicators and definitions 

Indicator Score Definition 

Spatial 
extent 

Global 5 
Spatial distribution at a global level, resulting in effects on the 
global environment e.g. a change in global atmospheric 
conditions  

Regional 4 Spatial distribution at a continental and/or national level  

Local 3 Spatial distribution at a port or city level 

Individual 2 
Spatial distribution which affects individual structures or 
organisms  

Negligible 1 No spatial distribution of pollutants 

Residence 
time 

Very long 
term 

5 Residence time greater than 1000 years 

Long term 4 Residence time < 1000 years > 100 years 

Medium 
term 

3 Residence time < 100 years > 1 year 

Short term 2 Residence time < 1 year > 1 day 

Negligible 1 Residence time < 1 day 

Toxicity 
(Aquatic) 

Category 1 5 
Globally Harmonised System (GHS) classification for acute 
aquatic toxicity (LC50 ≤ 1 mg/L) 

Category 2 4 
Globally Harmonised System (GHS) classification for acute 
aquatic toxicity (LC50 > 1 ≤ 10 mg/L) 

Category 3 3 
Globally Harmonised System (GHS) classification for acute 
aquatic toxicity (LC50 > 10 ≤ 100 mg/L) 

Category 4 2 

Globally Harmonised System (GHS) “safety net” classification 
for poorly soluble substances for which no acute toxicity is 
recorded at levels up to the water solubility, and are not 
rapidly degradable, indicating a potential to bio accumulate. 

Not 
classified 

1 Classification under GHS undefined 

Toxicity 
(Human) 

 
Air 

emissions 

Category 1 5 
GHS classification for toxicity - acute inhalation (LC50 ≤ 0.05 
mg/L) 

Category 2 4 
GHS classification for toxicity - acute inhalation (LC50 > 0.05 
mg/L ≤ 0.5 mg/L) 

Category 3 3 
GHS classification for toxicity - acute inhalation (LC50 > 0.5 
mg/L ≤ 1 mg/L) 

Category 4 2 
GHS classification for toxicity - acute inhalation (LC50 > 1 
mg/L ≤ 5 mg/L) 

Not 
classified 

1 Classification under GHS undefined 

Toxicity 
(Human) 

 
Other 

pollutants 

Category 1 5 GHS classification for toxicity – acute oral (LD50 ≤ 5 mg/L) 

Category 2 4 
GHS classification for toxicity – acute oral (LD50 > 5 mg/L ≤ 
50 mg/L) 

Category 3 3 
GHS classification for toxicity – acute oral (LD50 > 50 mg/L ≤ 
300 mg/L) 

Category 4 2 
GHS classification for toxicity – acute oral (LD50 > 300 mg/L ≤ 
2000 mg/L) 

Category 
5/Not 
classified 

1 
GHS classification for toxicity – acute oral (LD50 > 2000) or 
GHS classification undefined  

GWP 
(Global 

Warming 
Potential) 

Very High 5 > 3,000 

High 4 1,000 - 3,000 

Moderate 3 300 - 1,000 

Low 2 1 - 300 

Negligible 1 < 1 
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4.8.1 Spatial extent 

A qualitative index of spatial extent is used to broadly define the spread of a pollutant 

in the environment from a point source discharge or emission. For the purpose of 

this methodology, spatial extent is defined as outlined in Table 4.4. A numerical 

scale (1 to 5) rather than a qualitative scale has been selected to represent the 

spatial extent indicator. The lower end of the scale (score = 1) signifies little or no 

spatial distribution or diffusion of pollutants, and the top end of the scale (score = 5) 

signifies a global distribution of pollutants. A scale using quantified distances was 

considered for this indicator, however modelling the distribution of a pollutant from a 

point source is detailed, complex and dependent on many factors, and data at that 

level of detail is not considered to be required for this methodology.  

The pollutants outlined in Table 4.3 have been subjectively assessed using the 

qualitative spatial extent indicator described in Table 4.4. The impacts associated 

with each pollutant were also taken into account when determining spatial extent e.g. 

the consequence of emissions of ozone depleting substances (e.g. halocarbons in 

certain refrigerants) is depletion of the ozone layer, which is considered to be a 

global issue – emission is local however impact is global. CO2, CH4 and N2O are 

GHGs with a long residence time in the atmosphere, and therefore are considered to 

have global environmental impacts regardless of whether the source of the 

emissions is localised, and are therefore categorised as ‘global’ using the spatial 

extent indicator. NOX, SOX and PM have shorter atmospheric residence times than 

GHGs, but can travel relatively long distances and are considered to be 

transboundary pollutants, therefore are classed as having ‘regional’ spatial extent 

using the indicator in Table 4.4.  Emission of VOCs containing methane have global 

environmental effects (climate change), however NMVOCs have short atmospheric 

residence times and contribute to localised environmental impacts such as 

photochemical smog production, therefore are considered to be ‘local’ using the 

spatial extent indicator in Table 4.4. 

The issue of ozone depletion is covered by the Montreal Protocol which is a global 

treaty, and emissions of ozone depleting substances through refrigerants affect the 

ozone layer on a global scale. In many cases however, modern refrigerants have 

very low or zero ozone depleting potential, however some gases used in e.g. air 
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conditioning systems have significant global warming potential (e.g. R410a has a 

GWP of 2088 (Linde, 2019)). Therefore, the spatial extent of refrigerants in this 

research is considered to be ‘global’. 

The spatial distribution of oil can depend on many factors including the volume of oil 

discharged due to a spillage, and its viscosity. Vessels carrying large quantities of oil 

as cargo pose a greater risk to the environment from a spillage than non-cargo 

vessels, due to having a greater quantity of oil on board. Once the oil enters the 

marine environment, it can spread across relatively large areas as an oil slick, while 

diffusion can result in oil molecules being transported further from the point source of 

the discharge. Modelling can be conducted to predict the trajectory and fate of oil 

spills in the ocean (Abascal, et al., 2018; Maslo et al., 2014; Kileso et al., 2014) 

which can be taken into account for detailed vessel assessments, however for the 

purpose of this research, a generalised, subjective assessment of oil spatial extent 

has been made. Major historic oil spills from shipping have resulted in hundreds of 

thousands of tonnes of oil being released into the ocean from individual accidents 

(Lindgren et al., 2016b). In such cases, the discharge can spread hundreds of 

kilometres (Marchand, 1980; Gonzalez et al., 2006), potentially impacting on the 

marine environment in regions spanning multiple countries and/or continents. 

Therefore, the spatial extent of oil is considered to be ‘regional’ for this research. 

This indicator is flexible depending on the oil carrying capacity of the vessel. 

Data regarding the spatial distribution in the environment of sewage and grey water, 

and chemicals from antifoul paints discharged from ships is limited, however each 

are released at a low rate and in small quantities compared with a major oil spill. The 

fate of sewage sludge in the marine environment has been studied by Oviatt et al. 

(1987), who suggest that sewage is rapidly re-mineralised in sea water due to its 

organic content, and therefore has a short residence time, however other studies 

(Boesch, 1982; Steimle et al., 1982) suggest that sludge traces can be found 10-

15km from the point of disposal. Oviatt et al. (1987) suggest that sludge settles to the 

sea bed in a matter of days to months depending on the depth of the water, where it 

is consumed by benthic organisms. It is therefore plausible that sewage sludge could 

impact the marine environment at a local level due to the proposed residence time 

and evidence of sludge traces found at relatively short distances from the point of 

discharge in previous studies.  
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Antifoul paints can persist in water from days to years depending on the chemicals 

used, and have been found in relatively high concentrations in localised areas of 

high boating activity such as harbours and ports, with limited concentrations in 

offshore waters (Thomas, 2001). Therefore for the purpose of this research, the 

spatial extent of sewage and grey water, along with antifoul paint is considered to be 

‘local’. Regarding the transfer of invasive species, it becomes an environmental 

concern when ballast water discharge takes place in coastal waters and in port areas 

allowing non-native species to become established in local marine ecosystems, 

therefore for this research the spatial extent of invasive species is considered to be 

‘local’. 

The distribution of disposed litter from ships into the marine environment can vary 

depending on the characteristics of the litter. Biodegradable waste streams are likely 

to have a limited residence time in the marine environment and are therefore unlikely 

to spread long distances from the point source, however other waste streams can 

remain in the environment for long periods, and hence can be transported to other 

locations through ocean currents. Micro-plastics for example are small enough to be 

transported thousands of kilometres in ocean currents, however research in this field 

is emerging, and their fate and impact in the marine environment is uncertain (Avio 

et al., 2017). The IMO consider micro plastics to be ‘a global problem’ (GESAMP, 

2015), therefore the spatial extent of marine litter in this research is considered to be 

‘global’. Scientific understanding regarding the distribution of chemicals in the marine 

environment following a pollution incident is limited, however Cunha et al. (2015) 

suggest that data from historical spillages indicates localised impacts on the 

environment, therefore the spatial extent of chemicals is considered to be ‘local’. 

Noise can propagate hundreds of Km in water (Lindgren and Wilewska-Bien, 2016), 

and hence the spatial extent of underwater noise is classified as ‘regional’ in this 

research, however in air it is limited by external factors and tends to be a nuisance at 

a port or harbour level (Badino et al., 2012), and hence is classified as ‘local’ in this 

research. Physical contact tends to occur between a vessel and individual marine 

animals which are large enough to incur ship strikes, so is classified as ‘individual’. 

Waste disposed of at port reception facilities is contained within a confined area, 

however odours and toxic gases released into the atmosphere can spread 
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depending on the meteorological conditions. Nevertheless, the spatial extent of 

waste disposal on land is considered to be ‘local’ for this research.  

Based on the rationale as explained in this section, a summary of the spatial extent 

scores for ship related pollutants is outlined in Table 4.5. 

Table 4.5 Spatial extent indicator scores per hazard 

Interaction Hazard Spatial extent Score 

Emissions to 
Air 

CO2 Global 5 

CH4 Global 5 

N2O Global 5 

Refrigerants Global 5 

SOX Regional 4 

NOX Regional 4 

PM Regional 4 

VOC's Local 3 

Discharges to 
Water 

Oil Regional 4 

Antifoul coating Local 3 

Ballast water Local 3 

Sewage Local 3 

Grey water Local 3 

Marine litter Global 5 

Chemicals Local 3 

Land Garbage Local 3 

Anthropogenic 
noise 

Underwater noise Regional 4 

Surface noise Local 3 

Physical Collisions with marine animals Individual 2 

 

4.8.2 Residence time 

The residence time indicator uses quantitative thresholds to assess each pollutant 

based on the period of time in which the primary pollutant remains in the 

environment, according to relevant literature. As outlined in Table 4.4, pollutants are 

assessed on a numerical scale of 1 to 5 to provide a broad indication of time spent in 

the environment, from less than 1 day to greater than 1,000 years. The consistency 

of application of residence time scales has been questioned by Monsen et al. (2002), 

suggesting the definitions of such metrics are not applied with rigour. There are 

numerous definitions which describe the period of time spent by a compound in the 

environment before they are removed through reactive or exchange processes. The 
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IPCC (2013) describes GHGs in terms of atmospheric lifetime, which is the time 

taken for a concentration pulse to decrease by a factor of e (2.71). The same 

definition cannot be applied to pollutants emitted to other aspects of the 

environment. For example, the residence time of oil in this instance is defined as the 

half-life of oil in sea water, which is the time taken for its quantity to reduce by half 

through biodegradation (Hazen et al., 2016; Prince et al., 2016). Residence times for 

each pollutant are defined in Table 4.6. 

In this research, the scale for measuring residence time is broad and therefore the 

accuracy of time data required is low. Residence times of each pollutant in the 

environment have been adapted from the literature where available, summarised in 

Table 4.6. 

Table 4.6 Assumed residence times of pollutants in the environment 

Interaction Hazard 
Residence 

time 
Contextual definition of 

Residence time 
Source 

Emissions to 
Air 

CO2 > 1000 years 

IPCC definition of 
atmospheric lifetime: time 
taken for a concentration 
pulse to decrease by a 
factor of e (2.71). 

IPCC (2013) 

CH4 9.1 years 

IPCC definition of 
atmospheric lifetime: time 
taken for a concentration 
pulse to decrease by a 
factor of e (2.71). 

IPCC (2013) 

N2O 131 years 

IPCC definition of 
atmospheric lifetime: time 
taken for a concentration 
pulse to decrease by a 
factor of e (2.71). 

IPCC (2013) 

Refrigerants 
10's to 100's of 
years 

Average of estimated 
steady state lifetimes of a 
gas from the time of peak 
burden (i.e. the rate of 
change in mass of a gas) 
onwards. Gases are in 
steady state in the 
atmosphere when the 
sources balance the sinks. 
Lifetimes represent the 
sum of all losses from the 
atmosphere. 

Rigby et al. 
(2013) 

SOX 
Days 
(troposphere) 

e-folding lifetime of SOX  
Miyakawa et 
al. (2007);  

 

Continued overleaf… 
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Interaction Hazard 
Residence 

time 
Contextual definition of 

Residence time 
Source 

Emissions to 
Air 

 

NOX 

Hours 
(surface) to 
days (upper 
troposphere) 

e-folding lifetime of NOX 

Kenagy et 
al. (2018); 
Zhang et al. 
(2002) 

PM 
Days to 
weeks 

Not specified. 
Giere and 
Querol 
(2010) 

VOCs 
Hours to 
months 

IPCC definition of atmospheric 
lifetime: time taken for a 
concentration pulse to 
decrease by a factor of e 
(2.71). 

IPCC (2013) 

Discharges to 
Water 

Oil 
Days to 
months 

Half-life of oil in sea water: 
time taken for quantity of oil to 
reduce by half through 
biodegradation.  

Hazen et al. 
(2016) 

Sewage 
Days to 
months 

Settling rate of sludge in sea 
water. (e.g. In water depth of 
5m, 85% settlement in 24h; at 
2700m depth, 50% settlement 
within 2 months). 

Oviatt et al. 
(1987) 

Grey water 
Days to 
months 

Assumed to be the same as 
sewage. 

Oviatt et al. 
(1987) 

Antifoul 
coating 

< 24 hours to 
hundreds of 
days 

Degradation half-life (varies 
depending on coating). 

Thomas 
(2001; 2010) 

Ballast 
water 

Permanent 
Establishment of alien species 
in new location (considered to 
be permanent). 

Bax et al. 
(2003) 

Marine 
litter 

100's to 
1000's of 
years 

Degradation lifetime of micro 
plastics in the marine 
environment. 

Wang et al. 
(2016) 

Chemicals 
Weeks to 
months 

Biodegradation half-life of 
selected chemicals known to 
have entered the marine 
environment through spill 
events 

Cunha et al. 
(2015) 

Land Garbage 
Days to tens 
of years 

Persistence of plastic waste in 
landfill (more than 20 years). 
Webb et al. (2012). 
Biodegradation rate of 
municipal solid waste in landfill 
(around 10,000 days). 
McDougall (2011). 

Webb et al. 
(2012); 
McDougall 
(2011) 

Anthropogenic 
Noise 

Underwater 
noise 

Negligible 
Attenuation from point source 
at rate of speed of sound in 
sea water. 

Wilson 
(1960) 

Surface 
noise 

Negligible 
Attenuation from point source 
at rate of speed of sound in 
standard air. 

Wong 
(1986) 

Physical 
Contact 

Collisions 
with marine 
animals 

Negligible 
Not applicable. Physical 
contact is considered to be 
instantaneous. 

n/a 
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In many cases, data regarding the lifetime of pollutants in the environment is readily 

available in the literature, however assumptions have been made for some of the 

pollutant categories outlined in Table 4.6. For each pollutant, residence times are 

defined in the context of previous studies conducted, hence the definition is not 

consistent for all pollutants. The residence times of sewage and grey water have 

been broadly assumed based on the estimated settlement rate of sludge in sea 

water (Oviatt et al., 1987), while the residence time of antifoul coatings is broadly 

defined based on studies by Thomas (2001; 2010) where the half-lives of different 

antifoul paint biocides have been investigated. For invasive species transfer due to 

ballast water release, it is assumed that for an invasion to take place a species must 

be established permanently in a new location, while the residence time of marine 

litter is assumed based on the degradation rate of micro plastics in the ocean. 

Marine litter can be composed of many different waste streams, with micro plastics 

one of the more persistent constituents (Wang et al., 2016). 

The residence times of NOX and SOX in the atmosphere are assumed based on 

studies by Kenagy et al. (2018) and Zhang et al. (2010), and Miyakawa et al. (2007) 

respectively. Residence times of each are defined by the e-folding lifetime in the 

atmosphere, which is the time taken for the concentration to decrease to 1/e of the 

original concentration. Particulates are assumed to reside in the atmosphere for days 

to weeks according to studies by Giere and Querol (2010), and the residence time of 

ozone depleting substances is assumed based on the steady state lifetimes of a 

number of prominent ozone depleting gases taken from a study by Rigby et al. 

(2013). The residence time of NMVOCs in the atmosphere varies from hours to 

months depending on the characteristics of the gas (IPCC 2013).   

For underwater and above surface noise emissions, the residence time is considered 

to be negligible as sound propagates from a point source at a considerable rate in 

sea water and in air. The spatial distribution of sound can be significant, particularly 

in water, however the persistence of the sound wave at a specific point is considered 

to be negligible in this research. Likewise, the residence time of physical contact with 

marine animals is considered to be negligible. For waste disposal to land, residence 

time has been assumed based on the degradation of organic and inorganic waste 

streams in landfill, ranging from days (organic wastes) to tens of years (plastic 

polymers).  
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A summary of the residence time scores for ship related pollutants is outlined in 

Table 4.7. 

Table 4.7 Residence time indicator scores per hazard 

Interaction Hazard Residence time Score 

Emissions to 
Air 

CO2 Very long term 5 

CH4 Medium term 3 

N2O Long term 4 

Refrigerants Medium term 3 

SOX Short term 2 

NOX Short term 2 

PM Short term 2 

VOCs Short term 2 

Discharges to 
Water 

Oil Short term 2 

Antifoul coating Short term 2 

Ballast water Very long term 5 

Sewage Short term 2 

Grey water Short term 2 

Marine litter Long term 4 

Chemicals Short term 2 

Land Garbage Medium term 3 

Anthropogenic 
Noise 

Underwater noise Negligible 1 

Surface noise Negligible 1 

Physical 
Contact 

Collisions with marine animals Negligible 1 

 

4.8.3 Toxicity (Aquatic) 

The indicator for toxicity to aquatic organisms uses the Globally Harmonised System 

(GHS) of Classification and Labelling of Chemicals, developed by the United Nations 

(2017). The GHS guidelines define acute aquatic toxicity as “the intrinsic property of 

a substance to be injurious to an organism in a short term aquatic exposure to that 

substance”, and chronic aquatic toxicity as “the intrinsic property of a substance to 

cause adverse effects to aquatic organisms during aquatic exposures which are 

determined in relation to the life cycle of the organism”. Substances are classified 

using data from OECD (Organisation for Economic Co-operation and Development) 

internationally harmonised test methods where possible, or from equivalent national 

test methods.  
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Acute aquatic toxicity is measured using a 96 hour LC50 test for fish (OECD test 

guideline 203), a 48 hour EC50 test for Crustacea (OECD test guideline 202), or a 72 

or 96 hour EC50 test for algal species. These species are considered surrogate for all 

aquatic organisms. LC50 is the concentration of a substance in air or water which 

causes the death of 50% of a group of test animals, and EC50 is the effective 

concentration of a substance required to cause 50% of the maximum response to 

exposure after a specified time.  

Chronic toxicity measurements are less standardised than acute, and are therefore 

less widely available. Data generated using OECD test guidelines 201 (freshwater 

alga and cyanobacteria, growth inhibition test), 210 (fish, early life stage toxicity test) 

and 211 (Daphnia magna reproduction test) are normally acceptable for measuring 

chronic aquatic toxicity, along with other validated and internationally accepted 

methods (United Nations, 2017). The availability of data for chronic toxicity is limited, 

therefore the GHS categories for acute toxicity have predominantly been adopted for 

this indicator as shown in Table 4.4, with the exception of Category 4 which is a 

‘safety net’ classification for where no acute toxicity data is available. The severity of 

aquatic toxicity of pollutants is scored from 1 to 5, 5 being the most toxic and 1 being 

unclassified. Pollutant categorisation data can be obtained using the European 

Chemicals Agency database (ECHA, 2018), any published material safety data 

sheet (MSDS) for a given substance, and the GESAMP (2018) report on chemicals 

substances at sea. A summary of the aquatic toxicity scores for ship related 

pollutants is outlined in Table 4.8. It is noted that ocean acidification due to CO2 

absorbance causes toxicity to aquatic organisms, however this is not quantified on 

the GHS scale and hence is not considered in the scope of this analysis. 

Table 4.8 Aquatic toxicity indicator scores per hazard 

Interaction Hazard Toxicity (aquatic) Score 

Emissions to 
Air 

CO2 Not classified 1 

CH4 Not classified 1 

N2O Not classified 1 

Refrigerants Not classified 1 

 

 

Continued overleaf… 
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Interaction Hazard Toxicity (aquatic) Score 

Emissions to 
Air (continued) 

SOX Not classified 1 

NOX Not classified 1 

PM Not classified 1 

VOCs Not classified 1 

Discharges to 
Water 

Oil Category 2 4 

Antifoul coating Category 4 2 

Ballast water Not classified 1 

Discharges to 
Water 

(continued) 

Sewage Category 3 3 

Grey water Not classified 1 

Marine litter Not classified 1 

Chemicals* Category 2 4 

Land Garbage Not classified 1 

Anthropogenic 
Noise 

Underwater noise Not classified 1 

Surface noise Not classified 1 

Physical 
Contact 

Collisions with marine animals Not classified 1 

*the aquatic toxicity of chemicals is assumed to be the most toxic classification according to Table 2.1 
in Chapter 2. 

 

4.8.4 Toxicity (Human) 

Toxicity to humans is also measured using the GHS method of classification. The 

guidelines define acute toxicity as “serious adverse health effects (i.e. lethality) 

occurring after a short-term oral, dermal, or inhalation exposure to a substance or 

mixture”. The toxicity thresholds vary depending on the type of exposure to a 

substance as the concentration or dose required to cause harm depends on whether 

it is inhaled, ingested or exposed to skin. The most likely interactions of ship related 

pollutants with humans are through inhalation and oral ingestion. Therefore in this 

instance, toxicity categories for exposure to inhalation of dust and mist have been 

adopted for pollutant emissions to air, while the oral exposure categories have been 

used for all other pollutants where applicable (see Table 4.4).  

Acute toxicity to humans is expressed as LD50 (amount of chemical given at once 

which causes 50% mortality rate in group of test animals) values for oral exposure, 

and as LC50 values for inhalation. Where this information is not available, acute 

toxicity estimates (ATE) - which are a derivation of LD50 and LC50 using conversion 

values - are used (United Nations, 2017). As is the case with all of the indicators 

adopted, the severity of toxicity to humans is assessed on a numerical scale of 1 to 
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5, 1 being lowest and 5 being highest. A summary of the human toxicity scores for 

ship related pollutants is outlined in Table 4.9. 

Table 4.9 Human toxicity indicator scores per hazard 

Interaction Hazard Toxicity (humans) Score 

Emissions to 
Air 

CO2 Category 4 2 

CH4 Not classified 1 

N2O Category 2 4 

Refrigerants Not classified 1 

SOX Category 2 4 

NOX Category 1 5 

PM Not classified 1 

VOCs Not classified 1 

Discharges to 
Water 

Oil Category 4 2 

Antifoul coating Category 4 2 

Ballast water Not classified 1 

Sewage Not classified 1 

Grey water Not classified 1 

Marine litter Not classified 1 

Chemicals* Category 2 4 

Land Garbage Not classified 1 

Anthropogenic 
Noise 

Underwater noise Not classified 1 

Surface noise Not classified 1 

Physical 
Contact 

Collisions with marine animals Not classified 1 

*the human toxicity of chemicals is assumed to be the most toxic classification according to Table 2.1 
in Chapter 2. 

 

4.8.5 Global Warming Potential (GWP) 

Global Warming Potential (GWP) is used to assess the relative contribution to 

climate change of each pollutant. CO2 acts as a reference and has a GWP of 1 over 

a reference time period of 100 years. Substances with a GWP of greater than 1 

which are emitted to the atmosphere result in greater warming of the earth than is 

caused by CO2. At present there is no generally accepted classification of GWP, 

however a UNEP Technology and Economic Assessment Panel task force report 

(UNEP, 2010) outlines proposed groupings for greenhouse gases according to GWP 

(Table 4.10). 
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Table 4.10 GWP classification adopted from UNEP (2010), adapted for VEP Index in Table 4.4 

GWP value Classification 

< ~30 Ultra-low 

< ~100 Very low 

< ~300 Low 

< ~1,000 Moderate 

< ~3,000 High 

< ~10,000 Very high 

> ~10,000 Ultra-high 

 

The classification groupings outlined in Table 4.10 have been adapted for this 

research into 5 groups (very high; high; moderate; low; negligible) as shown in Table 

4.4. Pollutants are scored on a numerical scale of 1 to 5, 1 represents pollutants with 

a ‘negligible’ GWP (less than 1) and a score of 5 is given to pollutants with a ‘very 

high’ GWP value (more than 3,000). GWP scores are applicable to gaseous 

pollutants (per molecule), while all other pollutants are considered to have negligible 

GWP and receive a score of 1. A summary of the GWP scores for ship related 

pollutants is outlined in Table 4.11. 

Table 4.11 GWP indicator scores per hazard 

Interaction Hazard 
GWP (100 

years) 
GWP 

indicator 
Score 

Emissions to 
Air 

CO2 1 Low 2 

CH4 21 Low 2 

N2O 298 Moderate 3 

Refrigerants (*varies depending on 
substance – assumed based on 
value of R600a refrigerant gas) 

3 Low 2 

SOX n/a Negligible 1 

NOX n/a Negligible 1 

PM n/a Negligible 1 

VOCs n/a Negligible 1 

Discharges to 
Water 

Oil n/a Negligible 1 

Antifoul coating n/a Negligible 1 

Ballast water n/a Negligible 1 

Sewage n/a Negligible 1 

Discharges to 
Water 

(continued) 

Grey water n/a Negligible 1 

Marine litter n/a Negligible 1 

Chemicals n/a Negligible 1 

Land Garbage n/a Negligible 1 

Anthropogenic 
Noise 

Underwater noise n/a Negligible 1 

Surface noise n/a Negligible 1 

Physical Collisions with marine animals n/a Negligible 1 
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For refrigerants, the GWP value assumed in this research is for R600a refrigerant 

gas as this substance is used in the case studies in Chapter 5. However, in cases 

where other refrigerants are utilised, the GWP value can be adjusted (for example 

the Max Pruss - Chapter 5 - uses air conditioning units containing refrigerants with a 

GWP of 2088, which impacts on the overall hazard significance score for 

refrigerants). GWP values for CO2, Methane and N2O are taken from the IPPC 

(2013) report, and the GWP of R600a is taken from the MSDS for Isobutane (Linde, 

2018). 

 

4.9 Step 6: Hazard Severity Weighting 

The hazards are assessed using the severity indicators outlined in Table 4.4. Scores 

for each indicator are added together to calculate a total score for each hazard (see 

Table 4.12). The hazard severity scores for each pollutant are divided by the total for 

all pollutants to give a hazard weighting score (%) for each pollutant, as shown in 

Table 4.13. The % weighting scores are used in step 9 of the methodology to 

calculate an overall severity score for each hazard.  

CO2, CH4 and N2O have been combined into one category (GHGs) as they are all 

greenhouse gases and have largely the same effects on the environment. The 

highest indicator scores from each of the pollutants are used to calculate the total 

severity weighting for GHGs.  An additional hazard is presented in Table 4.13. Oil is 

included in the assessment through two separate sources, as on board stored oil, 

and as oily water (bilge). The severity scores for each are assumed to be equal, as 

shown in Table 4.13. Both hazards present an environmental risk through discharge 

to water. 
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Table 4.12 Total severity score per hazard 

Hazard Spatial 
Residence 

time 
Toxicity 
(aquatic) 

Toxicity 
(human) 

GWP Total 

GHGs 5 5 1 4 3 18 

Refrigerants 5 3 1 1 2 12 

SOX 4 2 1 4 1 12 

NOX 4 2 1 5 1 13 

PM 4 2 1 1 1 9 

VOCs 3 2 1 1 1 8 

Oil 4 2 4 2 1 13 

Antifoul coating 3 2 2 2 1 10 

Ballast water 3 5 1 1 1 11 

Sewage 3 2 3 1 1 10 

Grey water 3 2 1 1 1 8 

Marine litter 5 4 1 1 1 12 

Chemicals 3 2 4 4 1 14 

Garbage 3 3 1 1 1 9 

Underwater noise 4 1 1 1 1 8 

Surface noise 3 1 1 1 1 7 

Collisions with 
marine animals 

2 1 1 1 1 6 

 

Table 4.13 Weighting factor (%) per hazard 

Interaction Hazard Hazard Severity 
Score 

Hazard 
Weighting 

Emissions to Air 

GHGs 18 9.33% 

Refrigerants 12 6.22% 

SOX 12 6.22% 

NOX 13 6.74% 

PM 9 4.66% 

VOCs 8 4.15% 

Discharges to 
Water 

Oily water (bilge) 13 6.74% 

Antifoul coating 10 5.18% 

Ballast water 11 5.70% 

Sewage 10 5.18% 

Grey water 8 4.15% 

Marine litter 12 6.22% 

Chemicals 14 7.25% 

On board stored oil 13 6.74% 

Land Garbage 8 4.15% 

Anthropogenic 
Noise 

Underwater noise 7 3.63% 

Surface noise 9 4.66% 

Physical Collisions with marine animals 6 3.11% 

Total 193 100% 
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4.10 Step 7: Vessel Assessment 

To conduct the vessel assessment, a vessel check list method has been developed 

which is used to characterise the environmental features of individual vessels and 

determine the pollutant emissions and discharges entering the environment. The 

data derived from the vessel check list is used to assess the environmental 

performance of specific vessels over individual voyages. This allows for comparisons 

of environmental performance between different vessels, but also between different 

voyages of the same vessel. Data from multiple vessel checklists can be combined 

to assess the vessels environmental performance over a longer time period. 

 

4.10.1 Vessel check methods 

The vessel checklist methodology consists of categories related to the environmental 

hazards defined in Step 2. Data is collected for each hazard as outlined in Table 

4.14. There are different methods for collecting the data with varying levels of 

accuracy. The most accurate method of data collection is through direct 

measurement, providing actual discharge volumes of pollutants. Where direct 

measurement is not possible due to e.g. a lack of technology or resource, estimated 

discharges based on operational data can be calculated. For instances where 

operational data is not available, estimates based on design criteria can be made, 

however this is the least accurate method of measurement. Therefore, the hierarchy 

of data quality is as follows:  

 (1) Direct measurement of emission/discharge.  

 (2) Estimation of emission/discharge based on operational data.  

 (3) Estimation based on design specification.  

 (4) No data. 
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Table 4.14 Check methods per hazard 

Hazard 

Check method 

Direct measurement 
Estimate based on 

operation 
Estimate based 

on design 

GHGs (CO2, 
CH4 and 
N2O) 

Direct measurement of GHG 
emissions (monitoring equipment). 

Fuel use * EF for 
CO2, CH4, and N2O. 

Estimated fuel use 
based on distance 
travelled. 

Refrigerants 
Refrigerant leak test in accordance 
with EU Regulation no. 517/2017 
(automatic or manual). 

n/a 
Refrigerant 
capacity on board 
in tonnes CO2 eq. 

SOX 

Direct measurement of SOX 
emissions (monitoring equipment) - 
depends on accuracy and 
calibration of equipment. 

Fuel use * EF for 
SOX. 

Sulphur content of 
fuel estimated fuel 
use. 

NOX 
Direct measurement of NOX 
emissions (monitoring equipment). 

Fuel use * EF for 
NOX. 

Rated power of 
engine (EIAPP 
certificate). 

PM 
Direct measurement of PM 
emissions (monitoring equipment). 

Fuel use * EF for 
PM. 

n/a 

VOCs 
Direct measurement of VOC 
emissions (monitoring equipment). 

Usage * VOC 
content = 
emissions. 

n/a 

Oily water 
(bilge) 

Automated monitoring of oil levels 
on storage tanks, bilge water, oily 
water separators. 

Bilge water storage 
volume and 
estimated release 
rate. 

Bilge water storage 
capacity and 
estimated release 
rate. 

Sewage 
Automated/manual measurement of 
sewage flows. 

Volume collected in 
sewage tanks. 

Litres of sewage 
per flush * average 
number of flushes. 

Grey water 
Automated/manual measurement of 
grey water flows. 

Volume collected in 
grey water tanks. 

Litres of grey water 
per activity * 
frequency of 
activity. 

Antifoul 
coating 

Continuous monitoring of water 
quality around hull to detect 
chemical traces contained in antifoul 
coating. 

Measured volume 
of coating applied * 
release rate of 
chemicals. 

Chemical content 
of coating (data 
sheet). 

Ballast 
water 

Automated monitoring of ballast 
water collection and release. 

Manual monitoring 
of ballast water 
tanks. 

Ballast water tank 
size * estimated 
rate of release. 

Marine litter 
Record of volume and type of waste 
going overboard. 

Estimate based on 
average garbage 
generation. 

n/a 

Chemicals 
Record of chemicals stored on 
board, record of spillage incidents. 

Estimated 
usage/spillage of 
chemicals. 

Manual audit of 
stored chemicals. 

On board 
stored oil 

Record of oil stored on board, 
record of spillage incidents. 

Oil record book 
(MARPOL Annex 1: 
Regulation 17). 

Manual audit of 
stored oil. 

Garbage 
Measure weight of garbage 
produced. 

Estimate garbage 
production based 
on consumption 
habits. 

n/a 

 

Continued overleaf... 
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Hazard 

Check method 

Direct measurement 
Estimate based on 

operation 
Estimate based 

on design 

Underwater 
Noise 

Direct measurement of noise at 
specified distance using noise 
monitoring equipment. 

n/a 
Engine noise level 
taken from engine 
spec. 

Surface 
noise 

Direct measurement of noise at 
specified distance using noise 
monitoring equipment. 

n/a 
Engine noise level 
taken from engine 
spec. 

Collisions 
with marine 
animals 

Record of strikes with marine 
animals. 

n/a n/a 

 

4.10.2 Vessel check list 

The extent of the vessel assessment is dependent on the availability of data and the 

operational characteristics of the ship being assessed. For example, vessels of a 

certain type or profile may not require ballast water release and therefore data 

regarding invasive species transfer would not be collected. In cases where vessels 

implement a Ballast Water Management (BWM) system, controlled releases that 

meet regulatory standards regarding ballast water treatment are not considered an 

environmental hazard. In certain cases actual recorded data may not be available 

and estimates will be used instead, as per the methods outlined in Table 4.14. 

Vessel check lists can be customised for specific vessels based on the 

characteristics of the vessel. 

A standard vessel check list template is shown in Table 4.15. Some general 

information on the vessel is collected so that certain calculations can be carried out 

e.g. the number of persons on board is used to calculate garbage production per 

person. An inventory of chemicals, oils and other hazardous materials on board 

should also be collected so that the total volume of hazardous materials can be 

calculated. 

Where continuous monitoring of actual emissions to air is not available, emissions 

are estimated using emissions factors, and hence operational data (fuel type, use, 

distance, speed etc.) must be collected. 

It is advised that a vessel specific voyage check list is custom designed for individual 

vessels, so that the correct data is collected. It is possible that much of the data 

required for this methodology may be collected already as part of routine data 
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collection e.g. for a Ships Energy Efficiency Management Plan (SEEMP). If so, it is 

possible that the check sheet could be designed to incorporate the data already 

being collected, to avoid increasing administrative work load. 

Table 15 Vessel checklist (blank template) 

Pollutant category Checklist 

General 
General vessel 

information 

Vessel length (m) 

Vessel breadth (m) 

Vessel draft (m) 

Vessel weight (t) 

Engine size (kW) 

Number of engines 

Number of persons on board 

Inventory of materials  

Emissions to Air 

GHGs (CO2, CH4, 

N2O), SOX, NOX, PM, 

VOCs 

Fuel type 

Distance travelled (nm) 

Average speed (knots) 

Top speed (knots) 

Fuel use (l) 

Refrigerants 
GWP of refrigerants 

Refrigerant type 

Refrigerant quantity (Kg) 

SOX Sulphur content of fuel (%) 

Discharges to Water 

Oily water (bilge) Volume of bilge water (l) 

Sewage Volume of sewage produced per voyage (l) 

Grey water Volume of grey water produced per voyage (l) 

Antifoul coating Type of antifoul coating applied to vessel 

Ballast water Volume of ballast water collected (l) 

Volume of ballast water released (l) 

Marine litter Method of waste disposal 

Waste separation on board (y/n) 

Chemicals 
Volume of chemical liquids on board (l) 

Volume of chemicals used (l) 

Record of chemicals spilled (l) 

On board stored oil 

Volume of fuel on board (l) 

Volume of oil stored on board (l) 

Oil use per voyage (l) 

Record of oil spilled (l) 
Land Garbage Volume of waste produced per voyage (Kg) 

Anthropogenic noise Noise 

Noise level of engine (dB) 

Noise measurements recorded using noise 

measuring equipment? (y/n) 

If y, recorded noise levels for surface and 

underwater noise (dB) 

Physical Contact Collisions with marine 

animals 
Number of vessel strikes with aquatic species 
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4.11 Step 8: Vessel Environmental Performance (VEP) 

The raw data collected in the vessel check list is processed and compiled, and can 

then be used to calculate a VEP score for each hazard. The VEP represents the 

actual emissions performance of the ship.  

The VEP score for each hazard is calculated (units are shown in Table 4.16), the 

scores must then be normalised so that each hazard can be assessed using a 

consistent numerical scale, as the VEP units of each pollutant can vary depending 

on the characteristics of the emission or discharge and the way the emission or 

discharge is measured. For example, VEP scores relating to emissions to air are 

measured in Kg/tonne-mile, which is an appropriate unit for measuring the amount of 

emissions relative to the distance the vessel has travelled per tonne of displacement. 

However, garbage production is measured in Kg/person-day, an appropriate 

measurement of the amount of waste produced per day divided by the number of 

persons on board. In order to combine and compare data sets, the VEP scores must 

be normalised on a standardised scale. A detailed example of VEP score 

calculations is shown in the case studies in Chapter 5. 

 

4.11.1 Normalisation of VEP severity scale 

VEP scores are normalised (VEPn) on a scale of 0 to 5 according to a maximum and 

minimum level of emission or discharge. The minimum level is set at 0 (zero 

emissions or discharges of a pollutant), and the maximum is set at a pre-defined 

maximum permissible emission or discharge level based on regulatory requirements 

or some other measure determined from the literature. The rationale for this is where 

regulatory limits for emissions or discharges are applicable, vessels must not exceed 

the limits. Where absolute limits are not set in the regulation, other maximum 

permissible limits have been set based on maximum usage estimates taken from the 

literature.  

For example, there are currently no absolute limits set in the regulation for GHG 

emissions (CO2, N2O and CH4), so a maximum permissible limit is used based on a 

calculated value for GHGs in grams per tonne-mile, based on the Energy Efficiency 

Design Index (EEDI). Similarly, there are no regulatory limits set for volumes of 
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garbage production per person or per vessel, therefore the maximum permissible 

limit has been set based on upper boundary municipal solid waste production data 

for a high income country, taken from the World Bank Study on waste generation 

(Hoorweng & Bhada-Tata, 2012).  

A list of maximum and minimum permissible limits of pollutant emissions and 

discharges for each hazard are outlined in Table 4.16. The maximum limits for some 

of the pollutants will vary from vessel to vessel depending on the characteristics of 

the vessel. For example, the maximum permissible level of GHGs emitted in grams 

per tonne-mile will vary depending on the calculated EEDI value of the vessel. The 

EEDI formula calculates CO2 emissions per transport work in g per tonne-mile based 

on the design characteristics of the vessel. The same principle is applied to other 

pollutants to calculate a reference emission value based on vessel design for each 

hazard. The reference value is set as the maximum permissible emission limit, to 

which the operational emissions can be compared. The formula for calculating the 

reference emission value is as follows: 

Eref = P * EF * SFC / (V * D) (4.1) 

Where: 

Eref = Maximum permissible emission limit 

P = Maximum power of engine(s) 

EF = Emission factor of pollutant 

SFC = Specific fuel consumption of engine 

V = Maximum speed of vessel 

D = Vessel displacement 

The operational emissions and discharges (VEP) of each vessel are normalised 

against the maximum and minimum permissible limits outlined in Table 4.16, to 

calculate VEPn values. The emissions of CO2, CH4 and N2O are combined and 

calculated in grams CO2 equivalents of GHGs, and a maximum permissible limit for 

GHGs is also calculated. 
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Table 4.16 Maximum and minimum permissible emission/discharge levels for each pollutant 

Hazard Maximum Minimum Unit Rationale Calculation 
of max. limit 

CO2, CH4, 
N2O, SOX, 
NOX, PM, 

VOCs 

Calculated 
reference 

value 
0 

g/tonne-
mile 

Calculated reference value 
based on vessel design 
characteristics. 

Eref = P * EF 
* SFC / (V * 
D). 

Refrigerants 500 0 
Tonnes 
CO2 eq. 

Maximum CO2 eq. threshold for 
leak check requirements in 
refrigeration systems according 
to EU F gas regulations. 
Systems containing 500 t CO2 
eq. or more must install 
mandatory leak check 
equipment. (Note: this is not 
mandatory legislation for ships). 
(Gluckman Consulting, 2016). 

Refrigerant 
mass 
(tonnes) * 
GWP = CO2 
eq. 

Oily water 
(bilge) 

26 0 m3/day 

Maximum discharge based on 
upper level estimate for 
discharge from large cruise 
ships (BTS, 2002). 

No 
calculation 
required. 

Sewage & 
grey water 

Calculated 
maximum 
discharge 

rate. 

0 m3/hr 

Maximum discharge rate 
calculated based on IMO Annex 
IV requirement (IMO MARPOL 
Annex IV, 2003).  

DRmax = 
0.00926 * V * 
B * D 
(velocity * 
breadth * 
draft). 

Antifoul 
coating 

2500 0 mg/kg 2500 mg/kg of Tin is the 
regulatory limit set by the IMO 
Convention on the Control of 
Harmful Anti-Fouling Systems 
on Ships (IMO AFS Convention, 
2001). 

No 
calculation 
required. 

Ballast 
water 

20,000 0 m3/hr 
Upper limit pumping rate for 
large tankers (National 
Research Council, 1996). 

No 
calculation 
required. 

Marine litter 14 0 
Kg/person

-day 

Upper boundary for municipal 
solid waste production (high 
income) (Hoorweng & Bhada-
Tata, 2012). 

No 
calculation 
required. 

Chemicals 50,000 0 Tonnes 

Maximum capacity of a 
reference chemical tanker (dwt) 
(https://opensea.pro/blog/ships-
types-and-sizes). 

Total quantity 
of chemicals 
on board. 

 

Continued overleaf… 



 

129 
 

Hazard Maximum Minimum Unit Rationale 
Calculation 
of max. limit 

On board 
stored oil 

550,000 0 Tonnes 

Maximum capacity of a 
reference oil tanker (dwt) 
(https://opensea.pro/blog/ships-
types-and-sizes). 

Total quantity 
of stored oil 
on board. 

Garbage 14 0 
Kg/person

-day 

Upper boundary for municipal 
solid waste production (high 
income) (Hoorweng & Bhada-
Tata, 2012). 

No 
calculation 
required. 

Underwater 
noise 

230 0 dB 

Recommended harmful (i.e. 
probable onset of injury) sound 
pressure exposure threshold for 
cetaceans based on proposed 
injury criteria (hearing and 
behavioural response) (Southall 
et al., 2008). 

No 
calculation 
required. 

Surface 
noise 

110 0 dB 

Maximum acceptable noise level 
(work spaces including hearing 
protection) according to IMO 
code on noise levels on board 
ships (IMO, 2012). 

No 
calculation 
required. 

Collisions 
with marine 

animals 
1 0 

Collisions 
per 

voyage 

Collisions are rare, therefore any 
number of injuries or fatalities 
per voyage is considered 
significant. 

No 
calculation 
required. 

 

4.12 Step 9: Overall Severity  

Overall severity is a calculation of the severity of each hazard taking into account the 

calculated weighting factor and the extent of emissions and discharges of pollutants. 

It is calculated using the following equation: 

Overall severity = weighted hazard severity (step 6) * VEPn (step 8) (4.2) 

The severity assessment must also take into account the type of release to the 

environment, as discussed in section 4.5 (Figure 4.2). The assessor must consider 

whether the release is intentional during normal operation, and/or if the release is 

accidental or in violation of regulatory standards. For example, a vessel may 

discharge significant quantities of treated ballast water into the environment with 

limited impact, however if untreated the environmental risk would increase 
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significantly. Controlled, permissible releases that have negligible impact on the 

environment shall be scored zero in the severity assessment.  

 

4.13 Step 10: Hazard Likelihood 

In addition to severity, the likelihood of occurrence of the hazard must be taken into 

account in order to determine significance. Likelihood, or probability, is an estimate 

of how often an emission or discharge of the hazard is likely to occur. Estimates can 

often be determined through review of historic events, or through an epistemic 

understanding of processes which result in pollutant releases. Likelihood of 

occurrence in impact assessment is often a qualitative measure where data is not 

available to accurately represent the frequency of occurrence of an unplanned event. 

However there are shipping activities which occur during routine operation, therefore 

the likelihood of occurrence can be broadly assessed on this basis.  

In the absence of extensive historical failure data for the shipping activities that 

cause pollutant discharges to the environment, likelihood is assessed in absolute 

terms. If the action or event that causes an impact occurs during routine shipping 

operation and the occurrence of the event causes an emission or discharge (hazard) 

to the environment, the hazard is given a score of 2 for likelihood. Alternatively, if the 

event does not occur during routine operation or the event does not cause a routine 

emission or discharge into the environment, a score of 1 is given (see Figure 4.2).  

 

 

Figure 4.2 Likelihood assessment 
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4.14 Step 11: Calculation of Hazard Significance 

The data from the previous steps is used to calculate a numerical score representing 

hazard significance. A score is calculated for each hazard in Table 4.1. 

Hazard significance (HSIG) is calculated using the following formula: 

HSIG = OSEV * Li (4.3) 

Where: 

OSEV = overall severity 

Li = hazard likelihood 

Overall severity (OSEV) is calculated using the following formula: 

OSEV = WHSEV * VEP 

Where:   

WHSEV = Weighted hazard severity 

VEP = Vessel Environmental Performance indicator 

 

Weighted hazard severity is calculated using the following formula: 

WHSEV = ΣISEV /THSEV (4.4) 

Where:  

ISEV = Severity Indicators: 

S: spatial extent indicator 

R: Residence time indicator 

T(aq): Aquatic toxicity indicator 

T(h): Human toxicity indicator 

GWP: Global Warming Potential indicator 
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THSEV = Total hazard severity, calculated using: 

THSEV = ΣISEV * n (4.5) 

Where: 

ΣISEV = S + R + T(aq) + T(h) + GWP (4.6) 

n = number of hazards 

 

4.15 Step 12: VEP Index score 

Hazard significance scores for each pollutant are added together to give a total 

environmental score for the vessel. Total ship scores range from 0 to 10. A score of 

zero represents an emission free ship, with no pollutant discharges to the 

environment. Scores closer to 10 represent increasingly polluting vessels. 

 

4.16 Uncertainties and limitations 

In risk assessment there are a number of inherent uncertainties which can affect the 

reliability of the study. Uncertainty is associated with numerous components of risk 

assessment (Gormley et al., 2011), including several steps of this methodology. 

Uncertainties are borne from a lack of knowledge or data, or from the intrinsic 

variability of natural systems. According to Gormley et al., (2011), uncertainty can be 

classified into different groups as: 

 (1) Data – level of confidence in accuracy, availability and reliability of data. 

 (2) Language – clarity of language used, terms may be not specific enough 

 or may be ambiguous. 

 (3) System – level of knowledge regarding processes, causes and effects 

 within systems. 

 (4) Variability – inherent unpredictability in any human or natural system. 

 (5) Analytical – variability within analytical processes employed, such as 

 interpretation of data. 
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 (6) Model – confidence in modelling of real world processes. 

 (7) Decision – doubts regarding the preferred course of action, which may 

 vary depending on the scope and objective of the assessment. 

Table 4.17 categorises the uncertainties associated with this methodology, and 

provides an explanation of measures implemented to mitigate uncertainties where 

possible.  

Table 4.17 Uncertainties associated with assessment methodology 

Uncertainty 
Step(s) in 
method 

Classification Mitigating measure 

Hazard likelihood 
assessment 

10 Variability 

Simplified likelihood assessment. 
Hazard likelihood determined as 
either ‘yes’ or ‘no’ depending on if 
emissions or discharges take place 
during routine operation. 

Hazard severity 
assessment 

5 
Data 

System 

Use of indicators with clearly 
defined severity thresholds. 
Referenced data sources.  

Use of maximum and 
minimum permissible 

emission and discharge 
limits 

8 
Data 

Decision 

Data is backed up using 
referenced sources. Decision to set 
limits is clearly defined in the 
methodology. 

Confidence in emission 
and discharge data 

7 Data 
Data collection methods clearly 
defined. Hierarchy of data quality 
also clearly outlined. 

Clarity of assessment 
outcomes 

All Language 
Clearly defined scope. Method 
broken down into individual steps, 
with each step clearly defined. 

Quantification of 
environmental hazards 

2,3,4,5,6 System 

Environmental impacts of hazards 
identified through S-P-R analysis 
and review of literature (Chapter 
2). Hazards quantified using 
environmental indicators to reduce 
ambiguity. 

 

4.17 Summary 

This chapter outlines a comprehensive alternative methodology for assessing the 

environmental performance of ships based on the potential impact and extent of 

pollutant emissions and discharges during operation. The methodology is comprised 

of two parts, A and B, each consisting of several steps. Part A of the method defines 

the scope of the assessment by identifying the interactions of ships with the 

surrounding environment, the potential pollutant (hazard) emissions and discharges 

associated with such interactions and the subsequent impacts. The method adopts 

an S-P-R approach to identify potential impacts, which alongside a selection of 
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environmental indicators are used to quantify the environmental severity of hazards 

(pollutants) from ships. Hazard severity is determined based on the spatial extent of 

the pollutant in the environment, its environmental residence time, the toxicity of the 

pollutant to aquatic organisms and humans, and GWP. The indicators are assigned 

a numerical scale from 1 to 5 and each hazard is assessed based on the severity 

definitions outlined in Table 4.4. A score out of 25 is assigned to each hazard, which 

is then used to calculate % weighting factors for each. The outcome of part A is the 

development of a set of weighted environmental pollutant indicators for vessels. 

Part B of the method outlines the procedure for the collection of vessel and voyage 

data, and describes how the data is used to calculate vessel environmental 

performance scores for each hazard. Voyage data is used to calculate actual and 

potential emissions and discharges of pollutants. Actual and potential emissions are 

defined through implementation of a likelihood step, which is used to determine 

whether the hazards are released during routine operation of the vessel. The voyage 

data is combined with the pollutant weighting factors to calculate hazard significance 

scores. The hazard significance scores are added together to give an overall 

environmental score for the vessel. Adopting a risk assessment based methodology 

incurs some uncertainties, which are also highlighted in this chapter. 
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5.0 Testing the Methodology – the VEP Index 

 

5.1 Introduction 

The method developed in this research has been designed to assess vessels based 

on operational performance. The method is tested on two case study vessels, a sea 

going catamaran used for academic research and offshore supply in coastal regions, 

and an inland research vessel used on European inland waterways. The vessels 

have similar design specifications and operational characteristics, are of comparable 

size, and therefore pose similar environmental threats,. This chapter emphasises the 

sensitivity and flexibility of the environmental assessment method developed in this 

research by pointing out the differences between the two vessels in terms of 

environmental performance. The case study results are also compared with scores 

from existing indices currently used in the shipping sector, highlighting the benefits of 

assessing environmental performance based on operational data rather than 

assumed test conditions. 

 

5.2 Coastal research vessel: The Princess Royal 

The environmental assessment method developed in this research has been tested 

using actual pollution data from some case study vessels. An assessment of the 

Newcastle University owned Princess Royal research vessel was undertaken.  

 

Figure 5.1 Newcastle University research vessel, the Princess Royal 
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5.2.1 Scope of study 

Data for the Princess Royal was collected over 2 weeks from 18th February to 5th 

March 2018. During this period, 4 short voyages took place covering a total distance 

of 136 nautical miles. Voyages took place at various times throughout the day, the 

earliest starting at 07:30 and the latest finishing at 16:00. The voyage details are as 

follows: 

 

Voyage 1 

Took place on 18/02/2018, starting at 07:30 and finishing at 12:00. The vessel 

started at the harbour in Blyth, UK, travelled north to Newbiggin-by-the-Sea then 

back to Blyth harbour. Observed weather and sea conditions were described as 

calm, with a wind speed of around 6 knots and WMO sea state code of 1. 

 

Voyage 2 

The vessel departed Blyth harbour at 09:00 on 22/02/2018, travelling south to the 

village of Seaton Sluice before travelling back north to Cresswell in Northumberland, 

and back to Blyth harbour. Weather and sea conditions were observed as light south 

westerly winds at approximately 10 knots, and WMO sea state of 3. 

 

Voyage 3 

The vessel departed Blyth harbour on 26/02/2018 at 09:00, travelled to the mouth of 

the River Tyne to carry out some research activities and returned to Blyth harbour at 

16:00. Some strong south easterly winds were observed at roughly 12 knots, along 

with some sea swell, WMO sea state of 4.  

 

Voyage 4 

Took place on 05/03/2018, starting at Blyth harbour at 09:00, travelling to the mouth 

of the River Tyne to carry out research, and returning to Blyth harbour at 15:00. 
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Observed weather and sea conditions were described as south east winds at 

approximately 10 knots and sea swell (WMO sea state of 4). 

 

Figure 5.2 Illustration of voyage routes of the Princess Royal 

 

     = Voyage route 1 

    = Voyage route 2 

    = Voyage routes 3 and 4 
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The ship is a 19m (length) catamaran designed as a small scale research vessel, 

most of the work conducted on-board the vessel takes place within 60 miles of Blyth 

harbour in the UK, although some longer voyages take place on occasions. The 

vessels breadth is 7.3 m, with a draft of 1.64 m, and has a total displacement of 41 

tonnes (light displacement plus payload). The vessel is fitted with two 447 kW MAN 

D2676 marine diesel engines, and operates using MGO (Marine Gas Oil) fuel. 

Data for each voyage was collected by the vessel skipper. The vessel was fitted with 

continuous monitoring apparatus to measure real time emissions of air pollutants, 

however it was not in operation at the time of the study therefore estimates have 

been calculated using IMO emissions factors for a Tier I medium speed diesel 

engine. The vessel was launched in 2011, however the exact build date is not clear 

therefore for the purpose of this research it is assumed that it was built pre-2011 and 

must meet Tier I requirements in MARPOL Annex VI. Fuel use data along with 

vessel speed and distance travelled was recorded manually by the skipper.  

An inventory of materials was collected prior to the first voyage on 18th February. No 

further inventories were collated so the data collected before the 18th was assumed 

to be correct throughout the entire data collection period.  Refrigerant gases were 

present on the vessel in small volumes throughout each voyage, however no 

leakage detection equipment was installed and a leakage rate could not be 

determined. Refrigerants have therefore been assessed based on the capacity of 

refrigerants on board in CO2 eq.  

Sewage and grey water are collected together in a single tank on board the vessel, 

there were no measurement devices fitted to the tank so sewage production per 

voyage was estimated by the crew. The vessel hull is painted with an antifoul coating 

(Intersleek 1100), no tests were carried out on the coating to establish % tin content 

therefore this information was established using the MSDS for the coating and online 

sources (ECO, 2016). The vessel is not fitted with ballast tanks and ballast water is 

not collected or released on board. Bilge water is collected on board, however no 

method of measurement was available at the time of the study. Engine noise data 

was not available, and no information regarding engine noise level was available in 

the engine specification.  

 



 

139 
 

5.2.2 Data Collection and Processing 

In order to carry out the environmental assessment of the Princess Royal, vessel 

and voyage data is required. Environmental data was collected by the crew using the 

vessel checklist procedure outlined in Table 4.15. The data for each voyage is 

summarised in Table 5.1. General vessel information was collected in order to 

calculate certain emissions and discharges of pollutants (as per the required units for 

each hazard outlined in Table 4.16). For example, emissions to air (with the 

exception of refrigerants) are measured in g/tonne-mile, therefore the weight 

(tonnes) of the vessel is required, along with distance travelled (nautical miles). 

Continuous fuel monitoring equipment was installed on the vessel, however it was 

not operating correctly at the time of the study, therefore fuel use was recorded 

manually by the crew.  

Table 5.1 Voyage data for Princess Royal 

Pollutant category Checklist 18/02/2018 22/02/2018 26/02/2018 05/03/2018 

General 
General 

information 

Vessel length (m) 19 19 19 19 

Vessel breadth (m) 7.3 7.3 7.3 7.3 

Vessel draft (m) 1.64 1.64 1.64 1.64 

Vessel weight (t) 41 41 41 41 

Engine size (kW) 447 447 447 447 

Engine rated speed 
(rpm) 

2100 2100 2100 2100 

Number of engines 2 2 2 2 

Number of persons on 
board 

4 5 14 13 

Inventory of materials  
Appendix 

C 
Appendix 

C 
Appendix 

C 
Appendix 

C 

Emissions 
to Air 

CO2, CH4, 
N2O, SOX, 
NOX, PM, 

VOCs 

Fuel type 
Diesel 
(MGO) 

Diesel 
(MGO) 

Diesel 
(MGO) 

Diesel 
(MGO) 

Distance travelled (nm) 6 50 40 40 

Average speed (knots) 5 15 10 10 

Top speed (knots) 18 19 20 20 

Fuel use (l) 120 660 300 310 

Refrigerants 

GWP of refrigerants 3 3 3 3 

Refrigerant type R600a R600a R600a R600a 

Refrigerant quantity 
(Kg) 

0.037 0.037 0.037 0.037 

SOX 
Sulphur content of fuel 
(%) 

0.1 0.1 0.1 0.1 

Discharges 
to Water 

Oily water 
(bilge) 

Volume of bilge water (l) 0 0 0 0 

Sewage 
Volume of sewage 
produced per voyage (l) 

10 30 50 50 

 

Continued overleaf… 
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Pollutant category Checklist 18/02/2018 22/02/2018 26/02/2018 05/03/2018 

Discharges to 
Water 

Grey water 
Volume of grey 
water produced 
per voyage (l) 

0 0 0 0 

Antifoul 
coating 

Type of antifoul 
coating applied to 
vessel 

Intersleek 
1100 

Intersleek 
1100 

Intersleek 
1100 

Intersleek 
1100 

Ballast 
water 

Volume of ballast 
water collected (l) 

0 0 0 0 

Volume of ballast 
water released (l) 

0 0 0 0 

Marine 
litter 

Method of waste 
disposal 

On shore On shore On shore On shore 

Waste separation 
on board (y/n) 

No No No No 

Chemicals 

Volume of 
chemical liquids on 
board (l) 

14.28 14.28 14.28 14.28 

Volume of 
chemicals used (l) 

0 0 0 0 

Record of 
chemicals spilled 
(l) 

0 0 0 0 

On board 
stored oil 

Volume of fuel on 
board (l) 

2700 2700 2700 2700 

Volume of oil 
stored on board (l) 

242.3 242.3 242.3 242.3 

Oil use per voyage 
(l) 

0 0 0 0 

Record of oil 
spilled (l) 

0 0 0 0 

Land Garbage 
Volume of waste 
produced per 
voyage (Kg) 

0 15 15 15 

Anthropogenic 
noise 

Noise 

Noise level of 
engine (dB) 

Not 
available 

Not 
available 

Not 
available 

Not 
available 

Noise 
measurements 
recorded using 
noise measuring 
equipment? (y/n) 

No No No No 

If y, recorded noise 
levels for surface 
and underwater 
noise (dB) 

n/a n/a n/a n/a 

Physical 

Contact 
with 

marine 
animals 

Number of vessel 
strikes with aquatic 
species 

0 0 0 0 

 



 

141 
 

The voyage data in Table 5.1 was then used to calculate the emissions and 

discharges (VEP) of each pollutant using the methods outlined in Table 4.16. VEP 

scores have been calculated for each voyage, along with a Total VEP score, which is 

the calculated weighted average for the complete data set (all four voyages). The 

VEP scores are outlined in Table 5.2. 

Table 5.2 VEP scores for each pollutant 

Hazard 
Calculated emissions/discharges of pollutants 

Units 18/02/2018 22/02/2018 26/02/2018 05/03/2018 Total 

GHGs 
g CO2 eq./tonne-

mile 
1348.37 889.93 505.64 522.49 689.06 

Refrigerants Tonnes CO2 eq. 0.00011 0.00011 0.00011 0.00011 0.00011 

SOX g/tonne-mile 4.15 2.74 1.55 1.61 2.12 

NOX g/tonne-mile 23.57 15.55 8.84 9.13 12.04 

PM g/tonne-mile 0.40 0.27 0.15 0.16 0.21 

VOCs g/tonne-mile 1.28 0.84 0.48 0.49 0.65 

Oily water 
(Bilge) 

m3/day 0.00 0.00 0.00 0.00 0.00 

Antifoul 
coating 

mg/Kg tin 1000 1000 1000 1000 1000 

Ballast water m3/hr 0 0 0 0 0 

Sewage m3/hr 0.0022 0.0043 0.0071 0.0083 0.0057 

Grey water m3/hr 0 0 0 0 0 

Marine litter Kg/person-day 0 0 0 0 0 

Chemicals Tonnes 0.26 0.26 0.26 0.26 0.26 

On board 
stored oil 

Tonnes 0.21 0.21 0.21 0.21 0.21 

Garbage Kg/person-day 0.00 3.00 1.07 1.15 1.25 

Underwater 
noise 

dB n/a n/a n/a n/a n/a 

Surface 
noise 

dB n/a n/a n/a n/a n/a 

Collisions 
with marine 

animals 

No. of known 
collisions 

0 0 0 0 0 

 

Normalisation of the VEP is carried out by assessing the actual emissions and 

discharges of pollutants against the pre-determined maximum and minimum 

permissible levels (shown in Table 4.16). The normalised scores for each hazard per 

voyage of the Princess Royal are outlined in Table 5.3. Full calculations of VEP 

scores and VEPn scores are shown in Appendix C. 
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Table 5.3 Normalised VEP scores per voyage for each hazard 

Hazard 
Normalised VEP scores 

18/02/2018 22/02/2018 26/02/2018 05/03/2018 Total 

GHGs 5.00 4.79 2.72 2.81 3.71 

Refrigerants 0.0000011 0.0000011 0.0000011 0.0000011 0.0000011 

SOX 1.82 1.20 0.68 0.71 0.93 

NOX 5.00 3.77 2.14 2.21 2.92 

PM 1.29 0.85 0.48 0.50 0.66 

VOCs 5.00 5.00 3.62 3.74 4.93 

Oily water (Bilge) 0.00 0.00 0 0.00 0.00 

Antifoul coating 2.00 2.00 2.00 2.00 2.00 

Ballast water 0 0 0 0 0 

Sewage 0.018 0.012 0.032 0.036 0.027 

Grey water 0 0 0 0 0 

Marine litter 0 0 0 0 0 

Chemicals 0.000026 0.000026 0.000026 0.000026 0.000026 

On board stored oil 0.0000021 0.0000021 0.0000021 0.0000021 0.0000021 

Garbage 0.00 1.07 0.38 0.41 0.45 

Underwater noise 5.00 5.00 5.00 5.00 5.00 

Surface noise 5.00 5.00 5.00 5.00 5.00 

Collisions with marine 
animals 

0 0 0 0 0 

 

Likelihood of occurrence of each hazard was also assessed in accordance with step 

10 of the methodology (Section 4.13). The results for the Princess Royal are shown 

in Table 5.4. 

Table 5.4 Likelihood of occurrence 

Hazard 
Routine interaction with 

environment? (y/n) 
Score 

GHGs Yes 2 

Refrigerants No 1 

SOX Yes 2 

NOX Yes 2 

PM Yes 2 

VOCs Yes 2 

Oily water (bilge) Yes 2 

Antifoul coating Yes 2 

Ballast water No 1 

Sewage No 1 

Grey water No 1 

Marine litter No 1 

 

 

Continued overleaf… 
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Hazard 
Routine interaction with 

environment? (y/n) 
Score 

Chemicals No 1 

On board stored oil No 1 

Garbage Yes 2 

Underwater noise Yes 2 

Surface noise Yes 2 

Collisions with 
marine animals 

No 1 

 

5.2.3 Environmental Assessment 

For part A of the assessment of the Princess Royal, the procedures described in 

steps 1 to 6 in chapter 4 were utilised. The severity weightings calculated for each 

hazard are presented in Table 5.5.  

Table 5.5 Hazard severity weighting (Princess Royal) 

Hazard 
Hazard Severity 

Score 
Hazard 

Weighting 

GHGs 18 9.33% 

Refrigerants 12 6.22% 

SOX 12 6.22% 

NOX 13 6.74% 

PM 9 4.66% 

VOCs 8 4.15% 

Oily water (bilge) 13 6.74% 

Antifoul coating 10 5.18% 

Ballast water 11 5.70% 

Sewage 10 5.18% 

Grey water 8 4.15% 

Marine litter 12 6.22% 

Chemicals 14 7.25% 

On board stored oil 13 6.74% 

Garbage 9 4.15% 

Underwater noise 8 3.63% 

Surface noise 7 4.66% 

Collisions with marine animals 6 3.11% 

Total 193 100.00% 

 

For part B of the assessment (steps 7 to 11), data from the vessel checklist was 

utilised to conduct the vessel assessment and determine normalised VEP scores for 

each hazard on a per voyage basis (Table 5.3), and likelihood scores were assigned 

to each hazard (Table 5.4). 
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Overall severity scores for each hazard were calculated per voyage by multiplying 

the VEPn score by the weighting factor for each hazard, in accordance with step 9 in 

the methodology. Hazard significance scores were then calculated by multiplying the 

overall severity score for each hazard by the likelihood of occurrence (step 10). 

Hazard significance scores for each voyage are shown in Table 5.6. 

Table 5.6 Hazard significance scores per voyage for the Princess Royal 

Hazard 
Hazard Significance per voyage 

18/02/2018 22/02/2018 26/02/2018 05/03/2018 Total 

GHGs 0.93 0.89 0.51 0.52 0.69 
Refrigerants 0.00000006

8 
0.00000006

8 
0.00000006

8 
0.00000006

8 
0.00000006

8 SOX 0.23 0.15 0.08 0.09 0.12 
NOX 0.67 0.51 0.29 0.30 0.39 
PM 0.12 0.08 0.04 0.05 0.06 

VOCs 0.41 0.41 0.30 0.31 0.41 
Oily water (bilge) 0 0 0 0 0 
Antifoul coating 0.21 0.21 0.21 0.21 0.21 

Ballast water 0 0 0 0 0 
Sewage 0.00093 0.00062 0.0016 0.0019 0.0014 

Grey water 0 0 0 0 0 
Marine litter 0 0 0 0 0 
Chemicals 0.0000019 0.0000019 0.0000019 0.0000019 0.0000019 

On board stored 
oil 

0.00000014 0.00000014 0.00000014 0.00000014 0.00000014 
Garbage 0.41 0.41 0.41 0.41 0.41 

Underwater noise 0.36 0.36 0.36 0.36 0.36 
Surface noise 0.00 0.10 0.04 0.04 0.04 
Collisions with 
marine animals 

0 0 0 0 0 

Total 3.35 3.13 2.25 2.29 2.70 

 

Hazard significance scores are added together to give a total score for the vessel, 

per voyage. A percentage score per voyage is calculated by dividing the total score 

by the maximum possible score. The percentage ship score for each voyage, and 

the total percentage ship score (calculated weighted average for all four voyages) 

are shown in Table 5.7. 

Table 5.7 Vessel environmental score per voyage for the Princess Royal 

Voyage Score Score (%) 

18/02/2018 3.35 33.5% 

22/02/2018 3.13 31.3% 

26/02/2018 2.25 22.5% 

05/03/2018 2.29 22.9% 

Total 2.70 27.0% 
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5.3 Inland vessel: The Max Pruss 

The method was utilised to conduct an environmental assessment of the Max Pruss, 

an inland research vessel operating in western Germany along the River Rhine. 

 

 

Figure 5.3 Inland research vessel, the Max Pruss 

 

5.3.1 Scope of study 

Data for the Max Pruss was collected for a single voyage on 25th January 2019. The 

voyage started at 09:58 and ended at 14:55, a total of around 4.5 hours was spent in 

transit. Data collection started when the vessel left port in Duisburg-Homburg, and 

ended when the vessel returned to the same port. The vessel route is illustrated in 

Figure 5.12. The Max Pruss is a research vessel, owned and operated by the State 

Agency for Nature, Environment, and Consumer Protection in North Rhine 

Westphalia (LANUV). The ship measures 33 m (length) by 7.57 m (breadth), with a 

draft of 1.1 m, and weighs 141 tonnes. The vessel is predominantly utilised for water 

sampling on the river Rhine, and has also been used for emissions testing as part of 

the CLINSH project. 

An inventory of potentially hazardous materials on board the vessel was collected 

(see Appendix D). At the time of data collection, the vessel emissions monitoring 

equipment was not operating continuously, however it was used to collect a small 

sample of NOX data in order to verify the calculated NOX values presented in Table 

5.14 (Appendix D.4). Individual air pollutant species for the entire voyage have 
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therefore been estimated using emission factors. The vessel is fitted with two 254 

kW medium speed marine diesel engines (model number MAN D 2866 LXE 43), built 

circa. 1999. Emissions of CO2, N2O, NOX, SOX, PM, CH4 and VOCs have been 

calculated using emission factors for a medium speed diesel engine built pre 2000, 

taken from a report by the IVL Swedish Environmental Institute (IVL, 2002). The 

emissions factors used for NOX, CO2, PM, and SOX were published by Lloyds 

Register (1995) and are relevant to medium speed diesel engines under steady state 

conditions. The emissions factors for N2O, VOCs and CH4 are taken from the IPCC 

default emissions factors for ocean going ships (IVL, 2002), as no emissions factors 

for these pollutants are cited by Lloyds Register (1995).  

 

Figure 5.4 Illustration of voyage route of the Max Pruss 
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The vessel has three on board lavatories, including washing facilities. Sewage and 

grey water are collected together and stored in an on board sewage tank, with a 

capacity of 5,000 litres. No measurement devices are fitted to the tank, so estimated 

sewage data was obtained from the vessel crew. The vessel is fitted with a bilge 

water alarm system, set at 350 litres. There are no additional measurement devices 

fitted to the bilge water system, therefore bilge water production data is estimated 

based on the outcome of the vessel assessment survey using operational knowledge 

of the crew. The bilge water tank is emptied once every 6 months from full (approx.), 

therefore bilge water collection per day was estimated. The vessel does not collect 

ballast water, and no ballast tanks are on board. During the survey it was confirmed 

by the crew that the vessel hull has not been painted with an antifoul coating. 

Refrigeration and air conditioning units containing refrigerant gases were present on 

board the vessel. No automatic leak check equipment was installed and scheduled 

checks were not permitted to take place on such vessels under the EU F-gas 

regulations (EC 517/2014), therefore it is not possible to ascertain the leakage rate 

of refrigerants. Refrigerants are therefore assessed based on the capacity of 

refrigerants on board, measured in tonnes CO2 equivalents (see Table 5.9).  

The vessel generates engine noise when in operation. Noise propagation testing did 

not take place during the period of data collection, therefore actual noise propagation 

data could not be obtained. Underwater and on board noise are therefore assessed 

based on the noise level of the engines in decibels, taken from the engine 

specification.  

Only one complete data set for a single voyage was collected for this case study due 

to time and cost limitations, owing to the vessels’ geographical location. 

 

5.3.2 Data Collection and Processing 

Environmental data for the Max Pruss was collected using the vessel check list 

method via survey, in person during a visit to the vessel. The data is summarised in 

Table 5.8. General information for the vessel was collected, some of which has been 

used to calculate emissions and discharges of pollutants (e.g. the number of persons 

on board to calculate garbage production in Kg/person-day). Vessel weight was 
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recorded from the vessel specification, it is unclear whether this weight includes 

payload, and it does not include the weight of persons on board the ship.  

The fuel data was collected using continuous fuel monitoring. Temporary continuous 

monitoring equipment was installed on the vessel by Multronic Emissions Systems 

(mutronic.be), the raw data received by Multronic was processed to calculate 

distance travelled, speed and total fuel use (summary of raw data available in 

Appendix D). 
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Table 5.8 Voyage data for Max Pruss 

Pollutant category Checklist Data 

General 
General 

information 

Vessel length (m) 33 

Vessel breadth (m) 7.57 

Vessel draft (m) 1.1 

Vessel weight (t) 141 

Engine size (kW) 254 

Engine rated speed (rpm) 1800 

Number of engines 2 

Number of persons on board 16 

Inventory of materials  See Appendix D 

Emissions to 
Air 

CO2, CH4, 
N2O, SOX, 
NOX, PM, 

VOCs 

Fuel type Diesel (MGO) 

Distance travelled (nm) 33.3 

Average speed (knots) 7.45 

Top speed (knots) 13.91 

Fuel use (l) 175.26 

Refrigerants 

GWP of refrigerants 
R410a = 2088 

R600a = 3 

Refrigerant type 

R410a (air 
conditioning 

units) 
R600a 

(refrigeration 
units) 

Refrigerant quantity (Kg) 
R410a = 4.65 
R600a = 0.25 

SOX Sulphur content of fuel (%) 0.1 

Discharges to 
Water 

 

Oily water 
(bilge) 

Volume of bilge water (l) 2 

Sewage 
Volume of sewage produced per 
voyage (l) 

300 

Grey water 
Volume of grey water produced per 
voyage - if separate from sewage (l) 

n/a 

Antifoul 
coating 

Type of antifoul coating applied to 
vessel 

n/a 

Ballast water 
Volume of ballast water collected (l) 0 

Volume of ballast water released (l) 0 

Marine litter 
Method of waste disposal 

Onshore 
(municipal 

waste) Waste separation on board (y/n) No 

Chemicals 

Volume of chemical liquids on board (l) 1102.5 

Volume of chemicals used (l) 0 

Record of chemicals spilled (l) 0 

On board 
stored oil 

Volume of fuel on board (l) 5000 

Volume of oil stored on board (l) 470 

Oil use per voyage (l) 0 

Record of oil spilled (l) 0 

 

Continued overleaf… 
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Pollutant category Checklist Data 

Land Garbage 
Volume of waste produced per voyage 
(Kg) 

8.5 

Anthropogenic 
noise 

 

Noise 
 

Noise level of engine (dB) 104 

Noise measurements recorded using 
noise measuring equipment? (y/n) 

No 

If y, recorded noise levels for surface 
and underwater noise (dB) 

n/a 

Physical 
Contact with 

marine 
animals 

Number of vessel strikes with aquatic 
species 

0 

 

The data collected in Table 5.8 has been used to calculate emissions and 

discharges of the pollutants identified in the assessment methodology in Chapter 4. 

VEP scores have been calculated for each pollutant, along with the VEPn scores 

(Table 5.9). The full calculations for VEP scores and VEPn scores are shown in 

Appendix D.  

Table 5.9 VEP and VEPn scores for each pollutant 

Hazard Units VEP VEPn 

GHGs g CO2 eq./tonne-mile 101.53 2.13 

Refrigerants Tonnes CO2 eq. 9.71 0.097 

SOX Tonnes 0.06 0.11 

NOX g/tonne-mile 1.81 1.71 

PM g/tonne-mile 0.04 0.47 

VOCs g/tonne-mile 0.07 1.96 

Oily water (Bilge) m3/day 0.002 0.00038 

Antifoul coating mg/Kg tin 0 0 

Ballast water m3/hr 0 0 

Sewage m3/hr 0.067 0.583 

Grey water m3/hr 0 0 

Marine litter Kg/person-day 0 0 

Chemicals Tonnes 1.1 0.00011 

On board stored oil Tonnes 4.65 0.000047 

Garbage Kg/person-day 0.53 0.19 

Underwater noise dB 104 2.260 

Surface noise dB 104 4.73 

Collisions with marine 
animals 

No. of known 
collisions 

0 0 
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Likelihood of occurrence of each hazard was assessed, as shown in Table 5.10. 

Table 5.10 Likelihood of occurrence 

Hazard Routine interaction with environment? (y/n) Score 

GHGs Yes 2 

Refrigerants No 1 

SOX Yes 2 

NOX Yes 2 

PM Yes 2 

VOCs Yes 2 

Oily water (bilge) Yes 2 

Antifoul coating Yes 2 

Ballast water No 1 

Sewage No 1 

Grey water No 1 

Marine litter No 1 

Chemicals No 1 

On board stored oil No 1 

Garbage Yes 2 

Underwater noise Yes 2 

Surface noise Yes 2 

Collisions with marine 
animals 

No 1 

 

5.3.3 Environmental Assessment 

Part A of the environmental assessment for the Max Pruss was completed using the 

procedure outlined in Chapter 4, steps 1 to 6. The calculated hazard severity 

weightings are shown in Table 5.11. The severity scores are the same as those 

utilised for assessment of the Princess Royal with the exception of Refrigerants, 

which has a higher severity score in this case due to the GWP of R404a being 

significantly higher than that of R600a. The higher refrigerant score has altered the 

% weighting factor of each hazard when compared with the Princess Royal case 

study. Refrigerants have increased from 5.48% to 6.33%, and hence the percentage 

weight of each of the other hazards have slightly reduced. 
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Table 5.11 Hazard severity weighting (Max Pruss) 

Hazard 
Hazard Severity 

Score 
Hazard 

Weighting 

GHGs 18 9.23% 

Refrigerants 14 7.18% 

SOX 12 6.15% 

NOX 13 6.67% 

PM 9 4.62% 

VOCs 8 4.10% 

Oily water (bilge) 13 6.67% 

Antifoul coating 10 5.13% 

Ballast water 11 5.64% 

Sewage 10 5.13% 

Grey water 8 4.10% 

Marine litter 12 6.15% 

Chemicals 14 7.18% 

On board stored oil 13 6.67% 

Garbage 8 4.10% 

Underwater noise 7 3.59% 

Surface noise 9 4.62% 

Collisions with marine animals 6 3.08% 

Total 195 100% 

 

The vessel assessment was carried out using data from the vessel checklist, and 

VEP and likelihood scores were calculated (Tables 5.9 and 5.10). Overall severity 

scores for each hazard were calculated, and multiplied by the likelihood scores to 

calculate significance scores for each hazard (Table 5.12).  
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Table 5.12 Hazard significance scores for the Max Pruss 

Hazard 
Hazard 

Significance 

GHGs 0.39 

Refrigerants 0.0070 

SOX 0.0134 

NOX 0.23 

PM 0.044 

VOCs 0.16 

Oily water (bilge) 0.000051 

Antifoul coating 0 

Ballast water 0 

Sewage 0.030 

Grey water 0 

Marine litter 0 

Chemicals 0.0000079 

Garbage 0.0000031 

On board stored oil 0.19 

Underwater noise 0.34 

Surface noise 0.017 

Collisions with marine animals 0 

Total 1.42 

 

Hazard significance scores are added together to give a total score for the vessel. 

The % score for the Max Pruss was calculated (Table 5.13). 

Table 5.13 Vessel environmental score for the Max Pruss 

Voyage Score Score (%) 

25/01/2019 1.42 14.2% 

 

5.4 Comparing the new method with other initiatives 

In this section, the environmental assessment scores generated for the Princess 

Royal and the Max Pruss are compared with the scores from existing environmental 

index schemes, where possible. The existing initiatives listed in Section 3.4.2.2 of 

Chapter 3 were found to publicise the scope and/or methodology of the scheme. 

Following further investigation, it was found that only a limited number of the 

schemes provide enough information to complete environmental assessments for 

the case study vessels, listed as follows: 
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 (1) CCWG Environmental Performance Scorecard (CCWG) 

 (2) CSI 

 (3) ESI 

 (4) EVDI 

 (5) Green Award 

 (6) The Blue Angel (Operation) 

Assessments using the existing initiatives were conducted using the data collected 

for each case study, no additional data collection was carried out. 

 

5.4.1 CCWG 

The CCWG Environmental Performance Scorecard is an initiative designed to 

assess the environmental performance of marine containerships, and therefore 

neither the Princess Royal nor the Max Pruss are eligible to be assessed using this 

method.  Nevertheless, the method has been applied to each vessel and scores 

generated based on the data available. The CCWG methodology assesses vessels 

based on several environmental parameters: CO2 emissions; SOX emissions, NOX 

emissions, operation of an Environmental Management System (EMS); Waste, 

Water and Chemicals; and Transparency. 

 

5.4.1.1 CO2 emissions 

CO2 emissions are assessed by using the CCWG CO2 emissions methodology 

(BSR, 2015) to calculate emissions from a vessel, and comparing the result against 

the average emissions recorded in the CCWG database for a specified trade lane. 

Emissions are calculated in g CO2/TEU-Km for containerships, and compared with 

trade lane averages to determine the number of points awarded. For vessels with 

emissions higher than the CCWG average for a given trade lane, 50 points are 

awarded; for emissions within 10% of the CCWG average, 75 points are awarded; 

and for emissions less than 10% below the CCWG average, 100 points are awarded. 
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The points awarded in the CO2 emissions category account for 40% of the total 

points available.  

Emissions from the Princess Royal and Max Pruss cannot be calculated in g 

CO2/TEU-Km as they are not containerships, and therefore cannot be compared 

against the CCWG average. The lowest score available in this category is 50 points 

(for ships with emissions greater than CCWG average), therefore the Princess Royal 

and Max Pruss are awarded 50 points each in this category, which accounts for 20% 

of the total available score for the index. 

 

5.4.1.2 SOX emissions 

SOX emissions are also measured in g/TEU-Km, and are compared with CCWG 

average emissions for a given trade lane. Vessels with SOX emissions greater than 

15% above the CCWG average are awarded zero points; between the average and 

15% above average are given 50 points; between the average and 15% below 

average are awarded 75 points; and for emissions less than 15% below the average, 

100 points. Points awarded in the SOX emissions category account for 20% of the 

total. 

Emissions from the Princess Royal and Max Pruss cannot be calculated in g/TEU-

Km or compared with the CCWG trade lane average, therefore both vessels are 

awarded the minimum number of points in this category, which is zero.  

 

5.4.1.3 NOX emissions 

NOX is assessed by comparing vessel emissions in g/kWh against the IMO 

standards outlined in Regulation 13 of MARPOL Annex VI. Emission levels from the 

main and auxiliary engines are assumed based on the design conditions of the 

engine, and are taken from the engines EIAPP certificate. Vessels with emissions 

that are less than 20% below the regulatory limit are awarded a score of 50 points; 

less than 40% below the limit are awarded 75 points; and less than 80% below are 

awarded 100 points. Main and auxiliary engines are assessed separately based on 

emission performance, the scores are then combined and an average calculated to 
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determine the overall number of points awarded for the category. Points awarded in 

this category account for 20% of the total. 

Valid EIAPP certificates were not accessible for either the Princess Royal or the Max 

Pruss during this research, therefore NOX emissions in g/kWh have been calculated 

based on the voyage data available. In each case, NOX emissions (g/kWh) have 

been calculated as follows: 

NOX (g/kWh) = E / (T / P) (5.1) 

Where: 

 E = Total emission of NOX during voyage (grams) 

 T = Total time of complete voyage (hours) 

 P = Average engine power during voyage (kW) 

 

Average engine power data during each voyage was obtained from the vessel 

skippers for each case study, which is noted as the operational power shown in 

Table 5.14. For the Princess Royal, NOX emissions in g/kWh have been calculated 

for the total period of data collection (all 4 voyages). The data used to calculate NOX 

emissions for each vessel is shown in Table 5.14.  

Table 5.14 Calculation of NOX emissions in g/kWh based on voyage data 

Vessel NOX (g) T (hrs) 
Average operational 

power (kW) 
NOX 

(g/kWh) 
% above/below 

regulations 

Princess Royal 67,156 24.50 373.3 7.34 -25.1% 

Max Pruss 8,491 4.47 163.1 11.65 +13.7% 

 

Calculated NOX emissions were verified by comparing the calculated value for the 

Max Pruss with actual NOX emission data from a sample period during the voyage. 

Continuous monitoring equipment was used to collect real time NOX emissions data 

whilst the engines were running at 1600rpm, at a vessel speed of 7.3 knots. Actual 

emissions were found to be within 15% of the calculated emissions (see data in 

Appendix D.4). 
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The calculated NOX emissions in g/kWh are compared with the MARPOL Annex VI 

requirements for Tier I, to determine the required number of points for each vessel. 

According to the regulations, Tier I engines with a maximum operating speed of 

between 130 and 2000 rpm (n) must not exceed a calculated NOX limit using the 

following formula: 

Tier I NOX limit = 45 * n-0.2 (5.2) 

For Tier I engines above 2000 rpm, the NOX limit is fixed at 9.8 g/kWh. The 

maximum rpm of the engines used in the Princess Royal is 2100 rpm, and the Max 

Pruss is 1800 rpm, therefore they must not exceed 9.8 and 10.05 g/kWh 

respectively. To gain a score in CCWG, NOX emissions must be at least 20% below 

the regulatory requirements set out in MARPOL Annex VI, in which case 50 points 

(5% of the total for CCWG) are awarded. If NOX emissions are at least 40% below 

the regulatory requirement, 75 points (7.5%) are awarded.  Calculated emissions 

from the Princess Royal are 25.1% below Tier I requirements, therefore the vessel 

receives 5% in this category. NOX emissions from the Max Pruss are 13.7% above 

the regulatory threshold for Tier I engines. As the engine was built before 2000 and 

the engine power is less than 5000 kW, the vessel is not obliged to meet Tier I 

requirements. Nevertheless, for the purpose of this case study the Max Pruss 

receives zero points in this category. 

 

5.4.1.4 EMS 

Neither vessel operates a certified environmental management system therefore 

zero points are awarded in this category. 

 

5.4.1.5 Waste, Water and Chemicals 

Several criterion make up this category as shown in Table 5.15. The Princess Royal 

and Max Pruss were assessed against each of the criteria based on previously 

collected data, the number of points allocated to each are shown in Table 5.15. The 

total number of points makes up 100% of the points available in the category, and 

the category accounts for 10% of the total for the CCWG index. The Princess Royal 
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scores 56% and the Max Pruss 41% in this category, which accounts for 5.6% and 

4.1% of the total index, respectively. The difference in scores owes to the use of a 

biocide free antifoul coating on the Princess Royal, whereas the Max Pruss has no 

coating and therefore scores zero. 

Table 5.15 Criteria and scores for Waste, Water & Chemicals 

Criteria 
Max 

points 
Princess 

Royal 
Max 

Pruss 

Anti-fouling paints: Self-Polishing Coating (SPC) 
15% 15 0 

OR Anti-fouling paints: Use of non-toxic anti-fouling paints 

Stern Tube Oil: Based on biodegradable oil or air seal 
13% 0 0 

OR Stern Tube Oil: Use of water lubrication or not applicable 

External hydraulic fluids: Based on biodegradable oil or ext. 
hydraulic system capped 

5% 0 0 
OR External hydraulic fluids: Ext. hydraulics exchanged to electrical 
power 

Thrusters (gear oil): Based on biodegradable oil or not applicable 5% 5 5 

Cleaning agents: Use of cleaning agents not classified as CMR, 
dangerous to the environment, or toxic 

5% 5 5 

Refrigerants: Use of refrigerants that are natural (NH3, CO2) OR 
HFC complying with GWP<3500 and ODI=0 

5% 5 5 

Boiling/cooling water treatment: Not classified as CMR, toxic, 
sensitizing, dangerous to the environment 

12% 0 0 

Ballast water: Mid-ocean ballast water exchange 

18% 18 18 OR Ballast water: Treatment to IMO final approval - non-toxic level 
or not applicable 

Bilge water treatment: Active treatment installed and <5ppm oil in 
outgoing water and emissions control box in place 

10% 0 0 

Sewage/Black water: No discharge of sewage in sensitive areas 
(PSSA) or sewage treatment plant on board 

4% 4 4 
Sludge handling: No incinerator on board or documentation of no 
incineration of sludge and disposal of sludge to treatment on shore 

Garbage handling: No incinerator, no waste overboard, and reuse, 
recycling and disposal 

2% 2 2 

Garbage handling: Documented no incinerator, no waste 
overboard, and reuse, recycling and disposal 

2% 2 2 

Crew awareness: Documented education of personnel on 
environmental awareness, health risks, and adequate protective 
equipment 

4% 0 0 

Subtotal for Waste, Water & Chemicals 10% 5.6% 4.1% 

 

 

 

 



 

159 
 

5.4.1.6 Transparency 

The CCWG measures transparency according to a set of ‘core’ and ‘additional’ 

indicators. 50 points are awarded when five core indicators are met, 75 points are 

awarded for meeting five core indicators and two additional indicators, and 100 

points for five core and five additional indicators. The indicators are as follows: 

Core: 

 (1) Public reporting on annual CO2 emissions from operations. 

 (2) Public reporting on environmental goals and targets. 

 (3) Public description of policies/programs on the management of 

 environmental impacts. 

 (4) Public description of initiatives to use renewable energy sources and 

 increase energy efficiency. 

 (5) Participation in CCWG data sharing with BSR. 

Additional: 

 (1) Public disclosure of breakdown of fleet composition. 

 (2) Public reporting on charter partners’ environmental impacts. 

 (3) Public reporting on initiatives to influence charter partners’ 

 environmental impacts. 

 (4) Public description of initiatives to control urban air emissions. 

 (5) Public description of initiatives to control traffic congestion, and noise in 

 relation to road transport. 

 (6) Public description of environmental impact of major infrastructure assets. 

Neither the Princess Royal nor the Max Pruss meet any of the transparency criteria, 

and therefore score zero in this category.  
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5.4.1.7 Total score for CCWG Index 

The total scores for the Princess Royal and Max Pruss are shown in Table 5.16. 

Table 5.16 CCWG scores for Princess Royal and Max Pruss 

Category Princess Royal Max Pruss 

CO2 emissions 20 20 

SOX emissions 0 0 

NOX emissions 5 0 

EMS 0 0 

Waste, Water & Chemicals 5.6 4.1 

Transparency 0 0 

Total 30.6 24.1 

 

Both vessels score 20 percentage points each for CO2 despite not being able to 

calculate CO2 emissions in g/TEU-km. This is because there is no limit on CO2 

emissions, and the minimum possible score is 50 points, which accounts for 20% of 

the total score for the index. Therefore a vessel which is assessed by the CCWG 

automatically gains 20% of the total score in the CO2 category. Similarly SOX 

emissions in g/TEU-Km cannot be calculated, however the minimum points available 

in the SOX category is zero therefore neither ship scores any points. 

NOx emissions from the Princess Royal meet the requirements outlined in the 

CCWG to qualify for points (minimum 20% below IMO regulations) based on Tier I 

engines, and therefore receives 5%, however the Max Pruss does not meet the 

minimum criteria and scores zero. Both vessels score moderately in Waste, Water & 

Chemicals, with 56% and 41% of the total available in this category. These scores 

are largely attributable to not having a ballast water system on board, and the 

difference in scores being due to the use of an antifoul coating which is considered 

to be non-toxic (Princess Royal). The coating used on the Princess Royal (Intersleek 

1100) is approved as biocide free, however research suggests that tin compounds 

contained in the catalyst could be released into the environment (Watermann et al., 

2005). The environmental assessment method developed in this research (Chapter 

4) uses tin content as the reference environmental indicator for antifoul coatings 

rather than AFS convention approval, which is an appropriate measure for antifoul 

coating toxicity.  
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Neither vessel scores any points in the transparency or EMS categories as there are 

no requirements for either vessel to report on emissions, or operate an EMS. Many 

of the transparency indicators are not applicable to either vessel. 

 

5.4.2 CSI 

There is no information on the CSI website outlining the eligibility requirements of 

vessels for the index, only that the index covers “existing ships of different types” 

(CSI, 2018). The methodology refers to several ship types derived from the IMO 

(MEPC, 2011), and uses referenced EEDI values from the MEPC to calculate CO2 

scores in the index. Neither the Princess Royal nor the Max Pruss fit any of the 

defined ship types outlined in MEPC (2011), and hence CO2 scores in CSI cannot be 

calculated. It can therefore be assumed that the CSI is not a suitable methodology 

for assessing the environmental performance of either vessel. Nevertheless, the 

method has been applied to both ships and scores generated where possible.  

The CSI assesses environmental performance in five categories: SOX and PM; NOX; 

CO2; Water and Waste; and Chemicals. Scores are calculated in each category and 

added together to give a total CSI score. A CSI rating is assigned to the vessel 

based on the number of points awarded, according to Table 5.17. Higher CSI scores 

indicate better vessel environmental performance. 

Table 5.17 CSI rating scheme 

Rating Points achieved 

CSI 5 125-150 

CSI 4 100-124 

CSI 3 75-99 

CSI 2 38-74 

CSI 1 0-37 

 

5.4.2.1 SOX and PM 

SOX and PM are assessed based on the sulphur content of the fuel used by the 

vessel. The total average S content in all fuel on board as a percentage by weight 

over a 12 month period is considered, and points are awarded for operation of main 

and auxiliary engines inside and outside of ECA’s. A total score of 30 points can be 

achieved in this category, 15 for SOX and 15 for PM. A maximum of five points each 
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are available for the main engine fuel S content within ECAs, and the same for 

operation outside of ECAs. A maximum of three points are available for auxiliary 

engines, and an additional two points are available as a harbour bonus. Both the 

Princess Royal and the Max Pruss operate using 0.1% S MGO, therefore points 

have been awarded accordingly (see Table 5.18). The points awarded are based on 

the data collected during this research, as annual data was not available.  

Table 5.18 NOX and SOX scores 

Category Criteria 
Princess Royal Max Pruss 

Score Score 

SOX 

Main Engine (non-ECA) 4 4 

Main Engine (ECA) 0 0 

Harbour Bonus 1 1 

Aux Engine 0 0 

PM 

Main Engine (non-ECA) 4 4 

Main Engine (ECA) 4 4 

Harbour Bonus 0 0 

Aux Engine 0 0 

Total points 13 13 

 

5.4.2.2 NOX 

For NOX, a maximum of 30 points are awarded for a vessels main (21 points) and 

auxiliary (9 points) engines. Points are awarded based on the emission rating of the 

engine in g/kWh, as identified in the engines EIAPP certificate. In cases where no 

auxiliary engines are on board, the main engine emission ratings are used. Points 

are awarded by comparing the emissions rating of the engines with the IMO 

requirements for Tier I engines, outlined in MARPOL Annex VI regulation 13. The 

calculated emissions rating for the Princess Royal and Max Pruss can be compared 

with the Tier I requirements as shown in Table 5.19. 

Table 5.19 Comparison of actual emissions with IMO requirements 

NOX (g/kWh) Princess Royal Max Pruss 

Actual 7.34 11.65 

Tier I limit 9.8 10.05 

Tier II limit 7.7 7.57 

Tier III limit 1.96 2.01 

Actual % difference from 
Tier 1 limit 

-25.1% +13.7% 
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In CSI, nine points are awarded if the emissions rating of the main engine meets Tier 

II requirements, 12 points are awarded if the emissions rating is 30% below Tier I 

requirements, 15 are awarded if the emissions rating is 40% below Tier I, and 21 

points are awarded for meeting Tier III. Emissions from the Princess Royal are lower 

than Tier II requirements therefore nine points are awarded, however the Max Pruss 

receives zero points as it does not meet Tier I requirements, based on the calculated 

NOX data. Neither vessel has auxiliary engines, therefore points are awarded based 

on the emissions rating of the main engines. For auxiliary engines, three points are 

awarded to the Princess Royal for meeting Tier II levels, but zero points are awarded 

to the Max Pruss. The total number of points for NOX are outlined in Table 5.20.  

Table 5.20 NOX CSI points 

Category Criteria Princess Royal Max Pruss 

NOX 

Main Engine 9 0 

Auxiliary Engine 3 0 

Total points 12 0 

 

5.4.2.3 CO2 

A maximum of 30 points are available in this category, three points are awarded for 

recording CO2 emissions in g/tonne-nm (in line with EEOI) or g/TEU-km (in line with 

CCWG for containerships), and 27 are rewarded based on emission performance 

compared with a calculated EEDI reference for a particular ship type. EEDI reference 

values cannot be calculated for the Princess Royal or Max Pruss, therefore a score 

of zero is allocated for CO2 emission performance. In both case studies, data has 

been recorded in g/tonne-nm, therefore three points can be awarded to each for CO2 

reporting.  

 

5.4.2.4 Water and Waste 

CSI assesses water and waste using six pollutant categories: grey water; 

sewage/black water; garbage handling; sludge handling; bilge water treatment; and 

crew awareness. The criteria for scoring and points awarded for the Princess Royal 

and Max Pruss are shown in Table 5.21.  
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Table 5.21 Criteria and points awarded for Water and Waste 

Criteria Requirement Points Princess Royal Max Pruss 

Grey water 
No data/no treatment 0 

4 4 
No discharge in PSSAs or treatment on board 4 

Sewage 
No data/no treatment 0 

4 4 
No discharge in PSSAs or treatment on board 4 

Garbage 
handling 

No data/incineration 0 
6 6 

No incineration and sorted and disposed onshore 6 

Sludge 
handling 

No data/incineration 0 
5 5 

No incineration and disposal onshore 5 

Bilge 
water 

No data/gravimetric separation 0 

0 0 

treatment to <15 ppm oil 4 

treatment <5ppm oil 6 

Treatment to <5ppm oil and emission control box 
in place, or discharge to onshore facility 

8 

Crew 
awareness 

No data 0 

0 0 Education of environmental awareness, health 
risk and personal protective equipment (ppe) 

3 

Total 30 19 19 

 

The vessels score 19 points each in this category. In both cases grey water and 

sewage are collected together. Neither vessel discharges the effluent into PSSAs 

(Particularly Sensitive Sea Areas), it is collected in holding tanks and disposed of 

onshore, therefore the maximum number of points is awarded for each. Both vessels 

collect and dispose of garbage onshore and neither has an incinerator on board, nor 

do they operate processes which result in sludge formation, therefore the maximum 

number of points is awarded to each for garbage and sludge handling. On inspection 

of each vessel, treatment of bilge water was not evident and no evidence of 

environmental awareness training schemes were present, hence no points are 

awarded in either category. 

 

5.4.2.5 Chemicals  

Chemicals are assessed using seven different pollutant categories: antifouling; stern 

tube oil; external hydraulic fluids; gear oils for thrusters and controllable pitch 

propellers; boiling/cooling water treatment; cleaning agents; and refrigerants. The 
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criteria for scoring and points awarded for the Princess Royal and Max Pruss are 

shown in Table 5.22. 

Table 5.22 Criteria and points awarded for Chemicals 

Criteria Requirement Points 
Princess 

Royal 
Max 

Pruss 

Antifouling 

No data/other/CPD 0 

7 0 SPC/accepted biocides 5 

Non-toxic (biocide free) 7 

Stern tube oil 

No data/mineral oil based 0 

0 0 
Air seal 3 

Based on biodegradable oil 5 

Water lubrication/not applicable 7 

Hydraulic 
fluids 

No data/mineral oil based 0 

0 0 External hydraulics exchanged to 
electrical power/based on biodegradable 
oil/external hydraulic system capped 

3 

Gear oils 

No data/mineral oil based 0 

0 0 Based on biodegradable oil/not 
applicable 

5 

Boiling/cooling 
water 

Toxic (according to DSD)/no data 0 
0 0 

Not classified as toxic 2 

Cleaning 
agents 

Toxic CMR substances (according to EU 
DSD)/no data 

0 
3 3 

Not classified as toxic 3 

Refrigerants 

Non-natural HFCs with GWP > 3500; 
ODP > 0/no data 

0 

3 1 HFCs with GWP < 3500 and ODP = 0 1 

GWP < 1850 and ODI = 0 3 

Total 30 13 4 

 

The Princess Royal scores a total of 13 points in this category compared to four for 

the Max Pruss. For antifouling, the Princess Royal scores the maximum number of 

points for using a coating that is considered ‘biocide free’, however the Max Pruss 

scores zero due to not having a coating applied. Both vessels score zero for stern 

tube oil, hydraulic fluids, gear oils and boiling/cooling water as no data was collected 

for any of the categories. Both vessels score three points for cleaning agents, as the 

chemicals stored on board are not classed as carcinogenic, mutagenic, or reprotoxic 

(CMR) substances (see Appendices C and D) under the EU Dangerous Substances 

Directive (67/548/EEC), superseded by the EU CLP Regulations (1272/2008). For 

refrigerants, the Princess Royal scores three points as the GWP of R600a is less 
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than 1850, however only one point is given to the Max Pruss due to the use of 

R410a (GWP = 2088) in the air conditioning systems. 

 

5.4.2.6 Total score for CSI 

The total scores in CSI for the Princess Royal and Max Pruss are shown in Table 

5.23. 

Table 5.23 CSI scores for Princess Royal and Max Pruss 

Category Princess Royal Max Pruss 

SOX and PM 13 13 

NOX 12 0 

CO2 3 3 

Water and Waste 19 19 

Chemicals 13 4 

Total 60 39 

CSI rating CSI 2 CSI 2 

 

Both vessels achieve a CSI rating of two, although the Princess Royal scores more 

points than the Max Pruss overall. This is due to lower NOX emissions and the use of 

a biocide free antifoul coating, and refrigerants with a lower GWP. It is not possible 

to compare the results with the environmental ratings of other vessels without 

contacting CSI to access the database, which must be done by signing a 

confidentiality agreement. Both vessels score low for CO2 due to the calculation 

method only being applicable to a limited range of ship types. Both vessels score 

higher for SOX and PM than in the CCWG index. For SOX and PM the methodology 

used in the CCWG index is not compatible with either vessel and is only suitable for 

containerships, the CSI method is more universal in that respect.  

The categories for water and waste, and chemicals are separate in CSI and 

combined in CCWG. If the scores for both categories in CSI are combined and a 

percentage calculated, the score outputs from each scheme are similar. The 

Princess Royal scores 53% in CSI and 56% in CCWG, and the Max Pruss scores 

38% and 41% respectively. According to the CCWG guidance, “the waste, water and 

chemicals questions are based on the Clean Shipping Index (CSI) "Chemicals" and 

"Water and waste control" questions, but designed to integrate with the CCWG data 

collection system” (CCWG, 2015), therefore this outcome is to be expected. 
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5.4.3 ESI 

The ESI is an air emission index designed for seagoing ships, therefore is suitable 

for assessing the Princess Royal but not the Max Pruss. However for the purpose of 

this research, ESI scores will be calculated for both vessels. The ESI uses four 

categories to assess a ships emission performance: NOX; SOX, CO2 and OPS. ESI 

scores are calculated by combining the scores in each category, as follows: 

ESI score = ESI NOX + ESI SOX + ESI CO2 + ESI OPS (5.3) 

 

5.4.3.1 NOX 

ESI NOX is calculated using the following formula: 

ESI NOX = 

100 

X 

(NOX limit value - NOX rating) x Rated 
Power Σ of all 

Engines Rated Power Σ of all 
Engines 

NOX limit value 

(5.4) 

The NOX limit value in this formula is set at Tier I (see Table 5.19), and the NOX 

rating is that which appears on a vessels EIAPP (Engine International Air Pollution 

Prevention) certificate. The ESI guidelines state that “ships that do not have an 

EIAPP certificate cannot obtain points for ESI NOX, unless such ships have been 

issued with an approved statement to the effect that engines meet Tier I 

requirements” (ESI, 2017). 

EIAPP certificates for the Princess Royal and the Max Pruss were not evident during 

the period of study, therefore both ships would score zero for ESI NOX. For the 

purpose of this research however, the calculated actual NOX emission ratings for 

each vessel shown in Table 5.19 have been used. The calculated ESI NOX scores 

for the vessels are as follows: 

Princess Royal = 22 points 

Max Pruss = 0 points 

The maximum points total for this category is 67, given to vessels with zero NOX 

emissions.  The Princess Royal and Max Pruss are awarded 33% and 0% of the 

maximum respectively. 
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5.4.3.2 SOX 

ESI SOX scores are calculated based on the S content of bunkered fuel, using the 

following formula: 

ESI SOX = x * 30 + y * 35 + z * 35 / 3 (5.5) 

Where:  

x = relative reduction of average S content of high sulphur fuels (0.5 < S % < 3.5) 

y = relative reduction of average S content of mid sulphur fuels (0.1 < S % < 0.5) 

z = relative reduction of average S content of low sulphur fuels (0.0 < S % < 0.1) 

Both the Princess Royal and Max Pruss use low sulphur MGO (0.1%), therefore the 

maximum number of points are awarded for x and y as no mid or high S content 

fuels were on board. The relative reduction in low S fuel content is the maximum 

threshold % S content value (0.1) minus the actual fuel % S content value (0.1), 

which equals zero. Therefore, ESI SOX scores for both vessels were calculated as 

follows: 

30 + 35 + 0 / 3 = 21.6 (rounded up to 22 points each) 

 

5.4.3.3 CO2 

The ESI CO2 points are awarded based on the fuel efficiency of the vessel. 

Efficiency is calculated over a three year baseline period as fuel consumption over 

distance sailed. The vessels performance is compared to the calculated baseline fuel 

efficiency and points are awarded for every % increase in efficiency, up to a 

maximum of 10 points (10% increase in efficiency).  In addition, if the vessel reports 

on a minimum of two EEOI data sets (such as fuel consumption and distance sailed), 

as outlined in the Guidelines for Voluntary use of the Ship Energy Efficiency 

Operational Indicator (MEPC.1/Circ.684), a further five bonus points are added, up to 

a maximum score of 15 for this category. 

Data was not available to calculate the baseline fuel efficiency for the Princess Royal 

or the Max Pruss, therefore no points in this category could be awarded to either 

vessel.  
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5.4.3.4 OPS 

An additional 10 points are added to the ESI score if the vessel is fitted with an 

Onshore Power Supply (OPS) installation. If there is no OPS installation then the 

vessel scores zero for this category. Neither the Princess Royal nor the Max Pruss 

are fitted with OPS technology, therefore score zero. The vessel skippers confirmed 

that the engines are switched off whilst berthing, however the ESI method does not 

account for this. 

 

5.4.3.5 Total score for ESI 

The total scores for the Princess Royal and Max Pruss are shown in Table 5.24. 

Both vessels score 22 points in the SOX category as they bunkered fuel with the 

same % S content. Princess Royal achieves a higher overall ESI score due to having 

lower calculated NOX emissions. However it should also be noted that under the 

rules of the ESI, neither vessel would achieve any scores in the NOX category due to 

the absence of EIAPP certificates, so the overall ESI scores would be 22 points 

each. Neither vessel scores points for OPS, due to a lack of OPS technology, 

however neither vessel emits pollutants whilst at berth. 

Table 5.24 ESI scores for Princess Royal and Max Pruss 

ESI criteria Princess Royal Max Pruss 

NOX 22 0 

SOX 22 22 

CO2 0 0 

OPS 0 0 

Total 44 22 

 

5.4.4 EVDI 

The Existing Vessel Design Index (EVDI) is a tool for measuring the CO2 emissions 

of existing vessels. The method adopts the same formula as is used to calculate a 

ships EEDI, however it is applicable to existing vessels. The EVDI provides a means 

of comparing the theoretical efficiency of the existing fleet by measuring a vessels 

theoretical CO2 emissions (g) per nautical mile travelled. A ships’ generated EVDI 

score can then be compared with other vessels of a similar type and size using the 

GHG Emissions rating scale (RightShip, 2019). The ship types applicable to this 
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method are those which are compatible with the EEDI, and include tankers, bulk 

carriers, gas carriers, general cargo ships, container ships, refrigerated cargo 

carriers, combination carriers, LNG carriers, ro-ro cargo ships, ro-ro passenger ships 

and cruise passenger ships (IMO, 2019). 

Neither the Princess Royal nor the Max Pruss fit any of the defined ship types 

outlined by the IMO, therefore neither can be assessed using the EVDI and the GHG 

emissions rating system. Nevertheless, EVDI scores for both ships have been 

calculated by making a number of assumptions based on the collected data. A 

vessels EVDI is calculated using the following formula: 

EVDI = Engine Power (P) * CO2 EF * Specific Fuel Consumption (SFC) / Design 

speed (V) * vessel weight (M) 

(5.6) 

Where: 

P = Total power of all engines, taken from vessel specification. 

EF = Emission factors for CO2 used in vessel case studies (Appendices C and D). 

SFC = Specific fuel consumption for engine type, taken from engine manual. 

V = vessel top speed, taken from vessel specification (Princess Royal), and top 

speed during case study (Max Pruss). 

M = Total vessel weight, taken from vessel specification. 

The calculated EVDI scores for the Princess Royal and Max Pruss are shown in 

Table 5.25. 

Table 5.25 Calculated EVDI scores for the Princess Royal and Max Pruss 

Vessel data Princess Royal Max Pruss 

P 894 508 

EF 3.206 3.17 

SFC 197 213 

V 20 13.91 

M 41 141 

EVDI score (g CO2/tonne-mile) 688.58 174.89 
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5.4.5 Green Award 

There are several methodologies implemented by Green Award to assess the 

environmental performance of ships based on vessel type. Different criteria are used 

to assess oil tankers; dry bulk carriers/general cargo carriers; LNG carriers; chemical 

tankers; container carriers; and inland vessels. The Max Pruss is an inland vessel 

and therefore can be assessed using Green Award. The Princess Royal does not fit 

any of the criteria for Green Award, however in this research the inland vessel 

methodology has been applied to both ships. 

The Green Award for inland vessels is separated into two parts, A and B. Part A 

assesses the vessels engines and part B assesses other environmental 

requirements including fuel type, propulsion measures, energy saving activities, 

waste and maintenance, pollution prevention and safety. In order to receive 

certification, vessels must meet certain criteria pertaining to parts A and B of the 

assessment. Certification is awarded as either bronze, silver, gold or platinum 

depending on the outcome of the assessment (a platinum label is awarded for 

emission free ship operations). For all vessels participating in the Green Award for 

inland vessels, main engines must meet CCNR 2 emission requirements as a 

minimum. Vessels’ main engines must be CCNR 2 certified or show compliance with 

the emission requirements of CCNR 2 through post treatment or other measures, 

proven by means of accredited emissions test reports. In order to achieve gold 

certification, a vessel’s main engine(s) must comply with EU Stage V emission 

requirements as a minimum. The regulatory standards for emission from inland 

vessels are shown in Table 5.26.  

Table 5.26 Engine emission limits for inland vessels 

Pollutant Regulation limit (g/kWh) 

NOX 

Unclassified >9.2 
CCNR 1 *45 x n(-0.2) 
CCNR 2 6 
Euro V 2.1 

PM 

Unclassified 0.55 
CCNR 1 0.54 
CCNR 2 0.2 
Euro V 0.1 

CO 

Unclassified 5.1 
CCNR 1 5 
CCNR 2 3.5 
Euro V 3.5 

*For engines with rated power > 130 kW and rpm between 500 and 2,800 
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Neither vessel is CCNR 2 certified, however for the purpose of this research 

calculated emissions values will be used. The calculated emissions of NOX, PM and 

CO for the Princess Royal and Max Pruss are shown in Table 5.27. 

Table 5.27 Calculated emissions and emission ratings for the Princess Royal and Max Pruss 

Pollutant 

Princess Royal Max Pruss 

Fuel use 
(g) 

EF (g/g 
fuel) 

Emissions 
(g/kWh) 

Emission 
rating 

Fuel 
use (g) 

EF (g/g 
fuel) 

Emissions 
(g/kWh) 

Emission 
rating 

NOX 

1,181,500 

0.05684 7.34 CCNR 1 

74,485 

0.057 11.65 Unclassified 

PM 0.00097 0.13 Euro V 0.0012 0.23 CCNR 1 

CO 0.00277 0.36 Euro V 0.0074 0.1.51 Euro V 

 

Based on the calculated emissions, both vessels meet the Green Award 

requirements for CO emissions. The Princess Royal meets the criteria for PM 

emissions, but the Max Pruss does not. Neither vessel meets the requirements for 

NOX, therefore based on this data neither the Princess Royal nor Max Pruss are 

eligible for the Green Award. 

 

5.4.6 The Blue Angel 

The Blue Angel is an eco-label developed by the federal government of Germany, 

“designed to promote environmentally friendly product design”. The label can be 

applied to many different products and industries, including shipping. A specific 

methodology has been developed for ship operation (RAL, 2015), which consists of 

various criteria that can be applied to three ship types: cargo vessels, passenger 

ships, and tankers. Some mandatory criteria must be met in order for a vessel to be 

awarded the eco label, along with some additional optional criteria.  

Neither the Princess Royal nor the Max Pruss are considered to meet the defined 

ship types outlined by the Blue Angel and therefore cannot be assessed using this 

method. In addition, neither vessel meets a number of the mandatory criteria outlined 

in the methodology, including implementation of an ISO 14001 environmental 

management system. 
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5.5 Results 

The scores for the Princess Royal and the Max Pruss using the existing assessment 

methods and the VEP method developed in this research are summarised in Table 

5.28. 

Table 5.28 Summarised initiative scores for the Princess Royal and Max Pruss 

Index 
Score 

Princess Royal Max Pruss 

CCWG 30.6% 29.1% 

CSI 40% 26% 

ESI 44% 22% 

EVDI 688.58 174.89 

Green Award Not eligible Does not meet minimum standards 

Blue Angel Not eligible Not eligible 

VEP Index 73% 85.8% 

 

The scores generated using the methodology developed in this research are notified 

in the table as VEP index, and have been inverted on a scale from 0–100% for ease 

of comparison with the other initiatives, where 100% represents zero emissions of 

pollutants. Therefore in the VEP index, Max Pruss receives a better environmental 

score than the Princess Royal. 

 

5.5.1 Eligibility 

Most of the existing initiatives are not eligible to be used to assess the Princess 

Royal or the Max Pruss according to the respective guidelines. CCWG is designed 

specifically for containerships, the CSI covers multiple ship types but only those 

which are outlined in IMO Resolution MEPC.203 (62), the Blue Angel is suitable for 

assessment of cargo vessels, passenger ships and tankers only, and the EVDI is 

only eligible for ship types to which the EEDI methodology can be applied. The ESI 

scoring method is not applicable to inland vessels, therefore can be applied to the 

Princess Royal but not the Max Pruss, however it can only be implemented where 

vessels hold a valid EIAPP certificate on board, which was not the case during this 

study. The Green Award can be applied to the Max Pruss but not the Princess 

Royal, however in either case the ships engines do not meet the minimum criteria for 
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assessment. It is clear from this analysis that the existing methods are not flexible 

enough to assess all types of ship.  

 

5.5.2 Scoring 

Despite being ineligible, scores have been generated for the Princess Royal and 

Max Pruss using the CCWG, CSI, ESI and EVDI, however neither vessel could be 

assessed using the Green Award or the Blue Angel. Scoring is consistent across 

most of the initiatives with the Princess Royal receiving the most favourable scores 

in the CCWG, CSI and ESI, the exception to this trend is the EVDI, which scores the 

Max Pruss more favourably. It is noted that assessment of the vessels using the 

VEP index also scores the Max Pruss more favourably overall.  

In order to confirm the validity of the results with reference to pollutant emissions and 

discharges, the scores from each initiative are compared with the actual emissions of 

pollutants from the vessels, in Table 5.29. In the table, the notations PR (Princess 

Royal) and MP (Max Pruss) are used to signify which vessel generates the highest 

emissions and discharges per pollutant category based on the case study data, and 

which vessel scores better in each category of the initiatives. A ‘better’ score in this 

case is one which is considered to indicate a more environmentally friendly ship, and 

hence has lower emissions. 

The table indicates that the Princess Royal is the bigger polluter in terms of air 

emissions in all pollutant categories except refrigerants. The Max Pruss has the 

potential to release more pollutants to water in all categories except antifoul coating, 

and the Princess Royal produces more garbage per person per day based on the 

data collected. Noise pollution from the two vessels cannot be compared as no noise 

data was collected for the Princess Royal, and in each of the other categories the 

emissions from the vessels are considered to be equal. 
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Table 5.29 Comparison of emissions vs. index scores 

Pollutant 
Highest 

emission/discharge 

Better score 

VEP Index CCWG CSI ESI EVDI 

Emissions 
to Air 

GHGs PR MP Equal Equal Equal MP 

Refrigerants MP PR Equal PR n/a n/a 

SOX PR MP Equal Equal Equal n/a 

NOX PR MP PR PR PR n/a 

PM PR MP n/a Equal n/a n/a 

VOCs PR MP n/a n/a n/a n/a 

Discharges 
to Water 

Oily water (bilge) MP PR Equal Equal n/a n/a 

Antifoul coating PR MP PR PR n/a n/a 

Ballast water Equal Equal Equal n/a n/a n/a 

Sewage MP PR Equal Equal n/a n/a 

Grey water Equal Equal n/a Equal n/a n/a 

Marine litter Equal Equal Equal Equal n/a n/a 

Chemicals MP PR Equal Equal n/a n/a 

On board stored 
oil 

MP PR Equal Equal n/a n/a 

Noise 
Underwater noise n/a MP n/a n/a n/a n/a 

Surface noise n/a MP n/a n/a n/a n/a 

Land Garbage PR MP Equal Equal n/a n/a 

Physical 
contact 

Collisions with 
marine animals 

Equal Equal n/a n/a n/a n/a 

Total PR MP PR PR PR MP 

 

In most pollutant categories, the existing indices score both vessels equally despite 

the data showing that emissions for each vessel are not equal. For emissions to air it 

is clear that the Princess Royal is more polluting than the Max Pruss, however with 

the exception of the EVDI this is not reflected in the scoring of the existing schemes. 

This is due to the use of thresholds to compare emissions data rather than absolute 

values. For example, in CSI the NOx emission rating of the vessels relative to Tier I 

standards differs considerably as Max Pruss does not meet Tier I standards. While 

this is reflected in the number of points awarded for the category, both ships are 

classified as CSI 2 despite contrasting points totals.  This is the case with many of 

the pollutant criteria and hence they do not provide an accurate reflection of 

emission performance.  

The summarised results of the index scores in Table 5.28 suggest that the Princess 

Royal is a more environmentally friendly vessel than the Max Pruss, despite the data 

from the case studies suggesting the opposite. In most cases, with the exception of 

the EVDI and some of the pollutant categories in CCWG and CSI (CO2), it has been 

found that the existing indices assess emissions based on the design criteria of the 
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vessel rather than actual or calculated emissions. Table 5.30 compares the air 

emissions from the Princess Royal and Max Pruss based on the design criteria of 

the engines, in g/kWh. The table indicates that based on engine design the Max 

Pruss is more polluting than the Princess Royal in terms of GHGs, NOX, PM and 

VOCs, contrary to the voyage data. This analysis suggests that using design criteria 

to assess vessel environmental performance does not provide an accurate indication 

of the actual emissions during voyages. The VEP index offers an alternative 

methodology that measures environmental performance based on actual emissions. 

Table 5.30 Comparison of air emissions based on engine design and fuel S content 

Pollutant 
Emissions (g/kWh) 

MP PR Higher emissions 

GHGs 647.8 414.2 MP 

NOX 11.65 7.34 MP 

SOX 0.41 1.29 PR 

PM 0.25 0.13 MP 

VOCs 0.43 0.40 MP 

 

5.6 Summary 

Two case studies have been carried out in order to test and verify the VEP Index 

developed in this research. Data was collected manually for each case study 

following vessel surveys, and inventories of on board materials were compiled. The 

Princess Royal, a coastal research catamaran was assessed based on data from 4 

voyages which took place over 2 weeks in March 2018. For the Max Pruss, an inland 

research vessel, data was collected for a single voyage in January 2019. No further 

data collection took place due to financial and time constraints.  

Air emissions data for both case studies was derived from fuel use using relevant 

emissions factors, as no pollutant emissions monitoring equipment was continuously 

active on either vessel. The emissions factors for each vessel were selected based 

on the age and type of the engine. Both vessels have medium speed diesel engines 

installed and use low Sulphur MGO, however the Max Pruss is an older vessel and 

hence different emissions factors were used. For the Princess Royal, IMO emission 

factors (Smith et al., 2014) have been utilised, and for the Max Pruss LR emission 

factors (IVL, 2002) for engines built pre 2000 are preferred. 
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Vessel data was collected and processed to calculate pollutant VEP and VEPn 

scores per voyage. The steps outlined in Chapter 4 were carried out to calculate 

significance scores for each voyage, and a total VEP index score was calculated for 

each vessel.  

The VEP index scores have been compared with vessel scores generated using 

some existing ship environmental index schemes, where possible. It was found that 

in many cases, the vessels were not eligible to be assessed using the existing 

schemes as they did not fit the entry criteria. All of the existing schemes analysed, 

with the exception of the ESI, are applicable to a limited range of ship types only, 

and are generally more suited to larger vessel types. Nevertheless, scores for the 

Princess Royal and Max Pruss were generated where possible.  

The results show that all of the existing index schemes, with the exception of the 

EVDI, score the Princess Royal more favourably than the Max Pruss, despite the 

voyage data suggesting that the Princess Royal generated more emissions in most 

pollutant categories. For many pollutants, the existing schemes score both vessels 

equally despite the data showing the Princess Royal to be more polluting. This is 

because the existing schemes use score thresholds to assess pollutants rather than 

absolute values, and hence lack the flexibility to differentiate between the emissions 

from each ship. In addition, many of the existing schemes were found to measure 

ship performance based on data derived from ship design rather than operation, in 

most cases the Princess Royal received a better environmental rating than the Max 

Pruss, despite the voyage data suggesting the opposite.  
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6.0 Conclusions and Recommendations for Future Work 

 

6.1 Conclusions 

This chapter presents the outcomes of the research project, including the 

contributions to wider research in the fields of sustainable shipping and 

environmental assessment in shipping. The conclusions of the thesis are presented, 

highlighting the novelty and achievements of the research. Recommendations for 

future work are identified which can build on the method developed in this research 

and potentially improve the accuracy of ship environmental assessments.  

The overall aim of the research was to develop a holistic method for assessing the 

environmental performance of ships, taking into account the interactions and impacts 

of pollutant emissions and discharges on the environment, and considering actual 

rather than theoretical ship performance. 

Chapter 2 provides a summary of the interactions of ships with the environment, the 

types of pollutant emissions and discharges originating from ships, and associated 

impacts on the environment. The purpose of this chapter is to identify a set of 

pollutant indicators for use in a ship environmental assessment index. The main 

conclusions from the chapter are as follows: 

- Pollutants from ships can be broadly categorised into five groups based on 

ships’ interactions with the environment: emissions to air, discharges to water, 

pollutant releases to land, anthropogenic noise, and physical interactions with 

aquatic species.  

- The pollutants identified in this chapter form the scope of the VEP index, and 

a review of subsequent environmental impact has been used to inform the 

calculation of pollutant weighting factors for part A of the assessment 

methodology, outlined in Chapter 4. 

Chapter 3 highlights the pathways and barriers to sustainable shipping through 

regulation, environmental management and environmental assessment. The aim of 

the chapter is to analyse the effectiveness of existing strategies for environmental 

management and assessment in the shipping sector, and highlight the limitations 

with current measures. This includes the role of national and international legislation 
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in reducing the impacts of shipping on the environment, the barriers to 

implementation of regulations, and the use of voluntary environmental schemes and 

initiatives to fill the void where regulation is deemed to be ineffective. The main 

conclusions from Chapter 3 are as follows: 

- Regulations exist to minimise damage to the environment from ship based 

pollutants, In addition to existing regulations, shippers and shipping 

companies have adopted voluntary strategies to meet the environmental 

demands of the industry including the use of environmental management 

systems and green shipping initiatives. 

- The research highlights a large number of voluntary green shipping initiatives 

currently available for use. An inventory of initiatives has been compiled as 

part of this study, shown in Appendix B. The research classifies the schemes 

and concludes that they fit broadly into three categories based on their 

intended purpose: incentive schemes, research and innovation initiatives, and 

performance indicators.  

A sample of voluntary initiatives covering the three categories were analysed to 

determine the transparency, scope, applicability, and ambition of the methodologies 

implemented. A broad set of limitations with the existing initiatives are identified in 

the research, summarised as follows: 

- A lack of transparency of results and assessment methods. 

- Limited applicability of initiatives to a wide range of ship types. 

- Some initiatives have a narrow environmental scope. 

- Biases towards certain pollutant indicators and use of unjustified weighting 

factors. 

- Low thresholds for certification and limited ambition to go beyond regulatory 

requirements. 

- Assessment of vessel performance based on design parameters rather than 

operational performance is effective. 

 

The limitations identified were used to set the scope of the alternative environmental 

assessment methodology (VEP index) discussed in Chapter 4. 
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The aim of Chapter 4 is to outline the proposal of a framework for assessment of the 

environmental performance of ships which considers and corrects the limitations of 

existing initiatives identified in the previous chapter. The proposed methodology, the 

VEP index, offers the following: 

- Applicability to all vessel types. 

- A broad, relevant environmental scope made up of the environmental 

pollutants identified in this research. 

- Pollutant weighting factors that are determined using objective environmental 

indicators to prioritise pollutants based on impact severity. 

- Assessment of environmental performance based on operational data rather 

than the design characteristics of a vessel. 

- An ambitious scoring framework which rewards ships for reducing pollutant 

emissions to zero. 

 

In Chapter 5, the flexibility and sensitivity of the VEP index is tested, to determine its 

suitability for use across a range of vessels. This was done using two case study 

vessels with similar design specifications and operational characteristics. The main 

conclusions from the case studies are as follows: 

- The method can clearly distinguish which of the two vessels performs better 

environmentally, based on voyage data. The use of voyage data for 

comparing the environmental performance of vessels is therefore an effective 

approach. 

- Based on the data collected, the Max Pruss scores better than the Princess 

Royal in a majority of pollutant categories. The scores are consistent with the 

data, in that higher pollutant emissions receive lower environmental scores in 

the VEP index. This is in contrast to the results from most of the existing 

environmental initiatives analysed, which for most pollutants score both 

vessels equally, and overall score the Princess Royal more favourably than 

the Max Pruss.  

- The Princess Royal and Max Pruss are scored equally in numerous pollutant 

categories using the existing indices. This highlights a lack of flexibility within 

the scoring systems to differentiate between the environmental performance 

of each vessel.  
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- The sensitivity of the VEP index to differentiate between vessels based on 

operational emissions is highlighted, and unlike many of the existing 

initiatives, it is capable of assessing all types of ship. 

 

6.2 Contributions to research 

The research conducted presents various contributions to the wider research field: 

- A comprehensive categorisation of ship related pollutants into groups based 

on ships’ interactions with the environment, detailing the impacts of ship 

operations on the environment. The review is summarised and presented in 

the form of a ship environmental impact table in Appendix A. 

- Provision of in depth analysis of existing environmental regulation, 

management and assessment schemes used in the shipping sector, 

highlighting significant limitations with the current methods. The work 

conducted in this thesis has led to the publication of Gibson et al., (2019) 

which presents an evaluation of environmental performance indices for ships. 

- Development of a set of pollutant weighting factors for ship related emissions 

and discharges using quantifiable environmental indicators. The weighting 

factors developed in this research have been utilised as part of the CLINSH 

project. 

- Development of an alternative methodology for assessing and ranking the 

environmental performance of ships based on operational performance. The 

VEP Index has been tested using case studies, and utilised by the CLINSH 

project. The method consists of the following unique features: 

   

- Objective assessment of pollutant releases from ships using calculated 

weighting factors and actual emission data. 

- Can be readily updated as regulations, technologies and operational 

practices evolve. 

- Flexibility to enable pollutant assessment using real time on board 

emission measurements. 

- Applicability is not limited to a single type of ship, as demonstrated 

through case studies. 
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- Can be used to compare the environmental performance of different 

ships, along with different voyages of the same ship. 

 

6.3 Limitations of research 

The methodology developed has some distinct advantages over the existing 

schemes, as the analysis in this research indicates. However limitations were 

encountered which could not be avoided during the research period. There are 

inherent uncertainties associated with risk assessment regarding data confidence, 

knowledge of environmental system processes, unpredictability of hazard 

occurrences and the clarity of language used to develop the method, which have 

been addressed in section 4.16 of chapter 4. 

Access to data was a key limitation in this research, as the type of data required to 

carry out vessel assessments was not readily available. The methodology was 

therefore tested based on the data collected during two case studies, however the 

time frames for which data could be collected was limited. The vessel assessments 

conducted during each case study were carried out with confidence using the 

hierarchy of data quality outlined in chapter 4 (section 4.10.1), however data was 

often estimated due to a lack of monitoring equipment on board the vessels.  

In addition, the quantity of data collected was limited due to time restrictions and 

constraints with the vessel operating schedules, therefore data representing only a 

snapshot of the ships’ operation was used. This did not affect the reliability and 

integrity of the assessment methodology, however the assessment outcomes reflect 

vessel environmental performance over a short time period. 

 

6.4 Recommendations for future work 

It is recommended that the assessment methodology be conducted using data from 

direct measurements of emissions and discharges, rather than calculated emissions. 

This would require vessels to be fitted with species specific continuous monitoring 

equipment on board so that more accurate measurements of actual emissions can 

be recorded. This would allow vessels to be assessed based on the pollutants 

generated during operation, without the need for proxy indicators. Further analysis of 
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the case study vessels could be conducted using different combinations of data 

based on the data hierarchy, comparing skipper collected data with continuously 

monitored and estimated data. This would highlight any significant differences 

environmental scores based on data type. 

The method developed in this research has contributed towards the European 

funded CLINSH project (Clean Inland Shipping). CLINSH is a European consortium 

promoting clean waterway transport, with the objective of improving air quality in 

urban areas through emissions reductions from inland waterway transport. As part of 

the project, 30 ships have been selected and fitted with continuous emissions 

monitoring equipment for NOX and PM. The VEP index developed in this research 

has been used as an environmental performance indicator to assess the emissions 

performance of the demonstration vessels in preliminary studies, and it is intended 

that the index will be utilised to assess the entire vessel fleet. Data from the 

continuous emissions monitoring will be utilised to score each of the vessels using 

the VEP Index. The method will also be used to assist the development of species 

specific emissions factors for the test vessels, based on percentage of engine load, 

and the VEP index will be used to compare vessel emission performance under 

different engine loads. 

The assessment methodology was designed using a risk assessment based 

approach, using impact severity indicators to calculate quantitative weighting factors 

for the pollutants used in the index, and combining severity with likelihood of 

occurrence to determine hazard significance. To improve the accuracy of the 

calculated weighting factors, it is recommended that more in depth, quantitative risk 

assessments be conducted to determine more precise probability data for pollutant 

discharges.  

Within the VEP index, pollutant scores are defined by comparing the actual vessel 

emissions with maximum permissible limits, either calculated based on the EEDI 

formula for air emissions, or set based on maximum usage estimates taken from the 

literature. Current regulations tend to set limits based on vessel design rather than 

actual emissions. It is recommended that further research be conducted to develop 

absolute emissions and discharge targets for pollutants, so that maximum 

permissible limits can be more rigorously defined.   



 

184 
 

This research has resulted in the development of an environmental assessment 

method for ships, which generates a numerical score for a given ship which can be 

compared with the scores of other ships. Using this method, the environmental 

performance of different vessels can be compared. It is suggested that future work in 

this field focus on the development of a performance scale for ships, so that the 

numbers generated using this method can provide meaning as independent 

indicators of environmental performance. This could be done by developing score 

thresholds based on the operating profiles of some model ships, broken down in to 

ship type and size, thus providing valuable context to the ship scores generated. 

 

6.5 Concluding remarks 

This thesis successfully demonstrates the development and use of an ambitious, 

relevant, rigorous method, the VEP index, for the assessment of environmental 

performance of vessels. The method corrects the limitations of existing methods by 

assessing ships based on operational performance using actual emissions data. The 

method is flexible and can therefore be applied to all types of ship, and the 

environmental criteria and pollutant emission parameters can be adjusted in order to 

adapt to future changes in regulations, technologies, and shipping practices. The 

VEP index can be used to compare the environmental performance of different 

vessels, along with different voyages of the same vessel. The research 

demonstrates that the method in its current form can be used to assess the 

environmental performance of vessels, however opportunities exist to develop it 

further into a commercial tool for ship environmental assessment. 
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Appendix A 

 

Ship environmental impacts, regulations and voluntary control measures 

 

Interaction Hazard Source Pathway Receptor 
Environmental 

impacts 
IMO regulations 

Environmental 
initiatives 

Emissions to 
Air 

CO2 (GHG) Engine 
Combustion of 
fuel 

Atmosphere 
- Climate change 
- Ocean acidification 

- MARPOL Annex 
VI (Regulations 19 
to 21 for EEDI and 
Regulation 22 for 
SEEMP) 

- GHG Strategy 
2018 

Blue Angel; CCWG; 
CSI; ESI; EEDI; EEOI; 
EVDI; Green Award; 
RINA Green Plus 

CH4 (GHG) 

Slippage due to 
incomplete 
combustion of 
natural gas in 
engine 

Handling and 
combustion of 
LNG 

Atmosphere - Climate change n/a 

N2O (GHG) Engine 
Fuel combustion 
at low 
temperatures 

Atmosphere - Climate change n/a 

Refrigerants 
(ODP) 

Leakage 

- Refrigeration 
units 

- Air conditioning 
units 

Atmosphere 
- Ozone depletion 
- Climate change 

MARPOL Annex VI 
Regulation 12 

ABS Enviro/ Enviro+; 
Blue Angel; CCWG; 
CSI; DNV Clean/ Clean 
Design; RINA Green 
Plus/ Green Star 

SOX Engine Fuel combustion Atmosphere 

- Acid rain 
- Dry deposition 
- Radiative forcing 
- Secondary 

particulate formation 

MARPOL Annex VI 
Regulation 14 

ABS Enviro/ Enviro+; 
Blue Angel; CCWG; 
CSI; DNV Clean; ESI; 
Green Award; RINA 
Green Plus/ Green Star 

 

Continued overleaf… 
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Interaction Hazard Source Pathway Receptor 
Environmental 

impacts 
IMO regulations 

Environmental 
initiatives 

Emissions to 
Air (continued) 

NOX Engine Fuel combustion Atmosphere 

- Acidification 
- Eutrophication 
- Surface ozone 

formation 
- Radiative forcing 
- Secondary 

particulate formation 

MARPOL Annex VI 
Regulation 13 

ABS Enviro/ Enviro+; 
Blue Angel; CCWG; 
CSI; DNV Clean; ESI; 
Green Award; Green 
Ship Incentive Program; 
Norwegian NOX fund; 
RINA Green Plus/ 
Green Star 

PM Engine 
- Fuel combustion 
- Material wear 
- Lubrication oil 

- Atmosphere 
- Humans 

- Human health 
- Radiative forcing 
- Decrease in snow/ice 

albedo 
- Acid rain 

Covered by 
MARPOL Annex VI 
Regulation 14 

Blue Angel; CSI; Green 
Award; RINA Green 
Plus 

VOCs 

- Solvent 
containing 
materials 

- Crude oil 
- Engine 

- Solvent 
evaporation 
cleaning/oil tank 
ventilation 

- Fuel combustion 

- Atmosphere  
- Humans 

- Human health 
- Secondary radiative 

forcing 
- Secondary acid rain 
- Photochemical smog 

formation 

MARPOL Annex VI 
Regulation 15 

n/a 

Discharges to 
Water 

Oil 
- Fuel tanks 
- Storage 

containers 

- Spillage 
- Leakage 

- Sea/water 
body 

- Aquatic 
species 

- Marine 
ecosystems 

- Humans 

- Toxification of biota 
- Suffocation of biota 
- Ocean hypoxia 
- Hypothermia in sea 

birds 
- Physical damage to 

shore line 
- Disease in marine 

species 
- Bioaccumulation in 

marine species 

MARPOL Annex I 

ABS Enviro/ Enviro+; 
Blue Angel; CCWG; 
CSI; DNV Clean/ Clean 
Design; Green Award; 
RINA Green Plus/ 
Green Star 

 

Continued overleaf… 
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Interaction Hazard Source Pathway Receptor 
Environmental 

impacts 
IMO regulations 

Environmental 
initiatives 

Discharges to 
Water 

(continued) 

Sewage 

- Toilets 
- Medical 

facilities 
- Live animal 

premises 

- Disposal 
- Spillage 

- Sea/water 
body 

- Humans 
- Marine 

ecosystems 

- Direct toxification of 
biota 

- Eutrophication 
- Ocean hypoxia and 

anoxia 
- Hydrogen Sulphide 

formation 
- Stunted growth rate 

of marine species 
- Human health 

MARPOL Annex 
IV 

ABS Enviro/ Enviro+; Blue 
Angel; CCWG; CSI; DNV 
Clean/ Clean Design; 
Green Award (Inland 
vessels); RINA Green 
Plus/ Green Star 

Grey water 

- Washing 
facilities 

- Oily water 
separators 

- Disposal 
- Spillage 

- Sea/water 
body 

- Marine 
ecosystems 

Not regulated by 
the IMO 

ABS Enviro+; Blue Angel; 
CCWG; CSI; DNV Clean 
Design; Green Award 
(Inland vessels); RINA 
Green Plus/ Green Star 

Antifoul 
coating 

Hull coatings 
- Leakage 
- Dissolution 

- Sea/water 
body 

- Aquatic 
species 

- Imposex and stunted 
growth of marine 
species due to TBT 
release 

- Bioaccumulation of 
Cu in marine 
organisms 

- Toxification of marine 
organisms (Irgarol 
and Diuron) 

- AFS Convention 

ABS Enviro/ Enviro+; Blue 
Angel; CCWG; CSI; DNV 
Clean Design; Green 
Award; RINA Green Plus/ 
Green Star 

Invasive 
species 
transfer  

- Ballast water 
- Hull fouling 

- Ballast water 
release 

- Detachment 
from hull 

- Sea/water 
body 

- Marine 
ecosystems 

- Aquatic 
species 

- Relocation and 
establishment of alien 
species 

- Competition for 
resources with native 
species 

- Damage to 
infrastructure 

- Spread of disease 
- Increase in fuel 

consumption due to 
hull fouling 

- BWM 
Convention 

- Biofouling 
Guidelines 
(MEPC.207(62)) 
- only guidance, 
not regulation 

ABS Enviro/ Enviro+; Blue 
Angel; CCWG; DNV 
Clean/ Clean Design; 
Green Award; RINA 
Green Plus/ Green Star 

 

Continued overleaf… 
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Interaction Hazard Source Pathway Receptor 
Environmental 

impacts 
IMO regulations 

Environmental 
initiatives 

Discharges to 
Water 

(continued) 

Marine litter 
- Discarded from 

ship 
- Lost from ship 

- Disposal 
- Accidental loss 

- Sea/water 
body 

- Humans 
(bathing) 

- Marine 
ecosystems 

- Human health 
- Shoreline aesthetics 
- Infrastructure 

damage 
- Entanglement of 

marine species 
- Bioaccumulation of 

micro plastics in 
marine species 

- Habitat destruction 

MARPOL Annex V 
n/a (classified as 
garbage) 

Chemicals 
- Cargo 
- Cleaning 

products 

- Spillage 
- Leakage 

- Sea/water 
body 

- Aquatic 
species 

- Marine 
ecosystems 

- Humans 

- Human health 
- Toxification of biota 
- Bioaccumulation in 

marine species 
- Habitat destruction 

- MARPOL Annex II 
- HNS Convention 
- SOLAS 

Convention 1974 

ABS Enviro/ Enviro+; 
Blue Angel; CCWG; 
CSI; DNV Clean 

Land Garbage 
On-board solid 
waste 

- Disposal at 
port/harbours 

- Fly tipping 
- Accidental loss 

- Land 
- Soil 

- Chemical leaching 
into soil and 
watercourse 

- Odour 
- Aesthetics of waste 

disposal sites in 
ports/harbours 

MARPOL Annex V 

ABS Enviro/ Enviro+; 
Blue Angel; CCWG; 
CSI; DNV Clean/ Clean 
Design; Green Award; 
RINA Green Plus/ 
Green Star 

 

Continued overleaf… 
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Interaction Hazard Source Pathway Receptor 
Environmental 

impacts 
IMO regulations 

Environmental 
initiatives 

Anthropogenic 
Noise 

Underwater 
noise 

- Propellers 
- Engines 

Soundwaves 
(exacerbated by 
cavitation) 

- Sea/water 
body  

- Aquatic 
species 

- Acoustic masking of 
communication 
signals in marine 
species 

- Behavioural 
disruption of marine 
species 

- Reduced population 
density of marine 
species 

- Physiological impacts 
on marine species 

Guidance on Noise 
from Commercial 
Shipping and its 
Adverse Impacts on 
Marine Life (MEPC 
66/17 2013) – only 
guidance, not 
regulation. 

Blue Angel 

Surface 
noise 

- Shipping 
activities 

- Warning sirens 
Soundwaves Humans 

- Human health 
- Annoyance 
- Distraction leading to 

increased safety risks 

SOLAS Convention 
- Code on noise 
levels on board 
ships 
(MSC.337(91)) 

n/a 

Physical 
Contact 

Collisions 
with marine 
animals 

Ship’s hull/ 
propellers 

- Ship movement 
- Movement of 

aquatic species 

Aquatic 
species 
(Cetaceans) 

- Serious injury to 
aquatic species 

- Death of aquatic 
species 

Guidance for 
Minimising the Risk 
of Ship Strikes with 
Cetaceans 
(MEPC.1/Circ.674) 
– guidance only, 
not regulation 

n/a 
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Appendix B 

 

Ship environmental initiative inventory 

 

Name or description Developer 
Country/Region of 

applicability 

No. of  
environmental 

criteria 
Active 

Initiative 
classification 

Availability of 
Information 

Reference 

ABS Enviro ABS Not region specific Multiple Yes 
Performance 
Indicator 

Available 

Fridell, et al., 
2013; 
Svensson 
and 
Andersson, 
2011 

ABS Enviro+ ABS Not region specific Multiple Yes 
Performance 
Indicator 

Available 
Fridell, et al., 
2013; EMSA, 
2007 

Air Cavity System 
(ACS) 

DK Group n/a n/a Yes 
Research & 
Innovation 

Not available 
Fridell, et al., 
2013 

AUSMEPA 
Membership 

Australian Marine 
Environment 
Protection 
Association 

Australia Multiple Yes 
Research & 
Innovation 

Available 

Svensson 
and 
Andersson, 
2011 

BREE(D)I - Baltic 
Region Environmental 

Efficiency (Design) 
Index 

Deltamarin and 
Baltic Sea Action 
Group (BSAG) 

Baltic Region n/a Yes 
Research & 
Innovation 

Not Available EMSA, 2007 

CCWG Environmental 
performance 

scorecard 

Clean Cargo 
Working Group 
(CCWG) 

Not region specific Multiple Yes 
Performance 
Indicator 

Available EMSA, 2007 

 

Continued overleaf 
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Name or description Developer 
Country/Region of 

applicability 

No. of  
environmental 

criteria 
Active 

Initiative 
classification 

Availability of 
Information 

Reference 

Class notations for 
green ships 

China Classification 
Society (CCS) 

China Single Yes 
Performance 
Indicator 

Available 
Fridell, et al., 
2013; EMSA, 
2007 

Clean Marine Award EU Europe n/a No 
Incentive 
Scheme 

n/a 

Fridell, et al., 
2013; 
Svensson 
and 
Andersson, 
2011 

Clean Shipping Index 
(CSI) 

Clean Shipping 
Project 

Not region specific Multiple Yes 
Performance 
Indicator 

Available 
Fridell, et al., 
2013 

Clean Shipping 
Project (Sweden) 

Clean Shipping 
Project 

n/a n/a Yes 
Research & 
Innovation 

Available EMSA, 2007 

Cleanship 
Bureau Veritas 
(BV) 

Not region specific Multiple Yes 
Performance 
Indicator 

Available SSI, 2013 

Cleanship Super 
Bureau Veritas 
(BV) 

Not region specific Multiple Yes 
Performance 
Indicator 

Available 
Fridell, et al., 
2013 

CMAQ Improvement 
Programme(Congestio

n Mitigation and Air 
Quality) 

New York State 
Department for 
Transportation 

USA Single Yes 
Incentive 
Scheme 

Available 
Fridell, et al., 
2013; EMSA, 
2007 

Cruise Ship 
Environmental Award 

Port of San 
Francisco Cruise 
Terminal 
Environmental 
Advisory 
Committee 
(CTEAC) 

USA Multiple Yes 
Incentive 
Scheme 

Not available 
Fridell, et al., 
2013; EMSA, 
2007 

CSNOX technology 
Ecospec Global 
Technology 

n/a n/a Yes 
Research & 
Innovation 

Available 
Fridell, et al., 
2013; EMSA, 
2007 
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Name or description Developer 
Country/Region of 

applicability 

No. of  
environmental 

criteria 
Active 

Initiative 
classification 

Availability of 
Information 

Reference 

DNV Clean DNVGL Not region specific Multiple Yes 
Performance 
Indicator 

Available 
Fridell, et al., 
2013; EMSA, 
2007 

DNV Clean Design DNVGL Not region specific Multiple Yes 
Performance 
Indicator 

Available 

Fridell, et al., 
2013; 
Svensson 
and 
Andersson, 
2011; EMSA, 
2007 

Earth Environmental 
Price 

Not available Not available Not available 
Not 
available 

Research & 
Innovation 

n/a 
Fridell, et al., 
2013; EMSA, 
2007 

ECO Notation (Lloyds 
Register) 

LR Not region specific Multiple Yes 
Performance 
Indicator 

Available 

Fridell, et al., 
2013; 
Svensson 
and 
Andersson, 
2011; Pike et 
al., 2011 

Eco Ship project NYK Line n/a n/a Yes 
Research & 
Innovation 

Available 
Fridell, et al., 
2013; EMSA, 
2007 

ECOPRO - voluntary 
protection programme 

and exception 
compliance 
programme 

Washington State 
Department of 
Ecology 

USA Single Yes 
Incentive 
Scheme 

Not available 
Pike et al., 
2011 

EcoShip (Sweden) Volvo - Penta n/a n/a Yes 
Research & 
Innovation 

Not available EMSA, 2007 
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Name or description Developer 
Country/Region of 

applicability 

No. of  
environmental 

criteria 
Active 

Initiative 
classification 

Availability of 
Information 

Reference 

ECOSHIP-UP 
Norden Energy and 
Transport 
Programme 

n/a n/a Yes 
Research & 
Innovation 

Not available EMSA, 2007 

Energy Efficiency 
Design Index (EEDI) 

IMO Not region specific Single Yes Regulatory Available 
Fridell et al., 
2013; EMSA, 
2007 

Energy Efficiency 
Operational Index 

(EEOI) 
IMO Not region specific Single Yes Regulatory Available 

Fridell, et al., 
2013; 
Svensson 
and 
Andersson, 
2011; EMSA, 
2007 

Environmental 
Awareness 

ClassNK Not region specific Multiple Yes 
Performance 
Indicator 

Not available 

Fridell, et al., 
2013; 
Svensson 
and 
Andersson, 
2011 

Environmental 
Passport for Design 

DNVGL Not region specific Multiple Yes 
Performance 
Indicator 

Available SSI, 2013 

Environmental Safety 
Class Notation (ABS) 

ABS Not region specific Multiple No 
Performance 
Indicator 

n/a EMSA, 2007 

Environmental Ship 
Index (ESI) 

World Ports 
Sustainability 
Programme 
(WPSP) 

Not region specific Multiple Yes 
Performance 
Indicator 

Available EMSA, 2007 

European Clean Ship 
Awarding System 

Hamburg Port 
Training Institute 

Europe Multiple No 
Performance 
Indicator 

n/a EMSA, 2007 
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Name or description Developer 
Country/Region of 

applicability 

No. of  
environmental 

criteria 
Active 

Initiative 
classification 

Availability of 
Information 

Reference 

EVDI RightShip Not region specific Single Yes 
Performance 
Indicator 

Available 

Fridell, et al., 
2013; 
Svensson 
and 
Andersson, 
2011; Stuer-
Laridsen et 
al., 2014 

Fair Winds Charter 
Civic Exchange 
(Hong Kong) 

Hong Kong Single No 
Incentive 
Scheme 

n/a 

Fridell, et al., 
2013; 
Svensson 
and 
Andersson, 
2011; Stuer-
Laridsen et 
al., 2014 

FellowSHIP 
programme 

DNVGL n/a n/a Yes 
Research & 
Innovation 

Available 

Fridell, et al., 
2013; 
Svensson 
and 
Andersson, 
2011; Pike et 
al., 2011; SSI, 
2013; Stuer-
Laridsen et 
al., 2014 

Finland I Port of Helsinki Finland Single Yes 
Incentive 
Scheme 

Not available 
Stuer-
Laridsen et 
al., 2014 
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Name or description Developer 
Country/Region of 

applicability 

No. of  
environmental 

criteria 
Active 

Initiative 
classification 

Availability of 
Information 

Reference 

Finland II Finland Finland Single Yes 
Incentive 
Scheme 

Not available 

Fridell, et al., 
2013; 
Svensson 
and 
Andersson, 
2011; SSI, 
2013; Stuer-
Laridsen et 
al., 2014 

Finland III (The Aaland 
System) 

Port of Mariehamn Finland Single Yes 
Incentive 
Scheme 

Not available 

Fridell, et al., 
2013; 
Svensson 
and 
Andersson, 
2011 

Formal Safety 
Assessment: Criteria 

for environmental 
differentiating of ships 

Norwegian Green 
Ship Research 
Programme 

Norway Multiple No 
Research & 
Innovation 

n/a 

Fridell, et al., 
2013; 
Svensson 
and 
Andersson, 
2012 

Good Environmental 
Choice 

Swedish Society for 
Nature 
Conservation 
(SNCC) 

Scandinavia Single Yes 
Incentive 
Scheme 

Available (not 
specific to 
shipping) 

Fridell, et al., 
2013; 
Svensson 
and 
Andersson, 
2011; Pike et 
al., 2011; 
EMSA, 2007; 
Stuer-
Laridsen et 
al., 2014 
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Name or description Developer 
Country/Region of 

applicability 

No. of  
environmental 

criteria 
Active 

Initiative 
classification 

Availability of 
Information 

Reference 

Green Award Green Award Not region specific Multiple Yes 
Performance 
Indicator 

Available 

Fridell, et al., 
2013; 
Svensson 
and 
Andersson, 
2011; Pike et 
al., 2011; 
EMSA, 2007; 
Stuer-
Laridsen et 
al., 2014 

Green Award - Blue 
label 

Green Award Not region specific Multiple No 
Performance 
Indicator 

n/a 

Pike et al., 
2011; EMSA, 
2007; Stuer-
Laridsen et 
al., 2014 

Green Flag Incentive 
Programme 

Port of Long Beach USA Single Yes 
Incentive 
Scheme 

Available 

Fridell, et al., 
2013; 
Svensson 
and 
Andersson, 
2011 

Green Marine 
Environmental 

Programme 
Green Marine USA and Canada Multiple Yes 

Performance 
Indicator 

Available 

Fridell, et al., 
2013; 
Svensson 
and 
Andersson, 
2011; Pike et 
al., 2011 

Green Passport IMO Not region specific Multiple Yes Regulatory Available EMSA, 2007 
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Name or description Developer 
Country/Region of 

applicability 

No. of  
environmental 

criteria 
Active 

Initiative 
classification 

Availability of 
Information 

Reference 

Green Plus RINA Not region specific Multiple Yes 
Performance 
Indicator 

Available 

Fridell, et al., 
2013; 
Svensson 
and 
Andersson, 
2011; SSI, 
2013; Stuer-
Laridsen et 
al., 2014 

Green Port 
programme (policy) 

Port of Long Beach USA Single Yes 
Research & 
Innovation 

Available 

Svensson 
and 
Andersson, 
2011 

Green Ship Incentive 
Programme 

Port of Long Beach USA Single Yes 
Incentive 
Scheme 

Available 

Fridell, et al., 
2013; 
Svensson 
and 
Andersson, 
2011; SSI, 
2013 

Green Ship 
programme and 

certificate 

Korean Coast 
Guard and Korean 
Finance 
Corporation (KoFC) 

Korea Multiple Yes 
Incentive 
Scheme 

Not available 

Fridell, et al., 
2013; 
Svensson 
and 
Andersson, 
2011; EMSA, 
2007; SSI, 
2013 

Green Star RINA Not region specific Multiple Yes 
Performance 
Indicator 

Available 
Fridell, et al., 
2013; Pike et 
al., 2011 
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Name or description Developer 
Country/Region of 

applicability 

No. of  
environmental 

criteria 
Active 

Initiative 
classification 

Availability of 
Information 

Reference 

Hamworthy Krystallon 
sea water scrubbing 

system 
Wartsila n/a n/a Yes 

Research & 
Innovation 

Available 

Fridell, et al., 
2013; 
Svensson 
and 
Andersson, 
2011; SSI, 
2013 

Keep it Blue French Ports France Single No 
Research & 
Innovation 

n/a 

Fridell, et al., 
2013; 
Svensson 
and 
Andersson, 
2011; Stuer-
Laridsen et 
al., 2014 

Korean Green Ship 
System 

Korean Ports Korea n/a Yes 
Incentive 
Scheme 

Not available 

Fridell, et al., 
2013; 
Svensson 
and 
Andersson, 
2011; Pike et 
al., 2011; 
EMSA, 2007; 
Stuer-
Laridsen et 
al., 2014 

Life Buoy Award Port of Stockholm Sweden n/a No 
Incentive 
Scheme 

n/a 

Svensson 
and 
Andersson, 
2011 
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Name or description Developer 
Country/Region of 

applicability 

No. of  
environmental 

criteria 
Active 

Initiative 
classification 

Availability of 
Information 

Reference 

Logistics and 
Transport sector 

supplement 

Global Reporting 
Initiative (GRI) 

Not region specific Not available No 
Performance 
Indicator 

n/a SSI, 2013 

Low Carbon 
Consortium 

Consortia of UK 
Universities 

n/a n/a No 
Research & 
Innovation 

n/a 

Fridell, et al., 
2013; 
Svensson 
and 
Andersson, 
2011 

Low Sulphur Subsidy 
Programme (Port of 

SF - USA) 

Port of San 
Francisco 

USA Single Yes 
Incentive 
Scheme 

Not available 

Fridell, et al., 
2013; 
Svensson 
and 
Andersson, 
2011; Pike et 
al., 2011; 
EMSA, 2007 

Maritime Singapore 
Green Initiative 

Maritime and Port 
Authority of 
Singapore 

Singapore Single Yes 
Incentive 
Scheme 

Available 

Fridell, et al., 
2013; 
Svensson 
and 
Andersson, 
2011; Pike et 
al., 2011; 
EMSA, 2007 

MVEP (Marine Vessel 
Environmental 
Performance 
assessment) 

The Society of 
Naval Architects 
and Marine 
Engineers 
(SNAME) 

Not region specific Multiple No 
Performance 
Indicator 

n/a 

Fridell, et al., 
2013; 
Svensson 
and 
Andersson, 
2011; SSI, 
2013 
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Name or description Developer 
Country/Region of 

applicability 

No. of  
environmental 

criteria 
Active 

Initiative 
classification 

Availability of 
Information 

Reference 

Norwegian NOX Fund 
Norwegian 
Maritime 
Administration 

Norway Single Yes 
Incentive 
Scheme 

Available EMSA, 2007 

OMS Screener 
Washington State 
Office for Marine 
Safety 

USA Not available No 
Incentive 
Scheme 

n/a 

Fridell, et al., 
2013; 
Svensson 
and 
Andersson, 
2011; Stuer-
Laridsen et 
al., 2014 

Operational CO2 index 
certification (EEOI 

certification) 
DNVGL Not region specific Single Yes 

Performance 
Indicator 

Available 

Fridell, et al., 
2013; 
Svensson 
and 
Andersson, 
2011 

OVG Hong Kong 

Hong Kong 
Environmental 
Protection 
Department 

Hong Kong Single No 
Incentive 
Scheme 

n/a 

Fridell, et al., 
2013; 
Svensson 
and 
Andersson, 
2011 

Port of Antwerp 
incentive for 

differentiated harbour 
dues 

Port of Antwerp Belgium Single Yes 
Incentive 
Scheme 

Not available 

Fridell, et al., 
2013; 
Svensson 
and 
Andersson, 
2011; Stuer-
Laridsen et 
al., 2014 
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Name or description Developer 
Country/Region of 

applicability 

No. of  
environmental 

criteria 
Active 

Initiative 
classification 

Availability of 
Information 

Reference 

Port of Kaliningrad 
incentive for 

differentiated harbour 
dues 

Port of Kaliningrad Russia Single Yes 
Incentive 
Scheme 

Not available 
Pike et al., 
2011 

Port of New York and 
New Jersey incentive 

for differentiated 
harbour dues 

Port of New York 
and New Jersey 

USA Single Yes 
Incentive 
Scheme 

Not available 
Pike et al., 
2011 

Port of Szczecin-
Swinoujscie reduction 

of pollution 

Port of Szczecin-
Swinoujscie 

Poland Multiple Yes 
Incentive 
Scheme 

Not available 
Fridell et al., 
2013; EMSA, 
2007 

Poseidon Challenge Interntanko Company specific Multiple Yes 
Incentive 
Scheme 

Available 

Svensson 
and 
Andersson, 
2011 

Qualship 21 
United States 
Coast Guard 

USA Multiple Yes 
Incentive 
Scheme 

Available 
Pike et al., 
2011 

Rotor Sails 
Greenwave Wind 
Engines 

n/a n/a Yes 
Research & 
Innovation 

Not available 
Pike et al., 
2011 

Save the waves 
Royal Caribbean 
International 

Company specific Multiple Yes 
Research & 
Innovation 

Available EMSA, 2007 

S-Class Ships 
Evergreen Marine 
Corporation 

Company specific n/a Yes 
Research & 
Innovation 

Not available 
Pike et al., 
2011 

Ship Energy Efficiency 
Management Plan 

(SEEMP) 
IMO Not region specific Single Yes Regulatory Available 

Pike et al., 
2011 

STCW (Standards of 
Training, Certification 
and Watch-keeping) 

IMO Not region specific n/a Yes Regulatory Available 

Svensson 
and 
Andersson, 
2011 
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Name or description Developer 
Country/Region of 

applicability 

No. of  
environmental 

criteria 
Active 

Initiative 
classification 

Availability of 
Information 

Reference 

Swedish incentive for 
differentiated harbour 

dues 

 Swedish 
Shipowners 
Association, 
Swedish Port 
Association and 
Swedish Maritime 
Association 

Sweden Single Yes 
Incentive 
Scheme 

Not Available 
Pike et al., 
2011 

The Blue Angel RAL-
UZ 110 (operation) 

Federal 
Government of 
Germany 

Germany Multiple Yes 
Performance 
Indicator 

Available 

Svensson 
and 
Andersson, 
2011 

The Blue Angel RAL-
UZ 141 (design) 

Federal 
Government of 
Germany 

Germany Multiple Yes 
Performance 
Indicator 

Available 
Fridell, et al., 
2013; EMSA, 
2007 

The Blue Circle Award Port of Vancouver Canada Multiple Yes 
Incentive 
Scheme 

Available 
Pike et al., 
2011 

The Carl Moyer 
Programme 

California Air 
Resources Board 

USA Single Yes 
Incentive 
Scheme 

Available 

Fridell, et al., 
2013; Pike et 
al., 2011; 
EMSA, 2007 

The North Sea 
Foundation 

The North Sea 
Foundation 
(Environmental 
NGO) 

North Sea Region n/a Yes 
Research & 
Innovation 

Available 
Fridell, et al., 
2013; Pike et 
al., 2011 

The PROSea 
Foundation 

The ProSea 
Foundation 
(Environmental 
NGO) 

n/a n/a Yes 
Research & 
Innovation 

Available 
Pike et al., 
2011 

The Sustainable 
Shipping Council 

The Sustainable 
Shipping Council 
(Led by WWF) 

Not region specific Multiple No 
Research & 
Innovation 

n/a 
Fridell, et al., 
2013; EMSA, 
2007 
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Name or description Developer 
Country/Region of 

applicability 

No. of  
environmental 

criteria 
Active 

Initiative 
classification 

Availability of 
Information 

Reference 

The VCS Program Verra Not region specific Single Yes 
Incentive 
Scheme 

Available (not 
specific to 
shipping) 

Pike et al., 
2011 

Thor Heyerdahl 
Maritime 

Environmental award 

Thor Heyerdahl and 
the Norwegian 
Shippers 
Association 

Norway n/a Yes 
Incentive 
Scheme 

Not available 
Pike et al., 
2011 

TRESHIP Not available Not available n/a No 
Research & 
Innovation 

n/a 
Pike et al., 
2011 

Triple E DNVGL Not region specific Multiple Yes 
Performance 
Indicator 

Available 

Svensson 
and 
Andersson, 
2011; Pike et 
al., 2011 

US Coast Guard 
Safety Point System 

US Coast Guard USA not available 
Not 
available 

Performance 
Indicator 

n/a 
Pike et al., 
2011 
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Appendix C 

Princess Royal voyage data 

 

C1. Inventory of materials for 18/02/2018 - 05/03/2018 

Material Description Quantity Number 
of units 

Total 
quantity 
on board 

Liquid 
containing 
chemicals 
(y/n) 

CMR 
classified 
(y/n) 

Volume of 
chemical 
containing 
liquid (litres) 

Volume 
of oil 
(litres) 

Heavy duty degreaser Contains: Alcohol ethoxylate; 2-
aminoethanol; Non-ionic surfactants, 
Phosphates; Anionic surfactants < 5% 

5 litres 2 10 litres y n 10 0 

hydraulic oil Mineral oil 20 litres 3 60 litres y n/a 60 60 

Anti-seize compound Lubricant blend 0.5 Kg 1 0.5 Kg n n 0 0 

Household thick bleach Contains: Sodium hypochlorite; Sodium 
hydroxide; Sodium laureth sulphate/amides; 
coco; N-[3-dimethylamino)propyl]; N-oxides 

750 ml 1 750 ml n n 0 0 

WD40 - lubricant Contains: Hydrocarbons, C9-C11; N-
alkanes; isoalkanes; cyclic’s; <2% aromatics 

450 ml 2 900 ml y n 0.9 0.9 

Multi surface cleaner Contains: 5-15% Non-ionic surfactants; <5% 
Anionic surfactants; Phosphonates 
Polycarboxylates; Benzisothiazolinone; 
Perfumes; Citral; Citranellol; Gerianol; Hexyl 
cinnamal; Limonene; Linalool 

885 ml 1 885 ml y n 0.885 0 

Copper grease Contains: Hydrocarbons, C6-C7; N-alkanes; 
Isoalkanes; Cyclics; <5% n-hexane 

400 ml 1 400 ml y n 0.4 0 

Anti-seize copper grease Lubricant 0.5 Kg 1 0.5 Kg n n 0 0 

Mechoil - lubricant Contains: Hydrocarbons, C9-C11; N-
alkanes; isoalkanes; cyclics; <2% aromatics 

400 ml 1 400 ml y n 0.4 0.4 

Universal sealant Mechanical sealant 300 ml 1 300 ml n n 0 0 
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Material Description Quantity Number 
of units 

Total 
quantity 
on board 

Liquid 
containing 
chemicals 
(y/n) 

CMR 
classified 
(y/n) 

Volume of 
chemical 
containing 
liquid (litres) 

Volume 
of oil 
(litres) 

Sikaflex - adhesive, 
sealant, filler 

adhesive and sealant 300 ml 1 300 ml n n 0 0 

Multipurpose grease Lubricant 0.4 Kg 4 1.6 kg n n 0 0 

Universal gear oil Lubricant 1 litre 1 1 litre y N 1 1 

Air freshner Aerosol 240 ml 1 240 ml y n 0.24 0 

White spirit Contains: Hydrocarbons C9-C12; n-alkanes; 
isoalkanes; cyclics; aromatics (2-25%)  919-
446-0 

750 ml 1 750 ml y n 0.75 0 

Beko refrigerator Contains: R600a refrigerant gas; 
Cyclopentane insulation gas (unknown 
quantity) 

0.02 Kg 1 0.02 Kg n n/a 0 0 

Antibacterial spray Contains: Benzoalkonium chloride; <5% 
Nonionic surfactants; Disinfectant; Perfume; 
Limonene 

1 litre 2 2 litres y n 2 0 

Blue cleaning roll   400 
sheets 

6 2400 
sheets 

n n/a 0 0 

Waste bins   20 litre 
capacity 

2 40 litre 
capacity 

n n/a 0 0 

Foam fire extinguishers Contains: 1.9L water; 60 ml foam additive 2 litres 2 4 litres n n/a 0 0 

Powder fire extinguishers ABC70 Dry chemical powder (Mono 
Ammonium phosphate) 

4 litres 2 8 litres n n/a 0 0 

Washing up liquid Cleaning product 1 litres 1 1 litre n n 0 0 

LEC refrigerator Contains: R600a refrigerant gas 0.017 Kg 1 0.017 Kg n n/a 0 0 

Ultra-high performance 
engine oil 

Contains: Calcium long chain alkaryl 
sulphonate 

20 litres 4 80 litres y n/a 80 80 

Diesel Oil 25 litres 2 50 litres y n/a 50 50 

 

Continued overleaf… 

 



 

231 
 

Material Description Quantity Number 
of units 

Total 
quantity 
on board 

Liquid 
containing 
chemicals 
(y/n) 

CMR 
classified 
(y/n) 

Volume of 
chemical 
containing 
liquid (litres) 

Volume 
of oil 
(litres) 

Engine oil Contains: Calcium long chain alkaryl 
sulphonate 

25 litres 2 50 litres y n/a 50 50 

Stat-X G 1000 E integrated 
fire suppression system for 
engine room 

  1 kg 1 1 kg n n/a 0 0 

On-board lavatory         n n/a 0 0 

Total (l)  256.58 242.30 

Total (m3)  0.26 0.24 

Total (metric tonnes)*  0.26 0.21 

*For chemicals (assumed): 1m3 = 1 metric tonne; for oil (assumed): 1m3 = 0.85 metric tonnes  
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C2. Calculation of VEP scores for each hazard 

 

Emissions to Air 

Emissions of each pollutant in grams were calculated based on the fuel use for 

each voyage. Fuel use in litres was multiplied by the bulk density of the fuel to 

determine fuel use in Kg, then converted into g. The bulk density of the fuel was 

assumed to be 0.85 g/ml, the median value for MGO taken from the MGO MSDS 

(WCF, 2012). Fuel use in g was multiplied by the emission factors for MGO (as 

published by Smith et al., 2014 – Tables 32, 67, and 68), to determine the 

amount of each pollutant emitted in grams. 

IMO emissions factors for MGO, for each pollutant taken from the Third IMO GHG Study 
(Smith et al., 2014) 

Pollutant Emission Factor (g/g fuel) 

CO2 3.206 

CH4 0.00006 

N2O 0.00015 

SOX 0.01 

NOX 0.05684 

PM 0.00097 

VOCs 0.00308 

 

Calculated emissions of air pollutants in g based on IMO emissions factors 

Voyage 
date 

 

Fuel use Emissions of pollutant in g 

(Litres) (g) CO2 CH4 N2O NOX SOX PM VOCs 

18/02/2018 120 102,000 327,012 6 16 5,798 1,020 99 314 

22/02/2018 660 561,000 1,798,566 34 90 31,887 5,610 544 1,728 

26/02/2018 300 255,000 817,530 15 41 14,494 2,550 247 785 

05/03/2018 310 263,500 844,781 16 42 14,977 2,635 256 812 

Total 1390 1,181,500 3,787,889 71 189 67,156 11,815 1,146 3,639 

 

VEP scores were calculated by dividing the emissions (g) of each pollutant by the 

weight of the vessel (tonnes) and the distance travelled (nm) for each voyage. 

The vessel weight was assumed to be 41 tonnes, taken as the lightweight 
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displacement (36 tonnes) and the payload (five tonnes) from the vessel 

specification document (Newcastle University, 2018). 

The distance travelled in each voyage was as follows: 

18/02/2018 = 6 nm 

22/02/2018 = 50 nm 

26/02/2018 = 40 nm 

05/03/2018 = 40 nm 

Calculated VEP scores per voyage in g/tonne-mile are as follows: 

Voyage 
date 

VEP (g/tonne-mile) 

CO2 CH4 N2O NOX SOX PM VOCs 

18/02/2018 1,329.32 0.025 0.062 23.57 4.15 0.40 1.28 

22/02/2018 877.35 0.016 0.041 15.55 2.74 0.27 0.84 

26/02/2018 498.49 0.009 0.023 8.84 1.55 0.15 0.48 

05/03/2018 515.11 0.010 0.024 9.13 1.61 0.16 0.49 

Total 679.32 0.013 0.032 12.04 2.12 0.21 0.65 

 

The VEP scores were normalised according to the maximum and minimum 

permissible level of pollutants set out in Table 4.16 for air emissions. Maximum 

limits were calculated based on vessel design using the formula shown in Table 

4.16 for air emissions, and the following data for the Princess Royal: 

P = 894 kW 

SFC = 197 g/kWh 

V = 20 knots 

D = 41 tonnes 

The emission factors (EF) of each pollutants were based on IMO published 

baseline emission factors (Annex 6 and 7 of Smith et al., 2014). To calculate the 

reference for maximum emissions, the highest published emissions factors were 

used for each pollutant, as follows: 
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Maximum IMO emissions factors for each pollutant taken from Smith et al., 2014 

Pollutant Emission Factor (g/g fuel) 

CO2 3.206 

CH4 0.0512 

N2O 0.00016 

SOX 0.053 

NOX 0.0961 

PM 0.00728 

VOCs 0.00308 

 

The maximum permissible emissions values (MPL) for CO2, N2O and CH4 were 

converted into g CO2 eq. and added together to determine a maximum 

permissible value for GHGs: 

Pollutant MPL (g/t nm-1) GWP MPL (g CO2 eq./t-nm) 

CO2 688.58 1 688.58 

CH4 10.997 21 230.93 

N2O 0.034 298 10.24 

GHGs 929.75 

 

The maximum and minimum permissible limits for air emissions from the Princess 

Royal are tabulated below: 

Calculated maximum and minimum permissible limits for air emissions from the Princess 
Royal based on vessel design 

Hazard Maximum Minimum Unit 

GHGs 929.75 0 g/tonne-mile 

SOX 11.38 0 g/tonne-mile 

NOX 20.64 0 g/tonne-mile 

PM 1.56 0 g/tonne-mile 

VOCs 0.66 0 g/tonne-mile 

 

The VEP scores per voyage for each pollutant were normalised on a scale of 0 to 

5 using the calculated maximum and minimum permissible limits as a reference. 

Normalised scores were calculated using the following equation: 

VEPn = a + (x - A) (b - a) / (B - A) (C1) 
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Where: A = minimum permissible emission 

  B = maximum permissible emission 

  a = 0 (minimum value of normalised scale) 

  b = 5 (maximum value of normalised scale) 

  x = VEP score 

  VEPn = normalised VEP score 

 

E.g. for GHG emissions for the total from all voyages, 

  A = 0 

  B = 929.75 

  a = 0 

b = 5 

x = 689.06 

VEPn = 0 + (689.06 - 0) (5 - 0) / (929.75 - 0) 

= 0 + 689.06 * 5 / 929.75 

= 3,445.3 / 929.75 

VEPn = 3.71 
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In certain cases, the actual emissions of pollutants exceeded the maximum 

permissible limits, in such cases the maximum VEPn scores are capped at 5. The 

VEPn scores for each hazard per voyage are as follows: 

Hazard 
Normalised VEP scores per voyage 

18/02/2018 22/02/2018 26/02/2018 05/03/2018 Total 

GHGs 5.0 4.79 2.72 2.81 3.71 

SOX 1.82 1.20 0.68 0.71 0.93 

NOX 5.00 3.77 2.14 2.21 2.92 

PM 1.29 0.85 0.48 0.50 0.66 

VOCs 5.00 5.00 3.62 3.74 4.93 

 

VEP scores for refrigerants were calculated by calculating the total quantity of 

refrigerants on board in tonnes CO2 equivalents. The following formula is used to 

calculate CO2 eq. in tonnes of refrigerants: 

Quantity of refrigerant (Kg) * GWP / 1000 = CO2 eq. (tonnes)  (C2) 

   = 0.037 kg * 3 / 1000 = 0.00011 

Where: Quantity of refrigerant (Kg) = 0.037  

  GWP = 3 

Normalised VEP scores were calculated using formula C1 for normalisation, and 

the maximum and minimum permissible limits for refrigerants as outlined in Table 

4.16. 

The VEPn score for refrigerants is 0.0000011. 

 

Discharges to Water 

The VEP scores and VEPn scores for antifoul coating, sewage, chemicals, and 

on-board stored oil were calculated. The vessel did not collect ballast water and 

the data for oily water (bilge) collection and marine litter was recorded as 0.  For 

antifoul coating, the maximum and minimum permissible limits outlined in Table 

4.16 were utilised, and the Tin content of Intersleek 1100 was taken from the 

literature. Intersleek 1100 is classified as a biocide free coating and does not use 

Tin as an active ingredient to prevent biofouling. However, it does contain up to 
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10% diocytyltin dilaurate as a catalysing agent (AzkoNobel, 2017). As is 

highlighted in Chapter 2, Section 2.3.3 of this thesis, the use of tin based 

compounds as catalysts in antifoul coatings are an environmental concern 

(Watermann et al., 2005), therefore are taken into account in this methodology. 

International Paint, the supplier of Intersleek 1100 SR claim the coatings overall 

tin content is 1000 mg/kg tin (ECO, 2016), so this figure will be used in this 

research. The antifoul coating was present throughout each of the voyages, 

therefore the same VEPn score was calculated for each voyage. 

The VEPn score for antifoul coating was calculated using equation C1 as follows: 

VEPn = 0 + (1000 - 0) (5 - 0) / (2500 - 0) 

= 5000 / 2500 

VEPn = 2 

Where,  

A = 0 

  B = 2,500 mg/kg 

  a = 0  

  b = 5  

  x = 1000 mg/kg 

To calculate the VEP of sewage for each voyage (X), the discharge rate (m3/hr) 

assuming a constant discharge over the duration of the voyage was calculated. 

This was done by dividing the volume of sewage produced in m3 by the voyage 

duration in hours. The maximum permissible discharge rate (B) per voyage was 

calculated based on the IMO MARPOL Annex IV requirements, using the 

following equation: 

DRmax = 0.00926 * V * B * D  (C3) 

Where,  

  DRmax = maximum allowable discharge date (m3/hr) 

  V = vessel average speed (knots) 
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  B = vessel breadth (m) 

  D = vessel draft (m) 

Sewage VEPn values were calculated per voyage using equation C1 with the 

following data (grey water was not collected separately and therefore given a 

score of 0). The maximum permissible discharge rate varies from voyage to 

voyage as the vessel average speed was different for each voyage (see Table 

5.1).  

Factor 18/02/2018 22/02/2018 26/02/2018 05/03/2018 Total 

A 0 0 0 0 0 

B (m3/hr) 0.55 1.66 1.11 1.11 1.11 

a 0 0 0 0 0 

b 5 5 5 5 5 

X (m3/hr) 0.002 0.004 0.007 0.008 0.006 

VEPn 0.018 0.012 0.032 0.036  

 

For chemicals, the VEP score represents the total volume of liquid chemicals 

(tonnes) on board the vessel during each voyage. The inventory of chemicals 

was collated prior to the first voyage, and it is assumed that the total volume did 

not change throughout the total period of data collection. The maximum 

permissible level was set based on the carrying capacity of a reference large 

chemical tanker (see Table 4.16). The VEPn score was calculated using equation 

C1 based on the following data: 

Factor For all voyages 

A 0 

B (tonnes) 50,000 

a 0 

b 5 

X (tonnes) 0.26 

VEPn 0.000026 

 

For on board stored oil, the VEP score represents the volume of stored oil on 

board the vessel in tonnes, as shown in the inventory. Like with chemicals, it is 

assumed that the volume of stored oil remained constant throughout the period of 

research. The maximum permissible level was determined based on the carrying 

capacity of a reference large oil tanker, as outlined in Table 4.16. The VEPn score 

for oil was calculated using equation C1 based on the following data: 
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Factor For all voyages 

A 0 

B (tonnes) 500,000 

a 0 

b 5 

X (tonnes) 0.21 

VEPn 0.0000021 

 

Land 

The VEP scores for garbage were calculated based on the estimated volume of 

garbage produced per voyage in Kg, divided by the number of persons on board. 

The VEPn scores were calculated using equation C1, the maximum permissible 

level was set at 14 kg/person day-1 in accordance with Table 4.16. 

Voyage 
date 

Garbage production 
(Kg) 

No. of persons on 
board per day 

VEP (Kg/person-
day) 

VEPn 

18/02/2018 0 4 0 0 

22/02/2018 15 5 3 1.07 

26/02/2018 15 14 1.07 0.38 

05/03/2018 15 13 1.15 0.41 

Total 45 36 1.25 0.45 

 

Anthropogenic Noise 

No data was provided for engine noise levels (dB), therefore the VEPn score was 

set at the maximum level of 5. Where data has not been recorded, the VEP is set 

at the maximum level to encourage more comprehensive data recording and 

collection. 

 

Physical Contact 

The VEP and VEPn scores for contact with marine animals were set at 0 for each 

voyage, as no interactions with marine life were recorded. Ship strikes with 

marine animals are rare, and hence if a strike were to occur during a voyage the 

vessel would receive the maximum VEPn score for that voyage.
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Appendix D 

Max Pruss voyage data 

 

D1. Inventory of materials for 25/01/2019 

 

Material Description Quantity 
Number 
of units 

Total 
quantity on 
board 

liquid 
containing 
chemicals 
(y/n) 

CMR 
classified? 
(y/n) 

Volume of 
chemical 
containing 
liquid (litres) 

Volume 
of oil 
(litres) 

Cleaning fluid 
Ajax cleaning fluid (contains isopropyl 
alcohol) 

10 litres 3 30 litres y n 30 0 

Dishwasher fluid Contains Methylisothiazolinone (MI) 10 litres 1 10 litres y n 10 0 

Scouring milk (Cif) 

Contains Sodium Hypochlorite; Sodium 
Carbonate; Pareth Sulphate (secondary 
VOC generation); 
Methylchloroisothiazolinone (MCI) 

750 ml 8 6 litres y n 6 0 

Floor cleaner Contains MI and MCI and other VOC's 1 litre 5 5 litres y n 5 0 

White spirit 
Contains hydrocarbons, C9-C12, n-
alkanes, isoalkanes, cyclics, aromatics  

1 litre 2 2 litres y n 2 0 

Glass cleaner 
Contains anionic surfactants including 
VOC's 

1 litre 1 1 litre y n 1 0 

Washing up liquid Cleaning product 750 ml 4 3 litres y n 3 0 

Antibacterial spray 
Contains benzoalkonium chloride; <5% 
Nonionic surfactants; Disinfectant 

750 ml 6 4.5 litres y n 4.5 0 

Lighter fuel Contains butane 1 litre 1 1 litre y n 1 0 

Diesel exhaust fluid Lubricant 
1000 
litres 

1 1000 litres y n 1000 0 

Continued overleaf… 
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Material Description Quantity 
Number 
of units 

Total 
quantity on 
board 

liquid 
containing 
chemicals 
(y/n) 

CMR 
classified? 
(y/n) 

Volume of 
chemical 
containing 
liquid (litres) 

Volume 
of oil 
(litres) 

Household paint Contains multiple VOC's 5 litres 8 40 litres y n 40 0 

Diesel fuel In fuel tanks 
5000 
litres 

1 5000 litres y n/a 0 5000 

Engine oil Engine room refill tank (300 litre capacity) 90 litres 1 90 litres y n/a 0 90 

Gasoline Dinghy fuel tank 60 litres 1 60 litres y n/a 0 60 

Hydraulic oil Mineral oil 300 litres 1 300 litres y n/a 0 300 

Engine oil additional oil (mobile) 20 litres 1 20 litres y n/a 0 20 

Refrigerator (1) Contains R600a refrigerant gas 58 grams 1 58 grams n n/a 0 0 

Refrigerator (2) Contains R600a refrigerant gas 31 grams 1 31 grams n n/a 0 0 

Freezer (1) Contains R600a refrigerant gas 47 grams 1 47 grams n n/a 0 0 

Freezer (2) Contains R600a refrigerant gas 72 grams 1 72 grams n n/a 0 0 

Freezer (3) Contains R600a refrigerant gas 47 grams 1 47 grams n n/a 0 0 

Fire extinguishers 

contains 140g CO2 propellant; 6kg 
extinguishing powder (ammonium 
dihydrogen phosphate and ammonium 
sulphate) 

6 Kg 4 24 Kg n n/a 0 0 

Fire extinguisher Contains water 3 litres 1 3 litres n n/a 0 0 

Drinking water Drinking water tank 
5000 
litres 

1 5000 litres n n/a 0 0 

Air conditioning unit Contains R410A refrigerant gas 4.56 Kg 1 4.56 Kg n n/a 0 0 

Waste bins Multiple bins, all emptied into 1 large bin 60 kg 1 60 kg n n/a 0 0 

Sewage tank 500 litre capacity 
5000 
litres 

1 5000 litres n n/a 0 0 

Total (l)  1102.5 5470 

Total (m3)  1.10 5.47 

Total (metric tonnes)*  1.10 4.65 

*For chemicals (assumed): 1m3 = 1 metric tonne; for oil (assumed): 1m3 = 0.85 metric tonnes 
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D2. Summary of raw voyage data for the Max Pruss 

 

The raw data for the complete voyage of the Max Pruss on 25/01/2019 was collected 

by Multronic Emissions Systems via a Testo 350 portable flue gas analyser. The raw 

data contains over 15,000 samples taken at approximately 1 second intervals, and 

includes the time of the sample, the fuel use in litres per hour for each sample, and 

the vessel speed in kilometres per hour for each sample. This data was used to 

calculate the total fuel use for the voyage (assuming there were two engines 

running), the average speed during the voyage, and the total distance travelled, 

while the top speed and total time of the voyage was inferred from the data. A 

summary of the raw data is shown in the table below: 

Summary of voyage data 

Top speed (km/h) = 25.77 

Average speed (km/h)  = 13.80 

Top speed (mph) = 16.01 

Average speed (mph) = 8.57 

Top speed (knots) = 13.91 

Average speed (knots) = 7.45 

Total time (hr:min:sec) = 04:27:56 

Total distance (km) = 61.67 

Total distance (miles) = 38.32 

Total distance (nautical miles) = 33.30 

Fuel use (l) = 175.26 
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D3. Calculation of VEP scores for each hazard 

 

VEP scores for the Max Pruss were calculated using the same process as for the 

Princess Royal in Appendix C.  

 

Emissions to Air 

Fuel use in litres was multiplied by the bulk density of the fuel (0.85 g/ml) to convert 

to fuel use in g. The following emission factors were used to calculate the emissions 

of air pollutants in g (excluding refrigerants) for the Max Pruss: 

Lloyds Register (1995) emission factors for a medium speed diesel engine (IVL, 2002) 

Pollutant Emission Factor (g/g fuel) 

CO2 3.170 

CH4 0.0003 

N2O 0.00008 

SOX 0.002 

NOX 0.057 

PM 0.0012 

VOCs 0.0021 

 

The quantity of air pollutants in g for the voyage were calculated as follows: 

Fuel use Emissions of pollutants (g) 

Litres g CO2 CH4 N2O NOX SOX PM VOCs 

175.259 148,970 472,235.94 44.69 11.92 8,491.29 297.94 178.76 312.84 

 

VEP scores (g/tonne-mile) were then calculated by dividing the total emission of 

each pollutant by the distance travelled (33.3 nm) and the vessel weight (141 

tonnes). The VEP scores for CO2, CH4 and N2O were combined and converted into g 

CO2 eq. /tonne mile-1. The VEP scores were normalised on a scale of 0-5 using 

maximum and minimum permissible emission limits (g/tonne mile-1), calculated using 

formula 4.1 outlined in Section 4.11. The following vessel data was used to calculate 

the maximum permissible limits: 
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P = 508 kW 

SFC = 213 g/kWh 

V = 13.91 knots 

D = 141 tonnes 

The EF for each pollutant was taken from Smith et al., 2014, shown below:  

Maximum and minimum permissible limits for air emissions from the Max Pruss based on 
vessel design 

Hazard EF (g/g fuel) Maximum Minimum Unit 

CO2 3206 176.87 0 g/tonne-mile 

CH4 0.0512 0.0088 0 g/tonne-mile 

N2O 0.00016 2.82 0 g/tonne-mile 

GHGs n/a 283.82 0 g CO2 eq./tonne-mile 

SOX 0.053 2.92 0 g/tonne-mile 

NOX 0.0961 5.30 0 g/tonne-mile 

PM 0.00728 0.40 0 g/tonne-mile 

VOCs 0.00308 0.17 0 g/tonne-mile 
*CO2, CH4 and N2O combined to calculate VEP for GHGs 

 

Normalisation of VEP scores was conducted using equation C1 (Appendix C), the 

VEPn scores can be found in Table 5.9.  

Refrigerants: The VEP for refrigerants (X) was calculated using the following 

equation: 

X (CO2 eq. tonnes) = Σ (GWP * Refrigerant mass (tonnes)) (D1) 

R410a and R600A refrigerants were found on board the Max Pruss in different 

quantities, therefore the total CO2 eq. was calculated as follows: 

 R410a: 2088 * 0.00465 (tonnes) = 9.7092 (CO2 eq. tonnes) 

 R600a = 3 * 0.00025 (tonnes) = 0.00075 (CO2 eq. tonnes) 

 Total = 9.7092 + 0.00075 = 9.71 CO2 eq. tonnes 

The VEPn score for refrigerants was calculated using the following data: 
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Factor Refrigerants 

A 0 
B 500 (CO2 eq. tonnes) 
a 0 
b 5 
X 9.71 (CO2 eq. 

tonnes) VEPn 0.097 

 

Discharges to Water 

VEP and VEPn scores were calculated for each pollutant categorised as a discharge 

to water. The process outlined in Appendix C for calculating scores was repeated for 

the Max Pruss, using equation C1. The vessel did not collect ballast water or grey 

water therefore both were given a score of 0.  Scores of 0 were also given to antifoul 

paint (none applied), and marine litter. The other scores were calculated as follows: 

Factor Sewage Bilge water Oil Chemicals 

A 0 0 0 0 

B 0.57 (m3/hr) 26 (m3/day) 500,000 (tonnes) 50,000 (tonnes) 

a 0 0 0 0 

b 5 5 5 5 

X 0.067 (m3/hr) 0.002 (m3/day) 4.65 (tonnes) 1.1 (tonnes) 

VEPn 0.58 0.00038 0.000046 0.00011 

 

Sewage: The actual discharge rate (X) and maximum permissible discharge rate (B) 

were calculated based on the collected voyage data (Table 5.8).   

  X = 300 litres / 4.47 hours = 67.11 litres per hour / 1000 = 0.067 m3/hr 

  B = 0.00926 * 7.45 knots * 1.1 metres * 7.57 metres = 0.57 m3/hr 

Bilge water: An estimate of oily bilge water production was recorded during the 

vessel audit, and converted into m3 (2 litres = 0.002 m3). The VEPn was calculated 

assuming a maximum permissible discharge of 26 m3/day, as per Table 4.16. 

On board stored oil and chemicals: The quantities of on board stored oil and 

chemicals were calculated based on the inventory of materials collected during the 

vessel audit. Maximum permissible limits were set based on Table 4.16. 
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Land 

Garbage generation (Kg/person day-1) was calculated by dividing the total amount of 

garbage produced during the voyage (8.5 Kg) by the number of persons on board 

(16). The VEPn was calculated based on the maximum permissible limit for garbage 

outlined in Table 4.16.  

 

Anthropogenic Noise 

The noise level of the engine in decibels was taken from the engine specification. It 

was not possible to obtain direct measurements of noise data, therefore an estimate 

based on design was used, in accordance with the check methods outlined in Table 

4.14. The VEPn score was calculated based on the maximum permissible level 

outlined in Table 4.16. 

 

Physical Contact 

No interactions with marine life were recorded during the voyage, therefore the VEP 

and VEPn scores for contact with marine animals were set at zero. 
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D.4 Verification of calculated NOX emissions 

 

Continuous emissions monitoring equipment was utilised to determine actual NOX 

emissions from the Max Pruss for a subset of the voyage conducted on 29th January 

2019. Actual measurements were recorded using a Testo gas analyser. 

Measurements were taken with the engine running at 1600 rpm, with an operating 

power of 157 kW, at a vessel speed of 7.3 knots. The following data was recorded: 

Engine 
speed (rpm) 

Engine 
power (kW) 

Vessel speed 
(knots) 

Fuel 
consumption 

(g/hr) 

Actual NOX 
(g/hr) 

Actual NOX 
(g/kWh) 

1600 157 7.3 32895 2088.1 13.3 

 

The calculated NOX emissions based on average engine power of 163.1 kW is 11.65 

g/kWh. This is within 15% of the actual emissions recorded at a similar power output. 

Whilst not conclusive, this provides an indication of the accuracy of the emission 

calculations. 


