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Abstract

In the past ten years, we have witnessed the evolution of cryptocurren-

cies. With market capitalizations of $189bn and $19bn respectively in

September 2019, Bitcoin and Ethereum are the world’s most successful

cryptocurrencies. Blockchain, which is a public ledger that is immutable,

is the main innovation behind these cryptocurrencies. In Bitcoin, the

blockchain is introduced to exchange and trade a single asset, whereas in

Ethereum it is used to store and execute a smart contract with a Turing

Complete Machine.

Ethereum’s Gas mechanism, which charges the execution of each opera-

tion code, ensures the termination of smart contracts that run in the EVM

(Ethereum Virtual Machine) and to compensate the computational usage.

Thus, the gas awarded should be proportional to the required computa-

tional, to ensure aligned incentives and to avoid denial of services attacks.

Currently, in Ethereum, gas awarded is set statically for each opcode in

the smart contract, but it is unknown whether these values are correct for

various computer architectures.

Therefore, in this thesis, firstly, we propose a benchmark approach to

measure the CPU times required to deploy and execute real smart con-

tracts obtained from the Ethereum blockchain and compare it with the

gas award in the PyEthApp client running over a single machine. The

result of our benchmark study shows the collected Gas is not always pro-

portional to the invested CPU for both deploying and executing smart

contracts.

Secondly, we focus more in-depth on the operational codes (opcodes) and

conduct a benchmark study to investigate whether the Gas cost set by

Ethereum for each opcode is aligned with the CPU usage. The exper-

iments are conducted on three Ethereum clients running over different

hardware platforms and operating systems. The results show that the

Gas cost is not always proportional to CPU usage.



Finally, we implement and analyze the performance of blockchain and

smart contract technologies in different domains, in particular cloud com-

puting and distributed database management systems. In cloud com-

puting, we create the first smart contract implementation that achieves

both verifiability and cost-efficiency using any two client providers. For

distributed database management systems, we implement the first smart

contract-based two-phase commit protocol in Ethereum’s blockchain. For

both systems, we investigate the cost, the performance and trade-offs

in the blockchain. We tested the implementations of these systems on

Ethereum’s official, test and private networks. We also provide a financial

and computational analysis of their costs.

vii



Contents

1 Introduction 1

1.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background: Blockchain and Benchmarking 9

2.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Blockchain Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Bitcoin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Bitcoin Address . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Bitcoin Transaction . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.3 Proof-of-Work (PoW) Algorithm . . . . . . . . . . . . . . . . 14

2.3.4 Bitcoin Mining . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.5 Applications of Bitcoin . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Ethereum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Smart Contracts . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.2 Ethereum Virtual Machine (EVM) . . . . . . . . . . . . . . . 19

2.4.3 Ethereum Layers . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.4 Ethereum Execution Model . . . . . . . . . . . . . . . . . . . 20

2.4.5 Ethereum Clients . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.6 Ethereum Peer-to-Peer Network . . . . . . . . . . . . . . . . . 22

2.4.7 Ethereum Mining . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.8 Ethereum Gas Mechanism . . . . . . . . . . . . . . . . . . . . 24

2.4.9 Solidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.1 Definition for Benchmarks . . . . . . . . . . . . . . . . . . . . 25

2.5.2 Benchmarks Requirements . . . . . . . . . . . . . . . . . . . . 26

i



2.5.3 Classifications of Benchmarks . . . . . . . . . . . . . . . . . . 27

2.5.4 Workload and Metrics . . . . . . . . . . . . . . . . . . . . . . 27

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Performance Benchmark of Blockchain Smart Contracts 29

3.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Smart Contracts Selection . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Design of Benchmark Measurement System . . . . . . . . . . . . . . . 33

3.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5.1 Contract Creation Transactions . . . . . . . . . . . . . . . . . 34

3.5.2 Function Execution Transactions . . . . . . . . . . . . . . . . 35

3.5.3 Comparison Between Contract Creation and Function Execu-

tion Transactions . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Performance Benchmark of Blockchain Smart Contract Operation

Code (Opcode) 41

4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Design of OpBench System . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4.1 OpBench Overview . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4.2 Workload: Classification of Opcodes . . . . . . . . . . . . . . 47

4.4.2.1 Computation-based Opcodes . . . . . . . . . . . . . 48

4.4.2.2 Formula-based Opcodes . . . . . . . . . . . . . . . . 48

4.4.3 Manipulating the Stack . . . . . . . . . . . . . . . . . . . . . . 50

4.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5.1 PyEthApp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5.2 Go-Ethereum . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5.3 Parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Experimental Results and Discussion 57

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 First Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2.1 Absolute CPU time . . . . . . . . . . . . . . . . . . . . . . . . 60

ii



5.2.2 Relative CPU time . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2.3 Absolute gas/CPU . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.4 Normalized gas/CPU . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Second Experimental Results . . . . . . . . . . . . . . . . . . . . . . 64

5.3.1 Comparison of Platforms Absolute CPU Time . . . . . . . . . 66

5.3.2 Sensitivity of Platform Speed to Relative CPU Time . . . . . 68

5.3.3 Platforms Comparison for Gas/CPU Ratio . . . . . . . . . . . 69

5.3.4 Comparison of Clients Absolute CPU Time . . . . . . . . . . 73

5.3.5 Comparison of Different Operating Systems . . . . . . . . . . 76

5.4 Result Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4.1 Evaluation of Individual Opcodes and Composed Complete Con-

tract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4.2 Evaluating the Overhead Effects of the POP Opcode and the

Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 Implementation and Evaluation of Counter-Collusion Smart Con-

tracts for Verifiable Cloud Computing 83

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.3 Adversary Model and Assumptions . . . . . . . . . . . . . . . . . . . 88

6.4 Monetary Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.5 The Prisoner’s Contract . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.5.1 The contract . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.6 The Colluder’s Contract . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.6.1 The Contract . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.7 The Traitor’s Contract . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.7.1 The Contract . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.8 Address and Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.8.1 Contract Account Address . . . . . . . . . . . . . . . . . . . . 98

6.8.2 Prisoner’s Contract . . . . . . . . . . . . . . . . . . . . . . . . 98

6.8.3 Colluder’s Contract . . . . . . . . . . . . . . . . . . . . . . . . 100

6.8.4 Traitor’s Contract . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.9 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.10 Overhead and Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

iii



7 Implementation and Evaluation of Non-Blocking Two Phase Com-

mit Protocol Using Blockchain 105

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.3 The Atomic Commit Problem . . . . . . . . . . . . . . . . . . . . . . 108

7.3.1 Synchronous vs Asynchronous Systems . . . . . . . . . . . . . 109

7.3.2 Synchronous vs Asynchronous Blockchains . . . . . . . . . . . 110

7.4 2PC in Synchronous Systems . . . . . . . . . . . . . . . . . . . . . . 111

7.4.1 Inevitability of Blocking in 2PC . . . . . . . . . . . . . . . . . 113

7.5 Non-Blocking with Blockchain . . . . . . . . . . . . . . . . . . . . . . 114

7.5.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.5.2 Synchronous Blockchain . . . . . . . . . . . . . . . . . . . . . 115

7.5.3 2PC with Synchronous Blockchain . . . . . . . . . . . . . . . 115

7.5.3.1 Protocol 1 . . . . . . . . . . . . . . . . . . . . . . . . 116

7.5.3.2 Protocol 2 . . . . . . . . . . . . . . . . . . . . . . . . 117

7.5.4 Smart Contract Pseudo Code . . . . . . . . . . . . . . . . . . 120

7.5.4.1 Protocol 1 Pseudo Code . . . . . . . . . . . . . . . . 120

7.5.4.2 Protocol 2 Pseudo Code . . . . . . . . . . . . . . . . 121

7.6 Asynchrony & Impossibilities . . . . . . . . . . . . . . . . . . . . . . 121

7.6.1 Implications of Synchrony Violations . . . . . . . . . . . . . . 123

7.7 Implementation and Evaluation . . . . . . . . . . . . . . . . . . . . . 124

7.7.1 Delay Bound Estimation . . . . . . . . . . . . . . . . . . . . . 125

7.7.2 Cost of 2PC Coordination . . . . . . . . . . . . . . . . . . . . 127

7.7.3 2PC Execution Latencies . . . . . . . . . . . . . . . . . . . . . 129

7.7.3.1 Estimated Latency Bound . . . . . . . . . . . . . . . 129

7.7.3.2 Observed Latencies . . . . . . . . . . . . . . . . . . . 130

7.7.4 Impact of Synchrony Violations on Commit-Validity . . . . . . 131

7.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8 Conclusion and Future Work 135

8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Bibliography 138

iv



List of Figures

2.1 The structure of a block in the blockchain. . . . . . . . . . . . . . . . 10

2.2 Bitcoin Transaction Overview. . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Schematic representation of PoW. . . . . . . . . . . . . . . . . . . . . 13

2.4 Ethereum’s contract creation and call-contract transactions [72]. . . . 15

2.5 How Ethereums users interact with the smart contract on the blockchain

[28]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 The Execution model of the Ethereum Virtual Machine’s (EVM) parts

and their interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7 The basic architecture of the Ethereum system and where the Ethereum

Virtual Machine (EVM) fits into the system. . . . . . . . . . . . . . . 20

2.8 Simulating the addition operation of two numbers on the EVM. . . . 21

2.9 Ethereum’s block header and transactions [72]. . . . . . . . . . . . . . 23

3.1 Amount of used gas awarded per each microsecond of CPU usage for

contract creation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Amount of used gas awarded per each microsecond of CPU usage for

function execution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 OpBench overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Utilizing the POP opcode to overcome the stack size limitation. . . . . 52

5.1 CPU time (in µs) for each opcode on a logarithmic scale. . . . . . . . 60

5.2 CPU time for each opcode, relative to the fastest platform (Windows

Go-Ethereum 3.6GHz). . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Used Gas (per [94]) per CPU time unit (in Gas/µs). Reward and cost

are proportional for a platform if the lines are straight. . . . . . . . . 62

5.4 Normalized Used Gas per CPU time unit (results in 5.7 divided by the

platform’s result for opcode Byte). Reward and cost are proportional

if the lines are straight at value 1. . . . . . . . . . . . . . . . . . . . . 63

5.5 CPU time (in microseconds) for each opcode. . . . . . . . . . . . . . 67

v



5.6 CPU time for each opcode, relative to the fastest platform (Windows

Parity 3.5GHz). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.7 Used Gas (per [94]) per CPU time unit (in Gas/microsecond). Reward

and cost are proportional for a platform if the curve is a straight line. 71

5.8 Normalized Used Gas per CPU time unit (results in 5.7 divided by the

platform’s result for opcode BYTE). Reward and cost are proportional

if the curve is a straight line at value 1. . . . . . . . . . . . . . . . . . 72

5.9 CPU time (in microseconds) for each opcode in the PyEthApp client. 75

5.10 CPU time (in microseconds) for each opcode in the Go-Ethereum client. 75

5.11 CPU time (in microseconds) for each opcode in the Parity client. . . . 76

5.12 Absolute CPU time for Windows machine for all clients. . . . . . . . 77

5.13 Absolute CPU time for Linux machine for all clients. . . . . . . . . . 78

5.14 Absolute CPU time for Windows and Linux machines for all clients. . 78

7.1 Two phase commit protocol. . . . . . . . . . . . . . . . . . . . . . . . 111

7.2 2PC State Transition Diagram for Process Pi. . . . . . . . . . . . . . 113

7.3 State Diagram for 2PC with Blockchain. . . . . . . . . . . . . . . . . 119

7.4 Smart Contract pseudo-code for 2PC coordination protocol 1. . . . . 122

7.5 Pseudo-code for 2PC coordination smart contract protocol 2. . . . . . 122

7.6 Block awareness delay. . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.7 Block entry delay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.8 Transmission delay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.9 Probability for commit-validity. . . . . . . . . . . . . . . . . . . . . . 132

vi



List of Tables

2.1 Comparison between public and private blockchains. . . . . . . . . . . 11

2.2 EVM client implementations. . . . . . . . . . . . . . . . . . . . . . . 22

3.1 The most profitable and expensive contract creation transactions. . . 35

3.2 The average execution time (in microsecond) and the amount of used

gas for all function execution transactions. . . . . . . . . . . . . . . . 37

4.1 List of all operation codes (opcodes) in the Ethereum Virtual Machine

[94]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1 Experimental 1 platforms. . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 The average CPU time for each of the opcodes for all platforms in µs.

The right-most column provides the Used Gas. . . . . . . . . . . . . . 59

5.3 Experimental 2 platforms. . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4 The average CPU time for each of the opcodes for all platforms, by cat-

egory. The right-most column provides the Used Gas with the opcode.

All results in (µs). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.5 Comparison of CPU time (in microseconds) between different clients

and operating system for selected slowest opcodes. . . . . . . . . . . . 68

5.6 Selected opcodes where other clients outperform the Windows Parity

clients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.7 Selected opcodes by highest Gas per CPU on the three clients. . . . . 73

5.8 Comparison between the PyEthApp, the Go-Ethereum, and the Parity

clients on formula-based opcodes. . . . . . . . . . . . . . . . . . . . . 74

5.9 The CPU time for functions execution in (second) and each selected

opcode in (microsecond). . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.1 Cost of using the smart contracts on the official Ethereum network.

The transactions are viewable on the blockchain. . . . . . . . . . . . . 103

7.1 Cost of executing 2PC-Blockchain contracts. . . . . . . . . . . . . . . 128

vii



7.2 Total Cost in Various Voting Scenarios. . . . . . . . . . . . . . . . . . 128

7.3 Minimum (Min), Maximum (Max) and Average (Avg) Latency in Min-

utes (Mn) and Seconds (Ss) expressed as Mn:Ss. . . . . . . . . . . . . 131

viii



Chapter 1

Introduction

Blockchain and cryptocurrencies have gained considerable popularity in recent years.

Blockchain is a decentralized network of peers that provides the infrastructure to

keep tracking of a public ledger is the idea of the cryptocurrencies. A public ledger

stores and maintains all transactions of the network. The blockchain format and a

consensus protocol are utilized to store the ledger and to maintain the state of the

blockchain.

Cryptocurrencies, as the name indicates, use the concept of cryptography to both

secure transactions and to manage the creation of currency units. A smart contract

is a piece of a computer program that is built on cryptocurrencies platforms to allow

defining and executing terms (i.e. contracts) on the blockchain. The execution of

the smart contract is triggered by a transaction added to the blockchain. Peers who

maintain the blockchain execute the code and the consensus protocol achieves the

correctness of the execution. In general, a smart contract can be seen as a program

run by a global computer that will honestly execute each instruction of the code.

One of the leading cryptocurrencies and platforms used to deploy and execute

a smart contract is Ethereum [94]. At the time of writing, Ethereum is the second

largest blockchain behind Bitcoin. Ether is the nomination of the Ethereum cryp-

tocurrency. Ether can be transferred and held in and moved between accounts. In

Ethereum, there are two types of accounts. First, an externally owned account is

associated with a public-private key pair. It has an Ether balance and is owned by

someone who has the private key used to sign a transaction from the accounts. The

externally owned account has no associated code. Second, a contract account, which

has no private key. It also has an Ether balance and its associated code. The as-

sociated code is triggered by call-contract transactions sent by an externally owned

account or a contract account.

1



Each transaction is constructed and signed cryptographically by an account and

it has two address fields; sender and receiver. A smart contract is deployed into the

blockchain by sending a transaction with blank receiver address and code added to

the data field. A transaction can invoke any function in a contract. In this a case,

the receiver field contains the contract address, and the function name and the data

field contains the function’s arguments.

A transaction also includes a Gas and a Gas price. The code execution is not free;

it consumes Gas and Gas are converted to a cryptocurrency using the Gas price. The

account of the sender of the transaction is charged an amount of cryptocurrency as a

transaction fee. Thus, in order to hold the continuity of the blockchain, transactions’

Gas should be proportional to the CPU invested by miners who validate and run

transactions and so the instructions of the contract.

The proportionality in smart contract ecosystem is important to ensure avoiding a

potential denial-of-service attack and to compensated miners who run the blockchain

fairly. Denial-of-service attacks in smart contact ecosystem were first identified in

[19] exploiting the fact that an operation code (i.e., EXTCODESIZE) has a fairly low

Gas cost and requires a very long time to be executed. The attacker initiated a smart

contract that calls this operation code roughly 50k times. As a result, miners who

run and validate the block that contains this smart contract need to spend a very

long time to process this block. Even though the fee price of this operation code has

been modified, it is still unknown if other operation codes are mispriced or not.

Moreover, to ensure the continuity of the blockchain, the Gas cost should be pro-

portional to the invested CPU by the miners. Nowadays, almost all cryptocurrencies

rely on the Proof-of-Work (PoW) as a consensus mechanism that requires a high

amount of CPU overhead. Miners who solve the PoW puzzle and create new blocks

are compensated by a fixed amount of currency and the transaction fees. In the fu-

ture PoW is likely to be replaced by other mechanism, such as PoS (Proof-of-Stake)

[60]. In that case, the computational effort shifts toward the creation, execution, and

validation of smart contracts. It is yet more important that fees are proportional to

the CPU overhead, otherwise there is no incentive to operate the blockchain correctly.

1.1 Research Questions

Based on the reasoning on the previous section, we want to assess the whether min-

ers are correctly reimbursed for the computation time they spend. We address the

following research questions.
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Q1. How to determine the computation time of software code (and

smart contracts in particular)?

We find that the current estimation of the computation fees on almost all smart

contracts platforms, such as Ethereum, is not accurate relative to the invested CPU.

To determine the computation time, we need to consider multiple factors. Machine

dependence is one factor that should be considered, since we cannot know the spec-

ification of miners machines. An additional factor is the code termination problem,

which means we cannot proof the termination of software code in advance, so we need

to limit our investigation to subsets of programs, function levels, for example. Other

specifics of the program might affect the computation time. E.g., in smart contracts

systems, a contract could invoke another contract, which might increase the compu-

tation time. Our research will take into account some of these challenges and propose

a suitable solution.

Q2. Can we build a benchmark system to assess the fee against CPU?

Evaluation of approaches to estimating the computation time of smart contracts

can be done at two levels. First, and most obvious, one can consider if the estimate

is close to the actual computation time. Secondly, one can evaluate with respect

to the operation of the overall system: that is, does the improved estimate of the

computation time make the system operate better (e.g., in a blockchain, will the

operation be fairer and less prone to misuse?).

For both of the above evaluation targets, we envisage using a measurement study.

The research will need to develop a sound manner to evaluate the execution time

of the contracts and opcodes. In particular, we may need to develop a benchmark

set of code. For the benchmark code set, we need to establish whether this is done

at the level of smart contracts or the level of instructions (opcodes). To evaluate

the impact of accurate estimation of computational effort on the overall operation of

the system, we need to consider the blockchain architecture and identify typical user

patterns, e.g., where a block might have multiple contracts executing requests which

could affect the result.

Q3. Are the fee costs for smart contract’s instructions reasonable and

proportional to the invested CPU time?

In Ethereum, when executing a smart contract, the fee a miner receives is de-

termined by the Gas required to execute operation code (opcode), multiplied by a

price the submitter of a transaction pays per unit of gas. The Ethereum client (more

precisely, the Ethereum Virtual Machine (EVM)) tallies the total gas as it executes

a smart contract based on values specified in the Ethereum yellow paper [94], which
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statically associates an amount of gas to each opcode. That means that the gas used

(and therefore the fee received) per smart contract is independent of the hardware or

software used by the client; it directly follows from the opcodes in the smart contract.

From the miners’ perspective, there are several implications of this static approach.

The cost of executing smart contracts can be expected to be different on different

computing platforms since the execution time of individual opcodes is likely to be

different across platforms. As a consequence, a miner would want to choose a platform

that optimizes the reward for the used energy. The benchmark should be designed,

when carried out for different platforms, will help select the best platform.

1.2 Contributions

The work carried out in this PhD research makes a number of contributions to the

subject of smart contracts:

• Conducting the first experiment to benchmark the CPU performance of real

smart contracts on the Ethereum network.

• Designing, developing and implementing a framework that benchmarks the per-

formance of the Ethereum opcodes on multiple client software and multiple

operating systems and hardware.

• Conducting the first experiment that benchmarks the performance of the Ethereum

opcodes on different Ethereum clients.

1. We propose OpBench as the first CPU performance benchmarking system

for Ethereum smart contract operation codes.

2. We present a design framework for our proposed OpBench system, which

is independent of the client’s language and can be implemented in any

language.

3. We conduct experiments by implementing a proof-of-concept of our system

for three different clients: PyEthApp, Go-Ethereum and Parity.

4. We report the results of our implementations for three clients.

• Implementing and conducting a performance evaluation of a blockchain-based

solution that achieves verifiability, high performance and cost-efficiency in the

cloud computing system.
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• Implementing and conducting an evaluation of the 2PC protocol over the blockchain

and present the cost, impossibilities, the possibilities, and the trade-offs in this

blockchain-based approach to blocking-free management of distributed transac-

tions.

1.3 Thesis Structure

Chapter 1 shows the motivation behind the work in this thesis and highlights the

main contributions of the research. Finally, we describe the related peer-reviewed

publications produced throughout the research our of the PhD.

Chapter 2 presents technical background material closely related to the work car-

ried out in the chapters of this thesis. We highlight the technical background behind

blockchain technology such as smart contract and its popular platform, Ethereum and

cryptocurrency such as Bitcoin. Additionally, it provides a discussion of the concept

of benchmarking in the computer science field and its types.

Chapter 3 presents the first experiment that compares the CPU time to execute a

contract against the gas rewarded for miners. In this Chapter, we explore how the in-

centive mechanism in the Ethereum system could impact miners decision on selecting

transactions in their block. This is the first performance benchmarking conducted in

the smart contract level.

Chapter 4 shows the first performance benchmarking design and implementation for

the smart contract opcodes. To the best of our knowledge, this is the first benchmark-

ing to be conducted at the opcodes level. It also outlines the approach we adopted

to design and implement the benchmark performance of almost all opcodes of the

Ethereum in three different clients namely Python, Go and Parity over three operat-

ing systems (i.e., Mac, Windows and Linux). This chapter includes a details design

framework and implementations of these clients.

Chapter 5 extends the previous chapter and presents two set of experimental results.

It investigates the correlation between the invested CPU time and the fee collected

for the execution of the smart contract at the opcodes level. The experimental results

are conducted on different clients, machines and operating systems.
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Chapter 6 leverages the smart contract system and blockchain technology to pro-

pose a smart contract based solution that achieves verifiability at a reasonable cost.

Briefly, a client lets two clouds compute the same task, and uses smart contracts to

stimulate tension, betrayal and distrust between the clouds, so that rational clouds

will not collude and cheat. we prove that the contracts will be effective under certain

reasonable assumptions. By resorting to smart contracts, we are able to avoid heavy

cryptographic protocols. The client only needs to pay two clouds to compute in the

clear, and a small transaction fee to use the smart contracts. We also conducted

a feasibility study that involves implementing the contracts in Solidity and running

them on the official Ethereum network.

Chapter 7 investigates possibility, impossibility, the cost, the performance and the

trade-offs in 2PC using a blockchain that supports execution of user-defined smart

contracts. It demonstrates that the 2PC blocking can be eliminated at a moderate

financial cost, if the blockchain also meets the synchrony requirements. Otherwise,

despite the blockchain being a reliable state-machine, eliminating 2PC blocking may

well be impossible, depending on whether the cluster hosting the database is syn-

chronous or not. It implements the 2PC protocol in solidity and tests it on both the

Ethereum private and test networks.

Chapter 8 summarizes the conclusions of the work presented in this thesis and

motivates future directions for work in the area.

1.4 Publications

The work that has been presented in this thesis includes a list of co-authored publica-

tions. Chapters 4, 5 and 6 reflect papers that we published in international conferences

and Chapter 7 reflects a paper we published in a journal. A list of these publications

is provided below:

• A Survey about Blockchain Software Architectures, A Aldweesh, A van

Moorsel, in 32nd Annual UK Performance Engineering Workshop & Cyber Se-

curity Workshop-2016 [7].

In this paper, we study the literature of blockchain and its application and

summarise each paper and its contribution. We also present an introduction

about the essential concepts on the blockchain such as Bitcoin, Ethereum, smart

contract, etc. This paper forms the basis of Chapter 2.
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• Performance Benchmarking for Smart Contracts to Assess Miner In-

centives in Ethereum, A Aldweesh, M Alharby, E Solaiman, A van Moorsel,

in 2018 14th European Dependable Computing Conference (EDCC), 144-149

[6].

In this paper, we demonstrate the performance impact of smart contracts and

incentives that miners gain when executing the smart contracts. We We find

that the cost of executing smart contracts is not always proportional to the fee

miners receive. This paper forms the basis of Chapter 3.

• Performance Benchmarking for Ethereum Opcodes, A Aldweesh, M Al-

harby, A van Moorsel, in 2018 IEEE/ACS 15th International Conference on

Computer Systems and Applications (AICCSA) [3].

In this paper, we introduce our preliminary investigation into the performance of

so-called opcodes and the relation between the CPU usage and the fee received.

We explore that there are miss-priced opcodes that could affect the operation

of the blockchain. This paper partly forms the basis of Chapter 4.

• OpBench: A CPU Performance Benchmark for Ethereum Smart Con-

tract Operation Code A Aldweesh, Maher Alharby, Maryam Mehrnezhad

Aad van Moorsel, in Proceedings of the 2nd IEEE International Conference on

Blockchain 2019 [5].

In this paper, we propose OpBench, a platform-independent benchmarking ap-

proach. OpBench measures the CPU time required to execute opcodes in the

Ethereum Virtual Machine. We implemented OpBench for the PyEthApp, Par-

ity and Go-Ethereum clients, and present results for both platforms on three

different machines and operating systems. The results show that the static fees

set by Ethereum are not always proportional to the invested CPU time, with

up to an order of magnitude difference across opcodes. This paper contributes

to parts of Chapters 4 and 5.

• Betrayal, distrust, and rationality: Smart counter-collusion contracts

for verifiable cloud computing, C Dong, Y Wang, A Aldweesh, P McCorry,

A van Moorsel, in Proceedings of the 2017 ACM SIGSAC Conference on Com-

puter and Communications Security [34].

In this paper, we introduce the first smart contract-based solution for cost-

effective verifiable cloud computing. We implement and execute the solution
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on both private and public Ethereum networks. This paper forms the basis of

Chapter 6.

• Non-blocking Two-Phase Commit Using Blockchain. Ezhilchelvan, P,

Aldweesh, A, Moorsel, Concurrency Computat Pract Exper. 2019; e5276.

https://doi.org/10.1002/cpe.5276 [38].

In this paper, we present the implementation, the performance analysis, and the

possibility of 2PC using a blockchain-based smart contract. We demonstrate

that the 2PC blocking can be eliminated under certain requirements. This

paper forms the basis of Chapter 7.

• Non-Blocking Two Phase Commit Using Blockchain, P Ezhilchelvan, A

Aldweesh, A van Moorsel, in Proceedings of the 1st Workshop on Cryptocur-

rencies and Blockchains for Distributed Systems [37].

This paper investigates eliminating that 2PC blocking vulnerability by coordi-

nating 2PC using a blockchain that supports execution of user-defined smart

contracts. It demonstrates that the 2PC blocking can be eliminated at a mod-

erate financial cost, if the blockchain also meets the synchrony requirements.

Otherwise, despite the blockchain being a reliable state-machine, eliminating

2PC blocking may well be impossible, depending on whether the cluster host-

ing the database is synchronous or not. This paper forms the basis of Chapter

7.

• Blockchain-based Smart Contracts: A Systematic Mapping Study of

Academic Research (2018), M. Alharby, A. Aldweesh, and A. Van Moorsel,

in Cloud Computing, Big Data and Blockchain (ICCBB 2018), International

Conference on. 2018: IEEE, 2018 [9].

In this research, our interest is twofold, namely to provide a survey of the

scientific literature and to identify academic research trends and uptake. We

only focus on peer-reviewed scientific publications to determine how academic

researchers have taken up smart contract technologies and established scientific

outputs. We classified the output papers into six categories, namely, security,

privacy, software engineering, application, performance & scalability, and other

smart contract related topics. We found that the majority of the papers fall

into the applications (about 64%) and software engineering (21%) categories.

This paper contributes in part to Chapter 2.
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Chapter 2

Background: Blockchain and
Benchmarking

2.1 Summary

This chapter outlines relevant background material motivating the work carried out

this thesis. Section 2.2 provides an overview of blockchain definition, types and appli-

cations. In Section 2.3, we introduce the first application using the blockchain. This

section gives an overview of Bitcoin, its transactions, its mining process, Proof-of-

Work algorithm and its applications. Then we give details about the inner-working

of Ethereum in Section 2.4. We discuss Ethereum definition, transaction and ac-

counts before we summarize smart contracts and the incentive mechanisms. We also

highlight the mining process and network node types. In Section 2.5, we discuss the

benchmarking in the field of computer science, providing its types and classifications.

Finally, Section 2.6 concludes the chapter.

2.2 Blockchain Overview

Blockchain is a distributed ledger where all transactions are recorded and shared by

all nodes participating in the blockchain network. The structure of the blockchain is

that a block that consists of transactions is connected with the previous block in a

chain form. To add a new block to the chain a process called proof-of-work (POW)

is completed, see Section 2.3.3. POW prevents attackers from forging the blockchain

and avoid the double spending issue [25]. Figure 2.1 depicts the structure of a block

in the blockchain. As depicted in the Figure, each block consists of a main body that

has all the block’s transactions and a header with meta-data. The header contains
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Figure 2.1: The structure of a block in the blockchain.

the protocol version, the timestamp of its creation, the difficulty, the Merle Tree root

of the transactions, the hash of the previous block and the PoW (see Section 2.3.3).

Blockchains can be classified into two types, namely public blockchain and private

blockchain [70]. The public blockchain is a blockchain that anyone in the world can

read, send a transaction to and verify a block (e.g. Bitcoin blockchain). This type is

useful when the participants of the network do not know (and thus, do not trust) each

other. The private blockchain is a blockchain where writing permissions are restricted

to a known set of users or an organization.

Both types of blockchain have their merits and demerits. The main difference

is that private blockchain is more efficient since it does not have a decentralized

consensus process such as PoW. However, the immutability feature could be broken

by a few dishonest nodes. Private blockchains offer more privacy to users. This is

because this type of blockchain is not visible for outside. A summary of a comparison

between these two types is presented in Table 2.1. As shown in the Table, consensus

determination in the public blockchain is through open membership, where any user

can take part of the mining process, whereas only certain users are allowed to create

and validate new blocks in the private blockchain. The data on the public blockchain

is stored on each node so the availability is to every node. However, in the private

blockchain the administrators decide who can read and/or write to the data. In the

public blockchain, as a result of storing the data on each node propagating a new

block takes considerable time. So, the efficiency of the Private blockchain is higher

than the public blockchain and thus the cost.

A cryptocurrency is a digital or virtual currency based on cryptography. Using

the blockchain as a database for users to exchange their virtual money. Signed data

called transactions are handled by users to interact and transfer their digital assets.

Nodes called (Miners) are responsible for gathering, and applying transactions in a

peer-to-peer network.
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Property Public Private

Consensus determination All users Only authorized miners
Read/write permission Public Private
Immutability Almost impossible Could be tampered
Efficiency Low High
Cost Expensive Cheap

Table 2.1: Comparison between public and private blockchains.

Thanks to the consensus algorithm of the blockchain system, the data on the

blockchain is guaranteed (i.e., there is no double spending or invalid signatures). Data

on the blockchain is public for users, and no one can be prevented from submitting a

transaction that would be included in the blockchain.

Bitcoin [75] is the first cryptocurrency built atop of the blockchain infrastructure

and protocol. It is the most popular and most valuable cryptocurrency. Nowadays,

many alternate cryptocurrencies are cloned, forked of Bitcoin, while others are new

that different than the existing one.

Decentralized Applications (Smart contracts). is a distributed software

that contains any sets of agreements represented in any high-level languages like

Solidity [48]. It also is defined as a computer program stored on the blockchain and

is honestly executed by the peer-to-peer network. The most crucial element in the

second generation of blockchain Blockchain 2.0 is the decentralized application (i.e.,

the smart contract). To solve problems that are common and to reach agreements

within a minimal trust, the smart contract is deployed and executed on the blockchain

and is used by connected components [20].

Smart Contract is a technology that allows end users to build a self-executing

contract on the blockchain. The scripting language used in the Bitcoin network

does not support complex control flow, and it has limited expressiveness. Hence,

smart contracts in this network are straightforward. A blockchain-based platform

called Ethereum was proposed to address the issue of supporting complex contracts.

Ethereum started from scratch to build its blockchain and to introduce a scripting

language to write complex smart contracts.

2.3 Bitcoin

Blockchain was first utilized and introduced in the Bitcoin network. The Bitcoin

network is a peer-to-peer decentralized electronic cash system created by Satoshi
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Nakatomo [75]. It validates transactions without the need for a trusted third party

[27]. To validate transactions between the networks participants and to ensure the

integrity of transactions, public key cryptography and digital signature have been

utilized. The use of these cryptographic mechanisms provides high data security

principles (e.g. Integrity, Confidentiality, and non-repudiation) [17]. The public key in

Bitcoin is considered as participant addresses of where they can receive transactions,

and the private key is used as ownership credentials. Private keys are stored in digital

wallets for each participant, and their coins are represented as digital signatures.

In this section, we present an overview of Bitcoin inner details. The summary in-

cludes the Bitcoin address, which is the users pseudonymous identity, Bitcoin trans-

action, which allow users to exchange their assets over the blockchain. Then, we

explain the consensus algorithm that power the Bitcoin network (i.e., PoW).

2.3.1 Bitcoin Address

Every node in the Bitcoin network has an account that contains their address and

their balance. The address is public/private keys that are created by the user as a

keys file and stored on the users local hard drive, not on the blockchain [14].

The keys are used to sign transactions that transfer Bitcoin from one account to

another as well as to proof the ownership of a number of Bitcoin on a users balances.

The private key is a 256-bit generated randomly. This private key is used to create

a 512-bit public key using Elliptic Curve Digital Signature Algorithm. To generate

a transaction, an account creates a signature using their private key, then broadcast

their public key. A miner who maintains the ledger can verify the authority of this

signature using the accounts public key. To receive an amount of bitcoin, the hash

value of the public key which calculated as (RIPEMD160(SHA256(Kpub)))) is used

as account number by the sender of the bitcoin [14].

2.3.2 Bitcoin Transaction

A transaction is a data structure that is used to exchange bitcoins between users. It

has one or more inputs and one or more outputs. The inputs refer to previous trans-

actions outputs called UTXO (Unspent Transaction Output). UTXO is a bitcoins

owned by a specific user and stored on the blockchain. The wallet software [14] is

used to calculate the balance of a user by counting the number of UTXOs.

A Forth-like scripting language is used to control the input and the output that

enforce the conditions needed to claim the bitcoins. There are two approaches used as
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Figure 2.2: Bitcoin Transaction Overview.

scripting languages [2]. The pay-to-pubkey-hash script and pay-to-script-hash script.

The former requires a single signature to authorize the payment. The later was

introduced as a soft-fork in 2016 which enables a range of transactions types. The

later is the most common used [2].

In the example depicted in Figure 2.2, if Alice wants to send four bitcoins to Bob,

she needs to have a UTXO with four bitcoins or number of UTXOs that their sum is

equal or more than four bitcoins. As can be seen in the Figure, Alice has two UTXO

their sum is five bitcoins so that she can send four bitcoins to Bob. In this example,

Alice creates a transaction that contains two inputs A and B, which outputs a single

UTXO with two recipients, Bob and herself. The difference between the inputs and

the outputs values are the transaction fee paid to the miners.

HASH(  Previous  
block ++ TXs Nonce

Nonce

Nonce

Nonce

) < T 

Figure 2.3: Schematic representation of PoW.
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2.3.3 Proof-of-Work (PoW) Algorithm

The blockchain network synchronizes a set of a distributed databases where each node

distrusts others without a trusted authority. This is achieved by using the PoW. PoW

is a certain computational cryptographic hash puzzle, which requires a computational

resource to be solved. First, miner collects all transactions created after the last block

and validates these transactions. Transaction validation is to check the balance of

the sender and the correctness of the signature. Then, miners repeatedly generate

a random number (nonce) till the hash value of the nonce together with the block

header and a hash of the Merkle tree root of the transactions that have been included

in the block results in a hash value that is less than a target (T) value see Figure 2.3.

The target value depends on the total hashing power of the network and is adjusted

dynamically such that the block creation time on average is 10 minutes. The node

that finds the nonce first includes the hash in to the block header and broadcasts

the block to the network. The first node to solve this puzzle is rewarded both the

transaction fees and the block reward.

It is important to realize that by design no miner can influence their chances to

win the PoW competition, other than by adding computational resources. It can be

shown that the probability of a miner to win the next block is equal to its share of

the overall hashing power of all miners.

2.3.4 Bitcoin Mining

Mining in the Bitcoin network is the process of validating transactions as well as

creating new blocks. Each node in the Bitcoin network can play the role of miner.

The mining process involves validating a transaction by checking the correctness of its

structure, which includes validating the signature of the sender and their ownership of

the spent value and solving the PoW puzzle. As a result, miners create network-wide

distributed consensus. In return for that, miners are rewarded a sum of transactions

fee as well as a fixed amount of Bitcoin. All peers on the network verify the PoW

solution before appending the created block to the blockchain and broadcasting it to

other peers.

2.3.5 Applications of Bitcoin

Bitcoin was designed to provide a secure medium to exchange assets between par-

ties. The success of Bitcoin inspired the community to explore applications for both
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Figure 2.4: Ethereum’s contract creation and call-contract transactions [72].

blockchain and Bitcoin such as exchanging assets [62], carbon dating [26] and authen-

ticating devices in the Internet of Things [61]. These applications use the blockchain

as a shared database to store data. The Bitcoin network itself cannot be used to

validate transactions that contain application-specific data, and instead, it relies on

an external third party. Therefore, Bitcoin is not the ideal platform for such appli-

cations. The following sections introduce Ethereum, which can be seen as a global

computer that can be used to deploy applications with complex transactions.

2.4 Ethereum

The main idea of the Ethereum project is to introduce a global machine able to run

and execute a distributed application build from Smart contracts over the blockchain.

Ethereum blockchain is similar to Bitcoin, in that it operates as a distributed ledger,

in which all transactions history is recorded and stored in every node in the network.

Additionally, in Ethereum, every node also stores the most recent state of smart

contracts.

Ethereum’s cryptocurrency is referred to as Ether, while the operational execution

amount is identified as Gas. That is, computation takes an amount of Gas, which

cost an amount of Ether. Several programming languages can be used to develop

smart contracts, the most prevalent being Solidity, but Serpent and LLL are also

common. Whatever language is deployed, the source code of the smart contract will
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be transformed into bytecode so that the Ethereum Virtual Machine (EVM) can

interpret it.

Ethereum Accounts. There are two user types for Ethereum, these types also

being denoted as accounts: externally owned accounts and contract accounts. A

balance is maintained for each account; should it be a contract account, it will ad-

ditionally have a code and storage facility associated with it. The blockchain stores

the code, which is expressed in bytecode, to enable the EVM to interpret it. In order

for a contract to be executed, a signed transaction with fields such as Receiver, Data

and Gas Price is forwarded on to the blockchain. The collection of transactions is by

miners (whose duty is to keep the blockchain operable), who then use the EVM to

execute the code. Should there be a fruitful execution, the value of variables used in

the smart contract will alter, as will the balance and storage, but if the execution is

unsuccessful, no alteration will occur.

Ethereum Transaction. There are two forms of transactions in Ethereum:

financial and contract-creation/call-contract transactions. The former is to transfer

currency between accounts, while the latter is either to attach to the blockchain a

fresh smart contract (contract-creation), or to engage a contract that already exists

(call-contract transaction). Figure 2.4 highlights the Ethereum transactions that are

structured as follow [94].

• From: A signature form an externally owned account to authorize the trans-

action.

• To: The receiver (contract or externally owned).

• Data: Contains either the contract’s code or a function’s identifier and its

arguments.

• Total Gas: Is the maximum amount of gas that transaction’s submitters com-

mit to the transactions

• Gas Price: A value equal to the number of ether to be used to purchase the

unit of gas.

• Nonce: An incremented value equal to the number of transactions sent by the

sender.

• Value: A number of ether the sender is willing to send.
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Figure 2.5: How Ethereums users interact with the smart contract on the blockchain
[28].

For the contract-creation transaction, one needs to attach the compiled bytecode

for the smart contract that needs to be deployed. Upon successful execution of the

transaction, the contract will be assigned to a unique 160-bit identifier address. Later

on, the contract can be invoked by submitting a call-contract transaction that specifies

the address of the contract, the functions to be executed, and possibly all input data

required by those functions.

2.4.1 Smart Contracts

A smart contract is a computer program that is retained and executed on a blockchain

like Ethereum, with the accuracy of execution being guaranteed by the consensus

protocol [20]. The contract can include any type of agreements that can be defined in

whatever high-level language is relevant. A range of applications can be realized by

smart contracts; these include financial applications, such as saving wallets or wills,

or computer cloud functions, for example, [34]. The quantity of verified Ethereum

smart contracts at the time of writing is around 50,0001.

Smart contracts exist as bytecode on the blockchain, and are called by their 160-

bit identifier address, then deployed on submission of a Contract-creation transaction.

Upon acceptance and incorporation into the blockchain, the invoking of the contact

1https://etherscan.io/contractsVerified
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Figure 2.6: The Execution model of the Ethereum Virtual Machine’s (EVM) parts
and their interactions.

and its uses can be undertaken by any Ethereum account. More precisely, when a new

transaction with a contract address as recipient is accepted by the blockchain, then

the smart contract is executed by all miners, with the blockchain current state and the

transaction payloads as input. The results of transaction executions are permanently

recorded in the blockchain..

Figure 2.5 shows how users interact with smart contracts. The codes and states

of smart contracts are stored on the blockchain. Miners execute the smart contract’s

code and reach a consensus of the execution outcome. Then, accordingly, the state

of the smart contract is updated. Users can send and received money and data from

the smart contract.

The contract called by a transaction that invokes a function in the contract. The

transaction can have a value in ether, function parameters or both specified in the

value field and the data field of the transaction respectively. The contract can receive

as well as sent ether to a user or a contract. The variables of the contract are stored

in a persisted place called storage. The intermediate result of contract execution is

stored in a non persisted memory as byte-array. The contracts code and variables are

public and stored in the blockchain.
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2.4.2 Ethereum Virtual Machine (EVM)

The EVM is stack-based Turing Complete machine with a predefined set of opcodes

(instructions) that handles the smart contract execution and their state. Hence, in

general, the contract is basically a series of opcodes, executed on the EVM.

The architecture and the execution model of the EVM are presented in Figure

2.6. As can be seen, the smart contracts bytecode is stored in an immutable virtual

ROM. This means once a smart contract is deployed to the blockchain, it cannot be

updated. The EVM has five data values: a program counter (PC), a Gas counter

(GAS), a stack, a memory and a storage. The PC is a value that points to which

opcode is to be executed. Then the Gas cost of each executed opcode is stored in

the Gas entry. The stack is where most opcodes consume their parameters. The

operations over the stack are PUSH, SWAP, DUP and POP. The PUSH opcode adds one

element to the stack, the SWAP opcode exchanges an index of a value in the stack

for another. The DUP opcode duplicates an item in the stack, and POP removes one

item from the stack. The memory space is used to store data during the execution.

Finally, the storage is the space where the smart contract’s variables are stored.

Every instruction the EVM runs has a cost related with it, measure with gas,

to ensure a precise resource handling of the EVM. Based on the complexity of the

computational resources, each opcode has a different cost [24]. Opcodes that require

complex computation cost more than the one require fewer. The Ethereum foundation

sets the gas cost of these instructions [94]. For example, the ADD instruction costs

three units of gas while MUL instruction costs five units of gas, which more complex

than the previous instruction [94]. The EVM keeps a record of the instructions being

executed and cumulates their associated gas costs.

2.4.3 Ethereum Layers

As mentioned in Section 2.7, a smart contract is executed on the Ethereum EVM,

which implemented in every Ethereum’s machine connecting to the Ethereum net-

work. Figure 2.7 shows where the EVM fits in the Ethereum blockchain system and

where the EVM is embedded within each machine. As can be seen in Figure 2.7,

the Ethereum machine consists of four layers. In the first layer, the smart contract

code is encoded to bytecode (i.e., EVM code) using a proper compiler and deployed

to the blockchain with a unique given address. The given address is then used to

trigger the bytecode. Every time the given address is triggered, the bytecode is then

executed on the EVM. The EVM is based on the second layer, and it runs the smart
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Figure 2.7: The basic architecture of the Ethereum system and where the Ethereum
Virtual Machine (EVM) fits into the system.

contract bytecode each time the system receives a transaction. The EVM is essential

for both the Ethereum system and protocol. It allows peers safely and in a trustless

ecosystem to execute codes where the outcome of the execution is guaranteed. These

layers are embedded in the Ethereum full node, such as Go [44] and Parity [45], which

is depicted in the third layer of the system. The final layer is the physical processor

of the machine that runs the Ethereum node.

2.4.4 Ethereum Execution Model

The execution of a smart contract is done in a serialized manner, one by one, where

every opcode is allocated a byte (eg., ADD is 0x01). In the beginning, the PC points

to the first byte to be executed, and then its value is incremented by one to point

to the next byte. Each opcode retrieves its parameter either from the stack or from

memory. In some cases, opcodes write the execution results onto the stack, which

can be read by other opcodes. The EVM reads from and writes onto the storage by

taking the parameters from the stack and performing an update to the storage using

the opcode SSTORE.

The following example depicted in Figure 2.8 simulates the execution of a simple,

smart contact complied using the Solidity compiler to this hexadecimal bytecode

0x6001600101. The contract adds two numbers and stores the result in the persistent

storage. During the execution the compiled bytecode is divided into two hexadecimal

values except for PUSHs opcodes that treated differently. PUSHs opcodes are divided
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Figure 2.8: Simulating the addition operation of two numbers on the EVM.

into four hexadecimal values because these opcodes push values into the stack. In our

example the first opcode is 0x60 that translated to PUSH see [94] for all hexadecimal

representation of all EVM opcodes. Hence, the following 1 byte (0x01) is added to the

stack ”[0x01]”. The PC counter is incremented by one to points to the next opcode,

which is 0x60. Similar to the previous opcode, the stack is filled with the second

value 0x01 ”[0x01, 0x01]”. The stack now contains two values 0x01 and 0x01. The

final opcode is 0x01 which according to [94], means ADD. It retrieves two items from

the stack and pushes the sum of these items to the stack. The final state of the stack

is 0x02. Finally, the execution is halt and contracts state is updated.

2.4.5 Ethereum Clients

The Ethereum client is a software application that implements both specification

and communication of Ethereum protocol through the peer-to-peer network. The

Ethereum project has multiple client implementations across a different range of op-

erating systems (OSs). The reason for this varieties of implementations is to verify

the correctness of the project protocol by testing it on a range of OSs as well as to

find consensus problems [63]. As of the time of writing, eight clients implement the

Ethereum protocol as presented in Table 2.2. As of June 2019, according to [52], the

leading implementations are Parity and Go-Ethereum. An Ethereum client interacts

with the blockchain by verifying and creating transactions as well as mining blocks.

Note, the Ethereum client is the software application that implements the Ethereum

specifications as mentioned above, whereas the Ethereum node is the machine that in-
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stalls and runs the Ethereum client (see next the Subsection). Thus, many Ethereum

clients can be installed on a single node.

Client Programming language

PyEthApp Python
Go-Etereum Golang
Parity Rust
Ethereumj Java
Ethereumjs Javascript
Ciri Ruby
Aleth C++
ethereumH Haskell

Table 2.2: EVM client implementations.

2.4.6 Ethereum Peer-to-Peer Network

The Ethereum network is similar to the Bitcoin network in that anyone can join and

leave at any time, this is known as open-membership. Ethereum has multiple different

implementations that validate and run the network as Full Ethereum nodes or Light

Ethereum Subprotocol (LES) nodes. the Ethereum node is the machine that installs

and runs the Ethereum client.

Full Ethereum nodes download, validate and store a full copy of the blockchain.

This includes downloading and validating each block contents, verifying its PoW and

downloading the global state of the Ethereum, which includes all accounts/contracts

balances, storage, and codes. In addition, the global states hash is verified against a

specific hash header within a particular block as seen in Figure 2.9. Note, all newly

created blocks are stored and validated once the node is fully synchronized to the

network.

Light Ethereum Subprotocol nodes (LES) involve downloading and validat-

ing only block header. Transactions and receipts are requested from the network

later. Checking and verifying transactions and their receipts in a block is done by

checking the block headers cryptographic commitments. According to [39] a node

requires storage of around 10MB, for bandwidth while idling about 1MB/h, and for

stage/storages request from the network roughly 2-3kB. Although this node in its

infancy, it could be improved to be used by mobile devices in the future.
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Figure 2.9: Ethereum’s block header and transactions [72].

2.4.7 Ethereum Mining

Similar to Bitcoin mining, Ethereum uses an improved PoW mechanism to validate

a created block called Ethash [93]. A block is only valid if it has a PoW of a specific

difficulty. The Ethereum mining difficulty is automatically adjusted; therefore, a new

block is mined every twelve seconds.

Ethash [93] is developed to be memory hard. Therefore, it is impossible to im-

plement on ASIC(Application-Specific Integrated Circuit) approaches. In order to

calculate a PoW, a large amount of data is required to be stored in RAM, organized

as a Directed Acyclic Graph (DAG) and are collected from the block headers and

the nonces. The size of this data is 1GB, and it is changed every 30000 blocks. The

verification of this data requires a low CPU power and memory[50].

Miners are rewarded for the efforts they invest in the network. The rewards are

5 ether for each block included to the main branch of the blockchain. They also

collect transactions fee specified by the creator of the transaction. In the future, the

transaction fee will surpass the fixed reward and will be the only incentive reward for

the mining [50].

Unlike Bitcoin, Ethereum rewards miners who create a stale block. A stale block

is a block that is an ancestor of the created block, but is not on the main chain. The

reward for a stale block is 7/8 of the fix block rewards.

Nowadays, Mining difficulty of the Ethereum network is high; hence, only GPUs

can perform the mining process [49].
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2.4.8 Ethereum Gas Mechanism

We observed both transaction types earlier in Section 2.4: Financial and Contract-

Creation or call-contract. Financial transactions, deployed in the cross-account trans-

ference of Esther, involve a cost of 21,000 gas units. However, Contract-creation or

call-contract transaction costs are subject to whatever level of used gas the EVM

determines, as well as the 21,000 gas units transaction cost.

The Operations that the bytecode conducts and data inherent in the blockchain are

accounted for by the EVM. The former relates to the opcodes that the transaction

executes, in which the costs of all opcodes are pre-set, while the latter levies a charge

of 20,000 gas units for zero to non-zero storage levels; otherwise the fee is 5,000 gas

units.

Transactions in Ethereum also include Gas Price and Total Gas [94]. Executing

transactions consumes gas that can be converted into Ether using the Gas Price, and

the ether is charged to the transaction submitters. Moreover, the higher the Gas

Price, the more chance to execute the transaction faster. Total Gas is the maximum

amount of gas that transaction submitters commit to the transactions. If the Total

Gas is less than the execution needs, the transaction will fail with an exception out-

of-gas, and the full amount of gas will be paid to the miners. Note that all unused

gas is returned to the transaction submitters. All submitted transactions are located

in the memory pool of each node, miners collect these transactions and execute them

to include them in their block. Miners tend to select transactions that look more

profitable to them based on the Gas Price. In addition to the Gas Price, miners

prefer transactions that involve deploying new contracts to gain more gas.

There are several reasons why the fee framework is considered as necessary, as

was noted earlier; in the interests of completeness, these reasons are discussed here.

If the submitter places a limit on the quantity of gas transacted, the execution is sure

to terminate, as when any opcode executes, a positive quantity of gas is added to the

total of used gas. This resolves the difficulty of Turing complete programmes halting,

as the termination is certain. Another positive consequence of the fee framework

is the avoidance of attacks from denial of service [54], which would ensue if miner

resources were executed on worthless contracts at zero cost, thereby preventing the

miners carrying out tasks necessary for the blockchain to operate reliably. The attacks

sustained by Ethereum in 2016, for example, the EXTCODESIZE attack [19] were able

to happen because particular opcodes needed a lot of computation but would only

involve a small fee for the submitter. The attack resulted in Ethereum altering the

EXTCODESIZE fee to reduce the effects of an attack.
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Thus, the introduction of the gas in the Ethereum network is to encourage develop-

ers to avoid writing a wasteful code, as well as to ensure that miners are compensated

for their resources contribution.

2.4.9 Solidity

Solidity [48] is the official high-level programming language that is utilized to develop

a smart contract. It is maintained by the Ethereum foundation, which suggests using

it as the main contract language. It is a JavaScript-like language; thus, it is an

Objective Oriented language. It supports different data types like any traditional

language, such as integer, and boolean.

Moreover, Solidity also supports structs, enumerations and byte-array data struc-

tures. Mapping, which can be seen as a key-value or a hash-table [65] data structure,

is also supported by Solidity. In order to access the transactions log, which is a spe-

cial data structure in the blockchain that stores the outputs of a contract function,

Solidity provides Events. Users who initiate transactions can see events. Thus, the

contract outputs can be stored into events to maintain the sequences of functions

execution. Although there are other programming languages, Solidity is the most

commonly used language for developing smart contracts. Using Solidity, develop-

ers can write a smart contract that enables, e.g., voting, blind auction, and more. In

chapters 6 and 7, we show how we used Solidity to develop smart contracts in different

domains like cloud computing and distributed database management systems.

2.5 Benchmarks

This section provides a general introduction to the field of performance benchmarks,

which we use in Chapter 3 and 4. It introduces common definitions of the term

Benchmark in 2.5.1. It presents a common requirements for significant benchmarks

in 2.5.2. Followed by the most common types and classifications of the benchmark as

we shall see in 2.5.3. Finally, in 2.5.4, it defines the difference between the workload

and the metrics.

2.5.1 Definition for Benchmarks

Benchmark is the evaluation process used in experiments to compare different tools,

platforms and/or techniques [16]. Benchmark in computer science is defined as a

tool to compare, for example, the performance CPUs, systems or algorithms [89].
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In addition to performance evaluation, benchmarks can also measure things such as

the number of false negatives or positives in an algorithm. The term benchmark is

defined by several organizations and standards which provide different definitions.

The following are common definitions from the literature.

The ISO/IEC25010 [40] standard for software quality provides a very general

definition of the term benchmark.

Definition: Benchmark

A standard against which results can be measured or assessed.

IEEE systems and software engineering vocabulary [64] provided similar defini-

tions to the previous definition by ISO/IEC25010:

Definition: Benchmark

1. A standard against which measurements or comparisons can be made.

2. A procedure, problem, or test that can be used to compare systems or

components to each other or a standard.

The glossary of the Standard Performance Evaluation Corporation (SPEC)[55]

provides a definition that is more focused on the performance of computer systems:

Definition: Benchmark

A benchmark is a test, or set of tests, designed to compare the performance

of one computer system against the performance of others.

In this PhD research, we define the benchmark as a performance measurement of a

smart contract code against a computer’s CPU at both smart contract and operations

codes (opcode). We compare the CPU performance of one Ethereum’s client against

the others at smart contracts level. We also compare the CPU performance of a

computer system (i.e., smart contracts at opcodes level) against others.

2.5.2 Benchmarks Requirements

According to [36], the benchmarking objective is twofold: Firstly, to improve and

enhance the system design and identify performance bottleneck. Secondly, to propose

a standard for systems comparison, e.g., TPC-B [77].

In [74], authors presents benchmarks’ properties and requirements that a signifi-

cant benchmark must follow:

• Repeatable: benchmarks can be used by others to check the results and apply

them to different systems.

• Comparable: benchmarks can be used to compare different results for a certain

task.

26



• Relevant: benchmarks can be used to predict the behavior of real-life applica-

tions.

Based on these requirements, the benchmark’s metrics should have the following

features: Firstly, using a proper scientific process is necessary to obtain a realistic

result. Secondly, an agreement between researchers on the set of metrics used on the

benchmark. Finally, practical and widely used metrics must be used. Thus, the used

metrics are applicable to both research and real-life domains.

2.5.3 Classifications of Benchmarks

According to [82], micro-benchmark and macro-benchmark are the most common

categories that benchmark systems can be classified into.

Micro-benchmark is the performance evaluation of various small and specific

parts of the software system. Most micro-benchmarks are written to test a partic-

ular type of operation in a large system such as performing a single type of CPU

instructions. Micro-benchmark should be quickly repeatable across different systems,

because the variation from other components of the system is factored out as much

as possible.

Macro-benchmark, on the other hand, is designed to evaluate the performance

of large and even complex system as well as to simulate a real system. It also can be as

a representation of a real system. In abstract, macro-benchmarks is the evaluating of

the overall functions of a large system, such as an accounting system, by simulating

its task before releasing the final version. The simulating system involves all the

functionality that the real system has.

In this thesis, for our experiments that shall be explained in details in the following

two chapters, we used these two categories of benchmarks. The micro-benchmarks

is used in chapter 4 to evaluate and to compare the CPU performance against the

gas consumed for each instruction on the EVM (the opcodes). Also, the macro-

benchmarks is utilized in chapter 3 to evaluate the overall performance of a smart

contract and compare the CPU overhead with the gas collected.

2.5.4 Workload and Metrics

Benchmarks are classified into two types based on workload or metrics. For workload,

it is classified into either homogeneous or heterogeneous based on the workload they

run on the under-test systems. On the other hand, benchmarks classified based on
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metrics types that the systems are characterized. For workload, the following are the

most commonly used [36]:

• Latency: the interval between the request and response.

• Throughput: the amount of data processed per unit of time.

• Utilization: utilizing the computing time on the CPU in percentage.

Certain aspects of performance are represented by metrics. For a given combina-

tion of user requirements and workload, some aspects might be more important than

the others. For instance, to characterize the performance of an interactive system,

throughput might not be the appropriate metric.

2.6 Conclusion

There is considerable interest from both industry and academia for the success of

the technology of blockchain. Both Bitcoin [75] and Ethereum [94] are blockchain

technology-based applications. Ethereum is adopting the smart contract technology

using its Turing-complete execution machine, the EVM, that executes distributed

smart contracts.

This chapter provided essential background information for blockchain in general,

and some applications build on it, such as Bitcoin and Ethereum. We summarize

Bitcoin, PoW, Bitcoin mining, Bitcoin transactions and finally, applications that

based on the Bitcoin. Ethereum, which is the most popular platform form smart

contract system, is explained in details as well as the programming language for

smart contracts, Solidity. Finally, this chapter introduced a brief background of the

term benchmark as well as its classifications. The next chapters are focused on both

blockchain applications and benchmark techniques.
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Chapter 3

Performance Benchmark of
Blockchain Smart Contracts

3.1 Summary

A defining feature of the Ethereum blockchain is its ability to execute smart con-

tracts, providing a Turing complete programming model for distributed applications

in non-trusted environments. The successful operation of the Ethereum blockchain

depends on whether the miners’ incentives (in the form of fees) to execute contracts is

proportional to the miners’ cost (in terms of energy usage, and thus CPU usage). In

general, if the received fee is not proportional to the computational cost, miners would

prefer some tasks over others, therefore potentially adversely affecting the continuing

dependable operation of the blockchain. In this chapter, we design a benchmark to

compare smart contract execution time with the award a miner would receive, to

determine if incentives align.

We present the design of the benchmarking approach and provide results for the

Python Ethereum client running on a Mac. The results indicate that for functions in

Ethereum’s most popular contracts, the difference of reward per CPU microsecond

can be up to a factor of almost 50. Besides, contract creation, which is done once for

each new contract, can be up to 6 times more lucrative than the regular execution

of contract functions. Potentially, these discrepancies result in misaligned incentives

that impact the dependable operation of the blockchain.

The structure of the chapter is as follows. Section 3.3 describes in detail the

process of collecting the data needed for the experiment. The experiment design and

procedure are presented in Section 3.4. Section 3.5 shows our benchmarking approach

results and observations. Finally, Section 2.6 concludes the chapter.
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3.2 Introduction

Permissionless blockchains, such as Bitcoin [75] and Ethereum [94], rely on miners

for their successful operation. Miners invest computational resources and the energy

to run them, and in return, receive a fee, expressed in the unit of cryptocurrency

belonging with the blockchain. By establishing the right incentives, the miners are

sufficiently motivated to keep operating the blockchain in a dependable manner. Re-

cent literature investigates the alignment of incentives, for instance in relation to the

long-term development of block and transaction rewards [22], in the context of miner

pool strategies [96] and associated with denial of service attacks [54].

In this chapter, we consider incentives for miners when executing smart contracts

in Ethereum. Ethereum contains a cryptocurrency, called Ether, but the defining

feature of Ethereum is the ability to execute smart contracts, providing a Turing

complete programming environment for distributed applications. Smart contracts

are executed by the Ethereum Virtual Machines (EVM) of miners, who earn Ether

depending on the executed machine language operations (called opcodes). In partic-

ular, when executing a contract, the EVM keeps track of the amount of ‘used gas’,

based on the amounts of gas specified per opcode by the Ethereum foundation [43].

To determine the fee, the used gas is multiplied by the ‘gas price’ offered by the

submitter of a transaction.

The fee structure for contract execution is essential for several reasons, including

assuring termination of execution and avoiding denial of service attacks. We dis-

cussed this in more detail in Subsection 2.4.8. In this chapter, we are particularly

interested in a less commonly researched reason why the fee structure is essential,

namely that the fee structure determines the incentives required to assure the de-

pendable long-term operation of the blockchain. Specifically, if there is no clear

relationship between the computational effort needed and the fee awarded, miners

cannot rely on a reasonable award for their energy investment. [8] demonstrates that

under such uncertainty, miners could not optimize their profits. Moreover, if specific

smart contracts are known not to be attractive, transactions using that smart contract

would not be executed by miners. Therefore, to assure the dependable operation of

blockchains with smart contracts, miners and submitters of transactions need to be

confident that the fee structure correctly incentivizes miners.

This chapter aims to describe a benchmark for Ethereum smart contracts that

evaluates whether the fee awarded for the execution of smart contracts is proportional

to the computational effort required. We envisage that such a benchmark could be
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run periodically, on a variety of software and hardware platforms, to demonstrate

to the community if and how well costs and benefits are aligned within Ethereum.

Users, as well as miners, would adjust their confidence in the dependable operation

of Ethereum based on such a benchmark. We note that the performance of smart

contracts execution becomes even more critical once Proof of Work will be abandoned

by Ethereum [60]. Currently, the hashing for Proof of Work dominates the compu-

tational effort of miners, but in the future effort to compute smart contracts will be

increasingly important, mainly if applications rely on increasingly complex contracts

such as in [37, 34].

In the design of the smart contract benchmark, there are a number of issues we

consider. The granularity of measurement can be of two types, either based on the

overall contract or based on individual functions, and we propose that a benchmark

should do both. (Note that this is different from benchmarking opcode execution

time, as discussed in the next Chapter, which is meant to assess the correctness of

the gas per opcode in [43].) Within current implementations of EVM, contracts are

also executed once before they are added to the blockchain. Since the fee, as well

as the functions executed, differs the benchmark should measure both such contract

creation and normal contract execution. In terms of the contracts to be considered

in a benchmark, we propose to use the most commonly used ones on current-day

Ethereum, and we describe a procedure to obtain these. We use CPU usage as

our main measure, as a first approximation of energy consumption and thus cost to

miners.

Our experiments in this chapter concern a single hardware platform and a single

EVM, the Python Ethereum virtual machine (PyEthApp)[46]. Although preliminary

in terms of coverage of software and hardware platforms, the results are quite striking.

We conclude that used gas is not always well aligned with the computational effort for

either creating or executing smart contracts. There is a factor of almost 50 difference

in gas reward per CPU second between varying contract functions as we shall see in

Subsection 3.5.2. Also, the amount of used gas per CPU consumption for creating

contracts is significantly more than that for contract execution (on average six times

more) see Section 3.5.1.

3.3 Smart Contracts Selection

As discussed in [90], among other properties, a well-designed benchmark needs to be

representative of the system at hand. Our approach is to select the most commonly
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used smart contracts available on Ethereum by reducing the set of all existing smart

contracts based on exclusion criteria.

To start, we use EtherScan1 to identify all the available verified Ethereum smart

contracts. EtherScan provides for all contracts in Ethereum the following: contract

address, contract name, compiler, balance, transaction count, settings and verified

date. At the time of collecting this data (10 May 2018), there were over 28000 verified

contracts. Since EtherScan contains a large number of verified contracts distributed

into many HTML pages, we had to write JavaScript code that fetches the contents

from all those HTML pages. We were then able to produce a single HTML page that

contains a single table with all verified contracts.

To establish a reasonable set of contracts for our study, we decided to select the

first 100 most commonly used smart contracts. These most commonly used contracts

were ranked by the number of transactions each contract experiences (transaction

count). For instance, EtherDelta was the most widely used contract in Ethereum as

it was invoked by about 9.6 million transactions.

For each contract, we manually collected the bytecode for the contract creation

as well as analyzed the source code. The analysis process is vital in order to know

what functions each contract is using and what possible inputs (if any) each function

required. We also went through the transactions that were sent to invoke each con-

tract in order to collect a transaction example for each function. This is to allow us

to test and benchmark real Ethereum transactions instead of creating our transac-

tions. Finally, we excluded all contracts that have not either source code or bytecode

available.

Thus, we ended up with 76 different contracts. 24 contracts were excluded for

the aforementioned reason. For the functions in each contract, we excluded some

functions that cannot be obviously benchmarked without further assumptions about

input parameters, such as transfer, transferFrom, withdraw, depositToken and some

other token related functions. These functions require deployment assumptions and

parameters that cannot be changed or updated within the available byte codes, so we

excluded them.

For each contract, we look at the source code and received transactions to collect

the most commonly used functions. We found that most of contracts have a single

function, and some have two. Thus, we ended up with 77 different functions to be

considered in our benchmark.

1https://etherscan.io/contractsVerified
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3.4 Design of Benchmark Measurement System

It is possible to measure the computational efforts of both creation and execution of

transactions in the Ethereum test-net or a private network, but it is not straightfor-

ward to control all aspects that may impact measuring CPU usage. In this section,

we describe our system design to measure CPU usage for smart contracts.

Specifically, smart contracts are ’created’ by deploying them on the blockchain

through submitting a Contract Creation Transaction that contains the correct byte-

code (Creation Code) for a smart contract. After the creation of the contract, this

contract has an address at which it can be called. Once deployed, contracts can be

executed by submitting transactions that refer to the contract’s address. However,

there is potential interference of a number of factors, including transaction validation

overhead, signature validation overhead and proof or work computation. Therefore,

we propose an alternative approach that isolates the execution of the smart contract

from other computation. We measure the execution time in a single client EVM and

simulate any of the other aspects as needed, for instance, the submission of transac-

tions.

For the smart contracts selected as explained in Section 3.3, we investigate in

detail the code of each collected smart contract at a function level, to identify how

many functions each contract has, what inputs these need, and how to call the func-

tion. We initialized a set of Ethereum accounts with available balances to launch the

transactions as well as to prepare the inputs for each function. For all functions, we

use real transaction inputs submitted to the Ethereum, as mentioned in Section 3.3.

The next phase is to execute transactions. To that end, we create transactions,

submit them using the accounts we set up and then execute each transaction in the

local machine. For instance, to measure CPU use for a function within some contract,

we first launch a transaction to deploy the smart contract containing this function

and then start another transaction with all associated inputs to trigger that function.

We record the timer for each of the described steps and store the results in a separate

file. To compare different contracts, we calculate used gas per second of CPU use, so

that one knows how much reward one can gain per unit of CPU time invested. For

some contracts and functions, we were unable to execute transactions successfully.

For instance, if a contract calls other unverified contracts, or because of source code

issues. Eventually, we managed to execute 76 contracts (out of 100 contracts) and 21

functions (out of 77 functions) in total. All results and observations are presented in

Section 3.5.
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3.5 Results and Discussion

This section presents and discusses the first set of results for benchmarking both

contract creation and function execution transactions. We conduct the experiment

on a single machine that submits and mines all experiment transactions. The machine

is a MacBook Pro and equipped with a 2.8 GHz Intel i5 CPU and 8 GB RAM. All

transactions are executed 100 times, and the average time is calculated as well as

the confidence interval. We use the Python PyEthApp[46] client. For each contract

creation and function execution we read the data from the first phase and run the

experiment 100 times, which provides 95% confidence intervals width with a half-

width of less than 0.2 times the average.

3.5.1 Contract Creation Transactions

First, we measure the CPU usage for contract creation, for all 76 contracts. Figure

3.1 shows the amount of used gas that can be collected by miners per microsecond of

CPU usage for contract creation transactions. The main curve presents the amount of

used gas for creating each contract, while the straight line presents the average used

gas for all the tested contracts. There is quite some difference between the return

on investment for miners when creating contracts, roughly up to a factor of 5. The

amount of used gas for creating contracts varies between 51 and 269 units of gas with

an average of 182. Contracts such as Nagacoin, StatusContribution, MatchingMarket

and Dragon are the most profitable ones with over 260 units of used gas awarded

per microsecond of CPU usage. However, contracts such as TronToken, Controller,

EKT, CybereitsToken and GnosisToken are more costly, with an amount of used gas

awarded less than 100 units of gas. From these early experiments, we see that the

profit (amount of used gas) miners can get from contract creation transactions is not

particularly well aligned with their computational effort.

Table 3.1 shows the CPU usage (execution time in microseconds) and the amount

of used gas for the most profitable and expensive contract creation transactions. The

profitability is based on the amount of used gas offered to miners per time unit of

CPU execution. It is clear that the CPU usage is not proportional to the amount

of used gas offered by contract creation transactions. For example, both EKT and

NAGACoin contracts consume roughly the same amount of CPU time, while the

latter offers over three times as much used gas, and thus, offers more profit to the

miners. As already mentioned, the profitability to miners can differ more than a

factor of 5, for the contracts MatchingMarket and GnosisToken, respectively.
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Average amount of gas awarded per CPU computation for all contracts Amount of gas awarded per CPU computation for each contract

Figure 3.1: Amount of used gas awarded per each microsecond of CPU usage for
contract creation.

Contract Name CPU Usage (µs) Used Gas Gas/CPU

MatchingMarket 13193 3544767 269
StatusContribution 7918 2120935 268
NAGACoin 8491 2231105 263
Dragon 6226 1634521 263
EKT 7316 712297 97
TronToken 12476 891859 71
Controller 20160 1094303 54
GnosisToken 20419 1036626 51

Table 3.1: The most profitable and expensive contract creation transactions.

3.5.2 Function Execution Transactions

When executing a smart contract, often only a single function is called, and therefore

we compare the execution phase based on functions, as opposed to full contracts.

Figure 3.2 shows the amount of used gas collected by miners per microsecond of CPU

usage for function execution transactions. For each function, we provide the contract

they belong with, labeled C1 to C17. The main line presents the amount of used gas

for executing each function, while the straight line presents the average used gas for

all the tested functions. Some contracts have multiple functions that we call (e.g.,

contract C10 has two functions, namely, makeWallet and logSweep). In addition,

some contracts share the same function name (e.g., both C1 and C2 have a function

called deposit). However, the source code for those functions that have the same name

is not necessarily identical, and thus, the benchmarking results may differ accordingly
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Figure 3.2: Amount of used gas awarded per each microsecond of CPU usage for
function execution.

(see later in this section for a more detailed comparison for functions with identical

names).

The amount of used gas collected from executing functions varies between 1 and 48

units of gas per CPU microsecond with an average of 27. This presents a considerable

difference in terms of profitability to the miners. Functions such as makeWallet (in

both C3 and C10) and mine (in C17) are the most profitable functions with 40 units

of gas or more awarded for each microsecond of CPU usage. However, functions such

as deposit (in C1), deposit (in C9), released (in C12) are more costly since the amount

of used gas awarded is less than 15 units of gas. From these early experiments, we

see that the profit (amount of used gas) miners can collect from function execution

transactions is not well aligned with their computational effort. Miners could gain

a factor up to 50 times more profit if they selected profitable function execution

transactions such as makeWallet compared to the costly ones such as released.

Table 3.2 shows the CPU usage (the average execution time in microseconds),

the amount of used gas and the used gas collected per CPU usage for all function

execution transactions for more details. It is clear that the CPU usage is not pro-

portional to the amount of used gas offered by function execution transactions to the

miner. For instance, released function (in C12) is the most expensive function as it

consumes much more CPU time compared to the used gas offered. Functions such

as makeWallet (in both C3 and C10) are more profitable than the released function

since they consume by far less CPU time while they offer more used gas.
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Contract Function Name CPU Usage Used Gas Gas/CPU

C1 deposit 2365 29223 12.3
C2 deposit 2472 49265 19.9
C3 makeWallet 3861 184563 47.8
C4 split 2097 75753 36.12
C5 register 5072 89734 17.6
C6 split 1895 49664 26.2
C7 approve 1420 45677 32.16

startUnitRaffle 1492 22899 16.12
buyItemRaffleTicket 1297 22643 17.4C8
approve 1387 45423 32.7

C9 deposit 2594 29411 11.3
makeWallet 3484 142501 40.9

C10
logSweep 925 26509 28.6

C11 setRate 1406 28109 19.9
C12 Released 97669 116182 1.18
C13 approve 1451 47174 32.5
C14 approve 1345 45167 33.5
C15 approve 1487 45384 30.5
C16 approve 1190 45677 38.3

mine 2131 84605 39.7
C17

approve 1378 45381 32.9

Table 3.2: The average execution time (in microsecond) and the amount of used gas
for all function execution transactions.
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We looked in more detail at the benchmarking results for functions with identical

names (such as deposit, approve, split and makeWallet) used by different contracts.

For the deposit function, which is used by three contracts, namely, C1, C2 and C9, we

found the benchmarking results for this function in C2 is significantly different from

that for other functions. Deposit function in C2 offers about 70% more used gas per

each microsecond of CPU usage compared to deposit function in both C1 and C9.

We inspected the source code for the deposit functions and found that the deposit

function in C2 has slightly different code with an extra line of computation, which

takes the current block number and stores it inside a specific mapping to keep tracking

of the last active transaction. This extra line of computation results in a significant

increase in the amount of used gas, while the computational efforts were increased by

less than 5%. Therefore, miners could gain more profit be selecting deposit function

in C2 instead of other deposit functions.

Similarly, for the split function, which is used by both C4 and C6. Split function

in C4 offers 38% more used gas compared to split function in C6. We inspected the

source code for both functions and found that the latter has two extra IF checks.

These checks resulted in a significant increase in the amount of used gas, while the

computational efforts were only increased by about 10%. Therefore, miners could

gain more profit by selecting the split function in C4 instead of C6. We finally note

that, on the contrary, the results for makeWallet functions in both C3 and C10 are

almost identical. Similar for approve functions in C7, C8, C13, C14, C15, C16 and

C17.

3.5.3 Comparison Between Contract Creation and Function
Execution Transactions

It is important to point out the significant difference in terms of the amount of used

gas that can be collected by miners per each microsecond of CPU usage between

contract creation and function execution transactions. The average amount of used

gas awarded for contract creation transactions is nearly six times more than that for

function execution transactions see Figures 3.1 and 3.2. That means miners could

collect more profit by selecting and including contract creation transactions.

In conclusion, we have identified two types of discrepancies in terms of the reward

for computational effort. First, both for contract creation and for function execution,

the amount of used gas awarded is not consistently proportional to the CPU usage,

there can be a factor of 5 difference in the creation of different contracts and a factor of

almost 50 difference in the execution of different functions. Secondly, between contract
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creation and function execution, there is a considerable difference in reward for CPU

usage, roughly a factor 6. Miners gain more profit if they select transactions based

on these two observations. We believe that this implies a threat to the dependable

operation of the blockchain, for which it is important to ensure that the used gas

awarded is proportional to the CPU usage for all types of operations that are required.

The results in this chapter indicate that it would require modifications for Ethereum

to establish a fair incentive model for miners as well as an appropriate cost model for

the submitter of the transactions.

3.6 Conclusion

This chapter proposes a benchmarking approach to assess whether the fees miners

receive from creating and executing smart contracts is proportional to the cost as

expressed in terms of CPU usage. To illustrate our approach, we conducted a bench-

marking study to investigate whether the used gas for creating smart contracts and

executing contract functions is proportional to the computational effort. We created

a benchmark of the 100 most commonly used smart contracts in Ethereum. Due to

some technical limitations, we managed to benchmark the creation of 76 contracts

and the execution of 21 functions.

Our results show that the used gas is not always proportional to the computational

effort for both creating and executing smart contracts. More specifically, contract

creation is about a factor 6 more profitable to miners than the execution of contract

functions. Besides, some functions can be up to almost 50 times more profitable than

others. This indicates that miners could gain more profit when creating and deploying

new contracts instead of executing existing ones, and by being selective about which

contract functions to execute. Potentially, this forms a threat to the dependability

of the overall blockchain, in that some important computational tasks may be not

sufficiently attractive for miners to dedicate their resources to.

Vice versa, transaction submitters, may offer different gas prices to compensate

for the observed discrepancies, thus incentivizing miners more reasonably again. How

to achieve this in practice is a topic for further research. With respect to our proposed

benchmarking approach, additional refinement of the proposed methods can be en-

visaged, for instance considering computing effort beyond CPU usage (e.g. storage),

and relating computational effort more directly to actual energy costs. Also, we thus

far only conducted experiments on a single platform, and additional experiments are

required to cover more contracts, functions, types of client codes, operating systems

39



and hardware. In the next chapter, we extend this work by looking more in-depth in

terms of what is causing the high (or low) CPU overheads at a finer granularity within

the specific functions by proposing a new performance benchmark system, which is

the fist of its kind, named ”OpBench ” that assesses the CPU overheads for the EVM

opcodes.
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Chapter 4

Performance Benchmark of
Blockchain Smart Contract
Operation Code (Opcode)

4.1 Summary

Ethereum and other blockchains rely on miners to contribute computational power to

execute tasks such as the proof of work consensus mechanism and the execution and

validation of smart contracts. Miners receive a fee for their efforts, and for the correct

operation of the blockchain, rewards should be proportional to the required investment

(equipment, energy use, etc.). In Ethereum, the reward obtained for executing smart

contracts is set statically, associating a fee with each operation code (opcode) in the

smart contract. To determine whether fees are aligned with investments made, we

propose OpBench, a platform-independent benchmarking approach.

OpBench measures the CPU time required to execute opcodes in the EVM. We

implemented OpBench for the PyEthApp, the Go-Ethereum and the Parity clients

running on Windows, Linux and Mac operating systems.

This chapter is organized as follows. In Section 4.2 we provide an introduction.

The related work is presented in Section 4.3. Section 4.4 offers a detailed design

framework for our proposed OpBench system. In Section 4.5, we present the imple-

mentation of our system in the PyEthApp, the Go-Ethereum and the Parity clients,

and we conclude the chapter in Section 4.6.
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4.2 Introduction

The proper functioning of permissionless blockchains such as Bitcoin [75] and Ethereum

[94] depends on miners contributing their computing resources to the operation of the

blockchain. In exchange for a fee (in the form of the cryptocurrency associated with

the blockchain) miners are willing to invest, specifically, the electricity required to

operate the blockchain. If the fee structure is fair, miners are incentivized to run the

blockchain correctly and efficiently. However, if fees are not set fairly, miners may

alter their behaviour, possibly to the detriment of the blockchain’s operation [10].

In the worst case, fees that are set inappropriately may be vulnerable to misuse, for

instance, exemplified by the denial of service attacks on Ethereum in 2016 [54, 19].

Therefore, for miners and for the successful operation of the blockchain, it is critical

to understand the relation between the fee received and the cost incurred.

In Ethereum, when executing a smart contract, the fee a miner receives is de-

termined by the Gas required to execute operation code (opcode), multiplied by a

price the submitter of a transaction pays per unit of Gas. The Ethereum client (more

precisely, the Ethereum Virtual Machine (EVM)) tallies the total Gas as it executes

a smart contract. It does this based on values specified in a table in the Ethereum

yellow paper [94], which statically associates an amount of Gas to each opcode. That

means that the Gas used (and therefore the fee received) per smart contract is inde-

pendent of the hardware or software used by the client; it directly follows from the

opcodes in the smart contract.

From the miners’ perspective, there are several implications of this static approach.

The cost of executing smart contracts can be expected to be different on different

computing platforms since the execution time of individual opcodes is likely to be

different across platforms. As a consequence, a miner would want to choose a platform

that optimizes the reward for the used energy. The benchmark presented in this

chapter, when carried out for different platforms, will help select the best platform.

Miners may also want to mine transactions based on optimizing the trade-off between

the cost and reward. Our opcode benchmark would assist in deciding which smart

contracts to execute: smart contracts with opcodes that add more Gas to the tally per

CPU cycle are preferred since these result in higher rewards for the same investment.

Equally important is the perspective of the dependable operation of the blockchain:

if reward and cost are not proportional across opcodes it could result in misalignment

of mining incentives, e.g., [10] . Especially when Proof of Stake replaces Proof of
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Work, the profit miners make will depend strongly on the investment made in exe-

cuting smart contracts. Misalignment of incentives may result in miners operating

the blockchain in a manner that is not optimal for the fair and effective long-term

operation of the system. By conducting benchmarks on various platforms, one can

adapt the value of the static fees and relate fees better to the CPU cost across most

platforms.

For the above reasons, we introduce OpBench, the first CPU performance bench-

mark system for Ethereum smart contract opcodes. OpBench is the first systemic

benchmark solution for opcodes we are aware of, and it provides a benchmark ap-

proach and benchmark results for all CPU-sensitive opcodes in Ethereum. The chap-

ter introduces the design of OpBench, which is independent of the Ethereum client’s

language or operating system and is integrated with the Ethereum Virtual Machine

architecture of Ethereum clients. To demonstrate the utility of the design, we devel-

oped three implementations of OpBench: for the PyEthApp client (in Python), the

Parity client (in Rust) and the Go-Ethereum client (in Go).

Several challenges needed to be addressed in the design and implementation of

OpBench. In particular, since individual opcodes take very little time to execute,

OpBench executes opcodes repeatedly, taking care of stack management challenges

that result from the small size EVM stack. We show in our implementations how

to leverage the EVM and Python/Go/Rust libraries to measure performance accu-

rately. To be of practical use, OpBench runs independently from the live Ethereum

blockchain.

4.3 Related Work

Smart contract systems and its underlying technology, the blockchain, have been

studied in depth for the last four years. A recent systematic survey [8] states that

the most researched aspects of smart contract-based systems are in new applications

and software engineering approaches, while performance and scalability are relatively

less explored. To the best of our knowledge, there is no prior systematic approach

suggested for performance benchmarking of Ethereum opcodes. The fee schedule in

[94], which assigns Gas to operation codes, is based on classifying opcodes in categories

of high, medium, etc., but does not provide a basis for that classification.

Related work includes the work of Dinh et al. [31], which proposes an evaluation

framework (BLOCKBENCH) to measure the latency, throughput, fault-tolerance,

and scalability of the private blockchain. BLOCKBENCH allows for performance
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comparison of diverse blockchains, including Hyperledger and Ethereum, but it does

not provide a detailed performance benchmark at the granularity of opcodes. Another

benchmark approach has been suggested by [6], proposing a performance benchmark

for Ethereum smart contracts. They found that used Gas is often not proportional

to the computational effort for both contract execution and contract creation. Their

performance benchmark was designed for the smart contract level, as opposed to the

opcode level. A limitation of benchmarking at the level of smart contracts is that

results for one contract do not extend to others and that therefore, every contract

needs to be benchmarked separately. Chen et al. [24] conducted an experiment that

records the time consumption of a CPU against executing the opcodes. Their results

show that the consumed Gas is not proportional to the CPU usage, but they did not

attempt to create a benchmark from their work; instead, their interest is in adaptive

schemes to deal with fees that are not proportional to the computing requirements.

Chen et al. [24] then proposed a tool called GASPER that automatically locates

Gas-costly patterns by analyzing the smart contract bytecode. Their tool analyses

the bytecode and reports the miss-programming patterns that cause a high Gas cost,

such as unused code patterns and loop patterns. In [97], the authors introduced a tool

called (GasReducer) that detects sub-optimal code in the smart contracts’ bytecodes

and replaces it with sufficient bytecodes to reduce unnecessary Gas.

In conclusion, although several interesting efforts in understanding and improve-

ment of smart contract performance exist, none of these efforts proposes an opcode

level benchmark as we do in this chapter.

4.4 Design of OpBench System

In this section, we describe the design of our benchmark system, OpBench. This

proposed design can be implemented in various languages depending on the client’s

specifications. First, we present the workflow of our system. Next, we categorize

all the opcodes, and discuss how we propose to conduct experiments for different

opcode categories e.g. how to deal with parameter dependence. In the rest of this

section, we present the details of the benchmark operations that we run for various

opcodes. These includes how to deal with the limited stack size and how to calculate

the execution time per opcode.
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Opcodes File
• 0x01:[ADD,2,1,3]
• 0x02:[MUL,2,1,5]
• 0x03:[DIV,2,1,5]
• 0x04:[SUB,2,1,3]

…
…

Contract Bytecodes
•“ADD”
•“Exec”: 

•“Env”:{…}
•“Pre”:{...}
•“Gas”:{…}
• …

Execution on EVM
• PUSH1 1 PUSH1 2 ADD POP 
• PUSH1 2 PUSH1 3 MUL POP
• PUSH1 4 PUSH1 5 DIV POP
• PUSH1 6 PUSH1 7 SUB POP

Results
• Gas used 
• Opcode
• Standard Deviation.
• Confidence Interval
• Average

1 2 3 4

{"0f5..":{ 
"balance": "100..", 
"byteCode": "0x600160010150" 
"nonce": "0",
" storage": {...}}}

Figure 4.1: OpBench overview.

4.4.1 OpBench Overview

The usage of OpBench can be divided into four Phases, as depicted in Figure 4.1. In

the first phase, we utilize PyEthApp [46] client to identify all opcodes, associated Gas

prices, as well as the number of required input and output parameters for executing

the opcode. For example, the ADD opcode ([0x01:[ADD,2,1,3]]) requires two inputs

and one output, and it costs 3 unit of Gas. The 0x01 represents the value of the

opcode in the hexadecimal representation which can only be interpreted by the EVM.

Note that also if the EVM is in a different language like Go for Go-Ethereum client

or Rust for Parity client, this phase can be done in Python because the generated

bytecode can be executed in any Ethereum clients. In the official implementation

of the PyEthApp [33], all available EVM’s opcodes are located in a single file called

opcode1.

In phase 2, for each opcode from phase 1, we generate the bytecode for a fully

executable smart contract, which contains repeated bytecode instances of the opcode

intended to be measured, as well as the required PUSHs and POPs opcodes to suc-

cessfully manipulate the EVM stack. This is depicted under ”Contract Bytecode” in

Figure 4.1, showing generated contract account’s state, including account informa-

tion, environment information as well as execution information and extra information

1https://github.com/ethereum/py-evm/tree/master/eth/vm
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such as the block Gas limit.
1
2 from Ethereum import opcodes
3 . . .
4 push params = [ range (1 , 3) , range (4 , 8) , range (9 , 16) , range (17 , 32) ]
5 codes i ze params = [ [ 100000 , 100000 ] ]
6
7 de f g e n e r a t e op t e s t s ( ) :
8 out = {}
9 f o r opcode , (name , inargs , outargs , ) in opcodes . i tems ( ) :

10 sub id = 0
11 f o r push depths in push params :
12 f o r jump num , c od e s i z e in codes i ze params :
13 i f name in [ 'DELEGATECALL ' , 'LOG0 ' , . . ] :
14 cont inue
15 i f name [ : 4 ] == 'PUSH ' :
16 i f push depths != push params [ 0 ] :
17 cont inue
18 f o r i in range ( c od e s i z e ) :
19 v = in t (name [ 4 : ] )
20 w = random . randrange (256∗∗v )
21 c += chr (0 x5f + v) + u t i l s . zpad ( u t i l s . encode in t (w) , v )
22 . . . .
23 o = o = {
24 ”Exec” : {
25 ”0 f572e5295c57f15886f9b263e2f6d2d6c7b5ec6 ” : {
26 ” balance ” : ” 1000000000000000000” ,
27 ”byteCode” : ”0x”+c . encode ( ' hex ' ) ,
28 ”nonce” : ”0” ,
29 ” s to rage ” : {}
30 }
31 } ,
32 ”Env” : { . .} ,
33 ”Pre” : { . .} ,
34 ”Gas” : ”1000000000” ,
35 ”Logs” : [ ] ,
36 ”Out” : ”0x”}
37 . . .
38 open ( 'ByteCode . j son ' , 'w ' ) . wr i t e ( j son . dumps( g en e r a t e op t e s t s ( ) , indent=4) )

Listing 4.1: Generating Ethereum smart contract bytecode (Phase 2 in Figure 4.1).

Listing 4.1 shows a code snippet used to generate bytecode for each opcode of

the EVM. In the first line we import the file that contains these opcodes then we

loop 100k times (Line 12) to create bytecode for each actual opcode. 100k time was

chosen because it provides a tight confidence interval (95%-Confidence Interval ≈
0.005). Hence, the bytecode contains 100k actual opcodes. As mentioned above, the

generated bytecode has its all required input parameters and other related opcodes

(i.e., in most cases PUSHs and POPs) (Lines 15-21). Later in (Lines 24-36), we generate

the executable test that consists of the contract account configuration such as address

(Line 25), balance (Line 26), the generated and the executable bytecode (Line 27),

nonce (Line 28) and finally the contract’s storage (Line 29). Finally, in (Lines 32-36),

we define the EVM’s state configurations that are needed to generate transactions to

deploy and execute the bytecode (more details in Phase 3).

For opcodes for which the size of their parameters could impact the computation

overhead, we generate different versions of the bytecode, each with different size

(64-bits, 128-bits, and 256-bits). This is due to the fact that depending on the

implementation the smaller sizes can be computed more quickly and the stack limit

size is 256-bit (1 word) [94] [68]. These opcodes belong to the first and second

categories in Table 4.1. For opcodes that are not sensitive to the input parameter,
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we only create one version based on 256-bits, unless otherwise specified. An example

is BALANCE, which returns the Ether balance of an address, where the size of that

address is always 32 bytes.

Phase 3 is the heart of OpBench system. In this phase, we setup the blockchain

configuration, account details and the Ethereum state configurations. Then, we de-

ploy the smart contract’s bytecode on the blockchain by submitting an Ethereum

transaction. Next, we initiate a transaction that executes the deployed bytecode on

the EVM, playing the roles of both the sender and miner. In the example (PUSH1 1

PUSH1 2 ADD POP), after setting-up the blockchain, the state and the account, the

EVM runs the ADD opcode by pushing two input parameters (i.e., 1 and 2) onto the

stack (PUSH1 1 PUSH1 1) then adding these numbers (ADD), and finally popping the

result (POP) from the stack. Moreover, the execution times as well as the Used Gas

of each opcode are collected and exported as json files. Later in Section 4.5, we will

show in details the real implementation of this phase on the three EVM clients.

The computation time of each bytecode is recorded in Phase 4. Listing 4.2 presents

the final results of the phase 4 of OpBench in json file. We collect all the results and

calculate the average, standard deviation and confidence interval for each opcode to

be able to report the final results and their accuracy. In Figure 4.1, the result of the

execution of an opcode is reported as a json formatted file that shows the used Gas,

the name of the opcode standard deviation and confidence interval. The confidence

interval is calculated by collecting each run’s execution time and storing it in a list

data type. Then, we used the build-in methods for each client, SiPy [30] in Python, for

instance. We are only concerned with the Gas used and the execution time average.

The other statistics is presented to check the correctness of OpBench execution.
1 [ { ”Used Gas” : 3 . 0 ,
2 ”Opcode” : ”ADD” ,
3 ”Appearance” : 100000 ,
4 ”Upper bound” : 0.8092592672921111 ,
5 ”Standard Deviat ion ” : 0 .26486772279105025 ,
6 ”Lower bound” : 0 .7988753863939606 ,
7 ”95% Confidence I n t e r v a l ” : 0 .0051919404490752274 ,
8 ”Mean” : 0.8040673268430183
9 }

10 ]

Listing 4.2: The Final output of OpBench (Phase 4 in Figure 4.1).

4.4.2 Workload: Classification of Opcodes

Different opcodes require different treatment when benchmarking their performance.

Following the approach of [94], we distinguish between computation-based opcodes

and formula-based ones. The computation-based opcodes have a static constant
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amount of Gas as the fee, as defined in [94]. The formula-based opcodes have more

intricate performance dependencies and therefore are more involved when designing

the benchmark. We describe our approach for both types of opcodes in the following

sections.

A third type of the opcodes have an associated fee that is not motivated by CPU

usage, and it is therefore not suitable for OpBench. These opcodes fall in the system

and log opcode categories (see last two categories in Table 4.1), as described in [94].

For example, CREATE, which creates a new account with an associated code, has a

fee of 32k Gas is for creating (not running) the bytecode. This is not bound to the

CPU usage. Similarly, log opcodes append a log record to the blockchain, and the

cost associated with these opcodes is motivated by the disk usage.

4.4.2.1 Computation-based Opcodes

This class of opcodes includes but not limited to the ones in the Stop and Arithmetic

operations, Comparison & Bitwise Logic Operations, using the categories identified

in [94]. Table 4.1 provides a list of all opcodes, the category names associated with

each opcode, the Gas cost, the required inputs and outputs, the classification of each

opcode either formula or static, their hexadecimal representation and their descrip-

tions. OpBench runs the experiments with three different sizes of parameters (64-bits,

128-bits, and 256-bits). For instance, consider the ADD opcode, which has associated

Gas of 3. Our benchmark includes three entries for ADD, with three different sizes of

parameters: ADD64, ADD128 and ADD256. This is because depending on the imple-

mentations the smaller sizes can be computed more quickly [68].

In the opcode categories for which inputs do not impact the computation over-

head (Push Operations, Exchange Operations, Duplication Operations), each opcode

is benchmarked with a single size of parameter (256-bits). For these opcodes, in the

generated bytecode in phase 1, we push the required parameters onto the stack using

PUSH opcodes, and then we execute the actual opcode. Some opcodes such as ADD

pushed the execution results onto the stack as well. In these cases, we use the POP

opcode to maintain the stack’s size of at most 1024 bytes, to be able to execute a

high numbers of opcodes.

4.4.2.2 Formula-based Opcodes

The formula-based opcodes are more intricate to benchmark, so we describe these in

more detail in this section. 11 out of 150 opcodes belong to this type [94] of which
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we explain six representative ones here.

Gas =

{
10, if EXP = 0

10 + 50× (1 + log 256(EXP )), if EXP > 0
(4.1)

The EXP opcode is the exponential operation, and its formula is shown in Equation

(4.1). EXP opcode pops two values from the stack, the base and the exponent and

calculates the exponential. Then, it pushes the result onto the stack. The Gas cost

of the EXP is zero if the exponent zero, other wise it is 10 + 50× a factor related to

the size of the log of the exponent (see Equation 4.1). For this opcode, we repeat the

experiments with different exponent sizes (64-bits 128-bit and 256-bits).

Gas =

{
30, if input = 0

30 + 6× (sizeofinputinwords), if input > 0
(4.2)

The Gas price for the SHA3 opcode which computes the Keccak-256 hash for any input

is calculated according to Equation 4.2. The SHA3 opcode’s input parameters are the

memory offsets and size of the value intended to be hashed.

Note that the memory in the EVM architecture refers to a special memory area

where the contract gets fresh instances for variables. The SHA3 opcode is the only

opcode that retrieves its input parameters from both the stack and the memory [94].

We store the value we wish to hash in the memory and push its location and size onto

the stack, and then we perform the SHA3 opcode. In OpBench design, we benchmark

this opcode with various parameters sizes that are 1, 2, 3 and 4 words, and each word

is 32-bytes.

Gas =

{
20, 000, if input 6= 0 && storage = ∅
5000, otherwise

(4.3)

For the SSTORE opcode that stores a vale of word size into the contact’s storage. The

SSTORE is the only opcode that update the storage. We benchmark this opcode by

setting the contract’s storage to a non-zero value from a zero value and updating

the current storage as well as setting the contract’s storage to a zero value from a

non-zero value. The storage in the Ethereum refers to a persistent memory area. The

Gas cost of the SSTORE opcode is 20k units if the storage is set to a non-zero value

from a zero value, and 5k units for storage update as shown in Equation (4.3).

Gas =

{
2, if #word = 0

2 + 3× (# words), if #word > 0
(4.4)

The CALLDATACOPY and CODECOPY opcodes copy the the transaction’s input data

of as explained in Figure 2.4 in the current environment and the current running
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code in the EVM to the memory, respectively. The CALLDATACOPY opcode pops the

transaction’s input size out from the stack and copies the transaction’s input to the

memory. For this opcode, two sizes of parameters are used 1 and 2 words. The

CODECOPY opcode also pops the current executing code from the stack and copies the

popped code into the memory. Similar to CALLDATACOPY, we execute this opcode

with different transaction’s input data and different code sizes (i.e. 1 and 2 words).

The Gas calculation formulas for these opcodes are calculated according to Equation

(4.4).

Gas =

{
700, if #word = 0

700 + 3× (# words), if #word > 0
(4.5)

The EXTCODECOPY opcode is to copy an account’s code to the memory. The main

difference between this opcode and CODECOPY is that this opcode copy the contract’s

code from the the Ethereum’s state and the later from the EVM. It pops the account’s

address, the code’s start point, and the size of that code out from the stack and

searches on the Ethereum’s state (i.e. blockchain database), then copies the code to

the memory. To benchmark this opcode, we push the required parameters into the

stack and execute the actual opcode. This opcode is executed in three different sizes

(1, 2 and 3 words). The Gas cost formula is shown in 4.5. We run this opcode with

different code’s size to report the results.

4.4.3 Manipulating the Stack

OpBench needs to determine the execution time for a single execution of each opcode

from the execution of a smart contract that repeatedly executes the opcode. When

executing each opcode many times, we need to resolve two challenges: a) the stack

is limited, and b) POP and PUSH operations are needed to manipulate the stack, and

these need to be removed from the total execution time.

Limited Stack Size. The EVM stack has a maximum size of 1024 [94] and a

stack limit exception occurs when the stack size reaches 1024. Figure 4.2 illustrates

an example of executing the ADD opcode on the EVM and how the stack is utilized. To

execute the ADD opcode, two values are pushed onto the stack, then the ADD opcode is

executed by popping the values from the stack. The result of the execution is pushed

back onto the stack (see step 1 in the Figure 4.2). If we want to repeat the ADD

until the stack becomes full (i.e., more than 1024 times), it would result in an EVM

exception. We overcome this by utilizing the POP opcode that pops the result of the

execution from the stack (see step 2 in the Figure 4.2 [POP 3]). Therefore, the stack
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Category Operation Code Gas Cost Value (hex) Add to Stack Remove from Stack Description

STOP 0 0x00 0 0 Halts execution.
ADD 3 0x01 1 2 Addition operation
MUL 5 0x02 1 2 Multiplication operation.
SUB 3 0x03 1 2 Subtraction operation.
DIV 5 0x04 1 2 Integer division operation.
SDIV 5 0x05 1 2 Signed integer division operation (truncated).
MOD 5 0x06 1 2 Modulo remainder operation
SMOD 5 0x07 1 2 Signed modulo remainder operation.
ADDMOD 8 0x08 1 3 Modulo addition operation.
MULMOD 8 0x09 1 3 Modulo multiplication operation.
EXP FORMULA 0x0a 1 2 Exponential operation.

Arithmetic & Stop Operations

SIGNEXTEND 5 0x0b 1 2 Extend length of two’s complement signed integer.
LT 3 0x10 1 2 Less-than comparison.
GT 3 0x11 1 2 Greater-than comparison.
SLT 3 0x12 1 2 Signed less-than comparison.
SGT 3 0x13 1 2 Signed greater-than comparison.
EQ 3 0x14 1 2 Equality comparison.
ISZERO 3 0x15 1 1 Simple not operator.
AND 3 0x16 1 2 Bitwise AND operation.
OR 3 0x17 1 2 Bitwise OR operation
XOR 3 0x18 1 2 Bitwise XOR operation.
NOT 3 0x19 1 1 Bitwise NOT operation.

Comparison & Bitwise Logic Operations

BYTE 3 0x1a 1 2 Retrieve single byte from word
SHA3 SHA3 FORMULA 0x20 1 2 Compute Keccak-256 hash.

ADDRESS 2 0x30 1 0 Get address of currently executing account.
BALANCE 400 0x31 1 1 Get balance of the given account.
ORIGIN 2 0x32 1 0 Get execution origination address.
CALLER 2 0x33 1 0 Get caller address.
CALLVALUE 2 0x34 1 0 Message funds in wei.
CALLDATASIZE 2 0x36 1 0 Message data length in bytes.
CALLDATACOPY FORMULA 0x37 0 3 Copy message data.
CODECOPY FORMULA 0x39 0 3 Copy executing contract’s bytecode.
GASPRICE 2 0x3a 1 0 Get price of Gas in current environment.
EXTCODESIZE 700 0x3b 1 1 Get size of an account’s code.

Environmental Information

EXTCODECOPY FORMULA 0x3c 0 4 Copy an account’s code to memory.
BLOCKHASH 20 0x40 1 1 Hash of a specific block.
COINBASE 2 0x41 1 0 Get the block’s beneficiary address.
TIMESTAMP 2 0x42 1 0 Get the block’s timestamp.
NUMBER 2 0x43 1 0 Get the block’s number.
DIFFICULTY 2 0x44 1 0 Get the block’s difficulty.

Block Information

GASLIMIT 2 0x45 1 0 Get the block’s Gas limit.
POP 2 0x50 0 1 Remove item from stack.
MLOAD 3 0x51 1 1 Load word from memory.
MSTORE 3 0x52 0 2 Save word to memory.
MSTORE8 3 0x53 0 2 Save byte to memory.
SLOAD 200 0x54 1 1 Load word from storage.
SSTORE FORMULA 0x55 1 1 Save word to storage.
JUMP 8 0x56 0 1 Alter the program counter.
JUMPI 10 0x57 0 2 Conditionally alter the program counter.
PC 2 0x58 1 0 Program counter.
MSIZE 2 0x59 1 0 Get the size of active memory in bytes.
GAS 2 0x5a 1 0 Remaining Gas.

Stack, Memory, Storage and Flow Operations

JUMPDEST 1 0x5b 0 0 Mark a valid destination for jumps.
PUSH* 3 0x60 – 0x7f 1 0 Place * byte item on stack. 0 < ∗ ≤ 32
DUP* 3 0x80 – 0x8f * + 1 * Duplicate *th stack item. 0 < ∗ ≤ 16Push Operations
SWAP* 3 0x90 – 0x9f * + 1 * + 1 Exchange 1st and (* + 1)th stack items.
LOG0 FORMULA 0xa0 0 2 Append log record with no topics.
LOG1 FORMULA 0xa1 0 3 Append log record with one topic.
LOG2 FORMULA 0xa2 0 4 Append log record with two topics.
LOG3 FORMULA 0xa3 0 5 Append log record with three topics.

Logging Operations

LOG4 FORMULA 0xa4 0 6 Append log record with four topics.
CREATE 32000 0xf0 1 3 Create a new account with associated code.
CALL FORMULA 0xf1 1 7 Message-call into an account.
CALLCODE FORMULA 0xf2 1 7 Call a method in another contract.
RETURN 0 0xf3 0 2 Halt execution returning output data.
DELEGATECALL FORMULA 0xf4 1 6 calls a method in another contract, using this contract’s storage.
INVALID NA 0xfe NA NA Designated invalid instruction.

System operations

SELFDESTRUCT FORMULA 0xff 0 1 Halt execution.

Table 4.1: List of all operation codes (opcodes) in the Ethereum Virtual Machine
[94].

is empty after each execution. The top part of Figure 4.2 shows that without using

the POP opcode, we would end up with a stack limit exception after executing 1024

opcodes. The bottom part illustrates that with our proposed technique (i.e., with

POP) we are able to execute any desired number of opcodes.

Removing POP and PUSH Overhead. Almost all the EVM’s opcodes require

at least one element to be retrieved from the stack. That is, one or more PUSHs are

needed to fill the stack and one or more POPs to retrieve parameters. The execution of

PUSH and POP affects the overall execution time, so we need to differentiate between the

CPU time used by the opcode of interest and that for the stack operations. However,

the EVMs provide very high granularity timing support allowing to set a timer before

and after the execution of each opcode on the EVM. The output result of OpBench

is a list of opcodes and their execution times (see Listing 4.2). Hence, in this case

the execution times of PUSH and POP are separated from the actual opcode, in this
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Figure 4.2: Utilizing the POP opcode to overcome the stack size limitation.

case the ADD opcode. The accuracy of setting the timer is achieved by utilizing the

Profile module in Python, which uses the platform-specific time function to provide

the most accurate time calculation possible [59]. In this way, we get the most accurate

measurement of the execution time. In Golang, we make use of the build-in benchmark

module in [32], with the same effect.

4.5 Implementation

In this section, we present the implementations of our OpBench system for three

Ethereum clients: PyEthApp [46], Go-Ethereum [44] and Parity [45]. We choose

Go-Ethereum and Parity clients since they are the most popular platforms [52] and

PyEthApp because the initial Gas allocation for opcodes is based on a benchmark

performed on the PyEthApp client “[personal communication with Vitalik Buterin,

2016]”.

4.5.1 PyEthApp

OpBench system in PyEthApp has two phases. In the first phase, we collect all json

files generated by phase 1 of OpBench. In the second phase, presented in Listing 4.3,

the contract’s bytecodes are executed on the PyEthApp client. The execution process

of the contract’s bytecode involves setting up the blockchain configurations (Line 11-

16), state configurations (Line 17-21), the contract’s account configuration (Line 22-

30) and the contract deployment transaction (Line 34). All the configurations data

are retrieved from the json files generated by phase 1.
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Next, after preparing the blockchain and Ethereum’s state as well as deploying

the contract’s bytecodes in the blockchain, we execute the contract’s bytecodes on

the EVM by submitting a transaction (Line 45). The execution of the bytecodes is

done in a serialized manner. Thus, the EVM loops over the bytecodes and execute

each opcode separately. By utilizing the Profile module provided by Python, which

according to [59] provides a statics analysis about the the CPU performance, we store

each loop’s execution time in a data type list (Line 48). Finally, we calculate the upper

bounds, the lower bounds, the confidence interval and the standard deviation for each

opcode using Statistics, SciPy modules [29, 30] and export the final results (Line 52).

The final results are exported as a json file that looks like Listing 4.2.
1 import t r an s a c t i on s
2 import block
3 from vm import vm execute , Message , CallData
4 . . .
5 de f p r o f i l e vm t e s t ( params , ) :
6 # f i l e = open (”Extime . csv ” , ”a ”)
7 pre = params [ ' pre ' ]
8 exek = params [ ' exec ' ]
9 env = params [ ' env ' ]

10 # Set t ing up the Blockchain c on f i g u r a t i o n s i . e . , Genes is block , d i f f i c u l t y , gas l im i t ,
coinbas , e t c . l i n e s 11 to 30

11 blkh = block . BlockHeader ( prevhash=env [ ' previousHash ' ] . decode ( ' hex ' ) , number=in t ( env [ '
currentNumber ' ] ) ,

12 co inbase=env [ ' currentCoinbase ' ] ,
13 d i f f i c u l t y=in t ( env [ ' c u r r e n tD i f f i c u l t y ' ] ) ,
14 g a s l im i t=in t ( env [ ' currentGasLimit ' ] ) ,
15 timestamp=in t ( env [ ' currentTimestamp ' ] ) )
16 block . Block ( blkh , db= env )
17 s t a t e = State ( env= env , block number=in t ( env [ ' currentNumber ' ] ) ,
18 b l o ck co inba s e=env [ ' currentCoinbase ' ] ,
19 b l o c k d i f f i c u l t y=in t ( env [ ' c u r r e n tD i f f i c u l t y ' ] ) ,
20 g a s l im i t=in t ( env [ ' currentGasLimit ' ] ) ,
21 timestamp=in t ( env [ ' currentTimestamp ' ] ) )
22 f o r address , h in pre . i tems ( ) :
23 s t a t e . s e t nonce ( address , i n t (h [ ' nonce ' ] ) )
24 s t a t e . s e t ba l an c e ( address , i n t (h [ ' balance ' ] ) )
25 s t a t e . s e t ba l an c e ( ” cd1722f3947def4cf144679da39c4c32bdc35681 ” , i n t (h [ ' balance ' ] ) )
26 s t a t e . s e t c ode ( address , h [ ' code ' ] [ 2 : ] . decode ( ' hex ' ) )
27 f o r k , v in h [ ' s to rage ' ] . i t e r i t em s ( ) :
28 s t a t e . s e t s t o r a g e da t a ( address ,
29 u . b i g e nd i a n t o i n t (k [ 2 : ] . decode ( ' hex ' ) ) ,
30 u . b i g e nd i a n t o i n t (v [ 2 : ] . decode ( ' hex ' ) ) )
31 # s e t t i n g up and s i gn ing the Ethereum t ran sa c t i on to deploy the byteCode .
32 sender = exek [ ' o r i g i n ' ] # a party that o r i g i n a t e s a c a l l
33 recvaddr = exek [ ' address ' ]
34 tx = t r an s a c t i on s . Transact ion (
35 nonce=s t a t e . get nonce ( exek [ ' c a l l e r ' ] ) ,
36 ga sp r i c e=in t ( exek [ ' gasPr i ce ' ] ) ,
37 s t a r t g a s=in t ( exek [ ' gas ' ] ) ,
38 to=recvaddr ,
39 value=in t ( exek [ ' value ' ] ) ,
40 data=exek [ ' data ' ] [ 2 : ] . decode ( ' hex ' ) , r=1, s=2, v=27)
41 tx . s ender = sender
42 ext = pb .VMExt( s tate , tx )
43 msg = Message ( tx . sender , tx . to , tx . value , tx . s ta r tga s , CallData ( [ ord (x ) f o r x in tx . data ] )

)
44 # Blockchain t r an sa c t i on to execute the byteCode . .
45 success , gas remained , comStack , ListOp = vm execute ( ext , msg , exek [ ' code ' ] [ 2 : ] . decode ( '

hex ' ) )
46 s t a t e . commit ( )
47 # Opcodes and t h e i r execut ing t imes f o r each
48 time , ops = [ x [ 'Time ' ] f o r x in ListOp i f x [ 'Time ' ] == 'T ' ] , [ x [ ' op ' ] f o r x in ListOp i f x

[ 'OpC ' ] == 'Op ' ]
49 . . .
50 # Write the output r e s u l t s to f i n a lR e s u l t f i l e
51 open ( ' f i n a lR e s u l t . j son ' , 'w ' ) . wr i t e ( j son . dumps( p r e p a r e f i l e s ( r e c u r s i v e l i s t ( sys . argv [ 1 ] ) ) ,

indent=4) )

Listing 4.3: Executing the contract’s bytecode generated by phase 2 in PyEthApp.
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4.5.2 Go-Ethereum

Listing 4.4 shows a part of OpBench implementation in Golang. In order to bench-

mark opcodes in Golang, a separate method for each opcode must be implemented.

This is not the case in Python where we can benchmark all opcodes in a single run

by reading bytecodes from the generated json files (Phase 2 in Figure 4.1). In List-

ing 4.4, we show the benchmark method for the ADD256 opcode line 32. Hence, for

opcodes which require inputs with different sizes, we need to implement a separate

method for each of them (i.e., methods for ADD64 and ADD128, etc.).

In the Go-Ethereum benchmark implementation, as mentioned above, we use the

contract’s bytecodes created by the Python script (Phase 2 of Figure 4.1) (Line 13),

and then utilize the benchmark module provided by Golang. The benchmark module

take all the required parameters and execute the opcode on the EVM (Lines 22-28).

In the Listing (Lines 12-15), we generate the transactions that deploy and execute

the bytecodes by retrieving the contract account state as well as the EVM state

configurations from the json files. Finally, the execution transaction is executed in

(Line 28).

The execution of the opcode is repeated until the desired benchmark runtime

is reached (default one second) [21]. We set the time high enough (10ns) so that

opcodes are executed sufficiently often and we check the accuracy by calculating a

confidence interval. Golang provides statistical results about the execution time and

the confidence interval as well as the standard deviation [21].
1 package vm
2 import (
3 ” github . com/ethereum/go−ethereum/ core ”
4 )
5 func opBenchmark ( bench ∗ t e s t i n g .B, op func ( pc ∗uint64 , evm ∗EVM, cont rac t ∗Contract , memory ∗

Memory , s tack ∗Stack ) ( [ ] byte , e r r o r ) , args . . . s t r i n g ) {
6 memory . s t o r e = common . Hex2Bytes ( ”0x . . ” )
7 cont rac t := NewContract ( AccountRef (common . HexToAddress ( ” 05600160010150 . . ” ) ) , AccountRef (

common . HexToAddress ( ”x33333322” ) ) , new( big . Int ) , 1000)
8 env . StateDB . AddBalance (common . HexToAddress ( ”1233” ) , b ig . NewInt (1000) )
9 env . StateDB . AddBalance (common . HexToAddress ( ”0x1000000” ) , b ig . NewInt (1000) )

10 byteArgs := make ( [ ] [ ] byte , l en ( args ) )
11 f o r i , arg := range args {byteArgs [ i ] = common . Hex2Bytes ( arg )}
12 pc := uint64 (0)
13 bench . ResetTimer ( )
14 f o r i := 0 ; i < bench .N; i++ {
15 f o r , arg := range byteArgs {
16 a := new( big . Int ) . SetBytes ( arg )
17 stack . push ( a )
18 }
19 bench . StartTimer ( )
20 op(&pc , env , contract , memory , s tack )
21 bench . StopTimer ( )
22 stack . pop ( )
23 }
24 }
25 func BenchmarkOpAdd256 (b ∗ t e s t i n g .B) {
26 x := ”0802431 afcbce1fc194c9eaa417b2fb67dc75a95db0bc7ec6b1c8af11df6a1da9 ”
27 y := ”a1f5aac137876480252e5dcac62c354ec0d42b76b0642b6181ed099849ea1d57 ”
28 opBenchmark (b , opAdd , x , y )
29 }

Listing 4.4: The Golang implementation of OpBench (part of it).
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4.5.3 Parity

As stated in Subsection 2.4.5 , the Parity client implements the Ethereum protocol

in Rust [87]. Similar to Python, benchmarking in Rust is not as simple as it is in

Golang. Consequently, our benchmark implementation uses the bytecodes created by

phase 1 for each actual opcode and using the Solidity compiler, we create for each

opcode file a rust executable file. The solidity compiler takes the bytecode of each

actual code as inputs and outputs an executable bytecode for the EVM. For each

test, we loop over 2 million times of a group of 160 the actual opcode, along with

will some required PUSHs and POPs. So the actual opcode is executed 320,000,000

times. As discussed in Subsection 4.4.3, the reason for introducing the PUSHs is to

get a value on the stack to execute, the POPs empty the stack and start a new run

after executing the previous run. Similar to the other clients, the numbered being

benchmarked keep the inputs executed on with 64, 126 and 256-bits. We benchmark

each opcode with different sizes because depending on the implementation the smaller

sizes can be computed more quickly [68].

All files generated by the Python script (Phase 1 in Figure 4.1) are compiled

using the Solidity compiler, then are executed on the Parity client as a smart con-

tract bytecode. Thus, the generated bytecode can be easily deployed and run on the

Ethereum blockchain. The contract’s bytecodes are deployed and executed utilizing

the debugging and testing tool (EVMBIN) that is provided by Ethereum2. Acconding

to [42], the EVMBIN tool takes the Ethereum state file (json) generated by phase 1

and similar to the other clients it configures the blockchain, state, and the contract’s

account. Then it deploys and executes the bytecodes. The EVMBIN reports the

execution time and the Gas used. To remove the overhead of PUSH and POP opcodes,

We use some Python scripts 3 to analysis the result and to isolate the overhead of

PUSHs and POPs from the actual opcodes. The scripts subtract the overhead of the

start-up and the shutdown and the overhead of both PUSHs and POPs opcodes from

the overall execution time. Therefore, the results of the benchmark are processed to

be accurate.

Listing 4.5 depicts the implementation snippet of OpBench system in the Parity

client. In (Lines 8-12), we utilize the Solidity compiler to compile phase 1 outputs

into an executable file that can be run on parity by the EVMBIN. The outputs of the

Solidity compiler are listed in (Lines 17-21). The contract’s bytecode deployment and

execution are presented in (Line 3). The execution outputs, which has the execution

2https://github.com/paritytech/parity-ethereum/tree/master/evmbin
3https://github.com/Amjad13?tab=repositories
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time for each opcode and its Used Gas , are export as a log file. We use a Python

script that converts the log file into a csv file. Thus, the final execution outputs of

the Parity client implementation looks like Listing 4.2.
1
2 i f d e f PARITY
3 PARITY = $ ( c a l l STATS, pa r i ty ) $ (PARITY) −−gas 1000000000000000 −−code ` cat $ ∗ . bin ` ; touch $

∗ . ran
4 end i f
5 STATS = time −p
6 %.ran : %.bin
7 $ ( c a l l PARITY )
8 %.ran : %.c
9 gcc −O0 −S $ ∗ . c

10 gcc −o $∗ $ ∗ . s
11 $ ( c a l l STATS,C) . / $∗
12 touch $ ∗ . ran
13 .PRECIOUS : %.bin
14 %.bin : %. s o l
15 $ ( c a l l SOLC SOL )
16 a l l : ops programs
17 ops : \
18 add256 . ran \
19 mul256 . ran \
20 sub256 . ran \
21 div256 . ran \
22 . . .
23 rerun :
24 rm ∗ . ran

Listing 4.5: The Parity implementation of OpBench (part of it).

4.6 Conclusion

In this chapter we presented OpBench, an Ethereum performance benchmark system

for smart contract operation code and, to the best of our knowledge, the first of its

kind. OpBench assesses, for each opcode, the CPU effort required by the EVM for

its execution. We implemented OpBench for three different clients, Python-based

PyEthApp, Rust-based Parity and Go-based Go-Ethereum.

The work demonstrates the feasibility to benchmark opcodes, discussing both

design and implementation. The results obtained from OpBench, presented in the

following chapter, establish if the award received when executing smart contracts is

proportional to the cost of executing. This is important for several reasons described

in the chapter’s introduction: possible future adjustment of advertised fees associ-

ated with opcodes, selection of contracts based on opcodes present within the smart

contract and to help select hardware and software configurations that optimize the

return on investment.
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Chapter 5

Experimental Results and
Discussion

5.1 Summary

In the previous chapter, we have presented a details design framework and the im-

plementations for our proposed OpBench system in three different Ethereum clients,

Python-based PyEthApp, Rust-based Parity and Go-based Go-Ethereum. As we

know, OpBench is the first of it kind that assesses the invested CPU overheads re-

quired by the EVM for its execution for each opcode.

In this chapter, we present two experimental results, one for six system configura-

tions, running two different implementations using three different hardware platforms

(and operating systems), and the other for six system configurations, running three

different implementations using the same hardware platform. These experiments

demonstrate the validity of OpBench approach across platforms. It also allows us to

compare PyEthApp, Go-Ethereum and Parity, with respect to CPU usage for various

opcodes as well as for the fee rewarded per unit of CPU time and it allows us to

compare operating systems, in particular, Linux and Windows.

The results show that the static fees set by Ethereum are not always proportional

to the invested CPU time, with up to an order of magnitude difference across opcodes.

The results also show a markable difference in performance between clients, with the

Parity client outperforming the other clients across machines and OS configurations.

Moreover, the results show that the Windows systems outperform the other system

in all clients.

The structure of this chapter is as follow. In Section 5.2, we present the first set

of experiments for two Ethereum clients on different hardware platforms. The second
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set of experiments for three Ethereum clients is presented in Section 5.3. Section 5.4

provides the validation of the results, and we conclude the chapter in Section 5.5.

5.2 First Experimental Results

We conduct our experiments using three different machines listed in Table 5.1. Having

three different clients (Go-Ethereum, Parity and PyEthApp), our results concern nine

different platforms, denoted as Windows Go-Ethereum, Windows Parity, Windows

PyEthApp, Linux Go-Ethereum, Linux Parity, Linux PyEthApp, Mac Go-Ethereum,

Mac Parity, and Mac PyEthApp. Note that our experiments aim to compare the

Go-Ethereum, Parity and PyEthApp clients on different platforms, we do not aim

to compare operating systems. In Section 5.3, we consider operating systems by

comparing three clients running on the same hardware platforms.

Machine MacBook Pro 2.8GHz Desktop 3.2GHz Desktop 3.6GHz

CPU Intel i5 2.8 GHz Intel i7 3.20GHz Intel i7 3.60GHz
Cores 2 4 6

Memory 8GB 16GB 32GB
OS MacOS 10.14.6 Ubuntu 16.04.3 LTS Windows 10

Table 5.1: Experimental 1 platforms.

The performance benchmark results for all opcodes are provided in Table 5.2, in

microseconds (µs). We note that all confidence intervals are exceedingly tight (95%-

Confidence Interval ≈ 0.005µs in average), and are not provided in the table. As

explained in Section 4.5, for PyEthApp, we executed all opcodes 100k times, collecting

the average time and calculating a confidence interval. In Go-Ethereum, each opcode

is executed until the desired benchmark time is reached, typically resulting in yet

more samples than in PyEthApp, and again, a very tight confidence interval.

We will discuss the benchmark results in stages. First, we consider the CPU time

itself, in absolute value and relative to the fastest platform, respectively. Then we

discuss the ratio of the Used Gas and CPU usage in order to identify the reward

for the invested CPU time. We summarize the main insights that follow from our

discussion up front:

• Parity and Go-Ethereum clients are generally considerably faster (more prof-

itable) than the PyEthApp client, regardless of the machine.
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• The performance varies across the clients and the operating systems. For ex-

ample, the Linux 3.2 GHz machine outperforms the Windows 3.6 GHz machine

on the PyEthApp client, while the reverse is true for the Go-Ethereum client.

• There is a considerable difference between the fee obtainable per CPU time unit

for different opcodes and this difference can be more than an order of magnitude.

• PyEthApp clients are able to gain higher fees for opcodes in the Arithmetic

category compared to Go-Ethereum, and Go-Ethereum performs better across

opcodes in the Environment category.

PyEthApp Go-Ethereum Parity
Category Opcode

Windows Linux MAC Windows Linux MAC Windows Linux MAC
Used Gas

ADD 0.787 0.509 2.061 0.168 0.296 0.347 0.61 0.665 0.659 3
ADDMOD 1.179 0.680 1.704 0.435 0.632 0.762 1.032 1.2 1.504 8
DIV256 0.912 0.555 1.405 0.375 0.487 0.581 2.283 2.331 2.792 5
EXP64 6.558 5.055 9.473 16.664 20.407 11.902 1.347 1.453 1.746 19.961
EXP128 26.010 11.070 20.803 17.447 21.675 24.410 1.947 2.054 2.547 50
EXP265 118.880 41.033 59.171 20.834 25.217 29.909 5 5.099 6.783 170
MOD 0.921 0.563 1.490 0.304 0.447 0.578 0.725 0.799 0.882 5
MUL 0.998 0.495 1.320 0.226 0.373 0.436 0.627 1.24 0.651 5
MULMOD 1.856 1.064 3.049 0.644 0.834 0.988 1.075 0.809 1.811 8
SDIV 1.734 1.095 4 0.521 0.651 0.787 0.774 0.763 0.885 5
SIGNEXTEND 0.923 0.588 1.463 0.195 0.329 0.384 0.699 0.763 0.788 5
SMOD 1.535 1.026 3.217 0.542 0.708 0.996 0.509 0.5 0.512 5

Arithmetic Operations

SUB 0.810 0.444 1.467 0.170 0.298 0.355 0.606 0.658 0.646 3

AND 0.807 0.476 1.369 0.150 0.276 0.328 0.703 0.777 0.796 3
BYTE 0.919 0.579 1.363 0.146 0.274 0.319 0.715 0.777 0.809 3
EQ 0.765 0.427 1.103 0.148 0.275 0.328 0.604 0.647 0.649 3
GT 0.720 0.389 1.673 0.148 0.274 0.326 0.615 0.663 0.659 3
ISZERO 0.589 0.360 0.899 0.074 0.135 0.160 0.665 0.706 0.72 3
LT 0.678 0.382 1.063 0.148 0.274 0.328 0.612 0.662 0.655 3
OR 0.863 0.489 1.286 0.152 0.276 0.326 0.701 0.77 0.788 3
SGT 1.042 0.658 2.267 0.159 0.292 0.340 0.719 0.785 0.808 3
SLT 1.043 0.630 1.610 0.160 0.288 0.342 0.72 0.79 0.81 3

Comparison & Bitwise Logic Operations

XOR 0.857 0.527 1.853 0.152 0.286 0.331 0.58 0.6 0.601 3

SHA3-1 12.260 18.307 37.026 1.305 1.584 1.876 1.183 1.262 1.379 36
SHA3-2 15.623 21.712 65.446 2.085 2.417 2.884 1.163 1.266 1.44 42
SHA3-3 23.273 28.827 67.432 3.539 4.106 4.950 1.168 1.267 1.46 54

SHA3 Operations

SHA3-4 40.199 41.915 102.093 6.470 7.478 8.963 1.585 1.699 1.95 78

ADDRESS 3.491 2.767 5.833 0.097 0.134 0.169 0.608 0.647 0.661 2
BALANCE 7.234 5.268 10.931 0.813 0.971 1.132 1.175 1.264 1.455 20
CALLDATACOPY1 1.793 1.337 3.225 0.287 0.314 0.376 0.766 0.807 0.964 3
CALLDATACOPY2 42.565 33.863 56.395 0.290 0.314 0.376 0.742 0.811 0.851 72
CALLER 4.927 3.635 8.320 0.071 0.109 0.137 0.614 0.646 0.66 2
CALLVALUE 0.429 0.283 0.646 0.034 0.041 0.047 0.604 0.642 0.649 2
CODECOPY1 13.029 10.567 17.838 0.358 0.420 0.509 0.738 0.804 0.926 9
CODECOPY4 23.653 19.391 32.267 0.359 0.421 0.507 0.738 0.804 0.882 15
EXTCODECOPY1 10.027 7.368 19.287 0.640 0.741 0.887 0.85 0.952 1.097 20
EXTCODECOPY4 22.430 17.630 29.730 0.639 0.743 0.893 1.89 2.31 2.44 26
EXTCODECOPY8 33.930 27.429 45.075 0.639 0.742 0.892 2.84 3.28 3.66 32
EXTCODESIZE 8.128 6.203 11.984 0.996 1.319 1.503 0.637 0.658 0.689 20
GASPRICE 0.593 0.410 0.859 0.033 0.040 0.046 0.599 0.64 0.648 2

Environmental Information

ORIGIN 4.874 3.627 8.116 0.069 0.110 0.136 0.612 0.648 0.661 2

BLOCKHASH 6.895 12.297 27.462 0.110 0.126 0.149 0.659 0.737 0.725 20
COINBASE 3.633 2.778 7.876 0.072 0.107 0.133 0.616 0.649 0.66 2
DIFFICULTY 0.430 0.267 0.799 0.045 0.051 0.061 0.597 0.64 0.65 2
GASLIMIT 0.439 0.285 0.654 0.072 0.081 0.096 0.598 0.641 0.649 2
NUMBER 0.404 0.245 0.597 0.045 0.051 0.063 0.6 0.643 0.65 2

Block information

TIMESTAMP 0.387 0.238 0.540 0.045 0.051 0.061 0.545 0.55 0.567 2

GAS 0.552 0.377 0.812 0.059 0.069 0.081 0.599 0.644 0.65 2
MLOAD 8.819 6.952 15.716 0.365 0.589 1.036 0.666 0.73 0.735 3
MSIZE 0.543 0.366 0.774 0.059 0.070 0.082 0.601 0.639 0.649 2
MSTORE 3.703 2.834 7.861 0.344 0.518 0.853 0.684 0.704 0.727 3
MSTORE8 0.804 0.594 1.583 0.250 0.335 0.772 0.668 0.721 0.733 3
PC 0.519 0.347 1.132 0.041 0.045 0.061 0.6 0.641 0.65 2
POP 0.346 0.224 0.607 0.081 0.123 0.135 0.605 0.655 0.644 2
SLOAD 2.374 1.994 4.002 0.616 0.723 1.171 0.701 0.771 0.789 50
SSTORE1 8.915 8.809 15.443 3.687 5.682 7.745 0.824 0.885 1.048 5000

Stack, Memory, Storage and Flow Operations

SSTORE2 10.394 9.496 16.926 7.169 12.518 14.625 0.834 0.9 1.201 20000

SWAP1 0.341 0.312 0.605 0.022 0.025 0.024 0.55 0.568 0.572 3
DUP1 0.340 0.241 0.524 0.078 0.094 0.093 0.594 0.641 0.634 3Push, Dup, Swap Operations
PUSH1 0.376 0.259 0.594 0.098 0.117 0.116 0.64 0.66 0.69 3

Table 5.2: The average CPU time for each of the opcodes for all platforms in µs. The
right-most column provides the Used Gas.
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Figure 5.1: CPU time (in µs) for each opcode on a logarithmic scale.

5.2.1 Absolute CPU time

Figure 5.1 shows the graph with the CPU time required for each of the opcodes on

all the nine platforms, as given in Table 5.2. The x -axis shows the same opcodes as

in the table, and note that the CPU time on the y-axes is depicted on a logarithmic

scale. Many of the opcodes take in the order of 1 µs or less to execute, but some take

considerably longer, in the order of 0.1 milliseconds. There are several examples of

opcodes that take more than 0.1 µs in Figure 5.1, e.g., the exponential (EXP) and the

hash (SHA3).

From Figure 5.1 it is clear that the Go-Ethereum client outperforms both the Par-

ity and PyEthApp clients on all three machines (see the green, blue and yellow lines):

Mac 2.8Ghz, Linux 3.2GHz and Windows 3.6GHz. This gap is particularly clear in

opcodes belonging to Comparison, Environment, and Block information categories.

For example, the three machines consume between 4 and 8 µs to execute ORIGIN on

the PyEthApp client, and between 0.6 and 0.66 µs on the Parity client, while they

consume less than 0.14 µs on the Go-Ethereum client. Similarly, the machines con-

sume between 30 and 60 µs to execute CALLDATACOPY2 on the PyEthApp client, and

on Parity client consumes between 0.74 and 0.85 µs, while they consume less than a

half executing on the Go-Ethereum client.
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Figure 5.2: CPU time for each opcode, relative to the fastest platform (Windows
Go-Ethereum 3.6GHz).

5.2.2 Relative CPU time

In order to better compare the CPU usage results for different platforms, Figure 5.2

shows the CPU time relative to the fastest platform, Windows Go-Ethereum 3.6Hz.

In other words, we divided the results of each individual platform by the results of

Windows Go-Ethereum, and, as a consequence, Windows Go-Ethereum shows as a

straight line at 1 in Figure 5.2. Note that the Windows Go-Ethereum platform was

not the fastest for some EXP opcodes, as is visible on the left side of the range in

Figure 5.2.

The Go-Ethereum client generally outperforms the other clients: the three higher

lines in Figure 5.2 correspond to the PyEthApp clients and the three lower ones

to the Go-Ethereum clients, while the three middle ones to the Parity clients. The

exceptions are EXP, the SHA3 and SSTORE opcodes, where the Parity client performs

better. The Mac 2.8 GHz machine is slower than other machines on both clients and

this is expected since it has lower specifications. However, the Mac machine does

outperform the Go-Ethereum client in some of the EXP opcodes (e.g., EXP64 on the

Go-Ethereum client). In addition, the Mac machine is as fast as the Linux machine

in the Go-Ethereum client for DUP, PUSH and SWAP opcodes.

There is a very interesting difference between the PyEthApp and both Go-Ethereum

and parity clients in terms of the OS on which they perform best. For PyEthApp,
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Figure 5.3: Used Gas (per [94]) per CPU time unit (in Gas/µs). Reward and cost
are proportional for a platform if the lines are straight.

the Linux 3.2 GHz machine performs better than the Windows 3.6 GHz machine,

whereas, for the other clients, the Windows 3.6 GHz machine outperforms the Linux

3.2 GHz. The only exception is for the SHA3 opcodes, where the Windows machine

is better on both clients.

5.2.3 Absolute gas/CPU

The critical issue for the successful operation of Ethereum is not the CPU time

required for an opcode, but the ratio between the fee obtained and the CPU invested.

This is displayed in Figure 5.3, which shows the amount of Used Gas per CPU µs for

all opcodes. Recall that the Used Gas is given in the rightmost column of Table 5.2

and is calculated based on [94]. The higher the Used Gas, the more profit a miner

makes.

Ideally, the curves in Figure 5.3 for each platform would be straight lines to have

the fee and cost proportional to each other across all opcodes. Unfortunately, there

is a considerable deviation between the best and worst return for various platforms,

in the extremes more than two orders of magnitude.

Comparing the nine platforms, the conclusions from the previous two graphs re-

main valid, since all nine curves are scaled in the same manner, so Go-Ethereum

outperforms the other clients. The range of values for the respective clients are sig-

nificantly different. For the Go-Ethereum client, the average collected gas per µs of
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Figure 5.4: Normalized Used Gas per CPU time unit (results in 5.7 divided by the
platform’s result for opcode Byte). Reward and cost are proportional if the lines are
straight at value 1.

CPU usage varies between 54 and 98 units of gas, while it ranges from 26 and 49 in

the PyEthApp client and in the Parity client it range from 367 to 513. Therefore,

the average amount of the awarded gas in the Parity client is about six time that of

the Go-Ethereum client and a bout fourteen time that of the PyEthApp client.

In all clients, SSTORE opcodes are the most profitable ones since the awarded gas

is higher than the required computation time. SSTORE is the only opcode available to

modify storage. Therefore, the cost to the miner is in terms of the storage access, and

it is priced based on storage access, not CPU use. For this performance benchmark

study, it should be considered an outlier. Two other opcodes return a high fee per

CPU time unit, namely CALLDATACOPY2 and BLOCKHASH. In the PyEthApp client

and the Parity client, opcodes such as CALLER, ORIGIN and MLOAD return the least

value per CPU time unit, with less than one unit of gas return per CPU µs. In the

Go-Ethereum client, opcodes such as EXP64 and EXP128 are the most expensive ones.

5.2.4 Normalized gas/CPU

To remove the platform-specific element from the results, we introduce normalized

results for the gas used per µs in Figure 5.4. In this figure, the ideal behaviour of

any of the six platforms would imply the result is a straight line with value 1. To
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obtain this graph, we selected the ‘median’ opcode, namely BYTE (second left in the

Comparison & Bitwise Logic Operations). For each platform, we took the Gas/CPU

value of BYTE and divided all other opcode results for that platform by this value.

None of lines stays close to the value 1, which means that in all client combinations,

there is considerable different between the opcodes in term of the fee rewarded per

CPU µs. In fact, for all clients, the curves for the three machines follow a very similar

pattern across the opcodes. Particularly the opcodes in the Arithmetic category

provide a higher fee with the Parity client than with the other clients. At the same

time, with respect to the Environment category, Go-Ethereum receives the higher fee.

This implies that miners who run Parity client get better profit than the other clients

when executing smart contracts that have opcodes in the Arithmetic category, while

miners that use Go-Ethereum client perform better than other clients miners if the

smart contract has more opcodes in the Environment category.

5.3 Second Experimental Results

This section presents and discusses the results of the second experiments with the

implementations of OpBench run on identical hardware. We do this for three clients:

Go-Ethereum, PyEthApp and Parity. We conduct our experiments using machines

shown in Table 5.3. Therefore, our results in this section concern six different plat-

forms denoted as Windows Go, Windows PyEthApp, Windows Parity, Linux Go,

Linux PyEthApp and Linux Parity.

Machine Desktop 3.5GHz Desktop 3.5GHz

CPU Intel i7 3.50GHz Intel i7 3.50GHz
Cores 6 6

Memory 32GB 32GB
OS Ubuntu 18.04.3 LTS Windows 10

Table 5.3: Experimental 2 platforms.

The performance benchmark results for all opcodes are provided in Table 5.4, in

microseconds (µs). We note that all confidence intervals are exceedingly tight, and are

not provided in the table. As explained in Section 4.5, for PyEthApp, we executed all

opcodes 100k times, collecting the average time and calculating a confidence interval.

In Go-Ethereum, each opcode is executed until the desired benchmark time is reached,

typically resulting in yet more samples than in PyEthApp, and again, a very tight

confidence interval. In Parity, the actual opcode is executed 320,000,000 times, with
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similar to the other clients, a tiny confidence interval (95%-Confidence Interval ≈
0.005 µs in average).

The left-most column in Table 5.4 provides the categories into which Ethereum

opcodes are typically classified, as explained in Subsection 4.4.2. We successfully

benchmarked the opcodes in six out of eleven categories. As stated in Subsection 4.4.2,

the two categories that we could not benchmark are Logging and System opcodes. For

convenience of presentation, we merged PUSH, DUP, and SWAP into a single category,

thus resulting in seven categories. Note that, the results in Table 5.4 do not include

all results of OpBench system, we remove some opcodes that their computation are

affected by the input size parameters such as ADD64 and ADD128. Full results are

available in [4].

We will discuss the benchmark results in stages. First, we consider the CPU time

itself, in absolute value and relative to the fastest platform, respectively. Then we

discuss the ratio of the Used Gas and CPU usage in order to identify the reward for

the invested CPU time. Finally, we compare Linux with Windows using the same

hardware platform running three different clients with each other.

We summarize the main insights that follow from our discussion up front:

• The Parity client is generally considerably faster (and thus more profitable)

than the other clients, regardless of the type of the machine.

• The performance varies across the clients and the OSs. For example, the Linux

3.2 GHz machine outperforms the Windows 3.2 GHz machine on the PyEthApp

client, while the reverse is valid for the Go-Ethereum and Parity clients.

• There is a considerable difference between the fee obtainable per CPU time

unit for different opcodes. This difference between the profit made per time

unit from different opcodes can be more than an order of magnitude.

• PyEthApp clients are able to gain higher fees for opcodes in the Arithmetic

category compared to Go-Ethereum and Go-Ethereum performs better across

opcodes in the Environment category. Also, Parity clients perform better than

the other clients in most of the categories.
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PyEthApp Go-Ethereum Parity
Category Opcode

Windows Linux Windows Linux Windows Linux
Used Gas

ADD 0.79 0.51 0.60 0.62 0.61 0.67 3
ADDMOD 1.18 0.68 1.12 1.33 1.03 1.20 8
DIV 0.91 0.56 1.67 1.74 2.28 2.33 5
EXP64 6.56 5.05 13.86 14.16 1.35 1.45 19.9607
EXP128 26.01 11.07 26.47 26.97 1.95 2.05 50
EXP265 118.88 41.03 56.34 57.56 5.00 5.10 170
MOD 0.92 0.56 0.72 0.74 0.73 0.80 5
MUL 1.00 0.50 1.18 1.09 0.63 1.24 5
MULMOD 1.86 1.06 1.11 1.75 1.08 0.81 8
SDIV 1.73 1.09 1.76 1.15 0.77 0.76 5
SIGNEXTEND 0.92 0.59 1.22 1.29 0.70 0.76 5
SMOD 1.53 1.03 0.50 0.52 0.51 0.50 5

Arithmetic Operations

SUB 0.81 0.44 0.61 0.64 0.61 0.66 3
AND 0.81 0.48 0.64 0.66 0.70 0.78 3
BYTE 0.92 0.58 0.65 0.67 0.72 0.78 3
EQ 0.77 0.43 0.57 0.59 0.60 0.65 3
GT 0.72 0.39 0.58 0.58 0.62 0.66 3
ISZERO 0.59 0.36 0.59 0.62 0.67 0.71 3
LT 0.68 0.38 0.58 0.59 0.61 0.66 3
OR 0.86 0.49 0.65 0.67 0.70 0.77 3
SGT 1.04 0.66 0.65 0.68 0.72 0.79 3
SLT 1.04 0.63 0.66 0.67 0.72 0.79 3

Comparison & Bitwise Logic Operations

XOR 0.86 0.53 0.55 0.56 0.58 0.60 3
SHA3-1 12.26 18.31 2.08 2.08 1.18 1.26 36
SHA3-2 15.62 21.71 2.34 2.19 1.16 1.27 41.99994
SHA3-3 23.27 28.83 2.44 2.55 1.17 1.27 53.99982

SHA3 Operations

SHA3-4 40.20 41.91 3.08 3.30 1.59 1.70 77.99958
ADDRESS 3.49 2.77 1.17 1.16 0.61 0.65 2
BALANCE 7.23 5.27 1.28 1.28 1.18 1.26 20
CALLDATACOPY1 1.79 1.34 2.18 2.19 0.77 0.81 3
CALLDATACOPY2 42.57 33.86 2.48 2.59 0.74 0.81 72
CALLER 4.93 3.64 1.14 1.12 0.61 0.65 2
CALLVALUE 0.43 0.28 0.56 0.57 0.60 0.64 2
CODECOPY1 13.03 10.57 1.95 1.94 0.74 0.80 9
CODECOPY4 23.65 19.39 1.91 1.93 0.74 0.80 15
EXTCODECOPY1 10.03 7.37 1.00 1.00 0.85 0.95 20
EXTCODECOPY4 22.43 17.63 2.22 2.24 1.89 2.31 26
EXTCODECOPY8 33.93 27.43 3.33 3.36 2.84 3.28 32
EXTCODESIZE 8.13 6.20 0.97 0.95 0.64 0.66 20
GASPRICE 0.59 0.41 0.56 0.57 0.60 0.64 2

Environmental Information

ORIGIN 4.87 3.63 1.14 1.11 0.61 0.65 2
BLOCKHASH 6.89 12.30 0.62 0.64 0.66 0.74 20
COINBASE 3.63 2.78 1.13 1.11 0.62 0.65 2
DIFFICULTY 0.43 0.27 0.57 0.58 0.60 0.64 2
GASLIMIT 0.44 0.28 0.58 0.58 0.60 0.64 2
NUMBER 0.40 0.25 0.57 0.58 0.60 0.64 2

Block Information

TIMESTAMP 0.39 0.24 0.53 0.54 0.55 0.55 2
GAS 0.55 0.38 0.56 0.57 0.60 0.64 2
MLOAD 8.82 6.95 1.84 1.83 0.67 0.73 3
MSIZE 0.54 0.37 0.56 0.57 0.60 0.64 2
MSTORE 3.70 2.83 1.73 1.71 0.68 0.70 3.00027
MSTORE8 0.80 0.59 2.14 2.21 0.67 0.72 3.00003
PC 0.52 0.35 0.57 0.57 0.60 0.64 2
POP 0.35 0.22 0.57 0.59 0.61 0.66 2
SLOAD 2.37 1.99 0.69 0.69 0.70 0.77 50
SSTORE1 8.91 8.81 0.52 0.52 0.82 0.89 5000

Stack, Memory, Storage and Flow Operations

SSTORE2 10.39 9.50 0.53 0.53 0.83 0.90 20000
SWAP1 0.34 0.31 0.53 0.53 0.55 0.57 3
DUP1 0.34 0.24 0.56 0.58 0.59 0.64 3Push, Dup and Swap Operations
PUSH1 0.38 0.26 0.60 0.63 0.64 0.66 3

Table 5.4: The average CPU time for each of the opcodes for all platforms, by cate-
gory. The right-most column provides the Used Gas with the opcode. All results in
(µs).

5.3.1 Comparison of Platforms Absolute CPU Time

Figure 5.5 shows the graph with the CPU time required for each of the opcodes on

all the six platforms, as given in Table 5.4. The x -axis shows the same opcodes as

in the table, and note that the CPU time on the y-axes is depicted in a logarithmic

scale. Many of the opcodes take in the order of one microsecond or less to execute,
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Figure 5.5: CPU time (in microseconds) for each opcode.

but some take considerably longer, in the order of 0.1 milliseconds. There are several

examples in Figure 5.5, e.g., the exponential opcode (EXP) and the hash operation

opcode (SHA3).

From Figure 5.5, it is clear that the Go-Ethereum client outperforms the PyEthApp

client on all two machines: Linux 3.5GHz and Windows 3.5GHz. This gap is partic-

ularly clear in opcodes belonging to the SHA3, Environment and Block information

categories. For example, the three machines consume between 40 and 102 µs to ex-

ecute the SHA3 on the PyEthApp client, while they consume less than 10 µs on the

Go-Ethereum client. Similarly, the machines consume between 30 and 60 µs to exe-

cute the CALLDATACOPY2 on the PyEthApp client, while they consume less than half a

microsecond running on the Go-Ethereum client. The gap between these clients is ex-

pected since the performance of Golang language is faster than the Python language

[66].

Furthermore, from the Figure, the Parity client outperforms the Go-Ethereum

client on all opcodes but the Comparison & Bitwise Logic operations on the two

machines. Also, as shown in the Figure, the Parity client outperforms the PyEthApp

client in some categories such as Arithmetic, SHA3 and Environment on all the three

machines. The most likely cause of the Parity outperforming the other clients is

according to [67] the Rust language is faster than both the Python and the Golang

languages.
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There is a very interesting difference between the three clients in terms of the

operating system on which they perform best. For the PyEthApp client the Linux

3.5GHz machine always performs better than the Windows 3.5GHz machine. The

only exception is for SHA3 and BLOCKHASH opcodes where the Windows 3.5GHz is

faster. However, for the Go-Ethereum and the Parity clients, the Windows 3.5GHz

machine performs better for all opcodes but the SDIV and the SHA3-2 opcodes in

the Go-Ethereum client and MULMOD opcode in the Parity client, see Table 5.5, which

provides a selected slowest opcodes and compares in which clients and operating

systems they are faster in, for more details.

Machines
Client Opcode

Windows Linux
EXP64 6.56 5.05
EXP128 26.01 11.07
EXP256 118.88 41.03

PyEthApp

BLOCKHASH 6.89 12.3
SDIV 2.34 2.19

Go-Ethereum
SHA3-1 1.76 1.15

Parity MULMOD 1.08 0.81

Table 5.5: Comparison of CPU time (in microseconds) between different clients and
operating system for selected slowest opcodes.

5.3.2 Sensitivity of Platform Speed to Relative CPU Time

In order to better compare the CPU usage results for different platforms, Figure 5.6

shows the CPU time relative to the fastest platform, the Windows Parity 3.5Hz. In

other words, we divided the results of each platform by the results of the Windows

Parity, and, as a consequence, the Windows Parity shows as a straight line at 1 in

Figure 5.6. This allows us to identify opcodes that are particularly fast or slow on

specific platforms. Note that the Windows Parity platform was not the fastest for

some opcodes, as is visible on the left, the middle and the right sides of the range in

Figure 5.6.

As mentioned, the Parity client generally outperforms the other clients: the two

higher lines in Figure 5.6 correspond to the PyEthApp clients, the two middle lines

to the Go-Ethereum clients and the two lower ones to the Parity clients, for most

cases. The exceptions are listed in Table 5.6, where the PyEthApp client performs

better than Go-Ethereum and Parity clients.
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Table 5.6, shows a list of these opcodes where parity is not the fastest platform.

Figure 5.6 and Table 5.6 reveal that the line for all platforms are not straight and

therefore, on different platforms, different opcodes are faster. Thus, the results in the

Table and the Figure help to decide which machine to use to execute a smart contract

with these opcodes faster and to receive higher fees.
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Figure 5.6: CPU time for each opcode, relative to the fastest platform (Windows
Parity 3.5GHz).

5.3.3 Platforms Comparison for Gas/CPU Ratio

The critical issue for the successful operation of Ethereum is not the CPU time

required for the opcode, but the ratio between the fee obtained and the CPU invested

[81]. This is displayed in Figure 5.7, which shows the amount of Used Gas per CPU

microsecond for all opcodes. Recall that the Used Gas is given in the rightmost

column of Table 5.4 and is calculated by the EVM from values set in [94]. The higher

the Used Gas, the more profit a miner makes.

Ideally, the curves in Figure 5.7 for each platform would be straight lines, since

then fee and cost are proportional to each other across all opcodes. Unfortunately,

there is a considerable deviation between the best and worst return for the various

platform, in the extremes more than two orders of magnitude.

Comparing the six platforms, the conclusions from the previous two graphs re-

main valid, since all six curves are scaled in the same manner, so the Parity client

outperforms the Go-Ethereum and the PyEthApp clients. The range of values for the
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PyEthApp Go-Ethereum Parity
Category Opcode

Windows Linux Windows Linux Windows Linux

DIV 0.91 0.56 1.67 1.74 2.28 2.33
MOD 0.92 0.56 0.72 0.74 0.73 0.8
MUL 1 0.5 1.18 1.09 0.63 1.24
MULMOD 1.86 1.06 1.11 1.75 1.08 0.81
SIGNEXTEND 0.92 0.59 1.22 1.29 0.7 0.76

Arithmetic Operations

SUB 0.81 0.44 0.61 0.64 0.61 0.66
AND 0.81 0.48 0.64 0.66 0.7 0.78
BYTE 0.92 0.58 0.65 0.67 0.72 0.78
EQ 0.77 0.43 0.57 0.59 0.6 0.65
GT 0.72 0.39 0.58 0.58 0.62 0.66
ISZERO 0.59 0.36 0.59 0.62 0.67 0.71
LT 0.68 0.38 0.58 0.59 0.61 0.66
OR 0.86 0.49 0.65 0.67 0.7 0.77
SGT 1.04 0.66 0.65 0.68 0.72 0.79
SLT 1.04 0.63 0.66 0.67 0.72 0.79

Comparison & Bitwise Logic Operations

XOR 0.86 0.53 0.55 0.56 0.58 0.6
CALLVALUE 0.43 0.28 0.56 0.57 0.6 0.64

Environmental Information
GASPRICE 0.59 0.41 0.56 0.57 0.6 0.64
DIFFICULTY 0.43 0.27 0.57 0.58 0.6 0.64
GASLIMIT 0.44 0.28 0.58 0.58 0.6 0.64
NUMBER 0.4 0.25 0.57 0.58 0.6 0.64

Block Information

TIMESTAMP 0.39 0.24 0.53 0.54 0.55 0.55
GAS 0.55 0.38 0.56 0.57 0.6 0.64
MSIZE 0.54 0.37 0.56 0.57 0.6 0.64
MSTORE8 0.8 0.59 2.14 2.21 0.67 0.72
PC 0.52 0.35 0.57 0.57 0.6 0.64
POP 0.35 0.22 0.57 0.59 0.61 0.66
SSTORE1 8.91 8.81 0.52 0.52 0.82 0.89

Stack, Memory, Storage and Flow Operations

SSTORE2 10.39 9.5 0.53 0.53 0.83 0.9
SWAP1 0.34 0.31 0.53 0.53 0.55 0.57
DUP1 0.34 0.24 0.56 0.58 0.59 0.64Push, Dup and Swap Operations
PUSH1 0.38 0.26 0.6 0.63 0.64 0.66

Table 5.6: Selected opcodes where other clients outperform the Windows Parity
clients.

respective clients is significantly different. For the Parity client, the average collected

gas per microsecond of CPU usage varies between 367 and 513 units of gas, while it

ranges from 344 and 500 in the Go-Ethereum client and 26 to 47 in the PyEthApp

client. In other words, the average amount of the awarded gas in the Parity and the

Go-Ethereum clients is about fourteen times that of the PyEthApp client.

In all clients, SSTORE opcodes are the most profitable ones since the awarded gas is

higher than the required computation time (see Subsection 4.4.2). The SSTORE opcode

is the only opcode available to modify storage. Therefore, the cost to the miner is in

terms of the storage access, and it is priced based on storage access, not CPU use.

For this performance benchmark study, it should be considered an outlier. In the Go-

Ethereum and the Parity clients, two other opcodes return a high fee per CPU time

unit, namely CALLDATACOPY2 and BALANCE. This is generally caused by the fact that

the client must either load state objects from disk or a memory, which require high

CPU usage and therefore, the assigned Gas costs are higher than the required CPU

overheads. In the PyEthApp client, opcodes such as CALLER, GAS and GASPRICE

return the least value per CPU time unit, with less than one unit of gas return per
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Figure 5.7: Used Gas (per [94]) per CPU time unit (in Gas/microsecond). Reward
and cost are proportional for a platform if the curve is a straight line.

CPU microsecond. All these opcodes obtain their values from the transaction, which

seems expensive in the PyEthApp client due the implementation process flow. In the

Go-Ethereum client, opcodes such as EXP64 and EXP128 are the most expensive ones.

However, the Used Gas in these opcodes are roughly proportional to CPU usage.

On the other hand, the same opcodes in the Parity client opcode return fifteen

times higher Used Gas value per CPU time unit than the Go-Ethereum client, so, from

miners’ perspective, smart contacts that have these are preferable to be selected. We

also note that in the Parity client, formula based opcodes return higher value per CPU

than the computationally based ones. The main reason for this particular variation

is caused by the fact that the Rust is faster than the others languages [67]. Table 5.8

provides the most profitable opcodes in each client.

To remove the platform-specific element from the results, we introduce normalized

results for the gas user per microsecond in Figure 5.8. In this Figure, typical behavior

of any of the six platforms would imply the result is a straight line with value 1. To

obtain this graph, we selected the ’median’ opcode, namely BYTE (second from the

left in the Comparison & Bitwise Logic Operations). For each platform, we took

the Gas/CPU value of the BYTE opcode and divided all other opcode results for that

platform by the value for the BYTE opcode.

Particularly, some opcodes in the Arithmetic category provide a higher fee per

CPU in microseconds with the PyEthApp client than with the Go-Ethereum client
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Figure 5.8: Normalized Used Gas per CPU time unit (results in 5.7 divided by the
platform’s result for opcode BYTE). Reward and cost are proportional if the curve is
a straight line at value 1.

and less than the Parity client. At the same time, with respect to the Stack, Memory

and Storage category, the Go-Ethereum client receives the higher fee compared to the

PyEthApp and the Parity clients. Table 5.7 presents selected opcodes with highest

Gas/CPU for each client. It is clear from the Table, the Parity client has the more

highest opcodes than the other clients.

However, the Go-Ethereum provide higher fee for the SSTORE opcode than the

other clients, whereas the PyEthApp outperforms the others in the PC and the SLOAD

opcodes. This implies that miners who run the Parity or the PyEthApp clients

get better profit than the Go-Ethereum client when executing smart contracts that

implement opcodes belong to the Arithmetic category, while miners who use the Go-

Ethereum client perform better than the Parity and the PyEthApp clients miners

if the smart contract has more opcodes belong to the Block information category.

Moreover, miners who run the Parity client and execute smart contracts that have

more SHA3 opcodes get a better profit than the other clients. Also, the Parity client

is more profitable than the other clients in most of the Environment category.
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Machines
Client Opcode

Windows Linux

EXP64 14.82 13.74
EXP128 25.68 24.34
EXP265 34.00 33.34
SHA3-1 30.43 28.53
SHA3-2 36.11 33.18
SHA3-3 46.23 42.62
SHA3-4 49.21 45.91
CALLDATACOPY2 97.04 88.78
CODECOPY4 20.33 18.66
EXTCODECOPY1 23.53 21.01
EXTCODECOPY4 13.76 11.26
EXTCODECOPY8 11.27 9.76
EXTCODESIZE 31.40 30.40
BLOCKHASH 30.35 27.14
SSTORE1 6067.96 5649.72

Parity

SSTORE2 23980.82 22222.22
SHA3-1 17.29 17.31
SHA3-2 17.92 19.14
SHA3-3 22.09 21.20
SHA3-4 25.34 23.66
CALLDATACOPY2 29.04 27.76
EXTCODECOPY1 20.06 19.94
EXTCODESIZE 20.73 21.01
BLOCKHASH 7 6.88
SSTORE1 9578.54 9578.54

Go-Ethereum

SSTORE2 37664.78 37878.79
PC 5.77 8.93
SLOAD 560.85 567.62
SSTORE1 1924.15 2106.14

PyEthApp

SSTORE2 8.80 9.61

Table 5.7: Selected opcodes by highest Gas per CPU on the three clients.

5.3.4 Comparison of Clients Absolute CPU Time

In this Section, we remove the machine specifications, and we compare the CPU

overhead times for the three clients. Figures 5.9, 5.10 and 5.11 depict the CPU over-

head times for each of the three clients (i.e., PyEthApp, Go-Ethereum and Parity),

respectively and Figure 5.5 combines them all in one figure for convenience. Accord-

ing to the Figures, it is clear that the Parity client is faster than the other client in

almost all categories but the Comparison categories where the PyEthApp client is

the fastest. In this category, i.e., the Comparison & Bitwise Logic Operations, the

PyEthApp client outperforms all clients. The reason for that is based on [85], which

compare Python with other programming languages at some regular expressions and

bitwise opcodes, Python is performing better than the other languages. Moreover,

the PyEthApp client only outperforms the Go-Ethereum client in the EXP opcode in

the Arithmetic category, whereas, the Parity client outperforms the other two clients

in this opcode.

We also observe that the formula-base opcodes, presented in Table 5.8, are exe-

cuted faster on the Parity client. This is due to the high-performance of Rust over the
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others. However, opcodes that manipulate the stack such as PUSHs and POPs consume

higher CPU overhead times in the Parity client compared to the PyEthApp and the

Go-Ethereum clients.

In summary, the Parity client compared to the other clients, is faster for almost

all opcodes, followed by the Go-Ethereum client then the PyEthApp client, which is

the slowest. Thus, based on the results, the best client to execute most of the EVM’s

opcodes faster is the Parity client.

Opcode Windows Py Linux Py Windows Go Linux Go Windows Parity Linux Parity Used Gas

EXP64 6.56 5.05 13.86 14.16 1.35 1.45 19.96
EXP128 26.01 11.07 26.47 26.97 1.95 2.05 50
EXP265 118.88 41.03 56.34 57.56 5.00 5.10 170
SHA3-1 12.26 18.31 2.08 2.08 1.18 1.26 36
SHA3-2 15.62 21.71 2.34 2.19 1.16 1.27 41.99
SHA3-3 23.27 28.83 2.44 2.55 1.17 1.27 53.99
SHA3-4 40.20 41.91 3.08 3.30 1.59 1.70 77.99

CALLDATACOPY1 1.79 1.33 2.18 2.192 0.766 0.807 3
CALLDATACOPY2 42.56 33.86 2.479 2.594 0.742 0.811 72

CODECOPY1 13.03 10.57 1.95 1.94 0.74 0.80 9
CODECOPY4 23.65 19.39 1.91 1.93 0.74 0.80 15

EXTCODECOPY1 10.03 7.37 1.00 1.00 0.85 0.95 20
EXTCODECOPY4 22.43 17.63 2.22 2.24 1.89 2.31 26
EXTCODECOPY8 33.93 27.43 3.33 3.36 2.84 3.28 32

SSTORE1 8.91 8.81 0.52 0.52 0.82 0.89 5000
SSTORE2 10.39 9.50 0.53 0.53 0.83 0.90 20000

Table 5.8: Comparison between the PyEthApp, the Go-Ethereum, and the Parity
clients on formula-based opcodes.
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Figure 5.9: CPU time (in microseconds) for each opcode in the PyEthApp client.
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Figure 5.10: CPU time (in microseconds) for each opcode in the Go-Ethereum client.
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Figure 5.11: CPU time (in microseconds) for each opcode in the Parity client.

5.3.5 Comparison of Different Operating Systems

In order to better compare different operating systems (OSs), we should collect same

experiment’s results from the three clients on same hardware platforms running over

two different OSs, in this case Windows and Linux. For both Windows and Linux, in

Figures 5.12 and 5.13, we give the absolute CPU time for the three clients PyEthApp,

Go-Ethereum and Parity. In Figure 5.14, the two figures are combined for conve-

nience. An identical experiment setup is conducted with the identical inputs for the

opcodes for two OSs.

Interestingly in Figure 5.14, in the Parity and the Go-Ethereum clients, the Win-

dows machines are on average 8.20% and 31.12% faster than the Linux machine,

respectively, whereas, the Linux machine is about 33.56% faster in the PyEthApp

client on average for all opcode categories.

Additionally, from Figure 5.14, it is clear that in all six combinations the curve

of all machines follow a very similar pattern across all opcodes. The main dif-

ference is the CPU overhead variations. Furthermore, Linux machine running the

PyEthApp client is faster than the Linux Parity, the Windows Parity and the Win-

dows PyEthApp in all Comparison & Bitwise Logic opcodes and some Arithmetic

opcodes as well as some Block information opcodes (see the blue line in Figure 5.13).
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To sum up, from the miners’ perspective, the ideal combination to collect more

gas units and thus, more profits against relatively cheap CPU consumption’s would

be Windows running the Parity client. This would include all smart contracts that

implement all opcodes but less DIV, CALLVALUE and SSTORE opcodes. Additionally,

form users’ perspectives, the ideal platform to execute their transactions and there-

fore, execute their contracts, if they have the choice, is the Parity on either OSs.

0.25

0.5

1

2

4

8

16

32

64

128

A
D

D
A

D
D

M
O

D
D

IV
E

X
P6

4
E

X
P1

28
E

X
P2

65
M

O
D

M
U

L
M

U
LM

O
D

SD
IV

SI
G

N
E

X
T

E
N

D
SM

O
D

SU
B

A
N

D
B

Y
T

E
E

Q
G

T
IS

Z
E

R
O L
T

O
R

SG
T

SL
T

X
O

R
SH

A
3-

1
SH

A
3-

2
SH

A
3-

3
SH

A
3-

4
A

D
D

R
E

SS
B

A
L

A
N

C
E

C
A

L
LD

A
TA

C
O

PY
1

C
A

L
LD

A
TA

C
O

PY
2

C
A

L
LE

R
C

A
L

LV
A

LU
E

C
O

D
EC

O
PY

1
C

O
D

EC
O

PY
4

E
X

T
C

O
D

E
C

O
PY

1
E

X
T

C
O

D
E

C
O

PY
4

E
X

T
C

O
D

E
C

O
PY

8
E

X
T

C
O

D
E

SI
Z

E
G

A
SP

R
IC

E
O

R
IG

IN
B

LO
C

K
H

A
SH

C
O

IN
BA

SE
D

IF
FI

C
U

LT
Y

G
A

SL
IM

IT
N

U
M

B
E

R
T

IM
E

ST
A

M
P

G
A

S
M

L
O

A
D

M
SI

Z
E

M
ST

O
R

E
M

ST
O

R
E8 PC

PO
P

SL
O

A
D

SS
T

O
R

E1
SS

T
O

R
E2

SW
A

P1
D

U
P1

PU
SH

1

Arithmetic Comparison SHA3 Env Block info Stack,Mem Push,
Dup,
Swap

WINDOWS (PY, GO AND PARITY)

Windows Py Windows Go Windows Parity

Figure 5.12: Absolute CPU time for Windows machine for all clients.
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Figure 5.13: Absolute CPU time for Linux machine for all clients.
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Figure 5.14: Absolute CPU time for Windows and Linux machines for all clients.

5.4 Result Validation

In this section, we validate the results collected by OpBench system and check their

correctness. The validation is divided in the following subsections. The first subsec-

tion evaluates the results of any opcode that has been generated repeatedly and com-

posed them in a smart contract function that can be triggered utilizing the Ethereum
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transaction. The second subsection presents an evaluation that shows that subtract-

ing of timing and the POP opcode do not impact the overall execution time.

5.4.1 Evaluation of Individual Opcodes and Composed Com-
plete Contract

OpBench considers each instruction independently, and executes it multiple times

(interleaved if necessary, with POP opcode to keep the stack at a target size). It

remains unclear if this is representative of the individual cost of these operations

when composing a complete contract. The repeated execution of the same instruction

may benefit the use of just-in-time compilation available on Ethereum. In this section,

we show the correlation between individual opcodes performance and the composed

performance of opcodes in complete contracts.

To accomplish this, we select a set of opcodes to carry out our evaluation. The

selected opcodes belong to the Arithmetic operations category, for simplicity of the

implementation. We implement a smart contract that has four different functions,

each function containing an opcode. Listing 5.1 shows the smart contract code that

contains these functions. The smart contact is implemented and compiled using

Solidity [48] and Solidity compiler [47], respectively. The experiment was conducted

on a MacBook Pro with a 2.8GHz Intel i5 CPU and 8GM RAM, on the PyEthApp

client. Firstly, we compile the smart contact and then deploy the compiled bytecode

into the Ethereum blockchain. Secondly, we invoke each function by sending an

Ethereum transaction (similar to the previous implementation in Section 4.5). Finally,

we calculate the average of the execution time of each function.

As depicted in Listing 5.1, each function, once triggered, repeats the expression

100k times (Line 7, 13, 18 and 23). 100k times was selected because it provides a

tight confidence interval (%95-Confidence Interval ≈ 0.004 µs). The EVM keep a

record of each opcode it executes and returns the overall execution time, a list of each

opcode execution time and Used Gas. Table 5.9, shows the result of the experiment

for each opcode in microseconds (µs) and for each function in seconds. The value

for each opcode is the average of the values obtained in each run. According to the

results, OpBench’s results presented earlier is believed to be accurate.
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Opcode Function overall time Opcode avg CPU time Used Gas

ADD 3.80 2.07 3
SUB 4.00 1.48 3
MUL 4.43 1.33 5
DIV 4.95 1.47 5

Table 5.9: The CPU time for functions execution in (second) and each selected opcode
in (microsecond).

1
2 pragma s o l i d i t y ˆ 0 . 5 . 0 ;
3
4 cont rac t Evaluat ion {
5
6 func t i on sum () pub l i c {
7 f o r ( u int i =0; i <100000; i++ ){
8 u int s = 1000+1000;
9 }

10 }
11 func t i on sub ( ) pub l i c {
12 f o r ( u int i =0; i <100000; i++ ){
13 u int s = 1000−1000;
14 }
15 }
16 func t i on mul ( ) pub l i c {
17 f o r ( u int i =0; i <100000; i++ ){
18 uint s = 1000∗1000;
19 }
20 }
21 func t i on div ( ) pub l i c {
22 f o r ( u int i =0; i <100000; i++ ){
23 uint s = 1000/100;
24 }
25 }
26 }

Listing 5.1: The smart contact implementation of the selected opcodes.

5.4.2 Evaluating the Overhead Effects of the POP Opcode and
the Timing

As discussed in Subsection 4.4.3, in OpBench system we identified a new approach

to manage the stack limit size using POP opcode to be able to repeat an individual

opcode unlimited times. However, the introduction of the POP opcode as well as

setting the timer could have an impact on the overall CPU performance (execution

time) of the actual opcode.

In this section, we show our evaluation of the impact on setting and including

both timing and the POP opcode in the generated bytecode and, therefore the final

execution results.

For setting timing, as mentioned in the implementation in Section 4.5, we utilized

the build-in functions Profiling and Benchmark modules in both Python and Golang

programming languages, respectively. These modules can be used as either as a

callable (inside the code) or as a command line interface [59][21]. In OpBench, we

used these modules inside the code and we estimated their overheads by running them
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without the bytecodes (i.e., we test nothing but the startup and shutdown overhead).

The execution overheads of these modules are recorded and subtracted from the final

execution results of the actual bytecode.

For the validation purpose, we utilized the command line interface. In the com-

mand line interface, the starting and ending times are taken before and after the

execution of the bytecode outside the real implementation. Therefore, the overheads

of start-up and shutdown are managed by the operating system [21][59]. Next, these

modules output a set of execution statistics that shows the CPU time for each line in

the programming code. According to [59][21], the side effects of these modules is very

minimal. Fortunately, the results of both interfaces are identical (i.e., the callable

and command line). Hence, OpBench’s results are not affected by introducing the

timing.

In order to estimate the side effects of injecting the POP opcode on the overall

execution time, we assess a set of selected opcodes without the POP opcode approach.

In this way, we only managed to repeat each opcode 1024 times. Fortuitously, the

results of these opcodes are comparable to OpBench system’s results. The side-effects

evaluation of the timing and POP opcode are conducted on a MacBook Pro 2.8GHz

Intel i5 CPU with 8GB RAM.

5.5 Conclusion

In this chapter, we presented two sets of experimental results one for six system con-

figurations, running the two different implementations on three different computers

(and operating systems) and other for six system configurations, running the three

different implementations on two operating systems with same hardware platform.

These experiments demonstrate the validity of OpBench approach across platforms.

It also allows us to obtain results comparing PyEthApp with Go-Ethereum with Par-

ity, all with respect to CPU usage for various opcodes, and for the fee rewarded per

unit of CPU time. Our results show that the CPU time required for opcodes is not

always proportional to the gas used and fee received. The difference can be an order

of magnitude between the opcodes.

Our results also show that there can be an order of magnitude difference in terms

of the reward per unit of CPU time for different opcodes. Our experiments also

indicate that there is a considerable performance difference between clients, with the

Parity client outperforming the PyEthApp and the Go-Ethereum clients. Moreover,
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the results indicate the Windows operating system is faster than the Linux operating

system for most of opcodes.

Future work, it will be of interest to expand the scope of the benchmark to include

assessment of occupying resources in general, including storage, blocking the machine

as well as actual energy consumption. To support such efforts, the code of OpBench

system is available to others1.

1https://github.com/Amjad13

82

https://github.com/Amjad13


Chapter 6

Implementation and Evaluation of
Counter-Collusion Smart Contracts
for Verifiable Cloud Computing

6.1 Summary

Cloud computing has become an irreversible trend. With this comes the pressing

need for verifiability, to assure the correctness of computation outsourced to the

cloud. Existing verifiable computation techniques all have a high overhead. Thus

applications deployed in the cloud, would render cloud computing more expensive

than its on-premises counterpart. To achieve verifiability at a reasonable cost, the

approach in this chapter leverages game theory and proposes a smart contract based

solution. In a nutshell, a client lets two clouds compute the same task, and uses

smart contracts to stimulate tension, betrayal and distrust between the clouds so that

rational clouds will not collude and cheat. In the absence of collusion, verification

of correctness can be done easily by cross-checking the results from the two clouds.

By resorting to game theory and smart contracts, we can avoid heavy cryptographic

protocols. The client only needs to pay two clouds to compute in the clear, and a

small transaction fee to use the smart contracts. The focus in this chapter is on

the design of smart contracts and the implementation using Ethereum, as well as

performance evaluation of the approach.

This chapter is structured as follow. Section 6.2 provides an introduction that

introduces the problem statement and our contributions. In Section 6.3, we provide

the adversary model and the assumptions. The monetary variables that used in the

smart contracts are presented in Section 6.4. Contracts their explanations and their

pseudo-codes are provided in Sections 6.5, 6.6, 6.7 and 6.8. Section 6.9 presents the
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implementation of our solution. In Section 6.10, we present the cost and the overhead

of our solution, and we conclude the chapter in Section 5.5.

6.2 Introduction

Cloud computing has gained considerable interest and becomes vital for businesses.

According to [80] in 2016 around 95% of organizations adopting and/or running their

applications with the cloud. In addition, the Synergy Research Group [84] reported

that about $148 billion is the market cap for the worldwide cloud computing in 2016,

having grown up by 25% annually. In [53], the authors predicted that the spending

on IT and cloud computing specifically would reach $1 trillion by 2020.

Verifiability for cloud computing is a very crucial requirement for the organizations

who have moved to earn and gain services with the cloud. It is difficult to fully trust

the cloud services provider, which is a third party that provides the clouding services,

to perform a crucial task correctly. As a result, clients should be able to verify the

correctness of the result of their requested services, to gain greater confidence in the

outsources computation.

Roughly, solutions techniques based on either cryptography or replication are

the most existing techniques for verifying the outsourced computation. Usually, the

cryptography-based approaches are where a single cloud is used to outsource a

computation by the client, then the cloud returns and proves the results were correctly

computed. Relying on the cryptography to ensure that with a high probability that

the client will reject if the result was incorrect. The replication-based approaches

are where the client outsources a task to multi-cloud who independently compute the

same task. The returned results are collected and cross-checked by the client. Using

a consensus protocol, the correctness of the result can be verified if the number fault

servers below a threshold.

A Cost Analysis Since the biggest motivation for adopting cloud services is

perhaps the cost saving, the verifying existing approaches are not quite economically.

For example, we used the Amazon AWS Total Cost of Ownership Calculator [11] on a

few typical settings, and found that by moving their on-premises IT infrastructures to

AWS, companies could save 50% to 69% of the cost. The cost of moving to the cloud

is less, so the saving is significant, however, is not large enough to support existing

verifying approaches. Cloud computing uses the pay-per-use paradigm, and so, the

users are charged for resources usage. Adopting the cryptography-based approach is

much more expensive since the overheads imposed by executing the cryptographic
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algorithms/protocols. The typical overhead is 103−109 times higher than computing

the task itself [91] and would translate to a prohibitively high financial cost to the

client. The replication-based approach does not require an overhead computation,

because it usually computes the task in the clear. The overhead mostly derives from

the replication on multi-clouds. Usually three clouds a required, so the total costs

to the client are tripled. From the cost-saving figures showed earlier, it is clear that

using 3 or more clouds for verification is very likely to cost more than simply using

on-premises IT infrastructures.

Problem Statement In general, a verifiable cloud with a competitively low cost

is what we want. The guarantee of the computation and the cost of adoption the

cloud must be less or equal than the client pay and use when using on-premises

IT infrastructures. To achieve this, we pick the second approach replication-based

approach since it is the most practical approach. According to the above analysis,

to use a low or equal cost solution compared to on-premises IT, the client should

not assign the task to more than two clouds as well as minimizing the overheads.

Collusion is the biggest challenging of using two clouds. The client might accept a

wrong result without realizing if the two clouds collude and output the same result.

It becomes even more challenging when heavyweight cryptographic protocols have to

be avoided to reduce the overhead to an acceptable level. To this end, we resort to

the new technology, namely Smart contract for mitigating the problem.

The idea Rather than forbidding or preventing collisions through technical means

such as cryptography, we work towards undermining, through economic means, the

foundation that collusion is grounded on. This should not be surprising since collusion

is a topic studied in economics for many years. Three insights from economists

establish the premise of our work:

• Collusion occurs whenever it is more profitable to all of the participants than

their feasible alternatives [88]. Since economic incentives often drive collusion,

imposing high fines on collusion has become a major instrument for preventing

collusions in the real world. The fines make collusion a less profitable choice

than not colluding, thus offset the motivation for collusion.

• Colluding parties have their interests, and this is a source of tension between

them [71]. Colluding parties are not a single corporate entity. More inter-

estingly, they are often competitors who collude in order to gain extra profit.

Nevertheless, each party is responsible for its own and acts in its interest. Under

suitable conditions, collusion can dissolve, and competition can resume.
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• The most pressing problem for the colluding parties is how to prevent cheating.

This is a natural consequence of pursuing self-interest, i.e. parties act in their

interest and try to maximize their profit. In fact, the central difficulty of collu-

sion is that it is often profitable for firms to secretly deviate from the collusive

agreement [71].

Our key idea is to sabotage collusion by using smart contracts. Here smart contracts

materialize self-enforcing agreements and payments that serve multiple purposes:

1. To weaken the incentive for collusion by taking a deposit from the clouds as

security for the delivery of the correct result. The clouds will be penalized by

losing their deposit should they deliver a wrong result.

2. To create an incentive for correct computation by redistributing the fine to the

honest cloud as a reward.

3. To create distrust between he colluders by incentivizing them to betray their

partner in the collusion coalition.

On the whole, we intend to make collusion a less favorable choice and make it much

harder for potential colluding parties to trust each other, so that rational parties will

stay away from collusion because it is unprofitable and too risky.

Contributions Based on the idea above, we designed two smart contracts (the

Prisoners contract and the Traitors contract) to be used in scenarios where a client

outsources a computation task to two clouds and cross-checks the results from the

two clouds. With moderate and reasonable assumptions, the contracts guarantee

that the two clouds, if they are rational, will behave honestly even though they

have the opportunity to collude together and cheat. We conducted a detailed game

theoretical analysis of the contracts. We proved that for the two clouds, both being

honest and not colluding is the unique sequential equilibrium (a stronger form of

Nash equilibrium) of the game. We also show the feasibility of the contracts by

building them for the Ethereum network. We created the contracts using Solidity

and executed them on the official Ethereum network. We provide a breakdown of

financial and computational overheads for our contracts. Our figures show that the

total transaction cost for executing each contract is below $1.

The Prisoners contract is to be signed by a client and two clouds. The name

comes from the fact that the contract induces a game similar to the famous Prisoners

Dilemma game between the two clouds. At a high level, the contract says that the
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client will pay the two clouds to compute a task, but to get the job, each cloud has

to pay a deposit. The honest cloud will get its deposit back later, and the cheating

cloud will lose its deposit (if cheating is detected). Moreover, if one cloud cheats and

one cloud is honest, the cheating clouds deposit goes to the honest cloud as a bonus

(after deducting certain necessary costs). Similar to in the Prisoners Dilemma game,

although it seems both clouds gain most by colluding with each other, both clouds

eventually end up being honest. This is because they know the other will act in its

interest, which means they will deviate from collusion for a higher payoff.

The problem with the Prisoners contract is that it only works if the two clouds

cannot make credible and enforceable promises. This is not true, especially with the

help of smart contracts. We demonstrate this by the Colluders Contract, which

is a secret smart contract between the two clouds. In the contract, the cloud who

initiates the collusion coalition agrees to pay a bribe to incentivize the other cloud

to collude. More importantly, both clouds make a commitment by paying a deposit

which will be taken if they do not follow the collusion strategy. The contract changes

the game: when the deposit is high enough to offset the benefit a cloud can gain by

betraying the other, betrayal is no longer more profitable, and collusion becomes the

best strategy for both clouds.

To bust this form of more robust collusion coalition policed by collusion agreements

such as the Colluders contract, we designed the Traitors contract. Intriguingly, the

Traitors contract works not by countering the collusion agreement directly, but by

forgiving one (and only one) cloud which follows the collusion strategy. The aim of

the Traitors contract is not to incentivize the clouds to deviate from the collusion

but to encourage them to report the collusion to the client. By getting information

about collusion, the client can further investigate the case and punish the cheating

cloud. By following the collusion strategy, the reporting cloud avoids the punishment

imposed by the collusion agreement, thus making the agreement useless. If the other

cloud does cheat, the reporting cloud will get a reward, which makes reporting the

most profitable strategy. Overall, reporting is risk-free (the reporting cloud will not be

punished by the Prisoners contract and the Colluders contract)and more profitable.

The consequence is that both clouds know that if they try to initiate a collusion

coalition, the other will collude but also report it to the client. This creates distrust

between the clouds so that neither will want to initiate the collusion coalition, and

they will stay honest to avoid being betrayed and punished.

The main cost of our smart contract based solution is the cost of employing

two clouds to compute (in the clear) the same task. We assume that an offline
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Trusted Third Party (TTP) is available to resolve the dispute when an inconsistency

or anomaly is detected. However, if the two clouds are rational, the TTP will never

be involved. Even if in the unlikely cases the TTP is called upon, the cost for dispute

resolution is borne by the faulty cloud, not the client. The implementation of the

contract requires only a few (constant number) additional cryptographic operations

that are very light. Our experiments on the official Ethereum network show that the

transaction cost for using smart contract facilities is small.

Potential applications alternative workload definition could be a smart contract

for particular applications, e.g., health, e-voting, but we did not define such type of

application-dependent workload.

6.3 Adversary Model and Assumptions

A Contractual Verifiable Cloud Computing scheme allows a client to outsource the

computation of a function f on input x to two clouds. An honest client can then

verify the correctness of results by simply testing whether the results from the two

clouds are equal. We treat the clouds as rational adversaries. That is, the clouds

are autonomous parties whose behaviors are driven by the motivation of maximizing

their payoffs. If trusted auditing services are available to provide proper evidence,

then these two types of faults can be treated differently. We assume the clouds are

physically isolated and model each cloud as an individual rational adversary. Rational

means that a party always acts in a way that maximizes its payoff, and is capable

of thinking through all possible outcomes and choosing strategies which will result in

the best possible outcome. Compared to assuming a malicious adversary who will act

arbitrarily, rational is more realistic when modeling corporate behavior of the clouds.

Indeed, a cloud provider is more likely to cut corners to maximize its profit than

maliciously attack the client with no reason. On the other hand, rational adversaries

are weaker than malicious adversaries because rationality precludes specific strategies.

There is a trade-off between the level of security guarantee and costs. In the case that

adversaries may behave irrational, cryptography-based approaches could be used to

ensure verifiability.

We assume incorrect computation costs less (e.g. by skipping part or all of the

computation), so the clouds are motivated to cheat. For simplicity, we assume a

cloud can come up with an incorrect but plausible answer (cannot be easily proved

to be wrong) at no cost. In reality, this is not free. However, assuming such an

answer can be picked with no cost guarantees that the lower bound of deposits we
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derive later is always valid because the cheating cloud loses strictly more if the cost

of picking such an answer is more than 0. We view collusion as coordinated actions

that follows from a mutual agreement between the adversaries. In reality, even if

parties collude, they still retain their separate judgement and act in their interests.

Therefore modeling each cloud as an individual adversary is more realistic than as

a monolithic adversary who corrupts and controls multiple clouds. We assume the

adversaries are computationally bounded so all cryptographic primitives we need to

use remain secure.

We assume there exist one or more cryptocurrencies that support smart contracts.

Most smart contracts platforms are experimental now, but there has been much effort

to bring them into the real world. We assume the currency in these systems carries a

certain amount of monetary value and is accepted by all parties under consideration

as a medium of exchange. We assume the value of the currency is stable during

the whole lifetime of the contract (and contracts derived from it). We assume the

cryptocurrencies are secure, and the smart contracts are executed faithfully.

We assume the existence of a trusted third party (TTP), who is offline most of

the time but can be called upon to recompute the task and resolve any disputes. We

stress that if the clouds are rational, then the TTP would never be involved. The

very existence of such a TTP provides a deterrence power which the adversaries have

to take into account when making decisions. Even without taking actions, the TTP

is a tangible threat to the adversaries and will have a controlling influence over them.

The idea is similar to some strategic concepts in modern warfare and politics, e.g.

“fleet in being” and “nuclear deference”.

We also assume the following:

• The task to be computed is deterministic or can be reduced to being deterministic,

e.g. by providing seed and using a pseudorandom generator for the random choices

if the task is probabilistic. This is a common requirement in replication-based

verifiable computation. We also assume the probability of guessing the correct

result is small (e.g. by using inner state hash [18]).

• The task to be computed is not time-critical. We rely on the smart contract network

to enforce the contracts, which may have large latency. The latency greatly depends

on the status and parameters of the smart contract network, and we will be unlikely

to get any guarantee for time-critical tasks.

• The two cloud able to communicate securely and through reliable authenticated

public or private channels. The channel can provide non-repudiable evidence of

sending/receiving messages if requested.
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• Assuming equal cost greatly simplifies the analysis because of this rules out collu-

sions for monopoly/oligopoly purposes in which the strategies are very different,

and the correctness of the computation result is not the focus.

• The client has a low computational capability. This means the client needs the TTP

to verify the correctness of the task’s result. Also, unless there is clear evidence of

incorrect result, the client is lazy to ask TTP to verify results.

• Funds only flow among the parties under consideration, not to/from external par-

ties. For example, we do not consider fines imposed by legal systems or bribes

offered by the client’s rival in exchange for the clouds to output a wrong result. In

general, if the cloud can gain additional benefits, one solution could be to increase

the deposit. When the increment of the deposit is large enough and surpasses the

benefit, the cloud will behave honestly because otherwise, the payoff will be worse

than behaving honestly.

• Parties are risk neutral. For other risk profiles (risk seeking or risk aversion), the

utility function can be adjusted to the risk profile, and the equilibria still hold by

choosing the deposits according to the risk profile.

6.4 Monetary Variables

Below are the monetary variables we will use in the contracts (listed in alphabetic

order). They are all non-negative.

• b: the bribe paid by the ringleader of the collusion to the other cloud in the collusion

agreement (the Colluder’s contract).

• c: the cloud’s cost for computing the task.

• ch: the fee to invoke the TTP for recomputing a task and resolving disputes.

• d: the deposit a cloud needs to pay to the client to get the job.

• t: the deposit the colluding parties need to pay in the collusion agreement (the

Colluder’s contract).

• w: the amount that the client agrees to pay to a cloud for computing the task.

• z: shorthand for w − c+ d− ch

The following relations hold for obvious reasons:

• w ≥ c: the clouds do not accept underpaid jobs.

• ch > 2w: otherwise there is no need to use the clouds, the client uses the TTP for

the computation. Note that the cheating cloud will pay ch. An honest client pays

strictly no more than hiring two clouds (plus the mere transaction cost).
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The following relations need to hold when setting the contracts for the desirable

equilibria to hold. The client can set the parameter d in the Prisoner’s contract, b

and t can be set by the clouds in the Colluder’s contract (see explanations in later

sections):

d > c+ ch• b < c• t > z + d− b•

6.5 The Prisoner’s Contract

In this Section, we present the Prisoners’ contract. The name comes from the fact

that the contract induces a game similar to the classical Prisoners’ Dilemma game.

As a starting point, we put a constraint that communication between the clouds

is limited to “cheap talk”, i.e. unlimited cost-free exchange of unverifiable and non-

binding messages. In other words, the clouds can exchange information, but the

information they get from the other cannot be regarded as truth or credible commit-

ments.

6.5.1 The contract

The Prisoner’s contract is an outsourcing contract signed between a client and two

clouds. At a high level, it tries to incentivize correct computation by asking the clouds

to pay a deposit upfront. If a cloud behaves honestly, the deposit will be refunded; if

cloud cheats (and is detected), the deposit will be taken by the client. Moreover, in

the case where one cloud is honest and one cheat, the honest cloud gets an additional

reward that comes from the deposit of the cheating cloud. The intuition is to create

a Prisoner’s dilemma between the clouds: although collusion leads to a higher payoff

than both behaving honestly, there is an even higher payoff if one can lure the other

into cheating while being honest itself. Once both clouds understand this, they know

collusion is not stable because the other cloud will always try to deviate from it.

Any attempts (without a credible and enforceable promise) to persuade the other to

collude will be deemed to be a trap and thus will not be successful. The contract is

presented below, and more comments will follow afterwards.

1. The contract should be signed between a client (CLT) and two clouds (C1,C2).

Should there be any dispute, the dispute will be resolved by a trusted third party

TTP.

2. C1,C2 agree to compute a function f() on an input x. Both f() and x are chosen

by CLT.
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3. The parties agree on deadlines T1 < T2 < T3.

4. CLT agrees to pay w to each cloud for the correct and timely computation of f(x).

5. As a condition, each of C1,C2 must pay a deposit of amount d when signing the

contract. The deposit will be held by the smart contract.

6. C1,C2 must pay the deposit before T1. If any Ci fails to do so, the contract will

terminate and any deposit paid will be refunded.

7. C1,C2 must deliver the computation result f(x) before T2.

8. Upon receiving the computation result from both C1,C2, or when the deadline T2

has passed, CLT should do the following:

(a) If both C1,C2 failed to deliver the result, their deposits will be taken in full

by CLT;

(b) If both C1,C2 delivered the result, and the results are equal, then after veri-

fying the results, CLT must pay the agreed amount w and refund the deposit

d to each Ci;

(c) Otherwise CLT will raise a dispute to TTP.

9. Upon receiving a dispute raised by CLT, TTP computes f(x). Let yt, y1, y2 be

the results computed by TTP,C1,C2 respectively. Then the cheating party can be

decided by the following rule:

(a) For each Ci, if Ci failed to deliver the result, Ci cheated;

(b) For each yi (i ∈ {1, 2}) delivered before the deadline, if yi 6= yt , Ci cheated;

TTP communicates the decision to CLT as well as to C1,C2.

10. Upon receiving TTP’s decision, the dispute is resolved as follows:

(a) If none of C1,C2 cheated, CLT must pay the agreed amount w and refund the

deposit d to each Ci, and pay the fee for resolving the dispute ch to TTP.

(b) If both C1,C2 cheated, their deposits will be taken in full by CLT, and CLT

pays the fee ch to TTP.

(c) If only one of C1,C2 cheated, then (1) the deposit of the cheating cloud will

be taken in full by CLT, and (2) CLT pays the honest cloud w plus a bonus

d− ch and refunds its deposit d. CLT pays the fee ch to TTP.

11. If after T3 > T2, the client has neither paid nor raised dispute, then for any cloud

Ci who delivered a result before T2, CLT must pay Ci the agreed amount w and

refund its deposit. Any deposit left after that will be transferred to CLT.
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In the contract there are various deadlines (T1 < T2 < T3). The deadlines are

used to enforce timeliness and also to avoid locking away funds if some parties refuse

to move forward. The latter is particularly important in smart contracts as the

balance in a contract is controlled by a program. Without specific deadlines and

code specifying what to do after the deadlines, the fund can be locked forever by the

contract. Note that we assume the client is honest; therefore, Clause 11 will never be

invoked in this case. The clause is included in the contract to assure the clouds that

their funds will not be locked.

Clause 8 says that the client is empowered to settle the contract only when there

is an obvious fault, i.e. none of the clouds delivers the result, or when he is satisfied

with results. In all other situations, e.g. when only one result is received, or the

results do not match, the TTP must settle the contract. Clauses 9 and 10 deal with

the cases in which the TTP is involved. The TTP declares who cheated and then the

TTP’s judgement dictates the penalty/reward. If the client is honest, the dispute is

only raised when something went wrong, and the cost for dispute resolution is covered

by the deposit(s) of the cheating cloud(s).

6.6 The Colluder’s Contract

In the previous Section, we consider the case where the clouds can only communicate

via cheap talk. In this Section, we remove this constraint. We will show how clouds

change the game by using smart contracts and make collusion a favorable choice for

both.

6.6.1 The Contract

In the Prisoners’ contract, two clouds will behave honestly because they know once

they committed to send a wrong result, the other party will take advantage of this

and send the correct result to get a higher payoff. Even if the other party promises

to collude, the promise cannot be trusted because the other party might just be lying

about its true intention.

Even if they verbally agree on colluding, there is nothing to prevent a party

from deviating collusion to get a higher payoff. However, this only works if the

colluding parties cannot make binding commitments. In the real world, the collusion

coalition can often form after having an enforceable agreement among the colluders to

redistribute profit and to punish those who deviate from collusion. Essentially, since

the main problem is that collusion does lead to high enough payoffs, the agreement
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imposes additional rules that will affect the parties’ payoffs to make collusion the

most profitable strategy for all colluding parties.

Essentially, since the main problem is that collusion does lead to high enough

payoffs, the agreement imposes additional rules that will affect the parties’ payoffs to

make collusion the most profitable strategy for all colluding parties.

The collusion agreement is captured by the Colluders’ contract that can be used

to counter the Prisoners’ contract. . The contract is presented below:

1. The contract should be signed by two clouds C1 and C2. We call the cloud who

initiates the collusion the ringleader (LDR). The ringleader can be either C1 or C2.

We call the other cloud the follower (FLR).

2. LDR and FLR agree to deliver a value r 6= f(x) as the computation result in

CTP, which is a Prisoner’s Contract signed by LDR and FLR and a client CLT to

computef() on input x.

3. As a condition, LDR must pay t + b and FLR must pay t when they sign the

Colluder’s contract. The amount will be paid into and held by the smart contract.

4. LDR and FLR must pay the amounts stated above before T4 < CTP.T2, where

CTP.T2 is the result delivery deadline specified in CTP. If anyone fails to do so,

the contract will terminate and any deposits paid will be refunded.

5. Once CTP has concluded, the following will be done to the balance held by the

contract:

(a) (Both follow) If both LDR and FLR output r in CTP, then t is paid to LDR

and t+ b is paid to FLR;

(b) (FLR deviates) Else if LDR outputs r in CTP and FLR’s output in CTP is

not r, then 2 · t+ b is paid to LDR and FLR gets nothing;

(c) (LDR deviates) Else if LDR’s output is not r in CTP and FLR outputs r in

CTP, then 2 · t+ b is paid to FLR and LDR gets nothing;

(d) (Both deviate) Else t+ b is paid to LDR and t is paid to FLR.

The contract must be signed before CTP.T2 because otherwise, it would be too

late. The clouds needs to deliver the results in CTP (Prisoner’s contract) before

CTP.T2. The collusion agreement must be signed before this time so that the clouds

know for sure that the collusion is secured and can deliver r without any risk. In

clause 5d, when both clouds deviate from collusion, none of them is punished. Of

course, another choice is to punish both in this case. The analysis of this variant is

similar, and the equilibrium remains the same.
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6.7 The Traitor’s Contract

In the previous Section, we showed the Colluders contract that captures and enforces

a collusion agreement. The contract enables two clouds to collude and ensures that

no one will deviate from collusion. In this Section, we show the Traitors contract,

which is designed to address the collusion problem and force the clouds to behave

honestly.

6.7.1 The Contract

Knowing there could be a Colluder’s contract between the two clouds, one way to

solve the problem is to design another contract to incentivize the clouds to deviate

from the collusion. The contract could deter collusion and make both clouds stay

honest, or at least make cheating detectable if it can keep one cloud honest. The

first difficulty when going this way is how to avoid creating a counter/counter-back

loop. The client can provide an additional reward to the honest cloud and change

the equilibrium so that collusion is less preferable. However, once the clouds know

what is offered in the contract, they may be able to create a counter contract so that

collusion becomes the equilibrium again. This loop can go endless.

The second difficulty is how to persuade a cloud to betray the other. In the

Traitor’s contract, rather than incentivizing one of the clouds to deviate from the

collusion, it tries to incentivize the clouds to report the collusion. The reporting cloud

is permitted to follow the collusion strategy, thus can get away from the punishment

prescribed by the Colluders’ contract. If a collusion is reported, the TTP will step in

and decide who cheated. The reporting cloud would get a reward if the other cloud

did cheat.

In short, the Traitor’s contract is a leniency policy. It offers the first cloud who

reports a collusion to the client the total immunity of the penalty that is imposed by

the Prisoners’ contract. It also offers the reporting cloud a reward if the collusion is

real. The aim is to encourage a cloud to betray the partner in the collusion coalition.

The subtlety of the Traitor’s contract is that the immunity granted will allow the

reporting cloud to betray the partner while pretending to follow collusion strategy

secretly. By doing so, the reporting cloud can get away from the punishment imposed

by the Colluders’ contract. In consequence, betrayal is preferable to staying in the

collusion coalition because it is risk-free and leads to a higher payoff. The Traitor’s

contract destabilizes collusion by encouraging betrayal. Moreover, the fear of betrayal

creates distrust between the clouds. The distrust will eventually deter the formation of
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the collusion coalition. In addition to all above, the Traitor’s contract also includes a

clause to punish misreporting, i.e. a cloud reporting a fabricated case to gain benefits.

Experience from real-world shows that misreporting is a serious issue, especially for

leniency policies that offer a reward. Therefore being able to deal with it is important.

The contract is presented below:

1. The contract should be signed between a client (CLT) and a cloud who reports

collusion. We call this cloud the Traitor (TRA). CLT and TRA must have signed

CTP, a Prisoner’s contract.

2. CLT only signs the Traitor’s Contract with the first cloud who reports the collusion.

CLT agrees to compensate TRA’s loss in CTP in suitable cases.

3. TRA must deliver the computation result of f(x) in this contract, which can be

different from the one delivered in CTP.

4. As a condition, CLT must pay a deposit of amount w + 2 · d − ch that equals

the maximum amount TRA could lose in CTP plus the reward. TRA must pay a

deposit of amount ch that equals the fee for dispute resolution. The deposits will

be held by the smart contract.

5. The contract should be fully signed before CTP.T2, the deadline for delivering the

result in CTP. Otherwise the contract terminates and any deposit paid will be

refunded.

6. TRA must deliver a result in this contract before CTP.T2.

7. CLT always raises a dispute instead of invoking Clause 8 in CTP.

8. Once CTP is settled by TTP, the following will be done to the deposits held by

this contract:

(a) If in CTP none of the clouds cheated (as asserted by TTP), then CLT’s deposit

w + 2 · d − ch is refunded, and TRA’s deposit ch is paid to CLT. Nothing is

paid to TRA;

(b) Else if in CTP the other cloud did not cheat and TRA cheated and TRA

delivered a correct result in this contract, then 2 · d− ch is paid to CLT and

w + ch is paid to TRA;

(c) Else if in CTP both clouds cheated and TRA delivered a correct result in this

contract, then TRA gets back its deposit ch. TRA is also paid w + 2 · d− ch.

Nothing is paid to CLT;

(d) Else w + 2 · d− ch is paid to CLT and ch is paid to TRA.
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9. If TRA delivered a result in this contract, and CTP.T3 has passed, then all de-

posits, if any left, go to TRA.

To report collusion, TRA must follow the following procedure:

(i) Wait until the Colluder’s contract has been created and signed by the other cloud.

(ii) Before signing the Colluder’s contract, reports the collusion to the client. Op-

tionally, TRA can submit evidence of collusion, e.g. the address of the Colluder’s

contract and the value r that to be output in the event of collusion.

(iii) Sign the Colluder’s contract only after it has signed the Traitor’s contract with

the client.

CLT only signs the Traitor’s contract with the first cloud who reports the collusion.

This is because in our case, the collusion coalition has only two members. It is too

generous to forgive both of them. Once the Traitor’s contract is fully signed, CLT

always raises a dispute in CTP. There are two potential punishments imposed on

TRA by the Prisoner’s contract and the Colluder’s contract. To ensure that TRA’s

payoff is not worse off in the event of a true collusion, TRA needs to deliver r in

CTP to get away from the punishment imposed by the Colluder’s contract, and then

deliver f(x) in the Traitor’s contract to get the compensation of the penalty imposed

by CTP (the Prisoner’s contract). It is important that TRA follows the procedure

to ensure it signs all three contracts or only CTP; otherwise it might have to bear a

loss (see Game 3 and Game 4 in the following sections). To dispel TRA’s concern of

being cheated to “turn in”, CLT pays into the contract w + 2 · d− ch to assure TRA

that its loss will be compensated and its reward will be given.

Before reporting, TRA needs to wait until the other cloud has signed the con-

tract, i.e. fully committed to collusion. Otherwise, if TRA reports and the other

cloud decides not to sign the Colluder’s contract, TRA will be in the situation of

(unintentional) misreporting because the other cloud can deliver the correct result

in CTP. When reporting, TRA can submit evidence of collusion. Note that the evi-

dence submitted by TRA is a “best-effort proof”. The purpose of the evidence is not

to convince the client about the collusion, but to give the client more information

about the collusion. The conclusive evidence of collusion/cheating is TTP’s decision

and the settlement of Traitor’s contract (clause 8) relies only on values in Prisoner’s

contract and TTP’s decision. CLT will sign the Traitor’s contract even if the evidence

is not strong or verifiable. TRA can falsely report with some fabricated evidence,

but as we will show in the next Section, a rational cloud will not misreport. This is
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because when signing the contract, TRA needs to pay ch into the contract and will

lose this amount in the event of misreporting.

6.8 Address and Pseudocode

In this section, we show the pseudocode for the three contracts explained earlier.

All of these contracts were implemented in Solidity. Also we deployed and ran these

contracts on the Ethereum official network as well as the test-net. Below are the

account addresses of each contract which can be viewed through 1 or any Ethereum

client and their pseudocodes.

6.8.1 Contract Account Address

• Prisoner’s Contract:

0x09b61d58448d580c42b387334ac3fe28f2868887

• Colluder’s Contract:

0x255309e0612de2ab1812e21190b9a9b8f9a216d8

• Traitor’s Contract:

0x57b032d5a6adcc67739e8fd87a00c69bedbf7c65

6.8.2 Prisoner’s Contract

Prisoner’s Smart Contract

Init: Set state := INIT, deposit := {}, worker := {}, result := {}

Create: Upon receiving from a client CLT

(“create”, comf , comx, w, d, ch, T1, T2, T3,TTP):

Assert state = INIT and T < T1 < T2 < T3 and ledger[CLT] ≥ $(2 · w + ch)

ledger[CLT] := ledger[CLT]−$(2 · w + ch)

deposit := deposit ∪ (CLT, $(2 · w + ch)) state := CREATED

Bid: Upon receiving (“bid”) from a Cloud Ci:

Assert state = CREATED and T < T1 and (Ci, $d) 6∈ deposit and ledger[Ci] ≥ $d

ledger[Ci] := ledger[Ci] −$d

deposit := deposit ∪ (Ci, $d)

worker := worker ∪ Ci

if |worker| = 2 then state := COMPUTE

1https://etherscan.io
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Deliver: Upon receiving (“output”, comyi) from a cloud Ci:

Assert state = COMPUTE and T < T2 and Ci ∈ worker and (Ci, ∗) 6∈ result

result := result ∪ (Ci, comyi)

if |result| = 2 then state := PAY

Pay: Upon receiving (“pay”, NIZK) from CLT:

Assert state = PAY and T < T3

if |result| = 0 then ledger[CLT] := ledger[CLT] +$(2 · w + 2 · d+ ch)

state := DONE

else if |result| = 2 and verify(NIZK, comy1 , comy2)→ y1 = y2 then

ledger[C1] := ledger[C1] +$w + $d

ledger[C2] := ledger[C2] +$w + $d

ledger[CLT] := ledger[CLT] +$ch

state := DONE else state := ERROR

Dispute: Upon receiving (“resolve”, comyt , NIZK1,NIZK2) from TTP:

Let result = (C1, comy1), (C2, comy2)

Cheated := [false,false]

for i = 1 to 2

if NIZKi = NULL then Cheated[i] := true

Else if verify(NIZKi, comyi , comyt)→ yi 6= yt then Cheated[i] := true

if Cheated[1] and Cheated[2] then ledger[CLT] := ledger[CLT] +$2 · (w + d)

else if ¬Cheated[1] and ¬Cheated[2] then ledger[C1] := ledger[C1] +$w + $d

ledger[C2] := ledger[C2] +$w + $d

else if ¬Cheated[1] and Cheated[2] then ledger[C1] := ledger[C1] +$(w+2 ·d−ch)

ledger[CLT]:= ledger[CLT] + w + ch

else if Cheated[1] and ¬Cheated[2] then ledger[C2] := ledger[C2] +$(w+2 ·d−ch)

ledger[CLT]:= ledger[CLT] + w + ch

ledger[TTP] := ledger[TTP] +$ch

state := DONE

Timer: if T ≥ T1 and state = CREATED then refund(deposit) state := ABORTED

else if T ≥ T2 and state = COMPUTE then state := PAY

else if T ≥ T3 and state = PAY then for each (a,b) in result

deposit := deposit −(CLT, $w)− (a, $d)

ledger[a] := ledger[a] +$w + $d

Let res be any amount left in deposit ledger[CLT] := ledger[CLT] +$res

state := DONE
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6.8.3 Colluder’s Contract

Colluder’s Smart Contract

Init: Set state := INIT, deposit := {}

Create: Upon receiving the message (“create”, CTP, C2, com(r)1, com(r)2, t, b, T4, T5)

from C1:

Assert state = INIT and CTP =G(Prisoner′sContract) and T < T4 < CTP.T2 <

CTP.T3 < T5 and CTP.state = COMPUTE and ledger[C1] ≥ $(t+ b)

ledger[C1] := ledger[C1]− $(t+ b)

deposit := deposit ∪(C1, $(t+ b)

state := CREATED

Join: Upon receiving the message (“join”) from C2:

Assert state = CREATED and T < T4 and CTP.state = COMPUTE and ledger[C2] ≥
$t

ledger[C2] := ledger[C2]− $t

deposit := deposit ∪(C2, $t)

state := COLLUDED

Enforce: If T ≥ T5 and state = COLLUDED and CTP.state = DONE then

Let (C1, comy1), (C2, comy2) = CTP.result

if comy1 = comr,1 and comy2 = comr,2, then

ledger[C1] := ledger[C1] + $t

ledger[C2] := ledger[C2] + $(t+ b)

if comy1 = comr,1 and comy2 6= comr,2, then

ledger[C1] := ledger[C1] + $(2 · t+ b)

else if comy1 6= comr,1 and comy2 = comr,2, then

ledger[C2] := ledger[C2] + $(2 · t+ b)

else refund(deposit) state:= DONE

Timer: If T ≥ T4 and state = CREATED, then refund(deposit) state = ABORTED

6.8.4 Traitor’s Contract

Traitor’s Smart Contract

(assuming C2 is the traitor)

Init: Set state := INIT, deposit := {}
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Create: Upon receiving the message (“create”, CTP, CTC, C2) from CLT:

Assert state = INIT and CTP = G(Prisoner′sContract)

CTC = G(Colluder′sContract) and T < CTP.T2 and CTC.state = CREATED

or COLLUDED

Let d, w, ch be the same as in CTP

Assert ledger[CLT] ≥ $(w + 2 · d− ch)

ledger[CLT] := ledger[CLT]− $(w + 2 · d− ch)

deposit := deposit ∪(CLT, $(w + 2 · d− ch)) state := CREATED

Join: Upon receiving the message (“join”) from C2:

Assert state = CREATED and ledger[C2] ≥ $ch and CTP.state = COMPUTE and

T < CTP.T2

ledger[C2] := ledger[C2]− $ch

deposit := deposit ∪(C2, $ch)

state := JOINED

Deliver: Upon receiving the message (“output”, comy′) from C2:

Assert state = JOINED and T < CTP.T2 and CTP.state = COMPUTE

state := COMPUTED

Check: Upon receiving the message (“check”, NIZK) from CLT:

Assert state = COMPUTED and CTP.state = DONE

Cheated := CTP.dispute.Cheated

comyt := CTP.dispute.comyt Correct := false

if verify(NIZK, comy′ , comyt)→ y′ = yt then Correct := true

if ¬Cheated[1] and ¬Cheated[2] then ledger[CLT] := ledger[CLT] + $(w + 2 · d)

else if ¬Cheated[1] and Cheated[2] and Correct then ledger[C2]:= ledger[C2] + $w

ledger[CLT] := ledger[CLT] +$2 · d)

else if Cheated[1] and Cheated[2] and Correct then ledger[C2]:= ledger[C2]+$w+

2 · $d
else refund(deposit) state := DONE

Timer: If T ≥ CTP.T2 and state = CREATED then refund(deposit) state := ABORTED

Else if T ≥ CTP.T2 and state = COMPUTE then ledger[CLT] := ledger[CLT] +

$(w + 2 · d) state := DONE

If T ≥ CTP.T3 and state = COMPUTED then ledger[C2]:= ledger[C2]+$w+2 ·$d
state := DONE
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6.9 Implementation

We implemented the contracts in Solidity 0.4.4 [48] and tested them on the Ethereum

network with Geth [44]. We used the CryptoCon [73], a smart contract that imple-

ments elliptic curve cryptography (ECC), for implementing cryptographic operations

on the blockchain. The contracts are loosely coupled with the actual computation

tasks as an external service. The actual computation tasks can be treated as, and

the contracts do not need to know their internal details. The contracts will be called

before/during/after executing the tasks, e.g. the input and output of the tasks. The

source code of our contracts can be found at 2. The protocols of the smart contracts

can be found in the full version of the [34]. We ran the experiments on a MacBook

Pro with a 2.8 GHz intel i5 CPU and 8GB RAM.

6.10 Overhead and Cost

Overhead The additional overhead incurred by cryptography is small. We implement

the commitment and NIZK schemes in ECC. In each contract, each party need to

generate at most two commitments. Also, in each contract, at most 2 NIZKs need

to be generated and verified. The most costly cryptographic operation is the point

multiplication (MUL) operation. Generating a commitment needs 2 MUL. Generating

and verifying an equality NIZK each needs 2 MUL as well. Generating an inequality

NIZK needs 4 MUL and verifying needs 3 MUL. The commitments and NIZKs are

generated locally by the parties. On the blockchain, the peers only need to verify the

NIZKs. The commitments and NIZKs are small in size. When using 256-bit ECC, a

commitment is only 512 bits, an equality NIZK is 768 bits, and an inequality NIZK

is 1536 bits. The size can be further reduced if point compression is used.

Financial Cost In Table 6.1, we show the cost of setting up and executing the

contracts on the official Ethereum network. The cost is in the amount of gas con-

sumed by each function, and the converted monetary value in the US dollar. The

gas price was 2 × 109 ether (2 Gwei) in all transactions, and the exchange rate was

1 ether =$87.32. As we can see, the financial cost for using smart contracts on the

Ethereum network is low. The cost is roughly related to the computational and stor-

age complexity of the function. For example, in Prisoners contract, Init (to store a

contract on the blockchain) and Dispute (require verification of NIZKs) cost more

than other functions. For the Prisoners contract, the total cost (for the client and the

2https://github.com/mjod89/SmartContracts
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Contract Functions Cost in Gas Cost in $
Init 2,298,950 0.4015

Create 206,972 0.0361
Bid 74,899 0.0131

Deliver 94,373 0.0164
Pay 821,244 0.1434

P
rison

er’s

Dispute 2,126,950 0.3714

Init 1,971,270 0.3443
Create 281,852 0.0492
Join 58,587 0.0102

C
ollu

d
er’s Enforce 103,156 0.0180

Init 2,018,459 0.3525
Create 161,155 0.0281
Join 66,802 0.0117

Deliver 82,846 0.0145

T
raitor’s

Check 719,051 0.1256

Table 6.1: Cost of using the smart contracts on the official Ethereum network. The
transactions are viewable on the blockchain.

two clouds) is about 3.8 million gas ($0.65) if there is no dispute, or about 5 million

gas ($0.88) with dispute resolution. For the Colluders contract, the total cost is about

2.4 million gas ($0.42).And for the Traitors contract, the total cost is about 3 million

gas ($0.53). The cost can be further reduced if the contracts are reused. Note that

Ethereum will have native support for ECC [76], which means we can expect a much

lower cost for calling functions that involves ECC operations (e.g. Dispute).

6.11 Conclusion

Verifiability is a highly desirable property in cloud computing, cost-efficiency is an-

other one. In this chapter, we propose a smart contract based solution aiming to

achieve both. In our solution, the client outsources the same computation for two

clouds and uses smart contracts to create games between two rational clouds. The

games will restrain the clouds from colluding and cutting corners. Instead, they will

stay honest to pursue their highest payoffs. Now without collusion, verifiability can

be achieved by cross-checking the results returned by the clouds. The main cost is the

cost of employing two clouds, and other costs are small. In this work, we assume the

client is honest. One future direction would be to consider the client as a potential

adversary. This would make the interplay among parties more complex and requires

significant changes to the contracts. Another future direction would be to consider
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repeated interactions among the parties. Repeated interactions introduce significant

changes to the settings because the incentive can be now influenced by reputation and

long-term profitability. Also, the current deposit mechanism is not very efficient from

the cloud point of view. If the cloud has many clients and simultaneous contracts,

the cloud must have a large cash reserve to pay all deposits at the same time. One

direction would be to investigate more efficient deposit mechanisms by, e.g. pooling

contracts or insurance. Currently, the contracts are written case-by-case. Ultimately

we would like to have standard, verified and composable templates/subroutines, much

like standard wording/clauses we use in traditional contracts. We would also like to

develop counter-collusion contracts in general for other purposes, e.g. to prevent vote

buying in e-voting systems like [73].
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Chapter 7

Implementation and Evaluation of
Non-Blocking Two Phase Commit
Protocol Using Blockchain

7.1 Summary

Since the introduction of Bitcoin in 2008, cryptocurrencies such as Ethereum, which

empowers users to implement and execute custom-made distributed applications

leveraging smart contracts and blockchain technology, have gained a considerable

interest by both academia and industry. To enhance accountability, audibility and

trust, these technologies have been utilized in a variety of applications outside the

domain of cryptocurrencies, such as in cloud computing [34], banking and energy

trade[1].

In this chapter, relying on results we learned from Chapters 3 and 4, which show

how to implement an efficient smart contract with less Gas and CPU usage, we present

a blockchain-coordinated 2PC protocol that has rigorous arguments for its correct-

ness under the synchrony requirements. Our focus is on the implementation of this

protocol on both Ethereum private and testnet networks. We demonstrate, through

our experiments, that the monetary cost of executing smart contracts is relatively

small, that the protocol performance slows down when using a public blockchain like

Ethereum, and that even major violations of synchrony requirements lead only to

relatively small increases in unnecessary aborts. We thus identify a trade-off be-

tween improving protocol performance and admitting a risk that transactions could

occasionally abort unnecessarily.

In summary, this chapter explores and exposes the impossibilities, the possibilities,

the cost and the trade-offs involved in using a blockchain to implement non-blocking
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atomic commit. Its structure and contributions are as follows. The next Section

presents the atomic commit problem that 2PC solves, the notion of blocking and the

distinction between synchronous versus asynchronous distributed systems. Assum-

ing a synchronous system, Section 7.4 describes the traditional version of 2PC and

explains the causes of 2PC blocking. It thus provides the essential background for

Section 7.5 which describes in detail our contribution that is in the domain of protocol

design: a non-blocking 2PC with a synchronous blockchain, together with pseudo-

code for smart contracts and correctness arguments. Our practical contributions are

detailed in Section 7.7, which describes an Ethereum based implementation of the

protocol and discusses the results of our experiments. The discussions present the

cost of smart contract execution, report both the estimated and observed worst-case

2PC execution latency values, quantify the probability of occurrence of unwarranted

aborts caused by synchrony violations and point out the scope for a trade-off be-

tween improving performance and minimizing wasteful aborts. Finally, Section 7.8

concludes the chapter.

7.2 Introduction

Since the advent of Bitcoin in 2008 [75], cryptocurrencies have gained considerable

interest. This is then followed by an even larger interest being accorded to Bitcoin’s

underlying technology, the blockchain, and to Ethereum’s development of smart con-

tracts that empower users to execute custom-made programs on a blockchain [10].

A variety of applications outside the cryptocurrency domain, such as finance [86],

banking and energy trade [1], have been leveraging blockchain and smart contract

technologies to enhance accountability, auditability and trust in their core processes.

This chapter investigates the use of these technologies in enhancing the availability

of distributed database management systems [56, 69] and the associated cost. Pre-

cisely, we revisit a well-known impossibility result [83, 58] related to blocking in atomi-

cally committing database transactions and demonstrate that these new technologies,

under certain conditions, help accomplish what would otherwise be impossible.

When multiple processes execute a database transaction in a distributed system,

an atomic commit protocol ensures the essential requirement that all processes ei-

ther commit the transaction or abort it - a requirement that is commonly known as

atomicity or agreement. The two phase commit protocol (2PC, for short) is widely

used as an atomic commit protocol due to its conceptual simplicity, ease of imple-

mentation and low message cost. It is, however, vulnerable to periods of non-progress
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or blocking. This vulnerability is proven [83] to be inevitable even in synchronous

distributed systems where bounds on delays (e.g., message transfer delays) can be

reliably estimated, and the only type of undesirable events that can occur is process

crash.

The definition of a ‘synchronous’ distributed system has long been established

in the literature [15]. In our earlier work [37], we extended this definition for a

blockchain system and developed a protocol in which the blockchain plays specific

roles in the execution of 2PC. This protocol was shown to eliminate blocking when

both the distributed system and the blockchain used are synchronous. Its design,

however, required that the timestamps of blocks in a blockchain be increasing in

value and that they emulate ‘ticks’ of a global clock to database servers. While the

Ethereum blockchain meets this requirement, other blockchain systems do not and

newly emerging ones may not. So, in this chapter, we remove this requirement and

present a new protocol together with correctness arguments. This new version also

eliminates blocking under synchronous constraints and retains the native structure of

2PC for database processes which makes it easily adoptable in legacy systems.

To the best of our knowledge, this work is the first in the literature to demon-

strate that the impossibility result of Skeen [83] can be circumvented in synchronous

distributed systems by using a synchronous blockchain. This revised and extended

version not only improves on the earlier protocol but also addresses two significantly

pertinent questions: can blocking be eliminated if the blockchain or the distributed

system is not synchronous, and, if the answer is no, what are the practical implica-

tions if the blockchain and the distributed system can be synchronous most of the

times, but not always?

Some blockchain systems, typically the public ones with miners having the free-

dom of choice in composing their blocks, may cease to be synchronous if it becomes

harder to estimate delay bounds accurately. Similarly, a cluster hosting distributed

database servers becomes asynchronous if the accurate delay bound estimation within

the cluster is not guaranteed.

We are thus faced with four possible combinations: (i) the blockchain is syn-

chronous, and the database cluster is asynchronous, (ii) blockchain is asynchronous,

and the cluster is synchronous, (iii) both are asynchronous, and (iv) both are syn-

chronous. 2PC blocking is eliminated for case (iv) as our protocol would demonstrate.

Still to be addressed, therefore, is the question of whether 2PC blocking can be elim-

inated for the other three cases.
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We argued that elimination of 2PC blocking cannot be guaranteed for (iii). We

also prove that the same impossibility holds for more restricted cases of (i) and (ii)

as well.

Thus, the impossibility results presented here are point to quite a fundamental

result: a non-blocking 2PC using a blockchain is possible if and only if both the

blockchain and the database cluster are synchronous. That is, many desirable fea-

tures that a blockchain system has, such as reliability, immutability, etc., are not by

themselves sufficient to eliminate 2PC blocking, and synchrony is required addition-

ally.

Finally, when the blockchain and the distributed system are considered to be

synchronous, even carefully computed delay-bound estimates are at risk of being

violated, e.g., due to bursts in network traffic. We argue that such violations can

cause some commit-worthy database transactions to abort unnecessarily, but cannot

undermine the core atomicity requirement that all servers either commit or abort. We

investigate the relation between the number of unwarranted aborts and the degree of

violations in the synchronous assumption, and observe that the former is small even

when the latter is large.

7.3 The Atomic Commit Problem

The problem is specified in the context of a set of distributed processes as follows:

Π = {P1, P2, . . . , Pn}, where n > 1 is known. A process Pi, 1 ≤ i ≤ n, can crash

at any time and recover after some arbitrary amount of time. Information logged

in the disk prior to crash survives the crash. At any given instance, there are two

complementary subsets of Π, the crashed and the operative. For discussions, we would

assume that the former is small and a strict subset of Π.

Each operative process autonomously evaluates a vote that can be either yes or

no. The problem is to have processes decide either on commit or abort, subject to

the following four requirements [57]:

• Agreement : No two processes decide differently;

• Termination: All operative processes decide;

• Abort-Validity : Abort is the only possible decision if some process votes no or

does not vote at all; and,
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• Commit-Validity : Commit is the only possible decision if every process is oper-

ative and votes yes.

Agreement requires any two decided processes, currently crashed or operative, to

have decided identically. Say, Pk decides on commit and immediately crashes; then

no other process can decide on abort even if all but Pk are operative and deduce Pk

to have crashed. Termination ensures that the decision is available to all working

processes; in particular, if a process crashes undecided, it should be able to decide

when it becomes operative again, post-recovery.

Abort-Validity permits a process with no vote, not to exercise its vote at all.

Commit-validity rules out trivial solutions such as all processes perforce decide on

abort irrespective of their votes. . This last requirement is impossible to guarantee

even in blockchain based solutions when the worst-case delay estimates being used

are not guaranteed to hold.

Observe that any non-trivial solution to atomic commit requires operative pro-

cesses of Π to interact amongst themselves - either directly leading to decentralized

protocols or via a protocol coordinator C leading to centralized versions. The former

extract a huge message cost. The widely-used 2-Phase Commit (2PC) protocol is

a centralized one and is highly message efficient. It would be our focus here. (In

practice, the role of C is typically played by a designated process in Π.)

Definition. An atomic commit protocol is said to be blocking, if there can exist

executions in which operative processes cannot decide until some non-empty subset

of crashed processes ought to recover [83, 79]. Blocking is thus undesirable as the

progress of operative processes, normally larger in number, is dictated by the recovery

times of crashed ones. A protocol is non-blocking if operative processes are guaranteed

to decide even if each crashed process is never to recover. Whether one can have a

non-blocking atomic commit protocol or not, depends on if the distributed system is

synchronous or asynchronous [58, 57].

7.3.1 Synchronous vs Asynchronous Systems

Definition: A distributed system is said to be synchronous, if bounds on processing

delays and inter-process communication delays can be reliably estimated; otherwise,

it is said to be asynchronous [58, 57].

Note that the bound estimates in a synchronous system can be large (typically,

worst-case estimates) but must be finite and hold reliably. Typically, distributed sys-
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tems where delays can fluctuate arbitrarily, and therefore reliable bound estimations

are not possible, are classed as asynchronous.

It is known that non-blocking atomic commit is not possible when the distributed

database system is asynchronous [58], unless the system obliges every execution by

behaving in certain desirable ways [57]. It is, however, possible to have a non-blocking

atomic commit in a synchronous system by using the message-expensive, decentralized

approach [78, 35]. Intuitively, the design rationale in this approach is as follows.

Reliable bound estimates in a synchronous system are used to implement perfect

crash detection using timeouts: a crash is always detected, and an operative process

is never mis-detected (no false positive/negative). In addition, protocol performance

is speeded up by assuming a bound on the maximum number of processes that can

crash [35].

Nevertheless, the centralized 2PC is a blocking protocol even in a synchronous

system [83], i.e., even when a cluster hosting Π supports delay bounds to be estimated

reliably and can thereby facilitate perfect crash detection!

7.3.2 Synchronous vs Asynchronous Blockchains

We observe that this synchronous vs asynchronous classification holds for blockchain

based 21 systems[37] as much as for traditional distributed systems. (Earlier defini-

tions [37] will be re-stated in § 7.5.2 for completeness.) In public blockchain systems,

such as Ethereum, the time taken for a valid transaction to be confirmed or irre-

versibly placed in the blockchain is determined by a variety of delay-prone factors

- both human as well as system related; for instance, a miner being (un)willing to

include a transaction in their block [92] falls under the former category and factors

such as the required number of follow-up blocks to assure blockchain linearity and

incoming transaction rate fall under the latter.

Ethereum blockchain confirmation time for a transaction can be unbounded with a

significant probability [92], suggesting large variances in end-to-end processing delays

within the blockchain infrastructure. On the other hand, permissioned blockchain

systems (e.g., HyperLedger [12]), with their hardened modular implementation of

consensus protocols (e.g., [23]) over dedicated machines, appear to promise that the

delays for transaction confirmation have small mean (in the order of milliseconds)

and also small variance and can, therefore, be reliably bounded, thus making such

systems candidates for a synchronous blockchain.
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7.4 2PC in Synchronous Systems

The 2-Phase Commit protocol, 2PC for short, is explained below in the context of

database transactions [69]. Shards of a database are distributed over processes in

Π. We assume that a crash-prone process, called the coordinator and denoted as C,

launches a multi-shard transaction that requires every process in Π to execute a set

of serializable operations on their respective shards. We refer to this launching by C

as each process in Π getting work from C.

Let ω and δ denote upper bound estimates on the time any operative Pi ∈ Π

takes to complete its work and on message transfer delays between any two operative

processes, respectively. Since the system is assumed to be synchronous, ω and δ

always hold.

PHASE 1

Coordinator C:
1. Broadcast cast vote to all P1 . . . Pn

2. Set Timeout ∆ = 2δ; go to Phase 2

Pi:
1. IF (cast vote not received until Ti or Vi = 0) THEN quit

ELSE {Log Vi = 1; send Vi to C; Set timer ; go to Phase 2}

PHASE 2

C on timeout ∆:

1. IF any absent Vi THEN verdict = abort
ELSE verdict = commit

2. Log verdict ; Broadcast verdict to all P1 . . . Pn

Pi:

1. Repeat on timer : IF verdict arrived THEN Log verdict
ELSE {request C; reset timer}

2. Until verdict logged

Figure 7.1: Two phase commit protocol.

C disseminates the work and awaits on a timeout of (ω + δ) duration which is

sufficient for any operative Pi to receive and complete the work given to it. At the

expiry of the timeout, it initiates an execution of 2PC by broadcasting cast vote to

all processes - as shown in line 1, phase 1 for Coordinator C in Figure 7.1. This is

then followed by setting a timer for ∆ = 2δ and proceeding to phase 2. (Note: C

waiting for (ω + δ) time before broadcasting cast vote is not shown in Figure 7.1.)
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When Pi receives work from C, it computes Ti as the local time when a duration

(ω + 2δ) would elapse after the receipt of the work. While doing the work, Pi will

either complete it and set its vote Vi = 1 or decide that work cannot be completed in a

serializable manner and set Vi = 0. In the latter case, by the Abort-Validity property,

Pi can deduce that the decision or verdict is abort i.e., the transaction would be

aborted system wide; so, Pi quits executing 2PC as shown in line 1 of Phase 1 for Pi

in Figure 7.1.

Note that it is possible to have a 2PC implementation that makes Pi send Vi = 0

to C; we consider such an implementation only where relevant, but otherwise we will

assume the common (and message-optimal) case of Pi with Vi = 0 simply halting the

execution with abort decision.

If Pi has set Vi = 1, it waits to receive cast vote. If cast vote message is not received

until Ti, Pi assumes that C has crashed, decides abort and quits its execution of 2PC.

If, on the other hand, cast vote arrives by Ti, Pi continues executing 2PC by logging

its vote Vi = 1, sending Vi to C and proceeding to Phase 2. That is, the ‘ELSE’ part

in line 1 of Phase 1 for Pi in Figure 7.1 is executed when (cast vote not received until

Ti or Vi = 0) is false which is equivalent to (cast vote received before Ti and Vi = 1)

becoming true.

Note that while a given Pi may or may not enter phase 2, C always does. When

its ∆-timeout expires, C counts an absent vote from any Pk as Vk = 0; it decides on

commit verdict, if Vi = 1,∀i : 1 ≤ i ≤ n; on abort verdict, otherwise. The verdict

decided is logged and broadcast to all Pi. (See Phase 2 of Figure 7.1).

Any Pi that executes phase 2, awaits verdict from C and requests C periodically

(as per some timer value), if verdict is not forthcoming. This periodic request will

prompt a crashed C to respond after its recovery by referring to the verdict it logged

prior to the crash. If no verdict has been logged, C must have crashed prior to

computing the verdict ; in that case, C’s response would be abort.

Similarly, if Pi crashes after sending Vi = 1 to C, it will observe, after recovery,

the log entry of Vi = 1 and request C to send the verdict. Thus, all operative

processes, including those that crash during execution and recover, decide - ensuring

termination. It is easy to see that the other three requirements of atomic commit are

also met in 2PC.

Figure 7.2 depicts the state transition diagram for any Pi where a circle denotes

a state and a double circle a terminal state; a state transition is indicated by an

unidirectional arrow with a label I
O

where I indicates the input received by Pi which

causes the transition and O any output produced by Pi after the transition. (’-’
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Figure 7.2: 2PC State Transition Diagram for Process Pi.

indicates null output.) WG, W1 and W2 represent states where Pi is doing the work

given, waiting for cast vote (see line 1, phase 1 in Fig 7.1) and for verdict (line 1,

phase 2 in Fig 7.1, respectively; a and c denote the terminal states where Pi aborts

and commits, respectively.

7.4.1 Inevitability of Blocking in 2PC

While Skeen [83] formally proves this inevitability, we offer here, for completeness,

an intuitive understanding of the reasons for it. By the definition of blocking (see

Section 7.3), in every execution of a non-blocking 2PC protocol, operative processes

decide despite some processes crashing and staying crashed; i.e., operative processes

reach a verdict that satisfies the atomic commit requirements without having to wait

for any crashed process to recover.

We present three distinct execution scenarios of 2PC and show that no mechanism

can possibly exist that avoids blocking in all scenarios and all meets all atomic commit

requirements.

Scenario 1: In this execution of 2PC, every Pi ∈ Π votes Vi = 1 and C crashes

just before it is to broadcast its verdict. C remains crashed, i.e., does not recover, for

a long time.

Each Pi is blocked until C recovers. Suppose that blocking is avoided by using

some repair sub-protocol R that enables operative processes to decide on a verdict

(here commit) without waiting for the crashed C to recover. For example, R may

require operative processes to interact among themselves on how they voted and to
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arrive at a verdict that C would have broadcast had it not crashed. Next two scenarios

prove that R cannot exist.

Scenario 2: It is identical to scenario 1 except that one Pk ∈ Π could not

complete its work, decides on abort and then crashes. Pk also remains crashed for a

long time.

R must now enable all operative Pi, i 6= k, to decide on abort without waiting for

Pk or C to recover.

Scenario 3: It is also identical to scenario 1, except that C crashes after sending

verdict = commit only to Pk which crashes soon after logging the received verdict.

Pk, as in scenario 2, remains crashed for a long time.

R must now lead all operative Pi, i 6= k, to decide on commit without waiting for

Pk or C to recover.

We observe that the execution environments of scenarios 2 and 3 are identical for

all operative Pi, i 6= k: both C and Pk remain crashed until all Pi decide on verdict ;

secondly, there is no interaction between Pk and C in Scenario 2 after C broadcast

cast-vote and Pi cannot deduce any of the pre-crash interactions between Pk and C

in Scenario 3 until one of the crashed ones recovers. Thus, R is expected to make

all operative Pi decide differently in identical execution environments. Such an R
cannot be designed and hence 2PC blocking is inevitable.

Remarks. As per Skeen [83], the root causes for the inevitability of 2PC blocking

are two-fold: both terminal states, c and a, are one-step reachable from W2 as can

be seen in Fig 7.2, and (ii) it is possible to have an operative Pi waiting in W2 and a

crashed Pk either in a (see scenario 2) or in c (see scenario 3). In Skeen’s terminology,

(ii) is referred to as the terminal states, c and a, being in the concurrency set of W2.

Designing R involves modifying 2PC itself and introducing new pre-terminal ‘buffer ’

states so that both terminal states are not in the concurrency set of W2. This 2PC

modification leads to 3 phase commit and details are in [83].

7.5 Non-Blocking with Blockchain

7.5.1 Approach

We can observe that if C were never to crash during 2PC execution, then blocking

cannot happen. We build on this observation by having C initiate a transaction by

delegating work to all Pi and then entrust the 2PC coordination responsibilities to

a blockchain infrastructure (BC, for short) which, being a replicated state machine,
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must coordinate 2PC execution in a crash-free manner. To accomplish this, several

aspects of BC will be made use of, and they are listed below.

Event ordering. Events directed at a BC are also called transactions.BC puts a total

order on these events and records them in that order; event recording is immutable and

recorded events are permanently visible to all concerned parties. Event ordering in BC

can also be used to ensure exactly once execution of an action, say, A when multiple

sources, e.g., processes in Π, can request A’s execution: BC can be programmed (see

smart contract below) to accept only the first Smart Contract. See Chapter 2

Section 2.4.1 Ethereum [94]. See Chapter 2 Section 2.4. Wall Clock. Ordered

transactions are first arranged in blocks of fixed size which are then arranged in

BC in the in-creasing order of block timestamps. Assuming that transactions are

being continually submitted to BC, the increasing timestamps of the blocks being

added constitute a publicly-visible, real-time wall-clock (possibly with irregular ticks);

processes of Π can use it as a common time-service.

7.5.2 Synchronous Blockchain

Similar to definitions of ω and δ, let β be the block construction bound on the de-

lay that can elapse between the instant when a user process U launches a valid

(blockchain) transaction TXU and the instant when a block containing TXU is (ir-

reversibly) added in BC; let α be the awareness bound on the delay that can elapse

between the instant when TXU enters BC irreversibly and the instant when any

interested party gets aware of TXU in BC. A BC infrastructure (together with min-

er/consensus nodes) is said to be [37] synchronous if it supports reliable estimation

of bounds β and α; otherwise, it is said to be asynchronous.

The assumption of a synchronous BC implies that several requirements have been

met: a valid transaction submitted to BC is never lost but is always considered for

entry into the BC in a timely manner, a party interested in a given TXU is periodically

scanning BC, etc. This is just like the validity of δ bound requiring that no message

be lost, but every message be queued, transmitted, received and delivered - all in a

timely manner.

7.5.3 2PC with Synchronous Blockchain

We explain here (i) how C hands over the coordination responsibilities for 2PC ex-

ecution to the BC infrastructure and, (ii) how Pi interacts with BC to execute 2PC

in two phases. Informally, Pi uses Phase 1 to register its vote in BC and Phase 2 to
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receive the verdict, very similar to the traditional 2PC execution. We also assume

that the cluster hosting database processes Π is synchronous as well. We do not, how-

ever, require processes of Π to detect each other’s crash directly (e.g., by operating a

failure detector). This is also the case in the traditional 2PC version.

7.5.3.1 Protocol 1

As in traditional 2PC, C disseminates the work to each Pi ∈ Π; it then hands over the

responsibilities to the BC infrastructure by launching a (BC) transaction TXC that

sets up the 2PC coordination smart contract in BC with initial state = VOTING.

(Smart contract code is explained in § 7.5.4.) The role of C ends with launching

TXC . Note that C may crash after work dissemination and before launching TXC ; in

this case, all operative Pi must detect this and end up deciding abort as in traditional

2PC execution.

When Pi receives work from C, it computes Ti as the local time when a duration

that is maximum of {ω, δ + β + α}, would elapse after the receipt of the work. Ti

is the earliest local time when Pi can complete its work and become aware of TXC

being added to BC, if C had launched TXC .

Thus, if TXC does not appear in BC until a block with timestamp ¿ Ti is added,

i.e., until BC wall-clock exceeds Ti, then, by synchrony assumptions, Pi can deduce

that C crashed without launching TXC ; it can subsequently abort as shown by the

state transition from W1 to a in Figure 7.3, where WC denotes the BC wall-clock.

The transitions from state WG in Fig 7.3 are identical to those shown in Fig 7.2.

They have here become off-chain activities [95].

If a Pi that completes its work (WG→ W1 in Figure 7.3), gets aware of TXC by

local time Ti, it logs locally Vi = 1 (as in Phase 1 of Fig 7.1) registers its vote by

launching TXi to BC. When TXi is accepted in BC, it invokes V OTER function of

the smart contract with Vi = 1 as input. (State of Pi now transits from W1 to W2 in

Figure 7.3).

Let TXC .BlkT ime be the timestamp of the block containing TXC . Any operative

Pi gets aware of TXC no later than WC = TXC .BlkT ime+α and its TXi, launched

in response, would be added to BC by WC ≤ TXC .BlkT ime+ α+ β. (Note: α and

β are upper bounds and actual delays can be smaller than them.)

If all Pi vote Vi = 1, then the smart contract would compute verdict = commit

and display state = COMMIT in BC. (Details in § 4.5.) All Pi observe this state by

WC ≤ TXC .BlkT ime+ 2α + β.
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Let ∆ = 2α + β. When WC exceeds TXC .BlkT ime+ ∆, if an operative Pi that

sent TXi cannot see state = COMMIT in BC, then some Pk did not launch TXk. In

that case, Pi can safely decide verdict = abort. However, our description here assumes

that Pi decides verdict = commit or abort only in response to what is being indicated

in BC, to be consistent with the traditional 2PC description.

When WC > TXC .BlkT ime + ∆ and state 6= COMMIT , Pi launches TXVi to

invoke VERDICT function of the smart contract so that verdict is computed and

displayed in BC. In Figure 7.3, Pi does W2 → W3 after launching TXVi and then to

W3 → a when BC indicates state = ABORT . If several TXV were launched, only

one will be effective in executing V ERDICT (like A in § 7.5.1).

7.5.3.2 Protocol 2

Coordinator C: C disseminates the work to each Pi ∈ Π and, immediately after

that dissemination, it enters Phase 1 to hand over the coordination to BC infrastruc-

ture. On entering Phase 1, C launches a blockchain transaction TXC that sets up

the 2PC coordination smart contract in BC with initial state = VOTING.

Phase 1 for C ends with the launch of TXC , and there is no Phase 2. Another

significant difference from the traditional 2PC is that C does not wait on any timeout

between disseminating its work to Π and entering Phase 1. Note that C may crash

during work dissemination or after dissemination and before launching TXC . Though

Subsection 7.5.4 is devoted to explaining the smart contract in detail, the roles of two

of its functions are briefly explained here for ease of understanding: function V OTER

enables Pi to enter its vote in BC and also computes the verdict once all Pi ∈ Π have

voted, and function V ERDICT allows a Pi to explicitly request for the verdict to be

computed. Moreover, once the smart contract computes the verdict, it changes the

initial state to display the computed verdict, i.e., to COMMIT or ABORT.

Get-Work by P i: When Pi receives work from C, it records its current local

clock time as Ti and enters the ‘working’ state WG (see Figure 7.3). If C has indeed

launched TXC , then TXC must enter BC no later than the local time Ti + δ+ β and

Pi must observe TXC in BC no later than its local time Ti + δ + β + α.

If Pi cannot complete the work due to serializability constraints, it unilaterally

decides on abort and terminates the execution. This is shown by the state transition

from WG to a in Figure 7.3.

If, on the other hand, Pi completes the work from C, it enters Phase 1 by transiting

from WG to the first wait state W1 in Fig 7.3.
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Phase 1 by P i: Pi starts Phase 1 by looking for TXC in BC. If it does not observe

TXC in BC until its clock has exceeded Ti + α + β + δ, it deduces that C crashed

before launching TXC and subsequently aborts as shown by the transition from W1

to a in Figure 7.3. Pi awaiting TXC to appear in BC is similar to its waiting for

cast vote in Figure 7.1. Also, the transitions from state WG in Fig 7.3 are identical

to the traditional 2PC execution shown in Fig 7.2. (Transitions from WG are also

called ‘off-chain’ activities [95].)

If Pi gets aware of TXC by local time Ti + α + β + δ, it logs Ti first, followed by

logging of Vi = 1 (the latter as in Phase 1 of Fig 7.1). The logging order of Ti and

then Vi is important for post-recovery execution by which Pi can decide if it crashed

undecided after this point in 2PC execution. (Description in § 7.5.3.2.)

After logging Ti and Vi, Pi launches transaction TXi with its vote Vi = 1. It then

enters Phase 2, with its state transiting from W1 to a second wait state W2 in Figure

7.3. Note that Pi launching its TXi must happen by its clock time Ti +max{α+β+

δ, ω}, where max{α + β + δ, ω} is the larger of (α + β + δ) and ω: Pi must observe

TXC in BC by clock time Ti + α + β + δ and complete its work by Ti + ω.

Phase 2 by P i: When TXi is accepted in BC, it invokes V OTER function of the

smart contract with Vi = 1 as input. Moreover, if all Pj ∈ Π launch TXj, i.e., vote

Vj = 1, then the V OTER function would compute verdict = commit and display

state = COMMIT when the last V = 1 is counted; otherwise, the state of BC will

remain at the initial state = VOTING. (Details in § 7.5.4.)

Let ∆ = max{α + β + δ, ω} + α + β + δ. Pi in Phase 2 waits for BC state to

change to state = COMMIT until its clock time Ti + ∆. If Pi observes BC state =

COMMIT by then, it decides verdict = commit.

If Pi, on the other hand, still observes state = VOTING until its clock exceeds

Ti + ∆, this means that some Pk, k 6= i, did not launch TXk. So, verdict must be

abort. Though Pi can now safely decide abort, our description here assumes that Pi

decides on verdict = abort in response to such an indication from BC, just as in the

traditional 2PC description where a Pi that voted Vi = 1 decides on abort by receiving

verdict from C.

When BC state = VOTING and clock exceeds Ti+∆, Pi launches TXVi to invoke

VERDICT function of the smart contract so that verdict is computed in BC and

displayed. In Figure 7.3, Pi does W2 → W3 after launching TXVi , waits in W3 until

BC indicates state = ABORT and then decides verdict = abort.
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Waiting by Pi in W3 must terminate as BC is reliable. It is likely that several

other Pj launch their own TXVj around about the same time when Pi launches TXVi .

If so, only one will be effective in executing V ERDICT (like A in § 7.5.1). Once BC

indicates state = ABORT , Pi decides on abort and terminates the execution (W3 to

a in Figure 7.3).

WG
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W2 W3

c

a

Get−Work
−

TXC ∈ BC
Submit{TXi} to BC

clock>(Ti+α+β+δ)
−

Cannot complete−
completed
−
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submit{TXVi

} to BCBC.state=COMMIT
−

BC.state=ABORT
−

Figure 7.3: State Diagram for 2PC with Blockchain.

Post-Recovery Execution: It is possible that some Pk ∈ Π crashes during the

protocol execution. When it recovers, there are two possible cases: log of Pk has or

does not have entry Vk = 1.

Absence of entry Vk = 1 means that TXk was never launched and any work done

by Pk has been erased from its (volatile) memory during the crash. So, the recovered

Pk does not know about the database transaction that triggered the 2PC execution.

Pk could, and hence would, do nothing regarding that database transaction; in other

words, Pk indirectly decides on abort. Further, any Pi, i 6= k, that logged Vi = 1 can

also decide only on abort.

Suppose that the log of Pk has the entry Vk = 1. This means that Pk, prior to its

crash, must have observed TXC in BC during its pre-crash execution of Phase 1 and

also logged the local time Tk (see § 7.5.3.2). Pk will resume executing 2PC starting

from Phase 2 (with its state in W2) and get the verdict from BC.

Since Tk is logged prior to logging Vk = 1, the log that contains Vk = 1 must have

Tk as well. If Pk had crashed after logging Tk but before Vk (hence before launching

TXk), then Vk would not be found in the post crash execution and the entry Tk

without a matching Vk is simply deleted.
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Note that the post-recovery execution enables Pk to decide even if Pk is the only

process in Π to have logged Vk = 1 and crashed before launching TXk, while all others

transited from WG to a: the recovered Pk would then launch TXVk when its clock

> Tk + ∆ and BC would subsequently change its state from VOTING to ABORT.

Note also that there is no assumption on how long a crashed Pk can take to recover.

7.5.4 Smart Contract Pseudo Code

Figures 7.4 and 7.5 present the pseudo-codes of 2PC coordination and the description

here assumes that the contracts are already deployed on the blockchain with unique

addresses.

7.5.4.1 Protocol 1 Pseudo Code

The contract has an initial state INIT , with three parameters Timeout (initialized

to zero), an initially empty set A of named participants and an empty set V of voted

participants; its functions have the following interfaces: REQUEST (A, T imeout),

V OTER(boolean) and V ERDICT ().

TXC submitted by C invokes REQUEST function with (A = Π, T imeout = ∆),

where ∆ = 2α + β. This initialization succeeds if C is asserted to have ownership

rights to invoke this function and the code is in the initial state INIT - as indicated

in the Assert statement. If this assertion succeeds, TXC is accepted and the state

of the contract is changed to V OTING which is publicly visible in BC; otherwise,

TXC is ignored. (This is always the case: a TX is rejected if the pre-invocation

assertion fails; throughout this description, assertions are assumed to succeed, except

for duplicate calls on VERDICT function.)

Each Pi in W1 checks BC for TXc; when state = VOTING, Vi = Y ES is sent

by submitting TXi that invokes VOTER function. Upon receiving TXi, the contract

asserts if Pi is legitimate to vote or not. When Pi is legitimate, Pi is recorded to have

voted in the set V . If V = Π, then the contract state is changed to COMMIT.

After WC = TXC .BlkT ime+ ∆, any Pi in W2 that still finds the state = VOT-

ING, invokes VERDICT function by submitting TXVi . The invocation succeeds only

if (i) Pi ∈ Π, (ii) sufficient time of ∆ = 2α+β had elapsed since TXC was added into

BC and (iii) state = VOTING. If it succeeds, it sets state = ABORT. An attempt

to invoke VERDICT when state = COMMIT or state = ABORT, will not meet (iii)

and not succeed.
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7.5.4.2 Protocol 2 Pseudo Code

The deployed contract is in the initial state INIT and has two set variables: Σ and

ΣV which are the set of participants eligible to vote and the set of those who actually

voted, respectively; both the sets are initially empty (when BC state = INIT ). The

smart contract has three functions:

• REQUEST () invoked by TXC to initialize the contract,

• V OTER() invoked by TXi to register the vote of Pi and to compute verdict

once all Pi ∈ Π voted, and

• V ERDICT () invoked by TXVi to request the verdict to be computed, if not

already done.

TXC submitted by C contains Π and invokes REQUEST function. This invoca-

tion succeeds only if C is asserted to have ownership rights to invoke this function

and the code is in the initial state INIT - as indicated in the Assert statement. If

this assertion succeeds, TXC is accepted and the state of the contract is changed to

VOTING and Σ to Π; otherwise, TXC is ignored.

Note that it is the feature of any blockchain that a transaction, such as TXC ,

is rejected if any of the pre-invocation assertions fail. Throughout this description

here, assertions are assumed to succeed, except for those TXV that seeks to invoke

the VERDICT function, not for the first time.

Having observed TXC in BC, a Pi ∈ Π with vote Vi = 1 launches its TXi. After

asserting that state = VOTING, Vi = 1 and Pi ∈ Σ = Π, the contract records Pi to

have voted by adding it in ΣV . The BC state is changed to COMMIT when ΣV = Σ.

Any Pi in W2 that finds state = VOTING even after its clock has read Ti + ∆,

invokes VERDICT function by submitting TXVi . The invocation succeeds only if

Pi ∈ Σ = Π and state = VOTING. If it succeeds, it sets state = ABORT. An attempt

to redundantly invoke VERDICT when state = ABORT will not meet the latter

condition and not succeed.

7.6 Asynchrony & Impossibilities

When bounds α and β cannot be reliably estimated, BC becomes asynchronous (see

Subsection 7.5.2); similarly, when estimates of bounds δ and ω are not guaranteed to

hold, the cluster hosting Π becomes asynchronous (Subsection 7.3.1).
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INIT: Set state := INIT ; A := [0x000 . . . 0x000] Timeout :=
0; V := [0x000 . . . 0x000]

REQUEST:() Upon C submitting TxC(Π, ∆) :
Assert (state == INIT and msg.sender == C)
Set A := Π; Set Timeout := ∆; state := V OTING.

VOTER:() Upon Pi submitting Txi (V ote):
Assert (state == V OTING and msg.sender == Pi ∈ Π)
Assert (Pi /∈ V ), Assert (V ote == Y ES)
Set V := V ∪ {Pi};
if (V == Π ) then {state := COMMIT ; }

VERDICT:() Upon Pi submitting TXVi :
Assert (state == V OTING and msg.sender == Pi ∈ Π)
Assert (block.timestamp > TxC .block.timestamp + ∆)
Set state := ABORT ;

Figure 7.4: Smart Contract pseudo-code for 2PC coordination protocol 1.

INIT : Set state := INIT ; Σ := [0x000, . . . , 0x000]; ΣV := Σ;

REQUEST(): Upon C submitting TXC(Π) : Assert (state ==
INIT and credentials of C) Set Σ := Π; Set
state := V OTING;

VOTER(): Upon Pi submitting TXi (V ote): Assert (state == V OTING
and Pi ∈ Σ); Assert (Pi /∈ ΣV ); Assert (V ote == 1); Set ΣV :=
ΣV ∪ {Pi}; if (ΣV == Σ ) then Set state := COMMIT ;

VERDICT(): Upon Pi submitting TXVi : Assert (state ==
V OTING and Pi ∈ Σ); Set state := ABORT ;

Figure 7.5: Pseudo-code for 2PC coordination smart contract protocol 2.
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Note that a public BC can be asynchronous even if the underlying distributed

system is synchronous. For example, if miners, at the time of TXC launch, also

encounter several other transactions that are more financially attractive to work on

compared to TXC , then TXC could take longer to enter BC, if at all, than any β

estimated in more favourable environments [92]. Similarly, BC can be synchronous

while the underlying distributed system is asynchronous. Thus, from the synchrony

requirements perspective, our system is made up of two distinct sub-systems: BC and

database cluster. This leads to three pertinent questions: can we have a non-blocking

2PC in which the coordinator C offloads its coordinating responsibilities to a BC,

when

1. the BC being used is synchronous, and the cluster hosting Π is asynchronous?

2. the BC is asynchronous, and the cluster is synchronous?

3. both the BC and the cluster are asynchronous?

We formally answer these open questions here and show that non-blocking 2PC

is not possible in all cases. It turns out that the perfect failure detection capability

within Π when the cluster is synchronous, is not enough to construct a non-blocking

2PC if BC is asynchronous (see [38] for more details).

7.6.1 Implications of Synchrony Violations

A closer look at the impossibility proofs reveals that asynchrony in BC or in the cluster

prevents only commit-validity from being guaranteed i.e., abort could be decided when

all processes of Π are operative and vote yes. This is also confirmed by the correctness

arguments in [38] which show that our 2PC protocol operating with BC solve the

atomic commit problem when both BC and cluster are synchronous. More precisely,

these arguments indicate that if (i) C crashes without launching TXC , (ii) some Pk

crashes, or (iii) some Pi votes no, the other three requirements are guaranteed to be

met even when the delay bound estimates are violated: arguments for termination [38]

and abort-validity [38] do not refer to synchrony assumptions at all; moreover, in cases

(i) - (iii) above, verdict = abort is the correct outcome and verdict = commit cannot

ever be reached. So, the agreement is also met. In summary, synchrony is needed

only to guarantee commit-validity. Thus, when a bound estimate b ∈ {α, β, δ, ω}
is violated, the only requirement that risks being compromised is commit-validity,

leading to unwarranted aborts of database transactions. Violations of b can occur
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due to transient surges in computational loads or network traffic or the traffic and/or

loads having increased since the bound estimates were last computed.

At any given time, let ba be the actual prevailing value for an estimate b ∈
{α, β, δ, ω}. Synchrony is violated if b < ba for any b. This does not necessarily

mean that the two timeouts used in the protocol would be violated. (Recall that

(α + β + δ) is the Phase 1 timeout defined in § 7.5.3.2 for deciding whether TXC

would ever appear in BC, and ∆ = max{(α+ β + δ), ω}+ (α+ β + δ) is the Phase 2

timeout defined in § 7.5.3.2 before launching TXV .)

For example, if only α < αa and b > ba for every other b, we can still have:

α + β + δ ≥ αa + βa + δa and ∆ ≥ max{(αa + βa + δa), ωa}+ (αa + βa + δa).

Denoting ∆a = max{(αa + βa + δa), ωa}+ (αa + βa + δa),

let us define:

m1 =
α + β + δ

αa + βa + δa
and m2 =

∆

∆a

. (7.1)

Only when m1 < 1 or m2 < 1, Phase 1 or Phase 2 timeouts are at risk of becoming

‘too small’ respectively, leading to the possibility of a transaction being unnecessarily

aborted and the commit-validity not being upheld. As noted, (m1 ≥ 1∧m2 ≥ 1) can

still hold when only some bound estimates suffer minor violations.

Using our protocol implementation described next, we evaluate the likelihood of

unwarranted abort occurrences when Phase 1 and Phase 2 timeouts are made small

by varying amounts.

7.7 Implementation and Evaluation

We implemented the 2PC-Blockchain contracts from Figures 7.4 and 7.5 in Solidity

0.40.11 [48] and tested their operations on the Ethereum private and test networks

[41], using Ethereum Wallet and Ethereum Mist [51]. Four different machines are

used: (a) a MacBook Pro with a 2.8 GHz Intel i5 CPU and 8 GB RAM, (b) three

desktop PCs with a 3.20 GHz Intel i7 CPU and 8 GB RAM running on Windows 10.

The MacBook is the coordinator C and the three desktop PCs constitute the ‘cluster’

hosting P1, P2 and P3. Each PC is connected to the Ethereum network as a full node,

thus having a full copy of the blockchain stored within it. The PCs do not play the

role of miners themselves and operate as non-mining database hosts connected to

the blockchain. They are also connected to each other and to switches by a standard

switched Ethernet local area network, which connects through standard TCP/IP with
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the Ethereum network. Smart contracts (see Figures 7.4 and 7.5) are also registered

with the Ethereum network.

7.7.1 Delay Bound Estimation

In all our experiments, the database transaction is kept null because our main ob-

jective is to assess the cost and performance of coordination activities within and

around the blockchain. Consequently, a ‘get-work’ message from C contains no work

for Pi but simply initiates the latter to execute 2PC which votes yes or no as per the

purpose of a given experiment; so, the bound estimate ω = 0. Other bounds α, β and

δ are established as follows.

The awareness delay (bounded by α) is calculated by taking the difference between

the confirmation time of a given transaction of interest (such as TXC or TXi) entering

a block in BC and the time of receiving this block by each Pi. The confirmation time

is obtained from the Ethereum wallet, which shows the time that the block was added.

The time stamps at the three Pi nodes give us three data points, and the maximum

of these three results is taken as one data point for estimating α. At the end of 30

experiments in which only C launched TXC , the maximum of the 30 data points

obtained is taken as α.

The block entry delay (bounded by β) is calculated as the difference between

the time stamp given to TXC at the coordinator node when TXC is sent, and the

confirmation time of the block that contains TXC within the blockchain. Similar to

α, we take the maximum of all data points obtained as β.

To obtain α and β, each individual experiment consists of C submitting one single

transaction TXC and ends once we have collected all the data points. Each experiment

takes several minutes, as we will see, and is repeated 30 times.

To measure data points for transmission delays (bounded by δ), no Pi needs to

interact with the blockchain. We measure these data points by letting C send a

1KB Ethernet packet to each processor Pi, which then sends it back to C. We take

the round trip time and halve it to get one-way delays. The maximum of all data

points collected is taken as δ: we collected 30 round trip times for each Pi, so δ is the

maximum over 90 one-way delay estimates.

The results for α, β and δ are shown in Figures 7.6, 7.7 and 7.8. In all three

Figures, the x-axis gives the experiment number (from 1 to 30), and the y-axis gives

the point estimate of α, β and δ (the max of the results in the three nodes, as explained

above).
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Figure 7.6: Block awareness delay.
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Figure 7.7: Block entry delay.

In estimating α, all experiments return values within the two-minute range. The

highest observed value is for experiment 4, at 115.734 seconds. Figure 7.6 shows only

the maximum of the values for the three Pi, and we note that the difference between

the three obtained values in each of the 30 experiments is minimal, less than one

second. For information, the average and the median of the block awareness delays

depicted in Fig 7.6 are 30.461 and 13.455 seconds, respectively.

In the experiments for β, the maximum is found in experiment 28, at a value of

118.800 seconds. Note that for some experiments the transaction finds its way into

a block in a matter of seconds, the minimum observed delay was 2.355 seconds. The

block entry delay is influenced by factors such as the transaction’s gas price which

in turn influences miners’ decisions of which transactions to include into the blocks

they work on.

Figure 7.8 shows the results of our experiments for estimating δ. They range from

1.590 seconds to 5.790 seconds.
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Figure 7.8: Transmission delay.

7.7.2 Cost of 2PC Coordination

As noted in Subsection 7.5.1, the initiator of a blockchain transaction that involves

executing one or more functions of a smart contract ought to pay the miner in the

cryptocurrency ether that is commonly abbreviated as eth. The payment is in pro-

portion to the amount of ‘gas’ (often written as GAS) consumed by the executions of

functions a transaction invokes.

Furthermore, a transaction initiator can quote in the transaction the gas price

they are willing to pay for executing the smart contract functions. A higher gas price

quoted can act as an incentive to miners in giving preferential treatment over those

that quote a lower gas price. In our experiments, the gas price quoted was the lowest

possible; e.g., the Coordinator quotes the gas price of 0.001 eth/million for executing

the REQUEST function. By quoting only the lowest gas price, the cost in eth we

report here would indicate the lower bound.

When a smart contract function involves repetitive executions conditional on

Boolean statements (e.g., a while loop), the gas cost can vary with the inputs supplied

at invocations. As we can see from Figure 7.5, the 2PC coordination code does not

involve aspects that lead to input-dependent execution cost variations, except when

the last Pi ∈ Π casts its vote, the boolean ΣV == Σ (which is checked on every invo-

cation of VOTER()) comes true and ‘Set state = COMMIT ’ is additionally executed.

This additional execution of a simple ‘Set’ statement does not incur any extra gas

and it is confirmed in all our experiments.

The amount of gas that a miner uses when executing a given contract function is

calculated by the Ethereum virtual machine itself and is displayed in the Ethereum

wallet at the initiator end. So, it is safer to assume that the reports on the amount

of gas expended for executing a given contract function are quite reliable. Table 7.1
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provides the cost of executing each of three smart contract functions: REQUEST(),

VOTER() and VERDICT(). As per the prevailing exchange rates for eth, the cost is

in the order of few US cents or British pence.

Transaction Reason GAS Used Cost in eth

TXc By C to request voting 232736 0.000232736
TXi By Pi to vote 84625 0.000084625
TXv By Pi to seek verdict 55102 0.000055102

Table 7.1: Cost of executing 2PC-Blockchain contracts.

Table 7.2 presents the total cost for 2PC coordination in four possible voting

scenarios when the number of Pi in Π is three.

Scenarios Gas Used Cost in ETH

Three vote no 232736 0.000232736
Two vote no 372463 0.000372463
One votes no 457088 0.000457088
All vote yes 486611 0.000486611

Table 7.2: Total Cost in Various Voting Scenarios.

When a Pi votes no, it knows that the verdict = abort and terminates. Thus,

when all three Pi vote no, none will launch TXi or TXVi . So, only REQUEST()

function is executed and its gas price the total cost as shown in the row 1 of Table

7.2.

In considering the remaining rows of Table 7.2, let us assume that neither a process

crash nor any violation of the bound estimates occurs during 2PC execution. If n′

processes, n′ = 1 or 2, vote no, (3 − n′) processes launch TXi and, at the expiry of

∆ timeout, also TXVi of which only one will end up invoking VERDICT() function.

Thus the total cost incurred is: the cost of row 1 + (3− n′) × the cost of executing

VOTER() function once + the gas cost of executing VERDICT() function once.

When all three processes vote yes, none will launch TXVi and the total cost is:

the cost of row 1 + 3× the cost of executing VOTER() function once. Generalizing,

when y processes, 0 ≤ y ≤ |Π|, vote yes, the total gas cost for 2PC coordination

is: gas cost of executing REQUEST() function once + y × the gas cost of executing

VOTER() function once + c × the gas cost of executing VERDICT() function once,

where c = 0 if y = 0 ∨ y = |Π|, and c = 1 otherwise (i.e., 0 < y < |Π|).
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7.7.3 2PC Execution Latencies

2PC execution latency for an operative Pi can be defined as the duration that can

elapse from the moment when Pi receives ‘work’ from coordinator C until the moment

when Pi decides either to commit or abort the transaction. Let the moments of Pi

receiving work and deciding to be denoted as Ti and Ti + Ei respectively and be

observed as per Pi’s local clock. Thus, Ei is the 2PC execution latency for Pi. We

will discuss Ei by first estimating the maximum value it can (theoretically) take

and then reporting the actual maximum it took in our experiments, along with an

explanation for any wide discrepancy between the two. Our estimation of latency

bound will assume that the delay bound estimates used were conservatively arrived

at by assigning them to the largest data points observed (as described in § 7.7.1) and

hence are safe, i.e., never violated.

7.7.3.1 Estimated Latency Bound

All possible execution scenarios need to be considered before arriving at the upper

bound for Ei. To start with, let us consider the simplest case where Pi takes the

transition WG→ a (see Figure 7.3); here, Ei cannot exceed ω.

Alternatively, Pi can vote yes instead of doing WG → a. In this execution

scenario, two cases need to be considered: TXC does not or does enter BC. When

TXC does not enter BC due to C crashing subsequent to disseminating the ‘work’,

Pi will affirm the absence of TXC at the expiry of Phase 1 timeout and decide abort ;

so, Ei = Phase 1 timeout = α + β + δ. In the second case where C does not crash

and TXC does enter BC, Ei will depend on the number, y, of processes in Π that

vote yes.

Let y = |Π|. Measuring time as per Pi’s clock, we note that Pi would commence

two parallel activities at Ti: doing the work given to it and looking for TXC to

appear in BC. The former must complete by Ti +ω and TXC in BC would be known

to Pi by Ti + Phase 1 timeout = Ti + δ + β + α, at the latest. Thus, at or before

Ti +max{ω, (α+β+ δ)}, Pi must launch its TXi and all other Pj must do so by Pi’s

clock time Ti + max{ω, (α + β + δ)} + δ. Thus, the verdict computed at BC would

be known to Pi no later than its clock time Ti +max{ω, (α+ β + δ)}+ (α+ β + δ).

So, Ei ≤ max{ω, (α+ β + δ)}+ (α+ β + δ). Typically, ω is very small compared to

(α + β + δ) and thus Ei ≤ 2(α + β + δ) when y = |Π|
Let y < |Π|. (Since Pi votes yes, y > 0). Pi would launch TXVi at its clock time

Ti+∆ and would observe BC state=ABORT no later than its clock time Ti+∆+β+α.
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Thus, Ei ≤ ∆ + α + β. Given that ∆ = max{(α + β + δ), ω}+ (α + β + δ) (defined

in § 7.5.3.2), Ei ≤ 2(α + β + δ) + (α + β) when ω is considered small compared to

(α + β + δ).

Summarizing, Ei cannot exceed ∆+(α+β) = 2(α+β+δ)+(α+β) for an operative

Pi in any possible combination of crashing and voting scenarios. Substituting the

delay bound estimates, the (upper) bound for Ei is 2(115.734 + 118.800 + 5.790) +

(115.734 + 118.800) = 715.182 seconds, i.e., 11 minutes and 55.182 seconds.

Finally, let us also estimate, for the sake of comparison, the bound for Ei when

2PC is executed without BC (as described in § 7.4). If Pi suffers blocking due to crash

of C, Ei can be arbitrarily long as Pi cannot decide until C recovers. When C does not

crash, it turns out that Ei ≤ ω+4δ: having received ‘work’ from C at its clock time Ti,

Pi can receive the broadcast cast vote at or before Ti+ω+δ; C broadcasts the verdict

after a 2δ timeout expires following its broadcasting of cast vote; Pi must decide by

Ti + ω+ δ+ 2δ+ δ if it voted yes. Thus, using BC to eliminate 2PC blocking results

in a performance slow down when C does not crash and the slowdown is bounded by

3(α + β) − (ω + 2δ) ≈ 3(α + β) = 703.611 seconds. Such a large slowdown should

be expected, given the features of public blockchains as discussed in Subsection 7.3.2

and also in [92], and the need to use safe delay bound estimates so that both BC and

the cluster remain synchronous, i.e., synchrony violations do not occur.

7.7.3.2 Observed Latencies

We carried out 200 2PC executions using our implementation involving the Ethereum

blockchain. We disallowed crashes and ensured that the ‘work’ given by C is trivial

to execute and all Pi, 1 ≤ i ≤ 3, always vote yes, i.e. y = |Π|. Note that each

execution must result in all three processes deciding commit ; otherwise, it would

mean that Phase 1 or Phase 2 timeout became ‘too small’ in the prevailing execution

environment and expired prematurely. In all 200 experiments, commit was indeed

the decision.

In each experiment, Pi recorded the local clock times when it received the work,

observed TXC in BC and decided as Ti, Ti + Di and Ti + Ei respectively. Di and

(Ei−Di) represent the latency for Pi to execute only Phase 1 and Phase 2, respectively.

Table 7.3 summarizes the minimum, maximum and average of the 200 latency

values experienced by individual processes. We observe that the largest Ei is experi-

enced by P2 and stands at 4 minutes and 36.880 seconds. The corresponding upper

bound estimate (when y = |Π|) is 2 (α + β + δ) = 2× 240.324 = 480.648 seconds or

8 minutes 0.648 seconds, which is about twice the maximum observed. In addition
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D1 D2 D3 E1 E2 E3 E1-D1 E2-D2 E3-D3

Min 00:09.421 00:42.872 00:20.412 00:08.332 00:42.335 00:20.203 00:07.964 00:41.904 00:20.328
Max 02:56.276 04:37.990 02:40.783 02:55.178 04:36.880 02:40.806 02:55.112 04:36.842 02:40.742
Avg 00:30.336 01:19.295 00:48.959 00:36.843 01:26.309 00:49.466 00:36.728 01:26.217 00:49.489

Table 7.3: Minimum (Min), Maximum (Max) and Average (Avg) Latency in Minutes
(Mn) and Seconds (Ss) expressed as Mn:Ss.

to this large discrepancy between the estimated and observed bounds for Ei (when

y = |Π|), we also observe large differences between the maximum and the average

(or minimum) latency in each column. The explanation for this lies in the shape

of graphs in Figures 7.6, 7.7 and 7.8: the largest data point ends up deciding the

estimate b ∈ {α, β, δ} and is substantially larger than most frequently occurring data

points. For example, as noted earlier, the largest awareness delay observed in Fig 7.6

is 115.734 seconds which determines α; 0.2α = 23.147 is still larger than the average

awareness delay observed (13.455 seconds) and 0.4α = 46.294 > 30.461, the median.

Similarly, in the experiments for β in Fig 7.7, the peak value of 118.800 seconds was

observed in experiment 28 and was adopted as β. Only in two other experiments, the

block entry delay came close to β, and in the rest, it was below 50% of β, with the

minimum observed delay being 2.355 seconds.

7.7.4 Impact of Synchrony Violations on Commit-Validity

We observed in § 7.7.3.1 that Ei is the largest when C does not crash and y < |Π|:
Ei = ∆ + α + β. This is because all Pi that vote yes are forced to wait until Ti + ∆

before they could launch TXVi which then causes BC to compute and display the

verdict. Any attempt to reduce Ei in this worst case and also in other cases, and

thus to speed up 2PC execution in general, requires using smaller values for ∆, α

and β; this calls for less conservative estimation of α, β and δ as ∆ is a function of

these delay bound estimates. Deliberately under-estimating delay bounds, however,

tends to increase the scope for synchrony violations. We also noted in § 7.6.1 that

synchrony violations risk only the commit-validity requirement not being met, lead-

ing to unwarranted aborts. We will here evaluate the probability of commit-validity

being met as synchrony violations are permitted to occur due to delay bounds being

deliberately under-estimated.

Recall that when ω is considered small compared to (α + β + δ), the Phase 2

timeout ∆ = max{(α+β+ δ), ω}+ (α+β+ δ) (defined in § 7.5.3.2) simply becomes

2(α + β + δ); Phase 1 timeout (see § 7.5.3.2), (α + β + δ), becomes ∆/2.
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Figure 7.9: Probability for commit-validity.

Suppose that each bound estimate b ∈ {α, β, δ} is chosen not as the largest data

point observed (as in conservative estimations) but as m times the largest data point,

where m is a small positive real number. When 0 < m < 1, Phase 1 and Phase 2

timeouts drop to m∆/2 and m∆ respectively and execution latency is reduced; in

our experiments, commit-validity is upheld in an execution only if Di < m∆/2 and

Ei < m∆ for all Pi ∈ Π. For any given X = m∆, the probability of commit-validity

being upheld is the fraction of 200 experiments in which Di < X/2 and Ei < X for

all Pi ∈ Π.

Figure 7.9 depicts the cumulative distributive function for commit-validity for

X = m∆ with m ranging from 0.03 to 1.12. (Absolute values of X are in the first

row of x-axis as Minutes:Seconds.) We observe that when X is as small as 0.25∆,

commit-validity is upheld with a probability as high as 82%. What this means here is

that choosing b ∈ {α, β, δ} to be 25% of the largest data point observed leads only to

18% of runs suffering unwarranted aborts while it can reduce 2PC execution latency

by 75%. Further, the commit-validity probability rises quickly to 98% for m as small

as 0.44 and it becomes 100% for m ≥ 0.75. The latter indicates that 2PC execution

latency can be reduced by 25% without suffering any unwarranted aborts. All these

observations suggest that (i) small under-estimations of delay bounds may not lead to

unwarranted aborts at all, and (ii) there is much room for reducing execution latency

considerably at the expense of a modest increase in unwarranted aborts.
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7.8 Conclusion

Common choices to avoid 2PC blocking are to use a decentralized protocol [78, 35]

or the (centralized) 3 phase commit. These alternatives extract a larger message cost

even in the absence of crashes and do not have the structural simplicity of 2PC. We

have shown here that the message cost and implementation difficulties of existing 2PC

alternatives can be avoided if the 2PC coordinator C simply offloads coordination

responsibilities to a blockchain after disseminating database work to servers. Our

proposed protocol maintains the low message overhead and the elegant structure of

2PC: those servers that want to commit look up to the crash-free blockchain for

progress (instead of crash-prone C) and launch at most two blockchain transactions

(instead of periodically pinging the crashed C until it recovers). The extra cost arises

in two forms: miners’ fees and latency sacrifice when a public blockchain is used;

the former is very small in fiat currencies, but the latter can be substantial, in the

order of hundreds of seconds as shown by our experiments involving the Ethereum

blockchain. We believe that the performance slowdown will not be so serious if

permissioned blockchains had been used and our future work would focus on such an

investigation.

Though the blockchain infrastructure maintains the abstraction of a reliable state

machine with an immutable audit trail display, such features are not sufficient to

guarantee non-blocking atomic commit, unless it meets synchrony requirements. This

is another important contribution of this chapter, which should be borne in mind

when building applications similar to atomic commit using blockchain. For example,

eVoting, like atomic commit, can be guaranteed to be correct only if the blockchain is

synchronous; this aspect is not emphasized but is simply assumed in some blockchain

based eVoting systems [73]. Informally, the total number of ‘yes ’ votes cast are

counted in both applications, and the count is displayed in eVoting whereas it is

used to decide between commit and abort in the atomic commit. Since a dishonest

participant can seek to undermine the result of eVoting, it is important for an eVoting

system to specify timing requirements to distinguish between a ‘timely’ vote that gets

counted and the one that arrives ‘too late’ and gets ignored. This naturally leads to

synchrony requirements for correctness.

We have applied the traditional ‘best effort, worst-case’ method to estimate de-

lay bounds reliably. We then emulated synchrony violations by deliberately choos-

ing to use smaller values as bound estimates and thereby examined the extent of

commit-validity violations resulting in unwarranted aborts. We observe the number
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of unwarranted aborts occurred to be small even when bound under-estimations are

considerable. For example, a uniform reduction of 81% across all bound estimates

still upholds commit-validity (i.e., zero aborts) in more than 50% of runs (X = 0.19∆

in Fig 7.9). This is because the peak delays observed during bound estimation are

much larger than the average or median delays. So, the ‘worst-case’ bound estimation

offers built-in tolerance for synchrony violations. Its downside, however, is that the

protocol takes much longer to terminate. Thus, there is a trade-off between reducing

protocol latency and using smaller than ‘worst-case’ bound estimates, which risks

violating commit-validity.

134



Chapter 8

Conclusion and Future Work

This chapter summarizes the research presented in this PhD thesis, and discusses

future research in the field, motivating several potential research efforts.

8.1 Summary

In this PhD thesis, we introduced and explored two performance benchmarking tech-

niques at both the smart contract level and the operational code (opcode) level of

smart contracts. We also explored performance experiments for systems that boot-

strap trust from the blockchain in order to build and apply applications in different

domains such as cloud computing and distributed database management systems.

Chapter 3 proposed a benchmarking technique to assess whether the fees miners

gained from executing smart contract transactions are proportional to the cost of the

CPU invested. The experiments of this chapter are conducted on real smart contracts’

transactions collected from the Ethereum blockchain using EtherScan 1. To the best

of our knowledge, this benchmarking approach is the first of its kind, and the results

showed that the fees collected by miners are not always proportional to the CPU

usage for both contract creation and call contract.

Chapter 4 presented OpBench, an Ethereum performance benchmark approach

for smart contract operational code. It showed a detailed design framework as well

as implementations for three Ethereum clients. OpBench assesses, for each opcode

the CPU usage required by the EVM for its execution.

Chapter 5 presented two set of experimental results of the OpBench system in

different clients, machines and operating systems. It concluded that there can be an

order of magnitude difference in terms of the reward per unit of CPU time for different

1https://www.etherscan.io/
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opcodes. Our experiments also indicate that there is a considerable performance

difference between clients and operation systems, with the Parity client on Windows

typically outperforming the PyEthApp and the Go-Ethereum clients.

Chapter 6 relied on the smart contract technology and its underlying, blockchain,

to propose a solution aiming to achieve both verifiability and cost-efficiency propri-

eties for the cloud computing domain. In the solution, the user outsources the same

computation for two clouds and uses smart contracts to create games between two

rational clouds. The research focused particularly on the implementation and per-

formance measurement. This research concluded that the cost of cheating and/or

colluding is higher than the cost of the being honest. In this research, we leverage

the previous two Chapters 3 and 4 to create efficient and low-cost smart contacts by

understanding which opcodes to include and to avoid in our implementations. Thus,

the financial cost of this research was small.

Similar to Chapter 6, Chapter 7 leveraged the results of Chapters 3 and 4 and

presented the impossibilities, the possibilities, the cost, and the trade-offs in this

blockchain-based approach to blocking-free management of distributed transactions.

We presented a blockchain-coordinated 2PC protocol with rigorous arguments for

its correctness under the synchrony requirements. We implemented this protocol on

the Ethereum private and test networks and demonstrated, through our experiments,

that the monetary cost of executing smart contracts is quite small, that the protocol

performances is low when using a public blockchain like Ethereum, and that even sig-

nificant synchrony requirements lead only to relatively small increases in unnecessary

aborts. We thus identified a trade-off between improving protocol performance and

admitting a risk that transactions could occasionally abort unnecessarily.

8.2 Future Work

Future work is suggested as follows.

• In Chapter 3 (on Performance Benchmarking of Blockchain Smart Contracts),

With respect to our proposed benchmarking approach, it would be useful to im-

prove the proposed methods, for instance considering computing effort beyond

CPU usage (e.g. storage), and relating computational effort more directly to

actual energy costs as appeared to CPU usage. Also, although we conducted

experiments on several platforms, additional experiments can cover more con-

tracts, functions, types of client codes, operating systems and hardware.
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• In Chapters 4 and 5 (on Performance Benchmark of Blockchain Smart Contract

Operation Code (Opcode) and Experimental Results and Discussion), in the

future, it appears possible to expand on the reported experiments, to further

compare across clients, operating systems and CPU specification. Besides, it

will be of interest to expand the scope of the benchmark to include assessment

of occupying resources in general, including storage, blocking the machine as

well as actual energy consumption.

• In Chapter 5 (on Counter-Collusion Smart Contracts for Verifiable Cloud Com-

puting), one future direction would be to consider the client as a potential

adversary. This would make the interplay among parties more complex and

requires significant changes to the contracts. Another future direction would

be to consider repeated interactions among the parties. Repeated interactions

introduce significant changes to the settings because the incentive can be now

influenced by reputation and long-term profitability. Also, the current deposit

mechanism is not very efficient from the cloud point of view. If the cloud has

many clients and simultaneous contracts, the cloud must have a large cash re-

serve to pay all deposits at the same time. One direction would be to investigate

more efficient deposit mechanisms by, e.g. pooling contracts or insurance.

• Finally, in Chapter 6 (on Non-Blocking Two Phase Commit Protocol Using

Blockchain), it is worth attempting to build the 2PC protocol in the Ethereum

main network to estimate the latency and the fee costs in a real world case. In

the Ethereum main network the transaction’s fees provided for miners affect on

the latency of the transactions, the more you pay, the faster the transactions are

mined and then included in the next block. Hence, a trade-off between the fees

and the latency should be considered. In addition to the Ethereum blockchain, it

would be useful to rebuild the 2PC protocol on the Hyperledger blockchain [13],

which considered as a permissioned blockchain. Then, comparing the latency

on the Ethereum private network against the Hyperledger network.
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