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Abstract

In the literature, there are a variety of proposed blockchain systems (e.g.,

Bitcoin and Ethereum), each of which with its own design decisions. Both

in the design and the deployment of blockchain systems, many configura-

tion choices and design decisions need to be made. Investigating different

implementation and design choices is neither feasible nor practical on real

blockchain systems. Simulation models emerge as an excellent technique

to study blockchains without either implementing a new system or in-

terrupting an existing one. Despite some attempts in the literature to

utilise simulation models to evaluate specific aspects of blockchain sys-

tems, there is a lack of a general-purpose, flexible, extensible and widely

usable simulation tool for blockchains.

In this thesis, we contribute to the field of blockchain analysis by proposing

BlockSim as a generic framework to build discrete-event dynamic system

models for blockchain systems. BlockSim aims to provide flexible and

extensible simulation constructs to study a variety of blockchains and a

set of design and deployment questions. BlockSim is implemented as a

publicly available simulation tool and thoroughly validated against real-

life systems and measurement studies.

Another contribution of this thesis is an extensive analysis to estimate

the distributions for Ethereum smart contract using data for over 300,000

real transactions. To run realistic simulation studies, we integrate these

distributions into the simulator to generate representative transactions.

Furthermore, this thesis offers two extensive data-driven simulation stud-

ies related to Ethereum smart contracts that demonstrate the applicability

and usefulness of BlockSim. The first study is the analysis of the Ethereum

Verifier’s Dilemma and the proposal of two approaches (parallelisation and

active insertion of invalid blocks) to mitigate its implications. The second

study is the analysis of the uncertainty that miners face about the fee and

cost of transactions and its impact on the received profits.
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Chapter 1

Introduction

Introduction

A blockchain is a distributed ledger that records all transactions that have ever oc-

curred in the blockchain network. This ledger is replicated and shared among the

network’s nodes. The main feature of blockchain is that it allows non-trusting par-

ticipants to communicate and send transactions between each other in a secure way

without the need for a trusted third party.

Blockchain is an ordered list of blocks, where each block is identified by its cryp-

tographic hash. Each block references the block that came before it, resulting in

a chain of blocks. Each block consists of a set of transactions. Once a block is

created and appended to the blockchain, the transactions in that block cannot be

changed or reverted. This ensures the integrity of the transactions and prevents the

double-spending problem.

Blockchain systems typically run a peer-to-peer network that comprises a number

of nodes, where every node is connected to several other nodes or peers. A company or

a person can run a node of the peer-to-peer network. The role of such nodes is either

to create and send new transactions in the network or to maintain the blockchain state

by executing unconfirmed transactions and appending new blocks to the blockchain

ledger. Nodes who maintain the blockchain state are often referred to as miners, and

they are usually motivated to behave honestly through some incentives.

Cryptocurrencies emerged as the first generation of blockchain technology. Cryp-

tocurrencies are digital currencies that are based on cryptographic techniques and

peer-to-peer networks. The first and most popular example of cryptocurrencies is

Bitcoin. Other blockchain systems such as Ethereum emerged as the second gen-

eration of blockchain to allow building complex distributed applications beyond the

1



cryptocurrencies. Smart contracts are considered as the main element of this genera-

tion [100]. Smart contracts are computer programs that can be enforced and executed

on a blockchain system if the specified conditions are met, without the involvement

of a trusted third party. The Ethereum blockchain is the most popular blockchain for

developing smart contracts.

Every blockchain system in these generations has its own design decisions. During

the design as well as the development of blockchain systems, many architectural,

configurations and design decisions need to be made. However, imperfect design

decisions may negatively impact the performance of the blockchain systems, requiring

changes to the running system. For example, Bitcoin has been forked many times

since its release in 2009 to alter some performance configurations such as the block

size and the block interval time. Litecoin and Dogecoin are two blockchains that

result from those forks, where the block interval has been reduced to improve the

throughput of the blockchain. In addition, Ethereum also has been forked several

times. In 2016, the Ethereum network was flooded by a Denial of Service (DoS)

attack. As a response to this attack, Ethereum was forked to improve its incentive

model.

To eliminate the need of changing the running system to fix imperfect design de-

cisions, it is crucial to adequately investigate the different implementation and design

choices prior to and during the design and the deployment of a blockchain system.

Relying on experimentation or trial-and-error may lead to costly forks or is not even

feasible or practical on real blockchain systems. Simulation is an excellent approach

to study blockchains without either implementing a new system or interrupting an

existing one [19]. With simulations, it is feasible for designers and analysts to explore

design trade-offs and configuration questions for blockchains in a reasonable time.

Despite the importance of simulation to the field of blockchain analysis, there is a

lack of a generic and extensible simulation framework for performance analysis of

blockchain systems.

This research aims to advance the current state of the art of blockchain analysis

by addressing several shortcomings of the current literature through the utilisation

of discrete-event simulation models. That is, the goal of this thesis is to address the

following limitations:

Lack of a generic and extensible simulation tool for blockchains. In the

literature, there are some attempts to utilise simulation models to evaluate various

aspects of blockchain systems. However, all of these attempts utilise simulation mod-

els for specific and limited purposes [7, 16, 50, 51, 75, 78, 91, 102]. Thus, there is a
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lack of a general-purpose, flexible, extensible and widely usable simulation tool for

blockchains, to assist in answering a variety of design and deployment questions.

The core aim of this research is to address this gap by proposing a simulation

framework and tool for blockchain systems that can be applied to a large set of

blockchain systems, easily manipulated to study a particular system while at the same

time easy to use and extend. The intended user of the simulator can be blockchain

designers, analysts and researchers who want to analyse a large variety of blockchain

systems. The proposed simulator can provide means to rigorously analyse perfor-

mance problems and study various solutions to mitigate their implications. Exam-

ples of such analysis problems are the Verifier’s Dilemma and the profit uncertainty

presented in Chapters 6 and 7 of this thesis, respectively.

Lack of rigorous analysis of the Ethereum Verifier’s Dilemma. In proof-

of-work based blockchains such as Ethereum, verification of blocks is an integral part

of establishing consensus across nodes. However, in Ethereum, miners do not receive

a reward for verifying. This implies that miners face the Verifier’s Dilemma: use

resources for verification, or use them for the more lucrative mining of new blocks?.

This Verifier’s Dilemma is well recognised in the literature, e.g., [71, 94], but has not

been systematically analysed.

This research aims to fill this gap through a rigorous analysis of the implications

of the Verifier’s Dilemma with the help of the proposed simulator in addition to

some closed-form expressions. The analysis considers both current and future imple-

mentations of Ethereum to derive conclusions of when this dilemma can become a

serious problem. The aim is not only to analyse the implications of this dilemma,

but also to propose some mitigation solutions. To conduct this analysis study in a

realistic setting, we feed the simulator with real data about Ethereum smart contract

transactions, that will be gathered from the Ethereum network and from controlled

experiments.

Lack of analysis of the impact of the profit uncertainty in Ethereum. In

Ethereum, miners are uncertain about the rewards and the cost of executing smart

contract transactions. This makes miners unable to make informed decisions about

which transactions to select and execute in their forthcoming blocks in order to max-

imise their profits. This is especially true with the presence of incompatible incentive

model, as reported in the literature [1, 2, 29, 83, 101]. To the best of our knowledge,

there is no work that investigates the impact of the uncertainty problem miners face

when selecting transactions on the profit earned under the incompatible Ethereum

incentive model.
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This research aims to bridge this gap by providing an extensive analysis of the

impact of the uncertainty miners face in Ethereum when selecting transactions with

the help of the proposed simulator. To accomplish this aim, different transaction

selection strategies must be designed to draw conclusions about the impact of such

uncertainty. Similar to the analysis of the Verifier’s Dilemma, this analysis aims

to consider both current and future implementations of Ethereum after feeding the

simulator with real data to draw realistic results and conclusions.

1.1 Contributions

The work carried out in this PhD research makes a number of contributions to the

field of blockchain analysis. The main contributions of this research are as follows:

• Conducting a systematic mapping study to explore the current research on

blockchain-based smart contracts. The study aims to provide a survey of the

scientific literature, identify academic research trends and uptake and identify

gaps for further research. We conducted the first study in 2017, then updating

it in 2018 before revising it further in 2020. The results of the mapping study

show a significant growth in research outputs related to smart contracts since

its emergence in 2014, with an emphasis on smart contract applications. Also,

the results suggest two research areas to be further explored, which we utilise

to identify the case studies for the proposed simulator in this thesis (Chapter

3).

• Designing and developing a generic blockchain simulation tool named BlockSim

that is flexible enough to support the analysis of a large variety of blockchains

and a wide set of analysis problems. BlockSim is designed to cross three different

blockchain layers: the incentives layer, the consensus layer and the network

layer [96]. BlockSim provides simulation constructs that are intuitive, hide

unnecessary detail and extensible. At the core of BlockSim is a Base Model

that contains a number of main functional blocks common across blockchains

(e.g., blocks and nodes) that can be extended as required. We implement the

Base Model in Python, extend it to support the implementation of Bitcoin and

Ethereum blockchains and validate it against real-life systems and measurement

studies from the literature. The code of the BlockSim simulator is publicly

available1 (Chapter 4).

1https://github.com/maher243/BlockSim.
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• Conducting an extensive analysis to estimate the distributions for Ethereum

smart contract transactions, with respect to different attributes. To determine

these distributions we use publicly available Ethereum smart contract infor-

mation, augmented with experimental data for over 300,000 smart contract

transactions obtained on a test bed. The estimated distributions are then fed

as inputs to the BlockSim simulator to conduct data-driven simulation studies

(Chapter 5).

• Conducting an extensive analysis of the Ethereum Verifier’s Dilemma, using a

data-driven model-based approach that combines closed-form expressions and

discrete-event simulation. We extend the BlockSim simulator with the function-

ality necessary for this analysis. We show that, indeed, it is often economically

rational not to verify. We consider two approaches to mitigate the implications

of the Verifier’s Dilemma, namely parallelisation and active insertion of invalid

blocks, both shown to be effective (Chapter 6).

• Conducting an extensive analysis of the impact of the uncertainty miners per-

ceive in Ethereum when selecting transactions, using data-driven and simulation

approaches. We design different transaction selection strategies for scenarios

with and without uncertainty. We conduct this analysis using the BlockSim

simulator after extending some of its functionalities. We show that such uncer-

tainty has a significant impact on the earned profits (Chapter 7).

1.2 List of Publications

Chapters 3,4,5,6 and 7 have already been published in international conferences and

journals. For papers 2 and 6, which have additional co-authors, we note that the

majority of the work was done by the researcher, including the idea, running the ex-

periments and writing the paper. Co-authors of these two papers contributed through

some discussions and through revising the paper, editing and providing comments.

The following is a list of these publications.

1. Maher Alharby, and Aad van Moorsel. “Blockchain-based smart con-

tracts: A systematic mapping study”. In Proceedings of the 4th Interna-

tional Conference on Computer Science and Information Technology. AIRCC

Publishing Corporation, 2017. (Chapter 3)
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2. Maher Alharby, Amjad Aldweesh, and Aad van Moorsel. “Blockchain-

based smart contracts: A systematic mapping study of academic re-

search (2018)”. In Proceedings of the 2018 International Conference on Cloud

Computing, Big Data and Blockchain. IEEE, 2018. (Chapter 3)

3. Maher Alharby, and Aad van Moorsel. “The impact of profit uncer-

tainty on miner decisions in blockchain systems”. Electronic Notes in

Theoretical Computer Science, 2018. (Chapter 7)

4. Maher Alharby, and Aad van Moorsel. “BlockSim: A Simulation Frame-

work for Blockchain Systems”. ACM SIGMETRICS Performance Evalua-

tion Review, 2019. (Chapter 4)

5. Maher Alharby and Aad van Moorsel. “BlockSim: An Extensible Sim-

ulation Tool for Blockchain Systems”. Frontiers in Blockchain, 2020.

(Chapter 4)

6. Maher Alharby, Robin Lunardi, Amjad Aldweesh, and Aad van Moorsel.

“Data-Driven Model-Based Analysis of the Ethereum Verifier’s Dilemma”.

In Proceedings of the 50th Annual IEEE/IFIP International Conference on De-

pendable Systems and Networks. IEEE, 2020. (Chapter 6)

7. Maher Alharby and Aad van Moorsel. “Fitting and Regression for Dis-

tributions of Ethereum Smart Contracts”. In Proceedings of the 2nd

Conference on Blockchain Research & Applications for Innovative Networks

and Services. IEEE, 2020. (Chapter 5)

In addition to these publications, I am a co-author of some research papers that

do not contribute directly to this thesis, but they are relevant. The following is a list

of these papers:

8. Amjad Aldweesh, Maher Alharby, and Aad van Moorsel. “Performance

benchmarking for smart contracts to assess miner incentives in Ethereum”.

In Proceedings of the 14th European Dependable Computing Conference. IEEE,

2018.

9. Amjad Aldweesh, Maher Alharby, Aad van Moorsel. “Performance bench-

marking for Ethereum opcodes”. In Proceedings of the 15th International

Conference on Computer Systems and Applications. IEEE, 2018.
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10. Amjad Aldweesh, Maher Alharby, Maryam Mehrnezhad and Aad van Moorsel.

“OpBench: A CPU Performance Benchmark for Ethereum Smart

Contract Operation Code”. In Proceedings of the 2019 IEEE International

Conference on Blockchain. IEEE, 2019.

1.3 Thesis Structure

• Chapter 2. Background: This chapter introduces background information

related to blockchain technology, smart contracts, modelling and simulation. In

addition, this chapter explains discrete-event simulations as well as the method-

ology for conducting a simulation study. This chapter also discusses related

work on performance evaluation of blockchain systems.

• Chapter 3. Blockchain-based smart contracts: a systematic mapping

study of academic research: This chapter applies the systematic mapping

study approach to explore the current research on smart contracts and to iden-

tify gaps for further work.

• Chapter 4. BlockSim: an extensible simulation tool for blockchain

systems: This chapter introduces BlockSim as a generic simulation model and

tool for blockchain systems. This embraces the design, the implementation and

the validation of the simulation tool. This chapter also provides a simulation

study to show the applicability of the proposed simulator.

• Chapter 5. Data collection and distributions of Ethereum smart con-

tracts: This chapter introduces the data collection exercise conducted to gather

Ethereum smart contract transactions and the analysis performed to obtain dis-

tributions for this data. The distributions are meant to serve as inputs for the

simulator.

• Chapter 6. Analysis of the Ethereum Verifier’s Dilemma: This chapter

introduces an extensive simulation study to investigate the Ethereum Verifier’s

Dilemma and two approaches to mitigate its implications. This embraces the

description of the Verifier’s Dilemma as well as some closed-form expressions to

estimate its implications. This chapter also extends the simulator to support

the analysis of the Verifier’s Dilemma and the proposed mitigation approaches.

In addition, it discusses the main results obtained and the validity threats to

the study.
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• Chapter 7. Analysis of the profit uncertainty in Ethereum: This chap-

ter introduces a simulation study to investigate the uncertainty miners face

when selecting transactions, and its impact on the received profits. This em-

braces the description of the uncertainty issue, the design of a simulation model

as well as the design of different selection strategies. This chapter also extends

the simulator to support this study. In addition, it presents the main insights

gained and discusses the threats to the validity of the study.

• Chapter 8. Conclusion: This chapter summarises the main contributions

and findings of our research. In addition, it presents the limitations of our

research that can be considered in future work.
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Chapter 2

Background

Summary

This chapter covers background information about blockchain technology and simu-

lations. Sections 2.1-2.4 are meant to explain the blockchain technology. Section 2.1

provides an overview of blockchain technology: its definition, characteristics and how

it works. Section 2.2 presents and discusses three different layers of blockchain sys-

tems: Network, Consensus and Incentives. Section 2.3 gives an introduction about

smart contracts and blockchain platforms that support the development of smart

contracts. Ethereum blockchain is explained in more detail in Section 2.4. Basic

simulation concepts are explained in three Sections 2.5-2.7. Section 2.5 provides an

overview of modelling and simulation in general, and a detailed explanation about

discrete-event simulations is provided in Section 2.6. Section 2.7 concerns about the

steps of a simulation study. Finally, we discuss work related to performance evalua-

tion and simulation tools for blockchains in Section 2.8 before we conclude the chapter

in Section 2.9.

2.1 Blockchain Technology

Transactions between parties in current systems are usually conducted in a centralised

form, which requires the involvement of a trusted third party (e.g., a bank). However,

this could result in security issues (e.g., unauthorised modifications), reliability issues

(e.g., single point of failure), performance bottlenecks at the central parties and high

transaction fees. Blockchain technology has emerged to tackle these issues by allowing

non-trusting entities to interact with each other in a distributed manner without the

involvement of a trusted third party.
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A blockchain is a distributed ledger that maintains the history of all transactions

that have ever occurred in the blockchain network. All network nodes have a copy of

this ledger making it replicated and backed up. One advantage of a blockchain is that

it allows non-trusting participants to communicate and to securely exchange assets

without the need for a trusted third party. Such a ledger has two main purposes, to

provide an immutable log of all transactions and to make the transactions visible to

anyone inspecting or using the blockchain.

The term blockchain comes from the fact that data about multiple transactions

is grouped into blocks. Each block is uniquely identified by its cryptographic hash,

and each block is attached and linked to the one that came before it. This results in

a chain of blocks. Once a block is generated and attached to the blockchain ledger,

the transactions in that block cannot be modified by any node, since it would require

the node to rewrite all subsequent blocks. This makes blockchain systems immutable

and protected against double-spending attacks [6].

Cryptocurrencies have emerged as the first generation of blockchain technology.

Cryptocurrencies are digital currencies that are based on cryptographic techniques

and a peer-to-peer network. The first and most popular example of cryptocurrencies is

Bitcoin. Bitcoin [77] is an electronic payment system that allows non-trusting parties

to transact digital money with each other in a secure manner without going through a

middleman (e.g., a bank). However, Bitcoin has limited programming capabilities to

support complex transactions. Bitcoin, thus, does not support the creation of complex

distributed applications on top of it. Blockchain-based smart contract systems (e.g.,

Ethereum [25, 49], Hyperledger Fabric [13] and NEO [31]) have then emerged to

permit complex distributed applications through smart contracts. A smart contract

is basically a computer program that can be attached to the blockchain. It embraces

some contractual clauses and it is enforced by the consensus algorithm.

2.1.1 Characteristics and Taxonomy of Blockchain Systems

There are several characteristics or features that can be considered when designing

a new blockchain platform or when adopting an existing one. These characteristics

include, but not limited to, the following items:

• Network Permission. There are two types of blockchains in terms of network

permission, which are public and private [99]. In a public (permissionless)

blockchain, users or nodes do not need to be trusted or even known to each other.

That is, everyone can join the network, read the content of the blockchain, send
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a new transaction, write new blocks to the ledger or verify the correctness of

the blocks. This, however, comes at the cost of performance (low throughput

and high transactions latency), as the network can accept a high number of

non-trusted participants. The consensus algorithm (e.g., Proof-of-Work and

Proof-of-Stake) in public blockchains should be costly as the network opens for

everyone, including malicious writers (see Section 2.2.2). Examples of public

blockchains are Bitcoin, Zcash and Ethereum.

In a private (permissioned) blockchain, only users with permissions can join the

network, write or send transactions to the blockchain. A company or a group of

companies are usually responsible for giving users such grants before joining the

network. The consensus algorithm (e.g., Byzantine Fault Tolerance) in private

blockchains is often much more efficient as most of the participants in the system

are trusted. That is, private blockchains achieve better performance compared

to public blockchains. Examples of private blockchains are Hyperledger Fabric

and R3 Corda. The focus of this thesis will be on public blockchains.

• Consensus Protocol. The consensus protocol of blockchains plays a signifi-

cant role as it defines the rules that can be followed by the network’s nodes to

agree on one global blockchain state. It also resolves potential conflicts that may

occur due to network latency (see Section 2.2.2). There are many consensus pro-

tocols that have been proposed in the literature for both permisionless and per-

missioned blockchains, including Proof-of-Work (PoW), Proof-of-Stake (PoS),

Proof-of-Service, Byzantine Fault Tolerance (BFT) and its variants, Proof of

Elapsed Time and other protocols. Among those protocols, PoW is currently

the most common protocol used in permissionless blockchains, while BFT is

common for permissioned blockchains. We refer to [21, 97] for more detail about

consensus protocols in blockchains.

• Cryptocurrency Support. A cryptocurrency is a form of digital or vir-

tual currency that uses strong cryptography to securely create new coins and

transfer their ownership. It usually works through a blockchain that runs on

a distributed peer-to-peer network to maintain transaction records without in-

volving a central authority. It is worth noting that not all blockchains consider

cryptocurrencies in their design, and not every cryptocurrency must operate on

a blockchain.
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• Smart Contract Support. Smart contracts are computer programs running

on the blockchain network to facilitate and enforce the agreement between par-

ticipants without the involvement of a trusted third party. Smart contracts

can be applied to various applications including Internet of Things (IoT). We

refer to Section 2.3 and Chapter 3 for more detail about smart contracts and

their applications. Ethereum is the most common permissionless platform for

smart contracts, while Hyperledger is a popular permissioned platform for smart

contracts.

• Privacy Support. Privacy and anonymity of transactions are desirable in

some domains that involve sensitive data. In most blockchain systems such

as Bitcoin and Ethereum, every node in the network is identified by a unique

address (i.e. a public key) instead of the real identity. However, this does not

really preserve the privacy of transactions as it is possible to link and trace

all transactions submitted by a node through inspecting the address of the

node [106]. There are some privacy-preserving blockchain platforms that were

particularly designed to make it infeasible to trace the sender and the recipient

of transactions as well as the amount of currencies to be transferred. Examples

of these platforms are Dash, Zcash and Monero.

Blockchain
Platform

Network
Permission

Consensus Protocol
Cryptocurency
Support

Smart Contract
Support

Privacy
Support

Bitcoin Permissionless PoW Yes No No
Ethereum Permissionless PoW/PoS (Casper) Yes Yes No
Zcash Permissionless PoW Yes No Yes
Litecoin Permissionless PoW (Scrypt hash algorithm) Yes No No
Dash Permissionless PoW/Proof-of-Service Yes No Yes
Peercoin Permissionless PoS Yes No No

Ripple
Permissionless
(controlled)

RPCA Yes No No

Monero Permissionless PoW Yes No Yes
MultiChain Permissioned Round-Robin (mining diversity) No No No

Hyperledger Permissioned
Various protocols (e.g., Kafka,
BFT and Proof of Elapsed Time)

No Yes No

Table 2.1: Different blockchain platforms and their characteristics.

In the literature, there are a large number of proposed blockchain platforms, each

with its own characteristics and design decisions. For instance, some platforms are

designed specifically to support rich and complex smart contracts (e.g., Ethereum

and Hyperledger), while others are designed to preserve the privacy of users data

(e.g., Zcash and Monero). We list the most ten open-source popular blockchain

platforms [62] and their characteristics, as depicted in Table 2.1. We note that all

12



these platforms support cryptocurrencies, apart from Hyperledger and MultiChain as

they are platforms for creating and deploying private blockchains.

Bitcoin. The first and most widely known permissionless blockchain platform

that is designed as a distributed cryptocurrency system without any central author-

ity. Bitcoin proposes PoW as its consensus protocol to reach a global blockchain state

in a non-trusted environment. PoW requires performing computationally expensive

computations to maintain the blockchain state, thus it is not an energy-efficient pro-

tocol. After the success of Bitcoin, many other alternative cryptocurrencies have been

proposed, some with other consensus protocols.

Ethereum. A permissionless blockchain platform that is mainly designed to

support the creation and the deployment of complex smart contracts on top of

blockchains. Ethereum currently adopts the PoW consensus protocol, aiming to

switch to PoS Casper [26] in future. This thesis mainly focuses on the Ethereum

blockchain, thus we provide more detail about it in Section 2.4.

Zcash. A permissionless blockchain platform that is designed to preserve the pri-

vacy of transactions. Zcash aims to add privacy and anonymity to transactions sub-

mitted in the network by using a zero-knowledge proof algorithm called zk-SNARK.

Data privacy is highly desirable in some domains with sensitive data such as health-

care. Similar to Bitcoin, Zcash uses the PoW consensus protocols.

Litecoin. A permissionless blockchain platform and a distributed cryptocurrency.

Litecoin is based on the Bitcoin software with some modifications. Compared to

Bitcoin, Litecoin provides fast transaction confirmation time (four times faster than

Bitcoin). In Litecoin a block of transactions is created every 2.5 minutes, instead of

every ten minutes as the case in Bitcoin. Litecoin uses the Bitcoin PoW protocol, but

with the “Scrypt” hash algorithm that can mitigate the mining centralisation issue

[62]. Litecoin can be of interest to domain applications that require fast processing

time for transactions and data in a permissionless network.

Dash. A permissionless blockchain platform that provides a privacy-preserving

cryptocurrency. Dash, similar to Bitcoin, uses the PoW protocol to secure the net-

work. It, however, improves the Bitcoin network by introducing an additional network

tier that is powered by a set of masternodes. Those masternodes assure the privacy of

transactions through “PrivateSend” and instant transaction validation through “In-

stantSend” [62]. Dash uses Proof-of-Service protocol to reward those masternodes for

their efforts. That is, Dash can be useful for domain applications that require both

privacy of transactions and fast transaction validation time.
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Peercoin. A permissionless blockchain platform that aims to eventually replace

the PoW protocol by a more energy efficient protocol such as PoS. The Bitcoin PoW

algorithm requires high energy consumption. Peercoin is the first platform that pro-

posed the use of PoS protocol, by combining it with the PoW protocol [97]. It proposes

a metric called “coinage” to determine the stake for nodes in the network [97].

Ripple. A permissionless, but controlled, blockchain platform that acts as a

cryptocurrency and a global settlement network for financial transactions. Ripple

uses the Ripple Protocol Consensus Algorithm (RPCA), a round-based protocol that

is executed by a number of selected validating servers. Since not every node can

become a validator, Ripple provides fast and instant payment and is considered as a

controlled permissionles network [62].

Monero. A permissionless blockchain platform and privacy-preserve cryptocur-

rency. It is based on the Cryptonote protocol that comes with a ring signature al-

gorithm (a kind of zero-knowledge proof) that hides the identity of both the sender

and the recipient of transactions [76]. Also, it adopts a stealth (one-time) address for

transactions, which means that every transaction submitted by a particular node is

signed by a different address [62]. This makes it hard to link and trace transactions

sent by a particular node. Monero currently uses the Bitcoin PoW algorithm. Similar

to Zcash and Dash, it is useful for domain applications where data confidentiality is

a requirement.

MultiChain. A blockchain platform that aims to provide certain features to

create and deploy permissioned blockchains either within or between organisations

[41]. MultiChain does not consider computationally intensive protocols such as PoW

since it operates in a private and controlled network. Instead, it implements a round-

robin consensus protocol that identifies a set of miners in the network and controls

the number of blocks contributed by a miner in a particular time window through a

parameter called mining diversity [41].

Hyperledger. An open-source collaborative project that aims to advance per-

missioned blockchains. It aims to provide an infrastructure of different modules (i.e.,

smart contract engines) and tools for developing blockchain platforms. Different per-

missioned blockchain systems have been implemented as variants of the Hyperledger

project, including Fabric, Iroha, Sawtooth and Indy. Each of these variants has its

own design and consensus protocol. Fabric, which is the first extensible blockchain

system for running smart contracts, uses a consensus protocol named Kafka [13].
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2.1.2 How Do Blockchains Work?

Blockchain systems rely on a peer-to-peer network, where each node in the network

is connected to several different peers. Nodes are responsible for maintaining the

blockchain ledger by continuously appending new blocks, and they are often referred

to as miners. In public blockchains, any node can be a miner, while it is not the case

in private blockchains.

User

Create a transaction
(Ti)

Select and execute
transactions Generate a block (Bi)

Mining Process

Verify  block Bi
B1
B2
...
Bi

Transaction Pool

Local Blockchain

Blockchain Network

T1
T2
...
Ti

Send Ti

Send B
i

Figure 2.1: The working mechanism of blockchain systems.

Figure 2.1 illustrates the working mechanism of blockchain systems. Users, aka

nodes, can create a transaction and then propagate it to the blockchain network.

In the blockchain network, a set of miners are responsible for maintaining the

ledger by continuously appending new blocks of transactions. Every miner maintains a

transaction pool to keep pending transactions (uncommitted transactions) submitted

by nodes in the network. To generate and attach a new block to the ledger, miners

first select and execute a number of pending transactions from their pools and then

include them in the block by participating in a consensus algorithm such as PoW. The

generated block will then be propagated to other nodes in the network. The process

of appending new blocks is usually referred to as the mining process. Upon receiving

the newly generated block, every node has to verify the block before adding it to its

local copy of the blockchain. Verifying a block requires checking the correctness of

the block construction (e.g., PoW verification) as well as verifying all transactions

embedded in the block by executing them. This is to verify the miner’s work, and it

is often referred to as the verification process.

If the majority of the nodes in the network accepted the block, appended it to their

local blockchain copies and built upon it, the block will be confirmed and considered
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Consensus Layer
( Consensus protocol (e.g., PoW, PoS etc), transactions execution,

block generation and reception, fork resolution, ...)

Network Layer
( Nodes, network configurations, information to be propagated (e.g.,

transactions and blocks), P2P broadcast protocol, ...)

Incentives Layer
( Incentive model, rewarded elements (e.g., blocks and transactions),

amounts of rewards, reward distribution, ...)

Figure 2.2: Blockchain System Layers.

as part of the global blockchain ledger. The miner that created the block will then

receive some reward for its efforts.

2.2 Blockchain Layers

In this section, we present three layers of blockchain systems, namely, network, con-

sensus and incentives, as depicted in Figure 2.2. We will utilise these layers to struc-

ture our simulator in Chapter 4. The network layer captures the network’s nodes

and the underlying broadcast protocol to propagate information between nodes. The

consensus layer captures the algorithms and rules adopted to reach an agreement

about the current state of the blockchain ledger. The incentives layer captures the

economic mechanisms adopted by a blockchain to issue and distribute rewards among

the participating nodes.

Before going through these layers in more detail, we list and briefly define the

main entities at each layer and the relationship among them. In the network layer,

there are two entities, which are Node and Broadcast protocol. The Node entity is the

main entity in any blockchain whose role is to participate in the network by creating

and submitting new transactions and to maintain the blockchain state by executing

transactions and attaching new blocks to the blockchain ledger through engaging in

a consensus algorithm. The Broadcast protocol entity is responsible for managing the

propagation of information entities (Blocks and Transactions) in the network.

In the consensus layer, there are information entities (Blocks and Transactions)

and blockchain state entities (Blockchain ledger and Transaction pool). The consensus

entities are all maintained by the network nodes. For example, nodes are responsible

16



for creating transactions and blocks as well as expanding the ledger and the pool every

time a new block or transaction arrives in the network. Blocks and transactions play

a significant role in updating the blockchain state as follows. The arrival of a new

transaction results in updating the system state by inserting the transaction into

the transaction pool in order for the nodes to execute it in their forthcoming block.

Similarly, the arrival of a new block results in updating the system state by attaching

the block to the blockchain ledger.

The incentives layer has the reward entity. In blockchain systems that offer in-

centives, nodes which maintain the system state by attaching new blocks to the

blockchain ledger are rewarded for their efforts. The rewarded elements (e.g., blocks

and transactions), as well as the calculation and the distribution of such rewards, are

the actions that the incentive model determines.

2.2.1 Network Layer

The network layer in blockchain systems contains the nodes in the network, their

geographical and relative locations and the connectivity among them. It defines

which information is to be propagated as well as the mechanism to propagate such

information.

The main constituent in the network layer is a node. A node can be an ordinary

user who wants to create and submit a transaction to be executed and included

in the ledger or a special node, known as miner, who maintains and expands the

ledger by appending new blocks. A node has a unique identifier and maintains its

balance, a local copy of the blockchain ledger and, if the node is a miner, an individual

transaction pool. The transaction pool keeps the pending transactions received from

other nodes in the network.

Nodes communicate the following information to each other. If a node generates

a new transaction, it cryptographically signs it and propagates it to its peers to have

it confirmed and recorded in the blockchain ledger. In case the node is a miner, every

time it generates a block, it notifies its peers so they can validate it and append it to

their copies of the ledger.

As information propagation mechanisms for blockchains, several protocols have

been proposed, including relay networks and advertisement-based protocols [50]. In

the advertisement-based protocol used in most blockchains [50], the node sends a

notification to its peers about the new data (e.g., a transaction). If the recipient node

responds by requesting the data, the node will send it. Otherwise, the node will not

send it as the recipient node has already had the data.
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2.2.2 Consensus Layer

The consensus layer in blockchain systems defines the algorithms and rules for reach-

ing an agreement about the blockchain’s state among the network’s nodes. Such

rules specify which node is eligible for generating and appending the next block to

the blockchain ledger, how often blocks are generated as well as how to resolve po-

tential conflicts that may occur when nodes have multiple, differing copies of the

ledger.

There are several consensus algorithms such as Proof-of-Work (PoW) and Proof-

of-Stake (PoS) that have been proposed for blockchain systems. In PoW, nodes (i.e.,

miners) invest their computing power to maintain the ledger by attaching new blocks,

while in PoS, nodes invest their stake or money. Regardless of what is required to be

invested by the nodes, the intuition behind such algorithms is to introduce a cost for

maintaining the ledger. The cost introduced should be more than enough to deter

nodes from behaving maliciously [97]. At the same time, nodes are only rewarded for

their efforts if they follow the rules and maintain the ledger honestly (see Incentives

Layer).

To illustrate the consensus layer, we discuss the PoW algorithm here as it is

the most common algorithm for permissionless blockchains, used by Bitcoin and

Ethereum. In PoW, the computing power invested by a miner determines how fre-

quently that miner will generate and append blocks to the blockchain ledger. To

generate a block, the miner has to repeatedly try nonces (random numbers) until

the hash of the nonce combined with the block information will be within a certain

threshold (referred to as the block difficulty). The only way to find the nonce is by

trial-and-error, and thus, the more hash power invested by a miner, the more likely

that miner will find the nonce. This process is a competitive task since all miners

in the network are competing against each other to find the desirable hash value of

the next block. Note that the block difficulty can be dynamically adjusted to control

how often blocks are generated.

Due to the delay incurred by propagating blocks between nodes in the network (see

Network Layer), other nodes might generate the next block before hearing of another

competitive block that has been recently announced. This leads to conflicts, known

as forks, which occur when nodes have multiple, differing views of the ledger. The

task of the consensus layer in blockchain systems is to resolve such conflicts. Different

consensus algorithms use different rules to select which blockchain (fork) should be

accepted as the global chain. For example, the PoW algorithm used by Bitcoin and

Ethereum resolves the conflicts by adopting the longest chain, as in Figure 2.3. Other
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Figure 2.3: The longest-chain rule for fork resolution. Blocks 2b, 3b and 4b are
discarded as stale blocks.

proposals such as GHOST [90] select the fork with the heaviest work. Blocks that

are not considered in the global chain (represented by a grey background colour in

Figure 2.3) will be discarded. These blocks are usually referred to as stale (orphan)

blocks, and they do not contribute to the state of the ledger.

2.2.3 Incentives Layer

The incentives layer utilises the blockchain’s cryptocurrency to establish an incentive

structure, distributing rewards among the participating miners who maintain the

blockchain’s ledger. The incentive model is essential to maintain any permissionless

blockchain system. Incentives should compensate miners fairly for their work and

motivate them to behave honestly [3, 5]. The incentives also protect the blockchain

system from various attacks (e.g., DDoS attacks in Ethereum [24]) and against mali-

cious behaviours of the nodes (e.g., selfish mining strategies [44]).

In most blockchain systems, rewards are associated with generating blocks and

completing transactions, called block reward and transaction fees, respectively. De-

pending on the chain, there are subtle differences in what is rewarded, e.g., Ethereum

also issues a reward for stale (or uncle) blocks, even if they do not make it into the

blockchain when conflicts are resolved. When a miner receives a reward (e.g., through

appending a new block to the ledger), its balance will increase accordingly. The block

reward, in all known blockchains, is set to a fixed amount, while the transaction fee

is calculated as a variable amount of cryptocurrencies, depending on effort as well as

the prize a transaction submitter is willing to pay.
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2.3 Smart Contracts

The theoretical concept of smart contracts was first introduced by Szabo in 1994 [93]

as “a computerised transaction protocol that executes the terms of a contract”. Szabo

proposed translating contractual clauses into computer code that can be self-enforced,

without the involvement of trusted intermediaries. This concept became a practical

reality with the evolution of blockchain technology. Within the blockchain context,

a smart contract is a computer program stored on the blockchain. A smart contract

acts as a trusted third party between non-trusting participants, and it consists of

contract storage, a balance, and program code, as depicted in Figure 2.4. It can

be created and made available for use by any node in the network, simply through

posting a transaction to the blockchain. Smart contract program code is fixed and

cannot be updated once included in the blockchain.

Smart contracts are run by a network of miners who are responsible for maintain-

ing the blockchain. Miners reach consensus on the execution outcome of the smart

contract and accordingly update the blockchain. Once deployed, each smart contract

is assigned to a unique address and is executed whenever a transaction is created

using this address. During the execution of the smart contract, its storage might be

updated (i.e., reading from or writing to the storage). Also, a smart contract can

exchange cryptocurrency between users. Moreover, a smart contract can invoke and

create another smart contract by posting a message, which is not recorded in the

blockchain. This message is used by smart contracts either for creating a new smart
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contract or for calling functions in other smart contracts.

There are two types of smart contracts, namely, deterministic and non-deterministic

smart contracts [30]. A deterministic smart contract is a smart contract that when

it is run, it does not require any information from an external party (from outside

the blockchain). A non-deterministic smart contract is a contract that depends on

information (called oracles or data feeds) from an external party such as the current

weather information, which is not available on the blockchain.

Smart Contract Platforms. Smart contracts can be developed and deployed in

different blockchain platforms (e.g., Ethereum and Hyperledger Fabric). Different

platforms offer different features for developing smart contracts. Here, we will only

focus on three platforms, which are Bitcoin, Ethereum and Hyperledger Fabric.

Bitcoin [77] is a public blockchain platform that uses a stack-based bytecode

scripting language that is very limited in terms of computing capability [67]. Bit-

coin scripting language cannot support the creation of complex smart contracts that

contain rich logic. For instance, writing a contract that supports loops or withdrawal

limits is not feasible in Bitcoin due to the limitations of its scripting language [25].

Ethereum [25, 49] is also a public blockchain platform that addresses the limita-

tions of the Bitcoin’s scripting language by leveraging a Turing-complete language

that can support complex applications based on smart contracts on the blockchain

(see Section 2.4 for more details).

Bitcoin and Ethereum have scalability challenges in that at most tens to hun-

dreds transaction per second can be processed. Hyperledger Fabric [13] is a private

blockchain that seeks to overcome these challenges. Hyperledger Fabric employs a

traditional Byzantine fault-tolerant consensus protocol, instead of the Proof-of-Work

protocol used in public blockchains. Hyperledger’s smart contract technology is called

chaincode. It consists of the code that is deployed and executed on the blockchain,

the state database (key/value store) and the mining (endorsement) policies.

Smart Contract Applications. There is a multitude of blockchain-based smart

contract applications in the literature. According to the survey presented in Chapter

3, research on smart contract applications accounts for 64% of all scientific papers

published about smart contracts. Smart contracts have been applied to various do-

mains and topics that rely on a trusted third party, including Internet of Things,

cloud computing, healthcare, access control and authentication, voting systems and
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other applications. In Chapter 3, we present the survey we conducted to explore

smart contract topics, with a detailed discussion about smart contract applications.

2.4 Ethereum

Ethereum is the second most popular public blockchain after Bitcoin. The currency of

Ethereum is referred to as Ether. Ethereum supports advanced and customised smart

contracts with the help of a Turing-complete programming language. Ethereum smart

contracts are run within the Ethereum Virtual Machine. Using Ethereum, distributed

applications can be developed using different high-level programming languages such

as Vyper and Solidity.

In this section, we discuss different aspects of the Ethereum blockchain such as

accounts, transactions, blockchains and incentive model. We mainly focus on the

aspects that are relevant to the work described in this thesis.

Ethereum account. There are two types of accounts (users), namely, externally

owned accounts (EOAs) and contract accounts. Each account has a unique 160-bits

address to be called at as well as a balance. Unlike EOAs, contract accounts have

some associated code and a storage space additionally. Different accounts can interact

with each other through transactions.
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Ethereum transactions. Transactions play an important role in updating the

blockchain’s state. In Ethereum, transactions are executed in sequence. That means

the final blockchain state depends on the order of the transactions. There are two

types of transactions, namely, transfer and contract transactions. The former is to

move Ether (the Ethereum cryptocurrency) between accounts, while the latter is to

either publish a new smart contract to the blockchain or to invoke an existing one.

To publish a new contract, a contract-creation transaction containing the creation

bytecode for the contract is submitted to the blockchain. Once the transaction is

executed, the contract will be deployed and a unique address will be assigned to it.

To invoke that contract, a contract-execution transaction attaching appropriate input

data is sent to the contract’s address. The input data is the contract’s function to be

executed and its arguments.

Transactions in Ethereum consist of different fields or attributes, which are nonce,

Gas Price, Gas Limit, from, to, value, and data [49], as depicted in Figure 2.5. We

briefly explain these attributes as follows:

• Nonce: A counter that represents the number of transactions submitted by an

account. That is, the nonce is increased by one every time the account sends a

transaction.

• Gas Price: The amount of money (in Ether) the originator of the transaction

is willing to pay for each gas unit consumed by the transaction.

• Gas Limit: The maximum amount of gas units the transaction can consume,

and it is set by the submitter of the transaction.

• From: The submitter address of the transaction.

• To: The recipient address of the transaction. This attribute is set to empty for

contract-creation transactions.

• Value: The amount of currency to be transferred between accounts.

• Data: The creation bytecode or the input data to create a new contract or to

invoke an existing one, respectively. Thus, the data field is only applicable for

contract transactions, and it remains empty for financial transactions.

Ethereum Virtual Machine (EVM). The EVM is a stack-based machine that is
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responsible for handling the execution of smart contract transactions (both contract-

creation and contract-execution) [49]. Every node in the Ethereum blockchain has

a copy of the EVM to run contracts independently from other nodes. The EVM

consists of a predefined set of instructions, referred to as opcodes. These opcodes

run on the EVM in sequence. Every opcode the EVM runs has an associated cost,

measured in a unit called Gas. The Gas mechanism will be discussed later on in this

section. Note that a smart contract consists of a number of opcodes.

The Ethereum Virtual Machine has been implemented in different programming

languages such as Python, Parity and Go. In this thesis, we utilised the Python client

to measure the execution time of smart contracts, as we will discuss in Chapter 5.

Ethereum Proof-of-Work (PoW) Algorithm. At the consensus level, Ethereum

uses the PoW algorithm with the longest-chain rule to resolve potential forks that

may occur due to the network propagation delays (see Section 2.2.2).

Ethereum differs from other blockchains such as Bitcoin in the way that stale

blocks can be referenced in future blocks and rewarded for. A stale block that is

referenced in a block is referred to as an uncle block. Transactions embraced in the

uncle block will be neglected, and they do not contribute to the blockchain’s state.

We refer to the process of including uncle blocks in a block as the uncle inclusion

mechanism. In Ethereum, a maximum of two uncle blocks can be included in a single

block. Figure 2.6 shows the uncle inclusion mechanism. Three stale blocks (2b, 3b

and 4b) have been referenced in blocks 3-5 as uncle blocks.

Ethereum blockchain. An ordered list of blocks. Each block has a header, a list of
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transactions and a list of a maximum of two uncle blocks. The block header contains

information relevant to the block such as the hash of the previous block, the block’s

timestamp, block index, block Gas Limit and other fields.

Ethereum incentive model. Ethereum has a built-in incentive model that rewards

miners for maintaining and expanding the blockchain ledger. There are three types

of rewards in Ethereum, which are block reward, block’s transactions fees and uncle

rewards. The block reward is a fixed amount of Ether (currently, 2 Ether) for each

new block. The block’s transactions fees are the fees associated with all transactions

included in the block. The fee for a transaction varies depending on the computational

efforts required to execute the transaction. The uncle rewards are a fraction of rewards

for generating and including a new block that turns into a stale (orphan) block [49].

Ethereum uses the Gas mechanism to calculate the fee for smart contract transac-

tions. Since Ethereum offers a Turing-complete language, users can write a complex

contract that might take a long time to be executed. Ethereum, thus, proposes the

gas mechanism to limit the possible computation. The intuition behind this mech-

anism is not only to restrict the computation but also to provide fair incentives for

miners.

Every opcode of a smart contract has a predefined gas cost, as specified in [49]. The

gas cost for an opcode is determined by the Ethereum foundation, and it depends

on the computational resources required to execute the opcode on the EVM. For

instance, ADD opcode costs three units of gas.

As we discussed earlier, a smart contract can both be published and executed via

a transaction. During the execution of a contract transaction, the EVM tallies the

amount of Used Gas and charges the submitter of the transaction based on the Used

Gas. To avoid non-terminating transactions, the submitter specifies a Gas Limit, and

the EMV stops processing if that limit is reached (in which case Used Gas = Gas

Limit). The submitter also specifies a Gas Price (expressed in Ether) and the miner

then charges the submitter the following transaction fee: Used Gas × Gas Price. The

more opcodes the transaction requires, the more computational effort from the miner,

but also the higher the received reward.

It is crucial to ensure that the Ethereum incentive model is fair in order to keep

miners well-motivated to participate and to maintain the blockchain ledger honestly

[1, 5]. Otherwise, miners may prefer to deviate from the desired behaviour. One issue

of Ethereum and some other blockchains is that there are no miner incentives for

verifying the recipient blocks. As a result, miners might be encouraged to avoid the
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verification process, especially if it tends to be computationally intensive, in favour

of maximising their revenues, as we will discuss in Chapter 6.

2.5 Modelling and Simulation

Modelling is the method of producing an abstract model that represents a real

system of interest, either existing or in design. A system model provides a close

approximation of the system it represents by integrating most of its features while

at the same time is much simpler than the real system. That is, an excellent model

should consider the trade-off between simplicity and realism. A common practice

when developing a model is to start with a simple one and then gradually increase

the complexity of the model. Generally, a model usually comprises mathematical

expressions as well as structural and logical relationships to describe the dynamics of

the system [12].

A system model can be classified as deterministic or stochastic; static or dynamic,

as depicted in Figure 2.7 [65]. A stochastic model contains one or more random

variables or components (e.g., random inter-arrival times for customers in a bank),

while a deterministic model has only fixed variables. A dynamic model represents the

evolution of a system over time (e.g., a manufacturing model), while a static model

represents a system at a specific time. In a static model, therefore, the time is not

a significant variable as opposed to a dynamic model. A dynamic model can further

be classified as continuous or discrete. In a discrete model, the system state variables

change at discrete points in time (not in a continuous manner). An example of a

discrete model is the withdrawal service at a bank.

Simulation is a quantitative method, which ‘executes’ the model to mimic the be-

haviour of the system [12]. It is quite often that experimentation with a real system

is not feasible, impractical or very expensive [72]. Simulation, however, allows ex-

perimentation with a model without having to interrupt the real system (if it exists)

or implementing a new system for that purpose. With simulation, it is possible to

explore different design trade-offs and configuration questions for the system at hand

in a timely manner. Simulation can also be used to predict and describe how different

conditions and scenarios impact the behaviour of the system. Thus, simulation can be

used to answer “What if” questions and to experiment with new designs and policies

without interrupting the real system [19].
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In general, simulations are a useful tool that can be utilised to study the per-

formance of a system (either existing or proposed one) under a variety of design

configurations as well as over a long period of time. Simulation is used before build-

ing a new system or changing an existing one. This is to eliminate potential failures,

avoid unseen problems and bottlenecks and to improve the performance of the system

[72].

Simulation can be classified into two categories, namely, discrete-event simula-

tion and continuous-event simulation [52]. A discrete-event simulation model is both

dynamic and stochastic in which the state variables change at discrete moments in

time. Human-made systems such as digital computer and information systems are

most suitable represented as discrete-event simulation. The focus of this thesis is on

discrete-event simulation. In Chapter 4, for instance, we propose a simulator tool

named BlockSim that is based on a discrete-event simulation approach.

There are two approaches to develop simulation models and tools, namely, general-

purpose programming languages (e.g., C++, Java or Python) and special-purpose

simulation languages (e.g., Arena and GPSS) [65]. The former is more flexible and

familiar, while the latter provides several built-in features (e.g., statistics, event sched-

uler and animation) that reduce the time required to build models. As stated in [65],

there is a debate and conflict about which method is preferable. Also worth noting

are simulation frameworks that enable developing simulation models using general-

27



purpose languages, for instance, OMNeT++ and SimPy for developing models in

C++ and Python. We select Python as a general-purpose programming language to

develop and implement the BlockSim simulator (see Chapter 4).

2.6 Discrete-event Simulation

A discrete-event simulation (DES) is meant to model the action of a system as a series

of events that occur at discrete instants in time. The occurrence of an event triggers

an alteration to the system state [20, 88]. The system state remains unchanged

between consecutive events.

In a discrete-event simulation, there are two time-advancing mechanisms, which

are next-event and fixed-increment [65]. In a next-event approach, after executing

an event, we move the simulation time to the time of the next scheduled event. In

a fixed-increment approach, however, we split the simulation time into several small

intervals. Events scheduled in a particular interval are then executed together and

the system state is changed accordingly. A next-event simulation is typically more

efficient as it runs faster than a fixed-increment simulation. This is because not every

time interval has to be simulated as some intervals have no events to occur [73].

Here, we further discuss how a next-event discrete-event simulation works, since

it is the focal approach used in this thesis. Before explaining and discussing how

it works, we briefly identify the major concepts and terminologies, which are: (1)

system state, (2) simulation clock, (3) events, (4) event list and (5) event scheduling

[65].

• System state: A system consists of several entities (e.g., customers and ma-

chines) that interact with each other over some time to achieve some goals. The

state of a system is a set of variables (e.g., the length of the waiting queue) that

maintain the necessary information required to describe the system at a par-

ticular point in time. The system state variables are updated as the simulated

time evolves, for instance, after the occurrence of an event.

• Simulation clock: A variable that represents the current value of the simu-

lated time, and it can be in any suitable measurement unit (e.g., seconds or

minutes). The value of the simulated time is usually set to zero before running

the simulator. Since discrete-event simulations are dynamic (the system state

evolves over time), it is essential to record (keep track of) the current simulation

time.
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• Events: An event is an occurrence whose execution results in a change in some

system state variables. An example of an event is the arrival of a new customer.

Every event has an associated event time (the time at which the event occurs),

an event type as well as any other necessary information required to execute

the event. The occurrence of an event is often instantaneous, and it requires

performing the actions or activities associated with the event. Such actions

depend on the type of event.

• Event list: The simulation maintains a list of future (pending) events that

are waiting to be executed, known as the future event list (FEL). The list is

continuously updated during the simulation by either inserting new events or

removing existing ones. The list is usually organised as a priority queue where

events are sorted based on their associated event time. In spite of the order in

which events are added to the list, the event with the earliest time will always

be executed first.

• Event scheduling: The process of scheduling and recording new (future)

events in the event list. At the start of the simulation model, we usually sched-

ule some initial events to start with as the event list is empty by default. As

the simulation progresses, new events can be scheduled and added to the list.

A next-event discrete-event simulation works as follows. At the start of the sim-

ulation model, we initiate the simulation clock to zero as well as schedule and add

some initial events to the list to start with, as we mentioned earlier. We then scan

the event list to determine and select the event with the imminent or earliest time.

We advance the simulation clock to the scheduled time of the event. We perform

the actions associated with the event, and as a result, we update the system state.

The execution of an event may result in inserting new events into the event list or

cancelling some existing ones. After executing the event, the event is removed from

the list. Then, we select the next event and follow the same procedures until some

terminal conditions are satisfied. The terminal conditions can be set as the end of the

simulation when the list is empty (no more events), exceeding a specific simulation

time or after processing a number of events [65]. Once the terminal conditions have

been met, we end the simulation and prepare the statistics of the final output of the

simulation.

Because the system state variables only change at the event time, we move the

simulation clock to the time of the next event to ignore periods when the system is

inactive. This is what makes next-event simulations an appealing approach.
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2.7 Steps of a Simulation Study

The methodology for conducting and designing a simulation study consists of different

steps [19], as illustrated in Figure 2.8.

• Problem formulation and setting objectives: The first step of a simulation

study is to define and describe the problem to be studied. It is essential that

the problem is well-defined and understood by the participants involved in the

study. Also, this step identifies the aim, research questions and objectives of

the study.

• Model conceptualisation: This step involves designing a simulation model

that represents and abstracts the real system. The inputs, outputs and contents

of the model should be clearly defined. Also, all assumptions and simplifications

about the model need to be stated. The model should also incorporate all math-

ematical expressions and logical relationships that describe how to calculate the

desired output values from the given input values. The complexity of the model

usually depends on the scope and aim of the study. That is, the model should

not contain details more than what is needed to achieve the objectives of the

simulation study.

• Data collection: This step is to gather and collect the data needed to feed the

model. The data can be directly collected (if available) from an existing running

system (e.g., real historical data). In some cases, the data should be obtained

by observing the system or by running some controlled experiments. Data is

often fitted to theoretical distributions such as an exponential distribution, and

then random values are drawn from such distributions during the simulation.

This step can be executed in parallel with the model conceptualisation step

since they are independent of each other.

• Model implementation: This step is to translate the conceptual model into

a simulation program. To achieve this task, the modeller or developer should

decide on whether to use special-purpose simulation languages (e.g., GPSS) or

general-purpose programming languages (e.g., Java), see Section 2.5. The de-

veloper is recommended to start with implementing a portion of the model and

then steadily increase the level of details until the whole model is successfully

implemented.
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Figure 2.8: Steps of a simulation study (reproduced after [19]).

31



• Verification: This step is to ensure that the conceptual model is correctly

implemented. That is, the verification step is a debugging task that mainly

ensures the simulation program is error-free and can deliver what the model is

intended to do. There are various verification techniques in the literature such as

the continuity test and degeneracy test [55]. In a continuity test, the simulation

program is run multiple times using different values for input parameters. This

is to check if the change in the outcomes is reasonable. A degeneracy test checks

for extreme values for input parameters to identify bugs that have not been

thought of. Additionally, it could be useful to run simplified cases (e.g., with a

short simulation run or a few number of nodes in a network simulator) and then

compare the simulation results with that of the analysis. Often, the verification

process is carried out after implementing each portion of the model to detect

and fix errors in the early stages. Once the whole model is implemented, the

simulation program needs also be verified.

• Validation: This step is to ensure that the model represents the real system

accurately. That is, the simulation program can produce results comparable to

that of the real system. A model can be validated against real-system measure-

ments and theoretical results, where possible [55]. Three aspects of the model

have to be validated, which are the model’s assumptions, the values for input

parameters and output values. If the model is invalid, the modeller should revise

both the model design, the model assumptions and the data collection exercise.

One can start the validation process in conjunction with the model conceptual-

isation step and continue until the model has been successfully translated into

a simulation program.

• Experimental Design and production runs: This step is to design and

run the simulation study. This involves defining the conditions, procedures and

scenarios to be run. Besides, several parameters have to be determined such

as the length and the number of replications per simulation run. Furthermore,

identifying the input factors to include, how those factors can be varied and

whether to use the same or different numbers across different configurations.

• Documentation and Reporting: This step is to analyse, document and

report the simulations results. The results of the study are analysed using

statistical methods (e.g., mean, standard deviation and confidence interval).

The results are then documented, and conclusions about these results will be

drawn.
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The above-mentioned steps are essential for any simulation study. We apply these

steps for the simulation studies conducted in this thesis (see Chapters 6 and 7).

2.8 Related Work

In this section, we first discuss some of the literature conducted on performance

evaluation of both public and private blockchains. Then, we discuss current research

on blockchain simulation models and tools. Finally, we present existing research on

performance evaluation of the Ethereum blockchain, with regard to the Verifier’s

Dilemma and the profit uncertainty problems.

2.8.1 Performance Evaluation of Blockchains

In this section, we survey works on performance measurements, tools and analysis for

both public and private blockchains.

Performance Evaluation of Public Blockchains. Aldweesh et al. [2] pro-

pose a performance benchmark framework named OpBench for Ethereum Virtual

Machine (EVM) that evaluates the CPU usage required to execute the Ethereum

smart contract operation codes. Its main purpose is to assess and compare the CPU

usage with the gas cost for individual operation codes. It currently supports three

different implementations of the Ethereum Virtual Machine, namely, PyEThAPP,

Go-Ethereum and Parity. Decker and Wattenhofer [35] conduct a performance mea-

surement study on the Bitcoin network to collect data about block propagation delay

and block stale rate by listening to 10000 blocks. Also, they propose a simplified

model that estimates the block stale rate by considering the block creation rate and

the block propagation delay. In [58], the authors use queuing theory to model the

transaction priority mechanism in order to analyse and evaluate transactions latency

in the Bitcoin network. Croman et al. [32] analyse the factors that contribute to

performance bottlenecks in the Bitcoin network. Their results suggest changing two

performance parameters, namely, block size and block creation rate as a first step

towards scaling the Bitcoin network. Gervais et al. [50] analyse the performance of

PoW blockchains under various network parameters (e.g., block size, block arrival

time and propagation mechanism). Papadis et al. [82] propose stochastic models to

evaluate the performance of PoW blockchains. In particular, they analyse the impact

of block propagation delay and the hash power of the nodes on the block creation rate

and block stale rate, using a combination of analytical calculations and simulation

experiments. Yasaweerasinghelage et al. [102] demonstrate the usage of architectural
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performance modelling to predict the latency of blockchain-based systems. Eyal et

al. [43] propose a new protocol named Bitcoin-NG (Next Generation) that aims to

improve the performance of the Bitcoin network.

Performance Evaluation of Private Blockchains. Dinh et al. [39] propose

a benchmark framework named BLOCKBENCH to evaluate and analyse the perfor-

mance of private blockchains such as Hyperledger Fabric, Parity and private Ethereum

environment. BLOCKBENCH aims to measure and assess the overall performance

with regard to latency, throughput, fault-tolerance and scalability through the usage

of a set of micro and macro benchmarks. Hyperledger Caliper [27] is another bench-

mark tool for evaluating the performance of all Hyperledger blockchain variations

such as Sawtooth, Burrow and Fabric. Currently, Hyperledger Caliper supports four

performance metrics: throughput, latency, success rate for transactions and resource

utilisation.

Thakkar et al. [95] conduct an extensive empirical study to evaluate the per-

formance of Hyperledger Fabric blockchain with regard to throughput and latency,

by varying five different performance parameters: block size, number of channels,

resource allocation, endorsement policy and ledger database. Their analysis results

identify several performance bottlenecks and show how to configure these parameters

better. Similarly, Kuzlu et al. [63] evaluate the impact of different network workloads

on the performance of the Hyperledger Fabric blockchain in terms of throughput, la-

tency and scalability. Ampel et al. [11] evaluate the performance of Hyperledger

Sawtooth blockchain using the Hyperledger Caliper benchmarking tool. They test

different parameters such as transaction creation rate, batch size, throughput, la-

tency and resource usage in order to identify performance bottlenecks.

2.8.2 Simulation Models and Tools for Blockchains

In this section, we discuss current research on simulation models and tools for blockchain

systems. This includes the limitations of existing studies and how the BlockSim sim-

ulation tool that we propose in this thesis (see Chapter 4) seeks to address them.

In the literature, there are some attempts to utilise simulation models to eval-

uate various aspects of blockchain systems. In [102], the authors use architectural

modelling and simulation to measure the latency in blockchain systems under differ-

ent configurations. In [7], the authors propose a simulation model to investigate the

impact of profit uncertainty in the Ethereum blockchain. They found that miners

in Ethereum are not able to make informed decisions about which transactions to

include in their blocks to maximise their revenue. In [78], the authors propose a
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simulation model to analyse and evaluate attacks on the Bitcoin network. In [51],

the authors use discrete-event simulation to study the behaviour of Bitcoin miners

(including selfish-mining strategies) when there is a delay in propagating information

among miners.

Besides these proposals, there are some blockchain simulators proposed in the

literature. In [50], the authors propose a Bitcoin simulator to analyse the security

and performance of different configurations in both the consensus and network layers.

Several other Bitcoin-like network simulators are proposed in the literature such as

[16, 75, 91]. However, these proposals utilise simulation-based models to study specific

aspects of blockchain systems. They neither cross different layers nor cover all com-

mon functional building blocks (e.g., blocks and transactions) for blockchain systems.

For instance, neither of these proposals model transactions in the blockchain system

nor capture the incentives layer in more detail.

In Chapter 4 of this thesis we propose and develop BlockSim as a general-purpose,

widely usable, simulation tool for blockchains, to assist in answering a variety of de-

sign and deployment questions. Our discrete-event simulator generalises on the ones

proposed in the related literature by integrating different layers of the blockchain sys-

tem to gain a more comprehensive insight into different aspects such as performance,

security and incentives. In BlockSim, for instance, we take a step further by consid-

ering the functional blocks common across the different implementation of blockchain

systems. We design and structure BlockSim to cross different layers of blockchains.

Furthermore, we model transactions in two different ways, each of which for specific

purposes as well as modelling both Bitcoin and Ethereum blockchains.

2.8.3 Performance Evaluation of the Ethereum Blockchain.

In this section, we discuss existing research on performance evaluation of the Ethereum

blockchain, with respect to the Verifier’s Dilemma and the profit uncertainty prob-

lems. We highlight the gaps in current research and discuss how our work presented

in Chapters 6 and 7 of this thesis aims to addresses these gaps with the help of our

proposed simulator.

Verifier’s Dilemma (Chapter 6). The Verifier’s Dilemma was first identified

by Luu et al. [71], who showed that rational miners would be motivated to skip

the verification process to gain an advantage in the race to mine the next blocks.

Related to this idea is the mining strategy proposed in [85], whereby a malicious miner

purposely designs smart contracts that are computationally expensive to verify, to

slow down other miners. In response, [71, 85] showed the profitability of skipping the
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verification process in scenarios in which computationally intensive smart contracts

were introduced.

This work left several unanswered questions. In particular, it was not known if

the above attack was practical, nor was it clear how different miners with different

hash powers might benefit from not verifying blocks. In Chapter 6 of this thesis,

we address these limitations by evaluating the implications of the Verifer’s Dilemma

using real Ethereum smart contracts transactions. In addition, we assess both current

and future settings of Ethereum, taking into consideration the hash power of miners.

Several solutions in the literature have been proposed to make the verification of

complex transactions a more efficient task in order to avoid the Verifier’s Dilemma. In

[71], the authors proposed a solution in which complex transactions are divided into

various smaller transactions that can be incorporated in various blocks. In [15, 38,

104], the authors proposed solutions for executing and verifying smart contracts in

parallel. They showed that such solutions could speed up the execution/verification

time of contracts compared to that of a sequential solution. In addition, several

off-chain solutions (e.g., YODA [34] and Arbitrum [57], TrueBit [94]) for efficient

computation of computationally expensive smart contracts have been proposed as an

alternative to the protocol used in Ethereum. In these solutions, only a small set

of nodes, instead of all nodes, has to perform the verification of complex contracts.

Those nodes will be rewarded if they perform the verification correctly, or otherwise,

a penalty will be imposed.

In [15, 38, 104], however, the authors did not investigate the parallel verification of

smart contracts as a mitigation solution to the implications of the Verifier’s Dilemma.

In Chapter 6, we propose and evaluate the parallel verification as a solution to reduce

the advantage miners would get from not verifying. Besides, we propose and evaluate

the intentional production of invalid blocks as a new solution to punish non-verifying

miners. We were inspired by the idea of injecting invalid blocks in the network from

[94].

Profit Uncertainty (Chapter 7). Ethereum uses the Gas mechanism to set the

fee for transactions. Yet, the effectiveness of this mechanism depends on whether the

gas cost for each operation code (opcode) is correctly aligned with the computational

cost.

Several studies in the literature have assessed the incentive compatibility of the

Ethereum Gas mechanism by evaluating the alignment of the received fee with the

observed resource usage. At the opcode level, the authors in [1, 2] proposed OpBench

system that assesses the alignment of the gas cost for every opcode with its CPU usage
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and found that some opcodes were mispriced. Similarly, the authors in [29, 83, 101]

found significant inconsistencies for opcodes prices and showed a weak correlation

between the gas costs and the CPU and memory usage for individual opcodes. At

the transaction level, the authors in [3, 10] compared the fee awarded (in terms of

Used Gas) for executing Ethereum smart contract transactions with the invested CPU

usage. They found that the amount of Used Gas is not always proportional to the

CPU usage, which means that some transactions are more profitable than others.

As the Ethereum incentive model does not provide incentives compatible with the

computational costs, the profit a miner would get from executing transactions depends

on which transactions have been chosen. With the uncertainty miners perceive in

Ethereum regarding the fee and cost for transactions, the profit gained by miners

might be impacted. To the best of our knowledge, no work has investigated the impact

of the uncertainty miners perceive when selecting transactions on the profit earned

under the incompatible Ethereum incentive model. That is, our work presented in

Chapter 7 of this thesis is the first investigation attempt on this topic.

2.9 Conclusion

In this chapter, we introduce essential background information related to blockchain

technology and simulation techniques. The topics covered in this chapter include

an overview of blockchain paradigm, smart contracts, Ethereum, discrete-event sim-

ulation and the methodology for conducting a simulation study. In addition, we

thoroughly discuss the literature on performance evaluation of blockchain systems,

including related work on simulation models and tools.

The core contribution of this thesis is the design and development of a general

discrete-event blockchain simulator in addition to the study of two data-driven simu-

lation studies related to Ethereum smart contracts as case studies for the simulator.
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Chapter 3

Blockchain-based Smart Contracts:
A Systematic Mapping Study of
Academic Research

Summary

Smart contracts and their underlying technology, blockchain, have gained wide inter-

est and attention in the last few years. In this chapter, we carry out a longitudinal

systematic mapping study of all peer-reviewed technology-oriented research in smart

contracts. Our interest is twofold, namely to provide a survey of the scientific lit-

erature and to identify academic research trends and uptake. We only focus on

peer-reviewed scientific publications to identify how academic researchers have taken

up smart contract technologies and established scientific outputs.

We obtain all research papers from the main scientific databases, and using the

systematic mapping method classified the papers into six categories, namely, secu-

rity, privacy, software engineering, application, performance and scalability and other

smart contract related topics. Among those categories, we find that the majority of

the articles falls into two categories: application (about 64%) and software engineering

(21%).

3.1 Introduction

Blockchain-based smart contracts are computer programs that encode an agreement

between non-trusting participants. Smart contracts are executed on a blockchain

system if specified conditions are met, without the need of a trusted third party.
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The aim of this chapter is to identify and to classify all peer-reviewed research that

has been conducted on smart contract technology. Importantly, we do not attempt

to include all the latest developments in technical, financial or political issues that

were communicated through other channels, particularly the Internet. We also are

interested in longitudinal (year after year) aspects of academic contributions to smart

contracts, to document and analyse the growth in research outputs. To achieve this

aim, we follow the systematic mapping study approach proposed in [84] to look for

relevant papers in the main scientific databases and to generate a classification map.

This is to understand the topics of interest as well as identify gaps for future work.

We conduct the systematic mapping study in longitudinal aspects starting in 2017,

then updating it in 2018 before revising it further in 2020. From the mapping study,

we find that the number of published articles on smart contracts is increasing sig-

nificantly every year, reaching over 2500 papers as of March 2020. The results of

the study also show six different categories for smart contract topics, which are secu-

rity, privacy, software engineering, application, performance and scalability and other

smart contract related topics. The majority of the papers falls into the applications

(about 64%) and software engineering (21%) categories.

The structure of this chapter is as follows. In Section 3.2, we present the method-

ology used to conduct the systematic mapping study, including the definition of the

research questions. Section 3.3 illustrates the results of searching and screening for

relevant papers as well as the results for classifying all research papers. In Section

3.4, we discuss and answer the research questions. Section 3.5 concludes the chapter.

3.2 Research Methodology

We select the systematic mapping study proposed by [84] as our research method-

ology in order to explore the current research related to smart contracts technology.

A systematic mapping approach allows us to identify and classify research topics

relevant to smart contracts. It also helps us to identify research gaps for future re-

search. As depicted in Figure 3.1, the systematic mapping study is divided into five

steps, namely, defining research questions, conducting the search, searching for rele-

vant papers, keywording using abstract in addition to data extraction and mapping

process.
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Defining Research
Questions Conducting Search Screening for

Papers
Data Extraction and
Mapping Process

Review Scope All Papers Relevant Papers Classification
Scheme

Keywording using
Abstract

Systematic Map

Figure 3.1: Steps of the systematic mapping study [84].

3.2.1 Defining Research Questions

The first step in a systematic mapping study is to define the research questions to be

answered by the study. For our study, we define four questions, which are as follows:

RQ1. What are the existing research areas in smart contracts?

RQ2. How does smart contract research evolve year on year in terms of the number

and type of publications?

RQ3. What existing applications are there for smart contracts?

RQ4. What are the research gaps?

3.2.2 Conducting the Search

The second step is to search and gather all research papers related to smart contracts

based on a specific search term. We choose the term ‘smart contract’ for this study

as the main search keyword. Having identified the keyword for the searching task, we

select five different scientific databases to carry out our search. The selected databases

are ACM Digital Library, Springer, IEEE Explore, Scopus and ScienceDirect. We only

focus on gathering peer-reviewed research papers published in journals, conferences,

symposiums, workshops and books.

3.2.3 Screening for Relevant Papers

The third step is to exclude all research papers that are irrelevant to our research

questions. To accomplish this step, we follow the screening approach proposed in

[103]. In this approach, we first attempt to remove irrelevant research papers based

on their titles. If we could not manage to decide on the relevancy of a paper based

on its title, we would run through a second step by evaluating the abstract of that

paper. In addition to title and abstract based exclusion, we also rely on some exclusion
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criteria to remove some papers. We remove papers without English text, without full

text available, with no critical contributions such as popular articles, newsletters or

grey literature. Moreover, we remove duplicate papers and non-technology based

papers.

3.2.4 Keywording using Abstracts

The fourth step is to classify all the relevant research papers based on the keyword

approach proposed in [103]. In this approach, we go through the abstract of all papers

in order to associate crucial keywords and the key contribution. The purpose of doing

so is to classify all research papers under different categories. In some cases where it

is difficult to classify a paper using its abstract, we skim the paper quickly to make

a proper decision about its category.

3.2.5 Data Extraction and Mapping Process

The last step is to collect all information needed to answer the research questions of

our study. We collect various data items embracing the main goal and contributions

from each research paper.

3.3 Study Results

This section discusses the results of the systematic mapping study that we conducted

on smart contracts. We first discuss the results of searching and screening for relevant

papers. Then, we discuss the results of the classification process.

3.3.1 Searching Results

The first step of a systematic study after defining the research questions is to search for

relevant papers. We search for all scientific papers in five different scientific databases

using a specific keyword ‘smart contract’.

Table 3.1 shows the number of research papers on smart contracts that have been

retrieved from the five databases over the years (until March 2020). Research on

smart contracts started in 2014 with the emergence of the Ethereum blockchain, the

most common platform for smart contracts. We note that the number of published

papers has been increasing since 2018, and that the greater number of articles is

contributed to the Scopus database.

41



Year IEEE ACM Springer ScienceDirect Scopus All Databases
2014 0 1 0 0 0 1
2015 2 4 3 7 3 19
2016 5 12 21 2 28 68
2017 43 50 75 21 114 303
2018 217 151 224 128 486 1206
2019 421 263 417 292 996 2389
2020 49 33 123 220 184 609
Total 737 514 863 670 1811 4595

Table 3.1: The number of publications on smart contracts per database over the
years.

Before 2016, the total number of papers was only 20. This number possibly

includes duplicate and irrelevant papers. In 2016, the number of scientific papers

increased significantly by 68 papers and since then it further increased dramatically.

In the following year (2017), about 300 papers more were published, to reach nearly

400 papers in total. From 2018 and beyond, the number of papers has been growing

dramatically, for instance, about 2400 papers were published in 2019. The number

of smart contract papers has reached over 4500 by the end of March 2020, with over

600 more papers published in the first three months of 2020.

Interestingly, the number of scientific papers is increasing each year for all the five

databases, as clearly depicted in Figure 3.2. This indicates that the popularity of the

topic of smart contracts grows every year. For that, we expect even a further increase

with respect to the number of papers in the future.

Among the five databases, Scopus dominates the majority of the papers published

on smart contracts. It is almost accounting for 40% of total papers published every

year. This is expected since Scopus is a comprehensive database that contains papers

that are already in other databases. For example, most of the papers in IEEE and

ACM libraries are also in Scopus.

The following sections discuss the screening and classifying results. We note that

we carried these analysis results in May 2017, and then updated them in June 2018.

Due to the significant rise in the number of papers published since the second half of

2018, we have not updated the results. However, the results are valuable and useful

to get insight into the direction and trending topics in the general space of smart

contracts.
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Figure 3.2: The growth in terms of the number of publications per each database
over the years.

3.3.2 Screening Results

In this section we discuss the screening results. By applying the searching phase, we

managed to gather 617 papers in total, on 12 June 2018. We screened these papers

as follow. First, we excluded duplicate papers. We ended up with 407 unique papers.

After that, we went through the title and the abstract for all the 407 papers in order

to exclude irrelevant papers. We managed to exclude 219 irrelevant papers (about

54% of all papers). There are three reasons why we had a high number of excluded

papers. First, many papers were irrelevant to our study, since our focus was to explore

smart contracts from a technical perspective. For instance, many papers discussed the

topic from an economic or legal point of view. Another reason is that some excluded

papers were about cryptocurrencies or blockchain in general (as opposed to smart

contracts), which do not contribute to our research questions. The last reason is that

some papers were excluded as they only discuss grey literature about smart contracts

or discuss the possibility of applying them to different domains such as the Internet

of Things, without providing any technical contribution. Therefore, we ultimately

included 188 papers in our systematic mapping study.
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3.3.3 Classification Results

By applying the Keywording technique, we classified the papers into six categories,

namely, security, privacy, software engineering, application, performance and scala-

bility and other smart contract related topics. Security relates to bugs or vulnerabil-

ities that an adversary might utilise to launch an attack in smart contract systems.

Privacy includes issues related to disclosing contracts information to unauthorised

people. Software engineering refers to any work related to the software development

of smart contracts. Application refers to the utilisation of smart contracts to address

issues in different domains such as the Internet of Things (IoT). Performance and

scalability category refers to the ability of smart contract systems to deliver a reason-

able response time as well as to sustain performance when the number of contracts is

increasing.

Figure 3.3 shows the percentage of scientific papers in each of the six categories.

It is clear that most papers are smart contract applications, accounting for 64% of all

the papers. The second most common category is software engineering, with 21% of

the papers. Security category dominates 6% of the papers. 3% and 2% of the papers

fall into performance and scalability and privacy categories, respectively. It is worth

noting that there are some papers (4% of all papers) fall into other smart contract

related topics.

Figure 3.3: The percentage of scientific papers in each category.
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Security. We found 10 papers that identify or propose solutions to bugs and vulnera-

bilities in smart contract systems. These vulnerabilities include transaction-ordering

dependency, timestamp dependency, mishandled exception, criminal activities, re-

entrancy and untrustworthy data feeds. Some papers present detection tools (e.g.,

Oyente [69] and ReGuard [80]) that can be used by developers to identify common

security bugs. Some papers propose assurance methods and machine learning ap-

proaches to detect security risks and fraud. Furthermore, one of the papers identifies

three types of criminal activities that can be carried out in smart contract systems

[56]. Another paper proposes an adaptive incentive mechanism for smart contract

systems to defend against denial of service attacks [29]. In addition, Atzei et al. [18]

surveyed several vulnerabilities in Ethereum smart contracts and built a taxonomy

for such vulnerabilities.

Privacy. We only found four papers that extend blockchain-based smart contract

platforms to support privacy and confidentiality. Hawk [61], for instance, is a tool

that allows smart contract developers to build privacy-preserving contracts. The

rest of the papers focus on extending Hyperledger Fabric to support private data,

proposing encrypted data feeds for contracts and proposing a system to ensure the

confidentiality of contracts. For example, Zhang et al. [105] propose a Town Crier

(TC) solution that acts as a trusted third party between external sources and smart

contracts to provide encrypted and authenticated data feeds for smart contracts.

Software Engineering. 40 papers fall into software engineering for smart contracts,

covering a wide range of topics. About 20% of the papers focus on verification and

validation techniques (e.g., formal modelling techniques [22]) for smart contracts in

order to assure that smart contracts are functioning as intended as well as error-

free. Six papers are about proposing new platforms (such as Smartdemap [59]) and

languages (e.g., Simplicity [81]) for developing smart contracts. Three papers utilise

analysis techniques to inspect the code of smart contracts. Moreover, there are three

papers that propose solutions to blockchain immutability features by allowing the

modification and termination of already deployed smart contracts. Two papers focus

on optimising the code of smart contracts by identifying and solving programming

patterns with high execution costs.

The rest of the papers focuses on automating the process of developing contracts,

building code classifiers and parsers for contracts, human-centered design of contracts,
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designing templates for developing contracts, profiling smart contract interactions and

identifying common pitfalls in developing safe contracts. Furthermore, there are some

papers that propose frameworks for developing secure contracts, proposing a compres-

sion method to reuse previously deployed contracts and proposing the integration of

a semantic legal layer with the blockchain to support legal contracts.

Applications. We found 120 application-based papers (about 64% of all papers).

We classified these applications into several topics, namely, Internet of Things (IoT),

cloud computing, financial, data, healthcare, access control and authentication and

other applications.

Internet of Things (IoT) Applications: Internet of Things (IoT) refers to physical

devices and appliances connected via the Internet. We found 18 papers that apply

blockchain-based smart contract technology to IoT. Three applications utilise smart

contracts to build an access control system for IoT. Four applications utilise smart

contracts to overcome security and privacy issues in the IoT. The rest of IoT-based

applications utilise smart contracts for the management of IoT devices, electronic

business, data management, data trading, data exchange and data storage.

Cloud Computing Application: We found eight applications that utilise blockchain-

based smart contract to overcome various technical issues in cloud computing. These

applications address the issues of verifiability of outsourced computation [40], data

auditing, resource management of cloud datacentres, negotiation and agreement es-

tablishment, data accountability, trust, access control and service level agreement

(SLA) monitoring.

Financial Applications: We found several applications that utilise blockchain-

based smart contracts for financial purposes such as payment and loan. The identi-

fied financial applications embrace fair payment systems, privacy-preserving incentive

mechanisms, a smart will, taxation-based payment, car insurance, private and con-

current payment channel network, concert tickets and protocols for data trading and

the management of study loan repayment.

Data Applications: These types of applications utilise blockchain-based smart

contract to manage and secure general data and information. These applications

include data sharing, data management, data indexing, data integrity check, and

data provenance and accountability.

Healthcare Applications: We found three blockchain-based smart contract appli-

cations in the healthcare domain. These applications are a secure remote patient
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monitoring system, an access control framework for electronic health records and

trustless medical data sharing among different cloud providers.

Access Control and Authentication Applications: These types of smart contract

applications target approaches to user authentication and management of access right

policies. Several smart contract based access control systems have been proposed in

different domains such as IoT [17], healthcare [33] and cloud computing [92]. With

regard to authentication, there are different proposed applications such as a secure

mutual authentication for industry 4.0, an enhancement of TLS handshake authenti-

cation and a distributed and secure user authentication.

The rest of the applications covers a wide range of different topics including e-

voting, supply chain management, intelligent systems (e.g., intelligent transportation

systems), smart grid systems, energy-based applications, resource management, reli-

able decision making, digital rights management, human resource systems and 2 phase

commit protocol for distributed consensus protocols [45]. Furthermore, other applica-

tions include volunteer time record systems, QoS-aware service composition, logistics

management, trustless intermediation in marketplaces, assessment organisation ser-

vice, Business Process Management (BPM) systems and decentralised applications

(DAPPs).

Performance and Scalability. We found six papers that fall into performance

and scalability topics in smart contract systems. Some papers propose benchmarking

frameworks (e.g., Blockbench [39]) for analysing and monitoring the performance of

blockchain-based smart contracts. To overcome scalability issues in smart contract

systems, some papers propose solutions to execute smart contracts in parallel instead

of sequentially. For more details on the state of the art in performance evaluation of

blockchain systems, we refer to this dissertation’s background discussion in Chapter

2.

Other smart contract related topics. We found eight papers that fall into other

smart contract related topics such as consensus protocols and incentive mechanisms

for smart contracts. Some papers propose new secure consensus protocols for smart

contracts and identify issues in existing protocols. Other papers focus on incentive

mechanisms, system operations and system design for smart contracts.
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3.4 Discussion

This section discusses the study results and answers the research questions that we

defined in Section 3.2.

RQ1: What are the existing research areas in smart contracts?

The study classifies the research topics on smart contracts into six categories,

namely, security, privacy, software engineering, application, performance and scala-

bility and other smart contract related topics. The majority of the research (about

64%) falls into the application category, followed by software engineering (21%). The

applications cover a wide range of domains such as IoT, cloud computing, finance,

healthcare, access control, authentication and others. Most of these applications are

to address technical issues (e.g., security issues) or to get rid of the trusted third par-

ties in existing applications. In the software engineering category, most of the papers

utilise analysis techniques for validation and verification purposes or to propose new

platforms and languages for developing secure smart contracts. For the performance

and scalability category, the papers either propose frameworks for performance anal-

ysis or scalable solutions for the execution of contracts. In the security category,

most papers focus on identifying and tackling security bugs and vulnerabilities. In

the privacy category, most papers focus on the confidentiality of information in smart

contract systems.

RQ2. How does smart contract research evolve year on year in terms of the number

and type of publications?

Research on smart contracts started in 2014 with the emergence of Ethereum.

Since then, the number of publications on smart contracts is increasing significantly

every year, as discussed in Section 3.3.1. For instance, the number of publications was

increased by over 300% in 2018 compared to that of 2017. Since 2018, the number of

papers published every year is at least over 1000 papers, with 609 papers published

in the first three months of 2020.

From the analysis results we discussed in Section 3.3.3, application and software

engineering categories experience the highest number of publications, accounting for

64% and 21% of the total published papers, respectively. This indicates that smart

contract systems widespread very vastly, especially in terms of smart contract appli-

cations and development.
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RQ3: What existing applications are there for smart contracts?

Smart contract applications cover any solution that utilises smart contract tech-

nology to overcome the issues in existing systems or any smart contract tool. We

identify 120 application-based papers that make use of smart contract technology in

existing systems such as IoT. These applications include cloud-based applications,

healthcare-based application, financial applications, data applications, access con-

trol and authentication based applications, e-voting, smart grid systems, digital right

management, intelligent systems and other decentralised applications. In addition,

we identify several smart contract tools that can aid during the process of developing

smart contracts, identify security issues, or provide confidentiality for smart contract

information.

RQ4: What are the research gaps?

From this study, we are able to identify at least two research gaps in smart contract

research. The methodologies used to identify these gaps are by observing issues or

limitations from the papers included in this study and by relying on our knowledge

in smart contract topic.

The first one is the relative lack of research on scaling blockchain-based smart

contract systems. In current systems, smart contracts are executed in sequence,

which leads to low throughput, especially if the number of smart contracts becomes

relatively large. Although we found a few papers exploring parallel execution of

contracts, their proposed solutions are high-level ideas and still not proven to be

working properly in smart contract systems. There are some challenges that face

parallel execution of contracts such as how to execute contracts that depend on each

other at the same time. It is, therefore, essential to conduct research on identifying

and tackling performance issues to ensure the ability of blockchain to scale.

A second area is the relative lack of research on performance evaluation of smart

contract execution. Performance benchmark approaches, for example, can be benefi-

cial to evaluate the fairness of incentive models within smart contract systems. If the

incentive provided by such systems is not compatible with the computational costs,

this could result in security attacks as well as poor incentive and cost models [7],

which impact the reliability of smart contract systems.

Following from these identified gaps, we conduct a performance benchmark ex-

periment to measure the execution time of real Ethereum smart contracts (Chapter

5). Also, we conduct two performance evaluation studies (Chapters 6 and 7) related
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to Ethereum smart contracts. The first one is regarding the impact of sequential

verification of contracts on the revenue for honest miners, and how parallel execution

of contracts can reduce that impact. The second one is regarding the uncertainty

miners face when selecting contract transactions under the unfair Ethereum incentive

model, and its impact on the earned profit.

3.5 Conclusion

In this chapter, we conduct a longitudinal systematic mapping study in order to

understand current research areas on smart contracts, to identify research gaps for

future work and to identify academics trends in uptake and emphasis.

The main insights we gained from this study are as follows. First, we observe that

the number of scientific papers on smart contracts is increasing significantly every

year, indicating a broad interest in this topic. In addition, we identify and classify

smart contract research into six different categories, namely, security, privacy, software

engineering, application, performance and scalability and other smart contract related

topics. The Application category dominates the majority of research publications,

constituting 64% of total articles. Furthermore, we manage to identify two research

gaps in smart contract research that we base our simulation studies in this thesis on.
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Chapter 4

BlockSim: An Extensible
Simulation Tool for Blockchain
Systems

Summary

Both in the design and deployment of blockchain solutions many performance-impacting

configuration choices need to be made. We introduce BlockSim, a framework and soft-

ware tool to build and simulate discrete-event dynamic systems models for blockchain

systems. BlockSim is designed to support the analysis of a large variety of blockchains

and blockchain deployments as well as a wide set of analysis questions. At the core of

BlockSim is a Base Model, which contains the main model constructs common across

various blockchain systems organised in three abstraction layers (network, consensus

and incentives layer). The Base Model is usable for a wide variety of blockchain

systems and can be extended easily to include system or deployment particulars.

The BlockSim software tool provides a simulator that implements the Base Model in

Python. This chapter describes the Base Model, the simulator implementation, and

the application of BlockSim to Bitcoin, Ethereum and other consensus algorithms.

We validate BlockSim simulation results by comparison with performance results from

actual systems and from other studies in the literature. We close the chapter by a

BlockSim simulation study of the impact of uncle blocks rewards on mining fairness,

for a variety of blockchain configurations.
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4.1 Introduction

In the design as well as the deployment of blockchain solutions, many architectural,

configuration and parameterisation questions need to be considered. Since it is usually

not feasible or practical to answer these questions using experimentation or trial-

and-error, model-based simulation is required as an alternative. In this chapter, we

propose a discrete-event simulation framework called BlockSim [8] to explore the

effects of configuration, parameterisation and design decisions on the behaviour of

blockchain systems.

The main goal of BlockSim is to provide simulation constructs that are intuitive,

hide unnecessary detail and can be easily manipulated to be applied to a large set of

blockchains design and deployment questions. That is, BlockSim has the following

objectives: generality, extensibility and simplicity. BlockSim is intended to be used

by blockchain designers, analysts and researchers to explore and study performance

metrics (throughput and latency), functionality metrics (e.g., stale rates) and system

properties (e.g., mining fairness and mining incentives). We note that BlockSim is

generally designed for performance evaluation, thus it cannot be used for pure security

analysis or formal correctness of consensus protocols and smart contracts.

At the core of BlockSim is a Base Model, which contains model constructs at

three abstraction layers: the network layer, the consensus layer and the incentives

layer [96]. The network layer captures the blockchain’s nodes and the underlying

peer-to-peer protocol to exchange data between nodes. The consensus layer captures

the algorithms and rules adopted to reach an agreement about the current state of the

blockchain ledger. The incentives layer captures the economic incentive mechanisms

adopted by a blockchain to issue and distribute rewards among the participating

nodes.

The Base Model contains a number of functional blocks common across blockchains,

that can be extended and configured as suited for the system and study of interest.

The main functional blocks include Node, Transaction, Block, Consensus and Incen-

tives, as we describe in Section 4.2. These are then implemented through a number

of Python modules, discussed in Section 4.3, and complemented by modules (event,

scheduler, statistics, etc.) that implement the simulation engine.

The public nature of permissionless blockchains provides for particularly powerful

opportunities to validate the simulator. We validate the BlockSim simulation results

by comparing against theoretical results (invariants such as block rate), against data

from the existing public blockchain systems such as Ethereum and Bitcoin and against
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results from the literature. The BlockSim simulation results are within a statistically

acceptable margin of the real-life or published results, as discussed in Section 4.5.

We also demonstrate the use of BlockSim for a simulation study that considers stale

rate, throughput and mining fairness, for a range of possible blockchain configurations

(not all existing in real-life systems). Using BlockSim we can demonstrate that uncle

inclusion (such as in Ethereum) is beneficial for mining fairness.

The structure of the chapter is as follows. Section 4.2 discusses the core Base

Model of BlockSim including the design objectives behind it. Section 4.3 presents the

implementation of the Base Model. Section 4.4 presents the application of BlockSim

to Bitcoin, Ethereum and other consensus protocols as case studies. Section 4.5

discusses the validation of BlockSim against actual systems and studies from the

literature. Sections 4.6 and 4.7 show a BlockSim simulation study as well as the

evaluation of BlockSim against the design objectives. Finally, we conclude the chapter

in Section 4.8.

4.2 BlockSim Base Model

In this section, we introduce the Base Model underlying BlockSim, which is de-

signed to model any kind of blockchain system, with application specific extensions

as needed. We first define the design principles and goals for BlockSim: generality,

extensibility and simplicity. Then, we discuss the design layer by layer: Network

Layer, Consensus Layer and Incentives Layer. Within each layer we identify the key

functional units (entities) and the actions or activities it executes.

4.2.1 Design Principles

We design a Base Model to fulfill the main design goals for BlockSim, which are:

• Generality: we want to be able to use BlockSim for a large set of blockchain

systems, configurations and design questions.

• Extensibility: BlockSim should be easily manipulated by a designer or analyst

to study different aspects of blockchain systems.

• Simplicity: the above two objectives should be met while making BlockSim

easy to use, both for simulation studies and for extending it.
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The art of designing a tool such as BlockSim is to find a useful trade-off between

generality and extensibility on the one hand, and simplicity to achieve these two

objectives on the other hand. The Base Model is critical in achieving this goal,

aiming to find the optimal trade-off among the above three objectives for the domain

of blockchain systems.
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Figure 4.1: BlockSim Model Entities.

The Base Model identifies the key building blocks (e.g., blocks, transactions, nodes

and incentives) common across all blockchains BlockSim is meant for, see Figure

4.1. The Base Model dictates how general the model class is that is supported by

BlockSim, and particularly how easy it is to build new models. The Base Model will

be translated in software modules and therefore also determines if BlockSim can be

extended easily, for instance, to provide more detailed models of certain processes

that take place in blockchains.

4.2.2 Network Layer

This layer defines two entities Node and the underlying Broadcast protocol, as de-

picted in Figure 4.1. The Node entity is responsible for updating the system state
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variables (e.g., the blockchain ledger and the transaction pool). The Broadcast proto-

col specifies how information entities (e.g., Blocks and Transactions) are propagated

in the network.

Both Blockchain ledger and Transaction pool entities are part of the Node entity

(see Figure 4.1). That is, every node maintains and continuously updates these

entities. We model nodes as objects that have different attributes such as unique ID,

balance, local ledger and transaction pool. The transaction pool and the local ledger

are modelled as array lists that can be extended when new transactions and blocks

are received. These attributes are common across the different implementation of

blockchains. It could, however, be possible to extend this by including more additional

attributes, as we will show in Section 4.4.1.

The propagation of information entities depends on the Broadcast protocol entity,

which can be modelled in detail by accounting for the network configurations, the

geographical distribution of the nodes and the connectivity among the nodes, or it can

be modelled in an abstraction level by only considering a time delay for propagating

information among the nodes. The reason for abstracting the broadcast protocol is

to make our simulator as simple as possible by hiding unnecessary details. This will

alleviate the user of the simulator from configuring many parameters related to the

network configurations such as the broadcast protocol, the geographical distribution

of the nodes and the number of connections per node. Having the propagation delay

as the only configurable parameter will improve both the efficiency and the usability

aspects of the simulator.

4.2.3 Consensus Layer

This layer aims at establishing the rules that nodes can follow to reach an agreement

about the blockchain’s state. This layer includes four entities, namely, Transaction,

Block, Transaction pool and Blockchain ledger, as depicted in Figure 4.1.

The Blockchain ledger entity depends on the Block entity, and the Block entity

depends on the Transaction entity. That is, the blockchain ledger is composed of

blocks and blocks are composed of transactions. The Transaction pool depends on

the Transaction entity, as every transaction created is fed into the transaction pool.

The Node entity maintains these four entities.

Within the consensus layer, there are several activities or actions to be executed by

the entities. The creation of blocks and transactions is an example of such activities.

The flow of these activities is depicted in Figure 4.2. These activities run continuously,

transactions and blocks, for instance, always keep arriving in the network.

55



Create a transaction (Ti)

Propagate Ti to other nodes

Append Ti to transaction pool

Execute/add transactions to
the next block (Bi)

Construct Bi and append it to
local blockchain 

Propagate Bi to other nodes

Append Bi to local blockchain

Is Bi valid?

Update local blockchain

Update transaction pool

NO

YES

Discard Bi

Bl
oc

k 
G

en
er

at
io

n

1

2

3

4

5

6

7

8

9

Append Bi to local blockchain

Bl
oc

k 
R

ec
ep

tio
n

TransactionsFull
technique?

YES

NO

Transaction
Pool

Blockchain Ledger

Figure 4.2: Workflow for the consensus activities within the Base Model of BlockSim.

Transactions are one of the building blocks (entities) common across all blockchain

systems. It plays a significant role in updating the blockchain’s state. The arrival of a

new transaction in the network results in updating the transaction pool by inserting

that transaction.

We model transactions in two different ways, namely, full and light. The full

technique helps to track each transaction in the system (e.g., when a transaction has

been created and included in a valid block). This technique models transactions as in

any blockchain system, and it is useful if one is interested in, for instance, studying

the latency of individual transactions in blockchain systems. However, this type of

modelling consumes an enormous amount of computing resources and time during

the simulation since each transaction has to be tracked. On the other hand, the light

technique does not track each transaction. It is useful when studying the throughput

of blockchain systems without caring about the confirmation time of transactions

within the system.
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In both techniques, we model transactions as objects that have several attributes

or fields such as transaction ID, size, fee, timestamp, contents as well as the submitter

and the recipient of the transaction. These attributes are almost common across all

blockchains, and that some systems have more additional attributes (e.g., Ethereum

has also gas-related attributes such as Gas Limit).

Full modelling Technique: In this technique as we discussed in Section 4.2.2,

we model an individual transaction pool for each node by assigning an array list for

each node as a way to abstract the pool. Each transaction created by a node is

propagated to all other nodes in the network. Upon receiving the transaction, the

recipient node appends it to their pool. Thus, we model transactions in three different

activities labelled from 1 to 3, as depicted in Figure 4.2.

• Creating transactions: This involves generating transactions by the partic-

ipating nodes. The number of transactions to be created per unit of time can

be controlled and configured.

• Propagating transactions: This requires the creator of the transaction to

propagate it to other participating nodes. This is to notify other nodes about

the newly created transactions.

• Appending transactions: This requires the recipient of the transaction to

append it to their transaction pool.

Light modelling Technique: In this technique, we only model a single trans-

action pool to be shared among all nodes in the network. The intention behind

this technique is to provide an alternative and simplified way to model transactions

by omitting the propagation process as well as the needs for nodes to update their

pools continuously. Thus, the light technique is more efficient and faster during the

simulation. However, this technique cannot be used to draw conclusions about the

latency of transactions as transactions are not tracked. Nevertheless, it is useful to

get indicators about the throughput in blockchain systems.

In this technique, we create a set of transactions (N ) and then append it to the

shared pool before the mining process, so miners can access the pool to select several

transactions to include in their forthcoming block. Note that N should be more than

enough for a block, usually enough for two blocks. Once a miner has successfully

generated a block, the pool is reset and then filled up with a fresh set of transactions

to be included in the next block.
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Both techniques could be implemented and then the user would be given a choice

to select which method to adopt based on their own needs. For instance, if one is

only interested in throughput, there is no need for choosing the full technique since

it makes the simulator runs for a very long time.

Blocks are another essential building block (entity) of any blockchain system. Blocks

consist of transactions. The arrival of a new block results in an update in the trans-

action pool and blockchain ledger. The pool is updated by removing all transactions

included in the block, while the ledger is updated by appending the newly created

block.

We model blocks as objects that have several attributes, namely, depth, block ID,

previous block ID, timestamp, size, miner ID and transactions. The block ID is a

unique identifier for the block. The block depth indicates the index of the block in

the node’s blockchain. The miner ID refers to the node that created the block. Each

block can accept a list of transactions as its content. These attributes are common

across blockchains.

We model blocks in the consensus layer as Block Generation and Block Reception,

see Figure 4.2. Block generation specifies when blocks are generated as well as which

node is eligible for appending the next block. It covers all the common actions required

by a miner to create and attach a block to the blockchain ledger. The actions embrace

executing the block’s transactions, constructing and appending the block to the local

blockchain and propagating the block to other nodes in the network. Block reception

specifies how the network’s nodes update their blockchain ledgers upon receiving new

blocks. It covers the common activities taken by a node when receiving a newly

generated block. Upon receiving a valid block, the recipient node will perform three

actions, which are updating the local blockchain if necessary, appending the block to

the local blockchain and updating the transaction pool.

The consensus algorithm is responsible for selecting a miner to build the next

block. The methodology used to choose a miner varies among blockchains, depending

on the adopted consensus protocol. In PoW, for instance, miners are selected based

on solving a mathematical task. Once a miner is chosen to construct and append

a new block to the ledger, the miner would undertake the following actions. Note

that these actions are common across all blockchain systems, and that some specific

systems may include other activities (e.g., including uncle blocks in a future block as

in Ethereum).
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• Executing and adding transactions to the block: This requires the miner

to select several pending transactions to be executed and included in the next

block. Often, miners first sort those pending transactions based on their asso-

ciated fees. Then, miners select the best transaction according to their ranking

criteria, execute it if and only if there is space in the block. The transaction will

then be recorded in the block. After that, miners will select the next transaction

and continue until the block is full or there is no pending transaction.

• Constructing and appending the block to the local blockchain: After

preparing the block content (e.g., transactions), the miner would construct the

block after which the block will be appended to the miner’s local blockchain.

• Propagating the block to other nodes: This is to propagate the block to

other nodes in the network. This is to notify the network’s nodes about the

newly generated block.

Once a node has received a new block, it will check its validity. The block is

considered valid if it was constructed correctly and all embedded transactions were

correctly executed. Beside the block validity, the block must point to the last block

in the ledger (the block’s depth should be higher than that of the last block). We

only model the block depth, and thus, we abstract the validity of the block. If the

depth of the received block is not higher than that of the last block, the block will be

discarded. Otherwise, the node will perform the following actions.

• Updating local blockchain: This requires the recipient node to update its

local blockchain, where necessary, before appending the newly received block.

This is because sometimes the received block is built on different preceding

blocks (a different chain branch) compared to the ones the recipient node has

or because it is built on missing blocks. Therefore, the node has to update all

the preceding blocks (and fetch all missing blocks if any) according to the ones

the received block is following.

• Appending the block to local blockchain: This is to append the received

block to the local copy of the blockchain.

• Updating transaction pool: This requires the recipient node to update its

transaction pool, where necessary, upon appending the newly received block.

This is to remove all the transactions that have already been executed in the

received block from the node’s pool.
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Transaction pool and blockchain ledger are also important building blocks (en-

tities) since they represent the state of blockchain systems. The transaction pool is

updated upon the arrival of a new transaction or block, while the blockchain ledger

is only updated once a block has arrived. Nodes are responsible for updating both

the pool and the ledger, as every node in the blockchain network maintains a local

copy of them (see Section 4.2.2).

The rule of updating the ledger in the case of forks: Nodes at some

point in time may have different views of the blockchain ledger due to the network’s

propagation delay. A significant role of the consensus layer is to define the rules that

can be used by the nodes to resolve the forks. For instance, Bitcoin and Ethereum

use the longest-chain rule to resolve the forks. That is, nodes update their ledgers

every time they receive a block that follows a chain that is longer than their local

chains. By doing so, nodes will have the same view of the blockchain ledger. Other

systems, however, use different rules (e.g., GHOST [90]).

4.2.4 Incentives Layer

The incentives layer is responsible for designing the underlying incentive model by

defining the rewarded elements (e.g., blocks and transactions) as well as distributing

the rewards among the participating miners. This layer has the reward entity, which

depends on the Block entity (see Figure 4.1). That is, the rewards are only given

to the miners upon appending new blocks to the ledger. The calculation and the

distribution of such rewards are considered as actions.

We model the basic incentive model used by most blockchain systems such as

Bitcoin. Our model provides a reward for generating a valid block (block reward)

and a reward for all transactions included in a block (transaction fee). The block

reward is modelled as a fixed amount of cryptocurrency that can be configured and

changed by the end-user. The transaction fee is calculated as the multiplication of

its size and its prize, where the prize is the amount of money the submitter of the

transaction is willing to pay per unit of size. The size and the prize for transactions

can also be configured as fixed or variable (random) values. However, it is possible

to extend the current model to include different rewards (e.g., rewards for uncle

blocks) or change the way how the fee for transactions is calculated. We model the

distribution of rewards by increasing the balance of each miner after having a valid

block attached to the ledger.
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4.3 BlockSim Implementation

Simulation Module
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Configuration Module

Figure 4.3: BlockSim Implementation Modules.

We present the implementation of the BlockSim simulator using Python 3.6.41.

The main modules are given in Figure 4.3. The Simulator Module implements the

core engine of the simulator, in particular the event scheduler, which we explain

in Section 4.3.1. The main topic of discussion in that section is the granularity at

which events are handled, since it heavily impacts the performance of the simulator.

This simulation engine module is complemented by the Configuration Module, to

be described in Section 4.3.2, which provides the user with ways to configure the

simulation model and experiments. Section 4.3.3 explains the implementation of the

Base Model, subdivided according to the main layers: Network Module, Consensus

Module and Incentives Module.

4.3.1 BlockSim Simulation Engine and Event Scheduler

As depicted in Figure 4.3, the main Simulation Module contains four classes, which

are Event, Scheduler, Statistics and Main. We start with explaining our design choices

for the event scheduling.

We provide event scheduling at two abstraction levels, the first one considers

blocks as the event ‘unit’, the second considers transactions as the event ‘unit’. We

1https://github.com/maher243/BlockSim.
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explain the block-level events. The class Event defines the structure of events in our

simulator. In the case of a block-level event it has four attributes: type, nodeID, time

and block. The attribute type indicates how to handle the event, in particular whether

the event at hand is to create a new block or to receive an existing block. The nodeID

and time attributes specify the node that handles the event and the time at which

the event takes place. The block attribute contains the necessary information for the

block to be handled.

1 for i in range (p . Runs ) :
2 c l o ck=0
3 i f p . hasTrans :
4 i f p . Ttechnique == ”Light ” : LT. c r e a t e t r a n s a c t i o n s ( )
5 e l i f p . Ttechnique == ”Ful l ” : FT. c r e a t e t r a n s a c t i o n s ( )
6

7 Node . g e n e r a t e g e n s i s b l o c k ( ) # genera te the g en s i s b l o c k f o r
a l l miners

8 Scheduler . g e n e r a t e i n i t i a l e v e n t s ( ) # i n i t i a t e i n i t i a l e ven t s
>= 1 to s t a r t wi th

9

10 while not Queue . isEmpty ( ) and c l o ck <= p . simTime :
11 next event = Queue . g e t nex t even t ( )
12 c l o ck = next event . time # move c l o c k to the time o f the

event
13 Consensus . hand le event ( next event ) # execu te the event (

c r ea t e or r e c e i v e a b l o c k )
14 Queue . remove event ( next event ) # remove the event from

the Queue a f t e r e xecu t ing i t
15

16 Consensus . f o r k r e s o l u t i o n ( ) # re s o l v e the f o r k s
17 I n c en t i v e s . d i s t r i bu t e r ewa rd s ( )# ca l c u l a t e and d i s t r i b u t e the

rewards between the p a r t i c i p a t i n g nodes
18 S t a t i s t i c s . c a l c u l a t e ( ) # ca l c u l a t e the s imu la t i on r e s u l t s ( e .

g . , b l o c k s t a t s t i c s and miners ' rewards )
19

20 # re s e t a l l g l o b a l v a r i a b l e s and the b l o c kcha in s t a t e s f o r
a l l nodes b e f o r e the next run

21 S t a t i s t i c s . r e s e t ( )
22 Node . r e s e t S t a t e ( )
23

24 S t a t i s t i c s . p r i n t t o e x c e l ( ” r e s u l t s . x l sx ” ) # pr in t a l l the s imu la t i on
r e s u l t s f o r a l l t he runs in an e x c e l f i l e

Listing 4.1: The implementation of the Main class in BlockSim.

Scheduler class is responsible for scheduling future events and record them in the

Queue. Queue is an array list that maintains all future events, and it is continuously

updated during the simulation by either inserting new events or removing existing

ones. At the block-level, for instance, once a block is created through a block creation

event, the Scheduler class schedules block reception events for other nodes to receive
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the block. Also, it schedules a new block creation event by selecting a miner to propose

and generate a new block on top of the last one.

The function of the Main and Statistics classes is as one would expect. Main

runs the simulator. It prepares the setup and then triggers the Scheduler class to

schedule some initial events. The setup includes the creation of transactions as well

as the creation of the first (genesis) block, an empty block that will be attached to

the local blockchain for all the nodes in the network. Then, it keeps going through

all the events and executes them one by one until the Queue is empty or the pre-

specified simulation time is reached. The procedures taken to execute the events

are similar to any discrete-event simulator [46], which are depicted in Listing 4.1.

Statistics maintains the results and calculates the statistics of the final output of the

simulation, including block statistics (number of blocks included in the ledger and

percentage of discarded blocks), throughput and mining profits.

4.3.2 Configuration Module

Type Parameter Description

Blocks

Binterval Average time to generate a block in seconds
Bsize Block size in Megabyte (MB)
Bdelay Propagation delay of blocks in seconds
Breward Block generation reward

Transactions

hasTrans Enable/Disabled transactions
Ttechnique Technique for modelling transactions
Tn Rate at which transactions can be created
Tdelay Propagation delay of transactions in seconds
Tfee Transaction fee
Tsize Transaction size in MB

Nodes Nn Total number of nodes in the network

Simulation
Simtime Length of the simulation time
Runs Number of simulation runs

Table 4.1: Input parameters for the simulator.

This module serves as the main user interface, in which users can select from the

available models as well as configuring various parameters related to the participating

nodes, blocks, transactions, consensus, incentives and the simulation setups. Table

4.1 summarises the input parameters to be configured before running the simulator.

We can, for instance, configure the number of nodes, the block interval time, the

volume of transactions to be created per second and other parameters. Besides, our

simulator allows disabling transactions if they are not of interest. This can be done by
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only setting the parameter hasTrans to be “False”, without modifying the code of the

simulator. Furthermore, it allows selecting a suitable technique (either full or light)

for modelling transactions. If we extend the simulator by, for example, including new

consensus protocols, this would be reflected in this module to allow the user of the

simulator to choose the desired protocol.

4.3.3 Base Model Modules

We discuss the implementation of simulation classes that represent the Base Model

of Section 4.2 using the same three layers as before.

Network Module: We implement the network module in two different classes,

namely, Node and Network. Node class defines the structure of nodes in our simulator.

We implement each node as an object in which each node is given a unique ID and a

balance. For each node, we assign two array lists to model the local blockchain and the

transaction pool. It is worth noting that each node maintains a transactions’ pool only

if the full transaction technique is applied. Otherwise, a common pool will be shared

by all the nodes. Network class implements the network latency for propagating both

blocks and transactions between the nodes. Currently, we implement the latency as

a time delay that can be configured by the user of the simulator in the configuration

module. However, it could be possible to extend this class to implement a particular

broadcast protocol.

Consensus Module: We implement the consensus module in different classes,

namely, Transaction, Block and Consensus. Transaction class defines the structure

of transactions in our simulator. We implement each transaction as an object that

has seven attributes, namely, ID, timestamp, submitter ID, recipient ID, value, size

and fee. The end-user can set the size and fee of transactions in the configuration

module as fixed values or random values drawn from general distributions, including

exponential distribution. This class also implements both full and light techniques

for modelling transactions, as we discussed in Section 4.2.3. Block class defines the

structure of blocks in our simulator. We implement each block as an object that

has seven attributes, namely, depth, ID, previous ID, timestamp, size, miner ID

and transactions. This class also implements the processes required by the nodes to

generate and receive blocks, as discussed in Section 4.2.3. Consensus class implements

the consensus algorithm as well as the fork resolution rule. It also implements the

process of selecting leaders, aka miners, to generate and append new blocks to the

ledger. This class is structured to be easy to implement any consensus protocol of

64



interest. For instance, to implement PoW algorithm with the longest-chain rule to

resolve potential forks as the case in Bitcoin and Ethereum.

Incentives Module: This module is responsible for setting the rewarded ele-

ments as well as calculating the rewards. Also, it distributes the rewards among

the participating nodes by increasing the balance of each node after calculating the

rewards. It is, however, possible to extend this module by adding more rewarded

elements or changing the way the awards are calculated if required. To make it easier

for the end-user, the rewards (e.g., block rewards) can be configured and changed in

the configuration module.

4.4 BlockSim Case Studies

BlockSim is designed to be used for any type of blockchain, and to demonstrate this

we apply the Base Model of BlockSim to simulate Bitcoin as well as Ethereum. We

also discuss how to extend the BlockSim implementation of the Base Model to support

any consensus algorithm of interest.

4.4.1 Bitcoin in BlockSim

To simulate Bitcoin we introduce the following modifications and extensions to the

core implementation of BlockSim discussed in Section 4.3.

Network Layer. For Bitcoin we abstract the underlying broadcast protocol by

modelling the propagation of transactions and blocks as a time delay, as indicated

in Section 4.2.2. To parameterise the model one can use DSN Bitcoin Monitoring to

obtain the propagation delay of information. The Node module is extended with an

attribute for a node’s hash power, which we add to the configuration module for the

user to set as an input parameter. To distinguish between regular nodes and miners,

we can assign zero as the hash power for regular nodes to indicate that the node

cannot build blocks (only create and propagate transactions).

Consensus Layer. Bitcoin uses PoW with the longest-chain rule to resolve the

forks. As discussed in Section 2.2.2, in PoW miners compete against each other to be

allowed to create the next block. They repeatedly draw a random number, combine it

with info from the new block and generate a hash. If the hash fulfills some property,

the block can be added to the blockchain and forwarded to other nodes. That means

miners execute what amounts to a Bernouilli trial and since the number of trials is

high, the Bernouilli trials process converges to its continuous-time counterpart, the

Poisson Process. That is, the time between successes is exponentially distributed.
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In the configuration module, one can set the block difficulty through the Binterval

parameter, which is the time interval (in seconds) between two consecutive blocks. If

multiple chains have the same depth, Bitcoin uses the longest chain to reach a global

view of the blockchain ledger by resolving the forks.

Incentives Layer. The incentives in Bitcoin for generating blocks and executing

transactions is the same as that of the Base Model. In our main BlockSim implemen-

tation, all rewards will be distributed to miners at the end of each simulation run.

If needed, the Incentives module can be modified to distribute rewards in run-time.

The miner of a block that is finalised and is part of the longest chain receives the

block reward and the fees for all transactions included in that block. The rewards

can be set in the configuration module.

4.4.2 Ethereum in BlockSim

Ethereum is very similar to Bitcoin but introduces a few additional elements asso-

ciated with the handling of uncle blocks as well as attributes required for incentives

associated with smart contracts.

Network and Consensus Layers. Ethereum allows attaching uncle blocks to

a valid block and rewards miners for this. Therefore, we extend the Bitcoin Node

module with an unclechain attribute. The unclechain for a node is modelled as an

array list storing all chains with uncle blocks that occur during the simulation run.

Ethereum allows miners to include a maximum of 2 uncle blocks within the last seven

block generations (e.g., an uncle block with a depth 10 can be referenced in a block

with a depth less than or equal to 17). We include this logic in the configuration

module and allow configuring the maximum number of uncle blocks per block, the

number of generations in which an uncle block can be included as well as disabling

uncle inclusion mechanism if it is not of interest.

Similarly, we extend the Node module when receiving a block. If the block has

a smaller depth or index, the block is appended to the recipient’s unclechain as an

uncle block to be referenced in a future block. Also, when receiving and appending

a valid block to the local blockchain ledger, the miner updates its local unclechain,

where necessary, by removing all the uncle blocks that have already been included in

the received block.

Incentives Layer. The incentive model of Ethereum, similar to that of Bitcoin,

includes block reward and transactions fee. Yet, Ethereum uses the Gas mechanism

to calculate the fee for transactions with smart contracts. To determine the fee

for transactions and blocks, we therefore require some additional attributes related
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to the gas model. For transactions, we add Gas Limit, Used Gas and Gas Price

attributes. For blocks, we include the attributes of Gas Limit and Used Gas. We

refer to the literature, e.g., [6, 49] for details, but in short, Used Gas multiplied by the

Gas Price corresponds to the fee the miner receives, where Used Gas depends on the

computational requirements of the smart contract [3], but never exceeds Gas Limit.

Ethereum also introduces rewards for uncle blocks. The uncle reward is distributed

between the miner who generated the uncle and the miner who included it in his block,

as follows [49]. The miner who generated the uncle gets a variable reward depending

on when the uncle has been referenced in a main block. The sooner the uncle is

referenced in a block, the higher the uncle reward (Runcle):

Runcle =
(
Duncle + (Guncle + 1)−Dblock) ∗

Rblock

Guncle + 1
(4.1)

where Duncle is the depth of the uncle, Guncle is the number of generations in which

the uncle can be included, Dblock is the depth of the block and Rblock is the block

reward. The miner who included the uncle in his block will get a fixed reward, which

is calculated as 1
32

* Rblock. All this is implemented in the incentives module, but the

amount of rewards can be set in the configuration module, if required.

4.4.3 Different Consensus Protocols in BlockSim

Thus far we have mainly considered PoW as consensus protocol, but there are many

other, including Proof of Stake (PoS), Proof of Authority or message-based consensus

algorithms such as Practical Byzantine Fault Tolerance (PBFT) and its many variants

[14].

A significant difference between these protocols and PoW is that in PoW miners

are not directly selected by the consensus protocol, but instead, miners continuously

invest their computing power to create the subsequent blocks. In PoS, for instance,

miners would be selected by the protocol based on the amount of stake or cryptocur-

rencies they hold. The more cryptocurrencies a miner deposited in the system, the

more chance they would be selected to generate the next block. Other protocols select

miners in a round-robin manner such as Tendermint [64] or based on different metrics

[14].

To support approaches such as PoS, we modify the consensus class by changing

how miners are being selected to generate the next blocks. Other consensus elements

(e.g., transactions, blocks and fork resolution) and modules (simulation, network and

incentives) remain unchanged. In general, as long as the output metrics can be
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truthfully simulated with events scheduled at the granularity of blocks, BlockSim can

be extended in a natural matter. The time consumed by the consensus algorithm

would then be represented by a delay. However, if one wants to analyse the impact

of specific message sequences on the performance of PBFT style consensus protocols,

BlockSim is a less obvious candidate. For efficient (i.e., fast) simulation, one would

study such consensus protocols through simulation tools that operate at message-level

and not mix different levels of abstractions and time granularity.

4.5 BlockSim Validation

A nice feature of the blockchain design is that it offers invariants (such as the block

creation interval) and plenty of publicly available data to validate the results of any

simulator. First we compare BlockSim with existing blockchain systems (Section

4.5.1), then we compare with various peer-reviewed studies (Section 4.5.2).

4.5.1 Comparison with Measurements

We compare the results from BlockSim with the most popular public blockchains,

Bitcoin and Ethereum. These provide certain ‘invariants’ that we know to be true,

such as the frequency of generating blocks and the proportionality between the miner’s

hashing share and the probability to win the Proof of Work competition. Bitcoin and

Ethereum also provide ample public data to validate our simulator.

Parameters Bitcoin Ethereum
Binterval 596s 12.42s
Bdelay 0.42s 2.3s
Bsize 0.83MB 7,997,148Gas
Tsize 546Byte Distribution

Table 4.2: Data gathered from Bitcoin and Ethereum, serves as input to the simula-
tion runs used as validation.

Validation of block and transaction metrics. We use the following metrics for

validation: number of blocks created, number of uncle or stale blocks (blocks that will

not be part of the final chain), and the number of transactions completed per time

unit. The results obtained from our simulator and that from the actual systems are

reported in Table 4.3. We report both the average and the 95% confidence interval

values, for a run of the simulation that corresponds to a full month of real time.
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From Table 4.3, we see that our simulator’s confidence interval contains the result

from the measurements. However, our simulator shows a slightly higher throughput

for Ethereum compared to the real data observed. We believe that this is either due

to the small sample of transactions retrieved or the fitted frequency distribution.

Bitcoin Measured Simulated
Bincluded 146 ± 4 143± 5
Stale (uncle) rate 0.025 %± 0.051 % 0.049 %± 0.069 %
Throughput 2.69 ± 0.09 2.66± 0.09

Ethereum Measured Simulated
Bincluded 6083 ± 27 6079± 25
Stale (uncle) rate 12.56 %± 0.43 % 12.55 %± 0.14 %
Throughput 5.99 ± 0.18 6.96± 0.03

Table 4.3: Validation of the simulator results by comparison with measurements
from Bitcoin and Ethereum. Bincluded is the number of blocks included in the main
blockchain per day, the stale (or uncle) rate per day is blocks not in the main chain,
and throughput is the number of transactions processed per second.

To obtain the above results, Table 4.2 shows the data gathered from both Bitcoin

and Ethereum used as input to the validation runs. That is, we use the values

from Table 4.2 for the relevant input parameters given in Table 4.1. We gather

the Bitcoin’s data from blockchain.info 2, while the Ethereum’s data comes from

etherscan.io 3. We collect one month of data for each system as of October 2018.

From these sources, we were able to directly collect all the necessary data, apart from

the block propagation delay and the transactions’ size in Ethereum. However, we

obtain the block delay using DSN Bitcoin Monitoring4 and ETHstats5. To obtain the

size of transactions in Ethereum, we implement a python script that makes use of

etherscan.io APIs to retrieve transactions information. We retrieve the data for the

latest 5,000 transactions and then fit a frequency distribution for transactions’ size to

be used as input in our simulator. For the sake of this experiment, we fit a frequency

distribution with the limited collected data.

Validation of PoW. An invariant we can use for validation is the share of blocks

each miner generates since it is known that share is equal to the miner’s share of the

overall hashing power. For instance, if a miner controls 40% of the network’s hash

2https://www.blockchain.com/explorer
3https://etherscan.io/
4https://dsn.tm.kit.edu/bitcoin/
5https://ethstats.net/
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Figure 4.4: Validation of PoW using the fraction of generated blocks given the hashing
share of various miners.

power, it should generate 40% of the total blocks. To validate PoW, we collect the

estimated hash power as well as the fraction of blocks contributed by Bitcoin miners

and miner pools from blockchain.info and input this into our simulator. That is, the

simulation is with miners that have the same share of the hashing power as various

existing Bitcoin miners.

Figure 4.4 shows the results. We simulate four days of the Bitcoin network, a total

of 1000 times and obtain the average fraction of blocks generated by each miner. The

x -axis of Figure 4.4 shows the name of the miners and the y-axis shows the fraction

of blocks contributed by the miners for both the real Bitcoin network (the green bars)

and the simulation results (the grey bars). From Figure 4.4 we see that the simulation

results are very close to that of the real Bitcoin network.
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Input Parameters Stale Rate
Binterval (s) Bdelay (s) Measured (%) Simulated (%)

Bitcoin [50] 600 14.7 1.51 1.69± 0.08
Bitcoin [35] 600 12.6 1.68 1.73± 0.09
Litecoin [50] 150 4.18 1.82 1.88± 0.11
Dogecoin [50] 60 2.08 2.15 2.38± 0.08

Table 4.4: A comparison between BlockSim and previous studies in terms of the stale
rate observed.

4.5.2 Comparison with Peer-reviewed Studies

We also compare the simulator results for the stale rate with that of previous peer-

reviewed studies. Decker et al. [35] run an experiment on the Bitcoin blockchain

by listening to 10,000 blocks. They found the average block propagation delay is

12.6 seconds and the stale rate is 1.69%. Gervais et al. [50] run some simulation

experiments using the configurations of different blockchain systems such as Bitcoin,

Litecoin and Dogecoin. They found that their simulation results matched that of

the actual systems. To validate our simulator against these studies, we use the same

configurations of the block interval (Binterval) and block propagation delay (Bdelay) as

reported in these studies. We simulate each configuration for a total of 10,000 blocks

and report the average results obtained from 10 independent runs, see Table 4.4.

From Table 4.4, we see that the stale rates obtained from our simulator are close to

the ones reported in previous studies, with a difference of less than 10%.
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4.6 BlockSim Simulation Results

To show the applicability of our simulator, we conduct a simulation experiment to

investigate the impact of different consensus and network parameters on the security,

performance and mining ecosystem of blockchain systems. We also show the perfor-

mance of the simulator in terms of run time. We use very similar metrics as in the

validation, but for a wider range of parameter values. The main discussion in this

section is about how the stale block rate impacts mining fairness and how Ethereum’s

approach to reward uncle blocks improves mining fairness.

More precisely, we study the impact of different combinations of block interval and

block propagation delay on the stale rate, throughput and mining fairness. Stale rate

is a security indicator of a blockchain system, and the lower the rate, the better for the

security of the system [50]. Throughput represents the number of transactions that

can be processed per second, thus directly indicating how well the system performs.

Mining fairness indicates that the fraction of blocks a miner includes in the main

ledger is proportional to the hash power of that miner. In other words, mining

fairness means each miner gets a fair reward compared to its hash power.

Table 4.5 shows the results (stale rate, throughput and mining fairness) for 25

different combinations of different block interval Binterval and block delay Bdelay as

well as the run time for every configuration. For ease of presentation, we consider

only five miners (M1, M2, M3, M4, M5) with hash powers ranging from 5% to 40%.

The hash power for a miner is a configurable parameter (see Section 4.4.1). For

all configurations, we set the block size to be 1MB and the average transaction size

to be 546 bytes (as in the Bitcoin network). We simulate each configuration for a

total of 10,000 blocks and report the average results from 10 independent runs. The

confidence intervals are not reported here, but are all within 10% of the average

values.

Stale rate. From the stale rate results reported in Table 4.5, we observe the follow-

ing. First, reducing the block interval, i.e., the time between successive blocks being

created, leads to higher stale rates, especially when the block interval is already small.

For instance, reducing the block interval from 12 to 1 second in the case of 0.5 second

block delay will result in an increase of the stale rate by about sevenfold. When the

block interval is small, other nodes could manage to find the next block before hear-

ing of other competitive blocks due to the network latency, leading to conflicts. Also,

increasing the block propagation delay leads to higher stale rates. For instance, the
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stale rate increases about tenfold when increasing the delay from 0.5 to 16 seconds

in the case of 12 seconds block interval. The block delay includes the block’s trans-

mission time as well as the verification of the block and its embedded transactions

[35]. Thus, the bigger the block size, the more time required to transmit and verify

the block. We note that increasing the block size will result in higher stale rates.

Furthermore, to ensure the lowest stale rate the block delay should be as small as

possible and the block interval as large as possible. For instance, in the case of 600

seconds block interval, the stale rates are minimal since the block delay is only a tiny

fraction of the block interval.

Throughput. From the throughput results reported in Table 4.5, we observe the fol-

lowing. First, reducing the block interval leads to higher throughput. This is because

more blocks will be generated, and thus, more transactions will be processed. We

also observe that the block delay could reduce the throughput significantly, especially

when the block interval is small. The number of transactions that can be processed

per second is reduced from 147 to 92 when increasing the block delay from 0.5 to 16

seconds in the case of 12 seconds block interval. Furthermore, the block delay does

not have a significant impact on the throughput if the delay is too small compared

to the block interval. For instance, in the case of 600 seconds block interval, the

throughput achieved is almost the same even when the block delay is increased from

0.5 to 16 seconds.

Mining fairness. From the mining fairness results reported in Table 4.5, we observe

the following. First and most importantly, we observe a correlation between stale

rates and mining fairness. The smaller the stale rates the better the mining fairness

and vice versa. In the discussion about stale rates, we observe that reducing the

block interval or increasing the block delay can lead to a higher stale rate. That is,

reducing the block interval leads to poor mining fairness. In the case of 1 second

block interval, for instance, miners with a large hash power (e.g., M1) have a higher

fraction of blocks included in the main ledger, and thus gain higher profit, compared

to their hash power invested. On the contrary, small miners have a small fraction of

blocks included in the ledger, and thus gain less profit, compared to their hash power

invested. Similarly, increasing the block delay negatively impacts the fairness of the

mining process. For a better mining fairness, the stale rate should be reduced by

having the block interval relatively larger than the block delay.
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Run time performance. For every combination of configurations, we show the

average time (in seconds) it takes the simulator to perform a single run. To obtain

the run time results, we use a laptop with a 2.30GHz Intel i5 CPU with 16GB RAM

running on Windows 10. From Table 4.5, we observe the following. First, the run time

generally takes seconds to simulate 10000 blocks. We note that in this experiment

there are five miners and increasing the number of miners would increase the run

time since more actions need to be performed in the network. For example, every

new miner has to maintain a ledger and update it every time a new block is announced

in the network. At the same time, increasing the number of non-miners would not

affect the run time that much as they are not participating in maintaining the ledger.

Secondly, the run time increases for higher stale rates (setting with small Binterval or

large Bdelay). This is because miners need to update their ledgers more frequently

than when conflicts are rare. Surprisingly, when the stale rate is high (over 50%) the

run time seems to be decreasing. We believe the explanation for this is that although

more blocks are in the system, miners neglect most blocks as they arrive when the

miner is behind the main chain.

Bitcoin throughput. The current implementation of Bitcoin compromises of 596

seconds block interval and 0.42 second block delay, as reported in Table 4.2. That

means the Bitcoin network experiences a low stale rate as well as a good mining

fairness. However, it suffers from poor throughput as the number of transactions

processed per second is only about 3. We argue that we could securely reduce the

block interval of Bitcoin to 60 seconds to improve the throughput by about a factor

10, without any significant impact on the stale rate or mining fairness.

Ethereum mining fairness through uncle inclusion. The current implementa-

tion of Ethereum compromises of 12.42 seconds block interval and 2.3 seconds block

delay, as reported in Table 4.2. This results in a stale rate of about 12.56% and

imperfect mining fairness, but a better throughput than the Bitcoin blockchain. To

eliminate the negative impact on the stale rate and mining fairness, Ethereum uses

an uncle inclusion mechanism, where stale blocks are included in the main ledger

as uncle blocks and the miners of such blocks are rewarded. However, this does not

guarantee that miners will receive fair rewards compared to their hash power invested

(e.g., a miner with a hash power of 20% should receive 20% of the total rewards dis-

tributed in the network). This is especially true as miners get a lower reward for uncle
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blocks compared to main blocks as well as they are not rewarded for the transactions

included in the uncle blocks.

Fraction of rewards
Miners (%) without uncle inclusion (%) with uncle inclusion (%)
M1 40 41.32 40.2
M2 30 30.28 30.18
M3 15 14.47 14.91
M4 10 9.34 9.85
M5 5 4.6 4.86

Table 4.6: The fraction of rewards gained by each miner (M1, M2, M3, M4, M5),
with and without uncle inclusion mechanism.

We use the same parameters as currently in Ethereum to further explore whether

the fraction of rewards a miner would receive with uncle inclusion mechanism is

proportional to its hash power. We execute 10 independent simulation runs of 10,000

blocks and report the average results in Table 4.6. From Table 4.6, we see that the

fraction of rewards gained by the miners with uncle inclusion mechanism is closer

to their hash power than in the case where the uncle mechanism is not applied.

Thus, Ethereum indeed achieves a better mining fairness using its uncle inclusion

mechanism.

4.7 Discussion: Evaluation of BlockSim against De-

sign Objectives

We evaluate our simulator against the design criteria mentioned in Section 4.2.1,

which are generality, extensibility and simplicity.

Generality. Generality refers to the ability to use BlockSim for a variety of analysis

questions and for a variety of blockchains. The key technology to achieve general-

ity is the BlockSim Base Model, which has been designed in such a way that many

blockchain systems and analysis questions can be answered. The Base Model cov-

ers all common building blocks of blockchains such as nodes, transactions, blocks,

blockchain ledger, fork resolution and incentive models. We have demonstrated the

application of blockchain to analyse Bitcoin and Ethereum, and arguably BlockSim

is well-suited for the full class of permissionless blockchain systems. Furthermore,

BlockSim achieves generality by supporting different properties and metrics such as

performance (both throughput and latency), functionality metrics such as stale rates
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and system properties such as mining fairness and mining incentives. To further

support this criterion, however, we aim to model and implement different consensus

protocols (e.g., Proof-of-Stake) as well as different generic broadcast protocols for the

Network layer in a later version of BlockSim.

Extensibility. Extensibility refers to the ability of the BlockSim tool to be extended

in a natural manner for various systems and analysis problems. This comes down to

the design of the software, which is through modules that can easily be manipulated

and extended to investigate different properties or problems of interest. The user

of the simulator can use common object oriented programming techniques such as

inheritance to extend current modules either by adding new functionalities (classes,

methods or attributes) or modifying (overriding) some of the existing ones.

In Sections 4.4.1 and 4.4.2, we show how we extend the base modules of BlockSim

to support the implementation of Bitcoin and Ethereum. For instance, we extend the

Node module by adding an attribute for a node’s hash power.

In addition, we illustrate how to extend the Ethereum model of BlockSim to

analyse the implications of the Ethereum Verifier’s Dilemma [4] (Chapter 6) and to

study the uncertainty problem miners face in Ethereum when selecting transactions

(Chapter 7).

As another example, we will briefly explain how to extend BlockSim to support

different malicious behaviours of the nodes (e.g., selfish mining strategies). The cur-

rent implementation of BlockSim assumes that all nodes are honest. To support such

behaviours, we can extend the Node module by introducing a new attribute (e.g.,

selfish) for each behaviour. Note that each behaviour needs to be adequately defined

(e.g., by writing a function or a separate class that specifies the procedures involved

in this behaviour). To establish selfish mining behaviour for a node, for instance, we

configure that node to work on its fork without propagating the blocks it generates to

other nodes in the network. Once the behaviours are defined, the user of the simula-

tor has only to access the configuration module and choose which type of behaviours

to be studied when defining the nodes, without modifying the underlying code of the

simulator.

Simplicity. BlockSim achieves this criterion as it has been implemented in different

modules as well as it provides a user interface (a configuration module) that allows the

end-user to set up the input parameters for the simulator. This makes BlockSim easy

to use and understand. Besides, the current version of BlockSim hides and abstracts
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many details. For example, it abstracts all the details of the network layer by only

introducing a configurable time delay for information propagation to model this layer.

Also, it hides details about the validation process of blocks and transactions. By doing

so, BlockSim becomes simple and easy to use and understand. Although hiding and

abstracting details can result in an incomplete model, it is possible to extend BlockSim

to incorporate these details if required.

4.8 Conclusion

This chapter proposes BlockSim, a discrete-event simulation framework for blockchain

systems, capturing network, consensus and incentives layers of blockchain systems.

The simulation tool is implemented in Python and is available for general use. We

introduce the design and evaluate it against the design objectives of generality, ex-

tensibility and simplicity.

BlockSim’s results have been validated by comparing it with design properties

and measurement studies available from real-life blockchains such as Bitcoin and

Ethereum. We also demonstrated the use of BlockSim in a study of stale rate,

throughput and mining fairness across a variety of blockchain configurations.

Future work should further demonstrate the extensibility of BlockSim by imple-

menting additional variants of blockchain systems, such as those based on Proof of

Stake as well as blockchains augmented with channels. In addition, one can build on

the current version of BlockSim and extend it with additional reusable classes that

represent other important system aspects and mechanisms, in particular mining pools

and channels.
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Chapter 5

Data Collection and Distributions
of Ethereum Smart Contracts

Summary

To simulate blockchain systems as close to reality as possible, we need accurate esti-

mates of the probability distribution of various variables. In this chapter we obtain

distributions for Ethereum smart contract transactions, with respect to Gas Limit,

Used Gas, Gas Price and CPU Time. To determine these distributions we use publicly

available Ethereum smart contract information, augmented with experimental data

for over 300,000 smart contracts obtained on a test bed. We conclude that Gaussian

Mixture Models are appropriate for distributions of smart contracts with respect to

Used Gas and Gas Price, and use a uniform distribution for the distribution with re-

spect to the Gas Limit. A correlation analysis shows that the CPU Time is strongly

correlated with Used Gas and we therefore apply regression techniques to estimate

the CPU Time conditioned on Used Gas. We experiment with three ensemble re-

gression methods, namely Random Forest, Gradient Boosting Machine and Adaptive

Boosting and conclude that Random Forest is both fast and accurate.

The distributions obtained in this chapter will be used as inputs to the BlockSim

simulator in order to conduct the simulation studies in Chapters 6 and 7 of this thesis

in a realistic setting. That is, we can draw results that are more representative of the

simulated Ethereum blockchain.

5.1 Introduction

There is a wealth of data available for the analysis of Ethereum smart contracts and

in its own right it is interesting to understand the distribution of smart contracts
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with respect to variables such as Used Gas, Gas Limit and Gas Price (see Section

2.4 for an explanation of these Ethereum specific concepts). Such distributions are

also useful, and even necessary, as input to discrete-event simulations of blockchain

systems, for instance using simulators such as our BlockSim simulator [8, 9]. Discrete-

event simulation is useful to configure, analyse and optimise systems, and realistic

distributions make the results more representative of real blockchain systems.

In this chapter we conduct an extensive analysis of Ethereum data in order to

estimate distributions of smart contracts with respect to the following parameters:

Gas Limit, Used Gas, Gas Price and CPU Time. The basis of our analysis is a

set of over 300,000 smart contract transactions available from the live Ethereum

system through the Etherscan web site. This provides us with data needed to fit

smart contract distributions with respect to Gas Limit and Gas Price. To determine

the Used Gas for a smart contract, we execute the smart contract on a local EVM

(Ethereum Virtual Machine) to tally up the Used Gas needed for each smart contract.

This also provides the CPU Time required for the execution of the smart contract.

The chapter describes the data collection and measurement effort in detail in Section

5.2.

We use Gaussian Mixture Models (GMM) to fit distributions with respect to

Gas Price and Used Gas since the logarithmic representation of the data resembles

a normal distribution (see Section 5.4.1). We estimate the distribution of smart

contracts with respect to Gas Limit using a Uniform distribution. A correlation

analysis, reported in Section 5.3, demonstrates that CPU Time needed to execute

a smart contract is strongly correlated with the Used Gas, as one would expect.

Therefore, instead of independently fitting a distribution of smart contracts with

respect to CPU Time, we use regression methods to predict the distribution for CPU

Time given Used Gas. We compare a number of regression ensemble methods, namely

Random Forest, Gradient Boosting Machine and Adaptive Boosting. We discuss the

performance of these regression methods in detail in Section 5.5.1 and conclude that

Random Forest is both fast and accurate.

The structure of this chapter is as follow. Section 5.2 describes our approach to

data collection in addition to our experimental set-up to obtain smart contract at-

tributes (Gas Limit, Used Gas, Gas Price and CPU Time). In Section 5.3, we analyse

the correlation between the attributes of smart contracts. Section 5.4 introduces the

overall approach to obtaining distributions of smart contracts’ attributes. Section 5.5

evaluates the accuracy and performance of the approach proposed in the previous

section. Finally, we conclude the chapter in Section 5.6.
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5.2 Data Collection

In this section, we describe our approach to data collection. Section 5.2.1 explains

the collection of Ethereum data, and Section 5.2.2 explains our experimental set-up

required to obtain smart contract information about Used Gas and CPU Time.

5.2.1 Ethereum Transactions Data Collection

Smart contracts are both created and executed through a transaction. In this section,

we propose a data collection approach to collect the details (e.g., Gas Limit, Gas

Price, and input data) of contract transactions (both contract-creation and contract-

execution). For contract-execution transactions, our approach also collects the details

of the transaction that created the contract. We make use of the APIs provided by

Etherscan1 to retrieve the details of transactions, and our tool is implemented as a

Python script2.

In our approach, we retrieve the details of transactions by going through blocks.

We distinguish between the different types of transactions from their details by check-

ing the recipient address of the transaction. A transaction that is sent to an empty

account (no recipient address) indicates a contract-creation one. To distinguish be-

tween contract-execution and transfer transactions, we inspect if the recipient address

has associated code or not. Unlike contract-execution transactions, transfer transac-

tions are sent to externally owned accounts who have no associated code.

For contract-execution transactions, we also need to retrieve the details of the

transaction that created the contract in the first place. To do so, we obtain the

details of the first transaction submitted to the recipient address (the contract ac-

count). The first transaction submitted is usually the one that created the contract.

After retrieving the first transaction, we inspect its details. We decide to neglect

any contract-execution transaction that we cannot retrieve or for which we cannot

confirm the transaction that created the contract. In other words, for our work to be

practicable we only consider contract-execution transactions for which we can retrieve

the creation transaction automatically.

In summary, our script determines the type of transactions and distinguishes be-

tween contract-creation and contract-execution, and thus, we can use different ways

to measure each of them. The focus of this chapter is on contract transactions, so

we do not include financial transactions into the final set of transactions prepared for

1https://etherscan.io/
2https://github.com/maher243/SmartContractsDataCollection
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Set up blockchain

Set up accounts

Set up state

Construct transaction

Send transaction

Execute transaction

Record results

{
    "Setup": {
        "Accounts": {
                "0f57.....": {
                    "code": ..,
                    "nonce": ..,
                    "balance": ..,
                    "storage": {..}
                }
                .........
        },

        "blockchain": {
            "currentTimestamp": ..,
            "currentGasLimit": ..,
            "previousHash": ..,
            "currentCoinbase": ..,
            "currentDifficulty": ..,
            "currentNumber": ..
        },
    }
}

JSON File Preparation Phase Measurement Phase

Figure 5.1: Design of the measurement system.

the measurement study. We manage to download the details of about 700 thousand

smart contract transactions (for 300 thousand of these we also derived Used Gas and

CPU Time, as described in the following section). We select transactions randomly

from the set to avoid sample bias.

5.2.2 CPU Time Measurement

To determine the Used Gas and CPU Time for contract transactions, we propose a

measurement system that tallies Used Gas and is capable of measuring the CPU usage

for smart contracts transactions. Our system isolates the execution of transactions

from other computation and overhead (e.g., transaction validation and the Proof of

Work overhead)3.

Our measurement system consists of two phases, namely the Preparation Phase

and Measurement Phase, as depicted in Figure 5.1.

In the Preparation Phase, we set up the blockchain, necessary accounts and

blockchain global state. For the blockchain we set the block difficulty, the block gas

3https://github.com/maher243/SmartContractsMeasurment
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limit and the block coinbase and create the genesis block as part of configuring the

blockchain. We initialise a set of Ethereum accounts, where each account has a unique

address and a balance, code and storage. To establish Ethereum’s global state we

map the account addresses to their associated states.

In the Measurement Phase, we construct, send, execute transactions and record

results. We construct a transaction by setting its details or fields using the details for

transactions we collected from Ethereum. Then, we use the accounts we initialised

in the preparation phase to submit and execute the constructed transaction. The

execution of a contract-based transaction requires three tasks. First, checking the

validity of the transaction (e.g., the signature is valid, the submitter has enough

balance and etc). Second, running the input data of the transaction (bytecode)

on the EVM. Finally, updating the state upon successful execution. We place a

timer before and after the execution of the transaction on the EVM. To measure

a contract-execution transaction, we first need to submit and execute a contract-

creation transaction. Once the transaction has been successfully executed, we record

its Used Gas and the CPU Time it takes to run on the EVM. In our implementation,

we use a JSON file to store and read the accounts information as well as the blockchain

information. Results are stored in a separate CSV/Excel file.

The experiments we report on in this chapter were obtained from a single machine

using the Python PyEthApp[42] client. The machine is a desktop PC with a 3.40GHz

Intel i7 CPU with 8GB RAM running on Windows 10. Each transaction is executed

200 times and the average time is then calculated. The 95% confidence interval is

always within 2% of the average value.

Among the 700k transactions, we managed to measure 324k transactions (3915

contract-creation and 320109 contract-execution transactions). The reasons we could

not measure many transactions are as follows. Some contracts call or rely on other

contracts to execute the transaction. In such cases, we cannot measure the transaction

unless we first measure the callee contracts. In addition, some transactions depend on

other transactions. For instance, to measure a transaction that cancels an order, we

need first to initiate a transaction to place the order that we wish to cancel. Finally,

some contracts require the sender of the transactions to be the owner of the contract.

In that case, the only way to measure these transactions is to modify the source code

of the contract.

Before we analyse correlation and obtain distributions, we show some results from

our experiments. Figure 5.2 shows the amount of Used Gas versus the CPU Time in

seconds for contract-execution (left) and contract-creation (right) transactions.
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Figure 5.2: CPU Time (in seconds) versus Used Gas (in million) for (a) Contract-
execution and (b) Contract-creation.

From Figure 5.2, we clearly see a relationship between Used Gas and CPU Time

as the more Used Gas the transaction uses the more CPU Time is required. However,

this relationship is not strongly linear as there are some outliers in both sets and the

fact that we have two distinct groups for contract-execution transactions. Also, we

note that contract-creation transactions are about nine times more profitable than

contract-execution transactions in terms of the amount of Used Gas collected per

CPU usage, as depicted in Figure 5.3. That is, the profit gained from executing

contract transactions varies depending on which transactions have been selected.

In this thesis we only focus on collecting Ethereum smart contracts and obtaining

their CPU time in order to fit the appropriate distributions. Thus, we have not

analysed why the Used Gas for contract transactions is not linearly proportional to

the CPU time required. The main factor that may contribute to this misalignment is

because the gas cost for individual opcodes is not properly set, as reported in various

studies such as [1, 2, 29, 83, 101]. We intend to analyse the reasons behind this

misalignment in future work.

5.3 Correlation Analysis

If parameters are strongly correlated, it would not be appropriate to feed a simulation

with independent distributions. Therefore, in this section, we study the correlation

between the four different attributes Gas Limit, Used Gas, Gas Price and CPU Time.
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Figure 5.3: Box plot for the amount of gas units per CPU usage for both contract-
creation and contract-execution transactions.

We conduct the correlation analysis using both Pearson and Spearman methods.

The Pearson method assesses the linear relationship between the variables. In a linear

relationship, the variables tend to change together at a constant rate. The Spearman

method assesses the monotonic relationship between the variables. The variables in a

monotonic relationship tend to change together, but not necessarily at the same rate.

We refer to the Pearson correlation value as rp and the Spearman correlation value

as rs.

In both Pearson and Spearman, correlation is expressed as a value r,−1 ≤ r ≤
1, with values of r closer to 1 indicating stronger positive correlation, closer to -1

stronger negative correlation and close to 0 no or almost none correlation between

the attributes. Table 5.1 shows the correlation value using the Pearson and the

Spearman methods for each pair of attributes, for both creation and execution sets.

For the creation set, we see a strong correlation (rp= 0.89 and rs= 0.99) between

Used Gas and the CPU Time. The correlation between the two attributes is stronger

if we assume the existence of a non-linear relationship since the Spearman test shows

a yet higher correlation value.

The Gas Limit has a medium correlation with the Used Gas (rp= 0.60 and rs=

0.64). A likely cause of this correlation is that the Gas Limit value for a transaction

in Ethereum is always greater than or equal to the Used Gas. The Gas Limit can
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Creation Set Execution Set
Attributes rp rs rp rs
Gas Limit and Used Gas 0.60 0.64 0.22 -0.18
Gas Limit and CPU Time 0.49 0.62 0.17 -0.05
Used Gas and CPU Time 0.89 0.99 0.66 0.83
Gas Price and Gas Limit 0.05 0.06 -0.04 -0.10
Gas Price and Used Gas -0.05 0.01 -0.04 0.03
Gas Price and CPU Time -0.07 0.00 -0.02 0.01

Table 5.1: The Pearson (rp) and the Spearman (rs) correlation between the attributes,
for both the creation and the execution sets.

take any value between the Used Gas and the block limit. The Gas Limit shows a

weak to medium correlation with the CPU Time (rp= 0.49 and rs= 0.62). The Gas

Price shows no correlation with any other attribute.

For the execution set, we see a strong correlation (rp= 0.66 and rs= 0.83) between

the Used gas and the CPU Time. The correlation is stronger if we assume a non-

linear relationship between the two attributes, as the Spearman test shows a better

correlation value. The Gas Limit has a weak correlation with both the Used Gas

(rp= 0.22 and rs= -0.18) and the CPU Time (rp= 0.17 and rs= -0.05). The Gas

Price shows no correlation with any other attribute.

Based on the above correlation analysis, we summarise the correlation between

the attributes as follows.

1. The CPU Time attribute has a strong positive non-linear correlation with Used

Gas.

2. Gas Limit has a weak to a medium positive correlation with Used Gas.

3. Gas Limit has a weak to a medium positive correlation with the CPU Time.

This correlation is slightly stronger for the creation set compared to the execu-

tion set.

4. Gas Price is independent of all other attributes, and, indeed, it does not have

any relationship with different attributes.

As a consequence, when distributions are used as input to a simulation, particularly

CPU Time and Used Gas cannot be considered to be independent. Therefore, we use

regression to predict a value for the CPU Time given a Used Gas value.
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5.4 Approach to Obtaining Distributions

In this section we introduce our overall approach to obtaining distributions of smart

contracts with respect to the parameters Gas Limit, Gas Price, Used Gas and CPU

Time:

1. Fit a probabilistic distribution to the Used Gas and the Gas Price values. We

use Gaussian Mixture Models, as we explain in Section 5.4.1.

2. Apply non-linear regression models to predict the CPU Time value from the

given Used Gas value, see Section 5.4.2.

3. Fit a Uniform distribution to the Gas Limit values, where the minimum value

is the Used Gas and the maximum value is the block limit. See Section 5.4.3.

In Section 5.4.4 we provide the overall approach as an algorithmic procedure as

well as implementation details pertaining to the parameterisation of the fitting and

regression models.

5.4.1 Gaussian Mixture Models for Gas Price and Used Gas

When considering the log of the Used Gas and Gas Price data, its shape resembles a

normal distribution or a mixture of normal distributions, as depicted in Figure 5.4.

We therefore decided to select Gaussian Mixture Models (GMMs) to fit the log of the

data since none of the simple structured distributions fit the data particularly well.

Mixture models are flexible enough to model complex probability distribution

functions, where simple probabilistic distributions fail to represent the characteristics

of the data accurately [107]. Mixture models can fit and represent any arbitrary and

heterogeneous data set with a reasonable accuracy [54, 68, 79]. The most widely used

and well-studied class of such mixture models is Gaussian Mixture Models (GMMs)

[107]. In GMMs, instead of fitting one Gaussian distribution to the data, several

Gaussian distributions are used to represent and capture the data set accurately.

A finite mixture model p(x|Θ) is defined as the weighted sum of K component

densities,

p(x|Θ) =
K∑
i=1

φi p(x|θi), (5.1)

where, x=[xi,..., xn]D is a sample of n observations of D-dimensional space, p(x|θi) is

the i-th component, θi is the parameter of the i-th component, φi is the weight of the

i-th component. The weight of a component must be non-negative (φi ≥ 0) and the
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Figure 5.4: Histograms for Log Gas Price (top) and Log Used Gas (bottom) for both:
(a) contract-execution and (b) contract-creation.

sum of the weights of all components in a mixture model must be 1 (
∑K

i=1 φi = 1).

For GMMs, the i-th component p(x|θi) is represented as a normal distribution, which

has the parameters θi = {µi, σ
2
i }. µi and σ2

i denote the mean and the variance of the

component, respectively. It is worth noting that in the case of a multi-dimensional

space, the parameters of the i-th component are θi = {µi,Σi}, where µi is the mean

vector and Σi is the covariance matrix.

For any application of mixture models, two issues need to be resolved, namely, the

number of component densities (K) and the parameters of each component (θi) [107].

Selecting a large number of components may lead to a better fit to the data. However,

this can result in a very complex model, and there is a risk of being over-fitted [54].

On the contrary, a model with a small number of components is less complex and

more robust against over-fitting. However, it may not fit the data accurately and

adequately [54].
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In the literature, there are different methods proposed to select the right number

of components. We apply some of the most common and widely adopted methods

Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC), in

particular, BIC [89]. Both BIC and AIC introduce a penalty term in an attempt to

resolve the over-fitting issue.

There also exist several algorithms to estimate the parameters for mixture models.

We use one of the most common algorithms which is the Expectation-Maximisation

(EM) algorithm [37]. The EM algorithm is an iterative method that finds and es-

timates the parameters of a mixture model using maximum likelihood estimation

techniques.

In Section 5.4.4 we explain specific implementation choices for our application of

GMM to obtain smart contract distributions with respect to Gas Price and Used Gas.

5.4.2 Regression Models for CPU Time

Because of the strong correlation between Used Gas and CPU Time, it might be

possible to derive some mathematical equations to directly estimate the CPU Time

value for a transaction from the given Used Gas value. As mentioned in Section 5.2.2,

however, the relationship between Used Gas and CPU Time is not strongly linear and

there are some outliers that exist in both sets. That is, it is not straightforward to

come up with some equations to derive the value for the CPU Time given the Used

Gas value. Instead, we use regression to obtain a value for the CPU Time, given a

Used Gas value. Regression predicts a continuous output variable from given input

variables by analysing the relationship between the variables. Ensemble learning

methods use a combination of models, instead of a single model, to improve the

accuracy of the predictions. The final prediction result is the average result provided

by all the models. There are different ensemble methods such as Random Forest (RF)

[23], Gradient Boosting Machine (GBM) [48] and Adaptive Boosting (AdaBoost) [47].

In all the three ensemble methods, multiple trees are constructed to determine

the final prediction results. RF differs from the two other methods in that it uses

a bootstrapping aggregation (bagging) technique to train all the trees at the same

time (independently from each other) using a random subset drawn with replacement

from the original data set. Both GBM and AdaBoost rely on a boosting technique

to train one tree at a time using a random subset drawn without replacement. Each

additional tree is trained to correct prediction errors made by the previous tree. This

is to improve the accuracy of individual observations.
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To predict CPU Time values from the given the Used Gas values, we explore

the following ensemble regression models: RF, GBM and AdaBoost. We extensively

evaluate these models in terms of accuracy and performance. The evaluation results

are discussed in Section 5.5.1. Based on the results, we decided to select RF for

predicting the CPU time values.

In Section 5.4.4 we explain specific implementation choices for our application of

RF regression to obtain distributions of smart contracts with respect to CPU Time.

5.4.3 Uniform Distribution for Gas Limit

Figure 5.5: Used Gas (in million) versus Gas Limit (in million) for (a) execution set
(left) and (b) creation set (right).

For the Gas Limit, it is appropriate to fit a uniform distribution, where the mini-

mum value is the Used Gas and the maximum value is the block limit. This is because

the Gas Limit is specified by the submitter of the transaction and it can take any

value up to the block limit. Figure 5.5 shows the relationship between Gas Limit and

Used Gas for both creation and execution sets, and it is clear that the Gas Limit

value can take any value between Used Gas and block limit. Thus, the Gas Limit

values will be drawn from a uniform distribution as follows:

Gas Limit ∼ Unif(Used Gas, block limit) (5.2)

The current block limit is about 8 ∗ 106 unit of gas.
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5.4.4 Fitting, Regression and Sampling Procedure

Algorithm 1 The fitting and sampling procedure

1: procedure Fit a GMM to log(Gas Price)
2: Determine K . Use AIC/BIC
3: Estimate

∑K
i=1 µi,

∑K
i=1 σ

2
i ,
∑K

i=1 φi . Use EM algorithm

4: P= GMM(K,
∑K

i=1 µi,
∑K

i=1 σ
2
i ,
∑K

i=1 φi).fit(log(Gas Price))

5: procedure Fit a GMM to log(Used Gas)
6: Determine K . Use AIC/BIC
7: Estimate

∑K
i=1 µi,

∑K
i=1 σ

2
i ,
∑K

i=1 φi . Use EM algorithm

8: U= GMM(K,
∑K

i=1 µi,
∑K

i=1 σ
2
i ,
∑K

i=1 φi).fit(log(Used Gas))

9: procedure Fit a RF to(Used Gas, CPU Time)
10: Determine and optimise d, s . Use Grid Search CV
11: T= RF(d, s).fit(Used Gas, CPU Time)

12: procedure Sample attributes(SP , SU , SL, ST )
13: SP= exp(P.sample(n)) . Sample Gas Price
14: SU = exp(U.sample(n)) . Sample Used Gas
15: SL = Unif(low = su, high = 8 ∗ 106, size = n) . Sample Gas Limit
16: ST = T.predict(SU) . Sample CPU Time

The procedure for fitting distributions to the attributes as well as sampling from

such distributions are summarised as Algorithm 1. From top to bottom, it considers

the application of GMM to Gas Price and Used Gas, the application of regression for

the CPU Time, given values for Used Gas, and finally the sampling procedure.

To fit a GMM to the log Used Gas and to the log Gas Price (line 1-8), we have to

determine and estimate parameters such as the number of Gaussian components (K)

as well as the mean (µi), the variance (σ2
i ) and the weight (φi) of each component.

To determine K, we use the AIC and BIC criteria. We tested a number of K values

ranging from 1 to 100 and then selected the best K according to these criteria. To

determine the parameters for each component, we use the EM algorithm. After

estimating these parameters, we fit the GMM to the data.

To fit an RF model to learn and predict the CPU Time from a given Used Gas

value (line 9-11), we have to determine and optimise the model’s parameters, which

are the number of trees (d) and the number of splits in each tree (s). To fine-tune

or optimise the model parameters, we use a grid search technique with K-fold cross

validation (CV), where K = 10 as suggested by [60]. We search a number of values

ranging from 10 to 500 and a number of values ranging from 1 to 300 to optimise d

and s, respectively. Then, we select the best-tuned values for these parameters to fit

the RF model.
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After fitting distributions to the attributes, we sample (draw) n data points for

Gas Price and Used Gas from the fitted GMMs, where n ≥ 1. Then, we pass the

Used Gas data points to the Uniform distribution and RF model to sample the corre-

sponding Gas Limit and the CPU Time values, respectively. The sampling procedure

is captured in lines 12-16.

The algorithmic procedure is implemented in Python using a machine learning

library called Scikit-learn by utilising different packages such as GaussianMixture,

RandomForestRegressor, GridSearchCV and KFold.

We implemented a Python class named DistFit to fit distributions for the at-

tributes. This class consists of two methods creationFit and executionFit to fit

distributions to the attributes in the creation and the execution sets, respectively.

In addition, we implemented a sampling method that takes as input the number of

data points (transactions) to be simulated and returns the values of the simulated

attributes as a tuple.

5.5 Evaluation of Fitting and Regression Models

In this Section, we evaluate both the accuracy and performance of the fitting and

regression models.

5.5.1 Evaluation of Regression Models

As we explained in Section 5.4, we consider three different ensemble regression models

(RF, GBM and AdaBoost) to predict the CPU Time value for a transaction from a

given Used Gas value. To assess the accuracy of these models, we utilised several score

metrics, namely the mean absolute error (MAE), root mean squared error (RMSE)

and the coefficient of determination (R2). Both MAE and RMSE give an indication

about the prediction error in the same unit as the data set, and thus, the smaller the

error, the better the accuracy [98]. R2 is a goodness of fit score, and it usually takes

a value between 0 and 1, where 1 is the best possible accuracy score [28].

We measure the accuracy of these models for training (seen) and testing (unseen)

data to ensure the generality and the robustness of the model against over-fitting.

To measure the accuracy of a model with training data, we train the model with the

whole data set and then we test it against the same data set. We refer to the accuracy

results of the model with seen data as the training results.

Of course, a critical issue about relying only on the training results is that although

the model may perform well on the training data, the model might not necessarily
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Regression Training Results Testing Results
Model MAE RMSE R2 MAE RMSE R2

Creation Set
RF 34.29 355.12 0.96 78.47 900.20 0.82
GBM 34.30 87.17 1 76.87 941.36 0.76
AdaBoost 171.73 335.89 0.96 202.80 1092.5 0.65

Execution Set
RF 25.73 175.80 0.99 29.64 437.29 0.93
GBM 88.32 180.14 0.99 90.90 459.53 0.92
AdaBoost 315.77 1020.72 0.60 316.53 1056.58 0.52

Table 5.2: Accuracy results of the three regression models (RF, GBM and AdaBoost),
for both creation and execution sets. MAE and RMSE in microseconds.

perform the same when dealing with testing or new data sets. For this reason, we

also measure the accuracy of the model with testing data by applying K-fold cross

validation, where K = 10 as suggested by [60]. Specifically, we split the data randomly

into 10 folds with equal sizes. Then, we train the model with 9 folds and use the last

fold for testing. That means each data point is used 9 times for training and 1 time

for testing. We refer to the performance of the model with testing or new data as the

testing results.

Table 5.2 shows the accuracy training/testing results for the three regression mod-

els for both creation and execution sets. To get an insight into the prediction errors

reported in Table 5.2, we note that the average CPU Time for transactions is 1548

microseconds in the creation set and 1203 microseconds in the execution set. From

Table 5.2, we can see that RF and GBM models outperform the AdaBoost model for

both sets (recall that R2 should be close to 1, while MAE and RMSE should be small).

The RF model shows a better prediction accuracy for both training and testing data

in the execution set, compared to the GBM model. The average absolute error of

the predicted CPU Time value is 30 microseconds for testing data in RF, while it is

91 microseconds in GBM. The GBM model outperforms the RF model in terms of

training data in the creation set, but not with the testing data. We note that the

accuracy results for the testing data is more important than that of the training data

since it shows how the model performs with new data sets that have not been trained

on.

To conclude, the RF and GBM models predict the CPU Time value from any

given used gas value with a small MAE prediction error, with testing or new data.

The average error is always within 8% of the true CPU Time value. In comparison

to GBM, the RF model achieves better accuracy for the execution set.

To assess the performance of these regression models, we evaluate both the training
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Regression Model Training Time Prediction Time

Creation Set
RF 0.015 ± 0.0002 0.003 ± 4.71e-05
GBM 0.063 ± 0.0004 0.007 ± 3.96e-05
AdaBoost 0.092 ± 0.0003 0.769 ± 0.001

Execution Set
RF 2.846 ± 0.005 0.319 ± 0.0002
GBM 12.277 ± 0.272 0.522 ± 0.0006
AdaBoost 11.047 ± 0.018 0.790 ± 0.004

Table 5.3: Performance in seconds of the three regression methods, for training and
prediction, for both creation and execution sets.

and prediction time for both creation and execution sets. Training time is the time

it takes to build and train each model, while prediction time is the time it takes to

predict the CPU Time values from the given Used Gas values. We note that the

creation set has 3915 data points and the execution set has around 320 thousand

data points. Thus, the training and prediction time for the execution set is expected

to be higher than that for the creation set.

Table 5.3 shows the performance results for the three regression models for both

creation and execution sets. We measured the training and the prediction time for

each model 100 times, and then we reported both the average results and the 95%

confidence interval. The training and the prediction time for the execution set are

higher than that of the creation set, for all three regression models. This is because

for the execution set the model needs to take into account a far higher number of

data points compared to the creation set.

From Table 5.3, we draw the following conclusions. First, the training time for the

RF model is considerably less than that of other models, for both sets. For example,

it takes on average about 3 seconds to train the RF model on the execution set,

while it takes on average of about 11 and 12 seconds to train AdaBoost and GBM

models on the same set. Similarly, the RF model outperforms other models in terms

of prediction time. The training time for GBM and AdaBoost is quite similar, while

the prediction time for GBM is much faster than AdaBoost. In conclusion, the RF

model achieves the best performance among the three models for both training and

prediction time.

Based on the accuracy and performance results discussed above, the RF model

outperforms the other two models. The GBM model achieves accuracy results com-

parable to the RF model, but its performance is less strong. The AdaBoost model

achieves poor accuracy results compared to other models, and its performance in
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Figure 5.6: KDE for original and predicted CPU Time for both execution set (left)
and creation set (right).

terms of the prediction time is also poor. Therefore, we selected the RF model to

predict the CPU Time values for both sets.

To further evaluate the accuracy of the RF models, we compare the Kernel Density

Estimation (KDE) of the original CPU Time data with that for the predicted data.

KDE is a non-parametric smoothing approach for data sets. The predicted CPU

Time data is obtained from RF model by passing the Used Gas data. Instead of

using the original Used Gas data that we trained RF model on, we sample new data

for the Used Gas from GMMs (see Section 5.5.2).

Figure 5.6 shows the KDE for the original and the predicted CPU Time for both

the creation and the execution sets. The KDE for the predicted data looks very

similar to that of the original one, and that indicates the accuracy of the RF models.

5.5.2 Evaluation of GMMs

To assess the accuracy of the fitted GMMs, we compare the KDE for the original

Used Gas and Gas Price data with the data sampled from the fitted distributions.

We sample (generate) n data points for both Used gas and Gas Price from the fitted

GMMs, where n equals the data points in the original set. Figure 5.7 and 5.8 show

the KDE for the original and the sampled Gas Price and Used Gas data for both the

creation and the execution sets. The KDE of the sampled data is very similar to that
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Figure 5.7: KDE for original and fitted Used Gas for both execution set (left) and
creation set (right).

Data Fitting Time Sampling Time

Creation Set
Used Gas 0.365 ± 0.012 0.006 ± 0.0002
Gas Price 0.385 ± 0.015 0.005 ± 7.84e-05

Execution Set
Used Gas 25.236 ± 1.517 0.019 ± 0.0004
Gas Price 76.821 ± 3.759 0.022 ± 0.0003

Table 5.4: Performance of GMM fitting and sampling, in seconds, for both creation
and execution sets.

of the original data for both Gas Price and Used Gas. This gives an indication of the

accuracy of the GMMs.

To assess the performance of GMM, we evaluate the fitting and sampling time.

Table 5.4 shows the performance results for the GMMs for both creation and execution

sets. We measured the fitting and the sampling time for each model 100 times, and

then we reported both the average results and the 95% confidence interval.

From Table 5.4, we draw the following conclusions. First, the fitting and the

sampling time for Used Gas and Gas Price in the execution set are higher than that

for the creation set. As for the regression models in Section 5.5.1, this is due to

the higher number of data points in the execution set. Secondly, the fitting time for

GMMs is considerably higher than the sampling time for Gas Price and Used Gas,

again for both sets. The fitting time depends on the number of different components

96



0 1000 2000
Gas Price (in Gwei)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

Pr
ob

ab
ilit

y 
de

ns
ity

(a) Execution set

Original KDE
Sampled KDE

0 50 100
Gas Price (in Gwei)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
(b) Creation set

Original KDE
Sampled KDE

Figure 5.8: KDE for original and fitted Gas Price for both execution set (left) and
creation set (right).

(distributions) used to fit the data. Increasing the number of components improves

the model accuracy, but at the cost of performance. For example, we use 26 more

components to fit the Gas Price compared to the Used Gas and it indeed takes about

77 seconds to fit the model for the Gas Price, while it only takes 25 seconds to fit the

model to the Used Gas.

The sampling time is low compared to the fitting time, for both Used Gas and

Gas Price. The sampling time is also not impacted by the number of components.

For instance, both Gas Price and Used Gas in the execution set have almost the same

sampling time, although the number of components is different.

5.6 Conclusion

Based on publicly available data about Ethereum smart contract transactions, we

derived smart contract distributions with respect to their Used Gas, Gas Limit, Gas

Price and CPU Time. For Used Gas and CPU Time we augmented the data with

that obtained from executing smart contracts on our own test bed. In total, we used

complete data of about 324 thousand smart contract transactions.

The resulting distributions are of interest in their own right, but predominantly

served as input for discrete event simulations of blockchain architectures. We will
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use these distributions as inputs to the BlockSim simulator to conduct the simulation

studies in the following chapters realistically.

We used Gaussian Mixture Models for the independent distributions with respect

to Gas Price and Used Gas (and a Uniform distribution for Gas Limit). Because of

strong correlation between Used Gas and CPU Time, we used ensemble regression

models for the CPU Time distribution.
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Chapter 6

Data-Driven Model-Based Analysis
of the Ethereum Verifier’s
Dilemma

Summary

In proof-of-work based blockchains such as Ethereum, verification of blocks is an

integral part of establishing consensus across nodes. However, in Ethereum, miners

do not receive a reward for verifying. This implies that miners face the Verifier’s

Dilemma: use resources for verification, or use them for the more lucrative mining of

new blocks?.

In this chapter, we provide an extensive analysis of the Verifier’s Dilemma, us-

ing a data-driven model-based approach that combines closed-form expressions and

discrete-event simulation. To establish a data-driven study, we feed our simulations

with distributions for real Ethereum smart contract transactions, see Chapter 5. Our

analysis of the Verifier’s Dilemma shows that, indeed, it is often economically rational

not to verify, in particular for miners with less hashing power. We consider two ap-

proaches to mitigate the implications of the Verifier’s Dilemma, namely parallelisation

and active insertion of invalid blocks, both will be shown to be effective.

6.1 Introduction

Blockchains depend on miners to operate the chain correctly and to jointly guarantee

consistency and correctness of the blockchain data and the executed transactions.

In public, permissionless, blockchains collaboration of miners is based on incentive

mechanisms that provide miners with a certain amount of cryptocurrency for their
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efforts. It is clearly important to award fees in such a manner that correct and

desired behaviour is encouraged. Well-balanced incentives, together with the miner’s

interest to keep the system running well, should guarantee the correct behaviour of

the blockchain.

Within Ethereum, there is one interesting aspect of the consensus algorithm that

is not incentivised directly, namely the verification of transactions and blocks. This

leads to an interesting dilemma: should miners verify transactions within blocks if

they do not receive a specific fee for it? If all blocks are valid, the verification would

not have been necessary and the time spent on verifying could have been used to mine

new blocks (which are rewarded by a fee). This Verifier’s Dilemma is well recognised,

e.g., [71, 94], but has not been systematically analysed. In this chapter we conduct

that systematic analysis of the Verifier’s Dilemma in Ethereum.

The analysis is involved, and combines a number of analysis techniques to establish

the fees miners would collect under different decisions about participation in the

verification. We pursue a model-based approach so that we are able to analyse a

range of possible scenarios. It is not practical or even possible to obtain insights about

the Verifier’s Dilemma solely based on observations of the actual Ethereum system.

A model-based approach, correctly intertwined with data-driven parameterisation, is

the only reasonable approach.

We combine the following techniques. At the core of the analysis is the Ethereum

model of BlockSim simulator that we introduced in Chapter 4. We extended it with

the functionality necessary for the analysis of the Verifier’s Dilemma under various

scenarios. Secondly, to run realistic simulation studies, we parameterise the simula-

tor with distributions for Ethereum smart contract transactions that we derived in

Chapter 5. As a third and final element in our study, we obtain a number of closed-

form results for base scenarios. In these base scenarios no invalid blocks are present,

and under that assumption we are able to derive expressions for the rewards miners

receive if they do or do not verify blocks.

The conclusion of the above analysis is that under certain conditions it pays off for

miners not to verify. Obviously, not verifying blocks puts the correct functioning of

the blockchain at risk, since the consensus approach in Ethereum assumes verification

to take place. To mitigate this risk, we consider two approaches. First, we consider

parallel verification (as proposed in [38]), to decrease the time it takes to verify blocks

and therefore decrease the time verifying miners would have to spend before they can

mine a new block. Secondly, we consider the idea of injecting invalid blocks on

purpose, to penalise miners that do not verify. The reasoning behind that approach
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was identified in [94]. By injecting invalid blocks, a non-verifying miner would more

often pass on chains with invalid blocks that will be rejected by other miners, which

in turn would imply that the non-verifying miner does not receive the block award.

To summarise, the results of our analysis are as follows. It is clear that there

are many scenarios in which miners would benefit from not verifying blocks. This

is especially true if (1) all or almost all blocks are in fact valid, and (2) if the block

limit (the number of transactions in a block) is large. In addition, the impact of

verification on the expected reward is larger for miners with less hashing power, who

may therefore be tempted more to omit verification. For Ethereum, currently the

impact is small but the Verifier’s Dilemma will become more important when the

block limit increases, as is anticipated [71]. As mitigation approaches, both parallel

verification and injecting invalid blocks improve the situation. That is, both make it

less lucrative for miners to avoid verifying.

This chapter is structured as follows. Section 6.2 introduces the problem space and

providing an explanation of the Verifier’s Dilemma. Section 6.2.2 provides the closed-

form expressions for the gain in rewards both verifying and non-verifying members

could get for the base model, i.e., the case that all transactions are valid. Section

6.3 introduces the two mitigation approaches, namely parallelisation and injecting

invalid transactions. Section 6.4 describes how we used the BlockSim simulator and

enhanced it to suit our study. The results of the simulation study are provided in

Section 6.5, for various scenarios as well as for the two mitigation strategies and the

insights gained and conclusions drawn are further discussed in Section 6.6. Finally,

we conclude the chapter in Section 6.7.

6.2 Verifier’s Dilemma in Ethereum

We first present and discuss in Section 6.2.1 the Verifier’s Dilemma in general terms

and then we derive in Section 6.2.2 closed-form expression for the rewards received

by non-verifying miners. These closed-form expressions hold for scenarios in which

all blocks are valid, which we will call the base model.

6.2.1 Problem Description

Luu et al. [71] pointed out that verification of blocks consumes computation resources

and time, and thus, delays miners in the race of mining the next block. Not only it

delays miners, but also it does not provide incentives (a free task) to miners. This
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is especially true in smart contract based blockchains since verification of smart con-

tracts involves repeating the execution of the smart contract to check the outputs. [71]

also points out that these concerns exacerbate when the block size or limit increases

since that increases the number of transactions to verify.

As a result, miners might consider skipping the verification process. Skipping

verification allows the miners to turn to the profitable mining of new blocks. The risk

of skipping verification is that the miner adds its newly mined blocks to a blockchain

that contains invalid blocks. If other miners verify these blocks they will disregard

these and the new block and the non-verifying miner will not receive a reward for its

new block. The miner needs to decide the following: should I support the blockchain

honestly and verify all blocks, possibly at the cost of personal rewards, or shall I skip

verifying blocks and instead spend the time on the lucrative mining of new blocks,

thus increasing personal rewards? [71] calls this the Verifier’s Dilemma.

The Verifier’s Dilemma has received some attention, we refer to the discussion on

related work in Section 2.8. However, there has not been a rigorous analysis of the

dilemma using probabilistic modelling techniques such as in this chapter.

6.2.2 Ethereum Base Model

In Ethereum, miners are expected to verify received blocks by executing their trans-

actions in sequence. In this section, we use closed-form solutions to investigate the

Verifier’s Dilemma in Ethereum and its impact on the fee received by miners. We

consider current and likely future configurations of Ethereum in terms of block limit

and block interval time.

There are important model assumptions that will hold throughout the chapter.

The consequent limitations of these assumptions will be discussed in Section 6.6. We

assume that miners can be either solo miners or mining pools, and not miners joining a

mining pool. Miners, in particular small miners, within a pool might not be impacted

by the Verifier’s Dilemma as if they are solo miners. This is because they do not have

to do all the verification process by themselves alone. We also assume that miners

always follow one static behaviour by either committing or skipping the verification

process. That is, our model does not capture dynamic behaviours where miners can

change their behaviours, for instance, as a response to the behaviour of other miners.

We also assume that miners fill each block by executing as many transactions as they

can in order to maximise their revenue. In the real system, miners can generate full,

non-full, or even empty blocks, but this is not critical for the analysis of the Verifier’s

Dilemma. If needed this can be added to the model. All transactions in the network
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are assumed to be contract-based transactions, thus ignoring the additional financial

transactions that may take place. Such financial transactions take less time to verify

and therefore do not impact the Verifier’s Dilemma as much, but these can of course

easily be added. We also ignore the time it takes to check the hash outcome of the

PoW, since that check is almost immediate. Finally, we do not explicitly consider

block propagation delay between nodes since this does not affect the issue of the

Verifier’s Dilemma.

In this section, we derive closed-form results for scenarios in which all miners are

honest when executing transactions. That is, all transactions included in a block are

valid. The closed-form solutions are to estimate the fraction of fee received by both

verifying and non-verifying miners as a function of block limit, block interval time

and fraction of hash power. The block limit dictates the number of transactions that

can fit in the block. That is, the larger the block limit the more transactions can

be included, and thus the more time required to verify the block and its embedded

transactions. Of course, the block verification time T v depends on the speed of the

machine used. The block interval time T b dictates how often blocks are generated in

the network. The fraction of hash power α for a miner dictates the fraction of blocks

and rewards a miner can get.

It is worth noting that a miner only verifies blocks that are generated by other

miners, not the ones it generates itself. Thus, the average block verification time

decreases with the increase of hash power α of the miner, since then there are less

blocks generated by others. For instance, a miner with α = 0.30 of total network

hash power is expected to verify 70% of the total generated blocks, which means that

it spends on average (1− α) T v for verification per block.

Assume that αv is the fraction of hash power of all verifying miners. Then the

extra time δ verifying miners spend per block to perform the sequential verification

process is:

δ = (1− αv) T v (6.1)

The fraction of the expected rewards Rv for verifying miners is then reduced from

αv to

Rv =
T b

T b + δ
αv (6.2)

That is, the amount of reward that verifying miners would lose by committing the

verification process is l = αv −Rv = δ/(T b + δ)αv, which non-verifying miners would

collect as extra rewards. Assume that αs = 1−αv is the fraction of hash power of all
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non-verifying miners. Then, the fraction of the expected rewards Rs for non-verifying

miners is increased from αs to

Rs = αs + l (6.3)

Results from this closed-form solution will be validated and discussed in Sections

6.4.2 and 6.5, but to illustrate the implications, assume 10 miners, each controlling α

= 0.1 of the total network hash power. Among those miners, assume there is only one

miner who does not verify. Assume T v = 3.18 and T b = 12 seconds. We calculate the

slow down of performing the verification as δ = 0.318. The fraction of fee received

by the nine verifying miners is reduced from 0.9 to 0.877. Thus, the non-verifying

miner would gain 0.023 more rewards (increase from 0.1 to 0.123, ≈ 23% more than

its invested α).

6.3 Mitigation Solutions to the Verifier’s Dilemma

We discuss two mitigation solutions for the Verifier’s Dilemma, namely parallel veri-

fication of transactions and intentional production of invalid blocks.

6.3.1 Mitigation 1: Parallel Verification

Parallel verification was proposed by [38] to speed up the verification process, thereby

minimising the lost time to miners. By speeding up the time it takes to verify transac-

tions, a miner would lose less time. Transactions that do not have read/write conflicts

with other transactions in the same block can be verified in parallel. The remaining

conflicting transactions must still be verified in sequence.

We propose parallel verification as a solution to mitigate the implications of the

Verifier’s Dilemma. To implement parallel verification in a real system, the Ethereum

Virtual Machine needs to support multi-threading. Miners then attach an execution

schedule to their proposed blocks. The schedule details which transactions can be pro-

cessed in parallel (no read/write conflicts) and which must be executed in sequence.

We assume miners provide a correct schedule and are well motivated to include the

schedule in their blocks.

To obtain a closed-form expression for the received reward, two parameters are

added to the parameters of the Ethereum base model (Section 6.2.2), namely the con-

flict rate and the number of processors. Note that we still assume that all blocks are

valid, as in the base model. The conflict rate c is the percentage of conflicting trans-

actions in a block. For example, c= 0.4 means that 40% of the block’s transactions

104



are in conflict with other transactions in the same block. We note that according to

[38], the number of conflicting transactions in real blockchains is not very high since

there are thousands of different contracts. The number of concurrent processors p is

the number of machines the miner has available in parallel. With p processors and

conflict rate c, the slow down of performing the parallel verification process (δp) is:

δp = (c+
1− c
p

) δ (6.4)

The fraction of rewards for verifying and non-verifying miners is based on the

same equations as in Section 6.2.2.

Apply the parallel verification to the previous example, with c = 0.4 and p = 4.

Then, the slow down of performing the parallel verification is δp = 0.1749. The

fraction of fee received by the nine verifying miners is reduced from 0.9 to 0.887.

Thus, the non-verifying miner would gain 0.013 more rewards (≈ 13% more than its

invested α). In other words, the fraction of rewards obtained by the non-verifying

miner increases from 0.1 to 0.113.

6.3.2 Mitigation 2: Intentional Invalid Blocks

In this section, we introduce a solution whereby Ethereum could allocate a special

node for intentionally generating invalid blocks as a way to punish non-verifying

miners. This special node is assigned a particular hash power (e.g., α = 0.04) of the

total network hash power. The hash power of the special node simply represents the

fraction of the invalid blocks to be purposely generated in the network. We assume

this node to verify all blocks generated by other miners, and thus, it always works

on the valid branch of the blockchain. The rationale behind this approach is that

miners benefit from not verifying because all (or almost all) blocks are valid anyway.

However, if incoming blocks could be invalid, the non-verifying miner could end up

working on new blocks on top of the invalid ones. Consequently, the non-verifying

miner would lose the rewards for those new blocks since other verifying miners will

reject the blocks because they were built on top of invalid ones. Since this scenario

includes non-valid blocks, we have no closed-form insights for this scenario. However,

we will extensively study the result of injecting invalid blocks in the simulation results

in Section 6.5.
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6.4 Simulator and Validation of Closed-Form Ex-

pressions

At the core of our model-based approach to analysing the Verifier’s Dilemma is the

publicly available BlockSim simulator, which we extended to be able to study the

Verifier’s Dilemma. In this Section we report in Section 6.4.1 on how we extended

the Ethereum model of BlockSim and in Section 6.4.2 on the use of the simulator to

validate the closed-form solutions derived in Section 6.2 and 6.3.

6.4.1 BlockSim Simulator Extension

To support the analysis of both the Ethereum base model and the solutions of parallel

verification and intentional production of invalid blocks, we introduced the following

modifications:

The attributes of transactions: We extended the Transaction module to in-

clude several attributes required by the model, which are Gas Limit, Used Gas, Gas

Price, and CPU Time. Thus, each transaction created in our simulations has these

attributes.

The distribution fitting class (DistFit): We defined a new class named Dis-

tFit to fit probability distributions to the transaction attributes. This follows the

procedure introduced in Chapter 5. We execute the distribution fitting once. During

the simulation, when creating new transactions, we sample random values for these

attributes from the fitted distributions.

The number of processors (p): This dictates the number of processors a miner

could use to verify transactions in parallel. To add this feature to the simulator, we

extended the Node module by adding a new attribute named processors.

The rate of conflicting transactions (c): This dictates the fraction of trans-

actions that depend on other transactions in the system. To add this feature to the

simulator, we introduced a new input parameter called conflict rate. We also extended

the Transaction module by adding a new attribute named dependency for transac-

tions, to distinguish between conflicting and non-conflicting transactions. Each trans-

action created will be assigned to a random value (True or False) for the dependency

attribute based on the conflict rate parameter.

Parallel verification of transactions: To add this feature to the simulator,

we modified the execution of the block receiving event as follows. Upon receiving a

new block, we distribute non-conflicting transactions between the different processors,

after which the conflicting ones will be executed sequentially on a single processor.
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Hence, we count the time required to verify transactions in parallel by checking the

CPU time attribute for transactions. Prior to starting the verification, the time for

all processors is set to 0 (all processors are idle). During the verification process, we

keep recording the time when each processor finishes the transaction at hand and

pass a new transaction to start afterward.

The intentional production of invalid blocks: To add this feature to the

simulator, we first extended the Block module by adding a new attribute named

validity for blocks, to distinguish between valid and invalid blocks. Each block created

will be assigned to a value (True or False) for the validity attribute. Then, we set

one of the miners to be the network node that always generates invalid blocks. The

hash power of this node can be changed to reflect the fraction of invalid blocks to be

generated in the network.

6.4.2 Validation of Closed-Form Expressions

To validate the closed-form solutions from Sections 6.2.2 and 6.3.1, we need first to

estimate the average time it takes to verify a block and its associated transactions.

The verification time depends on which transactions are included in the block. In

particular, different transactions take different time as well as blocks may have a very

different number of transactions depending on the gas used by these transactions.

Hence, we utilised the simulator to simulate different configurations of block limits

(the limit is expressed in million (M) units of gas). For each configuration, we sim-

ulated 10000 blocks and the statistical results related to the block verification time

are given in Table 6.1. The table gives the minimum (min), the maximum (max), the

mean, the median, and the standard deviation (SD) for the block verification time,

all in seconds.

Block verification time (T v)
Block limit min max mean median SD

8M 0.03 0.35 0.23 0.24 0.04
16M 0.16 0.65 0.46 0.47 0.06
32M 0.51 1.09 0.87 0.87 0.06
64M 1.06 2.08 1.56 1.56 0.19
128M 2.5 3.75 3.18 3.19 0.19

Table 6.1: The statistical results for the block verification time (T v) in seconds for
different block limits.

To validate the closed-form expressions (Equations (6.1) to (6.4)) for both the

Ethereum base model and the parallel verification solution, we compare the simulation
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results with that of the equations. We configured the simulator as follows. We set

the block interval time to be 12.42 seconds, which is the minimum observed interval

between blocks according to Etherscan1. The attributes (Gas Limit, Used Gas, Gas

Price, and CPU Time) for transactions are generated from distributions, as discussed

in Chapter 5. We set the number of miners to 10, where each miner controls 10% of

the total network hash power. Nine miners follow the protocol honestly by executing

the verification process upon receiving a newly generated block, apart from one miner

who skips the verification process. For the parallel verification, we set the number

of processors to 4 and the conflict rate of transactions to 0.4. Then, we record the

fraction of fee each miner receives at the end of the simulation.

We run simulation experiments with different configurations of block limits (rang-

ing from 8M to 128M). For each configuration, we simulated the equivalent of 3 days

of running time of the Ethereum network and repeated this to have 100 independent

runs. Figure 6.1 shows the validation of both the Ethereum base model and the par-

allel verification by presenting the results from the closed-form solutions as well as

from the simulation. The vertical axes show the percentage of the received fee the

non-verifying miner receives. One sees from Figure 6.1 that the non-verifying miner

always wins, since in this scenario all blocks are valid, so the miner is never penalised

for not verifying. The gain can be a full percentage point or more as the block limit

increases. Various additional results will be discussed in Section 6.5.

We note that the simulation results slightly differ from that of the closed-form for

the larger block limits. The closed-form expressions slightly overestimate the gain

miners get from not validating blocks, but the differences are small. Several elements

are modelled in more detail in the simulation than in the closed-form expressions, and

these may contribute to randomness that causes a difference between closed-form and

simulation. We believe that it is fair to conclude from Figure 6.1 that the closed-form

expressions are close to the simulation results.

6.5 Results

In this section, we present the main findings from our analysis of the Verifier’s

Dilemma, under the Ethereum base model as well as under the proposed mitiga-

tions of parallel verification and intentional production of invalid blocks. Our main

metric of interest is the fee gained or lost by non-verifying miners in various scenarios.

We summarise the main findings that follow from our discussion upfront:

1https://etherscan.io/chart/blocktime
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Figure 6.1: Results from the closed-form expressions and the simulation in the fraction
of fee received by a non-verifying miner who has 10% of hashing power, for (a) the
Ethereum base model and (b) the parallel verification solution.

• The smaller the hash power a miner controls, the more advantage the miner

would gain from skipping the verification process.

• In today’s Ethereum, miners gain relatively little from skipping the verification

(less than 2% of the invested hash power). This is because the block limit in

Ethereum is currently small.

• In the future, the Ethereum block limit is expected to increase. In that case,

skipping verification becomes considerably more lucrative. This is under the

assumption that most miners honestly verify and invalid transactions are rare.

• Parallel verification reduces the benefits miners would get from not verifying

blocks. This is especially true if the conflict rate is small and the number of

parallel processors is large.

• The mitigation approach to purposely introducing invalid blocks in the network

can significantly reduce the benefits of non-verifying miners. This is especially

true if the rate of invalid blocks is large or the block limit is small. In this case,

miners may be better off to verify.
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Figure 6.2: The percentage of fee increase for a non-verifying miner with the Ethereum
base model: (a) different block limits and (b) different block interval time.

6.5.1 Ethereum Base Model

Figure 6.2 shows the percentage of fee increase a non-verifying miner would gain, for

different block limits and different block interval times. The four curves in each of the

two plots of Figure 6.2 indicate different fractions of the total hash power owned by

the non-verifying miner. In Figure 6.2(a), we consider a block interval time of 12.42

seconds. In Figure 6.2(b), we consider a block limit of 8M, which is the block limit

currently used in Ethereum.

From Figure 6.2 we conclude that for the current implementation of Ethereum

(block limit = 8M and block interval time is between 12 and 15 seconds), the per-

centage of fee increase is small (less than 2% of the invested hash power). Yet, this

percentage increases significantly with the block limit or the reduction of the block

interval time. For instance, a non-verifying miner with α = 0.05 would increase its

gain from 1.7% for small blocks to a remarkable 22% when the block limit is pushed

from 8M to 128M. In addition, we can see that the smaller the hash power a miner

controls the larger the increase the miner gets when not verifying blocks. For exam-

ple, a miner with α = 0.05 can increase its fraction of fee to 24% when the block limit

is 128M, while it only increases its fraction to about 14% if α = 0.40. This is because

a miner has to verify all the blocks that were mined by others, which amounts to

(1 − α) of the network blocks, as we discussed in Section 6.2.2. In other words, in

Ethereum, small miners spend more time on verification than large miners because
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Figure 6.3: The percentage of fee increase for a non-verifying miner with parallel
verification: (a) different block limits, (b) different block interval time, (c) different
number of processors and (d) different conflict rates.

they receive more new blocks from other miners. Therefore, small miners have more

to gain from stopping with verifying.

6.5.2 Parallel Verification

Parallel verification of transactions is a solution that we proposed in Section 6.3.1

to minimise the advantage non-verifying miners would gain by reducing the overall

time required for the verification process. Figure 6.3 shows the percentage of fee

increase that a non-verifying miner would gain, for different block limits, different

block interval times, different number of processors and different conflict rates for

transactions. As in Section 6.5.1, the different curves represent different hash powers
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Figure 6.4: The percentage of fee increase for a non-verifying miner with the inten-
tional production of invalid blocks: (a) different block limits and (b) different rates
of invalid blocks.

for the non-verifying miner.

From Figure 6.3 we see that although the percentage of fee increase rises with

the block limit or the reduction of the block interval time, the advantage is reduced

almost to half that of the Ethereum base model (see Figure 6.2). This is for modest

parallelisation, with only 4 processors and a conflict rate of 0.4. In addition, from (c)

and (d) we see that the advantage decreases further with the increase of the number

of processors or with a small rate of conflicting transactions. For instance, assume an

8M block limit and 0.4 conflict rate. Then the increase a non-verifying miner with

α= 0.10 would get goes down from about 1.2% to 0.7%, when increasing the number

of processors from 2 to 16. To summarise, the advantage a miner would gain by

skipping the verification is minimised when shifting from the Ethereum base model

to the parallel verification solution. The degree of reduction depends on the conflict

rate and the number of concurrent processors.

6.5.3 Production of Invalid Blocks

The idea behind intentionally introducing invalid blocks (Section 6.3.2) is to punish

non-verifying miners. To assess if this approach can be useful, we modify the BlockSim

simulation classes to account for the possibility of having invalid blocks. We run

simulation experiments with different configurations of block limits and different rates
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of invalid blocks. The rate of invalid blocks refers to the hash power of the special node

that only generates invalid blocks. For each configuration, we simulated 1 day of the

Ethereum network and reported the average results obtained from 100 independent

runs. For these experiments, we considered a block interval time of 12.42 seconds.

Figure 6.4 shows the percentage of fee increase that a non-verifying miner would

gain given some fraction of invalid blocks in the network, for different block limits and

different rates of invalid blocks. The different curves represent different hash powers

for the non-verifying miner. In Figure 6.4(a), we consider a block interval time of

12.42 seconds and an invalid blocks rate of 0.04. In Figure 6.4(b), we consider a block

interval time of 12.42 seconds and a block limit of 8M.

From Figure 6.4 we see that the fee increase for non-verifying miners is significantly

reduced when inserting invalid blocks in the network. For instance, the fee increase

a non-verifying miner with α= 0.10 would get decreased from about 22% to 13.6%,

when the rate of invalid blocks is 0.04 and the block limit is 128M.

Even more interesting, non-verifying miners might get less reward than one would

expect based on their hash power. That is, we establish a situation in which verifying

is preferred over not verifying. This is especially pronounced when the block limit is

small or when the rate of invalid blocks is large. For example, a non-verifying miner

with α= 0.10 would lose about 5% fee when the block limit is 8M and the rate of

invalid blocks is 0.04. That means that conducting the verification process in that

case is more profitable than skipping it.

We also note that miners with large hash powers (e.g., α ≥ 0.20) are affected more

when not verifying blocks, compared to miners with small hash powers. For example,

a non-verifying miner with α = 0.05 can lose about 3% of its expected fraction of fee

when the block limit is 8M and the rate of invalid blocks is 0.04, while it would lose

about 24% of its expected fraction of fee if α = 0.40.

To summarise, purposely introducing invalid blocks into the blockchain could dis-

courage miners from not verifying received blocks. The degree of deterrence depends

on the rate of invalid blocks in addition to other blockchain configurations such as

block limit.

6.6 Discussion

In this section, we discuss the impact of the assumptions made and the internal

validity threats to our evaluation of the Verifier’s Dilemma. Also, we present the

limitations and challenges of applying the proposed mitigation solutions.
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6.6.1 Assumptions

We made several assumptions in Sections 6.2 and 6.3 to evaluate the Verifier’s Dilemma.

Here, we discuss the assumptions that may impact the analysis results, which are as

follows.

Miners and mining pools. We assume that miners can be either solo miners

or mining pools, but we do not distinguish miners within a pool. Miners, especially

those with less hashing powers, often join a mining pool to get more stable rewards

than if they act as solo miners [66]. Miners within a pool collaborate with each other

to complete the verification process. That means miners within a pool tend to spend

less time on verification individually. However, our analysis of the Verifier’s Dilemma

is for a pool as a whole and not for the individual miners that constitute a pool.

Static mining behaviours. We studied the Verifier’s Dilemma assuming that

miners always follow one behaviour (commit or skip the verification process). That

is, we have not considered the case where miners switch between the two behaviours

and the case where miners dynamically change their behaviours according to the

behaviour of other miners. It is possible to find miners who verify some blocks and

skip others in order to reduce the risk of accepting invalid blocks (e.g., verifying a

block in every ten blocks). It is also possible for miners to adjust their behaviours

based on the behaviour of other miners. Instead of only considering a static analysis,

it would be nice to study the Verifier’s Dilemma as a game theoretic analysis that

considers dynamic mining strategies as future work to obtain rich analysis results.

Different types of transactions. We studied the Verifier’s Dilemma if transac-

tions are contract-related. However, there are many financial transactions in Ethereum

and since these can be verified very quickly the advantage of not verifying blocks may

not be as large as in Section 6.5. In that sense, our analysis should be considered a

worst case analysis. We believe the main insights derived from our analysis remain

valid, even if exact values and results may be different.

Full blocks of transactions. We assume that blocks are filled with transactions,

but in the real system it is possible to have non-full or even empty blocks. In that case

verifying blocks takes less effort. However, by design the block reward is decreasing

over time and is expected to be removed eventually [53], only leaving transaction fees

as an incentive. Without block rewards, miners will be encouraged to fill up their

blocks with transactions to maximise their rewards.
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6.6.2 Threats to Validity

We discuss two threats to the internal validity of our evaluation, namely, the selection

of contract transactions and the instrumentation used.

Selection of contract transactions. This can impact the analysis results,

and thus, it acts as a potential threat to correctness. To mitigate this threat, we

base our evaluation on a large data set that constitutes over 300 thousand contract

transactions. Also, we select transactions from the Ethereum network randomly to

avoid sample bias. We believe in doing so we establish the most reliable representation

of the real system.

Instrumentation. The CPU time to verify each transaction is based on the mea-

surements obtained from a particular machine. Since we base parameter values in

this chapter on experiments on a selected machine, the outcomes may not generalise

for other architectures. In reality, miners will use different, typically more powerful

machines and the specifications of machines are expected to further improve in the

future. Also with more powerful machines and/or increased PoW difficulty, the Veri-

fier’s Dilemma will be a problem when the block limit reaches a particular threshold

or if more complex contracts are permitted. Of course, the analysis approach in this

chapter can be applied using data from different machine, and run simulations with

different parameter values.

6.6.3 Limitations of the Proposed Solutions

Although we show the effectiveness of the two proposed solutions, there are some

limitations and challenges to the adoption of these solutions.

Parallel verification of transactions. Parallel verification discourages skipping

verification. However, the implementation of parallel verification on a real blockchain

system is challenging [6, 101] and requires multi-threading support in the EVM.

Complications arise because a miner needs to attach a table to its block in order for

the verifier to know which transactions can be run in parallel. Producing the table is

challenging since it requires knowing conflicting and non-conflicting transactions [38].

Moreover, one trusts the miners to produce the correct table.

Intentional insertion of invalid blocks. Inserting invalid block not only make

skipping the verification a less beneficial strategy, it often makes verifying the pre-

ferred strategy. Although this solution can be easily adopted in Ethereum, its intro-

duction would likely face some challenges. Producing invalid blocks in the network

decreases the overall performance of the system and honestly verifying miners as they

115



are expected to verify those invalid blocks and then reject them. In practice, one

would expect Ethereum to be very hesitant adding such overhead to the system.

6.7 Conclusion

This chapter provides an extensive analysis of the Verifier’s Dilemma, following a data-

driven, model-based approach that combines closed-form expressions with discrete-

event simulation and utilises machine learning techniques to parameterise and con-

figure probability distributions used by the simulator. This is the first extensive

analysis of the Verifier’s Dilemma we are aware of. The insights we gained in this

chapter can be of assistance in anticipating the implications of the Verifier’s Dilemma

under future developments, e.g., when the block limit increases in Ethereum, or when

Proof of Work is replaced. Of particular importance for the fairness of blockchain

systems is that our analysis shows that small miners are more impacted by the ver-

ification demands, and will be more tempted not to verify. Our results also indicate

that, counter-intuitively, problems associated with the Verifier’s Dilemma exacerbate

if there are less invalid transactions. This leads to the insight that future blockchain

systems may operate better if designers or operators assure that some transactions

are invalid. We suggest that similar analysis as reported in this chapter should be

carried out for future system designs and operational developments, to anticipate the

consequences of the Verifier’s Dilemma.
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Chapter 7

Data-Driven Analysis of the
Impact of Profit Uncertainty in
Ethereum

Summary

In Ethereum, miners face uncertainty about the fee and the cost of individual trans-

actions. That is, they are not able to make a proper decision of which transactions

to select to maximise their revenue. In addition to the uncertainty miners face, the

Ethereum incentive model is not incentive-compatible as the award miners would get

from executing transactions is not proportional to the computational costs. That

means some transactions are more profitable than others. With the lack of incentive

compatibility the implications of the uncertainty problem can even exacerbate.

We provide an extensive analysis of the impact of the uncertainty problem on the

received profit, using data-driven and simulation approaches. We design a model to

simulate different transaction selection strategies for scenarios with and without un-

certainty. We show that the uncertainty miners perceive when selecting transactions

has a significant impact on the per block profit. Also, we show such uncertainty could

negatively impact the PoW profit (the fraction of blocks a miner would generate) in

future implementations when the block limit becomes relatively large.

7.1 Introduction

In Ethereum, users send transactions to the network to transfer cryptocurrencies,

deploy a new smart contract or to invoke an existing one. Miners execute these

transactions in blocks, and in turn, they collect their associated fees. Each block has
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a limit on how many transactions it can have, and thus, miners usually prioritise

transactions by selecting the most profitable ones [74].

However, several studies have shown that the Ethereum incentive model is not

proper as the award miners would get from executing transactions is not proportional

to their computational costs. That means some transactions are more profitable than

others. In addition to the imperfect incentive model, miners do not know the exact

income and cost of transactions beforehand. The only information available to the

miners before selecting a transaction is the maximum income they can get from it.

Since miners face uncertainty about the income and the cost of transactions, they are

not able to make informed decisions of which transactions to select and execute to

maximise their profits.

In this chapter, we conduct an extensive analysis of the uncertainty problem min-

ers perceive in Ethereum when selecting transactions and its impact on the received

profits. To accomplish this analysis, we combine the following techniques. First,

we design a simulation model to simulate the decisions of miners when selecting

transactions and design different transaction selection strategies for scenarios where

miners are both certain and uncertain about the income and the cost of transac-

tions. Secondly, we extend the Ethereum model of the BlockSim simulator with the

functionality necessary to support the implementation of the model and the selection

strategies. Thirdly, to obtain realistic simulation results, we feed the simulator with

the distributions for real transactions (see Chapter 5).

We run simulation experiments to compare the profits (block profit and PoW

profit) earned by uncertain miners with that of certain miners to draw conclusions

about the implications of the uncertainty problem. With ‘certain’ miners we mean

hypothetical miners that would have available all information about costs and rewards

of all transactions. The main conclusions of our evaluation are as follows. First, the

uncertainty miners face has a significant impact on the received block profit, especially

if the pool size (the number of pending transactions in the network to select from)

is large enough. With the lack of such uncertainty, miners can get four times as

much block profit compared to the case where uncertainty is present. Furthermore,

although there is no significant impact on the PoW profit in today’s Ethereum, the

effect will become serious in future settings when the block limit goes beyond 32

million units of gas.

The structure of this chapter is as follows. Section 7.2 introduces the uncertainty

problem in Ethereum and proposes a model to investigate the problem. In Section 7.3,

we establish different selection strategies for transactions to study the implications of
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the uncertainty problem. Section 7.4 describes how we used the BlockSim simulator

and enhanced it to suit our simulation study. Sections 7.5 and 7.6 present the main

findings and discuss the insights gained and conclusions drawn. We conclude the

chapter in Section 7.7.

7.2 Uncertainty Issue in Ethereum

We first present and discuss in Section 7.2.1 the uncertainty issue in general terms

and then we propose in Section 7.2.2 a model for studying this issue by simulating

the selection decisions for miners.

7.2.1 Problem Description

As stated in Section 2.4, Ethereum uses the Gas mechanism to calculate the fee

for smart contract transactions. Each opcode of a smart contract uses a predefined

amount of gas, as specified in [49]. The EVM tallies the amount of Used Gas and

charges the submitter of the transaction based on the Used Gas. To avoid non-

terminating transactions the submitter specifies a Gas Limit, and the EVM stops

processing if that limit is reached (in which case Used Gas = Gas Limit). The

submitter also specifies a Gas Price (expressed in Ether) and the miner then charges

the submitter the following transaction fee: Used Gas × Gas Price. The more opcodes

the transaction requires, the more CPU effort from the miner, but also the higher the

received reward.

The profit a miner can get from executing a transaction takes into account the

income (transaction fee) and the cost (CPU and storage costs) of the transaction [74].

The fee offered by the originator of the transaction is considered as an income from

a miner’s perspective. The computational work required by the miner to execute

a transaction is the cost of the transaction. In blockchain systems, each miner can

select any subset of transactions from their pool to execute and include in their block.

Since each block has a limit of how many transactions it can have, miners usually

priorities transactions by selecting the most profitable ones [74].

In [3], the authors showed that the Ethereum incentive model is not incentive-

compatible as the rewards a miner would receive from executing transactions related

to smart contracts are not proportional to the computational costs. For instance,

some transactions consume extensive CPU Time, while they offer a small fee and

vice versa. That means the profit miners would gain varies depending on which

transactions miners would execute and include in their blocks. In addition to the
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lack of incentive compatibility, the only information provided to the miner about the

profit of executing a transaction is the maximum income (Gas Limit and Gas Price).

Miners do not know the exact income (Used Gas) they can obtain from a transaction

before executing it. Not only this but also miners do not know in advance the cost

of executing the transaction. This makes miners uncertain about the profit they can

gain from executing a transaction. Thus, they are not able to make informed decisions

about which transactions to include in their blocks to maximise their block profits.

Furthermore, in PoW-based systems like Ethereum, miners compete against each

other to maximise their PoW mining profits by generating more valid blocks. With

such uncertainty, miners might select complex transactions that take a long time to

run, delaying them from starting the PoW task earlier. As a result, miners generate

fewer blocks (gain less profit) than expected.

7.2.2 The Model

In Ethereum, miners face uncertainty during the selection of transactions. In this

section, we propose a model that simulates the decisions that miners take to select and

include transactions in their block in order to analyse the impact of the uncertainty

issue.

There are important model assumptions that will hold throughout the chapter.

The consequent limitations of these assumptions will be discussed in Section 7.6.

We assume that miners can be either solo miners or mining pools, and not miners

within a mining pool. Individual miners within a pool might be less impacted by the

uncertainty problem as they collaborate with each other. We consider an optimisation

analysis where we evaluate the profit gained by miners given the transaction selection

strategy. That is, we do not consider the behaviour of all miners in the network and

the potential impact of it on the system. For instance, what impact can be on the

system if all or some miners follow one or multiple strategies. We also assume that

miners fill each block by executing as many transactions as they could to maximise

their block profit. However, in a real blockchain system, miners can generate full,

non-full or even empty blocks. We assume full blocks of transactions to study the

uncertainty issue under worst case scenarios, but of course, one can introduce non-full

blocks to the model if required. We also assume that all transactions in the network

are contract-based transactions, thus ignoring financial transactions that may take

place. Financial transactions take less time to execute (less complex) compared to

contract transactions, but they can be added to the model if needed. The intention

here is to study the uncertainty issue under the worst case scenarios. We neglect the
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block propagation delay by assuming that blocks are received immediately by other

nodes, as it does not affect the uncertainty issue. Finally, as a first approximation,

we assume that the CPU Time required to execute a transaction is representative of

its cost.

The proposed model is divided into three main parts, namely, model inputs, model

contents and model outputs.

Model inputs: The model takes the miner’s pool as an input. The pool has several

pending transactions that are waiting to be executed. Each transaction has the fol-

lowing attributes: Gas Limit, Used Gas, Gas Price and CPU Time (see Section 2.4 for

details about gas-related attributes). In Chapter 5, we explained the data collection

exercise for gathering these attributes. We collected real Ethereum transactions data

and then fitted the appropriate distributions. To study the uncertainty problem more

realistically, we will feed the model with the fitted distributions.

Model Contents: The model contents describe all steps and formulas needed to cal-

culate the model outputs given the model inputs. To model the decisions that miners

take to select and execute transactions in a block, we first sort pending transactions

and then select a subset of these transactions to execute in the block.

• Sorting transactions: The first step is to sort all pending transactions in the

miner’s pool based on their profits. In Section 7.3, we will design five different

sorting strategies.

• Selecting and executing transactions: After sorting all pending transactions, the

miner selects the first transaction and then checks if it can fit in the block or

not. If it does not fit, the miner can select the next one. Otherwise, the miner

executes it and then check if the block still has space for other transactions or

not. If the block does have space, the miner can select the next transaction.

The miner repeats this process until the block is full (no more transactions can

fit in the block).

After executing every transaction, the income and the cost of the transaction are

calculated and recorded. The income is the transaction fee (Gas Price X Used Gas),

while the cost is assumed to be the CPU Time required to execute the transaction.
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The block income is calculated as the sum of the income gained from all transac-

tions in the block

Block Income(in Ether) =
n∑

i=1

F i (7.1)

where F i is the income (fee) of the ith transaction and n is the total number of

transactions executed in the block.

The block cost is calculated as the sum of the CPU Time required to execute all

transactions in the block

Block Cost(in second) =
n∑

i=1

T i (7.2)

where T i is the CPU Time consumed by the ith transaction and n is the total number

of transactions executed in the block.

The block profit that miners can get from executing all transactions in the block

is then calculated as the ratio between the block income and the block cost:

Block Profit =
Block Income

Block Cost
(7.3)

To model PoW profit, the model should support the essential elements of a PoW-

based blockchain such as block generation and block reception. After filling a block

with transactions, the miner will engage in solving the PoW task to form the block.

Upon a successful task, the block will be propagated to other nodes to have it con-

firmed and included in the blockchain ledger. The details about these elements can

be found in Chapter 4.

The PoW profit that miner i can get is simplified as the fraction of blocks that

have been successfully included in the blockchain ledger, which is as follows:

PoW Profit =
Bi

Btotal

(7.4)

Where Bi is the fraction of blocks contributed by miner i and Btotal is the sum of

the blocks contributed by all miners.

Model outputs: The model has two main outputs, namely, the block profit and the

PoW profit. These outputs have been explained in the model contents.
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Group Strategy Information Selection Criteria Income Cost
Baseline S1: Gas Price Gas Limit Gas Price NO NO

S2: Maximum income Gas Price Gas Limit * Gas Price NO NO
Optimised S3: Exact income Used Gas Used Gas * Gas Price YES NO

Gas Price
S4: Exact cost Gas Limit NO YES

Gas Price
Gas Price

CPU Time
CPU Time

S5: Exact profit Used Gas YES YES

Gas Price
Gas Price

CPU Time
Used Gas

CPU Time

Table 7.1: The strategies of the baseline and the optimised groups.

7.3 Transactions Selection Strategies

To investigate the impact of the uncertainty issue, we will compare the profit gained

for scenarios where miners are uncertain about the income and the cost of transactions

with the case when certainty is present. This can be accomplished by evaluating

different strategies for selecting and including transactions in the block to be created.

In this section, we establish five different strategies to simulate the decisions that

miners can take to select a subset of transactions to execute and include in their

forthcoming block. We classify these strategies into two groups, namely, baseline

and optimised. The baseline group is to simulate the decisions of miners under the

Ethereum condition, where miners are uncertain about the income and the cost of

transactions. The only information available to the miners in the baseline group

is the maximum income (Gas Limit and Gas Price) they can get from executing

transactions. The optimised group is to simulate the decisions of miners with the

absence of such uncertainty. Table 7.1 illustrates the strategies in both the baseline

and the optimised groups. The “Information” column specifies which transactions’

attributes are available to the miners before selecting transactions. The “Selection

Criteria” column states the decisions that miners take to sort and select transactions.

The last two columns show the differences between the five strategies in terms of

income and cost certainty. For example, miners are certain about both the income

and the cost of transactions in the exact profit strategy.
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7.3.1 Baseline Group

In the baseline scenarios, there are two possible strategies that miners can use to

select transactions from their pools, which are as follows.

• Gas Price strategy: In this strategy miners sort transactions based on the Gas

Price attribute. That is, miners select transactions that offer the highest Gas

Price values.

• Maximum income strategy: In this strategy miners sort transactions based

on the maximum income they might get from executing transactions. That

is, miners select transactions that offer the maximum income, which can be

calculated as follows:

Maximum income = Gas Limit ∗Gas Price (7.5)

7.3.2 Optimised Group

In the optimised scenarios, we assume miners know the income and/or the cost of

transactions, thus we evaluate three optimised strategies for selecting transactions,

which are as follows.

• Exact income strategy: This strategy is to see whether the certainty about the

income of executing transactions would help miners increase their profit. In

this strategy, we assume miners know the exact income (fee) they can get from

transactions in advance, but not the cost. That is, miners select transactions

that offer the highest exact income, which can be calculated as follows:

Exact income = transaction fee = Used Gas ∗Gas Price (7.6)

• Exact cost strategy: This strategy is to see whether the certainty about the

cost of executing transactions would help miners increase their profit. In this

strategy, we assume miners know the exact cost (CPU Time) of transactions in

advance, while they are still uncertain about the exact income of transactions.

That is, miners select transactions that offer the highest expected income per

cost unit, which can be calculated as follows:

Exact cost =
Gas Price

CPU Time
(7.7)
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• Exact profit strategy: This strategy is to see whether the certainty about both

the income and the cost of executing transactions would help miners increase

their profit. In this strategy, we assume miners know both the exact income and

the exact cost of transactions in advance. That is, miners select transactions

that offer the highest exact profit, which can be calculated as follows:

Exact profit =
Exact income

CPU Time
(7.8)

7.4 BlockSim Simulator Extension

This section reports on how we extend the BlockSim simulator to support the analysis

of the uncertainty issue miners face in Ethereum, described in Section 7.2.1. In

particular, we extend and modify the Ethereum model of the BlockSim simulator to

incorporate the model we propose in Section 7.2.2 as well as the selection strategies

we design in Section 7.3. The modifications we made to the BlockSim simulator are

as follows:

• We extend the Transaction module to include the CPU Time as an attribute

in addition to other attributes such as Gas Limit, Used Gas and Gas Price.

• We define a new class named DistFit to fit probability distributions to the

transactions’ attributes (see Chapter 5 for more detail). We fit these distri-

butions before starting the simulator. Then, when we want to create new

transactions, we can sample random values for these attributes from the fit-

ted distributions.

• We extend the Node module to include different sorting strategies that miners

can use to sort pending transactions in their pool. We explain the details about

these strategies in Section 7.3. The current implementation of the BlockSim

simulator assigns the default sorting strategy to all miners. In the default

strategy, transactions are sorted based on the value of the Gas Price attribute.

• We slightly modify the Consensus module of BlockSim to support the time it

takes miners to execute transactions in a block. The current implementation

omits this detail by only accounting for the PoW time, as explained in Chapter

4. Therefore, we modify the time it takes a miner to create a block to account

for the PoW time plus the time required to execute all the transactions in the

block.
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• We extend the Statistics module to calculate and print the model outputs,

which are the block income, the block cost, the block profit and the PoW profit.

For convenience, we print the results in an Excel file.

7.5 Results

In this section, we present the main findings from our analysis of the uncertainty

miners face in Ethereum when selecting transactions. Our main metrics of interest

are the block profit and the PoW profit gained by miners in various scenarios, with

and without the presence of such uncertainty. The block profit dictates the ratio

between the income and the cost of transactions included in a block. The PoW profit

dictates the fraction of blocks accepted in the blockchain ledger, which reflects the

mining rewards.

We consider current and likely future configurations of Ethereum in terms of block

limit and pool size. The block limit dictates the number of transactions in a block,

and it is expected to increase in the future to scale the system. The pool size refers

to the number of pending transactions in the network that miners can select from.

The pool size fluctuates over time but might increase significantly in the future when

Ethereum becomes more popular than now. Etherscan shows the pool size of the

Ethereum network at every minute for the last four days. By looking at the data

in Figure 7.1 (5-9 July 2019), we can see the pool size varies between about 4,000

and just over 25,000 transactions. That is, it would be valuable to consider different

configurations for both block limit and pool size to study the uncertainty issue.

For all experiments in this chapter, we set the number of miners as 5, where each

miner controls 20% of the total network hash power. We assign each miner to one

of the five transaction selection strategies that we described in Section 7.3. In this

section, for the ease of reference, we will refer to the five strategies as S1, S2, S3, S4

and S5. S1 and S2 represent miners in the baselines strategies, while S3-S5 represent

miners in the optimised strategies.

We summarise the main observations that follow from our discussion upfront:

• Impact of uncertainty on the block profit. The uncertainty miners per-

ceive in Ethereum about the income and the cost of transactions has a sig-

nificant impact on the block profit miners can get (up to a factor 4). This is

especially true when the pool size increases as it means that more transactions

are available for miners to select from.
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Figure 7.1: Pool size of Ethereum’s transactions.

• Impact of uncertainty on the PoW profit. The uncertainty miners face

has only an impact on the PoW profit when the block limit increases beyond 32

million units of gas. That is, there is no impact on the current implementation

of Ethereum as the block limit is small (8 million units of gas).

7.5.1 Impact of Uncertainty on the Block Profit

In this section, we present and discuss the impact of the uncertainty on the block profit

gained by miners. Table 7.2 summaries the results for 25 different configurations of

different block limits and pool sizes for all the five strategies. The results are the block

income (BI) in Ether, the block cost (BC) in seconds and the block profit (BP). For

each configuration, we report the average result from 1000 independent simulation

runs. The confidence interval is not reported here, but it is within 2% of the average

result.

From Table 7.2, we can see a significant difference between the five strategies in

terms of the block income, the block cost and the block profit. It is clear there is a

trade-off between the block income and the block cost. For instance, S1, S2 and S4

achieve the highest block income, while incurring the highest block cost. However,

maximising the block income does not mean maximising the block profit as the profit

should consider both the income and the cost imposed by executing transactions.

Thus, we will compare, in more detail, the block profit gained by miners in the

baseline strategies with that of the optimised strategies to get insights about the
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Block Pool S1 S2 S3 S4 S5
limit size BI BC BP BI BC BP BI BC BP BI BC BP BI BC BP

8M

4k 0.39 0.24 1.65 0.43 0.24 1.85 0.15 0.06 2.78 0.35 0.22 1.55 0.2 0.06 3.85
8k 0.47 0.24 2.01 0.5 0.22 2.34 0.17 0.05 3.85 0.41 0.21 1.98 0.23 0.04 5.8
16k 0.55 0.23 2.43 0.59 0.22 2.75 0.19 0.05 4.96 0.48 0.19 2.49 0.27 0.03 8.09
32k 0.65 0.22 3.03 0.69 0.22 3.36 0.22 0.04 6.58 0.54 0.18 3 0.33 0.03 11.45
64k 0.76 0.22 3.64 0.81 0.22 3.95 0.25 0.03 8.53 0.59 0.17 3.51 0.41 0.03 15.54

16M

4k 0.69 0.49 1.44 0.71 0.49 1.49 0.25 0.12 2.32 0.62 0.47 1.33 0.35 0.1 3.57
8K 0.85 0.48 1.82 0.86 0.48 1.84 0.28 0.1 2.91 0.75 0.43 1.74 0.37 0.07 5.56
16k 1.01 0.46 2.23 1.01 0.45 2.28 0.3 0.09 3.79 0.9 0.4 2.28 0.44 0.06 8.04
32k 1.19 0.45 2.7 1.18 0.44 2.72 0.36 0.08 5.66 1.04 0.38 2.76 0.53 0.05 11.36
64k 1.38 0.43 3.25 1.38 0.43 3.27 0.42 0.06 7.81 1.11 0.35 3.17 0.67 0.05 14.74

32M

4k 1.06 0.95 1.12 1.04 0.91 1.16 0.42 0.24 1.88 1 0.95 1.05 0.62 0.26 2.45
8k 1.4 1 1.41 1.34 0.97 1.39 0.44 0.2 2.3 1.3 0.95 1.37 0.64 0.16 4.13
16k 1.71 0.99 1.76 1.63 0.98 1.68 0.47 0.2 2.5 1.5 0.84 1.78 0.67 0.1 6.58
32k 2.05 0.9 2.29 1.92 0.96 2.02 0.53 0.18 3.35 1.85 0.78 2.38 0.8 0.09 9.35
64k 2.41 0.88 2.75 2.28 0.9 2.56 0.65 0.14 5.64 2.11 0.74 2.86 1 0.08 12.51

64M

4k 1.48 1.7 0.88 1.42 1.53 0.93 0.96 0.73 1.37 1.39 1.81 0.77 1.17 0.78 1.55
8k 2.13 1.92 1.11 1.98 1.78 1.11 0.76 0.44 1.84 2.02 1.92 1.05 1.16 0.46 2.57
16k 2.81 2.02 1.39 2.56 1.92 1.34 0.83 0.38 2.27 2.64 1.91 1.38 1.24 0.3 4.33
32k 3.42 2.02 1.71 3.14 1.98 1.59 0.86 0.39 2.23 3.01 1.67 1.81 1.24 0.18 7.17
64k 4.13 1.81 2.29 3.72 1.97 1.89 0.98 0.35 3.02 3.73 1.54 2.43 1.52 0.15 9.88

128M

4k 1.96 3.12 0.63 1.89 3.05 0.62 1.9 2.63 0.73 1.85 3.46 0.53 1.91 2.56 0.75
8k 2.94 3.39 0.87 2.74 3.05 0.9 1.89 1.42 1.35 2.78 3.64 0.77 2.34 1.56 1.53
16k 4.23 3.85 1.1 3.8 3.52 1.08 1.43 0.86 1.72 4.05 3.84 1.05 2.24 0.87 2.58
32k 5.6 4.09 1.37 4.94 3.84 1.29 1.58 0.73 2.18 5.3 3.82 1.39 2.34 0.55 4.37
64k 6.86 4.07 1.69 6.14 4.01 1.53 1.64 0.78 2.12 6.02 3.31 1.82 2.37 0.32 7.43

Table 7.2: A summary of the experiment’s results for different configurations of block
limits and pool sizes for all the five strategies (S1, S2, S3, S4, S5).

impact of the uncertainty miners face when selecting transactions.

Since the block income and the block cost for the two baseline strategies (S1 and

S2) were almost the same, the block profit gained by miners in these strategies is the

same. That is, there is no difference between the two baseline strategies in terms of

the block profit.

In the first optimised strategy (S3), miners can get up to 1.4 times more block

profit compared to miners in the baseline strategies. That is, the certainty about

the income of transactions can help miners to increase their block profit significantly.

This is a bit surprising since miners in this strategy still uncertain about the cost of

transactions. However, this might be because miners in this strategy select transac-

tions that offer the highest income (fee), which are more likely to be contract-creation

transactions.

In the second optimised strategy (S4), however, miners are not able to achieve

any significant improvement in terms of the block profit compared to miners in the

baseline strategies. That is, the certainty about the cost of transactions does not help
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Figure 7.2: Block income (left), block cost (middle) and block profit (right) for dif-
ferent block limits.

miners increase their block profit. This might be due to the impact of the uncertainty

miners perceives in this strategy about the block income.

In the third optimised strategy (S5), miners can get up to four times as much block

profit compared to miners in the baseline strategies. That is, the certainty about both

the income and the cost of transactions can help miners to maximise their block profit

significantly. Also, miners in this strategy can gain more block profit compared to

other optimised strategies since they are certain about both the income and cost of

transactions.

Impact of the block limit growth. Figure 7.2 shows the block income (left),

block cost (middle) and block profit (right) for different block limits for all the five

strategies. The pool size here is 32,000 transactions. The x-axis shows the block limit

in millions of gas units, while the y-axis shows the result of interest. The five curves

represent the five selection strategies.

From Figure 7.2, we can see that when the block limit increases, both the block

income and the block cost also increase for all the five strategies, at roughly the same

pace. This is expected since increasing the block limit means more transactions can

be included. Regarding the block profit, it is unclear whether the increase of the

block limit can lead to a rise in the block profit. This is because when the block limit

increases both the income and the cost also increase, leading to roughly the same

block profit. Therefore, the impact of the uncertainty miners face does not grow with

the rise of the block limit. For instance, miners with certainty (e.g., S5 strategy) can
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get up to four times as much block profit compared to uncertain miners regardless of

the block limit.

It is worth noting that the block profit in Figure 7.2 seems to be decreasing when

the block limit increases for all the five strategies. This is because we are using the

same pool size over different configurations of block limits. When the pool size is

small compared to the block limit, the profit is expected to be less since there will

not be many choices of transactions for miners to select from.

Impact of the pool size growth. Figure 7.3 shows the block income (left), block

cost (middle) and block profit (right) for different pool sizes for all the five strategies.

The block limit here is 32 million units of gas. The x-axis shows the pool size, while

the y-axis shows the result of interest.

From Figure 7.3, we can see that when the pool size increases, the block income

also increases for all the five strategies. This is expected since increasing the pool size

means more choices of transactions are available to miners to select from. However,

the rate of increase is different among the strategies. Uncertain miners (S1 and

S2) can get 1.2 times more block income when the pool size increases from 4000 to

64000. Miners with S4 strategy can almost achieve the same increase rate as uncertain

miners. On the contrary, certain miners with strategies S3 and S5 can only increase

their block income by up to 60%. This is because they aim at maximising their block

profit by considering both the block income and the block cost.

Regarding the block cost, we can see different behaviours between the five strate-

gies when the pool size increases. The block cost for uncertain miners (S1 and S2)

remains almost the same, even when the pool size increases. On the contrary, the

block cost for certain miners (S3-S5) decreases with different degrees. For example,

the block cost decreases by 22% for S3, 41% for S4 and 69% for S5, when the pool size

increases from 4,000 to 64,000. This is because when the pool size increases, miners

with certainty can select the best (cheap) transactions, compared to uncertain miners

who do not know the cost of transactions beforehand. That is, miners with certainty

can decrease the block cost significantly with the rise of the pool size, while uncertain

miners maintain roughly the same block cost.

Regarding the block profit, we can see that when the pool size increases, the

block profit also increases for all the five strategies. However, we observe differences

between the five strategies in terms of the degree of increase. Miners with certainty

(e.g., S5) can get four times more block profit when the pool size increases from 4,000

to 64,000, while miners with uncertainty (e.g., S1) can only get 1.2 times more block
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Figure 7.3: Block income (left), block cost (middle) and block profit (right) for dif-
ferent pool sizes.

profit. This indicates that although with uncertainty, miners can increase their block

profit when the pool size increases, the increase can even be larger with the absence

of such uncertainty.

To summarise, the impact of the uncertainty miners face becomes even more

obvious with the growth of the pool size. With the lack of uncertainty, miners can

better optimise their selection of transactions when the pool size increases, leading

to a significant increase in their block profit as apposed to uncertain miners.

7.5.2 Impact of Uncertainty on the PoW Profit

In this section, we present and discuss the impact of the uncertainty on the PoW profit

gained by miners. The PoW profit here dictates the fraction of generated blocks (the

fraction of fee received). Table 7.3 summaries the PoW profit results for 25 different

configurations of different block limits and pool sizes, for all the five strategies. For

each configuration, we simulate one day of the Ethereum network and then report

the average results from 10 independent runs. The confidence interval is not reported

here, but it is within 5% of the average result.

From Table 7.3, we can see some differences between the five strategies in terms of

the PoW profit, especially when the block limit goes beyond 32 million units of gas.

For the baseline strategies, our simulation results show that the average PoW profit

for both strategies was almost the same. That is, that there is no difference between

the two baseline strategies in terms of the PoW profit.
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Block limit Pool size S1 (%) S2 (%) S3 (%) S4 (%) S5 (%)

8M

4k 20.027 20.009 19.91 19.656 20.397
8k 20.027 20.218 19.701 19.978 20.075
16k 20.062 20.129 19.99 19.643 20.173
32k 20.08 19.912 19.812 19.913 20.282
64k 19.788 19.674 20.199 20.172 20.166

16M

4k 19.917 19.778 20.245 19.598 20.465
8k 19.736 19.523 20.035 20.006 20.704
16k 19.885 19.7 20.074 19.868 20.474
32k 19.55 19.899 20.092 19.998 20.462
64k 19.47 19.79 19.943 20.298 20.499

32M

4k 19.603 19.395 20.724 19.629 20.65
8k 19.316 19.843 20.563 19.483 20.796
16k 19.754 19.427 20.432 19.462 20.925
32k 19.616 19.489 20.386 19.803 20.705
64k 19.484 19.718 20.12 20.024 20.655

64M

4k 19.329 19.401 21.286 19.398 20.586
8k 19.233 19.469 21.062 18.942 21.298
16k 19.208 19.182 21.102 19.368 21.145
32k 19.166 19.019 21.1 19.221 21.489
64k 19.017 19.144 20.55 19.503 21.788

128M

4k 19.641 20.158 20.356 19.117 20.725
8k 19.169 18.856 22.082 18.807 21.088
16k 18.293 18.578 22.363 18.196 22.57
32k 17.996 18.2 22.445 18.535 22.824
64k 18.956 18.128 21.962 18.261 22.694

Table 7.3: A summary of the PoW profit (the fraction of generated blocks) for different
configurations of block limits and pool sizes for all the five strategies (S1, S2, S3, S4,
S5).

Similar to the block profit discussed in Section 7.5.1, certain miners in the op-

timised strategies (S3 and S5) are able to obtain higher PoW profit as opposed to

uncertain miners. In the first optimised strategy (S3), miners can get more PoW

profit compared to miners in the baseline strategies when the block limit increases

beyond 32 million units of gas. That is, the certainty about the income of transactions

can help miners to increase their PoW profit by up to 25%. In the second optimised

strategy (S4), however, miners are not able to achieve any significant improvement

in terms of the PoW profit compared to miners in the baseline strategies. That is,

the certainty about the cost of transactions does not help miners increase their PoW

profit. In the third optimised strategy (S5), miners can get more PoW profit com-

pared to miners in the baseline strategies when the block limit increases beyond 32
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Figure 7.4: PoW profit for different block limits (left) and different pool sizes (right).

million units of gas. That is, the certainty about both the income and the cost of

transactions can help miners to maximise their block profit by up to 30%.

Impact of the block limit growth. Figure 7.4 (left) shows the PoW profit for

different block limits for all the five strategies. The pool size here is 32,000 transac-

tions. The x-axis shows the block limit in millions, while the y-axis shows the PoW

profit. From Figure 7.4, we can see that when the block limit increases, the impact of

the uncertainty on the PoW profit also increases. For the current implementation of

Ethereum, all uncertain and certain miners receive roughly the same fraction of fee.

Thus, there is no impact of such uncertainty on the PoW profit. However, when the

block limit goes beyond 32 million, the effect will become visible. For instance, miners

with certainty (e.g., S5) can generate up to 27% more fee than uncertain miners (e.g.,

S1) when the block limit reaches 128 million.

Impact of the pool size growth. Figure 7.4 (right) shows the PoW profit for

different pool sizes for all the five strategies. The block limit here is 32 million units

of gas. The x-axis shows the pool size, while the y-axis shows the PoW profit. From

Figure 7.4, it is unclear whether the increase in the pool size can have an impact

on the PoW profit. We showed that in Section 7.5.1, the rise in the pool size could

help miners to increase their block profit since miners will have more options for
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transactions to select from. However, this is not the case for the PoW profit as the

pool size can only help miners to increase their per block profit by offering more

choices of transactions to select from.

7.6 Discussion

In this section, we discuss the impact of the assumptions made and the internal

validity threats to our evaluation of the uncertainty problem. Also, we discuss the

limitations of our analysis.

7.6.1 Assumptions

We made several model assumptions in Section 7.2.2 to evaluate the uncertainty

problem in Ethereum. Here, we discuss four assumptions that can impact the analysis

results, which are as follows.

Miners and Mining pools. Similar to the study of the Verifer’s Dilemma in

Chapter 6, our analysis is applicable for miners and mining pools as a whole. That

is, our analysis of the uncertainty problem has not considered individual miners that

constitute a pool. Miners within a pool might be less impacted by the uncertainty

problem depending on how the pool works and how tasks are distributed among the

participating miners.

Type of transactions. Similar to the study of the Verifer’s Dilemma in Chapter

6, we studied the uncertainty problem considering only contract-related transactions

with the aim of providing a worst case analysis. That is, we neglected financial

transactions as they are trivial to execute. We believe the results are still valid even

that it might be less intensive if we introduced financial transactions,

Full blocks of transactions. Similar to the study of the Verifer’s Dilemma in

Chapter 6, we studied the uncertainty problem considering only full blocks of trans-

actions with the aim of providing a worst case analysis. The impact of uncertainty

should be different if we introduce non-full or even empty blocks. However, we believe

miners are more encouraged to fill their blocks to maximise their transactions fees,

especially when the block reward is eventually removed [53].

Real cost of transactions. To study the uncertainty problem, we need to

feed the model with the cost of transactions. As a first attempt to explore the

uncertainty space, we assume that the CPU Time required to execute a transaction

is representative of its cost. However, the real cost of a transaction should be related

to the actual energy cost, or at least consider other overhead (e.g., memory usage)
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beyond the CPU usage. Although the main insights derived from our analysis remain

useful, more accurate and reasonable results can be obtained by feeding the model

with the real energy cost.

7.6.2 Threats to Validity

We discuss three threats to the internal validity of our evaluation, which are as follows:

Selection of contract transactions. Similar to the study of the Verifer’s

Dilemma in Chapter 6, the selection of transactions can be a threat to the correctness

of our analysis. However, we base our evaluation on a large number of transactions

that have been selected in a random way, see Chapter 5. That is, we establish the

most reliable and less bias representation of the real system.

Instrumentation. Similar to the study of the Verifer’s Dilemma in Chapter 6,

the CPU time to execute each transaction is based on the measurements obtained

from a particular machine. That is, the outcomes may not generalise for other archi-

tectures. However, it is possible to reproduce the analysis results using CPU Time

data from different machines.

Ethereum incentive model. The effect of uncertainty problem only holds on

the current implementation of the Ethereum Gas mechanism as it does not provide

the right incentives for miners. We expect Ethereum to improve its Gas mechanism

to properly and adequately set the fee for transactions. In that case the uncertainty

miners face would have no impact on the received profit as miners would always gain

rewards that are compatible with the efforts spent, regardless of whether they face

uncertainty or not.

7.6.3 Limitations

We discuss two limitations of our analysis, which are as follows.

Analysis of collective behaviour. Our analysis of the uncertainty problem

is a classic optimisation analysis, where we compare the profit a miner would get

by following each of the five transaction selection strategies. That is, our analysis

does not consider the selection of such strategies given the behaviour of other miners.

One way to address this limitation is by considering a game theoretic analysis that

accounts for the behaviour of other miners.

As our analysis has not considered the behaviour of other miners in the network,

we cannot draw conclusions about the impact on the system if, for instance, all or some

miners follow one strategy of selecting transactions. Assume that miners follow the
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best strategy (e.g., strategy S5) by selecting transactions based on the ratio between

rewards and cost. In this case, transactions that offer a small reward or incur a high

cost will wait for long time to be selected or even worse they might never be selected.

We intend to extend this optimisation analysis to a game theory by considering the

behaviour of all miners as future work.

Number of miners. In our analysis presented, we only consider five miners,

each following a different strategy. The number of miners in our current optimi-

sation analysis does not really matter. This is because our aim is to compare the

profit a miner may get when there is certainty about the rewards and/or the cost

of transactions (optimised strategies) with the current Ethereum case where miners

are uncertain about both rewards and costs of transactions. However, the number of

miners might matter if we consider a game theoretic analysis that accounts for the

behaviour of others miners. For example, an uncertain miner who follow the baseline

strategy S1 might be impacted more if there is a large number of miners following

the best strategy S5. We note that one can easily change the number of miners in

the network in the simulator and then run the desirable analysis.

7.7 Conclusion

This chapter provides an extensive analysis of the uncertainty problem miners per-

ceive in Ethereum when selecting transactions, following a data-driven approach and

discrete-event simulation techniques. To the best of our knowledge, this is the first

analysis attempt of the uncertainty problem we are aware of.

The main insights we gained from this analysis are as follows. First, the un-

certainty miners face can significantly reduce the earned block profit (up to a factor

four), especially when there are a large number of pending transactions to select from.

Besides, such uncertainty can have a considerable impact on the PoW profit in future

implementations when the block limit becomes relatively large.

We suggest that similar analysis as reported in this chapter should be carried out

for future developments, e.g., when Proof of Work is replaced or when Ethereum has

adjusted its incentive model. Also, we suggest reproducing the analysis results after

feeding the model with the real energy cost for transactions as opposed to the CPU

time metric we used in this chapter.
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Chapter 8

Conclusion and Future Work

Summary

In this chapter, we first introduce and list the main contributions of this research.

Then, we provide a summary of the work presented in this thesis and point to some

directions for future work.

8.1 Thesis Contribution

In this thesis, we contribute to the field of blockchain analysis as follows. First and

most important, we propose BlockSim as a framework and tool for blockchain systems

to address the limitations of existing simulation tools proposed in the literature.

Unlike existing tools, BlockSim simulator is designed to be generic, extensible and

easy to use. BlockSim can assist blockchain designers, analysts and researchers to

explore various performance and system properties.

Another contribution of this thesis is two extensive data-driven simulation studies

related to Ethereum smart contracts, regarding the Verifier’s Dilemma and the profit

uncertainty problems. We provide (to the best of our knowledge) the first data-

driven rigorous analysis of these problems using probabilistic modelling techniques

with the help of our BlockSim simulator. Thirdly, to run these studies realistically,

we collect real Ethereum smart contracts data and then transform it into distributions

to parameterise the simulator. Finally, we conduct a systematic mapping review to

understand research trends on the general domain of smart contracts, and to identify

areas for future research. In this section, we provide a summary of these contributions

as follows:

1. Conducting a systematic mapping study to explore the current research on

blockchain-based smart contracts. From the mapping study, we provide a survey
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of the scientific literature, identify academic research trends and uptake and

identify gaps for further research (Chapter 3).

2. Designing and developing a generic blockchain simulator named BlockSim that

is flexible enough to support the analysis of a large variety of blockchains and a

wide set of analysis problems. BlockSim covers different blockchain layers, and

provides simulation constructs that are intuitive, hide unnecessary detail and

extensible. At the core of BlockSim is a Base Model that we extend to support

the implementation of Bitcoin and Ethereum blockchains. BlockSim is imple-

mented in Python, and it is validated against real-life systems and measurement

studies from the literature (Chapter 4).

3. Conducting an extensive analysis to estimate the distributions for Ethereum

smart contract transactions, with respect to different attributes. To determine

these distributions, we use publicly available Ethereum smart contract infor-

mation, augmented with experimental data for over 300,000 smart contract

transactions obtained on a test bed. The estimated distributions are then fed

as inputs to the BlockSim simulator to conduct data-driven simulation studies

(Chapter 5).

4. Conducting an extensive data-driven analysis of the Ethereum Verifier’s Dilemma,

using a data-driven model-based approach that combines closed-form expres-

sions and discrete-event simulation. We show that, indeed, it is often economi-

cally rational not to verify, in particular for miners with less hashing power. We

consider two approaches to mitigate the implications of the Verifier’s Dilemma,

namely parallelisation and active insertion of invalid blocks, both shown to be

effective (Chapter 6).

5. Conducting an extensive analysis of the impact of the uncertainty miners per-

ceive in Ethereum when selecting transactions, using data-driven and simula-

tion approaches. We show that such uncertainty has a significant impact on the

profits miners can gain (Chapter 7).

8.2 Thesis Summary

In this section, we summarise the work that has been carried out in this thesis,

highlighting the main contributions and results obtained.
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8.2.1 Academic Research on Smart Contracts (Chapter 3)

Blockchains and smart contracts have received increasing attention in recent years,

also in academic circles. One contribution of this thesis is to identify and to classify

all peer-reviewed research that has been conducted on smart contract technology,

with the aim to document the growth of research outputs and to identify gaps for

future work.

We conduct a systematic mapping study in longitudinal aspects to document and

analyse the growth in research outputs related to smart contracts. From the mapping

study, we find that the number of published papers on smart contracts increases

significantly every year, reaching over 2500 papers as of March 2020. The results

of the study also show six different categories for smart contract topics, which are

security, privacy, software engineering, application, performance and scalability and

other smart contract related topics. The majority of the papers falls into application

(about 64%) and software engineering (21%) categories.

From the systematic study, we identify at least two research areas that can be

further explored, and we base our work (Chapters 5-7) on these identified areas.

8.2.2 BlockSim Simulation Framework (Chapter 4)

A major contribution of this thesis is the proposal of a discrete-event simulation

framework called BlockSim to explore the effects of configuration, parameterisation

and design decisions on the behaviour of blockchain systems. BlockSim aims to

provide simulation constructs that are intuitive, hide unnecessary detail and can be

easily manipulated to be applied to a large set of blockchains design and deployment

questions (related to performance, reliability, security or other properties of interest).

That is, BlockSim has three design objectives, namely, generality, extensibility and

simplicity.

At the core of BlockSim is a Base Model, which includes model constructs at three

abstraction layers: the network layer, the consensus layer and the incentives layer [96].

The Base Model includes a number of functional blocks (e.g., Block, Transaction and

Node) common across blockchains, that can be extended and configured as suited

for the system and study of interest. The Base Model of BlockSim is implemented

through a number of Python modules and complemented by modules (event, sched-

uler, statistics, etc.) that implement the simulation engine. To illustrate the exten-

sibility of BlockSim, we extend and modify the Base Model of BlockSim to support
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the implementation of both Bitcoin and Ethereum blockchains. We validate Block-

Sim against existing public blockchain systems such as Ethereum and Bitcoin and

results from the literature. We show BlockSim can produce statistically acceptable

simulation results.

To demonstrate the usefulness of BlockSim, we conduct a simulation study that

considers stale rate, throughput and mining fairness, for a range of possible blockchain

configurations (not all existing in real-life systems). Using BlockSim we can demon-

strate that the Ethereum uncle inclusion mechanism is beneficial for mining fairness.

Also, we show that the block interval (i.e. the time between two consecutive blocks)

for Bitcoin can be securely reduced to improve the throughput by a factor 10.

8.2.3 Data Collection and Distributions (Chapter 5)

Another contribution of this thesis is the collection of Ethereum smart contract data

and the application of appropriate distributions to transform the data into inputs

suitable for the BlockSim simulator. This contribution can be divided into several

parts, as follows:

Data collection approach. We propose a data collection approach that is capable

of collecting the details (e.g., Gas Limit, Gas Price and input data) of Ethereum smart

contract transactions. Our approach makes use of the APIs provided by Etherscan

explorer, and it is implemented as a Python script and made available to the public.

Measurement system. We also propose a measurement system that tallies the

Used Gas and is capable of measuring the execution time of Ethereum smart contract

transactions. Currently, our system is implemented on top of the Ethereum Python

client but can be applied to other clients if required.

Approach to obtaining distributions. Using our data collection approach and

the measurement system, we manage to collect the details of over 300,000 smart

contract transactions with respect to the following attributes: Gas Limit, Used Gas,

Gas Price and CPU Time. Then, we conduct an extensive analysis to estimate the

distributions for these attributes. We use Gaussian Mixture Models to fit distributions

to Used Gas and Gas Price since the logarithmic representation of the data resembles a

normal distribution. We use Uniform distribution to estimate the distribution of Gas

Limit. Due to the correlation between Used Gas and CPU Time, we apply regression

methods to predict the CPU Time needed to execute a contract transaction, given the
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Used Gas. We compare a number of regression ensemble methods, and then consider

Random Forest as it is both fast and accurate.

The resulting distributions have been evaluated in terms of accuracy and per-

formance, and are implemented as a Python class that can be integrated with the

Ethereum model of the BlockSim simulator in order to generate representative and

realistic smart contract transactions.

8.2.4 The Ethereum Verifier’s Dilemma (Chapter 6)

Within Ethereum, miners do not receive incentives for verifying the received block and

its associated transactions. This leads to an interesting dilemma: should miners verify

transactions within blocks if they do not receive a specific fee for it? If all blocks are

valid, the verification would not have been necessary and the time spent on verifying

could have been used to mine new blocks (which are rewarded by a fee). This Verifier’s

Dilemma is well recognised, e.g., [71, 94], but has not been systematically analysed.

Our fourth contribution is an extensive model-based analysis of the Verifier’s Dilemma

in Ethereum.

We combine the following techniques to conduct our analysis of the Verifer’s

Dilemma. At the core of the analysis is the Ethereum model of BlockSim simula-

tor that we extend with the functionality necessary for the analysis under various

scenarios. Secondly, to run realistic simulation studies, we feed the simulator with

distributions that we obtain for smart contract transactions, see the previous section.

Finally, we derive a number of closed-form expressions to estimate the rewards miners

receive if they do or do not verify blocks for base scenarios where no invalid blocks

are present.

The conclusion of the analysis results is as follows. There are many scenarios in

which miners would benefit from not verifying blocks. This is especially true if (1) all

or almost all blocks are in fact valid, and (2) if the block limit is large enough. Within

the current implementation of Ethereum, the implications of the Verifier’s Dilemma

are small but the impact will become more important when the block limit increases.

To mitigate the implications of this dilemma, we consider two approaches. First,

we consider parallel verification to decrease the time verifying miners would have to

spend before they can mine a new block. Secondly, we consider the idea of injecting

invalid blocks on purpose, to penalise miners that do not verify. By injecting invalid

blocks, a non-verifying miner would more often pass on chains with invalid blocks that

will be rejected by other miners, which in turn would imply that the non-verifying
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miner does not receive the block award. Both approaches improve the situation by

making it less lucrative for miners to avoid verifying.

We recommend the Ethereum foundation to seriously consider some solutions to

mitigate the implications of the Verifier’s Dilemma before scaling the system. In this

thesis, we suggest two effective mitigation solutions for Ethereum to consider, which

are parallel verification and active injection of invalid blocks.

8.2.5 The Impact of Profit Uncertainty (Chapter 7)

In Ethereum, miners face uncertainty about the fee and the cost of individual trans-

actions. That is, they are not able to make an informed decision of which transactions

to select to maximise their revenue. In addition to the uncertainty miners face, the

Ethereum incentive model is not incentive-compatible (i.e. the award miners get from

executing transactions is not aligned with the computational cost), which exacerbates

the implications of the uncertainty problem. Our fifth contribution is an extensive

analysis of the uncertainty miners face during the selection of transactions, and its

impact on the received revenue in terms of block profit and PoW profit.

We combine the following techniques to conduct our analysis. First, we design

different transaction selection strategies for scenarios where miners are both certain

and uncertain about the income and the cost of transactions. Secondly, we extend

the Ethereum model of the BlockSim simulator with the functionality necessary to

support this analysis. Thirdly, to obtain realistic simulation results, we feed the

simulator with the distributions for real transactions.

The conclusion of the simulation results is as follows. The uncertainty miners face

has a significant impact on the received block profit, especially when the pool size is

relatively large. Within the current implementation of Ethereum, the impact on the

PoW profit is negligible, but it will become severe in future settings when the block

limit is relatively large.

To eliminate the impact of such uncertainty, we suggest the Ethereum foundation

to adjust its Gas incentive model to provide fair transaction rewards before scaling the

system. With a proper incentive model, the uncertainty miners face would have no

impact on the received profit as miners would always gain rewards that are compatible

with the efforts spent, regardless of whether they face uncertainty or not.
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8.3 Future Work

In this section, we introduce a number of opportunities for future research that can be

explored to improve and extend the work presented in this thesis. These opportunities

are as follows.

1. Extending BlockSim Simulator: In Chapter 4, we propose BlockSim as

a general and extensible simulation framework and tool for blockchains. The

current version of BlockSim is designed to model public blockchains and con-

tains models for the most popular public blockchains (Bitcoin and Ethereum).

One opportunity is to extend BlockSim to support the analysis and study of

private blockchains such as Hyperledger. Secondly, as BlockSim currently only

models the PoW algorithm used in Bitcoin and Ethereum, another way to ex-

tend BlockSim is by considering different consensus algorithms such as PoS and

variants of PBFT. In addition, BlockSim can be extended by modelling the un-

derlying broadcast protocol for the peer-to-peer network, instead of modelling

the propagation of information as a time delay. That would help in the decision

of selecting the right and optimal broadcast protocol.

2. Data Collection and Fitting: In Chapter 5, we collect data about Ethereum

smart contracts and transform it into distributions in order to provide inputs

for the simulator. There are several ways to improve the work presented in

this chapter, as follows. First, it would be nice to try more additional dis-

tributions and regression methods to fit fast and more accurate distributions

to the data. For instance, one can consider different kinds of mixture models

such as Phase-type using HyperStar tool [86, 87], as an alternative to GMM,

to fit distributions to the Used Gas and Gas Price attributes. Secondly, as

our measurement data shows that the received fee (in terms of Used Gas) for

contract transactions is not well-aligned with the CPU usage, another potential

future work is to analyse and understand the factors (e.g., individual opcodes)

that contribute to this. This thesis only focuses on collecting and fitting dis-

tributions to contract data, and thus we have not considered the analysis of

the reasons behind this misalignment. Furthermore, the experiment we per-

form in this chapter to obtain the Used Gas and the CPU Time is based only

on a single machine running the Python Ethereum Virtual Machine (EVM).

However, there are several implementations of the EVM that miners can use to
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run smart contracts, as mentioned in Section 2.4. Conducting the same experi-

ment using different machines running on different EVM clients would provide

more insightful (and possibly different) results about how well the received fee

is aligned with the computational efforts. Finally, future work may extend the

proposed measurement system to consider computational effort beyond CPU

usage such as memory usage, and relating the effort directly to the real energy

cost.

3. The Verifier’s Dilemma Problem: In Chapter 6, we conduct an exten-

sive data-driven analysis of the Ethereum Verifier’s Dilemma using closed-form

expressions and discrete-event simulations. There are some opportunities to

improve this work in the future. First, we only study the Verifier’s Dilemma

under the PoW algorithm as currently implemented in Ethereum. However,

since Ethereum and other blockchains are planning to move to more efficient

protocols such as PoS [26, 97], studying the impact of this dilemma under dif-

ferent consensus protocols is of interest. Secondly, we have not derived closed-

form expressions for scenarios where invalid blocks are present. We leave this

for future work as with expressions one can get insightful results very quickly

compared to simulations. Thirdly, our analysis has not considered dynamic

mining behaviours and collective behaviour of miners. Future work may extend

our analysis by proposing a game theoretic analysis that covers both dynamic

and collective mining behaviours. Furthermore, the two proposed mitigation

solutions (parallelisation and injection of invalid blocks) face some limitations,

as discussed in Section 6.6. That is, addressing these limitations to enable the

application of the proposed solutions in the real system would be valuable to

the community. Finally, future work may consider different mitigation solu-

tions such as Sharding [70] and study their effectiveness in comparison with the

solutions we proposed.

4. The Profit Uncertainty Issue: In Chapter 7, we conduct an extensive data-

driven analysis of the profit uncertainty miners face when selecting transactions.

There are various aspects that can be improved as future work. First, we

assumed the CPU usage is representative of the cost of a transaction. However,

the cost should be related to the actual energy cost. That is, further research

is required to feed our model with the actual energy cost for transactions to

study the impact of such uncertainty. Similar to the Verifier’s Dilemma, we

study the uncertainty issue under the PoW algorithm, and that future work
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may consider different consensus algorithms. Instead of a typical optimisation

analysis, considering the collective behaviour of miners in the network is of

interest as future work. Furthermore, proposing a run-time system that allows

miners to choose the best (most profitable) transactions could be of interest.

Finally, our results show the impact of the profit uncertainty under the current

Ethereum incentive model, where the fee of transactions is not proportional to

the computational cost. Thus, enhancing the Ethereum incentive model would

be an excellent contribution to eliminate the implications of the uncertainty

issue.
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